TWI295603B - Solid wires for gas-shielded arc welding - Google Patents

Solid wires for gas-shielded arc welding Download PDF

Info

Publication number
TWI295603B
TWI295603B TW095118895A TW95118895A TWI295603B TW I295603 B TWI295603 B TW I295603B TW 095118895 A TW095118895 A TW 095118895A TW 95118895 A TW95118895 A TW 95118895A TW I295603 B TWI295603 B TW I295603B
Authority
TW
Taiwan
Prior art keywords
good
mass
welding
content
weld
Prior art date
Application number
TW095118895A
Other languages
Chinese (zh)
Other versions
TW200718498A (en
Inventor
Toshihiko Nakano
Reiichi Suzuki
Kei Yamazaki
Yu Umehara
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of TW200718498A publication Critical patent/TW200718498A/en
Application granted granted Critical
Publication of TWI295603B publication Critical patent/TWI295603B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

1295603 (1) 九、發明說明 【發明所屬之技術領域】 本發明係關於供例如厚度〇 · 6〜1 0 mm之低碳薄鋼板 和高强度薄鋼板等’例如汽車薄鋼板,的氣體保護式弧焊 所用的實芯焊絲。 【先前技術】 氣體保護式弧焊焊接的結構必須具有較高的品質,其 > 生産必須提供更完全的節省勞力和更高的效率。在汽車工 業中,例如使用焊接機器人的完全自動化焊接業經推出, 其在目前的商業生產線中以約1 · 0 m/分鐘的速度進行焊接 :頃需要在更高的速度下以更高的效率焊接。 薄鋼板結構乃具有符合全球環境議題的重要技術時機 。其中,汽車工業爲了降低重量,從而改進燃料效率,乃 迫切需要使用高强度薄鋼板的規格(降低尺寸)。但是, 所得到的焊接製品並未顯現出高强度薄鋼板材料的原有之 _ 疲勞强度,其係因爲當焊接接頭上的荷載應力增加時,焊 接接頭的疲勞强度並沒有如同基底金屬素材一般的增加, 而係與習知低碳鋼者相等。 當爲了進一步改進焊接效率而使用習知塡料金屬材料 以超過1 . 3 m /分鐘的局速度進行焊接時’將形成例如底切 焊珠和鼓包焊珠等不規則焊珠。另外’由於工件的擠壓精 確度變化,所以搭接塡角焊點的焊縫根部間隙(root opening)經 常變化,如果在大於1 · 9 mm的根部間隙上進 (2) 1295603 行高速的焊接,將發生例如燒透和穿孔等焊接缺陷。因此 ’極度要求於焊接材料即使在高速焊接時也能穩定地産生 焊珠和産生能跨接根部間隙的寬焊珠。 曰本未審查專利申請公開(JP-A)第05-3 05476號案 中教示一種供具有6 mm或更小厚度薄鋼板的氣體保護式 弧焊所用的習知實芯焊絲,該實芯焊絲旨在改進以丨.〇 m/ 分鐘或更高的高速度焊接6 mm厚的薄片的焊接加工性和 焊接品質,且係含有0 · 02〜0 · 1 0質量%的碳(C ) 、0.8〜 t 1.2質量%的矽(Si ) 、1.0〜1.8質量%的錳(Μη )、 0.020質量%或更低的磷(ρ) 、0.020〜o.ioo質量%的硫 (S) 、0.005質量%或更低的鋁(Α1) 、0.0070質量%或 更低的氧(0)和0.00790質量%或更低的氮(Ν),餘量 爲鐵(Fe )和不可避免的雜質,其中 Μη與 Si的比( Mn/Si )爲1.2〜1 .8。該技術旨在藉由加入大量的硫以調 節熔融金屬的表面張力來改進高速焊接中的焊珠形成性。 | 薄鋼板作爲基底金屬之使用習知的焊接材料的高速焊 接經常産生凸形焊珠,甚至不引發不規則焊珠。由於焊接 的焊邊處的應力集中,這樣的凸形焊珠常常導致疲勞强度 降低。因此,必須以比習知技術低的焊接速度進行焊接。 因此,爲了使高强度薄鋼板更廣泛地應用在這些結構中, 需要提供可以提供高疲勞强度的焊接結構和維持良好焊接 效率的焊接材料。 習知利用能夠使焊接接頭具有壓縮應力的焊接材料, 來改進接點的疲勞强度。具體地,可以藉由降低馬氏體轉 -6 - (3) 1295603 變開始溫度(下文中稱之爲”馬氏點(Ms點)”)而降低 殘餘應力,以便在低溫就可以利用轉變膨脹。例如jp-A 第11-138290號案提出一種利用具有典型地c、Cr、Ni、 Si、Μη、Mo和Nb含量的預定組成而將馬氏點控制在25 〇 °C〜1 7 0 °C的焊接材料。 但是,上述習知技術具有下列缺點·· JP-Α第05-3 05 4 76號案中所述的加到實芯焊絲中的硫(S )是一種採 取一定的量就顯著地改變介面張力和熔融金屬的流動性以 及可以實現高速焊接的元素。但是,硫促使熱裂紋。在使 用化合0.02%或更多的硫的塡充金屬材料的焊接金屬中, 該趨勢(促使熱裂紋)是明顯的。尤其是,當在大於1.0 mm的變化的根部間隙上以1·〇 m/分鐘或更高的高速度進 行焊接時,更經常地發生熱裂紋。 由於隨著硫量的增加,硫化物變粗,所以硫不僅引起 熱裂紋,而且减低材料的强度和韌性。根據日本工業標準 (JIS ) G 48 04含硫高速切肖!1鋼材料,一種切肖[|鋼,藉由 含有大量的硫(SUM 24L,含有0.26〜0·35質量%的硫) ,乃具有改進的切削性。但是,在需要一定程度的强度、 韌性和其他機械性的焊接金屬中,硫含量一般最小化到 0.03%或更低,這是因爲硫的存在對彼等十分有害。因此 ,JP-Α第05-3 05476號案中所述的實芯焊絲比通常的焊絲 表現出稍微更高的熱裂紋敏感性和更低的强度和韌性。 JP-Α第1 1 - 1 3 8290號案中所述的焊接材料含有大量昂 貴的合金金屬,例如Cr和N1 ’當用作實芯焊絲時表現出 (4) 1295603 差的壓延性,且爲十分昂貴(高成本)的焊接材料。因爲 該焊接材料具有高的黏度,所以該焊接材料不能應用於薄 鋼板焊接所需要的高速焊接上。其亦不易熔滴轉移,此則 增加飛濺(焊渣)產生。如此,該材料在實際焊絲上的應 用性並不佳。 【發明內容】 在上述情况下,本發明的一個目的是提供一種用於氣 體保護式弧焊的實芯焊絲,其即使在1.0 m/分鐘或更高的 高速焊接中也能穩定地形成焊珠,並且在具有〇 . 6〜1 0 mm厚度的鋼板的焊接中,能産生具有低的熱裂紋敏感性 和優異的疲勞强度、抗張强度和韌性的焊接接頭。 具體地,本發明的第一方面提供一種用於氣體保護式 弧焊的實芯焊絲,以該實芯焊絲的總質量爲基礎,其含有 0.03〜0.15質量%的碳(C) 、0.50〜1.50質量%的矽(1295603 (1) EMBODIMENT OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas-protected type such as an automobile thin steel sheet such as a low-carbon steel sheet and a high-strength steel sheet having a thickness of 〇·6 to 10 mm. Solid wire for arc welding. [Prior Art] The structure of gas-shielded arc welding must have a high quality, and its production must provide more complete labor saving and higher efficiency. In the automotive industry, for example, the fully automated welding industry using welding robots has been introduced, which is welded at a speed of about 1.0 m/min in current commercial production lines: it is necessary to weld at higher speeds with higher efficiency. . The thin steel plate structure is an important technological opportunity to meet global environmental issues. Among them, in order to reduce the weight and improve the fuel efficiency, the automobile industry urgently needs to use the specifications (reduced size) of high-strength steel sheets. However, the obtained welded product does not show the original fatigue strength of the high-strength steel sheet material because the fatigue strength of the welded joint is not as good as that of the base metal material because the load stress on the welded joint increases. Increased, and the system is equal to the conventional low carbon steel. When welding is carried out using a conventional coffin metal material at a local speed of more than 1.3 m / min in order to further improve the welding efficiency, irregular beads such as undercut beads and bulge beads are formed. In addition, due to the variation of the extrusion accuracy of the workpiece, the root opening of the lap joint weld often changes, if it is in the root gap of more than 1 · 9 mm (2) 1295603 high-speed welding Welding defects such as fire through and perforation will occur. Therefore, it is extremely demanded that the solder material can stably produce the bead and generate a wide bead that can bridge the root gap even at the time of high-speed soldering. A conventional solid wire for gas-shielded arc welding having a thickness of 6 mm or less is taught in the Unexamined Patent Application Publication (JP-A) No. 05-3 05476, the solid cored wire It is intended to improve the weldability and weld quality of a 6 mm thick sheet welded at a high speed of 丨.〇m/min or higher, and contains 0·02~0·10% by mass of carbon (C), 0.8. ~ t 1.2% by mass of yttrium (Si), 1.0 to 1.8% by mass of manganese (Μη), 0.020% by mass or less of phosphorus (ρ), 0.020 to o.ioo% by mass of sulfur (S), 0.005% by mass Or lower aluminum (Α1), 0.0070% by mass or less of oxygen (0), and 0.00790 mass% or less of nitrogen (Ν), the balance being iron (Fe) and unavoidable impurities, of which Μη and Si The ratio (Mn/Si) is 1.2 to 1.8. This technique aims to improve bead formation in high speed welding by adding a large amount of sulfur to adjust the surface tension of the molten metal. The use of thin steel sheets as base metal for high-speed welding of conventional solder materials often produces convex beads that do not even cause irregular solder beads. Such convex beads often result in reduced fatigue strength due to stress concentrations at the weld bead of the weld. Therefore, it is necessary to perform welding at a welding speed lower than that of the prior art. Therefore, in order to make high-strength steel sheets more widely used in these structures, it is required to provide a welded structure which can provide high fatigue strength and a welding material which maintains good welding efficiency. It is conventional to improve the fatigue strength of the joint by using a welding material capable of compressing the welded joint. Specifically, the residual stress can be lowered by lowering the martensite to -6 - (3) 1295603 change start temperature (hereinafter referred to as "Markov point (Ms point)") so that the transition can be utilized at a low temperature. . For example, jp-A No. 11-138290 proposes to control the Markov point to 25 〇 ° C to 170 ° C using a predetermined composition having a typical content of c, Cr, Ni, Si, Μ, Mo, and Nb. Welding material. However, the above-mentioned conventional technique has the following disadvantages: · The sulfur (S) added to the solid wire as described in JP-A No. 05-3 05 4 76 is a kind of amount which significantly changes the interface tension. And the fluidity of the molten metal and the elements that can achieve high-speed welding. However, sulfur promotes thermal cracking. This tendency (promoting thermal cracking) is remarkable in a weld metal using a ruthenium-filled metal material which incorporates 0.02% or more of sulfur. In particular, when welding is performed at a high speed of 1 〇 m / min or more on a varying root gap of more than 1.0 mm, hot cracking occurs more frequently. Since the sulfide becomes coarse as the amount of sulfur increases, the sulfur not only causes thermal cracking but also reduces the strength and toughness of the material. According to the Japanese Industrial Standard (JIS) G 48 04, the sulfur-containing high-speed cut-off! 1 steel material, a cut steel [| steel, by containing a large amount of sulfur (SUM 24L, containing 0.26 ~ 0.35 mass% sulfur), With improved machinability. However, in weld metals that require a certain degree of strength, toughness, and other mechanical properties, the sulfur content is typically minimized to 0.03% or less because the presence of sulfur is very detrimental to them. Therefore, the solid wire described in JP-A No. 05-3 05476 exhibits slightly higher hot crack sensitivity and lower strength and toughness than a conventional wire. The solder material described in JP-A No. 1 1 - 1 3 8290 contains a large amount of expensive alloy metal, such as Cr and N1 ' when used as a solid wire, exhibiting (4) 1295603 poor calendering properties, and Very expensive (high cost) welding material. Because the solder material has a high viscosity, the solder material cannot be applied to the high speed solder required for the soldering of the steel sheet. It is also not easy to transfer droplets, which increases the generation of splash (slag). As such, the material is not very suitable for use on actual wires. SUMMARY OF THE INVENTION In the above circumstances, an object of the present invention is to provide a solid wire for gas-shielded arc welding which can stably form a bead even in high-speed welding of 1.0 m/min or more. And in the welding of a steel sheet having a thickness of 〇. 6 to 10 mm, a welded joint having low thermal crack sensitivity and excellent fatigue strength, tensile strength and toughness can be produced. Specifically, a first aspect of the present invention provides a solid wire for gas-shielded arc welding, which comprises 0.03 to 0.15 mass% of carbon (C), 0.50 to 1.50 based on the total mass of the solid wire. Mass % of 矽 (

Si) 、1.00 〜3.00 質量 % 的錳(Μη) 、〇·〇20 〜0.150 質量 %的硫(s )、和選自:0_01〜0.20質量%的鈦(Ti )、 0·01〜0.20質量%的鍩(Zr) 、0.01〜0.05質量%的鑭( La)和〇·〇1〜〇·〇5質量%的铈(Ce)所組成的族群中之至 少一者;餘量爲鐵和不可避免的雜質,其中磷(P)作爲 不可避免的雜質的含量爲〇·〇25質量%或更低,並且根據 下列方程式1確定的"A”値爲100或更大; (5) 1295603 (方程式1 ) 20x [7/]+25x [Zrl+50x [La]^ 50x [Ce] A=~ W] : 其中[Mn]、[Ti]、[Zr]、[La]、[Ce]和[S]分別表示焊 絲的Μη、Ti、Zr、La、Ce和S含量(質量% )。 本發明的實芯焊絲具有以該實芯焊絲的總質量爲基礎 在0·〇2〇〜0.150質量%的特定硫(S)含重’這使得溶融 金屬很少流向後端,更多地流向寬度方向。該實芯焊絲也 • 具有1·〇〇〜3.00質量%的錳(Μη)含量,其使得Mn S結 晶化,從而該實芯焊絲具有升高的共晶溫度和降低的熱裂 紋敏感性。另外,實芯焊絲含有合適量的選自傾向於形成 硫化物的Ti、Zr、La和Ce所組成族群中的至少一者。此 導致含有這些元素的硫化物形成,且具有高的熔點,並使 得硫分散在基質相中,從而防止在晶界形成硫化物。另外 ,在實芯焊絲中,根據方程式1所決定的’’A”値設定爲100 或更大,從而可以在高速焊接中穩定地形成焊珠,甚至在 φ 高强度薄鋼板的焊接中,也能得到具有降低的熱裂紋敏感 性和優異的疲勞强度的焊接接頭。 實芯焊絲可具有1.50質量%或更高的錳(Μη)含量 。這可以顯著地降低熱裂紋敏感性。 實芯焊絲還具有0.040質量%或更高的硫(S)含量 。這能夠在高速焊接中更穩定地形成焊珠,改進疲勞强度 〇 本發明在第二方面進一步提供一種用於氣體保護式弧 焊的實芯焊絲,其含有以該實芯焊絲的總質量爲基礎: -9 - (6) 1295603 0.02〜0.15質量%的碳(C) 、0·50〜1.50質量%的矽(Si), 1.00 to 3.00% by mass of manganese (Μη), 〇·〇20 to 0.150% by mass of sulfur (s), and selected from: 0_01 to 0.20% by mass of titanium (Ti), 0·01 to 0.20% by mass At least one of 族 (Zr), 0.01 to 0.05% by mass of lanthanum (La), and 〇·〇1 to 〇·〇5 mass% of cerium (Ce); the balance is iron and inevitable An impurity in which phosphorus (P) is contained as an unavoidable impurity in an amount of 〇·〇25 mass% or less, and "A" 确定 determined according to the following Equation 1 is 100 or more; (5) 1295603 (equation 1) 20x [7/]+25x [Zrl+50x [La]^ 50x [Ce] A=~ W] : where [Mn], [Ti], [Zr], [La], [Ce], and [S The content of Μη, Ti, Zr, La, Ce, and S (% by mass) of the wire, respectively. The solid wire of the present invention has a mass of 0·〇2〇~0.150% by mass based on the total mass of the solid wire. The specific sulfur (S) contains heavy 'this causes the molten metal to flow little to the rear end and more to the width direction. The solid wire also has a manganese (Μη) content of 1·〇〇~3.00% by mass, which makes Mn S crystallization, so that the solid core welding The filament has an elevated eutectic temperature and reduced thermal crack sensitivity. In addition, the solid wire contains at least one selected from the group consisting of Ti, Zr, La, and Ce which tend to form sulfides. Leads to the formation of sulfides containing these elements, and has a high melting point, and allows sulfur to be dispersed in the matrix phase, thereby preventing the formation of sulfides at the grain boundaries. In addition, in the solid wire, the ''A is determined according to Equation 1. "値 is set to 100 or more, so that the bead can be stably formed in high-speed welding, and even in the welding of φ high-strength steel sheet, a welded joint having reduced hot crack sensitivity and excellent fatigue strength can be obtained. . The solid wire may have a manganese (Mn) content of 1.50% by mass or more. This can significantly reduce the hot crack sensitivity. The solid wire also has a sulfur (S) content of 0.040% by mass or more. This can form the bead more stably in high-speed welding, and improve the fatigue strength. The second aspect of the invention further provides a solid wire for gas-shielded arc welding, which is based on the total mass of the solid wire. : -9 - (6) 1295603 0.02 to 0.15 mass% of carbon (C), 0.50 to 1.50 mass% of bismuth (

Si) 、1.00 〜3.00 質量 % 的錳(Μη) 、0.020 〜0.150 質量 %的硫(S) 、0.005〜0.5質量%的鈮(Nb)、和選自: 0.005〜0.5質量%的釩(V) 、0·〇1〇〜〇·5質量%的鋁(A1 )、0.005〜0.5質量%的鉻(Cr) 、0.005〜0.5質量%的 鎳(Ni)、和 0.0010〜0.0100質量%的硼(B)所組成的 族群中之至少一者;餘量爲鐵和不可避免的雜質,其中磷 (P )作爲不可避免的雜質的含量爲0.025質量%或更低 ► 因爲硫和其他合金元素的含量經調節爲適當者,所以 本發明的實芯焊絲甚至在高速焊接中也能穩定地形成焊珠 ’在高强度薄鋼板的焊接中能産生具有降低的熱裂紋敏感 性和優異的疲勞强度、抗張强度和韌性的焊接接頭。 另外,本發明在第三方面提供一種進行氣體保護式弧 焊的方法,包括使用上述用於氣體保護式弧焊的實芯焊絲 來焊接具有〇 · 6〜1 0 mm厚度的高强度薄鋼板的步驟。 根據本發明,甚至在高速焊接中也能穩定地形成焊珠 ,甚至在具有0.6〜10 mm厚度的高强度薄鋼板的焊接中 也能得到具有降低的熱裂紋敏感性和優異的疲勞强度、抗 張强度和韌性的焊接接點。 本發明能形成焊渣少、具有優異的電沈積塗佈性之寬 而合適的焊珠。該優點在具有0.6〜10 mm厚度的薄鋼板 以1.0 m /分鐘或更高的高速進行焊接中特別顯著。因此, 在薄鋼板的高速焊接中可以形成具有穩定形狀的焊珠,且 -10- (7) 1295603 可獲致具有優異的疲勞强度的焊接接頭。另外,可以降低 熱裂紋敏感性,且可確保合適的强度和韌性。 參照所附圖式,由下列所述的較佳具體例中將明白顯 示本發明的其他目的、特點和優點。 【實施方式】 爲達上述目的,本發明人經過詳細硏究之後,乃發現 在具有〇 · 6〜1 0 mm厚度的薄鋼板的焊接中發生下列現象 :不規則焊珠的形成,硫誘導的熱裂紋和焊接金屬的疲勞 强度、强度和韌性的降低。 規則焊珠的熔融焊池表面上的熔融金屬從高溫部分朝 向遠端被抽吸到低溫部分,抽吸强度與溫度差産生的表面 張力梯度和熔融焊池的長度成比例。在1 . 〇 m/分鐘或更高 的高速焊接中,熔融焊池在焊接線方向上延長,且熔融金 屬的流動速率顯著地變高。這是産生例如底切焊珠和鼓包 焊珠等不規則焊珠的因素之一。 焊接金屬的固化溫度的原始範圍相當地窄,但是甚至 微量的硫也會起加寬固化溫度範圍的作用。在此階段,隨 著基質相的固化,硫富集在枝晶陣列(dendritic array ) 中的殘餘熔體中,由於殘餘熔體的共晶固化,在基質相固 化的最後階段乃結晶出硫化物。Fe-FeS的共晶溫度比鐵的 熔點低許多。在固化的最後階段中,於晶界處此種低熔點 液相和化合物的離析,則導致熱裂紋。 隨著硫含量的增加,硫不僅産生熱裂紋,而且使硫化 -11 - (8) 1295603 物變粗,從而降低材料的延伸率和韌性。例如根據日本工 業標準(JIS ) G 4804的含硫高速切削鋼(一種切削鋼) 等鋼,藉由含有大量的硫而具有改進的切削性(SUM 24L ,含有0.26〜0.35質量%的硫)。但是,在需要一定程度 的延伸率、韌性和其他機械性能的焊接金屬中,硫含量一 般最小化到0.03%或更低,因爲硫的存在對彼等有很大傷 另外,高强度鋼的焊接接頭的疲勞極限可能會比普通 鋼作爲基底金屬的疲勞極限低。這主要是由於焊接焊邊發 生的局部應力集中所導致。圖1是搭腳焊接接頭的焊接焊 邊的圖。在圖1所示的接頭中,基底金屬(下面的片)la 與另一種基底金屬(上面的片)lb在斜向下方向上焊接。 本發明人發現應力集中隨著基底金屬la的表面與焊珠2 的表面相交的部分的形狀,即焊接焊邊的形狀,而明顯地 變化,藉由使焊邊直徑P大於0.3 mm可以增加焊接接頭 的疲勞强度。但是,在高强度薄鋼板的高速焊接中,因爲 焊珠容易變凸,所以焊邊直徑P變小,可能無法充分地表 現出高强度薄鋼板的原始疲勞强度。 硫(S )是降低熔融金屬的表面張力和改變由於溫度 差産生的表面張力梯度的元素。因此,本發明人藉由調節 和界定硫和其他元素的含量,已經成功地使熔融金屬較少 流向遠端方向而較多地流向寬度方向。這樣,他們找到了 甚至在高速焊接中也能産生對底切和鼓包有防止作用的焊 珠的組合物。具體地,以焊絲的總質量爲基礎,藉由將硫 -12- (9) 1295603 含量設定在0.020〜0.150質量%,能夠使熔融金屬較少流 向遠端方向而較多地流向寬度方向。如此使得圖1所示的 焊邊直徑P爲0.3 mm或更大,並改善在高强度薄鋼板的 高速焊接中焊接接頭的疲勞强度。 如上述,硫的加入增加熱裂紋敏感性。藉由提高共晶 溫度可以降低硫誘導的熱裂紋敏感性。此可藉由加入合適 量的對硫具有高親和力的元素以形成具有高熔點的化合物 ,從而將硫分散在基質相中而達成。具體地,藉由將錳( Μη )含量設定在以焊絲的總質量爲基礎之1.00〜3.00質 量%,結晶出MnS,從而提高共晶溫度。藉由加入合適量 的Ti、Zr、La和Ce中的至少一者可以將硫進一步分散在 基質相中,這是因爲這些元素作用而形成硫化物,從而形 成含硫的高熔點化合物的。此可實質地防止在晶界處形成 硫化物。 另外,藉由調節合金組分的含量使得根據如下方程式 2所決定的”A"値爲100或更大,即使在高强度薄鋼板的焊 接中也可以獲致焊珠的穩定形狀,熱裂紋敏感性降低,以 及可獲致疲勞强度優異的焊接接頭: 方程式2 ΓΜ?1+20χ [7/1+25 X fZr]+50X [Ζα]+ 50x [Ce] Α= ~Ύ) 其中,[Μη]、[Ti]、[Zr]、[La]、[Ce]和[S]分別表示 焊絲的Μη、Ti、Zr、La、Ce和S含量(質量% )。 觀諸這些發現,本發明人乃獲致作爲本發明第一具體 例的供氣體保護式弧焊所用的實芯焊絲。這種實芯焊絲即 -13- (10) 1295603 使在具有0.6〜10 mm厚度的高强度薄鋼板的氣體保護式 弧焊的高速焊接中,也能産生具有穩定形狀的焊珠和形成 具有低的熱裂紋敏感性以及優異的疲勞强度的焊接接頭。 如上所述,隨著硫含量的增加,熱裂紋敏感性增加。 首先藉由防止形成主要産生熱裂紋的低熔點化合物F e s, 而降低熱裂紋敏感性。根據該技術,藉由加入對硫具有親 和力的元素以升高共晶溫度,從而使所形成的硫化物分散 在基質相中,阻止形成低熔點化合物FeS。作爲第二種解 b 決方案,乃藉由加入具有高的淬硬性的元素以均勻地分散 F eS,從而防止離析來降低熱裂紋敏感性,這是因爲由於 固化所形成的晶粒的尺寸被降低,從而晶界的表面積增加 。基於這些,本發明人發現必須找出這些元素的有效含量 來降低熱裂紋敏感性。 觀諸這些發現,本發明人乃獲致作爲本發明第二具體 例的供氣體保護式弧焊所用的實芯焊絲。這種實芯焊絲即 使在高速焊接中也能産生形狀穩定的焊珠,以及在高强度 t 薄鋼板的焊接中能産生具有低的熱裂紋敏感性和顯現優異 的疲勞性、抗張强度和韌性的焊接接頭。 (1 )使硫含量爲0.020〜0.150質量%,能使熔融金 屬在遠端方向上流動較少,在寬度方向上流動較多。 (2)將Μη含量設定爲1.00〜3.00質量%,使Mn S 結晶出,提高共晶溫度,從而降低裂紋敏感性。 (3 )藉由混入下列中的至少一者以增加淬硬性,並 使晶粒更細:〇·〇〇5〜0.50質量%的鈮(Nb) 、0.005〜0.5 -14- (11) (11)Si), 1.00 to 3.00% by mass of manganese (Μη), 0.020 to 0.150% by mass of sulfur (S), 0.005 to 0.5% by mass of niobium (Nb), and selected from: 0.005 to 0.5% by mass of vanadium (V) , 0·〇1〇~〇·5 mass% of aluminum (A1), 0.005 to 0.5% by mass of chromium (Cr), 0.005 to 0.5% by mass of nickel (Ni), and 0.0010 to 0.0100% by mass of boron (B) At least one of the group consisting of; the balance being iron and unavoidable impurities, wherein the content of phosphorus (P) as an unavoidable impurity is 0.025 mass% or less ► because the content of sulfur and other alloying elements is Adjusted to be appropriate, so the solid wire of the present invention can stably form the bead even in high-speed welding. 'In the welding of high-strength steel sheets, it can have reduced thermal crack sensitivity and excellent fatigue strength, tensile strength. Weld joints for strength and toughness. Further, the present invention provides, in a third aspect, a method of performing gas-shielded arc welding, comprising welding a high-strength steel sheet having a thickness of 〇·6 to 10 mm using the above-described solid-core welding wire for gas-shielded arc welding. step. According to the present invention, the bead can be stably formed even in high-speed welding, and even in the welding of a high-strength steel sheet having a thickness of 0.6 to 10 mm, it is possible to obtain reduced thermal crack sensitivity and excellent fatigue strength and resistance. Tensile joints for strength and toughness. The present invention can form a wide and suitable bead having less weld slag and excellent electrodeposition coating properties. This advantage is particularly remarkable in the case of a steel sheet having a thickness of 0.6 to 10 mm which is welded at a high speed of 1.0 m / min or more. Therefore, a bead having a stable shape can be formed in high-speed welding of a steel sheet, and a welded joint having excellent fatigue strength can be obtained by -10 (7) 1295603. In addition, thermal crack sensitivity can be reduced and proper strength and toughness can be ensured. Other objects, features, and advantages of the present invention will be apparent from the description of the appended claims. [Embodiment] In order to achieve the above object, the inventors have found that the following phenomenon occurs in the welding of a steel sheet having a thickness of 〇·6 to 10 mm: formation of irregular beads, sulfur-induced Thermal cracking and reduction of fatigue strength, strength and toughness of the weld metal. The molten metal on the surface of the molten weld pool of the regular bead is sucked from the high temperature portion toward the distal end to the low temperature portion, and the suction strength is proportional to the surface tension gradient generated by the temperature difference and the length of the molten pool. In high-speed welding of 1. 〇 m/min or higher, the molten pool is elongated in the direction of the weld line, and the flow rate of the molten metal is remarkably high. This is one of the factors that produce irregular beads such as undercut beads and bulge beads. The original range of cure temperature of the weld metal is quite narrow, but even traces of sulfur can also act to broaden the cure temperature range. At this stage, as the matrix phase solidifies, the sulfur is enriched in the residual melt in the dendritic array, and due to the eutectic solidification of the residual melt, the sulfide is crystallized in the final stage of the matrix phase solidification. . The eutectic temperature of Fe-FeS is much lower than the melting point of iron. In the final stage of solidification, the isolation of such a low melting point liquid phase and compound at the grain boundary results in hot cracking. As the sulfur content increases, sulfur not only causes hot cracking, but also thickens vulcanized -11 - (8) 1295603, thereby reducing the elongation and toughness of the material. For example, steel such as sulfur-containing high-speed cutting steel (a type of cutting steel) according to Japanese Industrial Standards (JIS) G 4804 has improved machinability (SUM 24L, containing 0.26 to 0.35 mass% of sulfur) by containing a large amount of sulfur. However, in weld metals that require a certain degree of elongation, toughness, and other mechanical properties, the sulfur content is typically minimized to 0.03% or less because the presence of sulfur is highly damaging to them, as well as the welding of high strength steel. The fatigue limit of the joint may be lower than the fatigue limit of ordinary steel as the base metal. This is mainly due to the local stress concentration of the weld bead. Figure 1 is a diagram of the weld bead of a foot welded joint. In the joint shown in Fig. 1, the base metal (lower sheet) la is welded to the other base metal (upper sheet) 1b in an obliquely downward direction. The inventors have found that the stress concentration significantly changes as the shape of the portion of the base metal la that intersects the surface of the bead 2, that is, the shape of the weld bead, can be increased by making the bead diameter P larger than 0.3 mm. Fatigue strength of the joint. However, in the high-speed welding of high-strength steel sheets, since the beads tend to be convex, the weld bead diameter P becomes small, and the original fatigue strength of the high-strength steel sheet may not be sufficiently exhibited. Sulfur (S) is an element that lowers the surface tension of the molten metal and changes the surface tension gradient due to the temperature difference. Therefore, the inventors have succeeded in making the molten metal flow more toward the distal end and more toward the width direction by adjusting and defining the contents of sulfur and other elements. Thus, they have found a composition that can produce a bead that prevents the undercut and the bulge even in high speed welding. Specifically, by setting the sulfur-12-(9) 1295603 content to 0.020 to 0.150% by mass based on the total mass of the wire, it is possible to cause the molten metal to flow more toward the distal end direction and more to the width direction. Thus, the weld bead diameter P shown in Fig. 1 is 0.3 mm or more, and the fatigue strength of the welded joint in the high-speed welding of the high-strength steel sheet is improved. As mentioned above, the addition of sulfur increases the hot crack sensitivity. Sulfur-induced thermal crack sensitivity can be reduced by increasing the eutectic temperature. This can be achieved by adding a suitable amount of an element having a high affinity for sulfur to form a compound having a high melting point, thereby dispersing sulfur in the matrix phase. Specifically, MnS is crystallized by setting the manganese (Mn) content to 1.00 to 3.00% by mass based on the total mass of the wire, thereby increasing the eutectic temperature. Sulfur can be further dispersed in the matrix phase by adding at least one of a suitable amount of Ti, Zr, La and Ce because these elements act to form sulfides, thereby forming sulfur-containing high melting point compounds. This can substantially prevent the formation of sulfides at the grain boundaries. Further, by adjusting the content of the alloy component, the "A" 値 determined according to the following Equation 2 is 100 or more, and the stable shape of the solder ball can be obtained even in the welding of the high-strength steel sheet, and the thermal crack sensitivity is obtained. Reduced, and welded joints with excellent fatigue strength: Equation 2 ΓΜ?1+20χ [7/1+25 X fZr]+50X [Ζα]+ 50x [Ce] Α= ~Ύ) where [Μη], [ Ti], [Zr], [La], [Ce], and [S] respectively represent the contents of Μη, Ti, Zr, La, Ce, and S (% by mass) of the wire. In view of these findings, the inventors obtained A solid-core welding wire for gas-shielded arc welding according to a first embodiment of the present invention. This solid-core welding wire, 13-(10) 1295603, provides a gas-shielded arc of a high-strength steel sheet having a thickness of 0.6 to 10 mm. In the high-speed welding of welding, it is also possible to produce a welded bead having a stable shape and to form a welded joint having low hot crack sensitivity and excellent fatigue strength. As described above, as the sulfur content increases, the hot crack sensitivity increases. First, by preventing the formation of a low melting point compound F es which mainly produces hot cracks, Low thermal crack sensitivity. According to this technique, by adding an element having affinity for sulfur to raise the eutectic temperature, the sulfide formed is dispersed in the matrix phase, and the formation of the low melting point compound FeS is prevented. The solution is to reduce the thermal cracking sensitivity by adding elements with high hardenability to uniformly disperse the F eS, because the size of the crystal grains formed by the curing is lowered, thereby the grain boundary Based on these, the inventors have found that it is necessary to find the effective content of these elements to reduce the thermal cracking sensitivity. In view of these findings, the inventors have obtained gas-shielded arc welding as a second specific example of the present invention. Solid-core welding wire used. This solid-core welding wire can produce stable-stabilized welding beads even in high-speed welding, and can produce low thermal cracking sensitivity and excellent fatigue resistance in welding of high-strength t steel sheets. , welded joints with tensile strength and toughness. (1) The sulfur content is 0.020~0.150% by mass, which enables the molten metal to flow in the distal direction. (2) The content of Μη is set to 1.00 to 3.00% by mass to crystallize Mn S to increase the eutectic temperature, thereby reducing crack sensitivity. (3) By mixing at least the following One is to increase the hardenability and make the crystal grains finer: 〇·〇〇5~0.50% by mass of 铌(Nb), 0.005~0.5 -14- (11) (11)

1295603 質量%的釩(V) 、0.010〜0.5質量%的鋁(Al) 〜〇·5質量%的鉻(Cr) 、0.005〜0.5質量%的鎳 和0.00 1〜0.010質量%的硼(B )。混入合適量的 素,使由於固化所形成的結構更細,從而增加晶界 積。FeS液相離析得以防止,而使其分散,如此降 裂紋敏感性。在晶界上和在枝晶陣列中所形成FeS 導致産生裂紋。這些元素也供降低熱裂紋敏感性, 些元素使晶粒更細,從而改進韌性和减輕焊接時膨 縮所産生的FeS液相固化時的應力集中。 (4 )在(3 )中所列出的其他元素防止形成焊 即,它們促進形成焊渣較少的適當焊珠。因此,合 這些元素可以降低熱裂紋敏感性和確保合適的强度 ,而不致損害此等元素的優點。 之所以界規定本發明焊絲的組成的原因將於下 明。首先敘述作爲本發明第一具體例之供氣體保護 所用的實芯焊絲的組成。 碳含量:0.03〜0.15質量% 碳(C )是確保焊接金屬的强度所需要和有效 脫氧的元素。但是,如果碳含量以焊絲的總質量爲 於0.03質量%,焊接金屬具有不充分的强度。相 果碳含量超過0.15質量%,焊接金屬具有降低的 增加的熱裂紋敏感性。因此,以焊絲的總質量爲基 含量設定爲〇.〇3〜0.15質量%。 矽含量:0.50〜1.50質量% 0.005 Ni ) :些元 表面 ‘了熱 :相會 丨爲這 :和收 :〇亦 丨量的 丨韌性 丨中說 :弧焊 加速 礎小 ,如 性和 ,碳 -15- (12) 1295603 矽(Si )是高度地促進脫氧、改進鋼强度所 起改進焊珠的一致性的作用的元素。但是,以焊 量爲基礎,如果矽含量小於0.50質量%,並不 些優點。相反,如果矽含量超過1·50質量%, 放性和焊接金屬的韌性則受到損害。因此,以焊 量爲基礎,此處乃將矽含量設定在0.50〜1.50質 錳含量:1 .00〜3.00質量% 錳(Μη )是如矽一樣有效地促進脫氧和起改 屬的機械性能作用的元素。其並作用使MnS結 高共晶溫度,從而降低熱裂紋敏感性。但是,以 質量爲基礎,如果錳含量小於1.00質量%,熱 性增加。相反地,如果焊接金屬的錳含量過分地 3 · 〇〇質量%,韌性則減低。因此,以焊絲的總質 ’乃將錳含量設定在1.00〜3.00質量%。較佳 1_50質量%或更高。 硫含量:0.020〜0.150質量% 硫(S )起降低熔融金屬的表面張力的作用 合適的量時,其作用改進焊接焊邊處的焊珠與基 間的一致性和改進焊接接頭的疲勞强度。但是, 總質量爲基礎,如果硫含量小於0.020質量%, 到這些優點。相反地,如果硫含量超過0.150質 即使調節其他元素的含量,也將發生熱裂紋。因 絲的總質量爲基礎,硫含量設定爲0.020〜0.150 較佳設定在0.040質量%或更高,更佳設定在0 需要的和 絲的總質 能得到這 液滴的釋 絲的總質 量%。 進焊接金 晶出和提 焊絲的總 裂紋敏感 局’超過 量爲基礎 則設定在 ,當加入 底金屬之 以焊絲的 並不能得 量%時, 此,以焊 質量%。 .0 6 0質量 -16- (13) 1295603 %或更高。 ,,選自·· 0.01〜0.20質量%的鈦(Ti) 、0.01〜0.20質 量%的鍩(Zr) 、0.01〜0.05質量%的鑭(La)和0.01〜 〇. 0 5質量%的鈽(C e )所組成族群中的至少一者” 鈦(Ti)、錆(Z〇 、鑭(La)和鈽(Ce)是容易結 合硫並因而形成高熔融硫化物的元素。加入這些元素中的 至少一者可以將硫分散在基質相中。但是,甚至當將這些 元素中的兩者或更多者加到該實芯焊絲中時,以焊絲的總 質量爲基礎,如果每種元素的含量小於〇·〇1質量%,並 不能得到這些優點。相反地,如果鈦含量或銷含量超過 0.20質量%,液滴變粗,熔滴轉移受干擾,過分地形成焊 渣,從而損害焊接加工性。因此,以焊絲的總質量爲基礎 ,若添加的話,Ti和/或Zr的含量設定在〇.〇1〜〇.20質量 %。如果鑭或鈽的含量超過0.05質量%,硫化物變粗, 煉鋼産量降低’從而增加成本。因此,若添加的話,以焊 絲的總質量爲基礎,L a和/或C e的含量係設定在〇 . 〇 1〜 0.05質量%。 磷含量:0.025質量%或更低 磷(P)係爲污染鋼料的不可避免雜質;其爲增加熱 裂紋敏感性的元素,且較佳係降低其含量。但是,以焊絲 的總質量爲基礎’磷含量在0.025質量%或更低是微不足 道的。因此’以焊絲的總質量爲基礎,係將p含量控制在 0.025質量%或更低。 ” A ” : 1 0 0或更大 -17- (14) 1295603 根據本發明,根據下列方程式3所決定的”A"値係界 定爲100或更大。在方程式3中,[Mn]、[Ti]、[Zr]、[La] 、[Ce]和[S]分別表不焊絲的Μη、Ti、Zr、La、Ce和S含 量(質量% )。如果”A"値小於1 00,熱裂紋敏感性增加。 相反地,以焊絲的總質量爲基礎,藉由調節Μη、Ti、Zr 、La、Ce和S含量使”A”値爲100或更大,可以結晶出 MnS ’從而提高共晶溫度,在固化的最後階段防止低熔融 液相和化合物在晶界處離析。另外,可以形成含有Ti、Zr 、La和Ce中至少一者的高熔融硫化物。因此,可以顯著 地降低熱裂紋敏感性。根據抗裂試驗的結果界定下列方程 式3的係數,這些係數可能顯著地受到各個元素形成硫化 物的傾向所影響。 方程式3 λ _ [M;?]+20x [7z]-h25x [Zr]-f 50x [La]-f 50x [Ce] 除了磷(P ),本發明的實芯焊絲含有的不可避免的 雜質包括例如Cu、Al、Ni、Cr、Mo和B。 下面將說明界定作爲本發明第二具體例的供氣體保護 式弧焊所用的焊絲之組成的原因。 碳含量:0.02〜0.15質量% 碳(C)是確保焊接金屬的强度所需要的元素,並且 有效於作爲脫氧元素。如果碳含量小於0 · 02質量%,焊 接金屬的强度不充分。相反地,如果碳含量超過0.1 5質 量%,焊接金屬的韌性降低,熱裂紋敏感性增加。加入過 量的碳會損害液滴可釋放性和産生大量的濺射,此導致受 -18- (15) 1295603 損害的焊接加工性和大量的焊渣。因此,此處係將碳含量 設定爲0.02〜0.15質量%。 砂含量:0.50〜1.50質量% 矽(Si )也是高度地促進脫氧、改進鋼强度和改進焊 珠一致性的元素。如果矽含量小於0.5 0質量%,這些優 點無法充分,焊珠具有差的一致性,具有損壞的焊邊形狀 ,常常導致應力集中和疲勞强度降低。矽含量較佳爲0.60 %或更大。相反地,如果矽含量超過1.50質量%,熔融 焊池具有過高的黏度(流阻),這在高速焊接中常常導致 鼓包焊珠(humping bead )。過量的砂損壞液滴可釋放性 並且産生大量的濺射。這導致差的焊接加工性和大量的焊 渣。矽含量更佳爲1.20質量%或更低。 錳含量:1.00〜3.00質量% 錳(Μη)是如矽(Si) —樣用於作爲脫氧元素和作用 於改進焊接金屬的機械性能的元素。由於MnS結晶,其 並作用於提高共晶溫度,從而降低熱裂紋敏感性。如果錳 含量小於1 .〇〇質量%,則熱裂紋敏感性增加,焊接金屬 具有不充分的强度。相反地,如果錳含量超過3.00質量 %,則熔融焊池具有過高的黏度(流阻),在高速焊接中 常常導致鼓包焊珠和大量的焊渣。因此,係將錳含量設定 在1.00〜3.00質量%。更佳在1.00〜2.00質量%的範圍 〇 磷含量:0.025質量%或更低 磷(P )是增加熱裂紋敏感性的元素。因爲即使加入 -19- (16) 1295603 合金化元素也不能形成高熔融磷化合物,所以較佳將磷含 量最小化。但是〇·〇25質量%含量的磷是微不足道的。 硫含量·· 0.020〜0.150質量% 硫(S )起降低熔融金屬的表面張力的作用,當加入 合適的量時,其作用而改進焊接焊邊處的焊珠與基底金屬 之間的一致性和改進焊接接頭的疲勞强度。但是,在不加 入下列特定元素的情況下,大量的硫會使在晶粒中和在晶 界處形成的硫化物變粗,從而降低焊接金屬的强度和韌性 。加入0.020質量%或更高含量的硫可以得到上述優點。 相反地,如果硫含量超過0.1 5 0質量%,即使調節其他元 素的含量,也將發生熱裂紋,强度和韌性明顯地降低。因 此,硫含量係設定爲0.020〜0.150質量%。更佳係設定在 0.040〜0.150質量%,進一步更佳係設定在〇.050〜0.150 質量%。 鈮含量:0.005〜0.50質量% 鈮(Nb )對硫具有親和力,容易形成硫化物。合適含 量的鈮作用於防止産生熱裂紋的F e S形成。另外,因爲鈮 是改進淬硬性從而使晶粒更細的元素,所以它作用而降低 熱裂紋敏感性和確保合適的强度和韌性。但是,如果_尼含 量小於0.0 0 5質量%,並不能得到這些優點,並且熱裂紋 敏感性增加。銀含量更較佳爲0.02質量%或更多。相反 地,如果銀含量超過〇·50質量%,這些優點也不再增加 ,固化時在晶界處和在枝晶陣列中發生離析,反而使熱裂 紋敏感性增加。過量的鈮增加實芯焊絲的生産成本,增加 -20- (17) 1295603 熔融焊池的黏度(流阻),産生鼓包焊珠,且在高速焊接 中增加濺射。 ”選自:0.005〜0.5質量%的釩(V) 、0.010〜0.5質 量%的鋁(A1) 、0.005〜0.5質量%的鉻(Cr)和0.005 〜0.5質量%的鎳(Ni )所組成族群中之至少一者” 釩(V )、鋁(A1 )、鉻(Cr )和鎳(Ni )是增加淬 硬性和作用使焊接形成的焊接金屬的晶粒更細,確保合適 的强度和韌性以及降低熱裂紋敏感性的元素。爲了顯現這 些優點,V、Cr和Ni每一者的含量必須爲0.005質量%或 更高,A1含量必須爲0.010質量%或更高。更佳地,V、 Cr和Ni每一者的含量必須爲〇.〇2質量%或更高,A1含 量必須爲0.03 0質量%或更高。相反地,這些元素每一者 超過0.5質量%的含量則增加實芯焊絲的生産成本,增加 熔融焊池的黏度(流阻),其於高速焊接中産生鼓包焊珠 和濺射量增加。 硼含量:〇·〇〇1〜0.010質量% 硼(B )是增加淬硬性和作用使焊接形成的焊接金屬 的晶粒更細、確保合適的强度和韌性以及降低熱裂紋敏感 性的元素。爲了顯現出這些優點,硼含量必須爲〇 . 〇 〇 1質 量%。相反地,硼含量的上限則設定爲〇 . 〇 1 〇質量%或更 低,因爲如果硼含量超過0.010質量%,熱裂紋敏感性增 加。因此,硼含量設定爲0.001〜0.010質量%。 本發明的焊接方法 -21 - (18) 1295603 根據本發明第一和第二具體例的實芯 0.6〜1 0 mm厚度的薄鋼板的氣體保護式 接方法和焊接條件如下所述。此處的氣體 可以是任何一種焊接方法,例如C02焊接 (MAG )焊接、金屬惰性氣體(MIG )焊 (TIG )焊接。可以典型地根據處理機類 和形狀設定例如輸出功率或電流和焊接速 MAG脈衝焊接、MIG脈衝焊接或TIG脈 。根據焊接的部分,目標焊接接頭可以是 ,例如對接接頭(butt joint)或搭接接頭 本發明可以適用於任何接頭。 脈衝焊接機 在薄鋼板的焊接中,此處較佳係使用 保高速焊接性和電弧穩定性以及降低發烟 是但不侷限於3 5 0 A〜6 0 0 A的峰電流、3 電流,一個峰(從脈衝上升的開始,經恒 降的末端)爲0.8〜5.0毫秒。在本發明中 下進行焊接。 0.6〜10 mm厚的薄鋼板 如果薄鋼板的厚度小於 〇. 6 mm,因 板發生穿透和燒熔,所以難以進行規則的 。相反地,如果厚度超過1 〇 mm,因爲由 焊絲係用於具W 弧焊。較佳的丈V 保護式弧焊方& 、金屬活性氣燜 接和鎢惰性氣艄 型、工件的厚瓜 度等焊接條件 衝焊接更爲有效 任何合適的接頭 (lap joint )( 脈衝焊接機以碓 。脈衝條件可以 0八〜100八的基 定的峰至脈衝下 可以在這些條件 爲電弧力使薄鋼 反極性電弧焊抟 於熱膨脹和熱收 -22- (19) 1295603 縮而約束力增加,從而過分大的應力施加在焊接金屬上以 及熔融焊池更迅速地冷卻,所以熱裂紋的危險增加。另外 ,在使用本發明的焊絲的焊接中所形成的熔融焊池具有低 的黏度(流阻),當在大焊角長度單道中進行T形水平角 焊時,上焊角下垂。因此,焊接的薄鋼板厚度較佳爲0.6 〜1 0 mm。以焊接的薄鋼板的强度而言,本發明可以應用 於廣泛範圍的薄鋼板,從規則的低碳薄鋼板至高强度薄鋼 板;薄鋼板的强度上限並未有特別的限制。 測試例1 將參照下列幾個實施例,對照本發明範圍以外的比較 例,更詳細地例示本發明的優點。首先描述與本發明第一 具體例的實芯焊絲相關的測試例1。 在測試例1中,使用具有下表1的組成的實芯焊絲進 行氣體保護式弧焊。評量高速焊接的焊珠形成性、焊接金 屬的機械性能、焊邊直徑P、熱裂紋敏感性和焊接加工性 ® 。表1中實芯焊絲的組成之餘量是鐵和不可避免的雜質。 -23· (20)12956031295603% by mass of vanadium (V), 0.010 to 0.5% by mass of aluminum (Al) 〇·5·5% by mass of chromium (Cr), 0.005 to 0.5% by mass of nickel, and 0.001 to 0.010% by mass of boron (B) . A suitable amount of the compound is mixed to make the structure formed by the curing finer, thereby increasing the grain boundary. The liquid phase segregation of FeS is prevented and dispersed, thus reducing crack sensitivity. The formation of FeS on the grain boundaries and in the dendrite array results in cracking. These elements are also used to reduce the hot crack sensitivity, which makes the grains finer, thereby improving the toughness and reducing the stress concentration in the liquid phase solidification of FeS caused by expansion during welding. (4) The other elements listed in (3) prevent the formation of welds, which promote the formation of suitable beads with less weld slag. Therefore, combining these elements can reduce the hot crack sensitivity and ensure proper strength without compromising the advantages of these elements. The reason why the composition of the wire of the present invention is specified will be explained below. First, the composition of a solid wire for gas protection as a first specific example of the present invention will be described. Carbon content: 0.03 to 0.15 mass% Carbon (C) is an element required to ensure the strength of the weld metal and to effectively deoxidize. However, if the carbon content is 0.03 mass% based on the total mass of the wire, the weld metal has insufficient strength. As a result, the carbon content exceeds 0.15 mass%, and the weld metal has a reduced increase in thermal crack sensitivity. Therefore, the basis weight of the total mass of the welding wire is set to 〇.〇3 to 0.15 mass%.矽 content: 0.50~1.50% by mass 0.005 Ni): Some of the surface 'heat': the meeting will be this: and the 〇 〇 丨 丨 丨 丨 丨 丨 弧 弧 弧 弧 弧 弧 弧 弧 弧 弧 弧 弧 弧 弧 弧 弧 弧 弧 弧 弧 弧-15- (12) 1295603 矽(Si) is an element that promotes deoxidation and improves the strength of steel to improve the consistency of the bead. However, based on the amount of welding, if the niobium content is less than 0.50% by mass, there are no advantages. On the contrary, if the niobium content exceeds 1.50 mass%, the ductility and the toughness of the weld metal are impaired. Therefore, based on the amount of weld, the content of niobium is set at 0.50 to 1.50. The content of manganese is 1.00~3.00% by mass. Manganese (Μη) is effective as a niobium to promote the mechanical properties of deoxidation and modification. Elements. It also acts to cause the MnS to have a high eutectic temperature, thereby reducing the hot crack sensitivity. However, on the basis of mass, if the manganese content is less than 1.00% by mass, the heat is increased. Conversely, if the manganese content of the weld metal is excessively more than 3 % by mass, the toughness is reduced. Therefore, the manganese content is set to 1.00 to 3.00% by mass based on the total mass of the wire. Preferably, it is 1 - 50% by mass or more. Sulfur content: 0.020 to 0.150% by mass Sulfur (S) acts to lower the surface tension of the molten metal. When a suitable amount is used, the effect is to improve the consistency between the bead and the base at the weld bead and to improve the fatigue strength of the welded joint. However, based on the total mass, if the sulfur content is less than 0.020% by mass, these advantages are obtained. Conversely, if the sulfur content exceeds 0.150, thermal cracking will occur even if the content of other elements is adjusted. Based on the total mass of the filament, the sulfur content is set to 0.020 to 0.150, preferably set at 0.040% by mass or more, more preferably set at 0, and the total mass of the filament is obtained to obtain the total mass% of the filament of the droplet. . The total crack sensitivity of the incoming gold and the wire is set based on the amount of weld % when the amount of wire added to the base metal is not sufficient. .0 6 0 Quality -16- (13) 1295603 % or higher. , from 0.01 to 0.20% by mass of titanium (Ti), 0.01 to 0.20% by mass of bismuth (Zr), 0.01 to 0.05% by mass of lanthanum (La), and 0.01 to 〇. 0 5 % by mass of ruthenium ( C e ) at least one of the group consisting of titanium (Ti), lanthanum (Z 〇, lanthanum (La), and cerium (Ce)) are elements that readily bind sulfur and thus form high fused sulfides. At least one of the sulfur may be dispersed in the matrix phase. However, even when two or more of these elements are added to the solid wire, based on the total mass of the wire, if the content of each element Less than 〇·〇1% by mass, these advantages are not obtained. Conversely, if the titanium content or the pin content exceeds 0.20% by mass, the droplets become coarse, the droplet transfer is disturbed, and the weld slag is excessively formed, thereby impairing the weldability. Therefore, based on the total mass of the wire, if added, the content of Ti and/or Zr is set to 〇.〇1 to 〇.20% by mass. If the content of cerium or lanthanum exceeds 0.05% by mass, the sulphide becomes coarse. , steel production is reduced, which increases costs. Therefore, if added, Based on the total mass of the wire, the content of La and/or C e is set at 〇. 〇1 to 0.05% by mass. Phosphorus content: 0.025% by mass or less Phosphorus (P) is inevitable for contaminated steel Impurity; it is an element that increases the sensitivity of hot cracking, and preferably lowers its content. However, based on the total mass of the wire, the phosphorus content is negligible at 0.025 mass% or less. Therefore, the total mass of the wire is Based on the control, the p content is controlled to 0.025 mass% or less. "A": 100 or more -17- (14) 1295603 According to the present invention, the "A" It is 100 or more. In Equation 3, [Mn], [Ti], [Zr], [La], [Ce], and [S] represent the Μη, Ti, Zr, La, Ce, and S of the wire, respectively. Content (% by mass). If "A" 値 is less than 100, the thermal crack sensitivity increases. Conversely, based on the total mass of the wire, by adjusting the contents of Μη, Ti, Zr, La, Ce, and S, "A "値 is 100 or more, crystallizes MnS' to increase the eutectic temperature, and prevents low melt in the final stage of curing. And the compound is isolated at the grain boundary. In addition, a high-melting sulfide containing at least one of Ti, Zr, La, and Ce can be formed. Therefore, the thermal crack sensitivity can be remarkably reduced. The following equation is defined according to the results of the crack resistance test. The coefficients of 3, which may be significantly affected by the tendency of each element to form a sulfide. Equation 3 λ _ [M;?]+20x [7z]-h25x [Zr]-f 50x [La]-f 50x [Ce In addition to phosphorus (P), the unavoidable impurities contained in the solid wire of the present invention include, for example, Cu, Al, Ni, Cr, Mo, and B. The reason why the composition of the welding wire for gas-shielded arc welding as the second specific example of the present invention is defined will be explained below. Carbon content: 0.02 to 0.15 mass% Carbon (C) is an element required to secure the strength of the weld metal, and is effective as a deoxidizing element. If the carbon content is less than 0.02% by mass, the strength of the welded metal is insufficient. On the contrary, if the carbon content exceeds 0.15% by mass, the toughness of the weld metal is lowered and the hot crack sensitivity is increased. The addition of excessive amounts of carbon impairs the releasability of the droplets and produces a large amount of sputtering, which results in weldability and a large amount of weld slag which are damaged by -18-(15) 1295603. Therefore, the carbon content is set to 0.02 to 0.15 mass% here. Sand content: 0.50 to 1.50% by mass 矽(Si) is also an element which promotes deoxidation, improves steel strength and improves weld bead consistency. If the niobium content is less than 0.50% by mass, these advantages are insufficient, the bead has poor consistency, and the shape of the weld bead is damaged, often resulting in stress concentration and fatigue strength reduction. The cerium content is preferably 0.60% or more. Conversely, if the niobium content exceeds 1.50 mass%, the molten pool has an excessively high viscosity (flow resistance), which often results in a humping bead in high speed welding. Excess sand damages droplets for releasability and produces a large amount of sputtering. This results in poor weldability and a large amount of weld slag. The niobium content is more preferably 1.20% by mass or less. Manganese content: 1.00 to 3.00% by mass Manganese (Mn) is an element such as cerium (Si) which is used as a deoxidizing element and acts to improve the mechanical properties of the weld metal. Due to the crystallization of MnS, it acts to increase the eutectic temperature, thereby reducing the thermal crack sensitivity. If the manganese content is less than 〇〇% by mass, the hot crack sensitivity increases and the weld metal has insufficient strength. Conversely, if the manganese content exceeds 3.00% by mass, the molten pool has an excessively high viscosity (flow resistance), which often causes bulging beads and a large amount of weld slag in high-speed welding. Therefore, the manganese content is set to 1.00 to 3.00% by mass. More preferably in the range of 1.00 to 2.00% by mass 〇 Phosphorus content: 0.025% by mass or less Phosphorus (P) is an element which increases the sensitivity to thermal cracking. Since the high-melting phosphorus compound cannot be formed even by the addition of the -19-(16) 1295603 alloying element, it is preferred to minimize the phosphorus content. However, the phosphorus content of 〇·〇25% by mass is negligible. Sulfur content ··0.020~0.150% by mass Sulfur (S) acts to lower the surface tension of the molten metal. When a suitable amount is added, it acts to improve the consistency between the bead and the base metal at the weld bead. Improve the fatigue strength of welded joints. However, without the addition of the following specific elements, a large amount of sulfur thickens the sulfide formed in the grains and at the grain boundaries, thereby reducing the strength and toughness of the weld metal. The above advantages can be obtained by adding sulfur in an amount of 0.020% by mass or more. On the contrary, if the sulfur content exceeds 0.150% by mass, even if the content of other elements is adjusted, thermal cracking will occur, and the strength and toughness are remarkably lowered. Therefore, the sulfur content is set to be 0.020 to 0.150% by mass. More preferably, it is set at 0.040 to 0.150% by mass, and further preferably set at 〇.050 to 0.150% by mass. Antimony content: 0.005 to 0.50% by mass Niobium (Nb) has an affinity for sulfur and is liable to form a sulfide. A suitable amount of ruthenium acts to prevent the formation of F e S which causes thermal cracking. In addition, since niobium is an element which improves hardenability to make crystal grains finer, it acts to lower thermal crack sensitivity and ensure proper strength and toughness. However, if the _N content is less than 0.05% by mass, these advantages are not obtained, and the hot crack sensitivity is increased. The silver content is more preferably 0.02% by mass or more. Conversely, if the silver content exceeds 50% by mass, these advantages are no longer increased, and segregation occurs at the grain boundaries and in the dendrite array upon curing, which in turn increases the thermal cracking sensitivity. Excessive enthalpy increases the production cost of the solid wire, increases the viscosity (flow resistance) of the -20-(17) 1295603 molten pool, produces bulge beads, and increases sputtering in high speed welding. "A group consisting of: 0.005 to 0.5% by mass of vanadium (V), 0.010 to 0.5% by mass of aluminum (A1), 0.005 to 0.5% by mass of chromium (Cr), and 0.005 to 0.5% by mass of nickel (Ni) At least one of them" vanadium (V), aluminum (A1), chromium (Cr), and nickel (Ni) increase the hardenability and effect to make the weld metal formed by welding finer, ensuring proper strength and toughness. An element that reduces the sensitivity of hot cracks. In order to exhibit these advantages, the content of each of V, Cr and Ni must be 0.005 mass% or more, and the A1 content must be 0.010 mass% or more. More preferably, the content of each of V, Cr and Ni must be 〇.〇2% by mass or more, and the A1 content must be 0.03% by mass or more. Conversely, a content of more than 0.5% by mass of each of these elements increases the production cost of the solid wire, increases the viscosity (flow resistance) of the molten pool, and produces a bulge bead and an increase in the amount of sputtering in high-speed welding. Boron content: 〇·〇〇1 to 0.010% by mass Boron (B) is an element which increases the hardenability and acts to make the weld metal formed by welding finer, ensures proper strength and toughness, and reduces hot crack sensitivity. In order to demonstrate these advantages, the boron content must be 〇 〇 〇 1% by mass. On the contrary, the upper limit of the boron content is set to 〇 〇 1 〇 by mass or less because the thermal crack sensitivity is increased if the boron content exceeds 0.010% by mass. Therefore, the boron content is set to 0.001 to 0.010% by mass. Welding method of the present invention - 21 - (18) 1295603 The gas-shielding method and welding conditions of a steel sheet having a solid core thickness of 0.6 to 10 mm according to the first and second specific examples of the present invention are as follows. The gas here may be any welding method such as CO2 welding (MAG) welding or metal inert gas (MIG) welding (TIG) welding. For example, output power or current and welding speed MAG pulse welding, MIG pulse welding or TIG pulse can be set depending on the processor type and shape. Depending on the portion of the weld, the target welded joint can be, for example, a butt joint or a lap joint. The present invention can be applied to any joint. In the welding of thin steel plates, it is preferred to use high-speed weldability and arc stability and to reduce smoke generation, but not limited to 3 5 0 A~600 A peak current, 3 current, one The peak (from the beginning of the pulse rise, the end of the constant drop) is 0.8 to 5.0 milliseconds. Welding is carried out in the present invention. Steel sheet with a thickness of 0.6 to 10 mm If the thickness of the steel sheet is less than 〇6 mm, it is difficult to carry out the rule because the sheet penetrates and burns. Conversely, if the thickness exceeds 1 〇 mm, it is used by the wire for W arc welding. It is more effective to weld the welding conditions such as the preferred V-protected arc welding square, the metal active gas splicing and the tungsten inert gas enthalpy, and the thick melon of the workpiece. Any suitable joint (pulse welding machine) The pulse condition can be 0-8~1008 base-set peak to pulse under these conditions can be the arc force to make the thin steel reverse polarity arc welding to thermal expansion and heat recovery -22- (19) 1295603 contraction The increase, so that excessively large stress is applied to the weld metal and the molten weld pool is cooled more rapidly, so the risk of hot cracking increases. In addition, the molten weld pool formed in the welding using the welding wire of the present invention has a low viscosity ( Flow resistance), when T-shaped horizontal fillet welding is performed in a single corner of a large solder fillet length, the upper solder fillet is drooped. Therefore, the thickness of the welded steel sheet is preferably 0.6 to 10 mm. In terms of the strength of the welded steel sheet The present invention can be applied to a wide range of thin steel sheets, from regular low carbon steel sheets to high strength thin steel sheets; the upper limit of the strength of the steel sheets is not particularly limited. Test Example 1 Referring to the following examples, The advantages of the present invention are exemplified in more detail in the comparative examples outside the scope of the present invention. First, the test example 1 relating to the solid wire of the first specific example of the present invention will be described. In Test Example 1, the composition having the following Table 1 was used. Solid-core welding wire for gas-shielded arc welding. Evaluating the formation of weld beads for high-speed welding, mechanical properties of weld metal, weld bead diameter P, hot crack sensitivity and weldability. The composition of the solid wire in Table 1. The balance is iron and inevitable impurities. -23· (20)1295603

表1 No. 組成(質®ί ) A C Si Μη S Ti Zr La Ce P 實施例 1 0.035 0.72 2.12 0.065 0.07 0.03 0.03 0.03 0.010 111.8 2 0.138 0.84 2.32 0.052 0.06 0.12 - - 0.015 125.4 3 0.061 0.53 1.72 0.082 0.10 0.15 - 0.03 0.014 109.4 4 0.085 1.44 2.08 0.071 0.07 0.18 - - 0.005 112.4 5 0.088 1.05 1.09 0.048 - 0.16 嶋 - 0.009 106.0 6 0.075 0.88 1.55 0.062 0.07 0.14 - - 0.003 104.0 7 0.045 1.21 2.88 0.117 0.11 0.17 0.01 0.05 0.006 105.4 8 0.067 0.89 1.66 0.022 - 0.05 - - 0.021 132.3 9 0.051 0.78 2.51 0.139 0.15 0.19 0.04 0.04 0.018 102.6 10 0.071 0.95 1.92 0.064 0.01 0.16 0.01 - 0.005 103.4 11 0.094 1.14 2.24 0.094 0.17 0.18 - - 0.007 107.9 12 0.081 1.08 2.42 0.042 0.09 - - - 0.012 100.5 13 0.112 1.31 1.91 0.036 0.08 0.01 - - 0.019 104.4 14 0.050 0.69 2.65 0.102 0.05 0.18 0.03 0.03 0.12 109.3 15 0.126 1.08 1.95 0.055 0.10 0.05 0.01 讎 0.013 103.6 16 0.086 0.81 2.75 0.121 0.16 0.19 0.04 - 0.008 105.0 17 0.072 0.81 2.13 0.037 - - 0.04 - 0.005 111.6 18 0.048 0.94 1.77 0.062 0.09 0.16 - 0.01 0.022 130.2 19 0.077 1.25 2.58 0.084 0.13 0.06 - 0.05 0.016 109.3 20 0.086 0.69 1.85 0.035 - - - 0.04 0.007 110.0 比較例 21 0.024 0.78 1.88 0.039 0.05 0.05 0.01 0.01 0.014 131.5 22 0.155 0.91 1.94 0.054 0.02 0.05 0.01 0.01 0.012 85.0 23 0.054 0.45 1.77 0.042 - 0.12 - 0.01 0.007 125.5 24 0.084 1.54 2.24 0.061 0.03 0.07 0.01 0.03 0.014 108.0 25 0.069 1.04 0.96 0.026 0.07 - - - 0.006 90.8 26 0.078 1.23 3.03 0.119 0.17 0.18 0.01 0.02 0.009 104.5 27 0.121 1.11 2.56 0.054 0.05 0.12 0.01 - 0.027 130.7 28 0.080 1.05 1.32 0.017 0.02 0.02 - - 0.019 130.6 29 0.075 0.67 2.79 0.153 0.17 0.18 0.03 0.03 0.005 89.5 30 0.085 0.55 1.89 0.069 0.006 0.17 - - 0.003 90.7 31 0.047 0.81 1.63 0.073 0.22 0.04 - 0.02 0.007 110.0 32 0.062 1.23 2.34 0.093 0.12 0.005 0.01 0.01 0.015 63.1 33 0.077 1.39 2.47 0.122 0.07 0.22 0.04 0.03 0.023 105.5 34 0.067 0.71 2.05 0.066 0.09 0.03 0.005 0.01 0.018 81.1 35 0.081 1.09 2.66 0.103 0.11 0.05 0.01 0.005 0.007 66.6 36 0.067 0.95 1.69 0.062 - - - - 0.004 27.3 37 0.082 0.88 1.08 0.023 - - - - 0.007 47.0 38 0.052 1.01 1.73 0.094 - - - - 0.005 18.4 39 0.081 1.12 1.64 0.010 - - - - 0.008 164.0 40 0.075 0.89 1.41 0.005 - - - - 0.005 282.0 -24- (21)1295603 表2 組成(質量% ) C Si Μη Ρ S 餘量 0.04 0.02 1.35 0.013 0.003 Fe和不可避免的雜質 接下來將描述評量性能的方法。 焊接金屬的機械性 根據日本工業標準(JIS) Z 3121中規定的用於對接 焊接接頭的抗張試驗方法和JI S Z 3 1 2 8中規定的用於焊接 接頭的衝擊試驗方法測定焊接金屬的機械性。在這些測試 中,具有560 N/mm2或更高的抗張强度和在_2〇°c的測試 溫度下於卻貝氏(Charpy)衝擊試驗中具有1〇〇 j或更高 的吸收能量的樣品評定爲”良好",具有小於560 N/mm2的 抗張强度或在-20 °C的測試溫度下於卻貝氏衝擊試驗中具 有小於1 0 0 J的吸收能量的樣品則評定爲”不合格”。 高速焊接的焊珠形成性 如下述評量高速焊接的焊珠形成性。具有表2的組成 和2.3 mm厚度的高强度薄鋼板的搭接接頭樣品在1.〇 mm 的焊邊開口上用200〜3 00 A的焊接電流和1.3〜1.5 m/分 鐘的焊接速度,使用80體積%的Ar和20體積%的C02 的氣體混合物作爲保護氣,而進行MAG脈衝焊接。沒有 顯示底切、鼓包焊珠、燒穿和穿透以及能在全部焊接中搭 接縫隙的樣品評量爲"良好”,具有例如底切、鼓包焊珠、 -25- (22) 1295603 燒穿或穿透等缺陷的樣品則評量爲”不合格”。 焊接加工性 藉由使用高速攝像機觀察電弧穩定性和熔滴轉移的規 則性,並測定離散濺射的數量,來評價焊接加工性。在該 程序中,使用80體積%的Ar和20體積%的C02的氣體 混合物作爲保護氣,在2 0 0〜3 0 〇 A的焊接電流下進行無 脈衝MAG焊接。提供穩定的電弧、具有高規則的熔滴轉 移和産生少量濺射的樣品評量爲”良好",在電弧穩定性、 熔滴轉移規則性和濺射數量中至少一者不良的樣品則評量 爲”不合格”。 焊接金屬的熱裂紋敏感性 利用魚骨形抗裂試驗和弧坑裂紋試驗的結果來評量焊 接金屬的熱裂紋敏感性。首先敘述進行魚骨形抗裂試驗的 方法。圖2A是表示取樣測試片的位置的截面圖,圖2B是 表示如何製備魚骨形抗裂試驗的測試片的平面圖。參照圖 2A,將兩層具有20 mm的厚度和包含SM490A低碳鋼作 爲基底金屬11的高强度薄鋼板,使用包含SM490A低碳 鋼的襯墊金屬1 3,以45 °的斜角進行對接焊接。將得到的 焊接接頭機械地切割成5 mm的厚度’從而得到用於魚骨 形抗裂試驗的測試片1 4,它具有1 7 5 mm的寬度、2 5 0 mm 的長度和5 mm的厚度。 如圖2B所示,在測試片1 4的長邊的兩端以規則的間 -26- (23) 1295603 隔形成狹縫1 5。狹縫1 5具有變化的長度,從短的一邊增 加到另一邊,使得施加在熔融金屬上的熱變形(熱應力) 隨狹縫的長度連續地變化。具體地,在狹縫1 5具有小長 度的短邊,熱變形大,在狹縫15具有大長度的另一短邊 ,熱變形小。將測試片14放在具有750 mm的寬度、500 mm的長度和2 5 mm的厚度的銅板16上,在下表3的條 件下進行TIG焊接,其中測試板盒移動。在該程序中,藉 由在狹縫具有較短長度的板端施加靜電弧約5秒鐘,以藉 此充分地熔融板端和使板端熱變形,而於板端引起在冷卻 過程中收縮/固化變形所産生的固化裂紋(熱裂紋)。接 著,依照從發生裂紋的板端到狹縫具有較長長度的另一端 之焊接方向1 7而進行焊接。根據裂紋從測試片1 4的板端 開始延長多遠(多長)而評估耐熱裂紋性。裂紋的長度對 應於熱變形,亦即熱裂紋敏感性。具體地,在焊接後進行 顔色檢查,測定在焊珠1 2中形成的裂紋長度,確定裂紋 長度與測試片長度的比(裂紋比)。裂紋比爲5 %或更小 的樣品評定爲”良好”,裂紋比超過5 %的樣品則評定爲”不 合格’’。 表3 焊接方法 TIG 板上焊珠(bead-on-plate) 保護氣體 1 00% Ar,20 升 /分鐘 焊接電流 200 A 焊接速度 3 0 cm/分鐘 -27- (24) 1295603 在使用SM490A低碳金屬的弧坑裂紋試驗中,使用80 體積% Ar和20體積% C02的氣體混合物作爲保護氣,在 200〜3 00 A的焊接電流下,在深5 mm和傾斜90。斜角的 V形凹槽上,於相同條件下利用無脈衝MAG焊接而斷續 地形成約7〇 mm長的三條焊接焊珠。測定每個焊口表面上 的裂紋總長度。測定裂紋長度與焊口的長度或直徑的比値 ,並使用三個焊口的比値之平均値作爲指數。平均裂紋比 値爲1 5 %或更小的樣品評定爲”良好”,平均裂紋比値超過 1 5 %的樣品評定爲”不合格"。 焊邊直徑p 爲了方便起見,測定焊邊直徑p以作爲焊接接頭的疲 勞强度的指數,因爲隨著焊邊直徑p增加,應力集中乃減 緩,而疲勞强度則改善。具體地,使用80體積% Ar和20 體積%C〇2的氣體混合物作爲保護氣,在200〜300 A的 平均焊接電流和1.3〜1.5 m/分鐘的焊接速度下,根據自動 搭腳焊接’使具有表2的組成和2 · 9 mm厚度的高强度薄 鋼板的搭接進行MAG脈衝焊接。然後測定如圖1所示的 焊邊直徑P。焊邊直徑p爲0.3 mm或更大的樣品評定爲” 良好’’,焊邊直徑p小於0 · 3 mm的樣品評定爲”不合格”。 上述評定的結果顯示在下表4中。 -28- (25) 1295603 表4 實施例 比較例 序 號 焊接金屬的 機械性能 高速焊接的 焊珠形成性 焊接加 工性 魚骨形裂紋試驗 弧坑裂紋試驗 焊邊德 〔徑P 裂紋比 (%) 評定 裂紋比 (%) 評定 焊邊直徑 (mm) 評定 1 良好 良好 良好 0 良好 0 良好 0.58 良好 2 良好 良好 良好 0 良好 0 良好 0.51 良好 3 良好 良好 良好 2.3 良好 0 良好 0.74 良好 4 良好 良好 良好 0 良好 0 良好 0.70 良好 5 良好 良好 良好 0 良好 3.5 良好 0.43 良好 6 良好 良好 良好 3.1 良好 4.8 良好 0.55 良好 7 良好 良好 良好 2.7 良好 2.1 良好 0.84 良好 8 良好 良好 良好 0 良好 0 良好 0.36 良好 9 良好 良好 良好 4.3 良好 7.1 良好 0.90 良好 10 良好 良好 良好 3.5 良好 7.4 良好 0.53 良好 11 良好 良好 良好 2.8 良好 0 良好 0.76 良好 12 良好 良好 良好 3.8 良好 6.4 良好 0.39 良好 13 良好 良好 良好 0 良好 5.1 良好 0.41 良好 14 良好 良好 良好 0 良好 0 良好 0.79 良好 15 良好 良好 良好 3.2 良好 6.5 良好 0.53 良好 16 良好 良好 良好 2.9 良好 0 良好 0.79 良好 17 良好 良好 良好 0 良好 0 良好 0.40 良好 18 良好 良好 良好 0 良好 0 良好 0.60 良好 19 良好 良好 良好 0 良好 2.3 良好 0.77 良好 20 良好 良好 良好 0 良好 0 良好 0.38 良好 21 不合格 良好 良好 0 良好 0 良好 0.37 良好 22 不合格 良好 良好 8.8 不合格 8.3 良好 0.53 良好 23 不合格 不合格 良好 0 良好 0 良好 0.23 不合格 24 不合格 良好 不合格 0 良好 5.1 良好 0.56 良好 25 不合格 良好 良好 4.5 良好 16.3 不合格 0.33 良好 26 不合格 良好 良好 3.9 良好 6.1 良好 0.82 良好 27 良好 良好 良好 7.1 不合格 8.4 良好 0.50 良好 28 良好 不合格 良好 0 良好 0 良好 0.24 不合格 29 良好 良好 良好 8.9 不合格 13.4 良好 0.81 良好 30 良好 良好 良好 6.4 不合格 15.5 不合格 0.70 良好 31 良好 良好 不合格 0 良好 4.1 良好 0.78 良好 32 良好 良好 良好 11.4 不合格 25.8 不合格 0.81 良好 33 良好 良好 不合格 3.2 良好 0 良好 0.89 良好 34 良好 良好 良好 7.0 不合格 12.3 良好 0.72 良好 35 良好 良好 良好 13.4 不合格 28.4 不合格 0.83 良好 36 良好 良好 良好 21.3 不合格 43.2 不合格 0.58 良好 37 良好 良好 良好 6.1 不合格 15.3 不合格 0.33 良好 38 良好 良好 良好 19.3 不合格 41.2 不合格 0.74 良好 39 良好 不合格 良好 0 良好 0 良好 0.21 不合格 40 良好 不合格 良好 0 良好 0 良好 0.18 不合格 29- (26) 1295603 表4顯示根據本發明實施例1至2〇的實芯焊絲在 有的評定中都具有優異的結果。相反地,在本發明範圍 外的比較例2 1至40的實芯焊絲在高速焊接的焊珠形成 、焊接金屬的機械性能、焊邊直徑p、熱裂紋敏感性和 接加工性中的至少一者上是不良的。具體來說,因爲比 例2 1的實芯焊絲具有小於本發明所界定範圍的碳含量 所以它表現出不充分的焊接金屬强度。由於比較例22 實芯焊絲的碳含量超過本發明所界定的範圍,所以它表 t 出不充分的焊接金屬的韌性。另外,因爲該實芯焊絲具 小於本發明所界定範圍的” A ”値,所以它具有增加的熱 紋敏感性。 因爲比較例23的實芯焊絲具有小於本發明所界定 圍的矽含量,所以焊接金屬表現出不充分的的强度。該 芯焊絲在高速焊接中也表現出不良的焊珠形成性和具有 的焊邊直徑P。相反地,比較例24的實芯焊絲具有超過 發明所界定範圍的矽含量,從而表現出不充分的焊接金 B 的韌性、粗的液滴和增加的濺射。比較例25的實芯焊 具有小於本發明所界定範圍的錳含量和小於本發明所界 範圍的” A ”値,從而表現出不充分的焊接金屬的强度和 加的熱裂紋敏感性。相反地,比較例2 6的實芯焊絲具 超過本發明所界定範圍的錳含量,從而表現出不充分的 接金屬的韌性。 比較例2 7的實芯焊絲具有超過本發明所界定範圍 磷含量,從而表現出增加的熱裂紋敏感性。儘管比較例 所 之 性 焊 較 5 的 現 有 裂 範 實 小 本 屬 絲 定 增 有 焊 的 -30- 28 (27) 1295603 的實芯焊絲具有低的熱裂紋敏感性,但是它具有小於本發 明所界定範圍的硫含量,從而表現出高速焊接中不良的焊 珠形成性和小的焊邊直徑p。相反地,即使比較例29的實 芯焊絲中的其他元素的含量在本發明所界定範圍內,但是 它具有超過本發明所界定範圍的硫含量和小於本發明所界 定範圍的”A”値,從而表現出高的熱裂紋敏感性。比較例 30、32、34和35的各個實芯焊絲都具有小於本發明所界 定範圍的"A”値,從而表現出高的熱裂紋敏感性。 b 比較例3 1的實芯焊絲具有超過本發明所界定範圍的 鈦含量,從而表現出粗的液滴、增加的濺射和增加的焊渣 。同樣地,比較例3 3的實芯焊絲具有超過本發明所界定 範圍的锆含量,從而表現出粗的液滴、增加的濺射和增加 的焊渣。比較例3 6、3 7和3 8的實芯焊絲不含有Ti、Zr、 La和Ce中的任何一個,每個都具有小於本發明所界定範 圍的” A ”値,從而表現出高的熱裂紋敏感性。比較例3 9和 40的實芯焊絲不含有Ti、Zr、La和Ce,具有超過本發明 B 所界定範圍的硫含量,從而表現出高的熱裂紋敏感性。 試驗例2 下面將例示本發明第二具體例相關的試驗例2。在本 試驗例中,使用具有下表5所示組成的焊絲焊接薄鋼板。 評量高速焊接的焊珠形成性、焊接金屬的機械性能、焊邊 直徑P、塗佈性、熱裂紋敏感性和焊接加工性。表5的實 芯焊絲的餘量爲鐵和不可避免的雜質。 -31 · (28)1295603 表5Table 1 No. Composition (Quality® ί) AC Si Μη S Ti Zr La Ce P Example 1 0.035 0.72 2.12 0.065 0.07 0.03 0.03 0.03 0.010 111.8 2 0.138 0.84 2.32 0.052 0.06 0.12 - - 0.015 125.4 3 0.061 0.53 1.72 0.082 0.10 0.15 - 0.03 0.014 109.4 4 0.085 1.44 2.08 0.071 0.07 0.18 - - 0.005 112.4 5 0.088 1.05 1.09 0.048 - 0.16 嶋- 0.009 106.0 6 0.075 0.88 1.55 0.062 0.07 0.14 - - 0.003 104.0 7 0.045 1.21 2.88 0.117 0.11 0.17 0.01 0.05 0.006 105.4 8 0.067 0.89 1.66 0.022 - 0.05 - - 0.021 132.3 9 0.051 0.78 2.51 0.139 0.15 0.19 0.04 0.04 0.018 102.6 10 0.071 0.95 1.92 0.064 0.01 0.16 0.01 - 0.005 103.4 11 0.094 1.14 2.24 0.094 0.17 0.18 - - 0.007 107.9 12 0.081 1.08 2.42 0.042 0.09 - - - 0.012 100.5 13 0.112 1.31 1.91 0.036 0.08 0.01 - - 0.019 104.4 14 0.050 0.69 2.65 0.102 0.05 0.18 0.03 0.03 0.12 109.3 15 0.126 1.08 1.95 0.055 0.10 0.05 0.01 雠0.013 103.6 16 0.086 0.81 2.75 0.121 0.16 0.19 0.04 - 0.008 105.0 17 0.072 0.81 2.13 0.037 - - 0.04 - 0.005 111.6 18 0.048 0.94 1.77 0.062 0.09 0.16 - 0.01 0.022 130.2 19 0.077 1.25 2.58 0.084 0.13 0.06 - 0.05 0.016 109.3 20 0.086 0.69 1.85 0.035 - - - 0.04 0.007 110.0 Comparative Example 21 0.024 0.78 1.88 0.039 0.05 0.05 0.01 0.01 0.0113 131.5 22 0.155 0.91 1.94 0.054 0.02 0.05 0.01 0.01 0.012 85.0 23 0.054 0.45 1.77 0.042 - 0.12 - 0.01 0.007 125.5 24 0.084 1.54 2.24 0.061 0.03 0.07 0.01 0.03 0.014 108.0 25 0.069 1.04 0.96 0.026 0.07 - - - 0.006 90.8 26 0.078 1.23 3.03 0.119 0.17 0.18 0.01 0.02 0.009 104.5 27 0.121 1.11 2.56 0.054 0.05 0.12 0.01 - 0.027 130.7 28 0.080 1.05 1.32 0.017 0.02 0.02 - - 0.019 130.6 29 0.075 0.67 2.79 0.153 0.17 0.18 0.03 0.03 0.005 89.5 30 0.085 0.55 1.89 0.069 0.006 0.17 - - 0.003 90.7 31 0.047 0.81 1.63 0.073 0.22 0.04 - 0.02 0.007 110.0 32 0.062 1.23 2.34 0.093 0.12 0.005 0.01 0.01 0.015 63.1 33 0.077 1.39 2.47 0.122 0.07 0.22 0.04 0.03 0.023 105.5 34 0.067 0.71 2.05 0.066 0.09 0.03 0.005 0.01 0.018 81.1 35 0.081 1.09 2.66 0.103 0.11 0.05 0.01 0.005 0.007 66.6 36 0.067 0.95 1.69 0.062 - - - - - 0.004 27.3 37 0.082 0.88 1.08 0.023 - - - - 0.007 47.0 38 0.052 1.01 1.73 0.094 - - - - 0.005 18.4 39 0.081 1.12 1.64 0.010 - - - - 0.008 164.0 40 0.075 0.89 1.41 0.005 - - - - 0.005 282.0 - 24-(21)1295603 Table 2 Composition (% by mass) C Si Μη Ρ S Balance 0.04 0.02 1.35 0.013 0.003 Fe and unavoidable impurities Next, the method for evaluating performance will be described. The mechanical properties of the weld metal are determined according to the tensile test method for butt welded joints specified in Japanese Industrial Standards (JIS) Z 3121 and the impact test method for welded joints specified in JIS Z 3 2 2 8 Sex. In these tests, it has a tensile strength of 560 N/mm2 or higher and an absorption energy of 1 〇〇 or higher in a Charpy impact test at a test temperature of _2 °C. The sample is rated as "good" and has a tensile strength of less than 560 N/mm2 or a sample having an absorbed energy of less than 100 J in the Charpy impact test at a test temperature of -20 °C. "Failed". Bead formation of high-speed welding is as follows. The bead formation of high-speed welding is evaluated as follows. The lap joint sample having the composition of Table 2 and a high-strength steel sheet of 2.3 mm thickness is opened at 1. 〇mm. MAG pulse welding was performed using a welding current of 200 to 300 A and a welding speed of 1.3 to 1.5 m/min using a gas mixture of 80% by volume of Ar and 20% by volume of CO 2 as the shielding gas. No undercut was shown. , bulging bead, burn through and penetration, and the sample that can overlap the gap in all welds is evaluated as "good" with, for example, undercut, bulge beads, -25- (22) 1295603 burn through or penetrate Samples with defects were evaluated as "failed". Solderability The weldability was evaluated by observing the arc stability and the rule of droplet transfer using a high speed camera and measuring the number of discrete sputtering. In this procedure, a gas mixture of 80% by volume of Ar and 20% by volume of CO 2 was used as a shielding gas, and a pulseless MAG welding was performed at a welding current of 200 to 30 〇 A. A sample with a stable arc, a highly regular droplet transfer, and a small amount of sputtering is evaluated as "good", and at least one of the samples with poor arc stability, droplet transfer regularity, and sputter count is evaluated. The quantity is “failed.” The hot crack sensitivity of the weld metal is evaluated by the results of the fish bone crack test and the crater crack test to evaluate the hot crack sensitivity of the weld metal. First, the method of performing the fish bone fracture test is described. Fig. 2A is a cross-sectional view showing the position of the sampled test piece, and Fig. 2B is a plan view showing how to prepare a test piece for the fishbone crack resistance test. Referring to Fig. 2A, the two layers have a thickness of 20 mm and contain SM490A low carbon steel. As the high-strength steel sheet of the base metal 11, a gasket metal 13 containing SM490A low carbon steel was used, butt welding was performed at an oblique angle of 45°. The obtained welded joint was mechanically cut into a thickness of 5 mm to obtain The test piece 14 of the fish bone fracture test has a width of 175 mm, a length of 250 mm, and a thickness of 5 mm. As shown in Fig. 2B, two of the long sides of the test piece 14 The end of the rule - 26- (23) 1295603 The slits are formed into slits 15. The slits 15 have a varying length, increasing from the short side to the other side, so that the thermal deformation (thermal stress) applied to the molten metal continues with the length of the slit. Specifically, the slit 15 has a short side of a small length, the thermal deformation is large, and the other short side of the slit 15 having a large length is small in thermal deformation. The test piece 14 is placed at a width of 750 mm. TIG welding was carried out on a copper plate 16 having a length of 500 mm and a thickness of 25 mm, under the conditions of Table 3 below, in which the test plate was moved. In this procedure, by applying a plate end having a shorter length in the slit The static arc is about 5 seconds, thereby sufficiently melting the end of the plate and thermally deforming the end of the plate, and causing a solidification crack (hot crack) generated by shrinkage/solidification deformation during cooling at the end of the plate. The end of the crack is welded to the slit at the other end of the slit having a longer length. The heat crack resistance is evaluated based on how far the crack is extended from the end of the sheet of the test piece 14 (how long). Corresponding to thermal deformation, ie thermal crack sensitivity Specifically, a color inspection is performed after soldering, the length of the crack formed in the bead 12 is measured, and the ratio of the crack length to the length of the test piece (crack ratio) is determined. The sample having a crack ratio of 5% or less is evaluated as "Good", samples with a crack ratio greater than 5% were rated as "failed". Table 3 Welding method TIG on-board bead-on-plate shielding gas 100% Ar, 20 l / min welding current 200 A welding speed 3 0 cm / min -27- (24) 1295603 using SM490A low carbon In the crater crack test of metal, a gas mixture of 80 vol% Ar and 20 vol% C02 was used as a shielding gas at a depth of 5 mm and a slope of 90 at a welding current of 200 to 300 Å. On the beveled V-shaped groove, three welding beads of about 7 mm in length were intermittently formed under the same conditions by pulseless MAG welding. The total length of cracks on the surface of each weld was measured. The ratio of the crack length to the length or diameter of the weld is measured, and the average enthalpy of the ratio of the three welds is used as an index. Samples with an average crack ratio of 15 % or less were rated as "good", and samples with an average crack ratio of more than 15 % were rated as "failed". Weld bead diameter p For convenience, the weld bead diameter was determined. p is used as an index of the fatigue strength of the welded joint, because as the weld edge diameter p increases, the stress concentration is slowed and the fatigue strength is improved. Specifically, a gas mixture of 80% by volume Ar and 20% by volume C〇2 is used as Protective gas, at an average welding current of 200 to 300 A and a welding speed of 1.3 to 1.5 m/min, according to the automatic foot welding 'make the overlap of the high-strength steel sheet having the composition of Table 2 and a thickness of 2 · 9 mm Perform MAG pulse welding. Then measure the weld bead diameter P as shown in Figure 1. Samples with a weld bead diameter of 0.3 mm or greater are rated as "good", and samples with a weld bead diameter of less than 0 · 3 mm are rated as "Unqualified." The results of the above evaluations are shown in Table 4 below. -28- (25) 1295603 Table 4 Example Comparative Example No. Mechanical Properties of Welded Metals High-Speed Welding Beads Forming Weldability Process Fishbone Crack Test Arc Pit Crack Test Weld Edge Defects (Round P Crack Ratio (%) Evaluation Crack ratio (%) Evaluation of weld bead diameter (mm) Evaluation 1 Good Good Good 0 Good 0 Good 0.58 Good 2 Good Good Good 0 Good 0 Good 0.51 Good 3 Good Good Good 2.3 Good 0 Good 0.74 Good 4 Good Good Good 0 Good 0 Good 0.70 Good 5 Good Good Good 0 Good 3.5 Good 0.43 Good 6 Good Good Good 3.1 Good 4.8 Good 0.55 Good 7 Good Good Good 2.7 Good 2.1 Good 0.84 Good 8 Good Good Good 0 Good 0 Good 0.36 Good 9 Good Good Good 4.3 Good 7.1 Good 0.90 Good 10 Good Good Good 3.5 Good 7.4 Good 0.53 Good 11 Good Good Good 2.8 Good 0 Good 0.76 Good 12 Good Good Good 3.8 Good 6.4 Good 0.39 Good 13 Good Good Good 0 Good 5.1 Good 0.41 Good 14 Good Good good 0 Good 0 Good 0.79 Good 15 Good Good Good 3.2 Good 6.5 Good 0.53 Good 16 Good Good Good 2.9 Good 0 Good 0.79 Good 17 Good Good Good 0 Good 0 Good 0.40 Good 18 Good Good Good 0 Good 0 Good 0.60 Good 19 Good Good good 0 Good 2.3 Good 0.77 Good 20 Good Good Good 0 Good 0 Good 0.38 Good 21 Unsatisfactory Good Good 0 Good 0 Good 0.37 Good 22 Unsatisfactory Good 8.8 Unsatisfactory 8.3 Good 0.53 Good 23 Unqualified Good 0 Good 0 Good 0.23 Failed 24 Failed Good Failed 0 Good 5.1 Good 0.56 Good 25 Failed Good Good 4.5 Good 16.3 Unsatisfactory 0.33 Good 26 Failed Good Good 3.9 Good 6.1 Good 0.82 Good 27 Good Good 7.1 Unsatisfactory 8.4 Good 0.50 Good 28 Good failure Good 0 Good 0 Good 0.24 Unsatisfactory 29 Good Good 8.9 Unsatisfactory 13.4 Good 0.81 Good 30 Good Good 6.4 Unqualified 15.5 Unqualified 0.70 Good 31 Good Good Fail 0 Good 4.1 Good 0.78 Good 32 Good Good Good 11.4 Unsatisfactory 25.8 Unsatisfactory 0.81 Good 33 Good Good Failed 3.2 Good 0 Good 0.89 Good 34 Good Good Good 7.0 Unsatisfactory 12.3 Good 0.72 Good 35 Good Good Good 13.4 Unsatisfactory 28.4 Unsatisfactory 0.83 Good 36 Good Good 21.3 Unsatisfactory 43.2 Unsatisfactory 0.58 Good 37 Good Good Good 6.1 Unsatisfied 15.3 Unsatisfactory 0.33 Good 38 Good Good Good 19.3 Unsatisfactory 41.2 Unsatisfactory 0.74 Good 39 Good Good Failure 0 good 0 good 0.21 unsatisfactory 40 good failure good 0 good 0 good 0.18 fail 29- (26) 1295603 Table 4 shows that the solid wire according to the embodiments 1 to 2 of the present invention is excellent in some evaluations result. Conversely, the solid wire of Comparative Examples 21 to 40 outside the scope of the present invention is at least one of high-speed welding bead formation, weld metal mechanical properties, weld bead diameter p, hot crack sensitivity, and workability. The person is bad. Specifically, since the solid wire of Comparative Example 21 has a carbon content smaller than the range defined by the present invention, it exhibits insufficient weld metal strength. Since the carbon content of the solid wire of Comparative Example 22 exceeded the range defined by the present invention, it exhibited an insufficient toughness of the weld metal. In addition, since the solid wire has an "A" 小于 smaller than the range defined by the present invention, it has an increased hot grain sensitivity. Since the solid wire of Comparative Example 23 has a bismuth content smaller than that defined by the present invention, the weld metal exhibits insufficient strength. The cored wire also exhibits poor bead formation and a weld bead diameter P in high speed welding. In contrast, the solid wire of Comparative Example 24 had a niobium content exceeding the range defined by the invention, thereby exhibiting insufficient weld gold B toughness, coarse droplets, and increased sputtering. The solid core welding of Comparative Example 25 had a manganese content smaller than the range defined by the present invention and "A" 小于 which was smaller than the range bound by the present invention, thereby exhibiting insufficient weld metal strength and added hot crack sensitivity. In contrast, the solid wire of Comparative Example 26 had a manganese content exceeding the range defined by the present invention, thereby exhibiting insufficient toughness of the joined metal. The solid wire of Comparative Example 2 7 had a phosphorus content exceeding the range defined by the present invention, thereby exhibiting an increased hot crack sensitivity. Although the welding of the comparative example has a lower thermal cracking sensitivity than the existing solid-wired wire of -30-28 (27) 1295603, which is less than the prior art, it has less than the present invention. The range of sulfur content is defined to exhibit poor bead formation and small weld bead diameter p in high speed welding. On the contrary, even if the content of other elements in the solid wire of Comparative Example 29 is within the scope of the present invention, it has a sulfur content exceeding the range defined by the present invention and an "A" 小于 smaller than the range defined by the present invention, Thereby exhibiting high thermal crack sensitivity. Each of the solid wires of Comparative Examples 30, 32, 34, and 35 had an "A" 小于 less than the range defined by the present invention, thereby exhibiting high thermal crack sensitivity. b The solid wire of Comparative Example 3 1 exceeded The titanium content of the range defined by the present invention, thereby exhibiting coarse droplets, increased sputtering, and increased slag. Similarly, the solid wire of Comparative Example 33 has a zirconium content exceeding the range defined by the present invention, thereby Shows coarse droplets, increased sputtering, and increased weld slag. Comparative Example 3 6, 3, and 3 8 solid wire does not contain any of Ti, Zr, La, and Ce, each having less than The "A" of the range defined by the present invention exhibits high thermal crack sensitivity. The solid wire of Comparative Examples 3 and 40 does not contain Ti, Zr, La and Ce, and has a range exceeding the range defined by the present invention B. The sulfur content, thereby exhibiting high thermal cracking sensitivity. Test Example 2 Next, Test Example 2 relating to the second specific example of the present invention will be exemplified. In this test example, a wire welded steel sheet having the composition shown in Table 5 below was used. Measure the formation of high-speed welded beads, The mechanical properties of the weld metal, the weld bead diameter P, the coatability, the hot crack sensitivity and the weldability. The balance of the solid wire of Table 5 is iron and unavoidable impurities. -31 · (28)1295603 Table 5

No. 焊絲的化學組成(質量% ) C Si Μη Ρ S Cr Ni Nb V A1 B 實施例 1 0.022 0.93 1.22 0.006 0.057 0.062 - - - - - 2 0.138 0.84 2.32 0.015 0.052 - - - - - 0.0089 3 0.021 0.53 1.02 0.014 0.082 - - - 0.251 - - 4 0.085 1.44 2.08 0.005 0.071 - - - - 0.155 - 5 0.035 1.05 1.09 0.009 0.048 0.155 - - - - - 6 0.035 0.88 1.55 0.003 0.062 - - 0.032 - - - 7 0.025 1.21 2.88 0.006 0.117 - 0.153 - - - - 8 0.067 0.89 1.32 0.021 0.022 - - - 0.005 - - 9 0.051 0.78 1.33 0.018 0.139 - - - - 0.065 - 10 0.071 0.95 1.25 0.005 0.064 - 0.030 - - - - 11 0.094 1.14 2.24 0.007 0.055 - - 0.470 - - - 12 0.081 1.08 2.42 0.012 0.068 - - - - - 0.0030 13 0.112 1.31 1.91 0.019 0.036 0.005 - - 0.151 - - 14 0.031 0.69 2.65 0.012 0.102 - 0.006 0.160 - - - 15 0.126 1.08 1.58 0.013 0.055 0.035 - - - 0.010 - 16 0.086 0.81 1.68 0.008 0.121 - 0.230 - 0.030 - 0.0098 17 0.086 0.81 1.32 0.005 0.037 0.050 - - - 0.033 0.0070 18 0.025 0.94 1.55 0.022 0.062 0.250 - 0.240 - - - 19 0.030 1.25 2.00 0.016 0.084 - 0.260 0.035 - 0.260 - 20 0.053 0.65 1.10 0.015 0.020 0.460 - - 0.489 - - 21 0.022 1.49 2.02 0.015 0.034 - - 0.060 - - 0.0010 22 0.024 1.02 1.43 0.014 0.045 - 0.052 - 0.055 - - 23 0.052 1.45 1.53 0.024 0.065 - - 0.006 - 0.478 - 24 0.088 1.20 2.00 0.010 0.055 0.032 0.488 - - - - 25 0.086 0.69 1.85 0.007 0.035 0.250 0.036 0.033 0.032 0.033 0.0012 比較例 26 0.031 0.73 2.53 0.010 0.052 - - - - - - 27 0.048 1.02 1.52 0.010 0.101 - - - - - - 28 0.031 1.23 1.02 0.010 0.130 - - - - - - 29 0.020 0.85 1.35 0.019 0.040 - - - - 0.003 - 30 0.080 1.20 1.60 0.013 0.070 - 瞧 - - 0.007 - 31 0.160 1.00 1.25 0.012 0.030 - - 0.320 0.200 - 0.0040 32 0.052 1.23 3.50 0.011 0.120 - - 0.020 - 0.053 - 33 0.083 2.00 1.53 0.010 0.085 - 0.410 - 0.085 - - 34 0.025 0.98 1.02 0.032 0.120 0.420 0.430 0.020 一 - 0.0012 35 0.050 1.23 1.52 0.010 0.019 0.230 - - 0.350 - - 36 0.032 1.01 1.82 0.020 0.005 - - - - 0.023 0.0010 37 0.053 1.20 1.53 0.010 0.065 0.650 - - - - - 38 0.023 2.32 1.23 0.012 0.120 0.850 0.620 - 0.007 - - 39 0.102 1.00 1.56 0.010 0.070 0.050 - - - 0.850 - 40 0.050 1.03 1.65 0.011 0.052 1.020 0.020 0.023 0.630 - 0.0005 41 0.102 0.82 2.11 0.015 0.082 - - 0.820 - - 0.0050 42 0.056 0.98 1.58 0.015 0.052 0.301 - - - - 0.0200 43 0.085 1.20 2.01 0.010 0.065 - 0.230 0.420 0.602 - 0.0120 44 0.068 1.80 0.89 0.015 0.065 0.050 - - 0.006 0.010 - 45 0.030 1.32 1.50 0.010 0.160 - - - - - - 46 0.010 1.12 0.93 0.012 0.055 - 0.030 0.025 0.012 0.320 - 47 0.190 0.42 2.62 0.010 0.110 0.030 - - - - 0.0030 48 0.065 0.45 2.02 0.030 0.032 0.120 - 0.045 - 0.325 - 49 0.201 1.20 3.10 0.022 0.042 - 0.420 0.062 0.420 0.012 - 50 0.014 1.32 1.11 0.032 0.098 - 0.330 - 0.250 - 0.0021 -32- (29) 1295603 表6 C Si Μη Ρ S 餘量 0.04 0.02 1.35 0.013 0.003 鐵和不可避免的雜質 接著敘述評量性能的方法。 焊接金屬的機械性能 根據日本工業標準j I s Z 3 1 2 1中所規定的用於對接焊 接接頭的抗張試驗方法和JI S Z 3 1 2 8中所規定的用於焊接 接頭的衝擊試驗方法測定焊接金屬的機械性能。在這些測 試中,具有560 Ν/mm2或更高的抗張强度以及於-20 °C的 測試溫度下在Charpy衝擊試驗中具有1 〇〇 j或更高的吸收 能量的樣品評定爲”良好”,具有小於5 6 0 N/mm2的抗張强 度或於-20°C的測試溫度下在Charpy衝擊試驗中具有小於 1 0 0 J的吸收能量的樣品則評定爲”不合格”。 高速焊接的焊珠形成性 如下述評量高速焊接的焊珠形成性。具有表6的組成 和2· 9 mm厚度的高强度薄鋼板的樣品搭接接頭在1.0 mm 的焊邊開口上,於250 A的焊接電流和1·5 m/分鐘的焊接 速度下,使用80體積% Ar和20體積% C02的氣體混合物 作爲保護氣,進行MAG脈衝焊接。沒有表現出諸如底切 (undercut )、鼓包焊珠、燒穿和穿透等缺陷並且能在整 個焊接中搭接縫隙的樣品評定爲"良好",具有缺陷的樣品 則評定爲”不合格"。 -33- (30) 1295603 焊接加工性 藉由使用高速攝像機觀察電弧穩定性和熔滴轉移( droplet transfer)的規則性,並測定離散的濺射的數量, 以評價焊接加工性。在該程序中,使用80體積% Ar和20 體積% C〇2的氣體混合物作爲保護氣,在250 A的焊接電 流和1.0 m/分鐘的焊接速度下進行無脈衝的MAG焊接。 提供穩定的電弧、具有高的熔滴轉移規則性和産生少量 射的樣品評定爲’’良好”,電弧穩定性、熔滴轉移規則性和 濺射數量中至少一者爲不良的樣品則評定爲”不合格"。 塗佈性 在焊接後的電沈積塗佈步驟中,按照因焊澄剝離所導 致的塗層分層的危險性來評量塗佈性。根據焊接後在焊珠 表面上所形成的焊渣面積測定該危險性。在該程序中,使 用80體積% Ar和20體積% C02的氣體混合物作爲保護氣 ,在2 5 0 A的焊接電流和1 · 〇 m/分鐘的焊接速度下進行無 脈衝的MAG焊接。焊渣面積與焊珠表面積的比値小於1 〇 %的樣品評定爲”良好”,該比値爲10%或更大的樣品則評 定爲"不合格”。 魚骨形抗裂試驗 根據魚骨形抗裂試驗和下面所述之弧坑裂紋試驗的結 果來評量焊接金屬的熱裂紋敏感性。 -34- (31) 1295603 測試片取樣的位置如圖2A所示。參照圖2A,將兩層 作爲基底金屬1 1的具有20 mm厚度的低碳鋼SM490A, 使用包含低碳鋼SM490A的襯墊金屬13,以45°的斜角進 行對接焊接。將得到的焊接接頭機械地切割成5 mm的厚 度,從而得到用於魚骨形抗裂試驗的測試片1 4,其具有 175 mm的寬度、250 mm的長度和5 mm的厚度。 接著,如圖2B所示,在測試片14的兩長邊的兩端以 規則的間隔形成狹縫1 5。狹縫1 5具有變化的長度,從短 的一邊增加至另一邊,使得施加在熔融金屬上的熱變形( 熱應力)隨狹縫的長度而連續地變化。具體地,在狹縫1 5 具有小長度的短邊,熱變形大,在狹縫15具有大長度的 另一短邊,熱變形小。將測試片1 4放在具有7 5 0 mm的寬 度、500 mm的長度和25 mm的厚度的銅板16上,於下表 7的條件下進行TIG焊接,其中測試板盒移動。在該程序 中,藉由在狹縫具有較短長度的板端施加靜態電弧約5秒 鐘,以藉此充分地熔融板端和使板端熱變形,而於板端引 起在冷卻過程中收縮/固化變形所産生的固化裂紋(熱裂 紋)。接著,依照從發生裂紋的板端到狹縫具有較長長度 的另一端之焊接方向1 7而進行焊接。根據裂紋從測試片 1 4的板端開始延長多遠(多長)來評估耐熱裂紋性。裂紋 的長度對應於熱變形,亦即熱裂紋敏感性。具體地,在焊 接後進行顔色檢查,測定在焊珠1 2中形成的裂紋長度, 確定裂紋長度與測試片長度的比値(裂紋比)。裂紋比爲 5 %或更小的樣品評定爲”良好",裂紋比超過5 %的樣品則 -35- (32) 1295603 評定爲”不合格”。 表7 焊接方法 TIG板上焊珠 保護氣體 100% Ar,20 升 /分鐘 焊接電流 200 A 焊接速度 3 0 cm/分鐘 弧坑裂紋試驗 使用SM490A薄鋼板,在深5 mm和傾斜90。斜角的V 形凹槽上,於相同條件下用MAG焊接,斷續地形成約7 0 mm長的三條焊接焊珠。測定每個焊口表面上的裂紋總長 度。測定裂紋長度與焊口的長度或直徑的比値,並使用三 個焊口的該比値之平均値作爲指數。平均裂紋比爲1 5 %或 更小的樣品評定爲”良好”,而平均裂紋比超過1 5 %的樣品 則評定爲”不合格’’。No. Chemical composition of the wire (% by mass) C Si Μ Ρ Ρ S Cr Ni Nb V A1 B Example 1 0.022 0.93 1.22 0.006 0.057 0.062 - - - - - 2 0.138 0.84 2.32 0.015 0.052 - - - - - 0.0089 3 0.021 0.53 1.02 0.014 0.082 - - - 0.251 - - 4 0.085 1.44 2.08 0.005 0.071 - - - - 0.155 - 5 0.035 1.05 1.09 0.009 0.048 0.155 - - - - - 6 0.035 0.88 1.55 0.003 0.062 - - 0.032 - - - 7 0.025 1.21 2.88 0.006 0.117 - 0.153 - - - - 8 0.067 0.89 1.32 0.021 0.022 - - - 0.005 - - 9 0.051 0.78 1.33 0.018 0.139 - - - - 0.065 - 10 0.071 0.95 1.25 0.005 0.064 - 0.030 - - - - 11 0.094 1.14 2.24 0.007 0.055 - - 0.470 - - - 12 0.081 1.08 2.42 0.012 0.068 - - - - - 0.0030 13 0.112 1.31 1.91 0.019 0.036 0.005 - - 0.151 - - 14 0.031 0.69 2.65 0.012 0.102 - 0.006 0.160 - - - 15 0.126 1.08 1.58 0.013 0.055 0.035 - - - 0.010 - 16 0.086 0.81 1.68 0.008 0.121 - 0.230 - 0.030 - 0.0098 17 0.086 0.81 1.32 0.005 0.037 0.050 - - - 0.033 0.0070 18 0.025 0.94 1.55 0.022 0.062 0.250 - 0.240 - - - 19 0.030 1.25 2.00 0.016 0 .084 - 0.260 0.035 - 0.260 - 20 0.053 0.65 1.10 0.015 0.020 0.460 - - 0.489 - - 21 0.022 1.49 2.02 0.015 0.034 - - 0.060 - - 0.0010 22 0.024 1.02 1.43 0.014 0.045 - 0.052 - 0.055 - - 23 0.052 1.45 1.53 0.024 0.065 - - 0.006 - 0.478 - 24 0.088 1.20 2.00 0.010 0.055 0.032 0.488 - - - - 25 0.086 0.69 1.85 0.007 0.035 0.250 0.036 0.033 0.032 0.033 0.0012 Comparative Example 26 0.031 0.73 2.53 0.010 0.052 - - - - - - 27 0.048 1.02 1.52 0.010 0.101 - - - - - - 28 0.031 1.23 1.02 0.010 0.130 - - - - - - 29 0.020 0.85 1.35 0.019 0.040 - - - - 0.003 - 30 0.080 1.20 1.60 0.013 0.070 - 瞧- - 0.007 - 31 0.160 1.00 1.25 0.012 0.030 - - 0.320 0.200 - 0.0040 32 0.052 1.23 3.50 0.011 0.120 - - 0.020 - 0.053 - 33 0.083 2.00 1.53 0.010 0.085 - 0.410 - 0.085 - - 34 0.025 0.98 1.02 0.032 0.120 0.420 0.430 0.020 A - 0.0012 35 0.050 1.23 1.52 0.010 0.019 0.230 - - 0.350 - - 36 0.032 1.01 1.82 0.020 0.005 - - - - 0.023 0.0010 37 0.053 1.20 1.53 0.010 0.065 0.650 - - - - - 38 0.023 2.32 1.23 0.01 2 0.120 0.850 0.620 - 0.007 - - 39 0.102 1.00 1.56 0.010 0.070 0.050 - - - 0.850 - 40 0.050 1.03 1.65 0.011 0.052 1.020 0.020 0.023 0.630 - 0.0005 41 0.102 0.82 2.11 0.015 0.082 - - 0.820 - - 0.0050 42 0.056 0.98 1.58 0.015 0.052 0.301 - - - - 0.0200 43 0.085 1.20 2.01 0.010 0.065 - 0.230 0.420 0.602 - 0.0120 44 0.068 1.80 0.89 0.015 0.065 0.050 - - 0.006 0.010 - 45 0.030 1.32 1.50 0.010 0.160 - - - - - - 46 0.010 1.12 0.93 0.012 0.055 - 0.030 0.025 0.012 0.320 - 47 0.190 0.42 2.62 0.010 0.110 0.030 - - - - 0.0030 48 0.065 0.45 2.02 0.030 0.032 0.120 - 0.045 - 0.325 - 49 0.201 1.20 3.10 0.022 0.042 - 0.420 0.062 0.420 0.012 - 50 0.014 1.32 1.11 0.032 0.098 - 0.330 - 0.250 - 0.0021 -32- (29) 1295603 Table 6 C Si Μη Ρ S Balance 0.04 0.02 1.35 0.013 0.003 Iron and unavoidable impurities Next, the method for evaluating the performance is described. The mechanical properties of the weld metal are in accordance with the tensile test method for butt welded joints specified in Japanese Industrial Standards j I s Z 3 1 2 1 and the impact test method for welded joints specified in JI SZ 3 1 2 8 Determine the mechanical properties of the weld metal. In these tests, samples with a tensile strength of 560 Ν/mm2 or higher and an absorption energy of 1 〇〇j or higher in the Charpy impact test at a test temperature of -20 °C were rated as "good". Samples having a tensile strength of less than 560 N/mm2 or an absorption energy of less than 100 J in the Charpy impact test at a test temperature of -20 °C were rated as "failed". Bead formation of high-speed welding The bead formation property of high-speed welding is evaluated as follows. A sample lap joint having a composition of Table 6 and a high-strength steel sheet having a thickness of 2·9 mm was used on a 1.0 mm weld edge opening at a welding current of 250 A and a welding speed of 1·5 m/min. A gas mixture of vol% Ar and 20 vol% C02 was used as a shielding gas for MAG pulse welding. Samples that did not exhibit defects such as undercut, burr beads, burn through and penetration, and could overlap the gap throughout the weld were rated as "good", and samples with defects were rated as "failed "-33- (30) 1295603 Welding processability The weldability is evaluated by observing the regularity of arc stability and droplet transfer using a high-speed camera and measuring the number of discrete sputterings. In this procedure, a gas mixture of 80 vol% Ar and 20 vol% C 〇 2 was used as a shielding gas, and a pulseless MAG welding was performed at a welding current of 250 A and a welding speed of 1.0 m/min. Samples with high droplet transfer regularity and small shots were rated as 'good', and samples with at least one of arc stability, droplet transfer regularity, and sputter count were rated as "failed". Coating property In the electrodeposition coating step after soldering, the coating property is evaluated according to the risk of delamination of the coating due to peeling of the solder. According to the soldering bead surface after soldering The risk is determined by the area of the weld slag. In this procedure, a gas mixture of 80% by volume Ar and 20% by volume C02 is used as the shielding gas, the welding current at 250 A and the welding speed at 1 · 〇m/min. The sample was subjected to pulseless MAG welding. The sample having a ratio of weld slag area to bead surface area of less than 1% was rated as "good", and the sample having a ratio of 10% or more was rated as "failed". Fishbone crack resistance test The hot crack sensitivity of the weld metal is evaluated based on the fish bone fracture test and the results of the crater crack test described below. -34- (31) 1295603 The position of the test piece sample is shown in Figure 2A. Referring to Fig. 2A, a low carbon steel SM490A having a thickness of 20 mm as a base metal 11 was used, and a butt welding was performed at an oblique angle of 45 by using a gasket metal 13 containing a low carbon steel SM490A. The resulting welded joint was mechanically cut to a thickness of 5 mm to obtain a test piece 14 for a fish bone crack test having a width of 175 mm, a length of 250 mm, and a thickness of 5 mm. Next, as shown in Fig. 2B, slits 15 are formed at regular intervals on both ends of the long sides of the test piece 14. The slit 15 has a varying length, increasing from the short side to the other side, so that the thermal deformation (thermal stress) applied to the molten metal continuously changes with the length of the slit. Specifically, in the slit 15 having a short side of a small length, the thermal deformation is large, and the slit 15 has the other short side of a large length, and the thermal deformation is small. The test piece 14 was placed on a copper plate 16 having a width of 75 mm, a length of 500 mm, and a thickness of 25 mm, and TIG welding was performed under the conditions of Table 7 below, in which the test plate was moved. In this procedure, a static arc is applied for about 5 seconds at the end of the plate having a shorter length in the slit, thereby sufficiently melting the end of the plate and thermally deforming the end of the plate, causing shrinkage during cooling at the end of the plate. / Curing crack (hot crack) caused by solidification deformation. Next, the welding is performed in accordance with the welding direction 17 from the end of the plate where the crack occurs to the other end of the slit having a longer length. The heat crack resistance was evaluated based on how far (how long) the crack was extended from the end of the test piece 14 . The length of the crack corresponds to thermal deformation, that is, thermal crack sensitivity. Specifically, a color inspection was performed after the welding, the length of the crack formed in the bead 12 was measured, and the ratio (crack ratio) of the crack length to the length of the test piece was determined. Samples with a crack ratio of 5% or less were rated as "good", and samples with a crack ratio of more than 5% were rated as "failed" by -35- (32) 1295603. Table 7 Soldering method Solder bead shielding gas on TIG plate 100% Ar, 20 liters/min welding current 200 A welding speed 30 cm/min crater crack test using SM490A steel sheet, on a V-shaped groove with a depth of 5 mm and a slope of 90. Bevel, under the same conditions MAG welding, intermittently forming three welding beads of about 70 mm length. Determine the total length of cracks on the surface of each joint. Determine the ratio of crack length to the length or diameter of the weld, and use three welds. The average enthalpy of the ratio was used as an index. Samples with an average crack ratio of 15% or less were rated as "good", while samples with an average crack ratio of more than 15% were rated as "failed".

焊邊直徑P 爲了方便起見,測定焊邊直徑P以作爲焊接接頭的疲 勞强度的指數,因爲隨著焊邊直徑P增加,應力集中乃減 緩’而疲勞强度則改善。具體地,使用80體積% Ar和20 體積% C 02的氣體混合物作爲保護氣,在2 5 0 A的焊接電 流和1.5 m/分鐘的焊接速度下,根據水平搭腳焊接,對具 有表6的組成和2 · 9 mm厚度的高强度薄鋼板的搭接(1 ap -36- (33) 1295603 joint )進行MAG脈衝焊接。然後測定如圖1所示的焊邊 直徑P。焊邊直徑P爲0.3 mm或更大的樣品評定爲”良好 ,焊邊直徑P小於〇. 3 m m的樣品則評定爲”不合格”。上 述評定的結果顯示於下表8中。Weld bead diameter P For the sake of convenience, the weld bead diameter P is measured as an index of the fatigue strength of the welded joint, since the stress concentration is reduced as the weld bead diameter P increases, and the fatigue strength is improved. Specifically, a gas mixture of 80% by volume of Ar and 20% by volume of C 02 is used as a shielding gas, and at a welding current of 250° A and a welding speed of 1.5 m/min, according to the horizontal foot welding, for the table 6 MAG pulse welding was performed by lap joints (1 ap -36- (33) 1295603 joint) of high-strength steel sheets with a thickness of 2 · 9 mm. Then, the weld bead diameter P as shown in Fig. 1 was measured. Samples with a weld edge diameter P of 0.3 mm or greater were rated as "good, and samples with a weld bead diameter P less than 〇. 3 m m were rated as "failed." The results of the above evaluation are shown in Table 8 below.

-37- (34)1295603 表8-37- (34)1295603 Table 8

序 號 焊接金 屬的機 械性能 高速焊接 的焊珠形 成性 焊接加 工性 塗佈性 魚骨形裂紋試驗 弧坑裂紋試驗 焊邊直徑P 裂紋比 (%) 評定 裂紋比 (%) 評定 焊邊直徑 (mm) 評定 1 良好 良好 良好 良好 0 良好 0 良好 0.53 良好 2 良好 良好 良好 良好 3.5 良好 4.1 良好 0.41 良好 3 良好 良好 良好 良好 0 良好 0 良好 0.36 良好 4 良好 良好 良好 良好 1.5 良好 0 良好 0.63 良好 5 良好 良好 良好 良好 0 良好 2.2 良好 0.41 良好 6 良好 良好 良好 良好 0 良好 0 良好 0.59 良好 7 良好 良好 良好 良好 3.4 良好 8.5 良好 0.78 良好 8 良好 良好 良好 良好 0 良好 0 良好 0.31 良好 9 良好 良好 良好 良好 3.5 良好 6.1 良好 0.82 良好 10 良好 良好 良好 良好 0 良好 0 良好 0.53 良好 11 良好 良好 良好 良好 0 良好 0 良好 0.59 良好 實 12 良好 良好 良好 良好 0 良好 0 良好 0.45 良好 施 13 良好 良好 良好 2.5 良好 5.2 良好 0.33 良好 例 14 良好 良好 良好 良好 0 良好 2.3 良好 0.63 良好 15 良好 良好 良好 良好 3.9 良好 5.5 良好 0.41 良好 16 良好 良好 良好 良好 2.2 良好 4.5 良好 0.88 良好 17 良好 良好 良好 良好 1.2 良好 0 良好 0.33 良好 18 良好 良好 良好 良好 0 良好 5.6 良好 0.54 良好 19 良好 良好 良好 良好 0 良好 0 良好 0.59 良好 20 良好 良好 良好 良好 0 良好 0 良好 0.31 良好 21 良好 良好 良好 良好 0 良好 0 良好 0.35 良好 22 良好 良好 良好 良好 0 良好 0 良好 0.38 良好 23 良好 良好 良好 良好 2.5 良好 8.9 良好 0.51 良好 24 良好 良好 良好 良好 0 良好 0 良好 0.49 良好 25 良好 良好 良好 良好 0 良好 0 良好 0.31 良好 26 不合格 良好 良好 良好 10.3 不合格 14.3 良好 0.43 良好 27 不合格 良好 良好 良好 15.2 不合格 20.3 不合格 0.56 良好 28 不合格 良好 良好 良好 20.1 不合格 35.5 不合格 0.85 良好 29 良好 良好 良好 良好 9.3 不合格 14.3 良好 0.40 良好 30 不合格 良好 良好 良好 14.2 不合格 15.5 不合格 0.55 良好 31 不合格 良好 不合格 不合格 6.7 不合格 16.0 不合格 0.33 良好 32 不合格 不合格 良好 不合格 4.3 良好 14.2 良好 0.84 良好 33 不合格 不合格 不合格 不合格 4.0 良好 10.2 良好 0.69 良好 34 良好 良好 良好 良好 8.9 不合格 20.5 不合格 0.53 良好 35 良好 不合格 良好 良好 0.0 良好 0.0 良好 0.18 不合格 36 良好 不合格 良好 良好 0.0 良好 0.0 良好 0.23 不合格 比 37 良好 不合格 不合格 良好 0.0 良好 0.0 良好 0.59 良好 較 38 良好 不合格 不合格 良好 3.5 良好 10.9 良好 0.82 良好 例 39 良好 不合格 不合格 良好 0.0 良好 0.0 良好 0.68 良好 40 良好 不合格 不合格 良好 0.0 良好 0.0 良好 0.45 良好 41 良好 不合格 不合格 良好 3.2 良好 17.5 不合格 0.68 良好 42 良好 良好 良好 良好 6.3 不合格 15.3 不合格 0.35 良好 43 良好 不合格 不合格 良好 4.5 不合格 18.0 不合格 0.38 良好 44 不合格 良好 不合格 不合格 5.5 不合格 20.3 不合格 0.43 良好 45 不合格 良好 良好 良好 21.1 不合格 35.5 不合格 0.84 良好 46 不合格 良好 不合格 良好 4.3 不合格 5.5 良好 0.35 良好 47 不合格 不合格 不合格 不合格 20.2 不合格 43.3 不合格 0.23 不合格 48 不合格 不合格 良好 良好 5.5 不合格 10.3 良好 0.21 不合格 49 不合格 不合格 不合格 不合格 6.3 不合格 15.5 不合格 0.35 良好 50 不合格 良好 良好 良好 5.6 不合格 16.3 不合格 0.69 良好 -38- (35) 1295603 這些結果顯示實施例1至2 5的實芯焊絲具有本發明 所界定範圍的組成,而在所有的評定上都是優異的。相反 地,比較例26至50的實芯焊絲具有本發明所界定範圍之 外的組成,而在高速焊接的焊珠形成性、焊接金屬的機械 性能、焊邊直徑P、熱裂紋敏感性、塗佈性和焊接加工性 中的至少一者上是不良的。 具體而言,表8顯示具有本發明所界定範圍之組成的 實施例1至2 5的實芯焊絲在所有的評定上都是優異的。 相反地,比較例26至50的實芯焊絲具有本發明所界定範 圍之外的組成,而在高速焊接的焊珠形成性、焊接金屬的 機械性能、焊邊直徑p、塗佈性、熱裂紋敏感性和焊接加 工性中的至少一者上是不良的。 比較例26至30的實芯焊絲不含有Cr、Ni、Nb、V、 A1和B中的任何一者,或者雖含有這些元素中的任何一 者但其含量小於本發明所界定的範圍,從而焊接金屬顯現 出增加的熱裂紋敏感性和不充分的强度和韌性。比較例3 1 的實芯焊絲具有過高的碳含量,從而顯現不足的焊接金屬 的韌性和增加的熱裂紋敏感性。其也顯現出粗的液滴、增 加的濺射和導致不良塗佈性的大量焊渣。比較例3 2的實 芯焊絲具有過高的錳含量,從而顯現不足的焊接金屬的韌 性、高速焊接中産生鼓包焊珠以及無法形成正常焊珠。其 亦導致大量的焊渣,而顯現不良的塗佈性。比較例3 3的 實芯焊絲具有過高的矽含量,從而顯現不足的焊接金屬的 韌性、粗的液滴和增加的濺射。其亦導致大量的焊渣,從 -39- (36) 1295603 而顯現不良的塗佈性。比較例3 4的實芯焊絲具有過高的 磷含量,而顯現高的熱裂紋敏感性。 比較例3 5和3 6的實芯焊絲具有過低的硫含量’儘管 顯示低的熱裂紋敏感性,但是在高速焊接中顯現出不良的 焊珠形成性和小的焊邊直徑。比較例3 7至40的實芯焊絲 中含有Cr、Ni、V和A1中至少一者的含量過高,因而既 昂貴且在高速焊接中産生鼓包焊珠。其亦顯現粗的液滴和 大量的濺射。比較例4 1的實芯焊絲具有過高的鈮含量’ 因而顯現高的熱裂紋敏感性、昂貴、且在高速焊接中産生 鼓包焊珠。其亦顯示粗的液滴和造成大量的濺射。比較例 42的實芯焊絲具有過高的硼含量,從而顯示高的熱裂紋敏 感性。比較例43的實芯焊絲具有過高的硼和釩含量,從 而顯示高的熱裂紋敏感性、昂貴、且在高速焊接中産生鼓 包焊珠。其亦顯現粗的液滴和造成大量的濺射。 比較例44的實芯焊絲具有過高的矽含量和過低的錳 含量,從而顯示不足的焊接金屬强度、粗的液滴和增加的 濺射。其亦在高速焊接中導致鼓包焊珠和大量的焊渣,且 顯示不良的塗佈性和高的熱裂紋敏感性。比較例45的實 芯焊絲具有過高的硫含量,從而焊接金屬顯現不足的强度 和韌性以及高的熱裂紋敏感性。比較例46的實芯焊絲具 有過低的碳和錳含量,從而焊接金屬顯現不足的强度和高 的熱裂紋敏感性。比較例47的實芯焊絲具有過高的碳含 量和過低的矽含量,從而焊接金屬具有不充分的韌性和增 加的熱裂紋敏感性。其亦顯現不良的焊珠一致性、小的焊 -40- (37) 1295603 邊直徑、導致粗的液滴、增加的濺射和大量的焊渣,並顯 示不良的塗佈性。比較例4 8的實芯焊絲具有過低的矽含 量和過高的磷含量,從而焊接金屬顯示不足的强度、不良 的焊珠一致性、小的焊邊直徑和高的熱裂紋敏感性。 比較例49的實芯焊絲具有過高的碳和錳含量,從而 焊接金屬顯現出過高的强度和不良的韌性。其亦在高速焊 接中導致鼓包焊珠,從而無法形成正常的焊珠,且顯現粗 I 的液滴、增加的濺射、大量的焊渣、不良的塗佈性和高的 熱裂紋敏感性。對較比例50的實芯焊絲具有過低的碳含 量和過高的磷含量,從而顯現出不足的焊接金屬强度和高 的熱裂紋敏感性。 【圖式簡單說明】 圖1是搭腳焊接接頭之焊接的焊邊之圖;和 圖2A是表示測試片取樣位置的截面圖,圖2B是顯示 ^ 如何製備魚骨形抗裂試驗的測試片的平面圖。 【主要元件之符號說明】 la:基底金屬(下面的片),lb:基底金屬(上面的片) 2 :焊珠,1 1 :基底金屬,12 :焊珠 13 :襯墊金屬,14 :測試片,i 5 ··狹縫 1 6 :銅板,1 7 :焊接方向 • 41 -No. Welding machine mechanical properties High-speed welding Bead formation Welding processability Coating fish bone crack test Arc pit crack test Weld bead diameter P Crack ratio (%) Evaluation crack ratio (%) Evaluation of weld bead diameter (mm) Evaluation 1 Good Good Good Good 0 Good 0 Good 0.53 Good 2 Good Good Good Good 3.5 Good 4.1 Good 0.41 Good 3 Good Good Good Good 0 Good 0 Good 0.36 Good 4 Good Good Good Good 1.5 Good 0 Good 0.63 Good 5 Good Good Good Good 0 Good 2.2 Good 0.41 Good 6 Good Good Good Good 0 Good 0 Good 0.59 Good 7 Good Good Good 3.4 Good 8.5 Good 0.78 Good 8 Good Good Good Good 0 Good 0 Good 0.31 Good 9 Good Good Good Good 3.5 Good 6.1 Good 0.82 Good 10 Good Good Good Good 0 Good 0 Good 0.53 Good 11 Good Good Good Good 0 Good 0 Good 0.59 Good Real 12 Good Good Good Good 0 Good 0 Good 0.45 Good Good 13 Good Good Good 2.5 Good 5.2 Good 0.33 Good Example 14 Good Good Good Good 0 Good 2.3 Good 0.63 Good 15 Good Good Good Good 3.9 Good 5.5 Good 0.41 Good 16 Good Good Good Good 2.2 Good 4.5 Good 0.88 Good 17 Good Good Good Good 1.2 Good 0 Good 0.33 Good 18 Good Good Good Good 0 Good 5.6 Good 0.54 Good 19 Good Good Good Good 0 Good 0 Good 0.59 Good 20 Good Good Good Good 0 Good 0 Good 0.31 Good 21 Good Good Good Good 0 Good 0 Good 0.35 Good 22 Good Good Good good 0 Good 0 Good 0.38 Good 23 Good Good Good Good 2.5 Good 8.9 Good 0.51 Good 24 Good Good Good Good 0 Good 0 Good 0.49 Good 25 Good Good Good Good 0 Good 0 Good 0.31 Good 26 Good Good Good Good 10.3 Unsatisfactory 14.3 Good 0.43 Good 27 Unqualified Good Good Good 15.2 Unsatisfactory 20.3 Unsatisfactory 0.56 Good 28 Unqualified Good good 20.1 Unsatisfactory 35.5 Unsatisfactory 0.85 Good 29 Good good Good good 9.3 Unsatisfactory 14.3 Good 0.40 Good 30 Unqualified Good Good Good 14.2 Unsatisfied 15.5 Unsatisfactory 0.55 Good 31 Unqualified Good Unqualified Unqualified 6.7 Unqualified 16.0 Unqualified 0.33 Good 32 Unqualified Unqualified Good Unqualified 4.3 Good 14.2 Good 0.84 Good 33 Unqualified Unqualified Unqualified Unsatisfactory 4.0 Good 10.2 Good 0.69 Good 34 Good Good Good 8.9 Unsatisfactory 20.5 Unsatisfactory 0.53 Good 35 Good Failure Good Good 0.0 Good 0.0 Good 0.18 Unsatisfied 36 Good failure Good good 0.0 Good 0.0 Good 0.23 Unsatisfactory ratio 37 Good failure Not acceptable Good 0.0 Good 0.0 Good 0.59 Good 38 Good failure Not acceptable Good 3.5 Good 10.9 Good 0.82 Good example 39 Good unqualified unqualified good 0.0 Good 0.0 Good 0.68 Good 40 Good unqualified Unqualified Good 0.0 Good 0.0 Good 0.45 Good 41 Good unqualified Good 3.2 Good 17.5 Unsatisfactory 0.68 Good 42 Good Good Good Good 6.3 Unsatisfied 15.3 Unsatisfactory 0.35 Good 43 Good Failure Unqualified Good 4.5 Unqualified 18.0 Unsatisfactory 0.38 Good 44 Unqualified Good Unqualified Unqualified 5.5 Unqualified 20.3 Unqualified 0.43 Good 45 Failed Good Good Good 21.1 Unsatisfactory 35.5 Unsatisfactory 0.84 Good 46 Failed Good Good Failed Good 4.3 Unqualified 5.5 Good 0.35 Good 47 Unqualified Unqualified Unqualified Unqualified 20.2 Unqualified 43.3 Unqualified 0.23 Unqualified 48 No Qualified unqualified good good 5.5 unqualified 10.3 good 0.21 unqualified 49 unqualified unqualified unqualified unqualified 6.3 unqualified 15.5 unqualified 0.35 good 50 unqualified good good 5.6 unqualified 16.3 unqualified 0.69 good -38- (35) 1295603 These results show that the solid wire of Examples 1 to 25 has a composition within the scope defined by the present invention and is excellent in all evaluations. In contrast, the solid wire of Comparative Examples 26 to 50 has a composition outside the range defined by the present invention, and the bead formation at high speed welding, the mechanical properties of the weld metal, the bead diameter P, the thermal crack sensitivity, and the coating At least one of the cloth properties and the weldability is poor. Specifically, Table 8 shows that the solid wire of Examples 1 to 25 having the composition of the range defined by the present invention is excellent in all evaluations. In contrast, the solid wire of Comparative Examples 26 to 50 has a composition outside the range defined by the present invention, and the bead formation at high speed welding, the mechanical properties of the weld metal, the bead diameter p, the coatability, and the hot crack At least one of sensitivity and weld processability is undesirable. The solid wire of Comparative Examples 26 to 30 does not contain any one of Cr, Ni, Nb, V, A1 and B, or contains any one of these elements but the content thereof is smaller than the range defined by the present invention, thereby The weld metal exhibits increased hot crack sensitivity and insufficient strength and toughness. The solid wire of Comparative Example 3 1 had an excessively high carbon content, thereby exhibiting insufficient weld metal toughness and increased hot crack sensitivity. It also exhibits coarse droplets, increased sputtering, and a large amount of weld slag which causes poor coatability. The solid wire of Comparative Example 3 2 had an excessively high manganese content, thereby exhibiting insufficient toughness of the weld metal, generation of bulge weld beads in high-speed welding, and failure to form normal weld beads. It also causes a large amount of weld slag and exhibits poor coating properties. The solid wire of Comparative Example 3 3 had an excessively high niobium content, thereby exhibiting insufficient toughness of the weld metal, coarse droplets, and increased sputtering. It also caused a large amount of weld slag, which exhibited poor coating properties from -39-(36) 1295603. The solid wire of Comparative Example 4 4 had an excessively high phosphorus content and exhibited high thermal crack sensitivity. Comparative Example 3 The solid wire of 5 and 3 6 has an excessively low sulfur content. Despite exhibiting low thermal cracking sensitivity, it exhibits poor bead formation and small bead diameter in high speed welding. Comparative Example 3 The solid wire of 7 to 40 contained an excessive content of at least one of Cr, Ni, V and A1, and thus was expensive and produced a bulge bead in high-speed welding. It also shows coarse droplets and a large amount of sputtering. The solid wire of Comparative Example 4 1 has an excessively high niobium content' thus exhibiting high hot crack sensitivity, being expensive, and producing a bulge bead in high speed welding. It also shows coarse droplets and causes a lot of sputtering. The solid wire of Comparative Example 42 had an excessively high boron content, thereby exhibiting high thermal crack sensitivity. The solid wire of Comparative Example 43 had an excessively high boron and vanadium content, thereby exhibiting high hot crack sensitivity, being expensive, and producing a drum bead in high speed welding. It also shows coarse droplets and causes a lot of sputtering. The solid wire of Comparative Example 44 had an excessively high niobium content and an excessively low manganese content, thereby indicating insufficient weld metal strength, coarse droplets, and increased sputtering. It also causes bulging beads and a large amount of slag in high-speed welding, and exhibits poor coatability and high thermal crack sensitivity. The solid wire of Comparative Example 45 had an excessively high sulfur content, so that the weld metal exhibited insufficient strength and toughness and high hot crack sensitivity. The solid wire of Comparative Example 46 had an excessively low carbon and manganese content, so that the weld metal exhibited insufficient strength and high thermal crack sensitivity. The solid wire of Comparative Example 47 had an excessively high carbon content and an excessively low niobium content, so that the weld metal had insufficient toughness and increased hot crack sensitivity. It also exhibits poor bead consistency, small welds -40-(37) 1295603 side diameter, resulting in coarse droplets, increased sputtering and large amounts of weld slag, and exhibits poor coating properties. The solid wire of Comparative Example 4 8 had an excessively low yttrium content and an excessively high phosphorus content, so that the weld metal showed insufficient strength, poor bead uniformity, small weld bead diameter, and high hot crack sensitivity. The solid wire of Comparative Example 49 had an excessively high carbon and manganese content, so that the weld metal exhibited excessive strength and poor toughness. It also causes bulging of the bead in high-speed welding, so that normal bead cannot be formed, and droplets of coarse I, increased sputtering, large amount of weld slag, poor coatability, and high thermal crack sensitivity are exhibited. A solid steel wire of a proportion of 50 has an excessively low carbon content and an excessively high phosphorus content, thereby exhibiting insufficient weld metal strength and high hot crack sensitivity. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a welded edge of a welded joint of a foot; and Fig. 2A is a sectional view showing a sampling position of the test piece, and Fig. 2B is a test piece showing how to prepare a fish bone crack resistance test. Floor plan. [Symbol description of main components] la: base metal (lower sheet), lb: base metal (upper sheet) 2: solder beads, 1 1 : base metal, 12: solder beads 13 : gasket metal, 14 : test Sheet, i 5 ··slit 1 6 : copper plate, 1 7 : welding direction • 41 -

Claims (1)

1295603 (1) 十、申請專利範圍 1. 一種用於氣體保護式弧焊的實芯焊絲,其包含: 以該焊絲的總質量爲基礎, 〇.〇3至0.15質量%的碳(C ); 〇·50至1.50質量%的矽(Si); 1·〇〇至3.00質量%的錳(Μη); 0.020至0.150質量%的硫(S);和 選自:0.0 1至0.20質量%的鈦(Ti) 、〇.〇1至〇 2 〇 癱· 零質量%的鉻(Zr) 、0.01至〇·〇5質量%的鑭(La)、和 0.01至0.05質量%的鈽(Ce)所組成族群中的至少一者 f 餘量爲鐵和不可避免的雜質, 其中,作爲不可避免的雜質的磷(P)的含量爲〇. 〇2 5 質量%或更低,並且 其中根據下列方程式確定的"A”値爲100或更大; [M”]+20x [37]+25x [Zr]+50x [La]+50x [Ce] • 乂= W] 其中[Mn]、[Ti]、[Zr]、[La]、[Ce]和[S]分別表示焊 絲的Μη、Ti、Zr、La、Ce、和S含量(質量% )。 2 .如申請專利範圍第1項之用於氣體保護式弧焊的 實芯焊絲,其具有1·5〇質量%或更高的錳(Μη)含量。 3 .如申請專利範圍第1項之用於氣體保護式弧焊的 實芯焊絲,其具有0.040質量%或更高的硫(S)含量。 4. 一種用於氣體保護式弧焊的實芯焊絲,其包含: 以該焊絲的總質量爲基礎, -42- (2) 1295603 0.02至0.15質量%的碳(C); 0.50至1.50質量%的矽(Si); 1.00至3.00質量%的錳(Μη); 0.020至0.150質量%的硫(S); 0.005至0.5質量%的鈮(Nb );和 選自:0.005至0.5質量%的釩(V) 、0.010至0.5 質量%的鋁(A1 ) 、0.00 5至 0·5質量%的鉻(Cr )、 0.005至0.5質量%的鎳(Ni)、和0.0010至0.0100質量 ^ %的硼(B )所組成族群中的至少一者; 餘量爲鐵和不可避免的雜質, 其中作爲不可避免的雜質的磷(P)的含量爲0.025 質量%或更低。 5 . —種進行氣體保護式弧焊的方法,其包含利用申 請專利範圍第1項的實芯焊絲焊接厚度0.6至1 0 mm的低 碳鋼或高强度薄鋼板的步驟。 -43-1295603 (1) X. Patent application scope 1. A solid wire for gas-shielded arc welding, comprising: 〇.〇3 to 0.15 mass% of carbon (C) based on the total mass of the wire; 〇·50 to 1.50% by mass of bismuth (Si); 1·〇〇 to 3.00% by mass of manganese (Μη); 0.020 to 0.150% by mass of sulfur (S); and selected from: 0.01 to 0.20% by mass of titanium (Ti), 〇.〇1 to 〇2 〇瘫· 0.5% by mass of chromium (Zr), 0.01 to 〇·〇5 mass% of lanthanum (La), and 0.01 to 0.05% by mass of lanthanum (Ce) At least one of the populations of the group f is iron and unavoidable impurities, wherein the content of phosphorus (P) as an unavoidable impurity is 〇.25 mass% or less, and wherein it is determined according to the following equation "A"値 is 100 or more; [M]]+20x [37]+25x [Zr]+50x [La]+50x [Ce] • 乂= W] where [Mn], [Ti], [ Zr], [La], [Ce], and [S] represent the contents of Μη, Ti, Zr, La, Ce, and S (% by mass) of the wire, respectively. 2. The solid wire for gas-shielded arc welding according to the first application of the patent scope, which has a manganese (Mn) content of 1.5% by mass or more. 3. A solid wire for gas-shielded arc welding according to claim 1 of the patent application, which has a sulfur (S) content of 0.040% by mass or more. 4. A solid wire for gas-shielded arc welding, comprising: -42- (2) 1295603 0.02 to 0.15 mass% of carbon (C); 0.50 to 1.50 mass% based on the total mass of the wire矽 (Si); 1.00 to 3.00% by mass of manganese (Μη); 0.020 to 0.150% by mass of sulfur (S); 0.005 to 0.5% by mass of bismuth (Nb); and selected from: 0.005 to 0.5% by mass of vanadium (V), 0.010 to 0.5% by mass of aluminum (A1), 0.005 to 0.5% by mass of chromium (Cr), 0.005 to 0.5% by mass of nickel (Ni), and 0.0010 to 0.0100% by mass of boron ( B) at least one of the group consisting of; the balance being iron and unavoidable impurities, wherein the content of phosphorus (P) as an unavoidable impurity is 0.025 mass% or less. 5. A method of gas-shielded arc welding comprising the steps of welding a low carbon steel or a high-strength steel sheet having a thickness of 0.6 to 10 mm using a solid wire of the first application of the patent scope. -43-
TW095118895A 2005-06-15 2006-05-26 Solid wires for gas-shielded arc welding TWI295603B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005174720 2005-06-15

Publications (2)

Publication Number Publication Date
TW200718498A TW200718498A (en) 2007-05-16
TWI295603B true TWI295603B (en) 2008-04-11

Family

ID=37518483

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095118895A TWI295603B (en) 2005-06-15 2006-05-26 Solid wires for gas-shielded arc welding

Country Status (3)

Country Link
KR (1) KR100764301B1 (en)
CN (2) CN101380704B (en)
TW (1) TWI295603B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5001595B2 (en) * 2006-07-11 2012-08-15 株式会社神戸製鋼所 Solid wire
JP4909138B2 (en) * 2006-12-29 2012-04-04 株式会社神戸製鋼所 Solid wire
US8461485B2 (en) 2006-12-29 2013-06-11 Kobe Steel, Ltd. Solid wire
JP5450293B2 (en) * 2010-07-01 2014-03-26 株式会社神戸製鋼所 Fillet welded joint and gas shielded arc welding method
JP5411820B2 (en) * 2010-09-06 2014-02-12 株式会社神戸製鋼所 Flux-cored welding wire and overlay welding arc welding method using the same
MX2015010292A (en) * 2013-02-15 2015-10-26 Nippon Steel & Sumitomo Metal Corp Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint.
CN105108376A (en) * 2015-08-13 2015-12-02 江苏新航合金科技有限公司 Nickel alloy high-temperature-resistant welding wire
KR102308001B1 (en) * 2016-05-02 2021-10-05 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 On-site dissimilar metal welding technology for improved wear resistance and high manganese steel
KR101995029B1 (en) * 2018-02-13 2019-07-02 현대종합금속 주식회사 Gas Tungsten Arc Welding Wire
CN109807493B (en) * 2018-11-21 2021-09-07 武汉铁锚焊接材料股份有限公司 Gas-shielded solid welding wire for ultrahigh-strength engineering mechanical steel plate and application thereof
KR102221969B1 (en) * 2020-03-24 2021-03-02 현대로템 주식회사 Solid Wire for Automatic Welding with Excellent High-speed Weldability
CN113319469B (en) * 2021-06-30 2022-09-02 桂林航天工业学院 High-strength heat-resistant steel gas shielded welding wire and preparation method thereof

Also Published As

Publication number Publication date
CN1880007A (en) 2006-12-20
TW200718498A (en) 2007-05-16
CN100525988C (en) 2009-08-12
KR100764301B1 (en) 2007-10-05
CN101380704B (en) 2011-06-22
CN101380704A (en) 2009-03-11
KR20060131658A (en) 2006-12-20

Similar Documents

Publication Publication Date Title
TWI295603B (en) Solid wires for gas-shielded arc welding
RU2322529C2 (en) Low-alloyed steel of welded seam and weld wire with flux core
NO342770B1 (en) High-heat butcher-weld connection which exhibits excellent properties in connection with the occurrence of fractures
EP2422913B1 (en) Electron beam welded joint excellent in brittle fracture resistance
JP4886440B2 (en) High strength weld metal with excellent low temperature toughness
EP2639007A1 (en) Ni-based alloy solid wire for welding
JP6197885B2 (en) Welding material for Ni-base heat-resistant alloy, weld metal and welded joint using the same
US10688602B2 (en) Submerged arc welding process
EP2674241A1 (en) Weld metal with excellent creep characteristics
KR102092059B1 (en) Manufacturing method of Ni-based alloy wire and welding joint for submerged arc welding
JP2006035293A (en) Welding method of galvanized steel plate having excellent corrosion resistance and zinc embrittlement cracking resistance of weld
JP6891630B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP4879688B2 (en) Steel arc welded joint with excellent fatigue strength, its welding method and steel structure
KR20190037286A (en) Flux cored wire and weld metal for gas shield arc welding
JP4979278B2 (en) Solid wire for gas shielded arc welding
US4430545A (en) Method for submerged-arc welding a very low carbon steel
JPH0152118B2 (en)
KR101286502B1 (en) Titania type flux cored wire having excellent crack resistance
EP4265370A1 (en) Flux cored wire
JP2001131679A (en) Joint and structure composed of hyperfine-grained steel
JP2000153389A (en) Brazing filler metal, and brazed body
US20240141460A1 (en) Aluminum alloy expanded material for welding use, aluminum alloy welding-joined body, and method for welding same
JPH11197884A (en) Dual electrode electrogas arc welding method
JPH0191994A (en) Wire for gas shielded arc welding
JPS59193790A (en) Cr-mo solid wire for submerged arc welding