JP6969705B1 - ガスシールドアーク溶接用鋼ワイヤ、ガスシールドアーク溶接方法、およびガスシールドアーク溶接継手の製造方法 - Google Patents

ガスシールドアーク溶接用鋼ワイヤ、ガスシールドアーク溶接方法、およびガスシールドアーク溶接継手の製造方法 Download PDF

Info

Publication number
JP6969705B1
JP6969705B1 JP2021516500A JP2021516500A JP6969705B1 JP 6969705 B1 JP6969705 B1 JP 6969705B1 JP 2021516500 A JP2021516500 A JP 2021516500A JP 2021516500 A JP2021516500 A JP 2021516500A JP 6969705 B1 JP6969705 B1 JP 6969705B1
Authority
JP
Japan
Prior art keywords
welding
less
steel
gas shielded
shielded arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021516500A
Other languages
English (en)
Other versions
JPWO2021125280A1 (ja
Inventor
渉平 上月
一史 渡邊
直哉 早川
善明 村上
健次 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6969705B1 publication Critical patent/JP6969705B1/ja
Publication of JPWO2021125280A1 publication Critical patent/JPWO2021125280A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Abstract

ガスシールドアーク溶接用鋼ワイヤを提供する。本発明は、鋼製外皮と該鋼製外皮に内包される充填材とからなる溶接用鋼ワイヤであって、鋼製外皮が、該鋼製外皮全質量に対する質量%で、REM:0.005〜0.20%を含む外皮組成の鋼製外皮であり、ガスシールドアーク溶接用鋼ワイヤが、鋼製外皮の全質量と充填材の全質量との合計質量に対する質量%で、C:0.01〜0.30%、Si:0.10〜5.00%、Mn:0.5〜5.0%、P:0.050%以下、S:0.050%以下、REM:0.004〜0.18%、Cr:3.0%以下、Ni:3.0%以下、Mo:0.02〜1.5%、Cu:3.0%以下、B:0.0001〜0.005%、Ti:0.02〜0.40%、Al:0.001〜0.20%、Ca:0.0008%以下を含み、残部がFeおよび不可避的不純物からなる組成を有する。

Description

本発明は、ガスシールドアーク溶接に用いて好適な、ガスシールドアーク溶接用鋼ワイヤ、ガスシールドアーク溶接方法、およびガスシールドアーク溶接継手の製造方法に関する。本発明は、とくに、アーク溶接時のアークの安定性を向上させて、溶融メタルの飛散(スパッタ)を防止することと、ビード形状を改善することに関する。
ガスシールドアーク溶接は、造船、建築、橋梁、自動車、建設機械等の産業分野で、高能率の溶接技術として、広く利用されている。ガスシールドアーク溶接は、シールドガスの種類によって、大きくMIG溶接、MAG溶接、炭酸ガス溶接に分類されている。ガスシールドアーク溶接は、高能率であるという利点を有する反面、溶融メタルの飛散(スパッタ)が大量に発生するという問題がある。
このような問題に対し、次の技術により改善することが提案されている。
例えば、特許文献1には、炭酸ガスシールドアーク溶接用鋼ワイヤが記載されている。特許文献1に記載された鋼ワイヤは、質量%で、C:0.20%以下、Si:0.05〜2.5%、Mn:0.25〜3.5%、希土類元素:0.025〜0.050%、P:0.05%以下、S:0.05%以下、Ca:0.0008%以下を含有するとともに、Ti:0.02〜0.50%、Zr:0.02〜0.50%およびAl:0.02〜3.00%のうちの1種または2種以上を含有し、残部Feおよび不可避的不純物からなる組成の鋼素線からなる炭酸ガスシールドアーク溶接用鋼ワイヤである。
特許文献1に記載された鋼ワイヤでは、必要に応じて、所定量の、K、Cr、Ni、MoおよびVから選ばれた1種または2種以上を含有してもよいとしている。特許文献1に記載された技術によれば、正極性の炭酸ガスシールドアーク溶接において、アークの安定性に優れたスプレー移行を達成でき、安定した継手溶接が可能で、しかも平滑なビード形状を得ることができる、としている。
また、特許文献2には、狭開先突合せ溶接方法が記載されている。特許文献2に記載された狭開先突合せ溶接方法は、希土類元素を0.015〜0.100質量%含有する鋼素線からなる溶接用鋼ワイヤを用いて、厚鋼板の多層ガスシールドアーク溶接を行う狭開先突合せ溶接方法である。初層のガスシールドアーク溶接は、溶接電流、溶接電圧、溶接速度、開先角度、ルートギャップの関数として定義されるQL値を初層の溶け込み形状の指標として、また、溶接電流、溶接電圧、溶接速度、開先角度、ルートギャップの関数として定義されるQH値を溶接金属量の指標として、それぞれが所定範囲内を満足する条件で行う。特許文献2に記載された技術によれば、多層溶接の初層においても、アークの安定性に優れ、安定した溶け込みが得られる、としている。
また、特許文献3には、ガスシールドアーク溶接に用いる溶接用鋼ワイヤが記載されている。特許文献3に記載された溶接用鋼ワイヤは、REMを2〜60質量%含有し、残部がFeおよび不可避的不純物からなる合金鋼粉を鋼製外皮に内包させ、前記合金鋼粉の内包率が0.05〜25.0質量%の範囲を満足し、前記溶接鋼ワイヤ中の前記REMの含有率が0.01〜0.5質量%の範囲内を満足する。これとともに、前記合金鋼粉に含有される各元素の質量と前記鋼製外皮に含有される各元素の質量とをそれぞれ合計して前記溶接ワイヤの質量に対する比率として得られる各元素の含有率が、Cの含有率:0.01〜0.30質量%、Siの含有率:0.10〜5.00質量%、Mnの含有率:0.5〜5.0質量%、Crの含有率:3.0質量%以下、Niの含有率:3.0質量%以下、Moの含有率:0.02〜1.5質量%、Cuの含有率:3.0質量%以下、Bの含有率:0.0001〜0.005質量%、Tiの含有率:0.02〜0.20質量%、Alの含有率:0.001〜0.20質量%、Pの含有率:0.050質量%以下、Sの含有率:0.050質量%以下、Caの含有率:0.0008質量%以下の範囲を満足し、残部がFeおよび不可避的不純物からなる溶接用鋼ワイヤである。特許文献3に記載された技術によれば、溶接鋼ワイヤの歩留りが向上し、しかもアークが安定し、スパッタが減少し、ビード形状が改善される、としている。
また、特許文献4には、高降伏強度高靭性ガスシールドアーク溶接用フラックス入りワイヤが記載されている。特許文献4に記載されたフラックス入りワイヤは、鋼製外皮の内部にフラックスが充填されたフラックス入りワイヤである。このフラックス入りワイヤは、鋼製外皮およびフラックス中に、金属または合金として、ワイヤ全質量に対する質量%の合計で、C:0.08〜0.3%、Si:0.2〜2%、Mn:0.5〜2.5%、P:0.02%以下、S:0.02%以下、Al:0.002〜0.3%、Ti:0.005〜0.3%、Ni:0.5〜11%、Mg:0.012〜0.5%を含み、炭素当量(Ceq.)が0.7〜2%、脱酸元素当量(Aleq.)が0.2〜0.6%であり、さらに、Mo:0.1〜4%、W:0.1〜3%、Nb:0.005〜0.1%、V:0.005〜0.1%、Ta:0.005〜0.5%のうちの1種または2種以上を含有し、かつNb当量(Nbeq.)が0.05〜0.5%であり、かつ、前記フラックス中に含有するスラグ助成剤およびアーク安定剤の合計含有量を、ワイヤ全質量に対する質量%で、20%以下に制限し、残部がFeおよび不可避的不純物であり、前記鋼製外皮がシームレスパイプである高降伏強度高靭性ガスシールドアーク溶接用フラックス入りワイヤである。特許文献4に記載されたフラックス入りワイヤでは、さらに、フラックス中に、金属または合金として、Cu、Cr、Co、Bのうちの1種または2種以上、CaおよびREMのうちの1種または2種を含有した例が示されている。特許文献4に記載された技術によれば、引張強度が950MPa以上の高張力鋼板におけるMIG溶接、MAG溶接等に用いられるガスシールドアーク溶接用ワイヤとして、ソリッドワイヤに比べて生産性を向上させたフラックス入りワイヤである、としている。
特許第3945396号公報 特開2007−118068号公報 特許第5794125号公報 特開2008−93715号公報
特許文献1に記載された技術は、アークを安定させるために、REMを含有する鋼素線からなる溶接用鋼ワイヤ(ソリッドワイヤ)である。REMは、Feより比重が大きく、しかも強酸化性の金属で、酸化物の融点が高い。そのため、素材の製造過程である溶鋼の凝固過程で偏析しやすく、鋼線中のREM含有量にバラツキが生じ、規定値未満となる部分は切断除去しなければならなくなる。また、REMを含有する鋼素線では、その製造過程で割れが発生しやすくなる。このようなことから、特許文献1に記載された技術では、鋼ワイヤの歩留りが低下し、製造コストが高騰するという問題があった。
また、特許文献2に記載された技術では、REMを含有する鋼素線からなる溶接用鋼ワイヤ(ソリッドワイヤ)を用いて厚鋼板の狭開先突合せ溶接を行う。しかし、使用する溶接用鋼ワイヤ(ソリッドワイヤ)には、特許文献1に記載された技術と同様の問題がある。
また、特許文献3に記載された技術は、鋼製外皮と、鋼製外皮に内包された合金鋼粉とからなる鋼ワイヤ、いわゆる、フラックスコアードワイヤである。特許文献3に記載された鋼ワイヤでは、鋼製外皮に内包される合金鋼粉にREMが含まれているため、上記したソリッドワイヤにおけるREM含有に基づく問題は解消している。しかし、REMを含有する合金鋼粉が酸素と結合し易いため、保管中に鋼製外皮に内包された合金鋼粉に錆が発生するという問題がある。錆が発生した鋼ワイヤを使用して溶接すると、得られた溶接金属の内部に気孔性欠陥が多発したり、溶接金属靭性が低下して、所望の溶接部健全性を確保できないという問題が生じる。
また、特許文献4に記載された技術は、鋼製外皮と、鋼製外皮に内包されたフラックスとからなる鋼ワイヤ(フラックス入りワイヤ)であり、鋼製外皮に内包されたフラックス中にREMを含有してもよいとしている。このため、特許文献4に記載された技術においても、特許文献3に記載された鋼ワイヤと同様の問題が生じるリスクがある。
本発明は、かかる従来技術の問題を解決し、錆発生などの保管中の品質変化がなく、かつ溶接時のアークの安定性に優れて、スパッタの発生を抑制でき、ビード形状を改善することができる、ガスシールドアーク溶接用鋼ワイヤを提供することを目的とする。
また、本発明は、このガスシールドアーク溶接用鋼ワイヤを用いた、ガスシールドアーク溶接方法およびガスシールドアーク溶接継手の製造方法を提供することを目的とする。
本発明者らは、上記した目的を達成するために、鋼製外皮と、該鋼製外皮に内包された充填材とからなる、フラックスコアードワイヤ(以下、溶接用鋼ワイヤという)に着目した。そして、アークの安定性向上のために必要なREMを、鋼製外皮に含有させることに思い至った。REMを鋼製外皮に含有させることにより、REMを充填材(充填材のフラックス)に含有した場合に生じる錆発生などの保管中の品質変化の心配はなくなる。
また、所望の鋼製外皮とするためには、素材となる鋼板に種々の加工や、圧延加工を施す。その効果により、ソリッドワイヤにREMを含有させた場合に比べ、REMの偏析も問題のない程度まで軽減でき、所定量のREMを含有する溶接用鋼ワイヤを安定的に製造できることを知見した。
また、ガスシールドアーク溶接として、MAG溶接あるいは炭酸ガスアーク溶接を正極性で行う観点からは、鋼製外皮にREMを添加することで溶滴近傍のワイヤ表面に安定したカソードスポットを形成し、電流経路が安定化する。その結果、安定した溶滴移行が得られるといった効果もある。
一方、ガスシールドアーク溶接として、MIG溶接を行う観点からは、逆極性のMIG溶接では鋼板表面の酸化物がカソードスポットとなりアークが不安定となりやすい、という課題がある。この課題に対しては、鋼製外皮にREMを添加することで溶融池中にREMが移行し、溶融池表面に安定したカソードスポットが形成されることを知見した。その結果、アークが安定するといった効果が得られる。
本発明は、かかる知見に基づき、さらに検討を行って完成されたものである。本発明の要旨は、次のとおりである。
(1)鋼製外皮と、該鋼製外皮に内包される充填材とからなるガスシールドアーク溶接用鋼ワイヤであって、
前記鋼製外皮が、該鋼製外皮全質量に対する質量%で、REM:0.005〜0.20%を含む外皮組成の鋼製外皮であり、
前記ガスシールドアーク溶接用鋼ワイヤが、前記鋼製外皮の全質量と前記充填材の全質量との合計質量に対する質量%で、
C:0.01〜0.30%、 Si:0.10〜5.00%、
Mn:0.50〜5.0%、 P:0.050%以下、
S:0.050%以下、 REM:0.004〜0.18%、
Cr:3.0%以下、 Ni:3.0%以下、
Mo:0.02〜1.5%、 Cu:3.0%以下、
B:0.0001〜0.005%、 Ti:0.02〜0.40%、
Al:0.001〜0.20%、 Ca:0.0008%以下
を含み、残部がFeおよび不可避的不純物からなる組成を有する、ガスシールドアーク溶接用鋼ワイヤ。
(2)前記鋼製外皮の前記外皮組成が、該鋼製外皮全質量に対する質量%で、さらにC:0.15%以下、Mn:0.60%以下、P:0.100%以下、S:0.050%以下、Si:3.0%以下を含む、(1)に記載のガスシールドアーク溶接用鋼ワイヤ。
(3)前記鋼製外皮が、溶接管またはシームレスパイプである、(1)または(2)に記載のガスシールドアーク溶接用鋼ワイヤ。
(4)前記充填材の全質量は、前記ガスシールドアーク溶接用鋼ワイヤの全質量に対して20%以下である、(1)〜(3)のいずれか1つに記載のガスシールドアーク溶接用鋼ワイヤ。
(5)(1)〜(4)のいずれか1つに記載のガスシールドアーク溶接用鋼ワイヤを用いて、正極性でガスシールドアーク溶接を行う、ガスシールドアーク溶接方法。
(6)(1)〜(4)のいずれか1つに記載のガスシールドアーク溶接用鋼ワイヤを用いて、逆極性のMIG溶接でガスシールドアーク溶接を行う、ガスシールドアーク溶接方法。
(7)(5)または(6)に記載のガスシールドアーク溶接方法を用いた、ガスシールドアーク溶接継手の製造方法。
本発明によれば、溶接材料として錆発生などの保管中の品質変化がなく、かつ溶接時に、アークの安定性に優れて、スパッタの発生を抑制できる。また、アークが安定することにより、溶接ビード形状にも優れるガスシールドアーク溶接が可能になる。このため、産業上格段の効果を奏する。
図1は、本発明の溶接用鋼ワイヤの断面を模式的に示す説明図である。 図2は、本発明の実施例で行った重ね隅肉溶接の概要を模式的に示す説明図である。 図3は、本発明のガスシールドアーク溶接方法の一例を模式的に示す説明図である。
本発明のガスシールドアーク溶接用鋼ワイヤは、490MPa級〜780MPa級高張力鋼板用のガスシールドアーク溶接用鋼ワイヤとして好適である。本発明のガスシールドアーク溶接用鋼ワイヤ1は、図1に示すように、鋼製外皮2と該鋼製外皮2に内包された充填材3とからなる。本発明では、アークの安定性に寄与するREMは鋼製外皮に含有させる。
鋼製外皮2は、鋼製外皮全質量に対する質量%で、REM:0.005〜0.2%を含み、好ましくはさらにC:0.15%以下、Mn:0.60%以下、P:0.100%以下、S:0.050%以下、Si:3.0%以下を含む外皮組成を有する。まず、外皮組成の限定理由について説明する。なお、特に断りがない限り、外皮組成を示す「%」は「質量%」を意味する。
REM:0.005〜0.20%
REM(希土類元素)は、原子番号57〜71の元素(ランタノイド)とSc、Yを含めた元素の総称である。本発明では、REMは、MAG溶接あるいは炭酸ガスアーク溶接を正極性で行う場合に、液滴のスプレー移行を実現するために不可欠の元素である。また、REMは、MIG溶接においては、アークを安定させてビードの蛇行を抑制する作用を有する。このような効果は、REM:0.005%以上の含有で顕著となる。一方、0.2%を超えるREMの含有は、溶滴中のREMの濃淡(バラツキ)が助長されてアークが不安定となり、所望の効果を得ることができない。このため、鋼製外皮に含まれるREM含有量は0.005〜0.20%の範囲に限定した。なお、好ましくは0.015〜0.10%である。更に好ましくは、0.030%以上であり、0.060%以下である。
上記したREMの含有量は、REMに含まれる各元素の合計の含有量を表わす。本発明では、上記したREMに含まれる各元素を単独でも、あるいはそれらを複合して含有してもよい。なお、REMのなかでは、La、Ceとすることが好ましい。
鋼製外皮2は、質量%で、REM:0.005〜0.20%を含み、好ましくはさらにC:0.15%以下、Mn:0.60%以下、P:0.100%以下、S:0.050%以下、Si:3.0以下を含む外皮組成を有する。本発明で用いる鋼製外皮は、上記したREMを含む以外は、合金成分として、JIS Z 3141に規定されるSPCC相当の成分とすることが好ましい。SPCC相当成分を超えるほどに過剰に、合金元素を含有すると、鋼製外皮素材の溶製凝固時や伸線加工時に割れを発生しやすくなる。
このような理由から、鋼製外皮に含まれるC含有量は、0.15%以下が好ましい。溶接金属の機械的特性の観点からは、C含有量は0.10%以下がより好ましく、0.08%以下が更に好ましい。C含有量は0.01%以上が好ましく、0.02%以上がより好ましい。
鋼製外皮に含まれるMn含有量は、0.60%以下が好ましい。製造性の観点からは、Mn含有量は0.55%以下がより好ましく、0.50%以下が更に好ましい。Mn含有量は0.20%以上が好ましく、0.25%以上がより好ましい。
鋼製外皮に含まれるP含有量は、0.100%以下が好ましい。製造性の観点からは、P含有量は0.050%以下がより好ましく、0.010%以下が更に好ましい。P含有量は0.002%以上が好ましく、0.005%以上がより好ましい。
鋼製外皮に含まれるS含有量は、0.050%以下が好ましい。製造性の観点からは、S含有量は0.050%以下がより好ましく、0.010%以下が更に好ましい。S含有量は0.002%以上が好ましく、0.005%以上がより好ましい。
鋼製外皮に含まれるSi含有量は、3.0%以下が好ましい。外皮の加工性の観点からは、Si含有量は2.0%以下がより好ましく、1.5%以下が更に好ましい。Si含有量は0.5%以上が好ましく、1.0%以上がより好ましい。
本発明のガスシールドアーク溶接用鋼ワイヤ1は、上記したREMを含有する外皮組成の鋼製外皮2と、該鋼製外皮に内包された充填材3とからなる。本発明のガスシールドアーク溶接用鋼ワイヤ1では、所定の強度靭性等の特性を有する溶接金属を形成するために必要な、各種合金元素やフラックス等を、充填材3として配合する。なお、充填材3に配合する各種合金元素は、各種合金元素の単独粉としてもよく、あるいは、各種合金元素とFeとの合金(例えばFe−Mn、Fe−Si等のフェロアロイ)粉、各種合金元素を複合して含有する合金鋼粉等の金属粉、として配合してもよい。また、充填材は、合金元素粉、合金鋼粉等の金属粉のみとするか、あるいは金属粉とフラックスとを併用してもよい。なお、フラックスを配合することにより、アークが安定化し、スパッタが減少するという効果が一層向上する。
フラックスに含まれるものとしては、溶接ビード形状を良好に維持する作用を有する、例えば、TiO、SiO、MgO、CaO、CaF等が例示できる。これらを、必要に応じて適宜、選択し複合して、配合できる。なお、溶接作業性の観点から、TiO、SiO等を主成分とするルチール系フラックスを、また、溶接金属靭性の観点から、MgO、CaF、CaO等を主成分とする塩基性フラックスを配合することが好ましい。
充填材の全質量は、鋼ワイヤ全質量に対して20%以下に限定することが望ましい。20%を超えて多量に充填材を配合すると、フラックスコアードワイヤの製造中に断線が発生し、ワイヤ製造が著しく難しくなる。
本発明のガスシールドアーク溶接用鋼ワイヤ(溶接用鋼ワイヤ)では、鋼製外皮に含まれる各元素の質量と、充填材に含まれる各元素の質量との合計質量を、溶接用鋼ワイヤに含まれる各元素の含有率として、溶接用鋼ワイヤ全量(全質量)に対する質量%で規定する。すなわち、ガスシールドアーク溶接用鋼ワイヤの各元素の含有率(質量%)は、次式で定義される。
各元素の含有率(質量%)=[{(鋼製外皮に含まれる各元素の質量)+(充填材に含まれる各元素の質量)}/(溶接用鋼ワイヤ全質量)]×100
本発明の溶接用鋼ワイヤは、質量%で、C:0.01〜0.30%、Si:0.10〜5.00%、Mn:0.50〜5.0%、P:0.050%以下、S:0.050%以下、REM:0.004〜0.18%、Cr:3.0%以下、Ni:3.0%以下、Mo:0.02〜1.5%、Cu:3.0%以下、B:0.0001〜0.005%、Ti:0.02〜0.40%、Al:0.001〜0.20%、Ca:0.0008%以下を含み、残部がFeおよび不可避的不純物からなる組成(溶接用鋼ワイヤ組成)を有する。
なお、充填材の質量は、上述したよう、溶接用鋼ワイヤ全量(全質量)に対する割合で、10〜20%とすることが、ワイヤ製造上の観点から好ましい。
以下、溶接用鋼ワイヤの組成の限定理由について、説明する。なお、特に断りがない限り、溶接用鋼ワイヤ組成を示す「%」は「質量%」を意味する。
C:0.01〜0.30%
Cは、溶接金属の強度確保に有効に寄与する元素である。このような効果は、0.01%以上のCを含有することで顕著となる。一方、0.30%を超えるCの含有は、ガスシールドアーク溶接時に、液滴が不安定化するとともに、溶接金属の靭性が低下する。また、0.30%を超えるCの含有は、溶接用鋼ワイヤの製造時に断線しやすくなる。このようなことから、溶接用鋼ワイヤのCの含有量は0.01〜0.30%に限定した。なお、好ましくは0.01〜0.08%である。より好ましくは0.01%以上であり、0.06%以下である。さらに好ましくは0.02%以上であり、0.05%以下である。
Si:0.10〜5.00%
Siは、脱酸作用を有し、溶融金属の脱酸に不可欠な元素であり、このような効果は、0.10%以上のSiを含有することで顕著となる。Siの含有量が0.10%未満では、ガスシールドアーク溶接時に、溶融金属が十分に脱酸されないため、溶接金属にブロー欠陥が生じる。また、溶接用鋼ワイヤの電気抵抗が低くなり、溶融効率が低下する。一方、5.00%を超えるSiの含有は、酸化によるスラグ生成量が増加し、また、溶融金属中で脱酸に寄与するSi量が飽和する。また、溶接用鋼ワイヤの硬さが増加し、加工性が低下する。このようなことから、Siの含有量は0.10〜5.00%の範囲に限定した。なお、好ましくは0.50〜1.50%である。より好ましくは0.60%以上であり、1.40%以下である。さらに好ましくは0.80%以上であり、1.30%以下である。
Mn:0.50〜5.0%
Mnは、Siと同様に、脱酸作用を有し、溶融金属の脱酸に不可欠な元素である。Mnは、溶接金属の靭性および強度を確保する作用を有する。このような効果は、0.50%以上のMnを含有することで顕著になる。Mnの含有が0.50%未満では、溶接用鋼ワイヤの電気抵抗が低くなり、溶融効率が低下する。一方、5.0%を超えるMnの含有は、酸化によるスラグ生成量が増加し、また、溶融金属中で脱酸に寄与するMn量が飽和する。また、溶接用鋼ワイヤの硬さが増加し、加工性が低下する。このようなことから、Mnの含有量は0.50〜5.0%の範囲に限定した。なお、好ましくは1.0〜3.0%である。より好ましくは1.5%以上であり、2.5%以下である。さらに好ましくは1.8%以上であり、2.2%以下である。
P:0.050%以下
Pは、溶接用鋼ワイヤの融点を低下させ、電気抵抗を増加させて発熱性を高くする作用を有する元素であり、溶接作業能率の向上に寄与する。しかも、Pは正極性溶接でアークを安定化する作用を有する。このような効果は0.010%以上のPを含有することで顕著になる。一方、0.050%を超えるPの含有は、溶融金属の粘性が低下し、アークが不安定化し、小粒のスパッタが多量に発生するとともに、溶接金属に高温割れが発生しやすくなる。このため、Pの含有量は0.050%以下に限定した。なお、好ましくは0.010〜0.050%である。より好ましくは0.015%以上であり、0.045%以下である。さらに好ましくは0.020%以上であり、0.040%以下である。
S:0.050%以下
Sは、溶融金属の粘性を低下させ、溶接時に溶接用鋼ワイヤ先端に懸垂した溶滴の離脱を助けるとともに、正極性の溶接においてアークを安定させる作用を有する。このような効果は、Sの含有量が0.010%以上で顕著となる。一方、0.050%を超えるSの含有は、溶接時に、溶融金属の粘性が低下しすぎて、小粒のスパッタが多量に発生する。また、溶接金属の靭性が低下する。このため、Sの含有量は0.050%以下に限定した。なお、好ましくは0.010〜0.050%である。より好ましくは0.015%以上であり、0.045%以下である。さらに好ましくは0.020%以上であり、0.040%以下である。
REM:0.004〜0.18%
REMは、鋼製外皮に含有され、充填材には含有されない。REMは、MAG溶接あるいは炭酸ガスアーク溶接を正極性で行う場合に、液滴のスプレー移行を実現し、MIG溶接を行う場合に、アークを安定させてビードの蛇行を抑制する作用を有する。このような効果は、0.004%以上のREMを含有することで顕著となる。一方、0.18%を超えるREMの含有は、溶滴中のREMの濃淡(バラツキ)が助長されてアークが不安定となり、所望の効果を得ることができない。このため、REMの含有量は0.004〜0.18%の範囲に限定した。なお、好ましくは0.010%以上であり、0.10%以下である。より好ましくは0.050%以上であり、0.08%以下である。
なお、表2等に示す「ミッシュメタル」とは、希土類鉱石を還元して得られる希土類元素の混合物であり、セリウム(Ce)が40〜50%、ランタン(La)が20〜40%、ネオジウム(Nd)が15%以下、そのほか数パーセントからなる合金添加物の総称である。
Cr:3.0%以下
Crは、溶接金属の強度を増加させ、さらに耐候性を高める作用を有する元素である。このような効果を得るためには、0.3%以上のCrを含有することが好ましい。一方、3.0%を超えるCrの含有は、溶接金属靭性の低下を招く。このため、Crの含有量は3.0%以下に限定した。なお、好ましくは0.3〜3.0%であり、より好ましくは0.5〜1.0%である。さらに好ましくは0.7%以上であり、0.8%以下である。
Ni:3.0%以下
Niは、溶接金属の強度を増加させ、さらに耐候性を高める作用を有する元素である。このような効果を得るためには、0.3%以上のNiを含有することが好ましい。一方、3.0%を超えるNiの含有は、溶接金属靭性の低下を招く。このため、Niの含有量は3.0%以下に限定した。なお、好ましくは0.3〜3.0%、より好ましくは0.5〜1.0%である。さらに好ましくは0.6%以上であり、0.9%以下である。さらに一層好ましくは0.7%以上であり、0.8%以下である。
Mo:0.02〜1.5%
Moは、溶接金属の強度を増加させる作用を有する元素であり、このような効果を得るためには、0.02%以上のMoの含有を必要とする。一方、1.5%を超えるMoの含有は、溶接金属の靭性が著しく低下する。このため、Moの含有量は0.02〜1.5%の範囲に限定した。なお、好ましくは0.2〜1.0%である。より好ましくは0.3%以上であり、0.9%以下である。さらに好ましくは0.4%以上であり、0.8%以下である。
Cu:3.0%以下
Cuは、溶接金属の強度を増加させ、さらに耐候性を高める作用を有する元素である。このような効果を得るためには、0.2%以上のCuを含有することが好ましい。一方、3.0%を超えるCuの含有は、溶接金属の靭性が著しく低下する。このため、Cuの含有量は3.0%以下に限定した。なお、好ましくは0.2〜3.0%、より好ましくは0.2〜1.0%である。さらに好ましくは0.4%以上であり、0.8%以下である。
B:0.0001〜0.005%
Bは、溶接金属の強度を増加させる作用を有する元素であり、このような効果を得るためには、0.0001%以上のBの含有を必要とする。一方、0.005%を超えるBの含有は、溶接金属の靭性が著しく低下する。このため、Bの含有量は0.0001〜0.005%の範囲に限定した。なお、好ましくは0.0005〜0.004%である。より好ましくは0.001%以上であり、0.003%以下である。さらに好ましくは0.002%以上であり、0.003%以下である。
Ti:0.02〜0.40%
Tiは、脱酸剤として作用するとともに、溶接金属の強度増加に寄与する元素である。このような効果を得るためには、0.02%以上のTiの含有を必要とする。0.02%未満のTiの含有は、溶融金属の脱酸が不十分となるため、粘性が低下し、ビード形状が低下する。一方、0.40%を超えるTiの含有は、溶接金属の靭性が低下する。このため、Tiの含有量は0.02〜0.40%の範囲に限定した。なお、好ましくは0.10〜0.30%である。より好ましくは0.15%以上であり、0.20%以下である。
Al:0.001〜0.20%
Alは、脱酸剤として作用するとともに、溶接金属の強度増加に寄与する元素である。このような効果を得るためには、0.001%以上のAlの含有を必要とする。0.001%未満のAlの含有は、溶融金属の脱酸が不十分となるため、粘性が低下し、ビード形状が低下する。一方、0.20%を超えるAlの含有は、溶接金属の靭性が低下する。このため、Alの含有量は0.001〜0.20%の範囲に限定した。なお、好ましくは0.10〜0.15%である。より好ましくは0.12%以上であり、0.15%以下である。
Ca:0.0008%以下
Caは、正極性の溶接で、アークを安定させる作用を有する元素である。このような効果は、0.0002%以上のCaを含有することで顕著となる。一方、0.0008%を超えるCaの含有は、アークの安定性が阻害される。このため、Caの含有量は0.0008%以下に限定した。なお、好ましくは0.0002〜0.0008%である。より好ましくは0.0002%以上であり、0.0006%以下である。さらに好ましくは0.0002%以上であり、0.0004%以下である。
溶接用鋼ワイヤ組成は、上記した成分以外の残部は、Feおよび不可避的不純物からなる。
なお、上記した組成(溶接用鋼ワイヤ組成)は、鋼製外皮と、充填材として含まれる金属粉およびフラックスとを、含むものである。
本発明では、溶接用鋼ワイヤの鋼製外皮は、溶接管または継目無鋼管(シームレスパイプ)であることが好ましい。これにより、溶接用鋼ワイヤの吸湿を防ぎ、溶接性の低下を抑制できる。
鋼製外皮は、外径を3.0〜6.0mmφとすることが好ましい。
次に、本発明のガスシールドアーク溶接用鋼ワイヤの好ましい製造方法について説明する。
まず、鋼製外皮として溶接管を用いる場合のガスシールドアーク溶接用鋼ワイヤの製造方法について、説明する。
上記した外皮組成を有する溶鋼を、真空溶解炉等の常用の溶製方法により溶製して、所定形状の鋳片(鋼塊)とする。ついで該鋳片(鋼塊)を、加熱し、熱間圧延により熱延鋼板としたのち、さらに軟化焼鈍を含む、冷間圧延により、冷間圧延鋼帯(板厚:1mm以下程度)とする。この冷間圧延鋼帯から、所定幅の帯鋼を採取し、鋼製外皮素材とする。ついで、得られた鋼製外皮素材(帯鋼)に冷間曲げ加工等を施し、パイプ形状に加工し、シーム溶接して鋼製外皮(溶接管)とすることが好ましい。なお、シーム溶接に代えて、かしめによりパイプ形状としてもよい。
その後、得られた溶接管に、上記した溶接用鋼ワイヤの組成を満足するように充填材を充填したのち、冷間で伸線加工を施し、所望外径の溶接用鋼ワイヤとする。得られた溶接用鋼ワイヤには、潤滑油を塗布しておくことが好ましい。
続いて、鋼製外皮としてシームレスパイプを用いる場合のガスシールドアーク溶接用鋼ワイヤの製造方法について、説明する。
本発明の鋼製外皮は、所望外径を有する継目無鋼管(シームレスパイプ)としても何ら問題はない。鋼製外皮に継目無鋼管を用いる場合の溶接用鋼ワイヤの製造方法は、次の通りである。
上記した所定範囲の外皮組成を有する溶鋼を、真空溶解炉等の常用の溶製方法により溶製して、所定形状の丸鋳片(または鋼塊)とする。あるいは、鋼塊を、加熱し、熱間圧延により、所定形状の丸鋼片としてもよい。ついで、得られた丸鋳片あるいは丸鋼片を、加熱し、穿孔圧延により中空素材(継目無鋼管)とし、鋼製外皮(シームレスパイプ)とすることが好ましい。
その後、得られたシームレスパイプに、上記した溶接用鋼ワイヤの組成を満足するように充填材を装入し、冷間で伸線加工、あるいは焼鈍を含む冷間伸線加工を施して、所望外径の溶接用鋼ワイヤとすることが好ましい。得られた溶接用鋼ワイヤには、潤滑油を塗布しておくことが好ましい。
次に、本発明のガスシールドアーク溶接方法について説明する。
本発明は、上述した溶接用鋼ワイヤを用いて、正極性または逆極性でガスシールドアーク溶接を行うガスシールドアーク溶接方法である。
上記した溶接用鋼ワイヤを用いて好ましいガスシールドアーク溶接としては、例えば、炭酸ガスアーク溶接、MIG溶接、MAG溶接が挙げられる。
例えば図3に示すように、2枚の鋼板4を重ね合わせて、ガスシールドアーク溶接で重ね隅肉溶接を行なう。溶接トーチ5の中心部を通って溶接トーチ5から鋼板4へ連続的に送給される溶接用鋼ワイヤ1を陽極、鋼板4を陰極とし、溶接電源から溶接電圧が印加され、溶接トーチ5内から供給されるシールドガスの一部が電離・プラズマ化することで溶接用鋼ワイヤ1と鋼板4の間にアークが形成される。また、シールドガスの内、電離を生じず溶接トーチ5から鋼板4へと流れる分は、アークおよび鋼板4が溶融し形成される溶融池(図示せず)を外気から遮断する役割を持つ。アークの熱によって、溶接用鋼ワイヤ1の先端部が溶融して溶滴となり、該溶滴が、電磁力や重力等によって溶融池へと輸送される。この現象が、溶接トーチ5または鋼板4の移動に伴って連続的に生じることで、溶接線の後方では溶融池が凝固し、溶接ビード6が形成される。これにより、突き合わせた2枚の鋼板4の接合が達成される。
なお、鋼板や溶接条件等は、溶接継手に対する要求特性によって適宜設定される。
ガスシールドアーク溶接方法として、正極性の炭酸ガスアーク溶接および正極性のMAG溶接を行う場合は、次の溶接条件とすることが好ましい。
<炭酸ガスアーク溶接条件>
・シールドガス:100体積%CO
・シールドガス流量:20L/min
・溶接電流:240〜380A
・溶接電圧:28〜38V
・溶接速度:30〜80cm/min
・溶接電源:インバータ電源
・極性:正極性
<MAG溶接条件>
・シールドガス:80体積%Ar+20体積%CO
・シールドガス流量:20L/min
・溶接電流:240〜380A
・溶接電圧:28〜38V
・溶接速度:30〜80cm/min
・溶接電源:インバータ電源
・極性:正極性
ガスシールドアーク溶接方法として、逆極性のMIG溶接を行う場合は、次の溶接条件とすることが好ましい。
<MIG溶接条件>
・シールドガス:100体積%Ar
・シールドガス流量:20L/min
・溶接電流:100〜280A
・溶接電圧:16〜24V
・溶接速度:30〜80cm/min
・溶接電源:インバータ電源
・極性:逆極性
本発明のガスシールドアーク溶接方法によれば、正極性の炭酸ガスアーク溶接およびMAG溶接を行っても、アークが安定するため、スパッタ発生量を抑制できる。また、MIG溶接で重ね隅肉溶接を行っても、アークが安定するため、ビード幅の変動を抑制できる。
次に、本発明のガスシールドアーク溶接継手について説明する。
本発明は、上述したガスシールドアーク溶接方法を用いたガスシールドアーク溶接継手の製造方法である。
ここでは、ガスシールドアーク溶接方法として、例えば、炭酸ガスアーク溶接、MIG溶接、MAG溶接を行う場合について説明する。例えば図2に示すように、本発明のガスシールドアーク溶接継手の製造方法では、少なくとも2枚以上の鋼板を突合せて、上記した溶接用鋼ワイヤを用いて特定の溶接条件で多層溶接を行い、溶接ビードを形成して、ガスシールドアーク溶接継手を得る。なお、鋼板や溶接条件等は上述の説明と同様であるため、説明は省略する。
以上説明したように、本発明によれば、溶接用鋼ワイヤは錆発生などの保管中の品質変化がないため、炭酸ガスアーク溶接およびMAG溶接時に、スパッタの発生が抑制でき、これによりアークの安定性に優れる効果を得られる。
ここで、「アークの安定性に優れる」とは、発生したスパッタが少量であることを指す。具体的には、後述する実施例に記載の方法で測定したスパッタ発生量が、溶着量100gあたり1.5g以下であることを指す。
また、MIG溶接の場合には、溶融池表面に安定したカソードスポットが形成されてアークが安定するため、溶接ビード形状にも優れるガスシールドアーク溶接を実現できる。
ここで、「溶接ビード形状に優れる」とは、溶接ビード全長にわたり、ビード表面から、光学カメラで、ビード形状を観察し、ビード幅の最大値と最小値を求めた。得られた値から、ビード幅の最大値と最小値の差を算出し、その差が2.0mm以下であることを指す。
以下、実施例に基づき、さらに本発明について説明する。
表1に示す外皮組成の溶鋼を真空溶解炉で溶製し、鋼塊(100kg)とした。得られた鋼塊を熱間圧延し、ついで冷間圧延により、板厚:0.8mm、幅:16mmの冷間圧延帯鋼とした。これら冷間圧延帯鋼を鋼製外皮素材として、幅方向に冷間曲げ加工を施し、パイプ形状としたのち、シーム溶接し、鋼製外皮(外径:3.0mmφ)とした。なお、シーム溶接により得られた鋼製外皮には、表2の鋼製外皮形状の欄に「W(溶接管)」と示した。
また上記鋼塊の一部は、加熱し、熱間圧延により所定形状の丸鋼片とした後、この丸鋳片を加熱し、穿孔圧延により中空素材(継目無鋼管)とし、鋼製外皮(外径:3.0mmφ)とした。なお、シームレスパイプからなる鋼製外皮には、表2の鋼製外皮形状の欄に「S(シームレスパイプ)」と示した。
得られた鋼製外皮に、表2に示す含有率の溶接用鋼ワイヤ組成となるように、充填材を配合し、冷間で伸線加工して、溶接用鋼ワイヤ(直径:1.2mmφ)とした。
Figure 0006969705
Figure 0006969705
得られた溶接用鋼ワイヤを用いて、溶接試験を実施し、スパッタ発生量の調査、ビード形状の調査を実施した。試験方法は下記のとおりである。
(1)スパッタ発生量の調査
表2に示す組成(溶接用鋼ワイヤ組成)の溶接用鋼ワイヤを用いて、板厚12mmの鋼板に、表3−1および表3−2に示す溶接条件で、ビードオン溶接を1min間(1分間)行った。この際、炭酸ガスアーク溶接およびMAG溶接の溶接電流は240〜380A、溶接電圧は28〜38V、および溶接速度は30〜80cm/min(cm/分)の範囲内の数値をそれぞれ選択した。発生したスパッタのうち、直径:0.1mm以上のスパッタを予め溶接冶具周辺に配設したCu製捕集冶具で捕集した。捕集したスパッタが、溶着量100gあたり0.8g以下である場合を「良」として記号:◎を、溶着量100gあたり0.8g超え1.5g以下である場合を「可」として記号:○を、溶着量100gあたり1.5g超えを「不可」として記号:△を、それぞれ付与し、評価した。
(2)ビード形状の調査
板厚25mmの鋼板を図2に示すように突き合わせ、表2に示す組成の溶接用鋼ワイヤを用いて、表4−1および表4−2に示す溶接条件で多層溶接(溶接長さ:250mm)を行った。この際、MIG溶接の溶接電流は100〜280A、溶接電圧は16〜24V、および溶接速度は30〜80cm/min(cm/分)の範囲内の数値をそれぞれ選択した。溶接ビード全長にわたり、ビード表面から、光学カメラで、ビード形状を観察し、ビード幅の最大値と最小値を求めた。得られた値から、ビード幅の最大値と最小値の差を算出し、当該溶接用鋼ワイヤのビード形状指標とした。ビード幅の最大値と最小値の差が、1.0mm以下である場合を「良」として記号:◎を、1.0mm超え2.0mm以下を「可」として記号:○を、2.0mm超えを「不可」として記号:△を、それぞれ付与し、評価した。
得られた結果を表5に示す。
Figure 0006969705
Figure 0006969705
Figure 0006969705
Figure 0006969705
Figure 0006969705
本発明例は、いずれも、正極性の炭酸ガスアーク溶接およびMAG溶接を行っても、アークが安定し、溶着量100gあたり1.5g以下とスパッタ発生量が少なかった。また、MIG溶接で重ね隅肉溶接を行っても、ビード幅の変動は2.0mm以下と少なかった。
1 溶接用鋼ワイヤ
2 鋼製外皮
3 充填材
4 鋼板
5 溶接トーチ
6 溶接ビード

Claims (5)

  1. 鋼製外皮と、該鋼製外皮に内包される充填材とからなるガスシールドアーク溶接用鋼ワイヤであって、
    前記鋼製外皮が、該鋼製外皮全質量に対する質量%で、REM:0.005〜0.20%、C:0.15%以下、Mn:0.60%以下、P:0.100%以下、S:0.050%以下、Si:3.0%以下を含む外皮組成の鋼製外皮であり、
    前記充填材の全質量は、前記ガスシールドアーク溶接用鋼ワイヤの全質量に対して20%以下であり、
    前記ガスシールドアーク溶接用鋼ワイヤが、前記鋼製外皮の全質量と前記充填材の全質量との合計質量に対する質量%で、
    C:0.01〜0.30%、
    Si:0.10〜5.00%、
    Mn:0.50〜5.0%、
    P:0.050%以下、
    S:0.050%以下、
    REM:0.004〜0.18%、
    Cr:3.0%以下、
    Ni:3.0%以下、
    Mo:0.02〜1.5%、
    Cu:3.0%以下、
    B:0.0001〜0.005%、
    Ti:0.02〜0.40%、
    Al:0.001〜0.20%、
    Ca:0.0008%以下
    を含み、残部がFeおよび不可避的不純物からなる組成を有する、ガスシールドアーク溶接用鋼ワイヤ。
  2. 前記鋼製外皮が、溶接管またはシームレスパイプである、請求項に記載のガスシールドアーク溶接用鋼ワイヤ。
  3. 請求項1または2に記載のガスシールドアーク溶接用鋼ワイヤを用いて、正極性でガスシールドアーク溶接を行う、ガスシールドアーク溶接方法。
  4. 請求項1または2に記載のガスシールドアーク溶接用鋼ワイヤを用いて、逆極性のMIG溶接でガスシールドアーク溶接を行う、ガスシールドアーク溶接方法。
  5. 請求項3または4に記載のガスシールドアーク溶接方法を用いた、ガスシールドアーク溶接継手の製造方法。
JP2021516500A 2019-12-20 2020-12-17 ガスシールドアーク溶接用鋼ワイヤ、ガスシールドアーク溶接方法、およびガスシールドアーク溶接継手の製造方法 Active JP6969705B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019230104 2019-12-20
JP2019230104 2019-12-20
PCT/JP2020/047208 WO2021125280A1 (ja) 2019-12-20 2020-12-17 ガスシールドアーク溶接用鋼ワイヤ、ガスシールドアーク溶接方法、およびガスシールドアーク溶接継手の製造方法

Publications (2)

Publication Number Publication Date
JP6969705B1 true JP6969705B1 (ja) 2021-11-24
JPWO2021125280A1 JPWO2021125280A1 (ja) 2021-12-23

Family

ID=76477643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021516500A Active JP6969705B1 (ja) 2019-12-20 2020-12-17 ガスシールドアーク溶接用鋼ワイヤ、ガスシールドアーク溶接方法、およびガスシールドアーク溶接継手の製造方法

Country Status (4)

Country Link
JP (1) JP6969705B1 (ja)
KR (1) KR20220025957A (ja)
CN (1) CN114340828B (ja)
WO (1) WO2021125280A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230040512A (ko) * 2021-09-16 2023-03-23 주식회사 포스코 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어와 용접부재 및 그 제조방법
CN115502608A (zh) * 2022-10-14 2022-12-23 成都先进金属材料产业技术研究院股份有限公司 一种含硼稀土的细晶强化高强钢用焊丝钢水和高强钢用焊丝及其生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249352A (ja) * 2003-02-21 2004-09-09 Jfe Steel Kk 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法
JP2008093715A (ja) * 2006-10-13 2008-04-24 Nippon Steel Corp 高降伏強度高靭性ガスシールドアーク溶接用フラックス入りワイヤ
JP2011152579A (ja) * 2010-01-28 2011-08-11 Nippon Steel Corp メタル粉入りエレクトロスラグ溶接用溶接ワイヤ
JP2012130967A (ja) * 2010-11-30 2012-07-12 Jfe Steel Corp ガスシールドアーク溶接に用いる溶接用鋼ワイヤおよびそれを用いたガスシールドアーク溶接方法
WO2015068443A1 (ja) * 2013-11-08 2015-05-14 新日鐵住金株式会社 溶接継手の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064103A1 (fr) * 2002-01-31 2003-08-07 Jfe Steel Corporation Fil d'acier pour soudage a l'arc avec protection au dioxyde de carbone et processus de soudage utilisant ce fil d'acier
JP3945396B2 (ja) 2002-12-09 2007-07-18 Jfeスチール株式会社 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法
JP2007118068A (ja) 2005-10-31 2007-05-17 Jfe Steel Kk 厚鋼板の狭開先突合せ溶接方法
JP5019781B2 (ja) * 2006-04-27 2012-09-05 株式会社神戸製鋼所 ガスシールドアーク溶接フラックス入りワイヤを使用するmigアーク溶接方法
JP5387168B2 (ja) * 2009-06-26 2014-01-15 新日鐵住金株式会社 フラックス入り高張力鋼用溶接ワイヤ及びその製造方法
JP5416605B2 (ja) * 2010-02-02 2014-02-12 株式会社神戸製鋼所 フラックス入りワイヤ
JP5438663B2 (ja) * 2010-12-01 2014-03-12 株式会社神戸製鋼所 フラックス入りワイヤ
JP5438664B2 (ja) * 2010-12-01 2014-03-12 株式会社神戸製鋼所 フラックス入りワイヤ
CN110253172A (zh) * 2019-07-14 2019-09-20 新乡市和光科技有限公司 一种高强钢Ar-CO2气体保护焊用金属粉芯焊丝

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249352A (ja) * 2003-02-21 2004-09-09 Jfe Steel Kk 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法
JP2008093715A (ja) * 2006-10-13 2008-04-24 Nippon Steel Corp 高降伏強度高靭性ガスシールドアーク溶接用フラックス入りワイヤ
JP2011152579A (ja) * 2010-01-28 2011-08-11 Nippon Steel Corp メタル粉入りエレクトロスラグ溶接用溶接ワイヤ
JP2012130967A (ja) * 2010-11-30 2012-07-12 Jfe Steel Corp ガスシールドアーク溶接に用いる溶接用鋼ワイヤおよびそれを用いたガスシールドアーク溶接方法
WO2015068443A1 (ja) * 2013-11-08 2015-05-14 新日鐵住金株式会社 溶接継手の製造方法

Also Published As

Publication number Publication date
KR20220025957A (ko) 2022-03-03
JPWO2021125280A1 (ja) 2021-12-23
WO2021125280A1 (ja) 2021-06-24
CN114340828B (zh) 2023-07-11
CN114340828A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
JP5652574B1 (ja) ガスシールドアーク溶接用ソリッドワイヤ、ガスシールドアーク溶接金属、溶接継手、溶接部材、溶接方法、および溶接継手の製造方法
JP5205115B2 (ja) 純Arシールドガス溶接用MIGフラックス入りワイヤ及びMIGアーク溶接方法
CN109789519B (zh) 电渣焊用焊丝、电渣焊用焊剂和焊接接头
JP2001314996A (ja) 耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
WO2017188275A1 (ja) フラックス入りワイヤ
JP5472244B2 (ja) 厚鋼板の狭開先突合せ溶接方法
JPWO2017154122A1 (ja) フラックス入りワイヤ、溶接継手の製造方法、及び溶接継手
JP6969705B1 (ja) ガスシールドアーク溶接用鋼ワイヤ、ガスシールドアーク溶接方法、およびガスシールドアーク溶接継手の製造方法
JP6901868B2 (ja) エレクトロスラグ溶接用ワイヤ、エレクトロスラグ溶接用フラックス及び溶接継手
EP1350592A1 (en) Steel wire for mag welding and mag welding method using the same
JP5825210B2 (ja) パルスガスシールドアーク溶接方法
JP2014131809A (ja) アーク溶接構造部材の製造法
JP4930048B2 (ja) 重ね隅肉溶接継手の継手疲労強度を向上するプラズマアークハイブリッド溶接方法
JP6891630B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP2007118068A (ja) 厚鋼板の狭開先突合せ溶接方法
JP4830308B2 (ja) 厚鋼板の多層炭酸ガスシールドアーク溶接方法
KR20010086841A (ko) 내피트 및 내블로우 홀 성능이 우수한 아연도금 강판용접용 플럭스 코어드 와이어
JP2019013980A (ja) 多電極ガスシールドアーク片面溶接方法
WO2020012925A1 (ja) 2相ステンレス鋼溶接用フラックス入りワイヤ、溶接方法および溶接金属
KR102117815B1 (ko) 다전극 가스 실드 아크 편면 용접 방법
JP6188626B2 (ja) 2電極水平すみ肉ガスシールドアーク溶接方法
JP2002144081A (ja) Mag溶接用鋼ワイヤおよびそれを用いたmag溶接方法
JP2005219062A (ja) Yagレーザアークハイブリッド溶接方法
JP2021159959A (ja) 多電極ガスシールドアーク片面溶接方法及び多電極ガスシールドアーク片面溶接装置
JP4529482B2 (ja) 隅肉溶接方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210405

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6969705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150