WO2014119498A1 - 導電膜形成用組成物、導電膜の製造方法 - Google Patents

導電膜形成用組成物、導電膜の製造方法 Download PDF

Info

Publication number
WO2014119498A1
WO2014119498A1 PCT/JP2014/051628 JP2014051628W WO2014119498A1 WO 2014119498 A1 WO2014119498 A1 WO 2014119498A1 JP 2014051628 W JP2014051628 W JP 2014051628W WO 2014119498 A1 WO2014119498 A1 WO 2014119498A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
composition
forming
copper oxide
oxide particles
Prior art date
Application number
PCT/JP2014/051628
Other languages
English (en)
French (fr)
Inventor
美里 佐々田
佑一 早田
悠史 本郷
俊博 仮屋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP14745507.5A priority Critical patent/EP2952546B1/en
Publication of WO2014119498A1 publication Critical patent/WO2014119498A1/ja
Priority to US14/807,654 priority patent/US10053587B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08L39/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C09D139/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a conductive film forming composition, and more particularly to a conductive film forming composition containing copper oxide particles exhibiting a predetermined volume average secondary particle diameter.
  • the present invention also relates to a method for producing a conductive film, and more particularly to a method for producing a conductive film using the conductive film forming composition.
  • a metal film or a circuit board is obtained by applying a dispersion of metal particles or metal oxide particles to the base material by a printing method and then sintering by heat treatment or light irradiation treatment.
  • a technique for forming an electrically conductive portion such as a wiring in is known. Since the above method is simpler, energy-saving, and resource-saving than conventional high-heat / vacuum processes (sputtering) and plating processes, it is highly anticipated in the development of next-generation electronics.
  • Example column of Patent Document 1 a metal oxide dispersion containing cuprous oxide particles and diethylene glycol is disclosed, and a copper wiring is formed using this dispersion.
  • An object of this invention is to provide the composition for electrically conductive film formation which can form the electrically conductive film which has few space
  • Another object of the present invention is to provide a method for producing a conductive film using the composition for forming a conductive film.
  • a dispersant selected from the group consisting of copper oxide particles having a volume average secondary particle diameter in a predetermined range, a water-soluble polymer, and a surfactant. And it discovered that the said subject could be solved by using the composition containing water as a solvent. That is, it has been found that the above object can be achieved by the following configuration.
  • a composition for forming a conductive film comprising copper oxide particles, water, and a dispersant selected from the group consisting of a water-soluble polymer and a surfactant, The volume average secondary particle diameter of the copper oxide particles is 20 to 240 nm, A composition for forming a conductive film, wherein the content of copper oxide particles is 10 to 70% by mass relative to the total mass of the composition for forming a conductive film.
  • a dispersing agent contains water-soluble polymer and surfactant.
  • the dispersant comprises polyvinylpyrrolidone having a weight average molecular weight of 8000 to 16000 or polyethylene glycol having a weight average molecular weight of 3000 to 18000.
  • (6) The composition for forming a conductive film according to any one of (1) to (5), wherein the content of the dispersant is 4 to 20% by mass with respect to the total mass of the copper oxide particles.
  • the composition for electrically conductive film formation which can form the electrically conductive film with few voids and showing the outstanding electroconductivity can be provided.
  • the manufacturing method of the electrically conductive film using this composition for electrically conductive film formation can also be provided.
  • a copper oxide particle having a volume average secondary particle diameter in a predetermined range is used, and a dispersant selected from the group consisting of a water-soluble polymer and a surfactant is used.
  • the point which uses water as a solvent is mentioned. Copper oxide in the coating film (precursor film) before being subjected to heat treatment or light irradiation treatment formed from the composition for forming a conductive film when the volume average secondary particle diameter is within a predetermined range.
  • the packing of the copper oxide particles proceeds more densely by using a dispersant selected from the group consisting of a water-soluble polymer and a surfactant.
  • a dispersant selected from the group consisting of a water-soluble polymer and a surfactant.
  • water it is presumed that the coating film tends to be in a denser state due to hydrogen bonds such as a solvent or a water-soluble polymer, and promotes packing of copper oxide particles.
  • the heat conduction between the copper oxide particles is improved during the heat treatment or the light irradiation treatment, and the reduction from copper oxide to metallic copper proceeds more efficiently.
  • the composition for electrically conductive film formation of this invention uses water, it is excellent in safety.
  • the composition for forming a conductive film contains copper oxide particles.
  • the copper oxide particles are reduced by heat treatment or light irradiation treatment to be described later, and constitute metallic copper in the conductive film.
  • the “copper oxide” in the present invention is a compound that substantially does not contain copper that has not been oxidized. Specifically, in a crystal analysis by X-ray diffraction, a peak derived from copper oxide is detected, and is derived from a metal. Refers to a compound for which no peak is detected. Although not containing copper substantially, it means that content of copper is 1 mass% or less with respect to copper oxide particles.
  • copper oxide copper (I) oxide or copper (II) oxide is preferable, and copper (II) oxide is more preferable because it is available at a low cost and is stable.
  • the volume average secondary particle diameter of the copper oxide particles is 20 to 240 nm. Of these, 20 to 180 nm is preferable, 50 to 160 nm is more preferable, and more than 100 nm and 160 nm or less is more preferable in that the conductivity of the formed conductive film is more excellent. When the volume average secondary particle diameter of the copper oxide particles is less than 20 nm, the dispersion stability of the copper oxide particles in the composition for forming a conductive film is inferior, and the conductivity of the conductive film is also lowered.
  • volume average secondary particle diameter of the copper oxide particles is more than 240 nm, there are many voids in the formed conductive film, the handling property and durability of the conductive film are deteriorated, and the conductivity is lowered.
  • the volume average secondary particle diameter of the copper oxide particles is measured by diluting the conductive film forming composition with ion exchange water so that the copper oxide concentration (copper oxide particle concentration) becomes 0.01 wt% (mass%). Measured by a dynamic light scattering method using Nanotrac particle size distribution analyzer UPA-EX150 (manufactured by Nikkiso Co., Ltd.).
  • control method in particular of the volume average secondary particle diameter of a copper oxide particle is not restrict
  • the method of controlling the kind of dispersing agent used, and the mixing conditions mixing method, a dispersing agent, and a copper oxide particle
  • Known methods such as a method for controlling the mixing procedure), a dispersing machine to be used, a method for changing the dispersion time, a method for controlling the mixing ratio of the copper oxide particles, the dispersant, and the solvent (water) are selected. .
  • the average primary particle size of the copper oxide particles is not particularly limited, but is preferably 100 nm or less, more preferably 80 nm, still more preferably 50 nm or less, and particularly preferably less than 50 nm.
  • the lower limit is not particularly limited, but is preferably 1 nm or more, and more preferably 10 nm or more.
  • An average primary particle size of 1 nm or more is preferable because the activity on the particle surface does not become too high, does not dissolve in the composition, and is easy to handle. Moreover, if it is 100 nm or less, it becomes easy to form patterns such as wiring by various printing methods using the composition as an ink-jet ink composition or a screen printing paste composition.
  • the reduction to metal copper is sufficient, and the resulting conductive film has good conductivity, which is preferable.
  • the average primary particle diameter is determined by measuring the equivalent circle diameter of at least 400 copper oxide particles by observation with a transmission electron microscope (TEM) or scanning electron microscope (SEM), and arithmetically averaging them. Ask.
  • the equivalent circle diameter means the diameter of a circle corresponding to the same area as the observed two-dimensional shape of the copper oxide particles.
  • the average primary particle size and volume average secondary particle size of the copper oxide particles are preferably such that the ratio of average primary particle size / volume average secondary particle size is 0.1 to 0.7, and the formed conductive From the viewpoint of more excellent conductivity of the film, it is more preferably 0.25 to 0.5.
  • the said copper oxide particle may use a commercial item, or may manufacture it with a well-known manufacturing method.
  • the composition for forming a conductive film contains water.
  • Water functions as a dispersion medium for the copper oxide particles. Use of water as a solvent is preferable because of its excellent safety.
  • copper oxide particles are easily packed more densely by hydrogen bonds such as a solvent or a water-soluble polymer, and as a result, there are few voids and the conductivity is excellent. It is assumed that a film is formed. As water, what has the purity of the level of ion-exchange water is preferable.
  • the composition for electrically conductive film may contain other solvents (for example, organic solvent) other than water in the range which does not impair the effect of this invention.
  • the conductive film-forming composition contains a dispersant selected from the group consisting of a water-soluble polymer and a surfactant.
  • a dispersant selected from the group consisting of a water-soluble polymer and a surfactant.
  • the type of the water-soluble polymer is not particularly limited as long as the polymer is soluble in water.
  • water-soluble polymers include plant polymers, microbial polymers, and synthetic / semi-synthetic polymers.
  • plant polymers include xanthan gum, gum arabic, tragacanth gum, galactan, guar gum, and carob gum. , Karaya gum, carrageenan, pectin, agar, quince seed (quince), arge colloid (cassava extract), starch (rice, corn, potato, wheat), glycyrrhizic acid, and the like, for example, dextran, succinoglucan And bull run.
  • Semi-synthetic water-soluble polymers include, for example, starch polymers (eg, carboxymethyl starch, methylhydroxypropyl starch, etc.); cellulose polymers (methylcellulose, ethylcellulose, methylhydroxypropylcellulose, hydroxyethylcellulose, sodium cellulose sulfate) Hydroxypropylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, crystalline cellulose, cellulose powder and the like); alginic acid polymers (for example, sodium alginate, propylene glycol alginate, etc.) and the like.
  • starch polymers eg, carboxymethyl starch, methylhydroxypropyl starch, etc.
  • cellulose polymers methylcellulose, ethylcellulose, methylhydroxypropylcellulose, hydroxyethylcellulose, sodium cellulose sulfate Hydroxypropylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, crystalline cellulose, cellulose powder and the like
  • alginic acid polymers for example, sodium
  • Examples of the synthetic water-soluble polymer include vinyl polymers (for example, carboxyvinyl polymer (carbomer), polyvinyl alcohol, polyvinyl methyl ether, polyvinyl pyrrolidone, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrene carboxylic acid). Acid); polyoxyethylene polymer (eg, polyethylene glycol, polypropylene glycol, etc.); acrylic polymer (eg, polyacrylic acid, polymethacrylic acid, polyethyl acrylate, sodium polyacrylate, polyacrylamide); polyethylene Imine; cationic polymer and the like.
  • vinyl polymers for example, carboxyvinyl polymer (carbomer), polyvinyl alcohol, polyvinyl methyl ether, polyvinyl pyrrolidone, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrene carboxylic acid). Acid
  • polyoxyethylene polymer
  • the water-soluble polymer include polyvinyl pyrrolidone, polyethylene glycol, polyvinyl alcohol, and an acrylic copolymer. If it is these polymers, the electroconductivity of the electrically conductive film formed will be more excellent.
  • the weight average molecular weight of polyvinyl pyrrolidone is not particularly limited, but is preferably 2500 to 16000, more preferably 8000 to 16000, and still more preferably 20000 to 80,000, in that the conductivity of the conductive film to be formed is more excellent.
  • the weight average molecular weight of polyethylene glycol is not particularly limited, but is preferably from 3000 to 40000, more preferably from 3000 to 18000, and even more preferably from 5000 to 18000 from the viewpoint that the conductivity of the conductive film to be formed is more excellent.
  • the weight average molecular weight of the polyvinyl alcohol is not particularly limited, but is preferably 2500 to 40000, more preferably 3000 to 20000, from the viewpoint that the conductive film to be formed has more excellent conductivity.
  • Examples of the acrylic copolymer include BYK-154, DISPERBYK-2010, DISPERBYK-2015, and the like, which are commercially available products from BYK Japan Japan Co., Ltd.
  • the weight average molecular weight is a polystyrene equivalent value obtained by the GPC method (solvent: N-methylpyrrolidone).
  • the type of the surfactant is not particularly limited, and examples thereof include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • Specific examples of the anionic surfactant include fatty acid salts, alkyl sulfate esters, alkylbenzene sulfonates, alkyl naphthalene sulfonates, alkyl sulfosuccinates, alkyl diphenyl ether disulfonates, alkyl phosphates, polyoxyethylenes.
  • Alkyl sulfate ester salt polyoxyethylene alkyl allyl sulfate ester salt, naphthalene sulfonic acid formalin condensate, polycarboxylic acid type polymer surfactant, polyoxyethylene alkyl phosphate ester and the like can be mentioned.
  • polycarboxylic acid type polymer surfactants include polymers of carboxylic acid monomers having unsaturated double bonds such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid, and unsaturated compounds. Examples thereof include a copolymer of a carboxylic acid monomer having a double bond and another monomer having an unsaturated double bond, and an ammonium salt or an amine salt thereof.
  • a polyacrylic acid-based dispersant is preferable, and a polymer dispersant having an acrylic acid ammonium salt as a constituent unit as a copolymerization component is more preferable.
  • polycarboxylic acid type polymer surfactant examples include sodium salt of copolymer of isobutylene or diisobutylene and maleic anhydride, sodium salt of copolymer of maleic anhydride and styrene, acrylic acid polymer Sodium salt, ammonium salt of a copolymer of maleic anhydride and acrylic acid, sodium salt or ammonium salt of a copolymer of itaconic acid and acrylic acid, and the like.
  • nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, polyoxyethylene derivatives, oxyethylene / oxypropylene block copolymers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene derivatives Examples thereof include oxyethylene sorbitol fatty acid ester, glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkylamine, and alkyl alkanolamide. More specifically, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene lauryl ether and the like can be mentioned.
  • cationic surfactant and the amphoteric surfactant include alkylamine salts, quaternary ammonium salts, alkylbetaines, amine oxides and the like.
  • an anionic surfactant or a nonionic surfactant is preferable in that the conductivity of the conductive film to be formed is more excellent.
  • the anionic surfactant a polycarboxylic acid type polymer surfactant is preferable.
  • the nonionic surfactant polyoxyethylene alkyl ether is preferable.
  • both the water-soluble polymer and surfactant may be contained in the composition for electrically conductive film formation.
  • the water-soluble polymer when the water-soluble polymer is contained in the composition for forming a conductive film, two or more different types of water-soluble polymers may be contained.
  • the weight of the composition is improved in that the effect of the present invention is more excellent. It is preferable that two or more water-soluble polymers having different average molecular weights are contained.
  • surfactant is contained in the composition for electrically conductive film formation, 2 or more types of surfactant from which a kind differs may be contained.
  • the composition for forming a conductive film may contain components other than the copper oxide particles, water, water-soluble polymer and surfactant.
  • a thixotropic agent may be included in order to control the viscosity of the conductive film forming composition within an appropriate range.
  • the thixotropic agent only 1 type may be used and 2 or more types may be used together.
  • the thixotropic agent refers to an additive that imparts thixotropic properties to the dispersion medium.
  • Thixotropy thixotropy refers to the property of a fluid that decreases in viscosity when a force is applied and returns to its original value when left standing.
  • thixotropic agents include organic thixotropic agents and inorganic thixotropic agents.
  • examples of the organic thixotropic agent include fatty acid amide type thixotropic agents, hydrogenated castor oil type thixotropic agents, oxidized polyolefin type thixotropic agents, urea type thixotropic agents, and urethane type thixotropic agents. More specifically, urea urethane, modified urea, polyhydroxycarboxylic acid amide, polyhydroxycarboxylic acid ester, urea-modified polyamide, oxidized polyethylene amide, oxidized polyethylene, fatty acid amide and the like can be mentioned.
  • fatty acid amide thixotropic agent Commercially available products of the fatty acid amide thixotropic agent include Disparon 6900-20X, 6900-10X, A603-20X, A603-10X, 6810-20X, 6850-20X, FS-6010, PFA manufactured by Enomoto Kasei Co., Ltd. -131, PFA-231, 6500, 6650, 6700, F-9020, F-9030, F-9040 and F-9050, and BYK-405 manufactured by BYK Chemie.
  • Examples of commercially available hydrogenated castor oil-based thixotropic agents include Disparon 308 and 4300 manufactured by Enomoto Kasei Co., Ltd.
  • Examples of commercially available products of the oxidized polyolefin thixotropic agent include Disparon 4200-20, 4200-10, PF-911, 4401-25X, and 4401-25M manufactured by Enomoto Kasei Co., Ltd.
  • Commercially available products of the above-mentioned urea thixotropic agent and urethane type thixotropic agent include BYK-410, BYK-411, BYK-420, BYK-425, BYK-428, BYK-430 and BYK-431 manufactured by BYK Chemie. Is mentioned.
  • the composition for forming a conductive film includes the above-described copper oxide particles, water, and a dispersant.
  • the content of the copper oxide particles is 10 to 70% by mass with respect to the total mass of the composition for forming a conductive film. Among these, 20 to 70% by mass is preferable, 30 to 65% by mass is more preferable, and 40 to 65% by mass is more preferable in that the conductivity of the formed conductive film is more excellent.
  • the content of the copper oxide particles is less than 10% by mass, the formed conductive film tends to be non-uniform, and when it exceeds 70% by mass, the conductivity of the formed conductive film is inferior.
  • the content of water is not particularly limited, but is preferably 15 to 88% by mass, and preferably 20 to 75% by mass with respect to the total mass of the conductive film forming composition in terms of excellent storage stability of the conductive film forming composition. Is more preferable, and 25 to 55% by mass is further preferable.
  • the content of the dispersant is not particularly limited, but is preferably 2 to 20% by mass and more preferably 4 to 20% by mass with respect to the total mass of the copper oxide particles in terms of excellent storage stability of the composition for forming a conductive film. Preferably, 6 to 15% by mass is more preferable.
  • the content of the surfactant is preferably 10% by mass or less based on the total weight of the copper oxide particles. The mass% or less is more preferable. Although a minimum in particular is not restrict
  • the content of the thixotropic agent is not particularly limited, but the total mass of the composition for forming a conductive film is superior in that the porosity of the formed conductive film is excellent.
  • the content is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass.
  • the pH of the composition for forming a conductive film is not particularly limited, it is preferably 9 or less, more preferably 7 or less, more preferably 4 or more, and more preferably 5 or more in terms of more excellent dispersion stability of the copper oxide particles.
  • the manufacturing method in particular of the composition for electrically conductive film formation is not restrict
  • the composition for electrically conductive film formation can be manufactured by mixing the copper oxide particle mentioned above, water, a dispersing agent, and another arbitrary component.
  • the mixing method is not particularly limited.
  • a homogenizer for example, an ultrasonic homogenizer, a high-pressure homogenizer
  • a mill for example, a bead mill, a ball mill, a tower mill, a three roll mill
  • a mixer for example, a planetary mixer, a disper mixer, a hen
  • examples thereof include a method of mixing and dispersing using a sill mixer, a kneader, a Clare mix, a self-revolving mixer (stirring deaerator), and the like.
  • it is preferable to use an ultrasonic homogenizer or a bead mill because the dispersibility of the copper oxide particles is more excellent.
  • the bead material, the bead amount, and the bead diameter are not particularly limited as long as they are used in a normal bead mill.
  • the bead diameter is preferably about 0.05 to 3 mm ⁇ .
  • the method for producing a conductive film of the present invention comprises a step of forming a coating film on a substrate using the above-described composition for forming a conductive film (hereinafter also referred to as a coating film forming step as appropriate), heat treatment and / or light. And a step of obtaining a conductive film by performing irradiation treatment (hereinafter also referred to as a conductive film forming step). Below, each process is explained in full detail.
  • This step is a step of forming a coating film by applying the above-described composition for forming a conductive film on a substrate.
  • the precursor film before the reduction treatment is obtained in this step.
  • the conductive film forming composition used is as described above.
  • polyolefin resins such as low density polyethylene resin, high density polyethylene resin, polypropylene and polybutylene; methacrylic resins such as polymethyl methacrylate; polystyrene resins such as polystyrene, ABS and AS; acrylic resins; polyester resins (Polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly 1,4-cyclohexyldimethylene terephthalate, etc.); polyamide resin selected from nylon resin and nylon copolymer; polyvinyl chloride resin; polyoxymethylene resin; polycarbonate resin; Polyphenylene sulfide resin; modified polyphenylene ether resin; polyacetal resin; polysulfone resin; polyethersul
  • polyolefin resins such as low density polyethylene resin, high density polyethylene resin, polypropylene and polybutylene
  • methacrylic resins such as polymethyl methacrylate
  • polystyrene resins such as poly
  • Silicon semiconductor substrate Compound semiconductor substrate such as CdS, CdTe, GaAs, etc .; copper plate, iron plate, aluminum plate, etc.
  • Metal substrate alumina, sapphire, zirconia, titania, yttrium oxide, indium oxide, ITO (indium tin oxide), IZO (indium zinc oxide), nesa (tin oxide), ATO (antimony-doped tin oxide), fluorine-doped
  • Other inorganic substrates such as tin oxide, zinc oxide, AZO (aluminum doped zinc oxide), gallium doped zinc oxide, aluminum nitride substrate, silicon carbide; paper such as paper-phenol resin, paper-epoxy resin, paper-polyester resin -Resin composite, glass cloth-epoxy resin, glass cloth-polyimide resin, glass cloth-composite base material such as glass-resin composite such as fluororesin, and the like.
  • a polyester resin base material such as CdS, C
  • the method for applying the conductive film forming composition onto the substrate is not particularly limited, and a known method can be adopted.
  • coating methods such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, and an ink jet method can be used.
  • the shape of application is not particularly limited, and may be a surface covering the entire surface of the substrate or a pattern (for example, a wiring or a dot).
  • the coating amount of the composition for forming a conductive film on the substrate may be appropriately adjusted according to the desired film thickness of the conductive film.
  • the film thickness of the coating film is preferably 0.01 to 5000 ⁇ m, 0.1 to 1000 ⁇ m is more preferable, and 1 to 100 ⁇ m is more preferable.
  • the conductive film-forming composition may be applied to the substrate, followed by a drying treatment to remove the solvent water.
  • a drying treatment to remove the solvent water.
  • the temperature is preferably 40 to 200 ° C., more preferably 50 to 150 ° C. More preferably, the heat treatment is performed at 70 ° C. to 120 ° C.
  • the drying time is not particularly limited, but is preferably 1 to 60 minutes because the adhesion between the substrate and the conductive film becomes better.
  • This step is a step of forming a conductive film containing metallic copper by performing heat treatment and / or light irradiation treatment on the coating film formed in the coating film forming step.
  • the copper oxide in the copper oxide particles is reduced and further fused to obtain metallic copper. More specifically, copper oxide is reduced to form metallic copper particles, the produced metallic copper particles are fused together to form grains, and the grains are bonded and fused together to contain copper. Forming a conductive thin film.
  • the heating temperature is preferably 100 to 500 ° C., more preferably 150 to 450 ° C.
  • the heating time is 5 to 5 in that a conductive film having less voids and excellent conductivity can be formed in a short time. 120 minutes is preferable, and 10 to 60 minutes is more preferable.
  • the heating means is not particularly limited, and known heating means such as an oven and a hot plate can be used.
  • the conductive film can be formed by heat treatment at a relatively low temperature, and therefore, the process cost is low.
  • the light irradiation treatment can reduce and sinter to metallic copper by irradiating light on the portion to which the coating film is applied at room temperature for a short time, and heating for a long time.
  • the base material does not deteriorate due to, and the adhesion of the conductive film to the base material becomes better.
  • the light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp.
  • Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays.
  • g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
  • Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
  • the light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation (eg, pulsed light irradiation with a Xe flash lamp).
  • Irradiation with high-energy pulsed light can concentrate and heat the surface of the portion to which the coating film has been applied in a very short time, so that the influence of heat on the substrate can be extremely reduced.
  • the irradiation energy of the pulse light is preferably 1 ⁇ 100J / cm 2, more preferably 1 ⁇ 30J / cm 2, preferably from 1 ⁇ sec ⁇ 100 m sec as a pulse width, and more preferably 10 ⁇ sec ⁇ 10 m sec.
  • the irradiation time of the pulsed light is preferably 1 to 100 milliseconds, more preferably 1 to 50 milliseconds, and further preferably 1 to 20 milliseconds.
  • the above heat treatment and light irradiation treatment may be performed alone or both may be performed simultaneously. Moreover, after performing one process, you may perform the other process further.
  • the atmosphere in which the heat treatment and the light irradiation treatment are performed is not particularly limited, and examples include an air atmosphere, an inert atmosphere, or a reducing atmosphere.
  • the inert atmosphere is, for example, an atmosphere filled with an inert gas such as argon, helium, neon, or nitrogen
  • the reducing atmosphere is a reducing gas such as hydrogen or carbon monoxide. It refers to the atmosphere.
  • a conductive film (metal copper film) containing metal copper is obtained.
  • the film thickness of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Of these, 0.01 to 1000 ⁇ m is preferable and 0.1 to 100 ⁇ m is more preferable from the viewpoint of printed wiring board use.
  • the film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
  • the volume resistance value of the conductive film is preferably less than 100 ⁇ ⁇ cm, and more preferably less than 50 ⁇ ⁇ cm, from the viewpoint of conductive characteristics. The volume resistance value can be calculated by multiplying the obtained surface resistance value by the film thickness after measuring the surface resistance value of the conductive film by the four-probe method.
  • the conductive film may be provided on the entire surface of the base material or in a pattern.
  • the patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
  • wiring conductor wiring
  • the above-mentioned composition for forming a conductive film was applied to a substrate in a pattern, and the above heat treatment and / or light irradiation treatment was performed, or the entire surface of the substrate was provided.
  • a method of etching the conductive film in a pattern may be used.
  • the etching method is not particularly limited, and a known subtractive method, semi-additive method, or the like can be employed.
  • an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
  • the material of the insulating film is not particularly limited.
  • epoxy resin glass epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated) Amorphous resin), polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin, and the like.
  • an epoxy resin, a polyimide resin, or a liquid crystal resin and more preferably an epoxy resin. Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
  • solder resist which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired.
  • solder resist commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
  • the base material (base material with a conductive film) having the conductive film obtained above can be used for various applications.
  • a printed wiring board, TFT, FPC, RFID, etc. are mentioned.
  • Example 1> (Dispersion 2) 116 parts by mass of cupric oxide particles (CI Kasei Co., Ltd., NanoTek CuO, average primary particle size (48 nm)), 7 parts by mass of polyvinylpyrrolidone (Tokyo Chemical Industry Co., Ltd., PVP K15), and ion exchange Mix with 77 parts by weight of water and use a ready mill disperser (bead mill disperser manufactured by Imex Co., Ltd.) to disperse with zirconia beads having a bead diameter of 0.05 mm ⁇ until a desired volume average secondary particle size is obtained. Dispersion 2 was obtained.
  • cupric oxide particles CI Kasei Co., Ltd., NanoTek CuO, average primary particle size (48 nm)
  • polyvinylpyrrolidone Tokyo Chemical Industry Co., Ltd., PVP K15
  • ion exchange Mix 77 parts by weight of water and use a ready mill disperser (bead mill disperser manufactured by Imex Co.
  • the volume average secondary particle diameter of the dispersion is diluted with ion exchange water so that the cupric oxide concentration (cupric oxide particle concentration) becomes 0.01 wt%, and the nanotrack particle size distribution measuring device It was 130 nm as measured by a dynamic light scattering method with UPA-EX150 (manufactured by Nikkiso Co., Ltd.). Moreover, the weight average molecular weight of polyvinylpyrrolidone was 3000 as described in the weight average molecular weight column of the water-soluble polymer in Table 1.
  • composition 2 (Preparation of conductive film forming composition 2) Dispersion 2, water-soluble polymer (polyvinylpyrrolidone (manufactured by Tokyo Chemical Industry Co., Ltd., PVP K15)), water, and BYK-425 (thixotropic agent, manufactured by Big Chemie Japan Co., Ltd., solid content concentration 40)
  • the composition 2 for conductive film formation is mixed by stirring at 2000 rpm for 5 minutes with a rotation and revolution mixer (manufactured by THINKY Co., Ltd., Aritori Nertaro ARE-310).
  • a rotation and revolution mixer manufactured by THINKY Co., Ltd., Aritori Nertaro ARE-310.
  • the amount of polyvinyl pyrrolidone in the table is the total value of polyvinyl pyrrolidone contained in Dispersion 2 and polyvinyl pyrrolidone added during preparation of conductive film forming composition 2. Further, the volume average secondary particle diameter of the cupric oxide particles in the conductive film forming composition 2 was measured in the same manner as in the dispersion 2.
  • a coating film was obtained by applying a bar on a PI (polyimide) substrate so that the film thickness after drying the conductive film forming composition 2 was 5 ⁇ m and drying at 100 ° C. for 10 minutes.
  • the obtained coating film was subjected to pulsed light irradiation treatment (Xenon's photosintering apparatus Sinteron 2000, irradiation energy: 5 J / m 2 , pulse width 2 msec) to obtain a conductive film.
  • the cross section of the obtained electrically conductive film was observed by SEM (1000-times multiplication factor), and the obtained image was processed and the porosity was calculated
  • the above area ratio was measured at five arbitrary locations, and they were arithmetically averaged to calculate the area ratio (void ratio) of the void portion.
  • the obtained porosity (%) was evaluated according to the following criteria. In practice, it is required to be A to C.
  • E The film is brittle and cannot be evaluated
  • volume resistivity evaluation About the obtained electrically conductive film, volume resistivity was measured using the four-probe method resistivity meter, and electroconductivity was evaluated. The evaluation criteria are as follows. In practice, it is required to be A or B. A: Volume resistivity is less than 50 ⁇ ⁇ cm B: Volume resistivity is 50 ⁇ ⁇ cm or more and less than 100 ⁇ ⁇ cm C: Volume resistivity is 100 ⁇ ⁇ cm or more
  • Examples 2 to 32 Comparative Examples 1 to 6> (Dispersion 1) Cupric oxide particles (CI Kasei Co., Ltd., NanoTek, CuO, average primary particle size (48 nm)) 58 parts by mass and polyvinylpyrrolidone (Polysciences, Inc. Catalog No. 24737-250) 3.5 Comparative Example 1 by mixing 5 parts by mass with 38.5 parts by mass of ion-exchanged water and stirring at 2000 rpm for 5 minutes with a revolving mixer (made by THINKY Co., Ltd., Aritori Netaro ARE-310) Medium dispersion 1 was obtained.
  • a revolving mixer made by THINKY Co., Ltd., Aritori Netaro ARE-310
  • the volume average secondary particle diameter of the dispersion is such that the dispersion 1 is made of ion-exchanged water and the cupric oxide concentration (cupric oxide particle concentration) is 0.01 wt% in the same manner as the dispersion 2 of Example 1. And was measured by a dynamic light scattering method using Nanotrac particle size distribution analyzer UPA-EX150 (manufactured by Nikkiso Co., Ltd.). Moreover, it was 1000 when the weight average molecular weight of polyvinylpyrrolidone was measured. (Dispersions 3 to 4, 13 to 27) Dispersions 3 to 4 and 13 to 27 were prepared according to the same procedure as the method for producing Dispersion 2 in Example 1, except that the composition was changed according to Table 1 described later.
  • Dispersions 5, 7 to 8, and 28 were prepared according to the same procedure as the method for producing Dispersion 1 except that the composition was changed according to Table 1 described later.
  • Dispersion 6 Dispersion 6 was prepared according to the same procedure as the method for producing dispersion 2 in Example 1, except that 0.3 mm ⁇ zirconia beads were used instead of zirconia beads having a bead diameter of 0.1 mm ⁇ .
  • Dispersions 9 to 12 According to the same procedure as the method for producing the dispersion 2 in Example 1, except that the composition was changed according to Table 1 described later and the zirconia beads used were changed to those having a bead diameter of 0.1 mm ⁇ , the dispersions 9 to 12 was prepared.
  • cupric oxide particles A are intended for cupric oxide (manufactured by CI Kasei Co., Ltd., NanoTek (registered trademark), average primary particle size (48 nm)), and cupric oxide particles B are Cupric oxide (Sigma Aldrich, nano powder (average primary particle size: 35 nm)) is intended.
  • the column “weight average molecular weight of water-soluble polymer” intends a polystyrene equivalent value obtained by the GPC method (solvent: N-methylpyrrolidone).
  • “%” intends “mass%”.
  • the “remainder” in Tables 1 and 2 intends that the solvent is contained so that the total of the components in each dispersion or each composition is “100% by mass”.
  • PEG 1000 (Wako), PEG 4000 (Wako), PEG 8000 (Wako), PEG 20000 (Wako) are “polyethylene glycol 1000, polyethylene glycol 4000, polyethylene glycol 8000, polyethylene glycol 20000, Both are intended for Wako Pure Chemical Industries, Ltd.
  • “BYK-154” is intended for BYK-154, manufactured by Big Chemie Japan.
  • Example 19 and Example 20 it was confirmed from the comparison of Example 19 and Example 20 that the space
  • Comparative Examples 1 to 3, 5 to 6 when the volume average secondary particle diameter of the copper oxide particles is outside the predetermined range, it is confirmed that there are many voids in the conductive film and the conductivity is inferior. It was. Moreover, as shown in Comparative Example 4, it was confirmed that when an organic solvent was used as the solvent, there were many voids in the conductive film and the conductivity was poor.
  • the aspect of the comparative example 4 corresponds to the aspect of the patent document 1 mentioned above.

Abstract

 本発明は、空隙が少なく、優れた導電性を示す導電膜を形成することができる導電膜形成用組成物、および、導電膜形成用組成物を用いた導電膜の製造方法を提供することを目的とする。本発明の導電膜形成用組成物は、酸化銅粒子と、水と、水溶性高分子および界面活性剤からなる群から選ばれる分散剤とを含有する導電膜形成用組成物であって、酸化銅粒子の体積平均2次粒子径が20~240nmであり、酸化銅粒子の含有量が、導電膜形成用組成物全質量に対して、10~70質量%である。

Description

導電膜形成用組成物、導電膜の製造方法
 本発明は、導電膜形成用組成物に係り、特に、所定の体積平均2次粒子径を示す酸化銅粒子を含有する導電膜形成用組成物に関する。
 また、本発明は、導電膜の製造方法に係り、特に、上記導電膜形成用組成物を用いた導電膜の製造方法に関する。
 基材上に金属膜を形成する方法として、金属粒子または金属酸化物粒子の分散体を印刷法により基材に塗布し、加熱処理または光照射処理して焼結させることによって金属膜や回路基板における配線等の電気的導通部位を形成する技術が知られている。
 上記方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理による配線作製法に比べて、簡便・省エネ・省資源であることから次世代エレクトロニクス開発において大きな期待を集めている。
 例えば、特許文献1の実施例欄においては、酸化第一銅粒子と、ジエチレングリコールとを含む金属酸化物分散体が開示されており、この分散体を使用して銅配線が形成されている。
特開2004-155638号公報
 一方、近年、電子機器の小型化、高機能化の要求に対応するため、プリント配線板などにおいては配線のより一層の微細化および高集積化が進んでいる。それに伴って、金属配線の導電特性のより一層の向上が要求されている。
 本発明者らが、特許文献1に記載されるジエチレングリコールなどの有機分散媒を含む金属酸化物分散体を用いて導電膜の作製を試みたところ、得られた導電膜の導電性は昨今求められるレベルまで達しておらず、更なる改良が必要であった。また、得られた導電膜中には、多くの空隙が存在しているため、導電膜が脆く破壊されやすいという問題もあった。
 本発明は、上記実情に鑑みて、空隙が少なく、優れた導電性を示す導電膜を形成することができる導電膜形成用組成物を提供することを目的とする。
 また、本発明は、この導電膜形成用組成物を用いた導電膜の製造方法を提供することも目的とする。
 本発明者らは、従来技術の問題点について鋭意検討した結果、体積平均2次粒子径を所定の範囲である酸化銅粒子と、水溶性高分子および界面活性剤からなる群から選ばれる分散剤と、溶媒として水とを含む組成物を使用することにより、上記課題を解決できることを見出した。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
(1) 酸化銅粒子と、水と、水溶性高分子および界面活性剤からなる群から選ばれる分散剤とを含有する導電膜形成用組成物であって、
 酸化銅粒子の体積平均2次粒子径が20~240nmであり、
 酸化銅粒子の含有量が、導電膜形成用組成物全質量に対して、10~70質量%である、導電膜形成用組成物。
(2) 揺変剤をさらに含む、(1)に記載の導電膜形成用組成物。
(3) 分散剤が、重量平均分子量の異なる2種以上の水溶性高分子を含む、(1)または(2)に記載の導電膜形成用組成物。
(4) 分散剤が、水溶性高分子と界面活性剤とを含む、(1)または(2)に記載の導電膜形成用組成物。
(5) 分散剤が、重量平均分子量8000~160000のポリビニルピロリドン、または、重量平均分子量3000~18000のポリエチレングリコールを含む、(1)~(4)のいずれかに記載の導電膜形成用組成物。
(6) 分散剤の含有量が、酸化銅粒子の全質量に対して、4~20質量%である、(1)~(5)のいずれかに記載の導電膜形成用組成物。
(7) 酸化銅粒子の体積平均2次粒子径が20~180nmである、(1)~(6)のいずれかに記載の導電膜形成用組成物。
(8) (1)~(7)のいずれかに記載の導電膜形成用組成物を基材上に付与して、塗膜を形成する工程と、
 塗膜に対して加熱処理および/または光照射処理を行い、酸化銅粒子を還元して金属銅を含有する導電膜を形成する工程とを備える、導電膜の製造方法。
 本発明によれば、空隙が少なく、優れた導電性を示す導電膜を形成することができる導電膜形成用組成物を提供することができる。
 また、本発明によれば、この導電膜形成用組成物を用いた導電膜の製造方法を提供することもできる。
 以下に、本発明の導電膜形成用組成物および導電膜の製造方法の好適態様について詳述する。
 まず、本発明の従来技術と比較した特徴点について詳述する。
 上述したように、本発明の特徴点としては、体積平均2次粒子径が所定の範囲にある酸化銅粒子を使用すると共に、水溶性高分子および界面活性剤からなる群から選ばれる分散剤と、溶媒として水を使用している点が挙げられる。体積平均2次粒子径が所定の範囲内にあることにより、導電膜形成用組成物より形成される加熱処理または光照射処理が施される前の塗膜(前駆体膜)中において、酸化銅粒子がより密にパッキングする。また、水溶性高分子および界面活性剤からなる群から選ばれる分散剤を使用することにより、酸化銅粒子のパッキングがさらに密に進行する。さらに、溶媒として水を使用することにより、溶媒や水溶性高分子などの水素結合などにより塗膜がより密な状態となりやすく、酸化銅粒子のパッキングを促進していると推測される。結果として、加熱処理または光照射処理の際に、酸化銅粒子間での熱伝導が向上し、酸化銅から金属銅への還元がより効率よく進行する。
 また、本発明の導電膜形成用組成物は水を用いることから安全性に優れている。
 以下では、まず、導電膜形成用組成物の各種成分(酸化銅粒子、水溶性高分子および界面活性剤など)について詳述し、その後、導電膜の製造方法について詳述する。
(酸化銅粒子)
 導電膜形成用組成物には、酸化銅粒子が含まれる。酸化銅粒子は、後述する加熱処理または光照射処理によって還元され、導電膜中の金属銅を構成する。
 本発明における「酸化銅」とは、酸化されていない銅を実質的に含まない化合物であり、具体的には、X線回折による結晶解析において、酸化銅由来のピークが検出され、かつ金属由来のピークが検出されない化合物のことを指す。銅を実質的に含まないとは、限定的ではないが、銅の含有量が酸化銅粒子に対して1質量%以下であることをいう。
 酸化銅としては、酸化銅(I)または酸化銅(II)が好ましく、安価に入手可能であること、安定であることから酸化銅(II)であることがさらに好ましい。
 酸化銅粒子の体積平均2次粒子径は、20~240nmである。なかでも、形成される導電膜の導電性がより優れる点で、20~180nmが好ましく、50~160nmがより好ましく、100nm超160nm以下がさらに好ましい。
 酸化銅粒子の体積平均2次粒子径が20nm未満の場合、導電膜形成用組成物中での酸化銅粒子の分散安定性が劣り、導電膜の導電性も低下する。また、酸化銅粒子の体積平均2次粒子径が240nm超の場合、形成される導電膜中に空隙が多く存在し、導電膜の取扱い性および耐久性が悪化し、導電性が低下する。
 酸化銅粒子の体積平均2次粒子径の測定方法は、イオン交換水で酸化銅濃度(酸化銅粒子濃度)が0.01wt%(質量%)になるように導電膜形成用組成物を希釈し、ナノトラック粒度分布測定装置UPA-EX150(日機装(株)製)で動的光散乱法により測定する。
 なお、酸化銅粒子の体積平均2次粒子径の制御方法は特に制限されず、例えば、使用される分散剤の種類を制御する方法や、分散剤と酸化銅粒子との混合条件(混合方法、混合手順)を制御する方法や、使用する分散機、分散時間を変更する方法や、酸化銅粒子と分散剤と溶媒(水)との混合割合を制御する方法など、公知の方法が選択される。
 酸化銅粒子の平均1次粒子径は特に制限されないが、100nm以下が好ましく、80nmがより好ましく、50nm以下がさらに好ましく、50nm未満が特に好ましい。なお、下限は特に制限されないが、1nm以上が好ましく、10nm以上がより好ましい。
 平均1次粒子径が1nm以上であれば、粒子表面の活性が高くなりすぎず、組成物中で溶解することがなく、取扱い性に優れるため好ましい。また、100nm以下であれば、組成物をインクジェット用インク組成物やスクリーン印刷用ペースト組成物として用い、各種印刷法により配線等のパターン形成を行うことが容易となり、組成物を導体化する際に、金属銅への還元が十分となり、得られる導電膜の導電性が良好であるため好ましい。
 なお、平均1次粒子径は、透過型電子顕微鏡(TEM)観察または走査型電子顕微鏡(SEM)観察により、少なくとも400個以上の酸化銅粒子の円相当径を測定し、それらを算術平均して求める。円相当径とは、観察される酸化銅粒子の2次元形状と同じ面積に相当する円の直径を意味する。
 酸化銅粒子の平均1次粒子径と体積平均2次粒子径は、平均1次粒子径/体積平均2次粒子径の比が0.1~0.7であることが好ましく、形成される導電膜の導電性がより優れる点で0.25~0.5であることがより好ましい。
 なお、上記酸化銅粒子は、市販品を使用しても、公知の製造方法で製造してもよい。
(水)
 導電膜形成用組成物には、水が含まれる。水は、酸化銅粒子の分散媒として機能する。溶媒として水を使用することは、安全性において優れており好ましい。また、上述したように、塗膜の形成の際に、溶媒や水溶性高分子などの水素結合などにより酸化銅粒子がより密にパッキングしやすく、結果として空隙が少ない、導電性に優れた導電膜が形成されると推測される。
 水としては、イオン交換水のレベルの純度を有するものが好ましい。
 なお、導電膜形成用組成物には、本発明の効果を損なわない範囲で、水以外の他の溶媒(例えば、有機溶媒)を含んでいてもよい。
(水溶性高分子、界面活性剤)
 導電膜形成用組成物には、水溶性高分子および界面活性剤からなる群から選ばれる分散剤が含まれる。分散剤が含まれることにより、上述した酸化銅粒子の分散安定性が向上し、導電膜形成用組成物より形成される塗膜中での酸化銅粒子がより密にパッキングされ、また、金属銅への還元が効率よく起こり、結果として、形成される導電膜の空隙が減少すると共に、導電性が向上する。
 水溶性高分子の種類は特に制限されず、水に溶解可能な高分子であればよい。
 水溶性高分子としては、例えば、植物系高分子、微生物系高分子、合成/半合成高分子などがあり、植物系高分子としては、例えば、キサンタンガム、アラビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンテン、クインスシード(マルメロ)、アルゲコロイド(カッソウエキス)、デンプン(コメ、トウモロコシ、バレイショ、コムギ)、グリチルリチン酸等、微生物系高分子としては、例えば、デキストラン、サクシノグルカン、ブルラン等が挙げられる。
 半合成の水溶性高分子としては、例えば、デンプン系高分子(例えば、カルボキシメチルデンプン、メチルヒドロキシプロピルデンプン等);セルロース系高分子(メチルセルロース、エチルセルロース、メチルヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、セルロース硫酸ナトリウム、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、結晶セルロース、セルロース末等);アルギン酸系高分子(例えば、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル等)等が挙げられる。
 合成の水溶性高分子としては、例えば、ビニル系高分子(例えば、カルボキシビニルポリマー(カルボマー)、ポリビニルアルコール、ポリビニルメチルエーテル、ポリビニルピロリドン、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p-スチレンカルボン酸等);ポリオキシエチレン系高分子(例えば、ポリエチレングリコール、ポリプロピレングリコール等);アクリル系高分子(例えば、ポリアクリル酸、ポリメタクリル酸、ポリエチルアクリレート、ポリアクリル酸ナトリウム、ポリアクリルアミド);ポリエチレンイミン;カチオンポリマー等が挙げられる。
 水溶性高分子の好適態様としては、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、およびアクリル系共重合体が挙げられる。これらの高分子であれば、形成される導電膜の導電性がより優れる。
 ポリビニルピロリドンの重量平均分子量は特に制限されないが、形成される導電膜の導電性がより優れる点で、2500~160000が好ましく、8000~160000がより好ましく、20000~80000がさらに好ましい。
 ポリエチレングリコールの重量平均分子量は特に制限されないが、形成される導電膜の導電性がより優れる点で、3000~40000が好ましく、3000~18000がより好ましく、5000~18000がさらに好ましい。
 ポリビニルアルコールの重量平均分子量は特に制限されないが、形成される導電膜の導電性がより優れる点で、2500~40000が好ましく、3000~20000がより好ましい。
 アクリル系共重合体は、例えば、市販品であるビックケミー・ジャパン(株)社製、BYK-154やDISPERBYK-2010やDISPERBYK-2015などが挙げられる。
 なお、上記重量平均分子量は、GPC法(溶媒:N-メチルピロリドン)により得られたポリスチレン換算値である。
 界面活性剤の種類は特に制限されず、例えば、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤等が挙げられる。
 陰イオン性界面活性剤の具体例としては、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルリン酸塩、ポリオキシエチレンアルキル硫酸エステル塩、ポリオキシエチレンアルキルアリル硫酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリカルボン酸型高分子界面活性剤、ポリオキシエチレンアルキルリン酸エステル等が挙げられる。
 なお、ポリカルボン酸型高分子界面活性剤としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等の不飽和二重結合を有するカルボン酸単量体の重合体、不飽和二重結合を有するカルボン酸単量体と他の不飽和二重結合を有する単量体との共重合体およびそれらのアンモニウム塩やアミン塩等が挙げられる。ポリカルボン酸型高分子界面活性剤としては、ポリアクリル酸系分散剤が好ましく、共重合成分としてアクリル酸アンモニウム塩を構成単位とした高分子分散剤がより好ましい。
 ポリカルボン酸型高分子界面活性剤の具体例としては、イソブチレンまたはジイソブチレンと無水マレイン酸との共重合物のナトリウム塩、無水マレイン酸とスチレンとの共重合物のナトリウム塩、アクリル酸重合物のナトリウム塩、無水マレイン酸とアクリル酸との共重合物のナトリウム塩またはアンモニウム塩、イタコン酸とアクリル酸との共重合物のナトリウム塩またはアンモニウム塩等がある。
 非イオン性界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン誘導体、オキシエチレン・オキシプロピレンブロックコポリマー、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン、アルキルアルカノールアミド等が挙げられる。
 より具体的には、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンラウリルエーテル等が挙げられる。
 陽イオン性界面活性剤および両性界面活性剤の具体例としてはアルキルアミン塩、第四級アンモニウム塩、アルキルベタイン、アミンオキサイド等が挙げられる。
 上記の界面活性剤の中でも、形成される導電膜の導電性がより優れる点で、陰イオン性界面活性剤または非イオン性界面活性剤が好ましい。
 なかでも、陰イオン性界面活性剤としては、ポリカルボン酸型高分子界面活性剤が好ましい。
 また、非イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテルが好ましい。
 なお、導電膜形成用組成物には、水溶性高分子と界面活性剤の両者が含まれていてもよい。
 また、導電膜形成用組成物に水溶性高分子が含まれる場合、種類の異なる2種以上の水溶性高分子が含まれていてもよく、例えば、本発明の効果がより優れる点で、重量平均分子量の異なる2種以上の水溶性高分子が含まれていることが好ましい。
 また、導電膜形成用組成物に界面活性剤が含まれる場合、種類の異なる2種以上の界面活性剤が含まれていてもよい。
(その他の成分)
 導電膜形成用組成物には、上記酸化銅粒子、水、水溶性高分子および界面活性剤以外の成分が含まれていてもよい。
 例えば、導電膜形成用組成物の粘度を適正な範囲に制御するために、揺変剤が含まれていてもよい。揺変剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 揺変剤とは、分散媒に対して揺変性を付与する添加剤をいう。揺変性(thixotropy;チクソ性)とは、力が作用すると粘度が減少し、静置すると粘度が元に戻るといった流体の性状をいう。
 揺変剤としては、有機系揺変剤および無機系揺変剤が挙げられる。有機系揺変剤としては、脂肪酸アマイド系揺変剤、水添ひまし油系揺変剤、酸化ポリオレフィン系揺変剤、ウレア系揺変剤、ウレタン系揺変剤等が挙げられる。より具体的には、ウレアウレタン、変性ウレア、ポリヒドロキシカルボン酸アミド、ポリヒドロキシカルボン酸エステル、ウレア変性ポリアミド、酸化ポリエチレンアミド、酸化ポリエチレン、脂肪酸アミド等を挙げることができる。
 また、上記脂肪酸アマイド系揺変剤の市販品としては、楠本化成社製のディスパロン6900-20X、6900-10X、A603-20X、A603-10X、6810-20X、6850-20X、FS-6010、PFA-131、PFA-231、6500、6650、6700、F-9020、F-9030、F-9040およびF-9050、並びにビックケミー社製のBYK-405等が挙げられる。上記水添ひまし油系揺変剤の市販品としては、楠本化成社製のディスパロン308および4300等が挙げられる。上記酸化ポリオレフィン系揺変剤の市販品としては、楠本化成社製のディスパロン4200-20、4200-10、PF-911、4401-25Xおよび4401-25M等が挙げられる。上記ウレア系揺変剤およびウレタン系揺変剤の市販品としては、ビックケミー社製のBYK-410、BYK-411、BYK-420、BYK-425、BYK-428、BYK-430およびBYK-431等が挙げられる。
(導電膜形成用組成物)
 導電膜形成用組成物には、上述した酸化銅粒子、水、および、分散剤が含まれる。
 酸化銅粒子の含有量は、導電膜形成用組成物全質量に対して、10~70質量%である。なかでも、形成される導電膜の導電性がより優れる点で、20~70質量%が好ましく、30~65質量%がより好ましく、40~65質量%がさらに好ましい。
 酸化銅粒子の含有量が10質量%未満の場合、形成される導電膜が不均一になりやすく、70質量%超の場合、形成される導電膜の導電性が劣る。
 水の含有量は特に制限されないが、導電膜形成用組成物の保存安定性が優れる点で、導電膜形成用組成物全質量に対して、15~88質量%が好ましく、20~75質量%がより好ましく、25~55質量%がさらに好ましい。
 分散剤の含有量は特に制限されないが、導電膜形成用組成物の保存安定性が優れる点で、酸化銅粒子全質量に対して、2~20質量%が好ましく、4~20質量%がより好ましく、6~15質量%がさらに好ましい。
 また、導電膜形成用組成物中に水溶性高分子と界面活性剤の両者が含まれる場合、界面活性剤の含有量は、酸化銅粒子全重量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。下限は特に制限されないが、0.5質量%以上の場合が多い。
 上述した揺変剤が導電膜形成用組成物に含まれる場合、揺変剤の含有量は特に制限されないが、形成される導電膜の空隙率が優れる点で、導電膜形成用組成物全質量に対して、0.1~5質量%が好ましく、0.5~3質量%がより好ましい。
 導電膜形成用組成物のpHは特に制限されないが、酸化銅粒子の分散安定性がより優れる点で、9以下が好ましく、7以下がより好ましく、4以上が好ましく、5以上がより好ましい。
 導電膜形成用組成物の製造方法は特に制限されず、公知の方法を採用できる。
 なかでも、上述した酸化銅粒子、水、分散剤、および、他の任意成分を混合して、導電膜形成用組成物を製造できる。
 混合する方法は特に制限されないが、例えば、ホモジナイザー(例えば、超音波ホモジナイザー、高圧ホモジナイザー)、ミル(例えば、ビーズミル、ボールミル、タワーミル、3本ロールミル)、ミキサー(例えば、プラネタリーミキサー、ディスパーミキサー、ヘンシルミキサー、ニーダー、クレアミックス、自公転ミキサー(攪拌脱泡機))などを用いて混合分散させる方法が挙げられる。なかでも、酸化銅粒子の分散性がより優れる点で、超音波ホモジナイザーやビーズミルを用いることが好ましい。
 なお、ビーズの材質、ビーズ量、ビーズ径としては、通常のビーズミルに用いられるものであれば特に限定されない。ビーズ径としては、0.05~3mmφ程度が好ましい。
(導電膜の製造方法)
 本発明の導電膜の製造方法は、上述した導電膜形成用組成物を用いて基材上に塗膜を形成する工程(以後、適宜塗膜形成工程とも称する)と、加熱処理および/または光照射処理を施して導電膜を得る工程(以後、導電膜形成工程とも称する)とを有する。以下に、それぞれの工程について詳述する。
(塗膜形成工程)
 本工程は、上述した導電膜形成用組成物を基材上に付与して、塗膜を形成する工程である。本工程により還元処理が施される前の前駆体膜が得られる。
 使用される導電膜形成用組成物については、上述の通りである。
 本工程で使用される基材としては、公知のものを用いることができる。基材に使用される材料としては、例えば、樹脂、紙、ガラス、シリコン系半導体、化合物半導体、金属酸化物、金属窒化物、木材、またはこれらの複合物が挙げられる。
 より具体的には、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ポリプロピレン、ポリブチレンなどのポリオレフィン系樹脂;ポリメチルメタクリレートなどのメタクリル系樹脂;ポリスチレン、ABS、ASなどのポリスチレン系樹脂;アクリル樹脂;ポリエステル樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ1,4-シクロヘキシルジメチレンテレフタレートなど);ナイロン樹脂およびナイロン共重合体から選ばれるポリアミド樹脂;ポリ塩化ビニル樹脂;ポリオキシメチレン樹脂;ポリカーボネート樹脂;ポリフェニレンサルファイド樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;ポリサルフォン樹脂;ポリエーテルスルホン樹脂;ポリケトン樹脂;ポリエーテルニトリル樹脂;ポリエーテルエーテルケトン樹脂;ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリエーテルケトンケトン樹脂;ポリイミド樹脂;ポリアミドイミド樹脂;フッ素樹脂;セルロース誘導体等の樹脂基材;非塗工印刷用紙、微塗工印刷用紙、塗工印刷用紙(アート紙、コート紙)、特殊印刷用紙、コピー用紙(PPC用紙)、未晒包装紙(重袋用両更クラフト紙、両更クラフト紙)、晒包装紙(晒クラフト紙、純白ロール紙)、コートボール、チップボール、段ボール等の紙基材;ソーダガラス、ホウケイ酸ガラス、シリカガラス、石英ガラス等のガラス基材;アモルファスシリコン、ポリシリコン等のシリコン系半導体基材;CdS、CdTe、GaAs等の化合物半導体基材;銅板、鉄板、アルミ板等の金属基材;アルミナ、サファイア、ジルコニア、チタニア、酸化イットリウム、酸化インジウム、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)、ネサ(酸化錫)、ATO(アンチモンドープ酸化錫)、フッ素ドープ酸化錫、酸化亜鉛、AZO(アルミドープ酸化亜鉛)、ガリウムドープ酸化亜鉛、窒化アルミニウム基材、炭化ケイ素等のその他無機基材;紙-フェノール樹脂、紙-エポキシ樹脂、紙-ポリエステル樹脂等の紙-樹脂複合物、ガラス布-エポキシ樹脂、ガラス布-ポリイミド系樹脂、ガラス布-フッ素樹脂等のガラス-樹脂複合物等の複合基材等が挙げられる。これらの中でも、ポリエステル樹脂基材、ポリカーボネート樹脂基材、ポリイミド樹脂基材、ポリエーテルイミド樹脂基材が好ましく使用される。
 導電膜形成用組成物を基材上に付与する方法は特に制限されず、公知の方法を採用できる。例えば、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、インクジェット法などの塗布法が挙げられる。
 塗布の形状は特に制限されず、基材全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。
 基材上への導電膜形成用組成物の塗布量としては、所望する導電膜の膜厚に応じて適宜調整すればよいが、通常、塗膜の膜厚は0.01~5000μmが好ましく、0.1~1000μmがより好ましく、1~100μmがさらに好ましい。
 本工程においては、必要に応じて、導電膜形成用組成物を基材へ塗布した後に乾燥処理を行い、溶媒である水を除去してもよい。残存する溶媒を除去することにより、後述する導電膜形成工程において、溶媒の気化膨張に起因する微小なクラックや空隙の発生を抑制することができ、導電膜の導電性および導電膜と基材との密着性の点で好ましい。
 乾燥処理の方法としては温風乾燥機などを用いることができ、温度としては、40℃~200℃で加熱処理を行うことが好ましく、50℃以上150℃未満で加熱処理を行うことがより好ましく、70℃~120℃で加熱処理を行うことがさらに好ましい。
 乾燥時間は特に限定されないが、基材と導電膜との密着性がより良好になることから、1~60分であることが好ましい。
(導電膜形成工程)
 本工程は、上記塗膜形成工程で形成された塗膜に対して加熱処理および/または光照射処理を行い、金属銅を含有する導電膜を形成する工程である。
 加熱処理および/または光照射処理を行うことにより、酸化銅粒子中の酸化銅が還元され、さらに融着して金属銅が得られる。より具体的には、酸化銅が還元されて金属銅粒子が形成され、生成した金属銅粒子が互いに融着してグレインを形成し、さらにグレイン同士が接着・融着して銅を含有する導電性薄膜を形成する。
 加熱処理の条件は、使用される酸化銅粒子や分散剤の種類によって適宜最適な条件が選択される。なかでも、短時間で、空隙が少なく導電性により優れる導電膜を形成することができる点で、加熱温度は100~500℃が好ましく、150~450℃がより好ましく、また、加熱時間は5~120分が好ましく、10~60分がより好ましい。
 なお、加熱手段は特に制限されず、オーブン、ホットプレート等公知の加熱手段を用いることができる。
 本発明では、比較的低温の加熱処理により導電膜の形成が可能であり、従って、プロセスコストが安いという利点を有する。
 光照射処理は、上述した加熱処理とは異なり、室温にて塗膜が付与された部分に対して光を短時間照射することで金属銅への還元および焼結が可能となり、長時間の加熱による基材の劣化が起こらず、導電膜の基材との密着性がより良好となる。
 光照射処理で使用される光源は特に制限されず、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。また、g線、i線、Deep-UV光、高密度エネルギービーム(レーザービーム)も使用される。
 具体的な態様としては、赤外線レーザーによる走査露光、キセノン放電灯などの高照度フラッシュ露光、赤外線ランプ露光などが好適に挙げられる。
 光照射は、フラッシュランプによる光照射が好ましく、パルス光照射(例:Xeフラッシュランプによるパルス光照射)であることがより好ましい。高エネルギーのパルス光の照射は、塗膜を付与した部分の表面を、極めて短い時間で集中して加熱することができるため、基材への熱の影響を極めて小さくすることができる。
 パルス光の照射エネルギーとしては、1~100J/cm2が好ましく、1~30J/cm2がより好ましく、パルス幅としては1μ秒~100m秒が好ましく、10μ秒~10m秒がより好ましい。パルス光の照射時間は、1~100m秒が好ましく、1~50m秒がより好ましく、1~20m秒がさらに好ましい。
 上記加熱処理および光照射処理は、単独で実施してもよく、両者を同時に実施してもよい。また、一方の処理を施した後、さらに他方の処理を施してもよい。
 上記加熱処理および光照射処理を実施する雰囲気は特に制限されず、大気雰囲気下、不活性雰囲気下、または還元性雰囲気下などが挙げられる。なお、不活性雰囲気とは、例えば、アルゴン、ヘリウム、ネオン、窒素等の不活性ガスで満たされた雰囲気であり、また、還元性雰囲気とは、水素、一酸化炭素等の還元性ガスが存在する雰囲気を指す。
 なかでも、不活性雰囲気下または還元性雰囲気下で行うことが好ましく、特に加熱処理では還元性雰囲気下で行うことがより好ましい。
(導電膜)
 上記工程を実施することにより、金属銅を含有する導電膜(金属銅膜)が得られる。
 導電膜の膜厚は特に制限されず、使用される用途に応じて適宜最適な膜厚が調整される。なかでも、プリント配線基板用途の点からは、0.01~1000μmが好ましく、0.1~100μmがより好ましい。
 なお、膜厚は、導電膜の任意の点における厚みを3箇所以上測定し、その値を算術平均して得られる値(平均値)である。
 導電膜の体積抵抗値は、導電特性の点から、100μΩ・cm未満が好ましく、50μΩ・cm未満がより好ましい。
 体積抵抗値は、導電膜の表面抵抗値を四探針法にて測定後、得られた表面抵抗値に膜厚を乗算することで算出することができる。
 導電膜は基材の全面、または、パターン状に設けられてもよい。パターン状の導電膜は、プリント配線基板などの導体配線(配線)として有用である。
 パターン状の導電膜を得る方法としては、上記導電膜形成用組成物をパターン状に基材に付与して、上記加熱処理および/または光照射処理を行う方法や、基材全面に設けられた導電膜をパターン状にエッチングする方法などが挙げられる。
 エッチングの方法は特に制限されず、公知のサブトラクティブ法、セミアディティブ法などを採用できる。
 パターン状の導電膜を多層配線基板として構成する場合、パターン状の導電膜の表面に、さらに絶縁層(絶縁樹脂層、層間絶縁膜、ソルダーレジスト)を積層して、その表面にさらなる配線(金属パターン)を形成してもよい。
 絶縁膜の材料は特に制限されないが、例えば、エポキシ樹脂、ガラスエポキシ樹脂、アラミド樹脂、結晶性ポリオレフィン樹脂、非晶性ポリオレフィン樹脂、フッ素含有樹脂(ポリテトラフルオロエチレン、全フッ素化ポリイミド、全フッ素化アモルファス樹脂など)、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂など挙げられる。
 これらの中でも、密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂、または液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ(株)製、ABF GX-13などが挙げられる。
 また、配線保護のために用いられる絶縁層の材料の一種であるソルダーレジストについては、例えば、特開平10-204150号公報や、特開2003-222993号公報等に詳細に記載され、ここに記載の材料を所望により本発明にも適用することができる。ソルダーレジストは市販品を用いてもよく、具体的には、例えば、太陽インキ製造(株)製PFR800、PSR4000(商品名)、日立化成工業(株)製 SR7200G、などが挙げられる。
 上記で得られた導電膜を有する基材(導電膜付き基材)は、種々の用途に使用することができる。例えば、プリント配線基板、TFT、FPC、RFIDなどが挙げられる。
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
(分散体2)
 酸化第二銅粒子(シーアイ化成(株)製、NanoTek CuO、平均1次粒子径(48nm))116質量部と、ポリビニルピロリドン(東京化成(株)製、PVP K15)7質量部と、イオン交換水77質量部とを混合し、レディーミル分散機(アイメックス社製のビーズミル分散機)を用いて、ビーズ径0.05mmφのジルコニアビーズにより、所望の体積平均2次粒子径を得るまで分散し、分散体2を得た。
 分散体の体積平均2次粒子径は、分散体2をイオン交換水で酸化第二銅濃度(酸化第二銅粒子濃度)が0.01wt%になるように希釈し、ナノトラック粒度分布測定装置UPA-EX150(日機装(株)製)で動的光散乱法により測定したところ、130nmであった。また、ポリビニルピロリドンの重量平均分子量は表1の水溶性高分子の重量平均分子量欄に記載したとおり、3000であった。
(導電膜形成用組成物2の調製)
 上記分散体2、水溶性高分子(ポリビニルピロリドン(東京化成(株)製、PVP K15))、水、および、BYK-425(揺変剤、ビックケミー・ジャパン(株)社製、固形分濃度40質量%)を表2の組成になるよう混合し、自転公転ミキサー(THINKY(株)社製、あわとり練太郎ARE-310)で2000rpm、5分間攪拌処理することで導電膜形成用組成物2を得た。なお、表中のポリビニルピロリドンの量は、分散体2に含まれるポリビニルピロリドンと、導電膜形成用組成物2調製時に添加するポリビニルピロリドンを合計した値である。また、導電膜形成用組成物2中の酸化第二銅粒子の体積平均2次粒子径は、上記分散体2と同様にして測定した。
 導電膜形成用組成物2を乾燥後膜厚が5μmになるようPI(ポリイミド)基材上にバー塗布し、100℃で10分間乾燥させることで塗膜を得た。
 得られた塗膜にパルス光照射処理(Xenon社製光焼結装置Sinteron2000、照射エネルギー:5J/m2、パルス幅2m秒)を行うことで導電膜を得た。
(空隙率評価)
 得られた導電膜の断面をSEM(倍率1000倍)で観察し、得られた画像を処理して空隙率を求めた。より具体的には、導電膜表面に対して垂直方向の導電膜断面(横方向:幅300μm、縦方向:導電膜中、支持体側とは反対側の表面(露出表面)より導電膜の全体厚みの25/100に相当する深さ位置(深さA)から、支持体側とは反対側の表面より導電膜の全体厚みの75/100に相当する深さ位置(深さB)までの領域)をSEMで観察し、空隙部分の面積率(%)[(空隙部分の面積/全観察面積)×100]を求めた。上記面積率の測定を任意5箇所で行い、それらを算術平均して、空隙部分の面積率(空隙率)を計算した。得られた空隙率(%)を以下の基準に従って、評価した。なお、実用上、A~Cであることが求められる。
 A:空隙率25%未満
 B:空隙率25%以上45%未満
 C:空隙率45%以上70%未満
 D:空隙率70%以上
 E:膜がもろく評価不能
(導電性評価)
 得られた導電膜について、四探針法抵抗率計を用いて体積抵抗率を測定し、導電性を評価した。評価基準は以下のとおりである。なお、実用上、AまたはBであることが求められる。
 A:体積抵抗率が50μΩ・cm未満
 B:体積抵抗率が50μΩ・cm以上100μΩ・cm未満
 C:体積抵抗率が100μΩ・cm以上
<実施例2~32、比較例1~6>
(分散体1)
 酸化第二銅粒子(シーアイ化成(株)社製、NanoTek、CuO、平均1次粒子径(48nm))58質量部と、ポリビニルピロリドン(Polysciences, Inc. 社製 カタログ番号24737-250)3.5質量部と、イオン交換水38.5質量部とを混合し、自転公転ミキサー(THINKY(株)社製、あわとり練太郎ARE-310)で2000rpm、5分間攪拌処理することで、比較例1中の分散体1を得た。
 分散体の体積平均2次粒子径は、実施例1の分散体2と同様に分散体1をイオン交換水で酸化第二銅濃度(酸化第二銅粒子濃度)が0.01wt%になるように希釈し、ナノトラック粒度分布測定装置UPA-EX150(日機装(株)製)で動的光散乱法により測定した。また、ポリビニルピロリドンの重量平均分子量を測定したところ、1000であった。
(分散体3~4、13~27)
 組成を後述する表1に従って変更した以外は、実施例1中の分散体2の製造方法と同様の手順に従って、分散体3~4、13~27を調製した。
(分散体5、7~8、28)
 組成を後述する表1に従って変更した以外は、上記分散体1の製造方法と同様の手順に従って、分散体5、7~8、28を調製した。
(分散体6)
 ビーズ径0.1mmφのジルコニアビーズの代わり、0.3mmφのジルコニアビーズを使用した以外は、実施例1中の分散体2の製造方法と同様の手順に従って、分散体6を調製した。
(分散体9~12)
 組成を後述する表1に従って変更し、使用するジルコニアビーズをビーズ径0.1mmφのものに変更した以外は、実施例1中の分散体2の製造方法と同様の手順に従って、分散体9~12を調製した。
(導電膜形成用組成物1、3~38の調製)
 使用する分散体の種類や成分の種類やそれらの量を表2に記載に従って変更した以外は、実施例1中の導電膜形成用組成物2の製造方法と同様の手順に従って、導電膜形成用組成物1、3~38を調製した。
 得られた導電膜形成用組成物1、3~38を用いて、実施例1と同様の手順に従って、導電膜を製造し、各種評価を行った。結果を表2にまとめて示す。
 表1中、酸化第二銅粒子Aは酸化第二銅(シーアイ化成(株)社製、NanoTek(登録商標)、平均1次粒子径(48nm))を意図し、酸化第二銅粒子Bは酸化第二銅(シグマアルドリッチ、ナノパウダー(平均1次粒子径:35nm))を意図する。
 また、表1および表2中、「水溶性高分子の重量平均分子量」欄は、GPC法(溶媒:N-メチルピロリドン)により得られたポリスチレン換算値を意図する。
 また、表1および表2中の「%」は「質量%」を意図する。
 また、表1および表2中の「残部」は、各分散体または各組成物中の成分の合計が「100質量%」となるように、溶媒が含まれることを意図する。
 また、表1および表2中、「PEG1000(Wako)、PEG4000(Wako)、PEG8000(Wako)、PEG20000(Wako)」は、それぞれ「ポリエチレングリコール1000、ポリエチレングリコール4000、ポリエチレングリコール8000、ポリエチレングリコール20000、いずれも和光純薬工業(株)社製を意図する。「BYK-154」は、ビックケミー・ジャパン(株)社製、BYK-154を意図する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

 
 上記表2に示すように、本発明の導電膜形成用組成物を使用した場合、形成された導電膜は空隙が少なく、導電性にも優れることが確認された。
 なかでも、実施例1~3の比較からわかるように、ポリビニルピロリドンの重量平均分子量が8000以上の場合、導電膜の導電性がより優れることが確認された。
 また、実施例3と4との比較からわかるように、重量平均分子量の異なるポリビニルピロリドンを使用した場合、導電膜の空隙がより低減することが確認された。
 また、実施例4、6および7の比較からわかるように、体積平均2次粒子径が180nm以下の場合、導電膜の空隙がより低減することが確認され、さらに体積平均2次粒子径が160nm以下の場合、導電膜の空隙がさらに低減することが確認された。
 また、実施例8~11の比較からわかるように、ポリエチレングリコールの重量平均分子量が3000以上18000以下の場合、体積平均2次粒子径の小さな酸化銅分散体が得られ、導電膜の空隙がより低減することが確認され、さらに重量平均分子量が5000以上18000以下の場合、導電膜の導電性がより優れることが確認された。
 また、実施例14~16の比較から分かるように、導電膜形成用組成物中の酸化銅粒子濃度が高い方が、空隙が低減することが確認された。
 また、比較例2と実施例12との比較からわかるように、分散剤として水溶性高分子に加えて界面活性剤を使用した場合、体積平均2次粒子径の小さな酸化銅分散体が得られ、導電膜の空隙がより少なく、導電性にも優れることが確認された。
 また、実施例17と18の比較、および、実施例24と25の比較から分かるように、界面活性剤の量が酸化銅粒子の全質量に対して5質量%以下であると、導電膜の空隙が低減し、導電性が優れることが確認された。
 また、実施例19と実施例20の比較から、分子量20000以上のポリビニルピロリドンと界面活性剤とを含有することにより、導電膜の空隙がより低減することが確認された。
 また、実施例12と実施例31の比較および実施例4と実施例32の比較により、揺変剤を含有することにより、導電膜の空隙がより低減し導電性がより優れることが確認された。
 一方、比較例1~3、5~6に示すように、酸化銅粒子の体積平均2次粒子径が所定範囲外の場合、導電膜中に空隙が多く、導電性にも劣ることが確認された。
 また、比較例4に示すように、溶媒として有機溶媒を使用した場合、導電膜中に空隙が多く、導電性にも劣ることが確認された。なお、比較例4の態様は、上述した特許文献1の態様に該当する。
 

Claims (8)

  1.  酸化銅粒子と、水と、水溶性高分子および界面活性剤からなる群から選ばれる分散剤とを含有する導電膜形成用組成物であって、
     前記酸化銅粒子の体積平均2次粒子径が20~240nmであり、
     前記酸化銅粒子の含有量が、導電膜形成用組成物全質量に対して、10~70質量%である、導電膜形成用組成物。
  2.  揺変剤をさらに含む、請求項1に記載の導電膜形成用組成物。
  3.  前記分散剤が、重量平均分子量の異なる2種以上の水溶性高分子を含む、請求項1または2に記載の導電膜形成用組成物。
  4.  前記分散剤が、水溶性高分子と界面活性剤とを含む、請求項1または2に記載の導電膜形成用組成物。
  5.  前記分散剤が、重量平均分子量8000~160000のポリビニルピロリドン、または、重量平均分子量3000~18000のポリエチレングリコールを含む、請求項1~4のいずれか1項に記載の導電膜形成用組成物。
  6.  前記分散剤の含有量が、酸化銅粒子の全質量に対して、4~20質量%である、請求項1~5のいずれか1項に記載の導電膜形成用組成物。
  7.  前記酸化銅粒子の体積平均2次粒子径が20~180nmである、請求項1~6のいずれか1項に記載の導電膜形成用組成物。
  8.  請求項1~7のいずれか1項に記載の導電膜形成用組成物を基材上に付与して、塗膜を形成する工程と、
     前記塗膜に対して加熱処理および/または光照射処理を行い、酸化銅粒子を還元して金属銅を含有する導電膜を形成する工程とを備える、導電膜の製造方法。
PCT/JP2014/051628 2013-02-04 2014-01-27 導電膜形成用組成物、導電膜の製造方法 WO2014119498A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14745507.5A EP2952546B1 (en) 2013-02-04 2014-01-27 Composition for forming electrically conductive film, and method for producing electrically conductive film
US14/807,654 US10053587B2 (en) 2013-02-04 2015-07-23 Conductive film-forming composition and conductive film producing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-019432 2013-02-04
JP2013019432A JP5972187B2 (ja) 2013-02-04 2013-02-04 導電膜形成用組成物、導電膜の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/807,654 Continuation US10053587B2 (en) 2013-02-04 2015-07-23 Conductive film-forming composition and conductive film producing method

Publications (1)

Publication Number Publication Date
WO2014119498A1 true WO2014119498A1 (ja) 2014-08-07

Family

ID=51262213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051628 WO2014119498A1 (ja) 2013-02-04 2014-01-27 導電膜形成用組成物、導電膜の製造方法

Country Status (5)

Country Link
US (1) US10053587B2 (ja)
EP (1) EP2952546B1 (ja)
JP (1) JP5972187B2 (ja)
TW (1) TWI611430B (ja)
WO (1) WO2014119498A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005178A1 (ja) * 2013-07-10 2015-01-15 富士フイルム株式会社 導電膜形成用組成物およびこれを用いる導電膜の製造方法
WO2015005046A1 (ja) * 2013-07-10 2015-01-15 富士フイルム株式会社 導電膜形成用組成物、導電膜の製造方法、および、導電膜
JP2015026567A (ja) * 2013-07-29 2015-02-05 富士フイルム株式会社 導電膜形成用組成物及び導電膜の製造方法
WO2018169012A1 (ja) * 2017-03-16 2018-09-20 旭化成株式会社 分散体並びにこれを用いた導電性パターン付構造体の製造方法及び導電性パターン付構造体
WO2019022230A1 (ja) * 2017-07-27 2019-01-31 旭化成株式会社 酸化銅インク及びこれを用いた導電性基板の製造方法、塗膜を含む製品及びこれを用いた製品の製造方法、導電性パターン付製品の製造方法、並びに、導電性パターン付製品
US11109492B2 (en) 2017-07-18 2021-08-31 Asahi Kasei Kabushiki Kaisha Structure including electroconductive pattern regions, method for producing same, stack, method for producing same, and copper wiring
US11328835B2 (en) 2017-03-16 2022-05-10 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170213615A1 (en) * 2014-07-22 2017-07-27 Sumitomo Electric Industries, Ltd. Metal nanoparticle dispersion and metal coating film
KR101809789B1 (ko) * 2014-07-30 2017-12-15 주식회사 엘지화학 치밀도가 향상된 무기 전해질막의 제조방법, 이를 위한 무기 전해질막 제조용 조성물 및 이를 통해 제조된 무기 전해질막
WO2016031404A1 (ja) * 2014-08-28 2016-03-03 富士フイルム株式会社 導電膜形成用組成物およびこれを用いる導電膜の製造方法
WO2016031426A1 (ja) * 2014-08-29 2016-03-03 富士フイルム株式会社 導電膜の製造方法
JP6263630B2 (ja) * 2014-08-29 2018-01-17 富士フイルム株式会社 導電膜形成用組成物および導電膜形成方法
KR101716549B1 (ko) * 2014-11-19 2017-03-15 삼성에스디아이 주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
US11104813B2 (en) * 2015-06-02 2021-08-31 Asahi Kasei Kabushiki Kaisha Dispersion
JP6746409B2 (ja) * 2016-07-11 2020-08-26 古河電気工業株式会社 金属微粒子の分散溶液、及び焼結導電体
EP3609961A4 (en) * 2017-04-13 2021-01-20 The Diller Corporation ELECTROCONDUCTIVE INK FORMULATIONS CONTAINING MICROCRYSTALLINE CELLULOSE, PROCESSES FOR PRINTING ELECTROCONDUCTIVE TRACES, AND LAMINATES CONTAINING THEM
JP7099867B2 (ja) * 2018-05-16 2022-07-12 日本化学工業株式会社 光焼結型組成物及びそれを用いた導電膜の形成方法
US11945935B2 (en) * 2019-05-08 2024-04-02 Saint-Gobain Performance Plastics Corporation Hydrophilic polymer compositions
JP7005709B2 (ja) * 2020-08-11 2022-01-24 旭化成株式会社 分散体及びプリント配線基板製造用基板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174620A (ja) * 1991-12-26 1993-07-13 Matsushita Electric Ind Co Ltd 導体形成用ペースト
JPH10204150A (ja) 1997-01-24 1998-08-04 Hitachi Chem Co Ltd 感光性樹脂組成物
JP2001011388A (ja) * 1999-06-29 2001-01-16 Namics Corp 電極ペースト組成物およびそれを用いる積層コンデンサの製造方法
JP2003222993A (ja) 1997-11-12 2003-08-08 Hitachi Chem Co Ltd 感光性樹脂組成物
JP2004155638A (ja) 2002-11-08 2004-06-03 Asahi Kasei Corp 金属酸化物分散体
JP2005211732A (ja) * 2004-01-28 2005-08-11 Asahi Kasei Corp 金属薄層の製造方法
JP2012151093A (ja) * 2010-12-28 2012-08-09 Tosoh Corp 銅含有組成物、金属銅膜の製造方法、および金属銅膜

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116407A (ja) * 1992-10-02 1994-04-26 Toray Ind Inc 二軸配向フィルム
JP2812136B2 (ja) * 1993-05-14 1998-10-22 東レ株式会社 二軸配向積層フィルム
DE10297544B4 (de) * 2001-12-18 2015-10-29 Asahi Kasei Kabushiki Kaisha Verfahren zur Herstellung eines Metall-Dünnfilms
TWI275569B (en) * 2002-11-08 2007-03-11 Asahi Kasei Corp Copper oxide super-fine particles
DE10393790B4 (de) * 2002-12-03 2013-05-16 Asahi Kasei Kabushiki Kaisha Kupferoxid-Ultrafeinteilchen
US8945686B2 (en) * 2007-05-24 2015-02-03 Ncc Method for reducing thin films on low temperature substrates
JP4918662B2 (ja) * 2007-06-27 2012-04-18 国立大学法人 東京大学 Maldi質量分析用の試料ホルダおよび質量分析方法
TWI444459B (zh) * 2008-06-05 2014-07-11 Jsr Corp A chemical mechanical polishing system for manufacturing a circuit substrate, a method for manufacturing a circuit board, a circuit board, and a multilayer circuit board
US20140127409A1 (en) * 2012-11-06 2014-05-08 Takuya Harada Method for producing fine particle dispersion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174620A (ja) * 1991-12-26 1993-07-13 Matsushita Electric Ind Co Ltd 導体形成用ペースト
JPH10204150A (ja) 1997-01-24 1998-08-04 Hitachi Chem Co Ltd 感光性樹脂組成物
JP2003222993A (ja) 1997-11-12 2003-08-08 Hitachi Chem Co Ltd 感光性樹脂組成物
JP2001011388A (ja) * 1999-06-29 2001-01-16 Namics Corp 電極ペースト組成物およびそれを用いる積層コンデンサの製造方法
JP2004155638A (ja) 2002-11-08 2004-06-03 Asahi Kasei Corp 金属酸化物分散体
JP2005211732A (ja) * 2004-01-28 2005-08-11 Asahi Kasei Corp 金属薄層の製造方法
JP2012151093A (ja) * 2010-12-28 2012-08-09 Tosoh Corp 銅含有組成物、金属銅膜の製造方法、および金属銅膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2952546A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005046A1 (ja) * 2013-07-10 2015-01-15 富士フイルム株式会社 導電膜形成用組成物、導電膜の製造方法、および、導電膜
WO2015005178A1 (ja) * 2013-07-10 2015-01-15 富士フイルム株式会社 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2015026567A (ja) * 2013-07-29 2015-02-05 富士フイルム株式会社 導電膜形成用組成物及び導電膜の製造方法
WO2015015918A1 (ja) * 2013-07-29 2015-02-05 富士フイルム株式会社 導電膜形成用組成物及び導電膜の製造方法
US11270809B2 (en) 2017-03-16 2022-03-08 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern
WO2018169012A1 (ja) * 2017-03-16 2018-09-20 旭化成株式会社 分散体並びにこれを用いた導電性パターン付構造体の製造方法及び導電性パターン付構造体
CN110366761A (zh) * 2017-03-16 2019-10-22 旭化成株式会社 分散体以及使用其的带导电性图案的结构体的制造方法和带导电性图案的结构体
US20200013521A1 (en) * 2017-03-16 2020-01-09 Asahi Kasei Kabushiki Kaisha Dispersing Element, Method for Manufacturing Structure with Conductive Pattern Using the Same, and Structure with Conductive Pattern
JPWO2018169012A1 (ja) * 2017-03-16 2020-01-16 旭化成株式会社 分散体並びにこれを用いた導電性パターン付構造体の製造方法及び導電性パターン付構造体
JP7104687B2 (ja) 2017-03-16 2022-07-21 旭化成株式会社 分散体並びにこれを用いた導電性パターン付構造体の製造方法及び導電性パターン付構造体
US11328835B2 (en) 2017-03-16 2022-05-10 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern
US11109492B2 (en) 2017-07-18 2021-08-31 Asahi Kasei Kabushiki Kaisha Structure including electroconductive pattern regions, method for producing same, stack, method for producing same, and copper wiring
WO2019022230A1 (ja) * 2017-07-27 2019-01-31 旭化成株式会社 酸化銅インク及びこれを用いた導電性基板の製造方法、塗膜を含む製品及びこれを用いた製品の製造方法、導電性パターン付製品の製造方法、並びに、導電性パターン付製品
JP2022008655A (ja) * 2017-07-27 2022-01-13 旭化成株式会社 酸化銅インク及びこれを用いた導電性基板の製造方法、塗膜を含む製品及びこれを用いた製品の製造方法、導電性パターン付製品の製造方法、並びに、導電性パターン付製品
JPWO2019022230A1 (ja) * 2017-07-27 2020-05-28 旭化成株式会社 酸化銅インク及びこれを用いた導電性基板の製造方法、塗膜を含む製品及びこれを用いた製品の製造方法、導電性パターン付製品の製造方法、並びに、導電性パターン付製品
KR20200018583A (ko) * 2017-07-27 2020-02-19 아사히 가세이 가부시키가이샤 산화구리 잉크 및 이것을 이용한 도전성 기판의 제조 방법, 도막을 포함하는 제품 및 이것을 이용한 제품의 제조 방법, 도전성 패턴을 갖는 제품의 제조 방법, 및 도전성 패턴을 갖는 제품
KR102456821B1 (ko) 2017-07-27 2022-10-19 아사히 가세이 가부시키가이샤 산화구리 잉크 및 이것을 이용한 도전성 기판의 제조 방법, 도막을 포함하는 제품 및 이것을 이용한 제품의 제조 방법, 도전성 패턴을 갖는 제품의 제조 방법, 및 도전성 패턴을 갖는 제품
KR20220142551A (ko) * 2017-07-27 2022-10-21 아사히 가세이 가부시키가이샤 산화구리 잉크 및 이것을 이용한 도전성 기판의 제조 방법, 도막을 포함하는 제품 및 이것을 이용한 제품의 제조 방법, 도전성 패턴을 갖는 제품의 제조 방법, 및 도전성 패턴을 갖는 제품
JP7291078B2 (ja) 2017-07-27 2023-06-14 旭化成株式会社 酸化銅インク及びこれを用いた導電性基板の製造方法、塗膜を含む製品及びこれを用いた製品の製造方法、導電性パターン付製品の製造方法、並びに、導電性パターン付製品
KR102559500B1 (ko) 2017-07-27 2023-07-24 아사히 가세이 가부시키가이샤 산화구리 잉크 및 이것을 이용한 도전성 기판의 제조 방법, 도막을 포함하는 제품 및 이것을 이용한 제품의 제조 방법, 도전성 패턴을 갖는 제품의 제조 방법, 및 도전성 패턴을 갖는 제품
US11760895B2 (en) 2017-07-27 2023-09-19 Asahi Kasei Kabushiki Kaisha Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
JP7403512B2 (ja) 2017-07-27 2023-12-22 旭化成株式会社 酸化銅インク及びこれを用いた導電性基板の製造方法、塗膜を含む製品及びこれを用いた製品の製造方法、導電性パターン付製品の製造方法、並びに、導電性パターン付製品

Also Published As

Publication number Publication date
JP2014148633A (ja) 2014-08-21
JP5972187B2 (ja) 2016-08-17
EP2952546B1 (en) 2022-01-26
TWI611430B (zh) 2018-01-11
US10053587B2 (en) 2018-08-21
US20160024316A1 (en) 2016-01-28
EP2952546A4 (en) 2016-01-06
TW201432724A (zh) 2014-08-16
EP2952546A1 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5972187B2 (ja) 導電膜形成用組成物、導電膜の製造方法
WO2014156594A1 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2011142052A (ja) 銅導体インク及び導電性基板及びその製造方法
WO2014148091A1 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
WO2013145953A1 (ja) 液状組成物、金属膜、及び導体配線、並びに金属膜の製造方法
WO2014050466A1 (ja) 導電膜の製造方法および導電膜形成用組成物
TWI613682B (zh) 用於形成導電膜之組合物和導電膜的製造方法
WO2015033823A1 (ja) 導電膜の製造方法
JP2015018674A (ja) 導電膜形成用組成物、導電膜の製造方法、および、導電膜
WO2014141787A1 (ja) 導電膜形成用組成物及びこれを用いる導電膜の製造方法
WO2014157303A1 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2014167872A (ja) 導電膜の製造方法、配線基板
JP5871762B2 (ja) 導電膜形成用組成物および導電膜の製造方法
JP2020119737A (ja) 導電性ペースト、導電膜付き基材、導電膜付き基材の製造方法
JP6109130B2 (ja) 導電膜形成用組成物、導電膜の製造方法、および、導電膜
JP2014186952A (ja) 被覆銅粒子の製造方法、導電膜形成用組成物の製造方法、導電膜の製造方法
JP2014044907A (ja) 導電膜形成用組成物および導電膜の製造方法
JP2014191974A (ja) 導電膜の製造方法および導電膜
WO2016136409A1 (ja) 導電膜形成用組成物、および、導電膜の製造方法
WO2015005178A1 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP6111170B2 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2014025085A (ja) 導電膜形成用組成物および導電膜の製造方法
JP2014192014A (ja) 導電膜形成用組成物
WO2016031404A1 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2014186831A (ja) 導電膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745507

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014745507

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE