WO2014126246A1 - ガスシールドアーク溶接用ソリッドワイヤ、ガスシールドアーク溶接金属、溶接継手、溶接部材、溶接方法、および溶接継手の製造方法 - Google Patents

ガスシールドアーク溶接用ソリッドワイヤ、ガスシールドアーク溶接金属、溶接継手、溶接部材、溶接方法、および溶接継手の製造方法 Download PDF

Info

Publication number
WO2014126246A1
WO2014126246A1 PCT/JP2014/053668 JP2014053668W WO2014126246A1 WO 2014126246 A1 WO2014126246 A1 WO 2014126246A1 JP 2014053668 W JP2014053668 W JP 2014053668W WO 2014126246 A1 WO2014126246 A1 WO 2014126246A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
weld metal
slag
content
arc welding
Prior art date
Application number
PCT/JP2014/053668
Other languages
English (en)
French (fr)
Inventor
佑 銭谷
真二 児玉
祥子 土屋
恭章 内藤
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US14/766,962 priority Critical patent/US20160008906A1/en
Priority to CN201480008118.7A priority patent/CN104981319B/zh
Priority to JP2014526296A priority patent/JP5652574B1/ja
Priority to MX2015010292A priority patent/MX2015010292A/es
Priority to KR1020157023167A priority patent/KR101764519B1/ko
Publication of WO2014126246A1 publication Critical patent/WO2014126246A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Definitions

  • the present invention relates to a solid wire for welding a steel plate such as a galvanized steel plate used for a structural member around an automobile undercarriage by a gas shield arc welding method.
  • the present invention also relates to a weld metal, a welded joint, and a welded member welded by a gas shield arc welding method.
  • the present invention also relates to a welding method using a gas shield arc welding method and a welded joint.
  • a galvanized steel sheet or a galvanized steel sheet is often used as a structural steel sheet for an automobile undercarriage that is painted after welding.
  • gas shield arc welding represented by carbon dioxide shielded arc welding is often applied to welding structural members around the automobile undercarriage.
  • blow holes may occur in the welded joint portion, that is, in the weld metal.
  • arc welding is performed on a galvanized steel sheet or a galvanized steel sheet (herein, zinc or galvanized steel sheet is a generic term for both galvanized steel sheets and galvanized steel sheets), blow holes are likely to occur. It is known.
  • a blowhole is formed by the heat input during welding, the gasification of CO 2 gas due to the reaction of carbon in the weld metal with oxygen, or various adsorbed components, and the gasification by the reaction of low temperature gasification reaction components. Bubbles are generated and these bubbles remain as voids as a result of being trapped in the weld metal as the weld metal solidifies. Particularly in a zinc or zinc alloy plated steel sheet, zinc or zinc alloy having a low melting point plated on the steel sheet surface evaporates during welding, and the zinc vapor becomes bubbles in the weld metal in a molten state, so that blow holes are likely to occur. If a large number of such blowholes occur, the strength of the welded joint is reduced, causing problems as structural members, coating defects are likely to occur, and the appearance and shape of the weld bead are also likely to be poor.
  • steel plates used for structural members for automobile undercarriages are generally coated by electrodeposition after welding.
  • the deoxidizing elements such as Si and Mn in the welding wire are combined with the oxygen component of the shielding gas in the welding process. Reacts to oxide.
  • the oxide floats on the surface of the molten weld metal and becomes slag. Since such slag (oxide) is not conductive, electrodeposition coating is not applied on the slag on the surface of the weld bead, resulting in poor coating and defective coating, resulting in corrosion resistance and aesthetics of the weld after coating. May decrease.
  • blow holes should be avoided as much as possible in the weld metal at the weld joint.
  • Patent Document 1 The proposed welding wire of Patent Document 1 is C: 0.03 to 0.15%, Si: 1.00 to 2.50%, Mn; 0.10 to 1.00% by weight%, provided that Mn / Si is in the range of 0.65% or less, P: 0.013% or less, 0.005 to 0.200% in total of one or two of Al and Ti, one or two of S and O
  • the total amount of seeds is 0.0050 to 0.0500%, with the balance being Fe and inevitable impurities.
  • Si, Mn, Al, and Ti, which are deoxidizing elements contained in a welding wire, are adjusted as described above, and in particular, Si is contained in a large amount of 1.00 to 2.50%. It is said that generation of pits and blow holes can be suppressed.
  • Patent Document 2 as a method of lap fillet arc welding and a lap fillet arc welded joint of zinc or zinc alloy-plated steel sheet, pit / blowhole porosity defects, spatter defects such as spatter and undercut, gap resistance A technique for improving the above has been proposed.
  • Patent Document 2 in the lap fillet arc welding method of zinc or zinc alloy plated steel sheet, the Si content in the weld metal is 0.5% or less, and the upper and lower two pieces of zinc or zinc that are lap fillet arc welded.
  • the total of the content rate of Si and Al in the steel plate which is a base material of the upper plate among the alloy-plated steel plates is set to 0.35% or more, and a welded joint adjusted as such is disclosed. That is, by restricting the Si content in the weld metal to 0.5% or less, the occurrence of blowholes can be suppressed, and the total content of Si and Al in the base steel plate as the welded material is also reduced to 0. It is said that the gap resistance (welding stability with respect to the gap dimension) can be maintained by setting the ratio to 35% or more.
  • Patent Document 3 discloses an invention for improving slag peelability. That is, the slag generated after welding is mainly composed of a SiO 2 —FeO—MnO-based metal oxide, and its properties are determined by the composition ratio of Si and Mn in the weld metal, and the amount of Si and Mn in the weld metal However, it is disclosed that high Si and low Mn are obtained. In addition, it has been found that the slag to be produced is thin and fine in this way and the peelability is improved (Patent Document 3, page 3, upper left column, upper right column and FIG. 1). A solid wire for gas shielded arc welding containing a low Mn component and a method for lap fillet welding using the same are disclosed.
  • Patent Document 4 discloses an invention for reducing generated slag. That is, it is disclosed to suppress pits and blowholes by appropriately adding Si, Mn, Al or the like having strong deoxidizing power to slag and adjusting the deoxidation effect (Patent Document 4 [0012], [0012] 0013]). Along with this, by setting the amount of S and O within the optimum range, the slag encapsulation area adhering to the bead surface can be reduced (Patent Document 4 [0015]). A gas shielded arc welding wire is disclosed. Has been.
  • Patent Document 5 discloses an invention for reducing generated slag. That is, in gas shielded arc welding with high heat input and high pass temperature for CO 2 arc welding, B and Mo are added together with C, Si, Mn, Al, Ti and Cu limited to a specific range. Is disclosed. As a result, a gas shielded arc welding wire (Patent Document 5 [0012]) that combines the prevention of strength reduction and toughness reduction of weld metal, low slag generation, stable welding workability, and the like has been disclosed.
  • Patent Document 6 discloses an invention for reducing generated slag. That is, in gas-shielded arc welding of high heat input and high interpass temperature intended for the CO 2 arc welding, preventing the mechanical properties decrease of the weld, low slag generation rate, the slag removability good gas shielded arc welding Welding
  • An example of a wire is disclosed.
  • the present invention can reduce the amount of slag produced by defining the upper limit values of the contents of Mn, Ti and O in the wire, and can also contain S and the upper limit of Mn, Mo and Cu. By defining the value, the solid wire for gas shielded arc welding (Patent Document 6 [0010]) can improve the slag peelability.
  • Patent Document 7 the composition is appropriately selected and limited for the purpose of maintaining a stable arc during welding, smoothing the transition state of the droplets, and improving the welding workability.
  • a welding wire concentrated on the surface has been proposed.
  • Patent Document 8 discloses that 1) the content of C, Si, Ti, and Al having strong deoxidizing power at high temperatures is reduced to activate the oxidation reaction and promote the oxidation of zinc. 2) By increasing the oxygen potential by activating this oxidation reaction, the viscosity of the molten pool is reduced to facilitate gas discharge from the molten pool, and 3) Ti, Al, and Nb, which have a high affinity for nitrogen, are added. There has been proposed a welding wire that reduces the influence of zinc and nitrogen and suppresses the generation of pits and blowholes by a combined action such as fixing nitrogen to the ground.
  • Patent Document 9 proposes a welding method in which a predetermined steel plate and a welding wire are combined for the purpose of improving the fatigue characteristics of the weld joint even when the welding speed exceeds 80 cm / min. ing.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-80478
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2012-101232
  • Patent Document 3 Japanese Patent Application Laid-Open No. Sho 62-1224095
  • Patent Document 4 Japanese Patent Application Laid-Open No. Hei 7- Patent Document No. 80678
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-237361
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2006-26643
  • Patent Document 7 Japanese Patent Application Laid-Open No. 1-150494
  • Patent Document 8 Japanese Patent Application Laid-Open No. Japanese Patent Laid-Open No. 3-204195
  • Patent Document 9 Japanese Patent Laid-Open No. 2009-226476
  • Patent Document 1 focuses on suppressing the generation of pits formed by the blowhole appearing on the surface of the weld metal after solidification, rather than suppressing the generation of the blowhole itself. It is understood. That is, in Patent Document 1, in consideration of applications such as building materials, a welding wire used for gas shielded arc welding of a zinc or zinc alloy plated steel sheet having a thick galvanized layer (that is, having a thick texture) is targeted. .
  • the example of Patent Document 1 is intended for a galvanized steel sheet having a basis weight of 270 g / m 2 per side by double-sided hot dip galvanization. In the case of such thickening, it is difficult to completely prevent the occurrence of blow holes.
  • galvanized steel sheets used for structural members for automobiles are usually thin in the thickness of the galvanized layer compared to the use of building materials, and the basis weight of zinc per side is about 30 to 120 g / m 2. In many cases, the weight is relatively thin.
  • the gas shielded arc welding method it is difficult to confine the blowhole in the weld metal even if the viscosity of the weld metal in the molten state is increased.
  • blowholes are less likely to be discharged from the weld metal, which may increase blowholes.
  • the amount of Si is increased to increase the viscosity, there is a problem that the amount of slag increases. Therefore, in the technique of Patent Document 1, in the gas shield arc welding of a relatively thin galvanized steel sheet, it is practically possible to suppress the generation of slag at the same time as suppressing the generation of blowholes reliably and stably. It was difficult.
  • Patent Document 2 the components of the welding wire used for arc welding are not shown at all except Si and Al in the examples, and the components of the weld metal are not shown at all except Si. Absent. It is known that the content of elements other than Si and Al also affects the generation of blowholes. Therefore, even if the technique of Patent Document 2 is applied as it is, blowholes can be reliably suppressed. Not exclusively. Moreover, in the proposal of patent document 2, sufficient consideration is not made about generation
  • Patent Documents 3 to 6 and other Patent Documents 7 to 8 are not yet sufficient to reduce the generated slag, and the corrosion resistance and aesthetics of the welded portion are sufficiently obtained due to the resulting coating failure. It is not done.
  • Patent Document 9 shows a technique for improving the fatigue characteristics of a weld joint with a good weld toe shape, but does not show a technique for suppressing the generation of blowholes and slag. Not in.
  • the present invention has been made against the background described above.
  • gas shielded arc welding of a steel sheet such as a zinc or zinc alloy plated steel sheet
  • An object of the present invention is to provide a solid wire for welding that can reliably and stably suppress both occurrence and generation.
  • this invention makes it a subject to provide the weld metal with few blowholes and slags as the weld metal which carried out the gas shield arc welding of the zinc or zinc alloy plating steel plate by gas shield arc welding.
  • this invention makes it a subject to provide a welded joint with few blowholes and slag, and a welding member as a welded joint of the zinc or zinc alloy plating steel plate by gas shield arc welding. Moreover, this invention makes it a subject to provide the manufacturing method of the welding method and welding joint which reduce a blowhole and a slag, when zinc or zinc alloy plating steel plate by gas shield arc welding is welded.
  • each X value is within a range of 1.5 to 3.5%. Adjust the amount of ingredients.
  • the solid wire for gas shielded arc welding of the basic aspect (first aspect) of the present invention is: In mass% with respect to the total mass of the wire including plating, C: 0.03-0.15%, Si: 0.2 to 0.5%, Mn: 0.3 to 0.8% P: 0.02% or less, S: 0.02% or less, Al: 0.1 to 0.3%, Ti: 0.001 to 0.2% Cu: 0 to 0.5%, Cr: 0 to 2.5%, Nb: 0 to 1.0%, V: 0 to 1.0% And the balance consists of Fe and impurities, The value of X defined by the following formula (1) is in the range of 1.5 to 3.5% by mass.
  • the Si content in the welding solid wire is kept relatively low in the range of 0.2 to 0.5%, so that the viscosity of the molten metal during welding does not become excessively high. .
  • the blowhole is likely to float inside the molten metal and be released from the surface of the molten metal to the outside, which also has an advantageous effect on reducing the amount of blowhole remaining in the weld metal.
  • the Si content is made relatively high, and thereby the viscosity of the molten metal at the time of welding is made relatively high so as to confine the blowhole inside the surface of the weld metal.
  • the Si content is kept low, thereby suppressing the viscosity of the molten metal and facilitating the discharge of the blowhole, thereby reducing the amount of blowhole remaining in the molten metal. Is suppressed.
  • the type and composition of the steel plate (base material steel plate; welded steel plate) to be subjected to gas shield arc welding using the welding solid wire of the first aspect are not particularly limited.
  • the effect of the solid wire for welding according to the first aspect becomes remarkable. That is, when zinc or zinc alloy-plated steel sheet is used as the base material steel sheet, blowholes are likely to occur remarkably due to the zinc in the plating layer, but when zinc or zinc alloy-plated steel sheet is gas-shielded arc welded in this way Even so, if the solid wire for gas shielded arc welding of the first aspect is used, blowholes can be reliably reduced.
  • the value of X is set while appropriately regulating the amount of Si, Al, Ti that is particularly likely to be a slag generation source.
  • the amount of slag generated during welding can also be suppressed.
  • the amount of each component of the welding solid wire within the above range, when gas shielded arc welding is performed using the welding solid wire, there is less spatter generation, and the bead appearance and shape Even a good joint can be obtained.
  • the solid wire for gas shielded arc welding of the second aspect of the present invention is the solid wire for gas shielded arc welding of the first aspect, In mass% with respect to the total mass of the wire including plating, Cu: 0.05 to 0.5%, Cr: 0.005 to 2.5%, Nb: 0.005 to 1.0%, V: 0.005 to 1.0% 1 type or 2 types or more are included.
  • Such a solid wire for gas shielded arc welding of the second aspect may contain Cu derived from copper plating applied to the surface of the wire as a component of the weld metal. Moreover, the intensity
  • a weld metal to be welded by gas shield arc welding is defined.
  • the gas shielded arc weld metal of the third aspect of the present invention is C: 0.03 to 0.15% by mass% relative to the total mass of the weld metal, Si: 0.1 to 0.5%, Mn: 0.3 to 1.2%, P: 0.02% or less, S: 0.02% or less, Al: 0.05-0.3% Ti: 0.001 to 0.2% And the balance consists of Fe and impurities,
  • X defined by the following formula (2) is in the range of 1.0 to 4.0% by mass.
  • the content of each component in the weld metal is adjusted so that the value of X defined by the formula (2) is in the range of 1.0 to 4.0%. adjust.
  • the blowhole can be suppressed to a very small amount as a weld metal by gas shield arc welding in which a zinc or zinc alloy-plated steel plate that is likely to generate blowholes is used as a base steel plate (welded steel plate). . That is, when the value of X is in the range of 1.0 to 4.0%, the amount of blowholes in the weld metal compared to the case of less than 1.0% and the case of exceeding 4.0% Is significantly reduced.
  • the Si content in the weld metal is kept relatively low in the range of 0.1 to 0.5%, so that the viscosity of the molten metal during welding does not become excessively high. For this reason, the blowhole is likely to float inside the molten metal and be released from the surface of the molten metal to the outside, which also has an advantageous effect on the suppression of the blowhole.
  • the amount of slag generation is also large. Can be suppressed.
  • the amount of each component of the weld metal within the above range, it is possible to obtain a weld metal with less spatter and a good bead appearance and shape.
  • the weld metal of the fourth aspect of the present invention is the weld metal of the third aspect, Further, Cu: 0 to 0.3% by mass% with respect to the total mass of the weld metal, Cr: 0 to 1.5%, Nb: 0 to 0.7%, V: 0 to 0.7% 1 type or 2 types or more are included.
  • Cu derived from copper plating applied to the surface of the wire may be contained as a component of the weld metal.
  • Cr, Nb, and V as a component of the weld metal in an appropriate amount, the strength of the weld metal can be reduced without impairing the blowhole suppression effect and the slag suppression effect. Can be improved.
  • the welded joint by gas shielded arc welding is prescribed
  • the welded joint of the fifth aspect of the present invention is A weld metal of the joint portion, and two base materials sandwiching the weld metal and at least one of which is made of zinc or a zinc alloy plated steel plate (galvanized steel plate or zinc alloy plated steel plate), and by gas shielded arc welding A welded joint forming a weld metal,
  • the weld metal is the gas shield arc weld metal of the third aspect or the fourth aspect.
  • the welded joint of the sixth aspect of the present invention is the welded joint of the sixth aspect,
  • a zinc or zinc alloy-plated steel sheet (galvanized steel sheet or zinc alloy-plated steel sheet) contains 0.01 to 0.3% of Al by mass% with respect to the total mass of the steel sheet.
  • the zinc or zinc alloy-plated steel sheet when the welding wire of the first aspect or the second aspect is used, contains 0.01 to 0.01% by mass with respect to the total mass of the steel sheet.
  • the value of X defined by the formula (2) is within the range of 1.0 to 4.0%, and the Al content is 0.05 to 0.3%. It is easy to be within the range, and it is easy to suppress the blow hole generation amount and slag generation amount.
  • the welding member by gas shield arc welding is prescribed
  • a welding method by gas shielded arc welding and a method for manufacturing a welded joint are defined.
  • the welding method of the eighth aspect of the present invention is Using the solid wire for gas shielded arc welding of the first aspect or the second aspect, the weld metal of the joint is formed by gas shielded arc welding, and at least one of them is zinc or a zinc alloy plated steel sheet (galvanized steel sheet or Two base materials made of a zinc alloy-plated steel sheet) are welded.
  • the manufacturing method of the welded joint according to the ninth aspect of the present invention includes: A method for producing a welded joint having a weld metal of a joint part and two base materials sandwiching the weld metal and at least one of which is made of zinc or a zinc alloy plated steel sheet (galvanized steel sheet or zinc alloy plated steel sheet),
  • the weld metal is formed by gas shielded arc welding using the solid wire for gas shielded arc welding of the first aspect or the second aspect.
  • the solid wire for gas shielded arc welding of the present invention when a steel plate such as zinc or zinc alloy plated steel plate is gas-shielded arc welded using the wire, the generation of blowholes in the weld metal and welding after solidification are performed. Both generation of slag on the metal surface can be reliably and stably suppressed. In addition, the occurrence of spatter during welding is reduced, and a weld joint with a good weld bead shape and appearance can be obtained.
  • the gas shielded arc welded metal of the present invention has less blowholes and slag as a welded metal obtained by gas shielded arc welding of zinc or zinc alloy plated steel sheet by gas shielded arc welding.
  • the welded joint and welded member of the present invention have fewer blowholes and slag as a welded joint and welded member by gas shield arc welding using a zinc or zinc alloy plated steel plate as a base material (material to be welded). Further, a welded joint and a welded member with less spatter during welding and a good weld bead shape and appearance are obtained.
  • the welding method and the welded joint manufacturing method of the present invention when gas shield arc welding is performed using zinc or a zinc alloy plated steel plate as a base material (material to be welded), blowholes and slag are reduced. In addition, the generation of spatter during welding is small, and the shape and appearance of the weld bead are also good. That is, it becomes a high-quality welding method with few welding defects and a manufacturing method for a welded joint, and is optimal for manufacturing a structural member around an automobile undercarriage, for example.
  • the basic aspect (first aspect) of the solid wire for gas shielded arc welding of the present invention is mass% with respect to the total mass of the wire including plating, C: 0.03 to 0.15%, Si: 0.00. 2 to 0.5%, Mn: 0.3 to 0.8%, P: 0.02% or less, S: 0.02% or less, Al: 0.1 to 0.3%, Ti: 0.001 -0.2%, Cu: 0-0.5%, Cr: 0-2.5%, Nb: 0-1.0%, V: 0-1.0%, the balance being Fe and impurities X defined by the following formula (1) is in the range of 1.5 to 3.5% by mass%.
  • each element described above that is, C: 0.03 to 0.15 in mass% with respect to the total mass of the wire including plating. %, Si: 0.2 to 0.5%, Mn: 0.3 to 0.8%, P: 0.02% or less, S: 0.02% or less, Al: 0.1 to 0.3% Ti: 0.001 to 0.2%, Cu: 0.05 to 0.5%, Cr: 0.005 to 2.5%, Nb: 0.005 to 1.0%, V : Containing one or more of 0.005 to 1.0%, with the balance being Fe and impurities, and X defined by the formula (1) is 1. It is within the range of 5 to 3.5%.
  • Si, Mn, Al, and Ti are respectively Si: 0.3 to 0.5% and Mn: 0.4 to 0.8. %, Al: 0.15 to 0.3%, Ti: 0.05 to 0.2% are preferable.
  • C has the effect of stabilizing the arc and making the droplets finer. If the C content is less than 0.03%, the droplets become large, the arc becomes unstable, and the amount of spatter generated increases. On the other hand, if the C content exceeds 0.15%, not only the viscosity of the molten metal becomes low and the bead shape becomes poor, but also the weld metal is cured and the crack resistance is lowered. Therefore, the C content of the welding solid wire is set in the range of 0.03 to 0.15%.
  • Si 0.2 to 0.5%, preferably 0.3 to 0.5%
  • Si is an element (deoxidation element) that promotes deoxidation of molten metal during arc welding, and is effective in suppressing the generation of blowholes.
  • Si deoxidation element
  • slag It is also an element that makes the occurrence of If the Si content is less than 0.2%, deoxidation is insufficient and blowholes are likely to occur. If the Si content exceeds 0.5%, the slag increases remarkably. Therefore, the Si content of the welding solid wire is set in the range of 0.2 to 0.5% in consideration of the suppression of the generation of blowholes and the suppression of the slag amount. Even within this range, particularly within the range of 0.3 to 0.5%, blowhole suppression and slag amount suppression can be more effectively achieved.
  • Mn is also a deoxidizing element and has the effect of suppressing the generation of blowholes by promoting deoxidation of the molten metal during arc welding, but on the other hand, it is also an element that increases the viscosity of the molten metal. If the Mn content is less than 0.3%, deoxidation is insufficient and blowholes are likely to occur. On the other hand, if the Mn content exceeds 0.8%, the viscosity of the molten metal becomes high, and when the welding speed is high, the molten metal cannot appropriately flow into the welded part, resulting in a humping bead, and a bead shape defect. It tends to occur. Therefore, the Mn content of the welding solid wire is set in the range of 0.3 to 0.8%. In order to reliably suppress the generation of blowholes, the Mn content is preferably in the range of 0.4 to 0.8%.
  • Al 0.1 to 0.3%, preferably 0.15 to 0.3%
  • Al is a strong deoxidizing element and has a strong effect of promoting deoxidation of the molten metal during arc welding. On the other hand, it is also an element that makes slag noticeable. If the Al content of the welding solid wire is less than 0.1%, deoxidation is insufficient and blowholes are likely to occur. On the other hand, if the Al content exceeds 0.3%, the slag increases remarkably. Therefore, the Al content of the welding solid wire is set in the range of 0.1 to 0.3% in consideration of the suppression of the generation of blowholes and the suppression of the slag amount. Even within this range, particularly within the range of 0.15 to 0.3%, it is possible to more effectively achieve both the suppression of blowhole generation and the suppression of the amount of slag.
  • Ti 0.001 to 0.2%, preferably 0.05 to 0.2%
  • Inclusion of Ti has an effect of improving the arc stability in a high current region, and Ti is also an element that is effective in suppressing the occurrence of blowholes because Ti is also a deoxidizing element.
  • the Ti content is less than 0.001%, these effects are not sufficiently exhibited.
  • the Ti content exceeds 0.2%, the slag generation reaction is promoted and the slag amount increases. Therefore, the Ti content in the welding solid wire is set in the range of 0.001 to 0.2%. Even within this range, particularly within the range of 0.05 to 0.2%, the above effects can be sufficiently exhibited without causing an increase in the amount of slag.
  • P is an element that is generally mixed as an inevitable impurity in steel, and is usually also included as an impurity in the solid wire for arc welding.
  • P is one of the main elements that generate hot cracks in the weld metal and is desirably suppressed as much as possible. If the P content exceeds 0.02%, the hot cracks in the weld metal become significant. . Therefore, the P content of the welding solid wire is regulated to 0.02% or less.
  • the lower limit of the P content is not particularly limited, but is preferably 0.001% from the viewpoints of de-P cost and productivity.
  • S is also an element which is generally mixed as an inevitable impurity in steel, and is usually contained as an impurity in the solid wire for arc welding.
  • S is an element that inhibits the crack resistance of the weld metal, and is preferably suppressed as much as possible. If the S content exceeds 0.02%, the crack resistance of the weld metal deteriorates. Therefore, the S content of the welding solid wire is regulated to 0.02% or less.
  • the lower limit value of the S content is not particularly limited, but is preferably 0.001% from the viewpoint of the cost of removing S and productivity.
  • Cu is an element derived from copper plating applied to the wire surface as necessary.
  • Cr, Nb, and V are elements that improve the strength of the weld metal.
  • Cu, Cr, Nb, and V elements are contained in the welding solid wire as necessary.
  • Cu, Cr, Nb, V may contain only 1 type, and may contain 2 types or 3 types simultaneously.
  • Cu content should be in the range of 0-0.5%.
  • Cu is an element that may be contained in steel by about 0.02% as an impurity.
  • Cu is mainly derived from copper plating applied to the wire surface.
  • copper plating is an extremely important surface treatment method for stabilizing the wire feedability and the electric conductivity.
  • the Cu content is less than 0.05%, the required wire feedability and electrical conductivity cannot be obtained.
  • the Cu content exceeds 0.5%, the weld crack sensitivity increases. Therefore, the Cu content in the entire wire including plating is preferably in the range of 0.05 to 0.5%.
  • the Cr content should be in the range of 0 to 2.5%.
  • the Cr content is preferably in the range of 0.005% to 2.5%. This is because the effect of improving the strength of the weld metal appears by containing 0.005% or more of Cr, but if the Cr content exceeds 2.5%, the toughness of the weld metal decreases. From the viewpoint of the strength improvement effect, Cr is preferably contained in an amount of 0.3% or more, and more preferably 0.8% or more.
  • the Nb content is in the range of 0 to 1.0%.
  • the Nb content is preferably in the range of 0.005% to 1.0%. This is because, by containing Nb in an amount of 0.005% or more, an effect of improving the strength of the weld metal appears, but if the Nb content exceeds 1.0%, the toughness of the weld metal is lowered.
  • V content should be in the range of 0-1.0%.
  • the content of V is preferably in the range of 0.005% to 1.0%. This is because, when V is contained in an amount of 0.005% or more, an effect of improving the strength of the weld metal appears, but if it exceeds 1.0%, the toughness of the weld metal is lowered.
  • An impurity refers to a component contained in a raw material or a component mixed in a manufacturing process and not intentionally included in a solid wire.
  • the solid wire for gas shielded arc welding of the present invention not only the individual contents of the respective component elements are regulated, but the contents of Si, Mn, Ti, and Al, based on the mutual relationship, It is important to adjust so that the value of X determined by the equation (1) falls within the range of 1.5 to 3.5%.
  • blowholes may occur remarkably even if the individual content of elements contained in the wire is within the above range.
  • the value of X obtained by the above equation (1) depending on the contents of Si, Mn, Ti, and Al as deoxidizing elements strongly correlates with the blowhole generation status.
  • the X value is 1.5 to 3.5%. It has been found that blowholes become prominent when out of the range of 5%.
  • Example 1 a part of the result of Experiment 1 conducted by the present inventors is shown in FIG.
  • the composition of the solid wire including the plating layer is as follows: C: 0.01 to 0.2%, Si: 0.08 to 0.8%, Mn: 0.2 to 1.5%, P: 0.02 %: S: 0.02% or less, Cu: 0.03-0.8%, Al: 0.05-0.4%, Ti: 0.001-0.3%, the balance being substantially Fe. Is in range.
  • Zinc or zinc alloy-plated steel sheets are overlapped and welded by gas shielded arc welding using each solid wire and carbon dioxide gas as the shielding gas by the method described in the examples described later, and blown after the weld metal is solidified.
  • the occurrence of holes was investigated.
  • the blowhole generation situation was evaluated by the blowhole area ratio by the method described in the examples described later.
  • the zinc or zinc alloy-plated steel sheet used was obtained by subjecting a base steel sheet to double-sided zinc plating, and the composition of the components was as follows: C: 0.01 to 0.5%, Si: 0.00. 01 to 2.0%, Mn: 0.2 to 4.0%, P: 0.001 to 0.04%:
  • the thickness of the base steel plate is 2.3 mm, zinc
  • the basis weight of plating is 45 g / m 2 per side.
  • the vertical axis is the blowhole area ratio
  • the coefficient for each element content in the equation (1) that defines the value of X is a statistical treatment of the relationship between the amount of each component of the welding solid wire and the blowhole generation area ratio based on numerous experiments. Referring to the Ellingham diagram showing the standard free energy of formation of various oxides, the magnitude of the coefficient for each element content in equation (1) is based on the rank of the likelihood of oxidation reaction. It turns out that it corresponds.
  • the slag area ratio can be suppressed to a remarkably low value of 10% or less.
  • the slag area ratio is 10% or less, a coating defect does not substantially occur when the electrodeposition coating is performed on the surface of the weld metal using the solid wire.
  • the Al content is less than 0.1%, the slag area ratio rapidly increases to 20% or more, and the Al content is greater than 0.3%. It has been found that the slag area ratio increases to 20% or more. Therefore, from such experimental results, it is found that the range of 0.1 to 0.3% of the Al content of the solid wire has a sufficient critical value regarding the slag area ratio, that is, the slag generation situation. it is obvious.
  • 1 is a steel plate
  • 2 is a weld bead
  • 3 is a large slag generated on the surface of the weld bead when gas shielded arc welding is performed with a conventional welding wire
  • It shows the fine slag generated on the surface of the weld bead when gas shielded arc welding is performed with a solid wire.
  • C 0.03 to 0.15%, Si in mass% with respect to the total mass of the wire including plating. : 0.3-0.5%, Mn: 0.4-0.8%, P: 0.02% or less, S: 0.02% or less, Al: 0.15-0.3%, Ti: 0.05 to 0.2%, Cu: 0 to 0.5%, Cr: 0 to 2.5%, Nb: 0 to 1.0%, V: 0 to 1.0%, the balance being It consists of Fe and impurities, and the value of X defined by the formula (1) is in the range of 1.5 to 3.5% by mass.
  • the above-mentioned elements that is, C: 0.03 to 0 in mass% with respect to the total mass of the wire including plating. 15%, Si: 0.3-0.5%, Mn: 0.4-0.8%, P: 0.02% or less, S: 0.02% or less, Al: 0.15-0.
  • the wire material (steel base material) of the present invention After producing an ingot whose components are adjusted to an appropriate range, the wire is produced by forging or rolling, and then drawn as necessary. Can be manufactured. You may anneal in the said process middle or the last of a process.
  • the ingot may be a batch type or a continuous casting method.
  • the solid wire of this invention can be manufactured by performing Cu plating to the raw material of the manufactured solid wire as needed.
  • the type and composition of the steel sheet to be welded using the solid wire of the present invention are not particularly limited. However, when applied to gas shielded arc welding of zinc or zinc alloy plated steel sheet, a particularly great effect is obtained. Can do. That is, as already described, blowholes are likely to occur in zinc or zinc alloy plated steel sheets. Therefore, when the welding solid wire of the present invention is applied to gas shielded arc welding of zinc or zinc alloy plated steel sheets, This is because the generation of blow holes can be remarkably reduced as compared with the case of using a solid wire for welding.
  • Example 1 in which the operation and effect of the present invention for the solid wire for gas shielded arc welding as described above was verified is shown in Example 1 below.
  • Example 1 The manufacturing method of the solid wire for welding is as follows. That is, an ingot is prepared by vacuum melting, forged, rolled, drawn, annealed to form a wire, and copper wire is plated on the wire, and then cold drawing is performed. A solid wire of ⁇ 1.2 mm was manufactured. The chemical components (components of the entire wire including the plating layer) of the manufactured solid wires are shown in Table 1. Shown in 1-28. In addition, in Table 1, the chemical components having a content not included in the scope of claims are underlined. Wire No. in Table 1 Using the wires having chemical components shown in 1-28, the steel plate No. 1 in Table 3 was used. 1, no. No. 2 steel plate having a chemical composition shown in FIG.
  • Slag area ratio total sum of slag area ⁇ total image area ⁇ 100 (%) (3)
  • the reference value of the slag area ratio was 10%, 10% or less was judged as ⁇ (passed), and the value exceeding 10% was judged as x (failed). The reason is that when the slag area ratio is 10% or less, the electrodeposition paintability after welding including the slag portion is good.
  • Bead appearance evaluation Visually observe the bead appearance, evaluate the product with no problem on the product as ⁇ (pass), and reject the product with product problems such as hamping beads, etc. It was evaluated. “Bead is disturbed” means that the bead is meandering, the bead width is not uniform, or there is a pit (such as a hole) on the bead surface.
  • blowhole occurrence evaluation The blowhole generation state was evaluated by the blowhole area ratio when the inside of the weld metal after solidification was observed with an X-ray transmission image. Specifically, the weld metal part after solidification is photographed by X-ray transmission, and the value obtained by dividing the total area of the blue hole by the total area of the weld metal part is defined as the blow hole area ratio, and the blow hole area ratio is 10% or less. Were evaluated as ⁇ (passed), and those exceeding 10% were evaluated as ⁇ (failed). This is because if the blowhole area ratio exceeds 10%, the tensile strength of the weld metal often fails to satisfy the reference value.
  • Comparative Example No. No. 18 is an example in which the C content of the components of the welding solid wire is too small, and the value of X defined by the equation (1) is lower than 1.5%.
  • the amount of C that is a CO 2 generation source is small and the value of X is close to 1.5% of the lower limit of the present invention, in the case of a bare steel plate, it was possible to suppress the occurrence of blowholes.
  • blowholes were noticeably generated due to the zinc in the plating layer. In this example as well, spatter frequently occurred, and the bead appearance was disordered and was poor.
  • No. 19 is an example in which the C content of the welding solid wire is too high, and the value of X defined by the formula (1) is higher than 4.0%.
  • the galvanized steel sheet blowholes were remarkably generated. Also in this example, spatter frequently occurred and the generation condition was bad, and the bead appearance was also disordered and was poor.
  • No. 20 is an example in which the Si content of the welding solid wire is too small, and the value of X defined by the formula (1) is lower than 1.5%. In this example, a large amount of slag is generated. In any case of the bare steel plate and the galvanized steel plate, blow holes were remarkably generated.
  • No. 21 is an example in which the Si content of the welding solid wire is too large, and the value of X defined by the formula (1) is higher than 3.5%. In this example, a large amount of slag is generated, In any case of the bare steel plate and the galvanized steel plate, blow holes were remarkably generated.
  • No. 22 is an example in which the Mn content of the welding solid wire is too small, and the value of X defined by the formula (1) is lower than 1.5%.
  • a bare steel plate or a galvanized steel plate is used. In this case, blowholes were remarkably generated.
  • No. 23 is an example in which the Mn content of the welding solid wire is too high, and the value of X defined by the formula (1) is higher than 3.5%.
  • X defined by the formula (1)
  • No. 24 is an example in which the amount of Cu in the welding solid wire is too large, and the value of X defined by the formula (1) is higher than 3.5%.
  • a bare steel plate or a galvanized steel plate is used. Even in this case, blowholes were remarkably generated, and weld metal cracks occurred in the beads.
  • No. 25 is an example in which the amount of Al in the solid wire for welding is too small, and the value of X defined by the formula (1) is lower than 1.5%.
  • X defined by the formula (1) is lower than 1.5%.
  • blow holes are generated in the case of a bare steel plate.
  • blowholes were remarkably generated and a large amount of slag was generated.
  • No. 26 is an example in which the amount of Al in the solid wire for welding is too large, and the value of X defined by the equation (1) is higher than 3.5%.
  • the galvanized steel sheet blowholes were remarkably generated and a large amount of slag was generated.
  • No. 27 is an example in which the amount of Ti of the solid wire for welding is too large, and the value of X defined by the formula (1) is higher than 3.5%.
  • any of a bare steel plate and a galvanized steel plate is used. Even in this case, blowholes were generated, particularly in the galvanized steel sheet, and the occurrence of blowholes was remarkable. Further, spatter occurred frequently and the beads became discontinuous.
  • No. 28 is an example in which the value of X defined by the equation (1) is higher than 3.5%.
  • blow holes were generated in the galvanized steel sheet.
  • the basic aspect of the invention for the weld metal (third aspect) is C: 0.03 to 0.15%, Si: 0.1 to 0.5%, Mn in mass% with respect to the total mass of the weld metal. : 0.3-1.2%, P: 0.02% or less, S: 0.02% or less, Al: 0.05-0.3%, Ti: 0.001-0.2%
  • the balance consists of Fe and impurities, and X defined by the following formula (2) is in the range of 1.0 to 4.0% by mass.
  • X 2 ⁇ [Si] + [Mn] + 3 ⁇ [Ti] + 5 ⁇ [Al] (2)
  • [Si], [Mn], [Ti], and [Al] in the formula (2) represent the content (mass%) of each element.
  • the weld metal of the joint portion is further added in addition to the above components, in terms of mass%, Cu: 0 to 0.3%, Cr: One or more of 0 to 1.5%, Nb: 0 to 0.7%, and V: 0 to 0.7% are contained.
  • Si, Mn, Al, and Ti are respectively Si: 0.3 to 0.5% and Mn: 0.4 to 1.0. %, Al: 0.1 to 0.2%, Ti: 0.05 to 0.2% are preferable.
  • C has the effect of stabilizing the arc and making the droplets finer. If the C content is less than 0.03%, the droplets become large, the arc becomes unstable, and the amount of spatter generated increases. On the other hand, if the C content exceeds 0.15%, the viscosity of the molten metal becomes too low and the bead shape becomes poor, and the weld metal is hardened and crack resistance decreases. Therefore, the C content of the weld metal is set in the range of 0.03 to 0.15%.
  • Si 0.1 to 0.5%, preferably 0.3 to 0.5%
  • Si is an element (deoxidation element) that promotes deoxidation of molten metal during arc welding, and is effective in suppressing the generation of blowholes.
  • Si deoxidation element
  • slag It is also an element that makes the occurrence of If the Si content is less than 0.1%, deoxidation is insufficient, and blow holes are likely to occur. If the Si content exceeds 0.5%, the slag amount increases remarkably. Therefore, the Si content of the weld metal is set in the range of 0.1 to 0.5% in consideration of the suppression of blowhole generation and the suppression of the slag amount. Even within this range, particularly within the range of 0.3 to 0.5%, it is possible to more effectively achieve both blow hole reduction and slag amount suppression.
  • Mn 0.3 to 1.2%, preferably 0.4 to 1.0%
  • Mn is also a deoxidizing element and has the effect of suppressing the generation of blowholes by promoting deoxidation of the molten metal during arc welding, but on the other hand, it is also an element that increases the viscosity of the molten metal. If the Mn content is less than 0.3%, deoxidation is insufficient and blowholes are likely to occur. On the other hand, if the Mn content exceeds 1.0%, the viscosity of the molten metal becomes high, and when the welding speed is high, the molten metal cannot flow properly into the welded part, resulting in a humping bead and a bead shape defect. It tends to occur. Therefore, the Mn content of the weld metal is set in the range of 0.3 to 1.2%. In order to reliably reduce the blowhole amount, the Mn content is preferably within the range of 0.4 to 1.0%.
  • Al 0.05 to 0.3%, preferably 0.1 to 0.2%
  • Al is a strong deoxidizing element and has a strong effect of promoting deoxidation of the molten metal during arc welding. On the other hand, it is also an element that makes slag noticeable. If the Al content is less than 0.05%, deoxidation is insufficient and blowholes are likely to occur. If the Al content exceeds 0.3%, the slag increases remarkably. Therefore, the Al content of the weld metal is set in the range of 0.05 to 0.3% in consideration of the reduction of blowholes and the suppression of the slag amount. Even within this range, particularly within the range of 0.1 to 0.2%, it is possible to more effectively achieve both blowhole reduction and slag amount suppression.
  • Ti 0.001 to 0.2%, preferably 0.05 to 0.2%
  • Ti is a deoxidizing element, it is an element effective in suppressing the generation of blowholes. If the Ti content is less than 0.001%, the effect is not sufficiently exhibited. On the other hand, if the Ti content exceeds 0.2%, the slag generation reaction is promoted and the slag amount increases. Therefore, the Ti content of the weld metal is set in the range of 0.001 to 0.2%. Even within this range, particularly within the range of 0.05 to 0.2%, the above effects can be sufficiently exhibited without causing an increase in the amount of slag.
  • P is an element that is generally mixed as an impurity in steel, and is usually also included as an impurity in the solid wire for arc welding, and is therefore also included in the weld metal.
  • P is one of the main elements that generate hot cracks in the weld metal, so it is desirable to suppress it as much as possible. If the P content exceeds 0.02%, hot cracking of the weld metal becomes remarkable, so the P content of the weld metal is regulated to 0.02% or less.
  • the lower limit of the P content is not particularly limited, but is preferably 0.001% from the viewpoints of de-P cost and productivity.
  • S is also an element that is generally mixed as an impurity in steel, and is usually also included as an impurity in the solid wire for arc welding, and is also included in the weld metal.
  • S is an element that inhibits the crack resistance of the weld metal, and is preferably suppressed as much as possible. If the S content exceeds 0.02%, the crack resistance of the weld metal deteriorates, so the S content of the weld metal is regulated to 0.02% or less.
  • the lower limit value of the S content is not particularly limited, but is preferably 0.001% from the viewpoint of the cost of removing S and productivity.
  • Cu is an element that may be generally contained as an impurity in steel.
  • Cr, Nb, and V are elements that improve the strength of the weld metal.
  • Cu, Cr, Nb, and V elements are contained in the weld metal as necessary.
  • Cu, Cr, Nb, V may contain only 1 type, and may contain 2 types or 3 types simultaneously.
  • the Cu content is preferably in the range of 0 to 0.3%.
  • Cu is an element that is generally contained in steel as an impurity in an amount of about 0.02%. However, if the Cu content of the weld metal exceeds 0.3%, the weld cracking sensitivity becomes high.
  • the Cu content in the metal is limited to 0 to 0.3%.
  • the Cr content is preferably in the range of 0 to 1.5%.
  • the Cr content is more preferably within the range of 0.003% to 1.5%. This is because, by containing 0.003% or more of Cr, an effect of improving the strength of the weld metal appears, but if the Cr content exceeds 1.5%, the toughness of the weld metal decreases. From the viewpoint of the strength improvement effect, Cr is preferably contained in an amount of 0.3% or more, and more preferably 0.8% or more.
  • the Nb content is preferably in the range of 0 to 0.7%.
  • the Nb content in the weld metal is more preferably in the range of 0.003% to 0.7%. This is because when Nb is contained in an amount of 0.003% or more, an effect of improving the strength of the weld metal appears, but if the Nb content exceeds 0.7%, the toughness of the weld metal is lowered.
  • the V content is preferably in the range of 0 to 0.7%.
  • the V content is more preferably within the range of 0.003% to 0.7%. This is because, when V is contained in an amount of 0.003% or more, an effect of improving the strength of the weld metal appears, but if it exceeds 0.7%, the toughness of the weld metal decreases.
  • An impurity refers to a component contained in a raw material or a component mixed in the manufacturing process and not intentionally included in a weld metal.
  • the contents of Si, Mn, Ti, and Al are determined based on the above relation (2 It is important to adjust so that the value of X determined by the above formula is in the range of 1.0 to 4.0%.
  • the present inventors may have a large amount of blowholes in the solidified weld metal even if the individual content of elements contained in the weld metal is within the above-mentioned range. I found out.
  • the value of X determined by the equation (2) according to the content of Si, Mn, Ti, and Al as deoxidizing elements Is strongly correlated with the amount of blowholes.
  • blowholes can be reliably reduced, and conversely, the value of X is It was found that blow holes would increase significantly if they were out of the range of 1.0 to 4.0%.
  • FIG. 3 shows a part of the result of Experiment 3 conducted by the inventors regarding the invention of the weld metal, following the result of Experiment 1 (FIG. 1) for the welding solid wire.
  • the method described in Example 2 to be described later is performed by a gas shielded arc welding method using a solid wire for welding similar to that in Experiment 1 whose result is shown in FIG. 1 and carbon dioxide gas as a shielding gas.
  • the galvanized steel sheets were stacked and welded on the fillet, and the occurrence of blowholes was investigated after solidification of the weld metal.
  • the blowhole generation situation was evaluated by the blowhole area ratio by the method described in Example 1 described above.
  • the galvanized steel sheet used is the same as in Experiment 1.
  • the vertical axis is the blowhole area ratio
  • the slag area ratio can be suppressed to a remarkably low value of 10% or less.
  • the slag area ratio is 10% or less, a coating defect does not substantially occur when electrodeposition coating is performed on the surface of the weld metal.
  • the Al content is less than 0.3%, the slag area ratio rapidly increases to 20% or more, and the Al content is greater than 0.3%. It has been found that the slag area ratio increases to 20% or more. Therefore, from such experimental results, it is found that the Al content of the weld metal in the range of 0.05 to 0.3% has a sufficient critical value regarding the slag area ratio, that is, the slag generation status. it is obvious.
  • C 0.03 to 0.15%
  • Si 0.3 to 0.5, preferably in terms of mass% with respect to the total mass of the weld metal.
  • Mn 0.4 to 1.0%
  • P 0.02% or less
  • S 0.02% or less
  • Al 0.1 to 0.2%
  • Ti 0.05 to 0.2%
  • X defined by the formula (2) is in the range of 1.0 to 4.0% by mass.
  • the weld metal of the joint portion is in addition to the above components, that is, C: 0.03 to 0.15%, Si: 0.3 to 0.5%, Mn: 0.4 to 1.0%, P: 0.02% or less, S: 0.02% or less, Al: 0.1 to 0.2%, Ti: 0 In addition to 0.05 to 0.2%, Cu: 0 to 0.3%, Cr: 0 to 1.5%, Nb: 0 to 0.7%, V: 0 to 0. It contains one or more of 7%.
  • the weld metal of the joint portion is in addition to the above components, that is, C: 0.03 to 0.15%, Si : 0.3-0.5%, Mn: 0.4-1.0%, P: 0.02% or less, S: 0.02% or less, Al: 0.1-0.2%, Ti: In addition to 0.05 to 0.2%, further, by mass, Cu: 0 to 0.3%, Cr: 0.003 to 1.5%, Nb: 0.003 to 0.7%, V : Containing one or more of 0.003 to 0.7%.
  • the welded joint is not limited by the component of the solid wire for welding, as long as the component of the weld metal after welding satisfies the conditions specified in the third or fourth aspect. It can be obtained using various wires depending on the components of the material.
  • Example 2 An example in which the actions and effects of the invention regarding the above welded joint are verified is shown as Example 2 below.
  • Example 2 As the solid wire for welding, the same wire as that used in Example 1 described above, that is, the wire having the composition shown in Table 1 (wire No. 1 to No. 27) was used. With respect to a galvanized steel sheet having a thickness of 2.3 mm having chemical components shown in 1 to 12 (wherein the steel plate components shown in Table 3 indicate the components of the base steel plate before galvanization), the overlap corner is obtained by gas shield arc welding. Meat welding was performed. The welding conditions are as shown in Table 4 as in Example 1. In addition, the galvanized steel plate used for welding is obtained by performing hot dip galvanizing on both sides with a plating basis weight of 45 g / m 2 per side.
  • Table 5 shows the results of analysis of the composition of the weld metal components in the welded joint obtained by arc welding experiments on the galvanized steel sheet as described above, and also shows the slag generation status, spatter generation status during welding, and bead appearance of the welded joint. And the occurrence of blowholes in the weld metal after solidification were examined and evaluated. The results are shown in Table 6.
  • Each investigation method and evaluation criteria are the same as those described in connection with the first embodiment.
  • the individual content of the weld metal component of the weld joint is within the scope of the present invention, but the X value defined by the formula (2) is higher than 4.0%, so that the weld metal melts. Viscosity at the time was excessively high, blowholes were remarkably generated, slag was generated in a large amount, spatter generation was poor, and the bead appearance was poor.
  • No. 44 is an example in which the C content of the weld metal of the welded joint is too small, and the value of X defined by the formula (2) is lower than 1.0%. In this example, blow holes are remarkably generated. Moreover, the spatter generation state was poor and the bead appearance was also poor.
  • No of comparison example. 45 is an example in which the content of the weld metal in the welded joint is too large, and the value of X defined by the formula (2) is higher than 4.0%. In this example, blowholes are remarkably generated, Moreover, spatter occurred frequently, and the bead appearance was disordered and was poor.
  • No. 48 is an example in which the Mn content in the weld metal of the welded joint is too small, and the value of X defined by the formula (2) is lower than 1.0%. In this example, blowholes were significantly generated. .
  • No. 49 is an example in which the Mn content in the weld metal of the welded joint is too large, and the value of X defined by the formula (2) is higher than 4.0%. In this example, blow holes are remarkably generated. In addition, spatter frequently occurred and the spatter generation state was poor, and further a humping bead was generated, resulting in a poor bead appearance.
  • No of comparison example. 50 is an example in which the amount of Al in the weld metal of the welded joint is too small, and the value of X defined by the formula (2) is lower than 1.0%. In this example, blowholes are remarkably generated, A large amount of slag was generated.
  • No. 51 is an example in which the amount of Al in the weld metal of the welded joint is too large, and the value of X defined by the formula (2) is higher than 4.0%. Even in this example, blowholes are remarkably generated, A large amount of slag was generated.
  • No. 52 is an example in which the amount of Ti in the weld metal of the welded joint is too large, and the value of X defined by the expression (2) is higher than 4.0%. Spattering occurred frequently and the beads became discontinuous.
  • a basic aspect (fifth aspect) of the invention relating to a welded joint is that the weld metal of the joint part and the weld metal are sandwiched, at least one of which is zinc or zinc alloy plated steel sheet (galvanized steel sheet or zinc alloy plated steel sheet).
  • At least one zinc or zinc alloy-plated steel sheet (zinc-plated steel sheet or zinc alloy-plated steel sheet) of the base material is mass% relative to the total mass of the steel sheet. And 0.01 to 0.3% of Al.
  • At least one of the two base metal side steel materials (materials to be welded) sandwiching the weld metal of the joint portion is zinc or a zinc alloy plated steel plate.
  • the zinc alloy-plated steel sheet is basically a known Zn-based alloy containing zinc as a main component and containing elements such as Al: 0.1 to 0.25% and impurities such as Pb and Sn. It is plated.
  • the method for producing the zinc or zinc alloy-plated steel sheet itself is not particularly limited, and a known method such as hot dip galvanizing or alloyed hot dip galvanizing may be generally followed.
  • the type and composition of the steel plate before zinc plating including zinc alloy plating (the base steel plate portion of zinc or zinc alloy plated steel plate) and the component composition are not particularly limited. 0.5%, Si: 0.01-2.0%, Mn: 0.2-4.0%, P: 0.001-0.04%, other uses and needs
  • steel sheets containing one or more of Cr: 0.01 to 1.5%, V 0.05 to 1.0%, Nb 0.05 to 1.0%, etc. can be used. .
  • the steel material when using zinc or zinc alloy-plated steel sheet for only one of them, there are no particular limitations on the type and composition of the components (not limited to the plate material, which may be a tube material or a rod material), and the same steel as the steel of the base steel plate portion in the above zinc or zinc alloy plated steel plate is used. be able to.
  • the weld metal is formed by the welding wire of the first aspect or the second aspect.
  • the X value defined by the formula (2) is easily in the range of 1.0 to 4.0%, and the Al content is easily in the range of 0.05 to 0.3%. It becomes easier to reduce the amount of holes and slag. That is, even if zinc or zinc alloy-plated steel sheet with a reduced Al content is used as one of the base materials, a welded joint in which the amount of blowhole generation and slag generation of the weld metal in the joint portion is suppressed is easily obtained.
  • the zinc or zinc alloy plated steel sheet may be either double-sided plating or single-sided plating.
  • the thickness of the plating layer of the zinc or zinc alloy plated steel sheet is not particularly limited. However, when the object is an automobile undercarriage member, it is desirable that the coating weight per side is usually about 30 to 120 g / m 2. .
  • the alloy-plated steel sheet preferably has a thickness of 0.5 mm or more and 4 mm or less.
  • the specific shape of the welded joint and the specific mode of welding (welding posture) for obtaining the welded joint are not particularly limited.
  • lap fillet welding or fillet welding of a T-shaped joint can be applied. That's fine. (Welded parts)
  • the basic aspect (seventh aspect) of the invention relating to the welding member includes the welded joint according to the fifth aspect or the sixth aspect.
  • examples of the welding member provided with the welded joint include a structural member for a prefabricated house in addition to a structural member for an automobile undercarriage.
  • the basic aspect (eighth aspect) of the invention relating to the welding method is to weld the joint by gas shield arc welding using the solid wire for gas shield arc welding of the first aspect or the second aspect.
  • a metal is formed and at least one of them is welded to two base materials made of zinc or a zinc alloy plated steel plate (zinc plated steel plate or zinc alloy plated steel plate).
  • the basic aspect (9th aspect) about the manufacturing method of a welded joint has the weld metal of a joint part, and a weld metal, and at least one is zinc or a zinc alloy plated steel plate (galvanized steel plate or zinc alloy plated steel plate).
  • gas shield arc welding of zinc or zinc alloy plated steel sheet is performed using the solid wire for gas shield arc welding of the first aspect or the second aspect. And compared with the case where the conventional general solid wire for welding is used, generation
  • the zinc or zinc alloy plated steel sheet to be applied is the same as the zinc or zinc alloy plated steel sheet described in the welded joint of the fifth aspect or the sixth aspect.
  • a zinc or zinc alloy plated steel sheet containing 0.01 to 0.3% Al by mass% with respect to the total mass of the steel sheet is applied. Blow hole generation and slag generation can be easily suppressed.
  • the specific mode of welding is not particularly limited, and can be applied to, for example, lap fillet welding or fillet welding of a T-shaped joint.
  • the kind of shielding gas to be used is not particularly limited, and 100% CO 2 gas, Ar + 20% CO 2 gas, Ar + 2% O 2 gas, or the like can be used as the shielding gas. In particular, when 100% CO 2 gas or Ar + 20% CO 2 gas is used as the shielding gas, the remarkable effects of the present invention are exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

 めっきを含めたワイヤ全質量に対する質量%で、C:0.03~0.15%、Si:0.2~0.5%、Mn:0.3~0.8%、P:0.02%以下、S:0.02%以下、Al:0.1~0.3%、Ti:0.001~0.2%、Cu:0~0.5%、Cr:0~2.5%、Nb:0~1.0%、V:0~1.0%を含有し、残部がFeおよび不純物からなり、下記Xの値が、質量%で1.5~3.5%の範囲内にあるガスシールドアーク溶接用ソリッドワイヤである。また溶接金属として、下記式のXの値が、1.0~4.0%の範囲内にある溶接金属である。また、これらソリッドワイヤ又は溶接金属を利用した溶接継手、溶接部材、溶接方法、溶接継手の製造方法である。X=2×〔Si〕+〔Mn〕+3×〔Ti〕+5×〔Al〕

Description

ガスシールドアーク溶接用ソリッドワイヤ、ガスシールドアーク溶接金属、溶接継手、溶接部材、溶接方法、および溶接継手の製造方法
 本発明は、自動車足回りの構造用部材などに使用される亜鉛めっき鋼板などの鋼板を、ガスシシールドアーク溶接法により溶接するためのソリッドワイヤに関するものである。また、本発明は、ガスシシールドアーク溶接法により溶接した、溶接金属、溶接継手、及び溶接部材に関するものである。また、本発明は、ガスシシールドアーク溶接法よる溶接方法、及び溶接継手に関するものである。
 周知のように、溶接後に塗装処理がなされる自動車足回りの構造用部材の鋼板としては、亜鉛めっき鋼板や亜鉛合金めっき鋼板を使用することが多い。また自動車足回りの構造用部材の溶接には、炭酸ガスシールドアーク溶接で代表されるガスシールドアーク溶接を適用することが多い。
 ところで鋼板をアーク溶接した場合、溶接継手部分すなわち溶接金属中にブローホールが生じることがある。特に亜鉛めっき鋼板や亜鉛合金めっき鋼板(本明細書では、亜鉛めっき鋼板と亜鉛合金めっき鋼板の両者の総称として亜鉛又は亜鉛合金めっき鋼板と称する)をアーク溶接した場合には、ブローホールが生じやすいことが知られている。
 ブローホールは、溶接時の入熱によって、溶接金属中の炭素が酸素と反応することによるCOガス、あるいは各種吸着成分のガス化、更には低温度ガス化反応成分の反応によるガス化などによって気泡が生じ、この気泡が、溶接金属の凝固とともに溶接金属中に閉じ込められた結果、空孔として残ったものである。特に亜鉛又は亜鉛合金めっき鋼板では、鋼板表面にめっきされた融点の低い亜鉛や亜鉛合金が溶接時に蒸発し、その亜鉛蒸気が溶融状態の溶接金属中で気泡となるため、ブローホールが生じやすい。このようなブローホールが多数生じれば、溶接継手の強度が低下して構造用部材として問題が生じ、また塗装欠陥が生じやすくなり、更には溶接ビードの外観、形状の不良も生じやすくなる。
 また一方、自動車足回りの構造用部材などに使用される鋼板は、溶接後に電着塗装によって塗装するのが一般的である。しかし、ガスシールドアーク溶接法によって溶接した場合、シールドガスにCOやAr+20%COが用いられるため、溶接過程で溶接ワイヤ中のSiやMn等の脱酸元素が、シールドガスの酸素成分と反応して酸化物となる。その酸化物が溶融した溶接金属表面に浮上して、スラグとなる。このようなスラグ(酸化物)には導電性がないため、溶接ビード表面のスラグ上には電着塗装がのらず、塗装不良、塗装欠陥が生じて、塗装後における溶接部の耐食性および美観が低下するおそれがある。
 そこで、自動車足回りの構造用部材などに使用される鋼板、とりわけ亜鉛又は亜鉛合金めっき鋼板をガスシールドアーク溶接するに当たっては、溶接継手部分の溶接金属中にブローホールができるだけ生じないようにする。またこれと同時に、溶接金属表面のスラグの発生をできるだけ抑えることが、強く望まれている。
 ところで、亜鉛又は亜鉛合金めっき鋼板のガスシールドアーク溶接に使用される溶接ワイヤとして、主としてガスシールドアーク溶接におけるブローホール及びそれに伴うピットの発生を抑制するようにした溶接ワイヤが特許文献1で提案されている。
 特許文献1の提案の溶接ワイヤは、重量%で、C;0.03~0.15%、Si;1.00~2.50%、Mn;0.10~1.00%、ただし、Mn/Siが0.65%以下の範囲にあり、P;0.013%以下、Al、Tiのうち一種または二種の合計で0.005~0.200%、S、Oのうち一種または二種の合計で0.0050~0.0500%を含有し、残部がFeおよび不可避不純物からなるものである。
 この特許文献1においては、溶接ワイヤに含まれる脱酸元素であるSi、Mn、Al、Tiを上記のように調整し、特にSiを1.00~2.50%と多量に含有させることによって、ピット及びブローホールの発生を抑制できるとされている。
 一方、特許文献2には、亜鉛又は亜鉛合金めっき鋼板の重ね隅肉アーク溶接方法及び重ね隅肉アーク溶接継手として、ピット・ブローホールの気孔欠陥、スパッタ、アンダーカット等の溶接不良、耐ギャップ性を改善する技術が提案されている。
 特許文献2では、亜鉛又は亜鉛合金めっき鋼板の重ね隅肉アーク溶接方法において、溶接金属中のSi含有率を0.5%以下とし、かつ重ね隅肉アーク溶接される上下2枚の亜鉛又は亜鉛合金めっき鋼板のうちの上板の母材である鋼板中のSiとAlの含有率の合計を0.35%以上とすること、及びそのように調整した溶接継手が開示されている。すなわち、溶接金属中のSi含有量を0.5%以下に規制することによって、ブローホールの発生を抑制でき、併せて被溶接材である母材鋼板中のSiとAlの合計含有量を0.35%以上とすることによって、耐ギャップ性(ギャップ寸法に対する溶接安定性)を維持できるとされている。
 特許文献3には、スラグ剥離性を向上させる発明が開示されている。すなわち、溶接後に生成されたスラグは主としてSiO-FeO-MnO系の金属酸化物からなり、その性状は溶接金属中のSiとMnの組成比によって決定され、溶接金属中のSi量およびMn量が、高Siでかつ低Mnとなるようにすることが開示されている。また、このようにすると、生成するスラグは薄くかつ細かなものとなって剥離性が良くなることを発見(特許文献3の3頁左上欄、右上欄および第1図)し、高Siでかつ低Mnな成分を含有するガスシールドアーク溶接用ソリッドワイヤおよびそれを用いて重ねすみ肉溶接する方法が開示されている。
  特許文献4には、発生するスラグを低減する発明が開示されている。すなわち、スラグを脱酸力の強いSi、Mn、Alなどを適宜添加し脱酸効果を調整することにより、ピットやブローホールを抑制することが開示されている(特許文献4[0012]、[0013])。また、これと共に、SとOの量を最適の範囲とすることにより、ビード表面に付着するスラグ被包面積を減少することができる(特許文献4[0015])ガスシールドアーク溶接用ワイヤが開示されている。
  特許文献5には、発生するスラグを低減する発明が開示されている。すなわち、COアーク溶接を対象とした高入熱高パス間温度のガスシールドアーク溶接において、特定範囲に限定されたC、Si、Mn、Al、Ti、Cuとともに、B、Moを添加することが開示されている。これにより、溶接金属の強度低下・靭性低下の防止、低スラグ発生量、安定した溶接作業性などを兼ね備えたガスシールドアーク溶接用溶接ワイヤ(特許文献5[0012])が開示されている。
 特許文献6には、発生するスラグを低減する発明が開示されている。すなわち、COアーク溶接を対象とした高入熱高パス間温度のガスシールドアーク溶接において、溶接部の機械的性質低下の防止、低スラグ発生量、スラグ剥離性良好なガスシールドアーク溶接用溶接ワイヤの例が開示されている。この発明は、ワイヤ中のMn、Ti及びOの含有量の上限値を規定することにより、スラグの生成量を低減することができ、また、Sを含有させると共に、Mn 、Mo及びCuの上限値を規定することにより、スラグの剥離性を向上させることができるガスシールドアーク溶接用ソリッドワイヤ(特許文献6[0010])である。
その他、特許文献7には、溶接中安定なアークを維持し溶滴の移行状態を円滑にして溶接作業性を良好とする目的で、組成を適正に選択限定し、その組成の一部をワイヤ表面に濃縮させた溶接ワイヤが提案されている。
 また、特許文献8には、1)高温で脱酸力の強いC、Si、Ti、およびAlの含有量を少なくすることにより、酸化反応を活発にして亜鉛の酸化を促進させること、2)この酸化反応活性化による高酸素ポテンシャル化によって溶融池の粘度低下を図り、溶融池からのガス放出を容易にすること、並びに、3)窒素と親和性の大きいTi、Al、およびNbを適用添加し窒素を地に固定すること、等の複合作用により、亜鉛及び窒素の影響を軽減して、ピット、ブローホールの発生を抑制する溶接ワイヤが提案されている。
 また、特許文献9には、溶接速度80cm/min超でも、溶接止端部形状が良好で、溶接継手の疲労特性を向上させる目的で、所定の鋼板と溶接ワイヤとを組み合わせる溶接方法が提案されている。
 特許文献1:日本国特開平7-80478号公報
 特許文献2:日本国特開2012-101232号公報
 特許文献3:日本国特開昭62-124095号公報
 特許文献4:日本国特開平7-80678号公報
 特許文献5:日本国特開2004-237361号公報
 特許文献6:日本国特開2006-26643号公報
 特許文献7:日本国特開平1-150494号公報
 特許文献8:日本国特開平3-204195号公報
 特許文献9:日本国特開2009-226476号公報
 ここで、特許文献1の技術では、ブローホールの発生自体を抑制するというよりは、ブローホールが凝固後の溶接金属の表面に現れることにより形成されるピットの発生を抑制することを主眼としていると解される。すなわち、特許文献1においては、建材等の用途を考慮して、亜鉛めっき層の厚みが厚い(すなわち厚目付の)亜鉛又は亜鉛合金めっき鋼板をガスシールドアーク溶接する際の溶接ワイヤを対象としている。例えば特許文献1の実施例では、両面溶融亜鉛めっきで、片面あたり亜鉛目付量が270g/mと、厚目付がなされた亜鉛めっき鋼板を対象としている。このような厚目付の場合、ブローホールが発生すること自体を完全に防止することは困難である。そこで特許文献1の技術では、溶接金属中にある程度ブローホールが残留することは許容する一方で、ブローホールが溶接金属表面に現れてピットを形成しないようにブローホールを溶接金属内部に閉じ込める、という考え方を前提としている。そして、この考え方を前提として、溶接用ワイヤにSiを比較的多量に含有させることによって、溶接金属の溶融状態での粘性をある程度高め、ブローホールを溶接金属内部に閉じ込めて、溶接金属表面のピット形成を防止しようとしていると解される。
 しかしながら、自動車用の構造部材に使用される亜鉛めっき鋼板は、亜鉛めっき層の厚みは建材の用途と比較して薄いのが通常であり、片面あたり亜鉛目付量が30~120g/m程度と相対的に薄目付がなされたものであることが多い。このような薄目付の亜鉛めっき鋼板をガスシールドアーク溶接法によって溶接した場合、溶接金属の溶融状態での粘性を高めても、ブローホールを溶接金属中に閉じ込めることは困難である。また、逆にブローホールが溶接金属中から排出されにくくなって、ブローホールの増加を招いてしまうおそれがある。また粘性を高めるためにSi量を多めにすれば、スラグ量が多くなってしまう問題もある。したがって特許文献1の技術では、比較的薄目付の亜鉛めっき鋼板のガスシールドアーク溶接するにあたって、ブローホールの発生を確実かつ安定して抑制すると同時に、スラグの発生を抑制することは、実際上は困難であった。
 また、特許文献2においては、アーク溶接に使用する溶接ワイヤの成分については、実施例でもSi及びAl以外は全く示されておらず、また溶接金属の成分については、Si以外は全く示されていない。
 ブローホールの発生には、Si及びAl以外の元素の含有量も影響を与えることが知られており、したがって特許文献2の技術をそのまま適用しても、ブローホールを確実に抑制し得るとは限らない。また特許文献2の提案では、スラグの発生及びその抑制については十分な考慮がなされておらず、したがって特許文献2の技術を適用しても、スラグの発生を抑制し得るか否かも定かではない。
 また、特許文献3~6、その他特許文献7~8に開示された技術でも、発生するスラグの低減が未だ十分ではなく、その結果生じる塗装不良が原因で溶接部の耐食性および美観が十分に得られていない。
 このように、従来は、亜鉛又は亜鉛合金めっき鋼板などの鋼板をガスシールドアーク溶接によって溶接するにあたり、溶接金属におけるブローホールの発生及びスラグの多量発生を同時に確実かつ安定して抑制することが可能な技術は確立されていなかったのが実情である。
 なお、特許文献9には、溶接止端部形状が良好で、溶接継手の疲労特性を向上させる技術については示されているが、ブローホール、及びスラグの発生を抑制する技術については示さてはいない。
 本発明は以上の事情を背景としてなされたもので、亜鉛又は亜鉛合金めっき鋼板などの鋼板を、ガスシールドアーク溶接するにあたって、溶接金属中のブローホールの発生と凝固後の溶接金属表面のスラグの発生との両者を、確実かつ安定に抑制し得る溶接用ソリッドワイヤを提供することを課題としている。
 また、本発明は、ガスシールドアーク溶接による亜鉛又は亜鉛合金めっき鋼板を、ガスシールドアーク溶接した溶接金属として、ブローホール及びスラグの少ない溶接金属を提供することを課題としている。
 また、本発明は、ガスシールドアーク溶接による亜鉛又は亜鉛合金めっき鋼板の溶接継手として、ブローホール及びスラグの少ない溶接継手、及び溶接部材を提供することを課題としている。
 また、本発明は、ガスシールドアーク溶接による亜鉛又は亜鉛合金めっき鋼板を溶接したとき、ブローホール及びスラグを少なくする溶接方法、溶接継手の製造方法を提供することを課題とする。
 上述の課題を解決するために本発明者等が種々実験・検討を重ねた結果、ガスシールドアーク溶接に使用する溶接用ソリッドワイヤの成分のうち、脱酸元素であるSi、Mn、Ti、Alについて、めっきを含めたワイヤ全質量に対する質量%でのそれぞれの含有量〔Si〕、〔Mn〕、〔Ti〕、〔Al〕の関係によって定まる、
X=2×〔Si〕+〔Mn〕+3×〔Ti〕+5×〔Al〕
の値をパラメータとして用いれば、そのXの値がブローホールの発生傾向に大きな影響を与えることを見い出した。そして、特に溶接用ソリッドワイヤに含まれる成分として、各元素の個別の含有量を規制するだけではなく、前記のXの値が特に1.5~3.5%の範囲内となるように各成分量を調整する。これにより、ブローホールの発生を確実に抑制し得ると同時に、スラグの発生を抑え得ることを見い出し、ガスシールドアーク溶接用ソリッドワイヤについての本発明をなすに至った。
 またさらに、亜鉛又は亜鉛合金めっき鋼板をガスシールドアーク溶接によって溶接した溶接金属としても、前記と同様なXの値をパラメータとして用いて、溶接金属における個別の成分元素の含有量を規制するだけではなく、前記のXの値が特に1.0~4.0%の範囲内となるように各成分量を調整する。これにより、ブローホールが少なくかつスラグの発生量も少ない溶接継手が得られることを見い出し、溶接金属についての本発明をなすに至った。
 具体的には、本発明の基本的な態様(第1の態様)のガスシールドアーク溶接用ソリッドワイヤは、
 めっきを含めたワイヤ全質量に対する質量%で、
 C:0.03~0.15%、
 Si:0.2~0.5%、
 Mn:0.3~0.8%、
 P:0.02%以下、
 S:0.02%以下、
 Al:0.1~0.3%、
 Ti:0.001~0.2%
 Cu:0~0.5%、
 Cr:0~2.5%、
 Nb:0~1.0%、
 V:0~1.0%
 を含有し、残部がFeおよび不純物からなり、
 下記の(1)式で定義されるXの値が、質量%で1.5~3.5%の範囲内にあるものである。
X=2×〔Si〕+〔Mn〕+3×〔Ti〕+5×〔Al〕・・・・(1)
ただし、(1)式において〔Si〕、〔Mn〕、〔Ti〕、〔Al〕は、それぞれの元素の含有量(質量%)を表す。
 このような第1の態様のガスシールドアーク溶接用ソリッドワイヤにおいては、(1)式で規定されるXの値が1.5~3.5%の範囲内となるように、めっきを含めた全体における各成分の含有量を規制する。これによって、そのワイヤを用いて亜鉛又は亜鉛合金めっき鋼板などの鋼板にガスシールドアーク溶接を施せば、ブローホールの発生を確実に抑制することができる。すなわち、Xの値が1.5~3.5%の範囲内の場合には、1.5%未満の場合、及び3.5%を超える場合と比較して、格段に溶接金属中のブローホールの量が少なくなる。このことは、後述する実験1を参照して説明するように、本発明者等が多数回の実験、検討を重ねた結果、見出された新規な知見である。またここで、溶接用ソリッドワイヤ中のSi含有量は0.2~0.5%の範囲内と比較的低めに抑えており、そのため溶接時の溶融金属の粘性が過度に高くなることがない。そのためブローホールが溶融金属内を浮上して溶融金属表面から外部に放出されやすく、このことも溶接金属中に残るブローホール量の低減に有利に作用している。
 すなわち、前述の特許文献1の技術では、Si含有量を比較的高めとし、これにより溶接時の溶融金属の粘性を比較的高くして、ブローホールを溶接金属の表面よりも内部に閉じ込めようとしている。しかし、本発明の溶接用ソリッドワイヤでは、逆にSi含有量を低めに抑え、これによって溶融金属の粘性を低く抑え、ブローホールを放出しやすくすることによって、溶融金属中に残るブローホールを少量に抑制している。したがって、例えばめっきの目付量が比較的少ない(すなわちめっき厚が比較的小さい)亜鉛又は亜鉛合金めっき鋼板を母材(被溶接材)としてガスシールドアーク溶接を行う場合においても、溶融金属中のブローホール量を低減することができるのである。
 ここで、第1の態様の溶接用ソリッドワイヤを用いてガスシールドアーク溶接を行う対象となる鋼板(母材鋼板;被溶接材鋼板)の種類や成分組成は特に限定されない。例えば亜鉛又は亜鉛合金めっき鋼板をガスシールドアーク溶接によって溶接する場合に、第1の態様の溶接用ソリッドワイヤは、その効果が顕著となる。すなわち亜鉛又は亜鉛合金めっき鋼板を母材鋼板とする場合、めっき層の亜鉛に起因してブローホールが顕著に発生しやすくなるが、このように亜鉛又は亜鉛合金めっき鋼板をガスシールドアーク溶接する場合であっても、第1の態様のガスシールドアーク溶接用ソリッドワイヤを用いれば、確実にブローホールを少なくすることができる。
 さらに、第1の態様のガスシールドアーク溶接用ソリッドワイヤにおいては、ワイヤに含まれる各成分のうち、特にスラグ発生源となりやすいSi、Al、Tiの量を適切に規制しながら、Xの値を上述のように調整することによって、溶接時のスラグ発生量も抑えることができる。そのほか、溶接用ソリッドワイヤの各成分量を上記の範囲内とすることによって、その溶接用ソリッドワイヤを用いてガスシールドアーク溶接を行成った場合に、スパッタの発生も少なく、またビード外観、形状も良好な継手を得ることができる。
 また本発明の第2の態様のガスシールドアーク溶接用ソリッドワイヤは、前記第1の態様のガスシールドアーク溶接用ソリッドワイヤにおいて、
 めっきを含めたワイヤ全質量に対する質量%で、
 Cu:0.05~0.5%、
 Cr:0.005~2.5%、
 Nb:0.005~1.0%、
 V:0.005~1.0%
 のうちの1種または2種以上を含有するものである。
 このような第2の態様のガスシールドアーク溶接用ソリッドワイヤにおいては、溶接金属の成分として、ワイヤ表面に施した銅めっきに由来するCuを含有してもよい。また、Cr、Nb、Vのうちの1種または2種以上を、適切な量だけ含有することによって、ブローホール抑制効果及びスラグ抑制効果を損なうことなく、溶接金属の強度を向上させることができる。
 また第3の態様、第4の態様では、ガスシールドアーク溶接によって溶接する溶接金属を規定している。
 すなわち本発明の第3の態様のガスシールドアーク溶接金属は、
 溶接金属全質量に対する質量%で
 C:0.03~0.15%、
 Si:0.1~0.5%、
 Mn:0.3~1.2%、
 P:0.02%以下、
 S:0.02%以下、
 Al:0.05~0.3%、
 Ti:0.001~0.2%
 を含有し、残部がFeおよび不純物からなり、
 下記の(2)式で定義されるXの値が、質量%で1.0~4.0%の範囲内にあるものである。
 X=2×〔Si〕+〔Mn〕+3×〔Ti〕+5×〔Al〕・・・・(2)
 ただし、(2)式において〔Si〕、〔Mn〕、〔Ti〕、〔Al〕は、それぞれの元素の含有量(質量%)を表す。
 このような第3の態様の溶接金属においては、(2)式で規定されるXの値が1.0~4.0%の範囲内となるように、溶接金属における各成分の含有量を調整する。これによって、ブローホールが発生しやすい亜鉛又は亜鉛合金めっき鋼板を母材鋼板(被溶接材鋼板)とするガスシールドアーク溶接による溶接金属として、ブローホールをごく少量に抑えたものとすることができる。すなわち、Xの値が1.0~4.0%の範囲内の場合には、1.0%未満の場合、及び4.0%を超える場合と比較して、溶接金属中のブローホール量が格段に少なくなる。このことは、後述する実験3を参照して説明するように、本発明者等が多数回の実験、検討を重ねた結果、見出された新規な知見である。またここで、溶接金属中のSi含有量は0.1~0.5%の範囲内と比較的低めに抑えており、溶接時の溶融金属の粘性が過度に高くなることがない。そのためブローホールが溶融金属内を浮上して溶融金属表面から外部に放出されやすく、このこともブローホールの抑制に有利に作用している。
 さらに、第3の態様の溶接金属においては、特にスラグ発生源となりやすいSi、Al、Tiの量を適切に規制しながら、Xの値を上述のように調整しているため、スラグ発生量も抑えることができる。そのほか、溶接金属の各成分量を上記の範囲内とすることによって、スパッタの発生も少なく、ビード外観、形状も良好な溶接金属とすることができる。
 また本発明の第4の態様の溶接金属は、前記第3の態様の溶接金属において、
 さらに、前記溶接金属全質量に対する質量%で
 Cu:0~0.3%、
 Cr:0~1.5%、
 Nb:0~0.7%、
 V:0~0.7%
のうちの1種または2種以上を含有するものである。
 このような第4の態様の溶接金属においては、溶接金属の成分として、ワイヤ表面に施した銅めっきに由来するCuを含有してもよい。また、溶接金属の成分として、Cr、Nb、Vのうちの1種または2種以上を、適切な量だけ含有することによって、ブローホール抑制効果及びスラグ抑制効果を損なうことなく、溶接金属の強度を向上させることができる。
 また、第5の態様、第6の態様で、ガスシールドアーク溶接による溶接継手を規定している。
 すなわち本発明の第5の態様の溶接継手は、
 継手部の溶接金属と、前記溶接金属を挟み、少なくとも一方が亜鉛又は亜鉛合金めっき鋼板(亜鉛めっき鋼板または亜鉛合金めっき鋼板)からなる二つの母材とを有し、かつガスシールドアーク溶接により前記溶接金属を形成した溶接継手であって、
 前記溶接金属を、第3の態様、または第4の態様のガスシールドアーク溶接金属としたものである。
 本発明の第6の態様の溶接継手は、第6の態様の溶接継手において、
 亜鉛又は亜鉛合金めっき鋼板(亜鉛めっき鋼板または亜鉛合金めっき鋼板)が、鋼板全質量に対する質量%でAlを0.01~0.3%含有するものである。
 このような第6の態様の溶接継手においては、第1の態様もしくは第2の態様の溶接ワイヤを用いたとき、亜鉛又は亜鉛合金めっき鋼板が鋼板全質量に対する質量%でAlを0.01~0.3%含有していると、(2)式で規定されるXの値が1.0~4.0%の範囲内に、またAlの含有量が0.05~0.3%の範囲内となり易く、ブローホール発生量、スラグ発生量を抑えやすくなる。
 また、第7の態様で、ガスシールドアーク溶接による溶接部材を規定している。
 すなわち本発明の第7の態様の溶接部材は、
 第5の態様または第6の態様の溶接継手を備える溶接部材である。
 また、第8の態様、第9の態様で、ガスシールドアーク溶接による溶接方法、及び溶接継手の製造方法を規定している。
 すなわち、本発明の第8の態様の溶接方法は、
 第1の態様または第2の態様のガスシールドアーク溶接用ソリッドワイヤを用いて、ガスシールドアーク溶接により継手部の溶接金属を形成して、少なくとも一方が亜鉛又は亜鉛合金めっき鋼板(亜鉛めっき鋼板または亜鉛合金めっき鋼板)からなる二つの母材を溶接するものである。
 また、本発明の第9の態様の溶接継手の製造方法は、
 継手部の溶接金属と、前記溶接金属を挟み、少なくとも一方が亜鉛又は亜鉛合金めっき鋼板(亜鉛めっき鋼板または亜鉛合金めっき鋼板)からなる二つの母材とを有する溶接継手の製造方法であって、
 第1の態様または第2の態様のガスシールドアーク溶接用ソリッドワイヤを用いて、ガスシールドアーク溶接により前記溶接金属を形成するものである。
 本発明のガスシールドアーク溶接用ソリッドワイヤによれば、そのワイヤを用いて亜鉛又は亜鉛合金めっき鋼板などの鋼板を、ガスシールドアーク溶接するにあたって、溶接金属中のブローホールの発生と凝固後の溶接金属表面のスラグの発生との両者を、確実かつ安定に抑制することができる。また溶接時におけるスパッタの発生も少なくなるとともに、溶接ビードの形状、外観も良好な溶接継手を得ることができる。
 本発明のガスシールドアーク溶接金属は、ガスシールドアーク溶接による亜鉛又は亜鉛合金めっき鋼板を、ガスシールドアーク溶接した溶接金属として、ブローホール及びスラグが少なくなる。また溶接時におけるスパッタの発生も少なくかつ溶接ビードの形状、外観も良好な溶接金属、すなわち各種溶接欠陥が少ない高品質の溶接金属となり、例えば自動車の足回りの構造部材などに最適となる。
 また、本発明の溶接継手及び溶接部材は、亜鉛又は亜鉛合金めっき鋼板を母材(被溶接材)とするガスシールドアーク溶接による溶接継手及び溶接部材として、ブローホール及びスラグが少なくなる。また溶接時におけるスパッタの発生も少なくかつ溶接ビードの形状、外観も良好な溶接継手及び溶接部材となる。すなわち各種溶接欠陥が少ない高品質の溶接継手及び溶接部材となり、例えば自動車の足回りの構造部材などに最適となる。
 また、本発明の溶接方法、及び溶接継手の製造方法によれば、亜鉛又は亜鉛合金めっき鋼板を母材(被溶接材)として、ガスシールドアーク溶接するとき、ブローホール及びスラグが少なくなる。また溶接時におけるスパッタの発生も少なくかつ溶接ビードの形状、外観も良好となる。すなわち各種溶接欠陥が少ない高品質の溶接方法、及び溶接継手の製造方法となり、例えば自動車の足回りの構造部材の製造などに最適となる。
ガスシールドアーク溶接用ソリッドワイヤにおけるSi、Mn、Ti、Alの含有量によって定まるパラメータXの値(X=2×〔Si〕+〔Mn〕+3×〔Ti〕+5×〔Al〕)と、その溶接用ソリッドワイヤを用いて亜鉛めっき鋼板をガスシールドアーク溶接した場合のブローホールの面積率との関係についての実験1の結果を示すグラフである。 ガスシールドアーク溶接用ソリッドワイヤのAl含有量と、亜鉛めっき鋼板をガスシールドアーク溶接した後のビード表面上のスラグ面積率との関係についての実験2の結果を示すグラフである。 亜鉛めっき鋼板をガスシールドアーク溶接した溶接金属において、溶接金属中のSi、Mn、Ti、Alの含有量によって定まるパラメータXの値(X=2×〔Si〕+〔Mn〕+3×〔Ti〕+5×〔Al〕)と、溶接金属におけるブローホールの面積率との関係についての実験3の結果を示すグラフである。 亜鉛めっき鋼板をガスシールドアーク溶接した溶接金属において、溶接金属中のAlの含有量と溶接金属表面のスラグ面積率との関係についての実験4の結果を示すグラフである。 従来のガスシールドアーク溶接用ソリッドワイヤを用いて、ビードオンプレート溶接した際の溶接ビード表面を模式的に示した図である。 本発明のガスシールドアーク溶接用ソリッドワイヤを用いて、ビードオンプレート溶接した際の溶接ビード表面を模式的に示した図である。
 以下に、本発明の実施形態について詳細に説明する。
 先ず前記の第1の態様、第2の態様で規定されるガスシールドアーク溶接用ソリッドワイヤについて説明する。
 本発明のガスシールドアーク溶接用ソリッドワイヤの基本的な態様(第1の態様)は、めっきを含めたワイヤ全質量に対する質量%で、C:0.03~0.15%、Si:0.2~0.5%、Mn:0.3~0.8%、P:0.02%以下、S:0.02%以下、Al:0.1~0.3%、Ti:0.001~0.2%、Cu:0~0.5%、Cr:0~2.5%、Nb:0~1.0%、V:0~1.0%を含有し、残部がFeおよび不純物からなり、下記の(1)式で定義されるXが、質量%で1.5~3.5%の範囲内にあるものである。
 X=2×〔Si〕+〔Mn〕+3×〔Ti〕+5×〔Al〕・・・・(1)
 なおここで(1)式における〔Si〕、〔Mn〕、〔Ti〕、〔Al〕は、それぞれの元素の含有量(質量%)を表す。
 また本発明のガスシールドアーク溶接用ソリッドワイヤの別の態様(第2の態様)では、めっきを含めたワイヤ全質量に対する質量%で、上記の各元素、すなわちC:0.03~0.15%、Si:0.2~0.5%、Mn:0.3~0.8%、P:0.02%以下、S:0.02%以下、Al:0.1~0.3%、Ti:0.001~0.2%のほか、さらに、Cu:0.05~0.5%、Cr:0.005~2.5%、Nb:0.005~1.0%、V:0.005~1.0%のうちの1種または2種以上を含有し、残部がFeおよび不純物からなり、前記と同様に(1)式で定義されるXが、質量%で1.5~3.5%の範囲内にあるものである。
 なおここで、上記のいずれの態様においても、各成分元素のうち、Si、Mn、Al、Tiについては、それぞれ、Si:0.3~0.5%、Mn:0.4~0.8%、Al:0.15~0.3%、Ti:0.05~0.2%の範囲内が好ましい。
 このようなガスシールドアーク溶接用ソリッドワイヤの成分組成の限定理由について、以下に説明する。
〔C:0.03~0.15%〕
 Cは、アークを安定化し溶滴を細粒化する作用があり、C含有量が0.03%未満では、溶滴が大きくなってアークが不安定になり、スパッタ発生量が多くなる。一方、C含有量が0.15%を超えれば、溶融金属の粘性が低くなってビード形状が不良となるばかりではなく、溶接金属を硬化させ、耐割れ性が低下する。そこで溶接用ソリッドワイヤのC含有量は0.03~0.15%の範囲内とした。
〔Si:0.2~0.5%、好ましくは0.3~0.5%〕
 Siは、アーク溶接時における溶融金属の脱酸を促進する元素(脱酸元素)であって、ブローホールの発生の抑制に効果があり、その一方では、Siが過剰に含有されれば、スラグの発生を顕著にする元素でもある。Si含有量が0.2%未満では、脱酸不足となって、ブローホールが発生しやすくなり、Si含有量が0.5%を超えればスラグが著しく増加する。そこで、ブローホールの発生の抑制とスラグ量抑制との兼ね合いから、溶接用ソリッドワイヤのSi含有量は、0.2~0.5%の範囲内とした。なおこの範囲内でも、特に0.3~0.5%の範囲内であれば、ブローホールの抑制とスラグ量抑制とを、より有効に両立させることができる。
〔Mn:0.3~0.8%、好ましくは0.4~0.8%〕
 Mnも脱酸元素であって、アーク溶接時に溶融金属の脱酸を促進して、ブローホールの発生を抑制する効果があるが、その一方では溶融金属の粘性を高くする元素でもある。Mn含有量が0.3%未満では脱酸不足となり、ブローホールが発生しやすくなる。一方Mn含有量が0.8%を超えれば、溶融金属の粘性が高くなり、溶接速度が大きい場合に溶接部位に適切に溶融金属が流れ込むことができず、ハンピングビードとなり、ビード形状不良が発生しやすくなる。そこで、溶接用ソリッドワイヤのMn含有量は、0.3~0.8%の範囲内とした。なおブローホールの発生を確実に抑制するためには、Mn含有量は0.4~0.8%の範囲内が好ましい。
〔Al:0.1~0.3%、好ましくは0.15~0.3%〕
 Alは強力な脱酸元素であって、アーク溶接時に溶融金属の脱酸を促進する効果が強いが、その一方ではスラグの発生を顕著にする元素でもある。溶接用ソリッドワイヤのAl含有量が0.1%未満では、脱酸不足となって、ブローホールが発生しやすくなり、一方Al含有量が0.3%を超えればスラグが著しく増加する。そこで、ブローホールの発生の抑制とスラグ量抑制との兼ね合いから、溶接用ソリッドワイヤのAl含有量は、0.1~0.3%の範囲内とした。なおこの範囲内でも、特に0.15~0.3%の範囲内であれば、ブローホールの発生の抑制とスラグ量抑制とを、より有効に両立させることができる。
〔Ti:0.001~0.2%、好ましくは0.05~0.2%〕
 Tiの含有は、高電流域におけるアーク安定性を向上させる効果があり、またTiは脱酸元素でもあるため、ブローホール発生の抑制にも効果がある元素である。Ti含有量が0.001%未満ではこれらの効果が十分に発現されない。一方Ti含有量が0.2%を超えれば、スラグ生成反応が促進されて、スラグ量が増加してしまう。そこで溶接用ソリッドワイヤにおけるTi含有量は、0.001~0.2%の範囲内とした。なおこの範囲内でも、特に0.05~0.2%の範囲内であれば、スラグ量の増加を招くことなく上記の効果を充分に発現させることができる。
〔P:0.02%以下〕
 Pは、一般に鋼中に不可避的不純物として混入する元素であって、アーク溶接用ソリッドワイヤ中にも不純物として含まれるのが通常である。ここでPは、溶接金属の高温割れを発生させる主要元素の一つであり、できる限り抑制することが望ましく、P含有量が0.02%を越えれば、溶接金属の高温割れが顕著になる。そこで溶接用ソリッドワイヤのP含有量は0.02%以下に規制することとした。なお、Pの含有量の下限値は、特に制限はないが、脱Pのコスト及び生産性の観点から、0.001%とすることが好ましい。
〔S:0.02%以下〕
 Sも、一般に鋼中に不可避的不純物として混入する元素であって、アーク溶接用ソリッドワイヤ中にも不純物として含まれるのが通常である。ここで、Sは、溶接金属の耐割れ性を阻害する元素であり、できる限り抑制することが好ましく、S含有量が0.02%を超えれば、溶接金属の耐割れ性が悪化する。そこで溶接用ソリッドワイヤのS含有量は0.02%以下に規制することとした。なお、Sの含有量の下限値は、特に制限はないが、脱Sのコスト及び生産性の観点から、0.001%とすることが好ましい。
〔Cu:0~0.5%、Cr:0~2.5%、Nb:0~1.0%、V:0~1.0%の1種または2種以上〕
 Cuは、必要に応じてワイヤ表面に施した銅めっきに由来する元素である。Cr、Nb、Vは、溶接金属の強度を向上させる元素である。本発明では、必要に応じて、Cu、Cr、Nb、Vの元素を溶接用ソリッドワイヤに含有する。Cu、Cr、Nb、Vは、1種類のみ含有してもよいし、2種類あるいは3種類を同時に含有してもよい。
 Cuの含有量は、0~0.5%の範囲内とする。Cuは、一般に鋼中に不純物として0.02%程度含有されることがある元素であるが、本発明のアーク溶接用ソリッドワイヤの場合、主としてワイヤ表面に施した銅めっきに由来する。すなわち、アーク溶接用ソリッドワイヤにおいては、銅めっきはワイヤ送給性と通電性を安定化するのに極めて重要な表面処理方法であり、銅めっきを施した場合、必然的にある程度の量のCuが含有される。Cuの含有量が0.05%未満では、必要なワイヤ送給性と通電性が得られず、一方Cuの含有量が0.5%を超えれば、溶接割れ感受性が高くなる。そこで、めっきを含めたワイヤ全体におけるCu含有量は、0.05~0.5%の範囲内とすることが好ましい。
 Crの含有量は、0~2.5%の範囲内とする。Crを含有する場合、Crの含有量は0.005%~2.5%の範囲内とすることが好ましい。これは、Crを0.005%以上含有することによって、溶接金属の強度向上効果が現れるが、Crの含有量が2.5%を越えれば、溶接金属の靭性が低下するからである。強度向上効果の観点からは、Crは0.3%以上含有することが好ましく、さらに0.8%以上含有することがより好ましい。
 Nbの含有量は、0~1.0%の範囲内とする。Nbを含有する場合、Nbの含有量は0.005%~1.0%の範囲内とすることが好ましい。これは、Nbを0.005%以上含有することによって、溶接金属の強度向上効果が現れるが、Nbの含有量が1.0%を越えれば、溶接金属の靭性が低下するからである。
 Vの含有量は、0~1.0%の範囲内とする。Vを含有する場合、Vの含有量は0.005%~1.0%の範囲内とすることが好ましい。これは、Vを0.005%以上含有することによって、溶接金属の強度向上効果が現れるが、1.0%を越えれば、溶接金属の靭性が低下するからである。
〔不純物〕
 不純物とは、原材料に含まれる成分、または、製造の過程で混入する成分であって、意図的にソリッドワイヤに含有させたものではない成分を指す。
 さらに本発明のガスシールドアーク溶接用ソリッドワイヤにおいては、各成分元素の個別の含有量を規制するばかりでなく、Si、Mn、Ti、Alの含有量を、相互の関係のもとに、前記(1)式で定められるXの値が1.5~3.5%の範囲内となるように調整することが重要である。
 すなわち、本発明者等が、ワイヤに含有される元素の個別の含有量が、前述の範囲内であってもブローホールが顕著に発生してしまう場合があることを知見した。そしてさらに詳細な実験、検討を重ねたところ、脱酸元素であるSi、Mn、Ti、Alの含有量によって前記(1)式によって求められるXの値が、ブローホール発生状況に強く相関する。特にそのXの値が1.5~3.5%の範囲内となるように調整することによって、ブローホールの発生を確実に抑制し得ること、また逆にXの値が1.5~3.5%の範囲から外れれば、ブローホールの発生が顕著となることを見い出した。
 〔実験1〕
 ここで、本発明者等が行った実験1の結果の一部を図1に示す。
 この実験1では、種々の鋼組成のインゴットを溶製し、熱間圧延して室温で伸線し、焼鈍後、銅めっきした後、さらに室温で伸線して、φ1.2mmのソリッドワイヤを作製した。なおめっき層を含むソリッドワイヤの成分組成は、C:0.01~0.2%、Si:0.08~0.8%、Mn:0.2~1.5%、P:0.02%以下、S:0.02%以下、Cu:0.03~0.8%、Al:0.05~0.4%、Ti:0.001~0.3%、残部実質的にFeの範囲内にある。
 各ソリッドワイヤを用い、かつ炭酸ガスをシールドガスに用いたガスシールドアーク溶接法によって、後述する実施例に記載した方法により亜鉛又は亜鉛合金めっき鋼板を重ね隅肉溶接し、溶接金属の凝固後にブローホール発生状況を調査した。ブローホール発生状況は、後述する実施例に記載した方法によって、ブローホール面積率により評価した。
 なお使用した亜鉛又は亜鉛合金めっき鋼板は、母材鋼板に両面亜鉛めっきを施したものであって、その成分組成は、必須成分として、C:0.01~0.5%、Si:0.01~2.0%、Mn:0.2~4.0%、P:0.001~0.04%:を含有するものであり、また母材鋼板の板厚は、2.3mm、亜鉛めっきの目付量は、片面あたり45g/mである。
 縦軸をブローホール面積率とし、横軸に、各ソリッドワイヤについてのX=2×〔Si〕+〔Mn〕+3×〔Ti〕+5×〔Al〕の値をとり、上記の実験1の結果をプロットしたのが図1である。
 図1から明らかなように、Xの値が1.5~3.5%の範囲内では、ブローホール面積率が10%以下と著しく低い値に抑えられことが判明した。ここで、ブローホール面積率が10%以下であれば、溶接金属強度の低下はほとんど認められず、またXの値が上記の範囲内では、溶接金属上に残存するスラグの面積率が10%以下と低いため、電着塗装を阻害せず、実質的に塗装欠陥が生じないことが確認されている。一方、図1に示しているように、Xの値が1.5%よりも小さくなれば、ブローホール面積率が40%以上に急激に大きくなり、また3.5%よりも大きくなった場合も、ブローホール面積率が35%以上に急激に大きくなることが判明した。したがってこのような実験結果から、Xの値についての1.5~3.5%の範囲は、ブローホール発生に関して十分な臨界値的意義を有していることが明らかである。
 なおXの値を規定する(1)式における各元素含有量についての係数は、溶接用ソリッドワイヤの各成分量とブローホール発生面積率との関係を、多数の実験に基づいて統計的に処理した結果に基づくものであるが、各種酸化物の標準生成自由エネルギを表すエリンガム図を参照すれば、(1)式における各元素含有量についての係数の大小は酸化反応の生じやすさの順位に対応していることが分かる。
 さらに本発明者等は、ソリッドワイヤにおけるスラグ発生状況と、溶接金属に含まれるAlの量との関係についても調べたので、その結果を、下記の実験2として示す。
〔実験2〕
 この実験2では、質量%で、C:0.05%、Si:0.8%、Mn:1.58%、P:0.005%、S:0.02%、Ti:0.16%、を含有し、かつ種々の量のAlを含有するφ0.9mmのソリッドワイヤを用い、シールドガスとしてAr+20%COガスを用いて、板厚2.3mmの亜鉛めっき鋼板(亜鉛めっき目付量は45g/m)について、ビードオンプレート溶接を150mmの長さについて実施した。そして、後述の実施例1に記載したスラグ面積率測定方法と同じ方法によって、下記(3)式にしたがってスラグ面積率を算出した。図2に示すように、ソリッドワイヤ中のAl含有量とスラグ面積率との関係をグラフ上にプロットした。
 図2から明らかなように、ソリッドワイヤ中のAl含有量が0.1~0.3%の範囲内では、スラグ面積率が10%以下と著しく低い値に抑えられことが判明した。ここで、スラグ面積率が10%以下であれば、ソリッドワイヤを用いた溶接金属表面に電着塗装を施した場合に塗装欠陥が実質的に生じない。一方、図2に示しているように、Al含有量が0.1%よりも少なくなれば、スラグ面積率が20%以上に急激に大きくなり、またAl含有量が0.3%よりも大きくなった場合も、スラグ面積率が20%以上に大きくなることが判明した。したがってこのような実験結果から、ソリッドワイヤについてのAl含有量が0.1~0.3%の範囲は、スラグ面積率、すなわちスラグ発生状況に関して十分な臨界値的意義を有していることが明らかである。
 ソリッドワイヤ中のAl含有量が0.1質量%前後の溶接ビード上のスラグに着目すると、Al含有量が0.05質量%のソリッドワイヤを用いたときの溶接ビード上のスラグは、図5のように、一つ一つのスラグが大きく、スラグ面積率が大きい。Al含有量が0.15質量%のワイヤを用いたときのビード上のスラグは、図6のように、一つ一つのスラグが微細となり、スラグ面積率が小さくなっている。このように、ソリッドワイヤ中のAl含有量を増加すると、スラグ面積率が著しく低減する詳細な機構は、今のところ不明であるが、以上の結果から、Al含有量が一定以上含有する場合には、Alがスラグを微細化する効果を有することが影響しているものと、発明者らは推察している。
 なお、図5及び図6において、1は鋼板、2は溶接ビード、3は従来の溶接ワイヤでガスシールドアーク溶接を行った際に、溶接ビード表面に生成された大粒なスラグ、4本発明のソリッドワイヤでガスシールドアーク溶接を行った際に、溶接ビード表面に生成された微細なスラグを示している。
 ここで、本発明のガスシールドアーク溶接用ソリッドワイヤの態様(第1の態様)として、好ましくは、めっきを含めたワイヤ全質量に対する質量%で、C:0.03~0.15%、Si:0.3~0.5%、Mn:0.4~0.8%、P:0.02%以下、S:0.02%以下、Al:0.15~0.3%、Ti:0.05~0.2%、Cu:0~0.5%、Cr:0~2.5%、Nb:0~1.0%、V:0~1.0%を含有し、残部がFeおよび不純物からなり、前記(1)式で定義されるXの値が、質量%で1.5~3.5%の範囲内にあるものである。
 また本発明のガスシールドアーク溶接用ソリッドワイヤの別の態様(第2の態様)として好ましくは、めっきを含めたワイヤ全質量に対する質量%で、上記の各元素、すなわちC:0.03~0.15%、Si:0.3~0.5%、Mn:0.4~0.8%、P:0.02%以下、S:0.02%以下、Al:0.15~0.3%、Ti:0.05~0.2%のほか、さらに、Cu:0.05~0.5%、Cr:0.005~2.5%、Nb:0.005~1.0%、V:0.005~1.0%のうちの1種または2種以上を含有し、残部がFeおよび不純物からなり、前記と同様に(1)式で定義されるXが、質量%で1.5~3.5%の範囲内にあるものである。
〔ソリッドワイヤの製造方法〕
 本発明のソリッドワイヤの素材(鋼母材)は、適切な範囲に成分調整されたインゴットを製造した後、鍛造や圧延などにより、線材を製造し、次いで、必要に応じて伸線を行うことにより製造することができる。上記工程途中あるいは工程の最後に焼鈍してもよい。インゴットはバッチタイプでもよいし、連続鋳造法によってもよい。そして、必要に応じて、製造されたソリッドワイヤの素材にCuめっきを行うことによって、本発明のソリッドワイヤを製造することができる。
 なお、本発明のソリッドワイヤを用いて溶接する対象となる鋼板の種類、成分組成は特に限定されないが、亜鉛又は亜鉛合金めっき鋼板のガスシールドアーク溶接に適用した場合に、とりわけ大きな効果を得ることができる。すなわち、既に述べたように亜鉛又は亜鉛合金めっき鋼板ではブローホールが生じやすく、したがって本発明の溶接用ソリッドワイヤを亜鉛又は亜鉛合金めっき鋼板のガスシールドアーク溶接に適用した場合には、従来の一般的な溶接用ソリッドワイヤを用いた場合と比較して、格段にブローホールの発生をすくなくすることができるからである。
 以上のようなガスシールドアーク溶接用ソリッドワイヤについての本発明の作用・効果を検証した実施例を、以下の実施例1に示す。
〔実施例1〕
 溶接用ソリッドワイヤの製造方法は次の通りである。すなわち、真空溶解法によりインゴットを作製し、鍛造、圧延、伸線して、焼鈍して、ワイヤ素線とし、さらにそのワイヤ素線に銅めっきを施した後、冷間での伸線を行い、φ1.2mmのソリッドワイヤを製造した。製造したソリッドワイヤの化学成分(めっき層を含むワイヤ全体での成分)を、表1のワイヤNo.1~28に示す。なお、特許請求の範囲に含まれない含有量の化学成分については、表1において下線を付した。
 表1のワイヤNo.1~28に示す化学成分を有する各ワイヤを用いて、表3の鋼板No.1、No.2に示す化学成分を有する板厚2.3mmの鋼板(亜鉛めっきを施していない裸鋼板)、及び同じ成分組成の鋼板No.1~12に溶融亜鉛めっきを施した亜鉛めっき鋼板のそれぞれについて、ガスシールドアーク溶接によって重ね隅肉溶接を行った。溶接施工条件を表4に示す。なおワイヤNo.に対する鋼板No.の組み合わせを、表1の右側に示す。
 ここで、互いに溶接するべき二つの母材鋼板としては、同じ鋼板を用いた。また亜鉛めっき鋼板の場合は、両面に溶融亜鉛めっきを、片面あたりめっき目付量45g/mで施したものを用いた。
 以上のように各溶接用ソリッドワイヤを用いての裸鋼板及び亜鉛めっき鋼板に対するアーク溶接実験において、凝固後の溶接金属表面のスラグ発生状況、溶接中のスパッタ発生状況、溶接金属のビード外観、及び凝固後の溶接金属中のブローホール発生状況を、それぞれ次のようにして調べ、評価した。その結果を表2に示す。なお各調査方法、評価基準は次の通りである。また、各評価項目のうち、ブローホール発生状況以外は、裸鋼板と亜鉛めっき鋼板とでほぼ同等の評価結果が得られたので、ブローホール発生状況以外の評価項目については、亜鉛めっき鋼板についての評価結果のみを表2に記載した。
〔スラグ発生状況調査〕
 スラグ発生状況は、スラグ面積率により評価した。すなわち、溶接ビード150mmのうち終始端50mmの部分を除いた中央の50mmの長さの部分のビードについて、ビード表面の写真撮影行なって画像を採取し、当該画像におけるスラグ部位をマーキングし、マーキングした部位の面積の総和を求め、全画像面積とから次の(3)式により、スラグ面積率を計算した。
 スラグ面積率=スラグ部位面積の総和÷全画像面積×100(%)・・・(3)
 スラグ発生状況の評価にあたっては、スラグ面積率の基準値を10%とし、10%以下を○(合格)と判定し、10%を超えたものを×(不合格)と判定した。その理由は、スラグ面積率が10%以下では、スラグ部を含めて溶接後の電着塗装性が良好であるからである。
〔スパッタ発生状況評価〕
 溶接中のスパッタ発生状況を目視で観察し、通常の溶接作業に支障がないレベルのものを○(合格)と評価し、それ以外を×(不合格)と評価した。なお「通常の溶接作業に支障がないレベル」とは、溶接後、鋼板表面に後処理(グラインダー研削等)が必要なほど大粒なスパッタが付着していない状況をいう。後処理が必要なスパッタの粒径は1mm以上を目安としている。
〔ビード外観評価〕
 ビード外観を目視にて行い、製品上問題のないものを○(合格)と評価し、ハンピングビード等のようにビードが乱れているなど、製品上の問題を有するものを×(不合格)と評価した。なお「ビードが乱れている」とは、ビードが蛇行している、ビード幅が均一でない、ビード表面にピット(穴のようなもの)がある等の状況があるものをいう。
〔ブローホール発生状況評価〕
 ブローホール発生状況は、凝固後の溶接金属内部をX線透過像で観察した際のブローホール面積率により評価した。
 具体的には、凝固後の溶接金属部をX線透過撮影し、ブルーホールの合計面積を溶接金属部全面積で除した値をブローホール面積率と定義し、ブローホール面積率が10%以下のものを○(合格)と評価し、10%超のものを×(不合格)と評価した。これは、ブローホール面積率が10%を超えれば、溶接金属の引張強度が基準値を満足できない場合が多くなるためである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
〔評価結果〕
 No.1~No.13の本発明例は、いずれも溶接用ソリッドワイヤの各成分の含有量が、本発明で規定する範囲内となっているのみならず、前記の(1)式で規定されるXの値が本発明の溶接用ソリッドワイヤについて規定する1.5~3.5の範囲内となっている。これらの本発明例では、裸鋼板、亜鉛めっき鋼板のいずれを溶接した場合も、ブローホール面積率が確実に10%を下回り、ブローホールの発生が十分に抑制されていることが確認された。また本発明例のNo.1~No.13では、スラグ面積率が10%を大幅に下回り、スラグ発生も確実に抑制されていることが明らかとなり、さらにスパッタ発生も少なく、またビード外観も良好であることが確認された。
 一方、No.14~No.28は、溶接用ソリッドワイヤの各成分のうちのいずれかの成分の含有量が、本発明で規定する範囲から外れているか、または前記の(1)式で規定されるXの値が1.5~3.5の範囲から外れた比較例である。これらの比較例では、特に亜鉛めっき鋼板の場合にブローホールの発生が顕著となり、また表2の備考欄に示すように、スラグ発生状況、スパッタ発生状況、ビード外観のいずれか1以上の項目が不合格となり、良好なビードが得られなかった。以下、各比較例についてさらに詳細に説明する。
 比較例のNo.14、No.15は、溶接用ソリッドワイヤの成分についての個別の含有量は本発明の範囲内であるが、(1)式で規定されるXの値が1.5%より低いため、裸鋼板、亜鉛めっき鋼板のいずれの場合も、ブローホールが顕著に発生し、またスパッタ発生状況も悪く、ビード外観も不良であった。
 比較例のNo.16、No.17は、溶接用ソリッドワイヤの成分についての個別の含有量は本発明の範囲内であるが、(1)式で規定されるXの値が3.5%より高いため、溶接金属の溶融時の粘性が過度に高くなり、裸鋼板、亜鉛めっき鋼板のいずれの場合も、ブローホールが顕著に発生し、またスパッタ発生状況も悪く、ビード外観も不良であった。
 比較例のNo.18は、溶接用ソリッドワイヤの成分についてのC含有量が少なすぎ、また(1)式で規定されるXの値が1.5%より低い例である。この例では、CO発生源となるC量が少なく、かつXの値が本発明下限値の1.5%に近いため、裸鋼板の場合はブローホールの発生を抑えることができたが、亜鉛めっき鋼板の場合は、めっき層の亜鉛のため、ブローホールが顕著に発生した。なおこの例でも、スパッタが多発し、ビード外観も乱れて不良であった。
 比較例のNo.19は、溶接用ソリッドワイヤのC含有量が多すぎ、また(1)式で規定されるXの値が4.0%より高い例であり、この例では、裸鋼板の場合はブローホールを抑えることができたが、亜鉛めっき鋼板の場合はブローホールが顕著に生じた。またこの例でも、スパッタが多発して発生状況が悪く、ビード外観も乱れて不良であった。
 比較例のNo.20は、溶接用ソリッドワイヤのSi含有量が少なすぎ、また(1)式で規定されるXの値が1.5%より低い例であり、この例では、スラグが多量に発生し、また裸鋼板、亜鉛めっき鋼板のいずれの場合も、ブローホールが顕著に発生した。
 比較例のNo.21は、溶接用ソリッドワイヤのSi含有量が多すぎ、また(1)式で規定されるXの値が3.5%より高い例であり、この例では、スラグが多量に発生し、また裸鋼板、亜鉛めっき鋼板のいずれの場合も、ブローホールが顕著に発生した。
 比較例のNo.22は、溶接用ソリッドワイヤのMn含有量が少なすぎ、また(1)式で規定されるXの値が1.5%より低い例であり、この例では、裸鋼板、亜鉛めっき鋼板のいずれの場合も、ブローホールが顕著に発生した。
 比較例のNo.23は、溶接用ソリッドワイヤのMn含有量が多すぎ、また(1)式で規定されるXの値が3.5%より高い例であり、この例では、裸鋼板の場合はブローホールの発生を抑えることができたが、亜鉛めっき鋼板の場合はブローホールが顕著に発生し、またスパッタが多発し、更にハンピングビードが生じてビード外観が不良となった。
 比較例のNo.24は、溶接用ソリッドワイヤのCu量が多すぎ、また(1)式で規定されるXの値が3.5%より高い例であり、この例では、裸鋼板、亜鉛めっき鋼板のいずれの場合も、ブローホールが顕著に発生し、またビードに溶接金属割れが生じてしまった。
 比較例のNo.25は、溶接用ソリッドワイヤのAl量が少なすぎ、また(1)式で規定されるXの値が1.5%より低い例であり、この例では、裸鋼板の場合はブローホールの発生を抑えることができたが、亜鉛めっき鋼板の場合はブローホールが顕著に発生し、またスラグが多量に生じてしまった。
 比較例のNo.26は、溶接用ソリッドワイヤのAl量が多すぎ、また(1)式で規定されるXの値が3.5%より高い例であり、この例でも、裸鋼板の場合はブローホールの発生を抑えることができたが、亜鉛めっき鋼板の場合はブローホールが顕著に発生し、またスラグが多量に生じてしまった。
 比較例のNo.27は、溶接用ソリッドワイヤのTi量が多すぎ、また(1)式で規定されるXの値が3.5%より高い例であり、この例では、裸鋼板、亜鉛めっき鋼板のいずれの場合も、ブローホールが発生し、特に亜鉛めっき鋼板でブローホール発生が顕著となり、さらにスパッタが多発するとともに、ビードが不連続となってしまった。
 比較例のNo.28は、(1)式で規定されるXの値が3.5%より高い例であり、この例では、亜鉛めっき鋼板でブローホールが発生した。
〔溶接金属〕
 次に溶接金属に関する発明、すなわち前記第3の態様、第4の態様について詳細に説明する。
 溶接金属についての発明の基本的な態様(第3の態様)は、溶接金属全質量に対する質量%で、C:0.03~0.15%、Si:0.1~0.5%、Mn:0.3~1.2%、P:0.02%以下、S:0.02%以下、Al:0.05~0.3%、Ti:0.001~0.2%を含有し、残部がFeおよび不純物からなり、下記の(2)式で定義されるXが、質量%で1.0~4.0%の範囲内にあるものである。
 X=2×〔Si〕+〔Mn〕+3×〔Ti〕+5×〔Al〕・・・(2)
 なおここで(2)式における〔Si〕、〔Mn〕、〔Ti〕、〔Al〕は、それぞれの元素の含有量(質量%)を表す。
 また溶接継手についての発明の別の態様(第4の態様)では、前記継手部の溶接金属が、前記各成分に加えて、さらに、質量%で、Cu:0~0.3%、Cr:0~1.5%、Nb:0~0.7%、V:0~0.7%のうちの1種または2種以上を含有する。
 なおここで、上記のいずれの態様においても、各成分元素のうち、Si、Mn、Al、Tiについては、それぞれ、Si:0.3~0.5%、Mn:0.4~1.0%、Al:0.1~0.2%、Ti:0.05~0.2%の範囲内が好ましい。
 上述のような溶接金属の成分組成限定理由について、以下に説明する。
〔C:0.03~0.15%〕
 Cは、アークを安定化し溶滴を細粒化する作用があり、C含有量が0.03%未満では、溶滴が大きくなってアークが不安定になり、スパッタ発生量が多くなる。一方、C含有量が0.15%を超えれば、溶融金属の粘性が低くなりすぎてビード形状が不良となるばかりではなく、溶接金属を硬化させ、耐割れ性が低下する。そこで溶接金属のC含有量は、0.03~0.15%の範囲内とした。
〔Si:0.1~0.5%、好ましくは0.3~0.5%〕
 Siは、アーク溶接時における溶融金属の脱酸を促進する元素(脱酸元素)であって、ブローホールの発生の抑制に効果があり、その一方では、Siが過剰に含有されれば、スラグの発生を顕著にする元素でもある。Si含有量が0.1%未満では、脱酸不足となって、ブローホールが発生しやすくなり、Si含有量が0.5%を超えればスラグ量が著しく増加する。そこで、ブローホールの発生の抑制とスラグ量抑制との兼ね合いから、溶接金属のSi含有量は、0.1~0.5%の範囲内とした。なおこの範囲内でも、特に0.3~0.5%の範囲内であれば、ブローホールの低減とスラグ量抑制とを、より有効に両立させることができる。
〔Mn:0.3~1.2%、好ましくは0.4~1.0%〕
 Mnも脱酸元素であって、アーク溶接時に溶融金属の脱酸を促進して、ブローホールの発生を抑制する効果があるが、その一方では溶融金属の粘性を高くする元素でもある。Mn含有量が0.3%未満では脱酸不足となり、ブローホールが発生しやすくなる。一方Mn含有量が1.0%を超えれば、溶融金属の粘性が高くなり、溶接速度が大きい場合に溶接部位に適切に溶融金属が流れ込むことができず、ハンピングビードとなり、ビード形状不良が発生しやすくなる。そこで溶接金属のMn含有量は、0.3~1.2%の範囲内とした。なおブローホール量を確実に低減するためには、Mn含有量は0.4~1.0%の範囲内が好ましい。
〔Al:0.05~0.3%、好ましくは0.1~0.2%〕
 Alは強力な脱酸元素であって、アーク溶接時に溶融金属の脱酸を促進する効果が強いが、その一方ではスラグの発生を顕著にする元素でもある。Al含有量が0.05%未満では、脱酸不足となって、ブローホールが発生しやすくなり、Al含有量が0.3%を超えればスラグが著しく増加する。そこで、ブローホールの低減とスラグ量抑制との兼ね合いから、溶接金属のAl含有量は、0.05~0.3%の範囲内とした。なおこの範囲内でも、特に0.1~0.2%の範囲内であれば、ブローホールの低減とスラグ量抑制とを、より有効に両立させることができる。
〔Ti:0.001~0.2%、好ましくは0.05~0.2%〕
 Tiは脱酸元素であるため、ブローホール発生の抑制に効果がある元素である。Ti含有量が0.001%未満ではその効果が十分に発現されない。一方Ti含有量が0.2%を超えれば、スラグ生成反応が促進されて、スラグ量が増加してしまう。そこで溶接金属のTi含有量は、0.001~0.2%の範囲内とした。なおこの範囲内でも、特に0.05~0.2%の範囲内であれば、スラグ量の増加を招くことなく上記の効果を充分に発現させることができる。
〔P:0.02%以下〕
 Pは、一般に鋼中に不純物として混入する元素であって、またアーク溶接用ソリッドワイヤワイヤ中にも不純物として含まれるのが通常であるため、溶接金属中にもに含まれる。ここでPは、溶接金属の高温割れを発生させる主要元素の一つであるから、できる限り抑制することが望ましい。P含有量が0.02%を越えれば、溶接金属の高温割れが顕著になるから、溶接金属のP含有量は0.02%以下に規制することとした。なお、Pの含有量の下限値は、特に制限はないが、脱Pのコスト及び生産性の観点から、0.001%とすることが好ましい。
〔S:0.02%以下〕
 Sも、一般に鋼中に不純物として混入する元素であって、またアーク溶接用ソリッドワイヤワイヤ中にも不純物として含まれるのが通常であるため、溶接金属中にも含まれる。ここで、Sは、溶接金属の耐割れ性を阻害する元素であり、できる限り抑制することが好ましい。S含有量が0.02%を超えれば、溶接金属の耐割れ性が悪化するから、溶接金属のS含有量は0.02%以下に規制することとした。なお、Sの含有量の下限値は、特に制限はないが、脱Sのコスト及び生産性の観点から、0.001%とすることが好ましい。
〔Cu:0~0.3%、Cr:0.003~1.5%、Nb:0.003~0.7%、V:0.003~0.7%の1種または2種以上〕
 Cuは、一般に鋼中に不純物として含有することがある元素である。Cr、Nb、Vは、溶接金属の強度を向上させる元素である。本発明では、必要に応じて、Cu、Cr、Nb、Vの元素を溶接金属に含有する。Cu、Cr、Nb、Vは、1種類のみ含有してもよいし、2種類あるいは3種類を同時に含有してもよい。
 Cuの含有量は、0~0.3%の範囲内とすることが好ましい。Cuは、一般に鋼中に不純物として0.02%程度含有されることがある元素であるが、溶接金属のCuの含有量が0.3%を超えれば、溶接割れ感受性が高くなるから、溶接金属におけるCu含有量を、0~0.3%に制限することとした。
 Crの含有量は、0~1.5%の範囲内とすることが好ましい。Crを含有する場合、Crの含有量は0.003%~1.5%の範囲内とすることがより好ましい。これは、Crを0.003%以上含有することによって、溶接金属の強度向上効果が現れるが、Crの含有量が1.5%を越えれば、溶接金属の靭性が低下するからである。強度向上効果の観点からは、Crは0.3%以上含有することが好ましく、さらに0.8%以上含有することがより好ましい。
 Nbの含有量は、0~0.7%の範囲内とすることが好ましい。Nbを含有する場合、溶接金属におけるNbの含有量は0.003%~0.7%の範囲内とすることがより好ましい。これは、Nbを0.003%以上含有することによって、溶接金属の強度向上効果が現れるが、Nbの含有量が0.7%を越えれば、溶接金属の靭性が低下するからである。
 Vの含有量は、0~0.7%の範囲内とすることが好ましい。Vを含有する場合、Vの含有量は0.003%~0.7%の範囲内とすることがより好ましい。これは、Vを0.003%以上含有することによって、溶接金属の強度向上効果が現れるが、0.7%を越えれば、溶接金属の靭性が低下するからである。
〔不純物〕
 不純物とは、原材料に含まれる成分、または、製造の過程で混入する成分であって、意図的に溶接金属に含有させたものではない成分を指す。
 さらに溶接金属についての発明においては、溶接金属の各成分元素の個別の含有量を規制するばかりでなく、Si、Mn、Ti、Alの含有量を、相互の関係のもとに、前記(2)式で定められるXの値が1.0~4.0%の範囲内となるように調整することが重要である。
 すなわち、本発明者等が、溶接金属に含まれる元素の個別の含有量が、前述の範囲内であっても、凝固後の溶接金属中にブローホールが多量に存在してしまう場合があることを知見した。そしてさらに詳細な実験、検討を重ねたところ、下記の実験3に示すように、脱酸元素であるSi、Mn、Ti、Alの含有量に応じて前記(2)式によって求められるXの値が、ブローホールの量に強く相関する。特に溶接金属におけるXの値が1.0~4.0%の範囲内となるように各元素の量を調整することによって、ブローホールを確実に低減し得ること、また逆にXの値が1.0~4.0%の範囲から外れれば、ブローホールが著しく多くなってしまうことを見い出した。
〔実験3〕
 本発明者等が溶接金属の発明に関して行った実験3の結果の一部を、溶接用ソリッドワイヤについての実験1の結果(図1)に倣って、図3に示す。
 この実験3では、図1に結果を示した実験1の場合と同様な溶接用ソリッドワイヤ用い、かつ炭酸ガスをシールドガスに用いたガスシールドアーク溶接法によって、後述する実施例2に記載した方法により亜鉛めっき鋼板を重ね隅肉溶接し、溶接金属の凝固後にブローホール発生状況を調査した。ブローホール発生状況は、上述した実施例1に記載した方法によって、ブローホール面積率により評価した。
 なお使用した亜鉛めっき鋼板は、実験1の場合と同様である。
 縦軸をブローホール面積率とし、横軸に、各溶接金属についてのX=2×〔Si〕+〔Mn〕+3×〔Ti〕+5×〔Al〕の値をとり、上記の実験3の結果をプロットしたのが図3である。
 図3から明らかなように、Xの値が1.0~4.0%の範囲内では、ブローホール面積率が10%以下と著しく低い値に抑えられことが判明した。ここで、ブローホール面積率が10%以下であれば、継手強度の低下はほとんど認められず、また溶接金属表面に電着塗装を施した場合に塗装欠陥が実質的に生じない。一方、図3に示しているように、Xの値が1.0%よりも小さくなれば、ブローホール面積率が40%以上に急激に大きくなり、またXの値が4.0%よりも大きくなった場合も、ブローホール面積率が20%以上に急激に大きくなることが判明した。したがってこのような実験結果から、溶接金属についてのXの値の1.0~4.0%の範囲は、溶接金属中に残るブローホールの量に関して十分な臨界値的意義を有していることが明らかである。
 さらに本発明者等は、溶接金属におけるスラグ発生状況と、溶接金属に含まれるAlの量との関係についても調べたので、その結果を、下記の実験4として示す。
〔実験4〕
 この実験4では、質量%で、C:0.05%、Si:0.8%、Mn:1.58%、P:0.005%、S:0.02%、Ti:0.16%、を含有し、かつ種々の量のAlを含有するφ0.9mmのソリッドワイヤを用い、シールドガスとしてAr+20%COガスを用いて、板厚2.3mmの亜鉛めっき鋼板(亜鉛めっき目付量は45g/m)について、ビードオンプレート溶接を150mmの長さについて実施した。そして、前述の実施例1に記載したスラグ面積率測定方法と同じ方法によって、前記(3)式にしたがってスラグ面積率を算出した。そして溶融金属中のAl含有量を調べ、図4に示すように、溶融金属中のAl含有量とスラグ面積率との関係をグラフ上にプロットした。
 図4から明らかなように、溶接金属中のAl含有量が0.05~0.3%の範囲内では、スラグ面積率が10%以下と著しく低い値に抑えられことが判明した。ここで、スラグ面積率が10%以下であれば、溶接金属表面に電着塗装を施した場合に塗装欠陥が実質的に生じない。一方、図4に示しているように、Al含有量が0.3%よりも少なくなれば、スラグ面積率が20%以上に急激に大きくなり、またAl含有量が0.3%よりも大きくなった場合も、スラグ面積率が20%以上に大きくなることが判明した。したがってこのような実験結果から、溶接金属についてのAl含有量が0.05~0.3%の範囲は、スラグ面積率、すなわちスラグ発生状況に関して十分な臨界値的意義を有していることが明らかである。
 そして、この実験結果では、溶接金属中のAl含有量を0.05~0.3%の範囲内とすると、一つ一つのスラグが微細となり、スラグ面積率が小さくなり(図6参照)、溶接金属中のAl含有量をこの範囲外とすると、一つ一つのスラグが大きく、スラグ面積率が大きくなることが示されているがわかる(図5参照)。
 ここで、溶接金属についての発明の態様(第3の態様)として、好ましくは、溶接金属全質量に対する質量%で、C:0.03~0.15%、Si:0.3~0.5%、Mn:0.4~1.0%、P:0.02%以下、S:0.02%以下、Al:0.1~0.2%、Ti:0.05~0.2%を含有し、残部がFeおよび不純物からなり、前記(2)式で定義されるXが、質量%で1.0~4.0%の範囲内にあるものである。
 また溶接継手についての発明の別の態様(第4の態様)として好ましくは、前記継手部の溶接金属が、前記各成分に加えて、すなわち、C:0.03~0.15%、Si:0.3~0.5%、Mn:0.4~1.0%、P:0.02%以下、S:0.02%以下、Al:0.1~0.2%、Ti:0.05~0.2%に加えて、さらに、質量%で、Cu:0~0.3%、Cr:0~1.5%、Nb:0~0.7%、V:0~0.7%のうちの1種または2種以上を含有するものである。
 更に溶接継手についての発明の別の態様(第4の態様)としてより好ましくは、前記継手部の溶接金属が、前記各成分に加えて、すなわち、C:0.03~0.15%、Si:0.3~0.5%、Mn:0.4~1.0%、P:0.02%以下、S:0.02%以下、Al:0.1~0.2%、Ti:0.05~0.2%に加えて、さらに、質量%で、Cu:0~0.3%、Cr:0.003~1.5%、Nb:0.003~0.7%、V:0.003~0.7%のうちの1種または2種以上を含有するものである。
 なお、上述のような溶接金属を得るためにガスシールドアーク溶接を行う際の溶接用ソリッドワイヤとしては、前に述べた第1もしくは第2の態様のワイヤを用いることが望ましいが、必ずしも第1もしくは第2の態様のワイヤに限定されるものではない。すなわち、溶接継手における溶接金属の成分は、溶接用ソリッドワイヤの成分のみならず、母材の成分の影響も大きく受けるから、母材の成分組成によっては、第1もしくは第2の態様のワイヤ以外のワイヤを用いても、第3もしくは第4の態様で規定する成分組成条件、Xの値の条件(X=1.0~4.0)を満たす溶融金属を有する溶接継手を得ることが不可能ではないからである。したがって溶接継手は、溶接後の溶接金属の成分が、第3もしくは第4の態様で規定する条件を満たしていればよいのであって、溶接用ソリッドワイヤの成分によって制約されるものではなく、母材の成分に応じて種々のワイヤを用いて得ることができる。
 以上のような溶接継手についての発明の作用・効果を検証した実施例を、以下に実施例2として示す。
〔実施例2〕
 溶接用ソリッドワイヤとして、前述の実施例1で用いたと同じワイヤ、すなわち表1に示した成分組成のワイヤ(ワイヤNo.1~No.27)を用い、表3の鋼板No.1~12に示す化学成分(但し表3に示した鋼板の成分は、亜鉛めっき前の母鋼板の成分を示す)を有する板厚2.3mmの亜鉛めっき鋼板について、ガスシールドアーク溶接によって重ね隅肉溶接を行った。溶接施工条件は、実施例1と同様に表4に示した通りである。なお溶接に使用した亜鉛めっき鋼板は、両面に溶融亜鉛めっきを、片面あたりめっき目付量45g/mで施したものである。
 以上のような亜鉛めっき鋼板に対するアーク溶接実験によって得られた溶接継手における溶接金属の成分組成を分析した結果を表5に示し、またスラグ発生状況、溶接中のスパッタ発生状況、溶接継手のビード外観、及び凝固後の溶接金属中のブローホール発生状況を調べ、評価した。その結果を表6に示す。なお各調査方法、評価基準は、実施例1に関して説明したものと同じである。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
〔評価結果〕
 No.31~No.41の本発明例は、いずれも溶接継手の溶接金属における各成分の含有量が、本発明の溶接継手について規定する範囲内となっているのみならず、前記の(2)式で規定されるXの値が本発明の溶接継手について規定する1.0~4.0の範囲内となっており、これらの本発明例では、ブローホール面積率が確実に10%を下回り、ブローホールが十分に低減されていることが確認された。また本発明例のNo.31~No.41では、スラグ面積率が10%を下回り、スラグ発生も確実に抑制されていることが明らかとなり、そのほかスパッタ発生も少なく、またビード外観も良好であることが確認された。
 一方、No.42~No.52は、溶接継手の溶接金属における各成分のうちのいずれかの成分の含有量が、本発明で規定する範囲から外れているか、または前記の(2)式で規定されるXの値が1.0~4.0の範囲から外れた比較例である。これらの比較例では、ブローホールの発生が顕著となり、またスラグ発生状況、スパッタ発生状況、ビード外観のいずれか1以上の項目が不合格となり、各種溶接欠陥のない高品質のビードが得られなかった。以下、各比較例についてさらに詳細に説明する。
 比較例のNo.42は、溶接継手の溶接金属の成分についての個別の含有量は本発明の範囲内であるが、(2)式で規定されるXの値が1.0%より低いため、ブローホールが顕著に発生し、またスパッタ発生状況も悪く、ビード外観も不良であった。
 比較例のNo.43は、溶接継手の溶接金属の成分についての個別の含有量は本発明の範囲内であるが、(2)式で規定されるXの値が4.0%より高いため、溶接金属の溶融時の粘性が過度に高く、ブローホールが顕著に発生し、またスラグの発生量も多く、更にはスパッタ発生状況も悪く、ビード外観も不良であった。
 比較例のNo.44は、溶接継手の溶接金属のC含有量が少なすぎ、また(2)式で規定されるXの値が1.0%より低い例であり、この例では、ブローホールが顕著に発生し、またスパッタ発生状況も悪く、ビード外観も不良であった。
 比較例のNo.45は、溶接継手の溶接金属の含有量が多すぎ、また(2)式で規定されるXの値が4.0%より高い例であり、この例では、ブローホールが顕著に発生し、またスパッタが多発し、ビード外観も乱れて不良であった。
 比較例のNo.46は、溶接継手の溶接金属のSi含有量が少なすぎ、また(2)式で規定されるXの値が1.0%より低い例であり、この例では、スラグが多量に発生し、またブローホールが顕著に発生した。
 比較例のNo.47は、溶接継手の溶接金属におけるSi含有量が多すぎ、また(2)式で規定されるXの値が4.0%より高い例であり、この例では、スラグが多量に発生し、またブローホールが顕著に発生した。
 比較例のNo.48は、溶接継手の溶接金属におけるMn含有量が少な過ぎ、しかも(2)式で規定されるXの値が1.0%より低い例であり、この例では、ブローホールが顕著に発生した。
 比較例のNo.49は、溶接継手の溶接金属におけるMn含有量が多すぎ、また(2)式で規定されるXの値が4.0%より高い例であり、この例では、ブローホールが顕著に発生し、またスパッタが多発してスパッタ発生状況が悪く、更にハンピングビードが生じてビード外観が不良となった。
 比較例のNo.50は、溶接継手の溶接金属におけるAl量が少なすぎ、また(2)式で規定されるXの値が1.0%より低い例であり、この例では、ブローホールが顕著に発生し、またスラグが多量に生じてしまった。
 比較例のNo.51は、溶接継手の溶接金属におけるAl量が多すぎ、また(2)式で規定されるXの値が4.0%より高い例であり、この例でも、ブローホールが顕著に発生し、またスラグが多量に生じてしまった。
 比較例のNo.52は、溶接継手の溶接金属におけるTi量が多すぎ、また(2)式で規定されるXの値が4.0%より高い例であり、この例では、ブローホール発生が顕著となり、さらにスパッタが多発するとともに、ビードが不連続となってしまった。
〔溶接継手〕
 次に溶接継手に関する発明、すなわち前記第5の態様、第6の態様について詳細に説明する。
 溶接継手についての発明の基本的な態様(第5の態様)は、継手部の溶接金属と、前記溶接金属を挟み、少なくとも一方が亜鉛又は亜鉛合金めっき鋼板(亜鉛めっき鋼板または亜鉛合金めっき鋼板)からなる二つの母材とを有し、かつガスシールドアーク溶接により前記溶接金属を形成した溶接継手であって、溶接金属を、前記第3の態様、または第4の態様の溶接金属とするものである。
 また溶接継手についての発明の別の態様(第6の態様)では、母材のうち、少なくとも一方の亜鉛又は亜鉛合金めっき鋼板(亜鉛めっき鋼板または亜鉛合金めっき鋼板)が、鋼板全質量に対する質量%でAlを0.01~0.3%含有する。
 上述のように溶接継手の発明においては、継手部の溶接金属を挟む二つの母材側の鋼材(被溶接材)のうち、少なくとも一方は亜鉛又は亜鉛合金めっき鋼板とする。
 ここで、亜鉛合金めっき鋼板とは、要は亜鉛を主成分とし、Al:0.1~0.25%や、不純物であるPb、Sn等の元素を含有する公知のZn基合金を鋼板にめっきしたものである。
 亜鉛又は亜鉛合金めっき鋼板自体の製造方法は特に限定されるものではなく、通常は溶融亜鉛めっきあるいは合金化溶融亜鉛めっきなど、公知の方法に従えばよい。
 さらに、亜鉛合金めっきを含む亜鉛めっきを施す前の鋼板(亜鉛又は亜鉛合金めっき鋼板の母鋼板部分)の種類、成分組成は特に限定されないが、通常は、必須成分として、C:0.01~0.5%、Si:0.01~2.0%、Mn:0.2~4.0%、P:0.001~0.04%を含有していればよく、そのほか用途及び必要に応じて、Cr:0.01~1.5%、や、V0.05~1.0%、Nb0.05~1.0%などの一種または2種以上を含有した鋼板等が使用可能である。なお、継手部の溶接金属を挟む二つの母材側の鋼材(被溶接材)のうち、一方のみに亜鉛又は亜鉛合金めっき鋼板を用いた場合の相手材の鋼材(通常は板材であるが、板材に限らず、管材あるいは棒材等の場合もある)の種類、成分組成も、特に限定されるものではなく、上記の亜鉛又は亜鉛合金めっき鋼板における母鋼板部分の鋼と同様な鋼を用いることができる。
 また、亜鉛又は亜鉛合金めっき鋼板は、鋼板全質量に対する質量%でAlを0.01~0.3%含有するものであると、第1の態様もしくは第2の態様の溶接ワイヤにより溶接金属を形成したとき、(2)式で規定されるXの値が1.0~4.0%の範囲内に、またAlの含有量が0.05~0.3%の範囲内となり易く、ブローホール発生量、スラグ発生量を抑えやすくなる。つまり、Al含有量が低減された亜鉛又は亜鉛合金めっき鋼板を母材の一方としても、継手部の溶接金属のブローホール発生量、スラグ発生量が抑えられた溶接継手となり易い。
 また上記の亜鉛又は亜鉛合金めっき鋼板は、両面めっき、片面めっきのいずれでもよい。亜鉛又は亜鉛合金めっき鋼板のめっき層の厚みは特に限定されないが、自動車の足回り部材を対象とする場合は、片面あたりのめっき目付量を通常は30~120g/m程度とすることが望ましい。
 なお、薄鋼板を用いた自動車足回り部品としての実用上の観点からは、継手部の溶接金属を挟む二つの母材側の鋼材(被溶接材)のうちの少なくとも一方を構成する亜鉛又は亜鉛合金めっき鋼板は、板厚が0.5mm以上、4mm以下のものを用いることが望ましい。
 さらに、溶接継手の具体的形状、更には溶接継手を得るための溶接の具体的態様(溶接姿勢)は特に限定されず、例えば、重ね隅肉溶接やT字継手の隅肉溶接などを適用すればよい。
〔溶接部材〕
 次に溶接部材に関する発明、すなわち前記第7の態様について詳細に説明する。
 溶接部材についての発明の基本的な態様(第7の態様)は、前記第5の態様、または第6の態様の溶接継手を備えるものである。
 溶接部材について発明において、溶接継手を備える溶接部材としては、例えば、自動車足回りの構造用部材の他、プレハブ住宅の構造用部材等がある。
〔溶接方法、溶接継手の製造方法〕
 次に溶接方法、溶接継手の製造方法に関する発明、すなわち前記第8の態様、前記第9の態様について詳細に説明する。
 溶接方法についての発明の基本的な態様(第8の態様)は、前記第1の態様、または第2の態様のガスシールドアーク溶接用ソリッドワイヤを用いて、ガスシールドアーク溶接により継手部の溶接金属を形成して、少なくとも一方が亜鉛又は亜鉛合金めっき鋼板(亜鉛めっき鋼板または亜鉛合金めっき鋼板)からなる二つの母材を溶接する方法である。
 また溶接継手の製造方法についての基本的な態様(第9の態様)は、継手部の溶接金属と、溶接金属を挟み、少なくとも一方が亜鉛又は亜鉛合金めっき鋼板(亜鉛めっき鋼板または亜鉛合金めっき鋼板)からなる二つの母材とを有する溶接継手の製造方法であって、前記第1の態様、または第2の態様のガスシールドアーク溶接用ソリッドワイヤを用いて、ガスシールドアーク溶接により前記溶接金属を形成する方法である。
 溶接方法、及び溶接継手の製造方法についての発明において、前記第1の態様、または第2の態様のガスシールドアーク溶接用ソリッドワイヤを用いて、亜鉛又は亜鉛合金めっき鋼板のガスシールドアーク溶接を行うと、従来の一般的な溶接用ソリッドワイヤを用いた場合と比較して、格段にブローホール、及びスラグの発生をすくなくすることできる。
 ここで、適用する亜鉛又は亜鉛合金めっき鋼板については、第5態様又は第6態様の溶接継手で説明した亜鉛又は亜鉛合金めっき鋼板と同様である。特に、鋼板全質量に対する質量%でAlを0.01~0.3%含有する亜鉛又は亜鉛合金めっき鋼板を適用すると。ブローホール発生量、スラグ発生量を抑えやすくなる。
 溶接の具体的態様(溶接姿勢)は特に限定されず、例えば、重ね隅肉溶接やT字継手の隅肉溶接などに適用できる。使用するシールドガスの種類も特に限定されず、100%COガス、Ar+20%COガス、Ar+2%Oガスなどをシールドガスとして用いることができる。特にシールドガスとして、100%COガスもしくはAr+20%COガスを用いた場合に、本発明の顕著な効果を奏する。
 以上、本発明の好ましい実施形態および実施例について説明したが、これらの実施形態、実施例は、あくまで本発明の要旨の範囲内の一つの例に過ぎず、本発明の要旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。すなわち本発明は、前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定され、その範囲内で適宜変更可能であることはもちろんである。
 なお、日本国特許出願第2013-027411号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (9)

  1.  めっきを含めたワイヤ全質量に対する質量%で、
     C:0.03~0.15%、
     Si:0.2~0.5%、
     Mn:0.3~0.8%、
     P:0.02%以下、
     S:0.02%以下、
     Al:0.1~0.3%、
     Ti:0.001~0.2%
     Cu:0~0.5%、
     Cr:0~2.5%、
     Nb:0~1.0%、
     V:0~1.0%
     を含有し、残部がFeおよび不純物からなり、
     下記の(1)式で定義されるXの値が、質量%で1.5~3.5%の範囲内にあるガスシールドアーク溶接用ソリッドワイヤ。
     X=2×〔Si〕+〔Mn〕+3×〔Ti〕+5×〔Al〕・・・・(1)
     ただし、(1)式において〔Si〕、〔Mn〕、〔Ti〕、〔Al〕は、それぞれの元素の含有量(質量%)を表す。
  2.  めっきを含めたワイヤ全質量に対する質量%で、
     Cu:0.05~0.5%、
     Cr:0.005~2.5%、
     Nb:0.005~1.0%、
     V:0.005~1.0%
     のうちの1種または2種以上を含有する請求項1に記載のガスシールドアーク溶接用ソリッドワイヤ。
  3.  溶接金属全質量に対する質量%で、
     C:0.03~0.15%、
     Si:0.1~0.5%、
     Mn:0.3~1.2%、
     P:0.02%以下、
     S:0.02%以下、
     Al:0.05~0.3%、
     Ti:0.001~0.2%
     を含有し、残部がFeおよび不純物からなり、
     下記の(2)式で定義されるXの値が、質量%で1.0~4.0%の範囲内にあるガスシールドアーク溶接金属。
     X=2×〔Si〕+〔Mn〕+3×〔Ti〕+5×〔Al〕・・・・(2)
     ただし、(2)式において〔Si〕、〔Mn〕、〔Ti〕、〔Al〕は、それぞれの元素の含有量(質量%)を表す。
  4.  さらに、溶接金属全質量に対する質量%で、
     Cu:0~0.3%、
     Cr:0~1.5%、
     Nb:0~0.7%、
     V:0~0.7%
     のうちの1種または2種以上を含有する請求項3に記載のガスシールドアーク溶接金属。
  5.  継手部の溶接金属と、前記溶接金属を挟み、少なくとも一方が亜鉛めっき鋼板または亜鉛合金めっき鋼板からなる二つの母材とを有し、かつガスシールドアーク溶接により前記溶接金属を形成した溶接継手であって、
     前記溶接金属が、請求項3または請求項4に記載のガスシールドアーク溶接金属である溶接継手。
  6.  前記亜鉛めっき鋼板または亜鉛合金めっき鋼板が、鋼板全質量に対する質量%でAlを0.01~0.3%含有する請求項5に記載の溶接継手。
  7.  請求項5または請求項6に記載の溶接継手を備える溶接部材。
  8.  請求項1または請求項2に記載のガスシールドアーク溶接用ソリッドワイヤを用いて、ガスシールドアーク溶接により継手部の溶接金属を形成して、少なくとも一方が亜鉛めっき鋼板または亜鉛合金めっき鋼板からなる二つの母材を溶接する溶接方法。
  9.  継手部の溶接金属と、前記溶接金属を挟み、少なくとも一方が亜鉛めっき鋼板または亜鉛合金めっき鋼板からなる二つの母材とを有する溶接継手の製造方法であって、
     請求項1または請求項2に記載のガスシールドアーク溶接用ソリッドワイヤを用いて、ガスシールドアーク溶接により前記溶接金属を形成する溶接継手の製造方法。
PCT/JP2014/053668 2013-02-15 2014-02-17 ガスシールドアーク溶接用ソリッドワイヤ、ガスシールドアーク溶接金属、溶接継手、溶接部材、溶接方法、および溶接継手の製造方法 WO2014126246A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/766,962 US20160008906A1 (en) 2013-02-15 2014-02-17 Solid wire for gas shielded arc welding, weld metal by gas shielded arc welding, welded joint, weldment, welding method, and production method of welded joint
CN201480008118.7A CN104981319B (zh) 2013-02-15 2014-02-17 气体保护电弧焊接用实心焊丝、气体保护电弧焊接金属、焊接接头、焊接部件、焊接方法以及焊接接头的制造方法
JP2014526296A JP5652574B1 (ja) 2013-02-15 2014-02-17 ガスシールドアーク溶接用ソリッドワイヤ、ガスシールドアーク溶接金属、溶接継手、溶接部材、溶接方法、および溶接継手の製造方法
MX2015010292A MX2015010292A (es) 2013-02-15 2014-02-17 Alambre solido para soldadura por arco con gas de proteccion, metales de soldadura mediante soldadura por arco con gas de proteccion, junta soldada, soldadura, metodo de soldadura y metodo de produccion de junta soldada.
KR1020157023167A KR101764519B1 (ko) 2013-02-15 2014-02-17 가스 실드 아크 용접용 솔리드 와이어, 가스 실드 아크 용접 금속, 용접 조인트, 용접 부재, 용접 방법 및 용접 조인트의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013027411 2013-02-15
JP2013-027411 2013-02-15

Publications (1)

Publication Number Publication Date
WO2014126246A1 true WO2014126246A1 (ja) 2014-08-21

Family

ID=51354244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053668 WO2014126246A1 (ja) 2013-02-15 2014-02-17 ガスシールドアーク溶接用ソリッドワイヤ、ガスシールドアーク溶接金属、溶接継手、溶接部材、溶接方法、および溶接継手の製造方法

Country Status (6)

Country Link
US (1) US20160008906A1 (ja)
JP (1) JP5652574B1 (ja)
KR (1) KR101764519B1 (ja)
CN (1) CN104981319B (ja)
MX (2) MX2015010292A (ja)
WO (1) WO2014126246A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225349A4 (en) * 2014-11-27 2018-05-30 Baoshan Iron & Steel Co., Ltd. Super high strength gas protection welding wire containing v and manufacturing method therefor
JP2018144077A (ja) * 2017-03-07 2018-09-20 新日鐵住金株式会社 重ねすみ肉溶接継手及び重ねすみ肉溶接継手の製造方法
JP2019107697A (ja) * 2017-12-19 2019-07-04 日本製鉄株式会社 ガスシールドアーク溶接用ソリッドワイヤ
JP2020126040A (ja) * 2019-02-04 2020-08-20 日本製鉄株式会社 スラグの判定方法、スラグ判定装置及び溶接継手の製造方法
WO2020196869A1 (ja) * 2019-03-27 2020-10-01 日本製鉄株式会社 自動車用足回り部品
JPWO2020196875A1 (ja) * 2019-03-27 2020-10-01
WO2021210335A1 (ja) * 2020-04-15 2021-10-21 Jfeスチール株式会社 アーク溶接継手およびアーク溶接方法
JP7534597B2 (ja) 2020-05-21 2024-08-15 日本製鉄株式会社 重ねすみ肉溶接継手、及び自動車部品

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6114785B2 (ja) * 2015-05-29 2017-04-12 日新製鋼株式会社 溶接部外観と溶接強度に優れた溶融Zn系めっき鋼板のアーク溶接方法、および溶接部材の製造方法
CN105886938A (zh) * 2016-06-13 2016-08-24 苏州双金实业有限公司 一种具有良好焊接性能的钢
JP6594266B2 (ja) * 2016-06-20 2019-10-23 株式会社神戸製鋼所 ガスシールドアーク溶接方法及び溶接構造物の製造方法
CN106077998A (zh) * 2016-08-05 2016-11-09 天长市通联焊业有限公司 一种具有优异韧性的焊接接头用焊丝
JP6788550B2 (ja) * 2017-06-16 2020-11-25 株式会社神戸製鋼所 アーク溶接方法およびソリッドワイヤ
CN107414341A (zh) * 2017-07-29 2017-12-01 安徽华众焊业有限公司 一种飞溅小的实心焊丝
KR102336404B1 (ko) * 2017-10-30 2021-12-08 현대자동차주식회사 고강도강용 용접 와이어
CN110773902A (zh) * 2018-07-30 2020-02-11 宝山钢铁股份有限公司 适合超低热输入自动焊接的经济型co2气体保护焊丝及制造方法
CN110948136A (zh) * 2018-09-27 2020-04-03 宝山钢铁股份有限公司 适合超低热输入自动焊接的超低碳气体保护焊丝及其制造方法
CN111618477A (zh) * 2019-02-28 2020-09-04 宝山钢铁股份有限公司 一种用于超低热输入自动焊接的高韧性气体保护焊丝及其焊接方法
CN110142530B (zh) * 2019-06-18 2021-02-09 清河县联盛焊接材料有限公司 一种适用于多种钢种焊接的电焊条、用途及其制备方法
KR102461165B1 (ko) 2020-04-28 2022-11-03 주식회사 포스코 기가급 용접부를 얻을 수 있는 용접용 와이어, 이를 이용하여 제조된 용접구조물 및 그 용접방법
EP4144478A4 (en) 2020-04-28 2023-10-18 Posco WELDING WIRES FOR OBTAINING GIGA GRADE WELDS, WELDED STRUCTURES MANUFACTURED USING THE SAME AND ASSOCIATED WELDING PROCESS
CN115178839B (zh) * 2022-07-14 2024-03-19 攀钢集团攀枝花钢铁研究院有限公司 一种提高QStE钢板焊接接头弯曲性能的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246994A (ja) * 1988-08-04 1990-02-16 Daido Steel Co Ltd ガスシールドアーク溶接用ソリッドワイヤ
JPH03204195A (ja) * 1990-01-04 1991-09-05 Nippon Steel Corp ガスシールドアークすみ肉溶接用ワイヤ
JP2005254284A (ja) * 2004-03-11 2005-09-22 Daido Steel Co Ltd ガスシールドアーク溶接方法
JP2007069265A (ja) * 2005-08-08 2007-03-22 Kobe Steel Ltd 耐食性に優れた溶接継手および溶接構造体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295187A (ja) * 1996-05-01 1997-11-18 Nippon Steel Corp ラインパイプ用ガスシールドアーク溶接ワイヤ
CA2231985C (en) * 1997-03-26 2004-05-25 Sumitomo Metal Industries, Ltd. Welded high-strength steel structures and methods of manufacturing the same
JP3565331B2 (ja) * 1999-08-18 2004-09-15 三菱重工業株式会社 高強度低合金耐熱鋼
CN1254348C (zh) * 2002-01-31 2006-05-03 杰富意钢铁株式会社 用于二氧化碳气体保护电弧焊的钢丝及使用此钢丝的焊接法
JP4629995B2 (ja) * 2004-04-19 2011-02-09 新日本製鐵株式会社 溶接金属の靭性に優れたエレクトロスラグ溶接方法。
JP4255453B2 (ja) * 2005-03-31 2009-04-15 株式会社神戸製鋼所 低合金鋼溶接金属及びフラックス入りワイヤ
TWI295603B (en) * 2005-06-15 2008-04-11 Kobe Steel Ltd Solid wires for gas-shielded arc welding
JP4794413B2 (ja) * 2006-10-25 2011-10-19 株式会社神戸製鋼所 ガスシールドアーク溶接用ソリッドワイヤ
JP5163215B2 (ja) * 2008-03-25 2013-03-13 新日鐵住金株式会社 薄鋼板の隅肉アーク溶接方法
JP5244035B2 (ja) * 2009-06-22 2013-07-24 株式会社神戸製鋼所 溶接金属
JP5415998B2 (ja) * 2010-03-11 2014-02-12 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246994A (ja) * 1988-08-04 1990-02-16 Daido Steel Co Ltd ガスシールドアーク溶接用ソリッドワイヤ
JPH03204195A (ja) * 1990-01-04 1991-09-05 Nippon Steel Corp ガスシールドアークすみ肉溶接用ワイヤ
JP2005254284A (ja) * 2004-03-11 2005-09-22 Daido Steel Co Ltd ガスシールドアーク溶接方法
JP2007069265A (ja) * 2005-08-08 2007-03-22 Kobe Steel Ltd 耐食性に優れた溶接継手および溶接構造体

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225349A4 (en) * 2014-11-27 2018-05-30 Baoshan Iron & Steel Co., Ltd. Super high strength gas protection welding wire containing v and manufacturing method therefor
JP2018144077A (ja) * 2017-03-07 2018-09-20 新日鐵住金株式会社 重ねすみ肉溶接継手及び重ねすみ肉溶接継手の製造方法
JP7006576B2 (ja) 2017-12-19 2022-02-10 日本製鉄株式会社 ガスシールドアーク溶接用ソリッドワイヤ
JP2019107697A (ja) * 2017-12-19 2019-07-04 日本製鉄株式会社 ガスシールドアーク溶接用ソリッドワイヤ
JP2020126040A (ja) * 2019-02-04 2020-08-20 日本製鉄株式会社 スラグの判定方法、スラグ判定装置及び溶接継手の製造方法
JP7356022B2 (ja) 2019-02-04 2023-10-04 日本製鉄株式会社 スラグの判定方法、スラグ判定装置及び溶接継手の製造方法
JP7143938B2 (ja) 2019-03-27 2022-09-29 日本製鉄株式会社 自動車用足回り部品
WO2020196875A1 (ja) * 2019-03-27 2020-10-01 日本製鉄株式会社 自動車用足回り部品
CN113677817A (zh) * 2019-03-27 2021-11-19 日本制铁株式会社 汽车用行走部件
JPWO2020196875A1 (ja) * 2019-03-27 2020-10-01
JPWO2020196869A1 (ja) * 2019-03-27 2020-10-01
JP7143937B2 (ja) 2019-03-27 2022-09-29 日本製鉄株式会社 自動車用足回り部品
WO2020196869A1 (ja) * 2019-03-27 2020-10-01 日本製鉄株式会社 自動車用足回り部品
WO2021210335A1 (ja) * 2020-04-15 2021-10-21 Jfeスチール株式会社 アーク溶接継手およびアーク溶接方法
JPWO2021210335A1 (ja) * 2020-04-15 2021-10-21
CN115427179A (zh) * 2020-04-15 2022-12-02 杰富意钢铁株式会社 电弧焊接接头及电弧焊接方法
JP7238990B2 (ja) 2020-04-15 2023-03-14 Jfeスチール株式会社 アーク溶接継手およびアーク溶接方法
JP7534597B2 (ja) 2020-05-21 2024-08-15 日本製鉄株式会社 重ねすみ肉溶接継手、及び自動車部品

Also Published As

Publication number Publication date
KR20150108930A (ko) 2015-09-30
JPWO2014126246A1 (ja) 2017-02-02
JP5652574B1 (ja) 2015-01-14
CN104981319B (zh) 2018-04-24
MX2015010292A (es) 2015-10-26
KR101764519B1 (ko) 2017-08-02
MX2019014785A (es) 2020-02-12
CN104981319A (zh) 2015-10-14
US20160008906A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
JP5652574B1 (ja) ガスシールドアーク溶接用ソリッドワイヤ、ガスシールドアーク溶接金属、溶接継手、溶接部材、溶接方法、および溶接継手の製造方法
JP6573056B1 (ja) 薄鋼板へのガスシールドアーク溶接用ソリッドワイヤ
JP5098217B2 (ja) 溶接部の耐食性および耐亜鉛脆化割れ性に優れた亜鉛めっき鋼板の溶接継手並びにその製造方法
JP4839193B2 (ja) ソリッドワイヤ
JP5980128B2 (ja) アーク溶接構造部材の製造法
JP5472244B2 (ja) 厚鋼板の狭開先突合せ溶接方法
JP2012081514A (ja) 亜鉛めっき鋼板の隅肉アーク溶接方法
JP2006035293A (ja) 溶接部の耐食性および耐亜鉛脆化割れ性に優れた亜鉛めっき鋼板の溶接方法
JP2007118068A (ja) 厚鋼板の狭開先突合せ溶接方法
JP4930048B2 (ja) 重ね隅肉溶接継手の継手疲労強度を向上するプラズマアークハイブリッド溶接方法
JP6632839B2 (ja) アルミニウム合金溶加材及びアルミニウム合金の溶接方法
JP4830308B2 (ja) 厚鋼板の多層炭酸ガスシールドアーク溶接方法
JP4909138B2 (ja) ソリッドワイヤ
JP6969705B1 (ja) ガスシールドアーク溶接用鋼ワイヤ、ガスシールドアーク溶接方法、およびガスシールドアーク溶接継手の製造方法
WO2022050014A1 (ja) アーク溶接方法
JP6747629B1 (ja) フラックス入りワイヤ、及び溶接継手の製造方法
JP2022102850A (ja) 低Si鋼材の溶接に用いるガスシールドアーク溶接用ソリッドワイヤ、低Si鋼材の接合方法及び低Si鋼材の補修方法
JP3941528B2 (ja) 炭酸ガスシールドアーク溶接用ワイヤ
JP2002144081A (ja) Mag溶接用鋼ワイヤおよびそれを用いたmag溶接方法
JP7564227B2 (ja) ギガ級溶接部が得られる溶接用ワイヤ、これを用いて製造された溶接構造物及びその溶接方法
JP5051966B2 (ja) 横向き炭酸ガスシールドアーク溶接方法
JP7510049B2 (ja) ガスシールドアーク溶接用ソリッドワイヤ、及び溶接継手の製造方法
JP5078264B2 (ja) 鋼板のアーク溶接法
JP2024068661A (ja) ガスシールドアーク溶接用ソリッドワイヤ、ガスシールドアーク溶接継手の製造方法、及び自動車用足回り部品
JP2004136342A (ja) ガスシールドアーク溶接用鋼ワイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014526296

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14766962

Country of ref document: US

Ref document number: MX/A/2015/010292

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157023167

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201505275

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14751941

Country of ref document: EP

Kind code of ref document: A1