WO2014115799A1 - 多能性幹細胞の継代培養方法 - Google Patents

多能性幹細胞の継代培養方法 Download PDF

Info

Publication number
WO2014115799A1
WO2014115799A1 PCT/JP2014/051362 JP2014051362W WO2014115799A1 WO 2014115799 A1 WO2014115799 A1 WO 2014115799A1 JP 2014051362 W JP2014051362 W JP 2014051362W WO 2014115799 A1 WO2014115799 A1 WO 2014115799A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
microwell
pluripotent stem
culture
Prior art date
Application number
PCT/JP2014/051362
Other languages
English (en)
French (fr)
Inventor
成則 尾▲崎▼
慎一 五味
智瑛 倉員
大島 康弘
伸 川真田
直希 西下
Original Assignee
東京エレクトロン株式会社
公益財団法人先端医療振興財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, 公益財団法人先端医療振興財団 filed Critical 東京エレクトロン株式会社
Priority to US14/762,921 priority Critical patent/US20150353884A1/en
Priority to EP14743585.3A priority patent/EP2949746A4/en
Priority to JP2014558609A priority patent/JPWO2014115799A1/ja
Publication of WO2014115799A1 publication Critical patent/WO2014115799A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0081Purging biological preparations of unwanted cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS

Definitions

  • the present invention relates to a method for subculturing pluripotent stem cells. More specifically, the present invention relates to a simple and homogeneous method for subculturing pluripotent stem cells.
  • the cells are detached from the adhesion surface of the culture container using an enzyme treatment or a cell scraper, and subcultured to a culture container containing a fresh medium. It is known that pluripotent stem cells are killed when dissociated into single cells, and it is indispensable to pass in the state of a cell cluster during passage. Therefore, in the passage of pluripotent stem cells, when detaching the cells from the culture vessel, the pluripotent stem cells are detached as colonies, crushed into a cell mass of an appropriate size by pipetting, etc., and then new Sowing in a dish.
  • a method of seeding pluripotent stem cells into a single cell is known, but this method is a method for cloning pluripotent stem cells having a single property, called cell proliferation. From the viewpoint, the method is very inefficient, and is not a suitable method for subculture of pluripotent stem cells (Non-patent Document 1). Further, a method is known in which a single-cell pluripotent stem cell is aggregated to form a uniform-sized embryoid body (Embryonic Body) to improve differentiation induction efficiency (Non-patent Document 2). In the first place, such an embryoid body is produced in order to promote differentiation induction of pluripotent stem cells (Non-patent Documents 2 and 3). It is considered that pluripotent stem cells lose pluripotency once they start differentiation, and it is impossible to make pluripotent stem cells form embryoid bodies for the purpose of maintaining an undifferentiated state.
  • An object of the present invention is to provide an efficient and homogeneous subculture method for maintenance culture of pluripotent stem cells.
  • the present inventors subcultured pluripotent stem cells, even if the cell mass obtained by culturing is dispersed to a single cell level, the cell mass is rapidly reformed thereafter. (Ie, by forming a cell clump), cell death due to dispersion into a single cell can be prevented, and a certain size and shape can be achieved by devising a method for forming a cell clump. It has been found that a homogeneous cell clump having the same can be obtained.
  • the present inventors also obtained a cell agglomeration in which cells were three-dimensionally aggregated, but when seeded in a dish, the cell agglomerates rapidly spread on the cell adhesion surface of the dish and proliferate well and uniformly.
  • the present inventors have further found that the cell culture efficiency can be easily improved by adjusting the size of the cell clump. Furthermore, the present inventors have also found that the proportion of undifferentiated cells in the subcultured cells can be improved by classifying the cells dispersed to the single cell level based on the size.
  • the inventors of the present invention inoculate the cell conglomerate formed in the well at a specific position in the culture container by dropping the container provided with the well onto the culture surface of the culture container by turning the container upside down. It was found that (precise sowing) can be performed.
  • the present invention is based on such knowledge.
  • a method for subculturing pluripotent stem cells (A) dispersing the cell mass of pluripotent stem cells during passage; (B) seeding cells obtained by dispersion in microwells; (C) forming a cell clump from cells seeded in a microwell; (D) seeding the obtained cell conglomerate on the culture surface of the culture vessel.
  • the step (d) comprises the step (d ′) of reversing the container provided with the microwells so that the cell clump is dropped on the culture surface of the culture container.
  • Method (3) The method according to (1) or (2) above, wherein the cell mass is dissociated into a cell mass composed of 1 to 100 cells in the step (a).
  • step (9) The method according to (8) above, wherein the number of cells seeded in each microwell in step (b) is 55 to 220.
  • step (10) The method according to any one of (1) to (9) above, wherein the step (c) comprises allowing the cells to stand in the microwell for a time sufficient to form a cell clump. .
  • step (c) comprises allowing the cells to stand for 8 to 24 hours in a microwell.
  • step (c) comprises allowing the cells to stand in a microwell for 8 to 12 hours.
  • step (c) is performed without using centrifugation.
  • the pluripotent stem cell is a human pluripotent stem cell.
  • the human pluripotent stem cells are human ES cells or human iPS cells.
  • the step (a ′) of removing differentiated cells comprises removing differentiated cells by classification.
  • a closed culture vessel comprising a surface with a microwell and a culture surface, and arranged so that these two surfaces face each other.
  • (28) A fully automated subculture system for pluripotent stem cells for carrying out the method according to any one of (1) to (22) and (27) above.
  • the method of the present invention is advantageous in that homogeneous and pluripotent stem cell clumps can be obtained simply and rapidly, thereby enabling stable passage of pluripotent stem cells.
  • the method of the present invention can also control the inoculation position of the cell agglomeration by dropping the cell agglomeration into the culture container by reversing the container equipped with the microwells, for example, allowing the cells to be uniformly inoculated. This is advantageous.
  • the method of the present invention is further advantageous in that the proportion of undifferentiated cells can be increased because differentiated cells can be removed during passage.
  • the pluripotent stem cell subculture method of the present invention is suitable for full automation, and can automate the whole process.
  • FIG. 1 shows the state of cells (FIG. 1A) immediately after and 1 day after seeding human iPS cells dispersed to the single cell level in AggreWell 800 (FIG. 1A) and the resulting cell agglomeration (FIG. 1B). is there.
  • FIG. 2 is a phase contrast microscopic image of cells after passage of cell clumps obtained with or without centrifugation. The dark part of the cell cluster or cell colony is the part where the cells are multi-layered.
  • FIG. 3 is a diagram showing a growth curve after passage of the obtained cell conglomerate. Cell growth was determined by measuring the area (mm 2 ) occupied by cells on the dish.
  • FIG. 4 is a diagram showing a fluorescent immunostaining image of colonies after passage.
  • FIG. 5 is a phase-contrast microscope image obtained by observing the formation process of cell clumps on the AggreWell over time.
  • FIG. 6 is a diagram showing a phase contrast microscopic image of the standing time on AggreWell and subsequent cell proliferation. In FIG. 6, the phase-contrast microscope image was acquired 48 hours after seed
  • FIG. 7 is a diagram showing a phase contrast microscopic image of the standing time on AggreWell and subsequent cell growth. In FIG. 7, the phase-contrast microscope image was acquired 168 hours after seed
  • FIG. 8 is a phase-contrast microscope image showing the state of cells 7 days after seeding when the cell aggregate formation conditions are changed.
  • FIG. 8 is a phase-contrast microscope image showing the state of cells 7 days after seeding when the cell aggregate formation conditions are changed.
  • FIG. 9 is a phase-contrast microscope image showing the state of cells 7 days after seeding when the conditions for forming cell clumps are changed.
  • FIG. 10 is a phase-contrast microscope image showing the state of cells at the fifth passage when centrifugation is performed to form cell clumps.
  • FIG. 10 shows the state of cell clump development and the state of proliferation from 2 to 7 days after seeding.
  • FIG. 11 is a diagram showing colony survival rates when the conditions for forming cell clumps are changed.
  • P1 to P5 indicate passage numbers. Specifically, P1 indicates data after the first passage, and P2 to P5 indicate data after the second to fifth passages, respectively.
  • FIG. 12 is a diagram showing the ratio of multi-layered colonies when the conditions for forming cell clumps are changed.
  • FIG. 13 is a graph showing the cell recovery rate when the cell aggregate formation conditions are changed.
  • P1 to P5 indicate passage numbers.
  • FIG. 14 is a diagram showing cell mortality when the conditions for forming cell clumps are changed.
  • P1 to P5 indicate passage numbers.
  • FIG. 15 is a diagram showing the relationship between the number of cells contained in one cell clump and the diameter of the cell clump.
  • FIG. 16 is a diagram showing the relationship between the number of cells contained in one cell clump and the cell expansion rate after cell clump seeding.
  • FIG. 12 is a diagram showing the ratio of multi-layered colonies when the conditions for forming cell clumps are changed.
  • FIG. 13 is a graph showing the cell recovery rate when the cell aggregate formation conditions are changed.
  • P1 to P5 indicate passage numbers.
  • FIG. 14 is a diagram showing cell mortality when the conditions for forming
  • FIG. 17 is a diagram showing the relationship between the number of cells contained per cell clump and the cell adhesion rate after cell clump seeding.
  • FIG. 18 is a diagram showing the relationship between the number of cells contained in one cell aggregate and the number of cell aggregates obtained when cell aggregates of equal size are obtained using 10,000 cells. It is.
  • FIG. 19 is a diagram showing the relationship between the number of cells contained in one cell clump and the amplification factor of cells per passage.
  • FIG. 20 is a diagram showing the relationship between the number of cells contained in one cell clump and the number of days required for a colony derived from each cell clump to reach a diameter of 2 mm.
  • FIG. 21 is a diagram showing the relationship between the number of cells contained in one cell clump and the amplification factor of cells per day.
  • FIG. 22 is a diagram showing the relationship between the number of cells contained per cell cluster and the amplification factor of cells after 45.42 days.
  • FIG. 23 is a diagram showing the difference between the diameter of cells obtained from good iPS cell colonies and the diameter of cells obtained from bad iPS cell colonies.
  • FIG. 24 is a diagram showing the arrangement on the culture surface of the cell conglomerate dropped on the culture surface of the culture container.
  • pluripotent stem cells used in the present invention include embryonic stem cells (ES cells), inducible pluripotent stem cells (iPS cells or induced pluripotent stem cells), Muse cells (Multilineage-differentiating Stress Enduring Cell), embryonic Examples include pluripotent stem cells such as tumor cells (EC cells) or embryonic germ stem cells (EG cells), preferably ES cells or iPS cells.
  • the pluripotent stem cells used in the present invention are also preferably pluripotent stem cells of mammals such as primates or rodents, and more preferably human pluripotent stem cells.
  • the pluripotent stem cell used in the present invention is most preferably a human ES cell or a human iPS cell.
  • the method for subculturing pluripotent stem cells of the present invention comprises: (A) dispersing the cell mass of pluripotent stem cells during passage; (B) seeding cells obtained by dispersion in microwells; (C) forming a cell clump from cells seeded in microwells with or without centrifugation techniques; (D) seeding the obtained cell conglomerate on the culture surface of the culture vessel.
  • the subculture of the pluripotent stem cells of the present invention is performed in an adhesion culture system.
  • pluripotent stem cells can be maintained and cultured while maintaining a good undifferentiated state.
  • the cell clump obtained by the subculture method of the pluripotent stem cell of the present invention has a loose bond between cells. Therefore, although cell death due to unicellularization can be avoided, the cell clump obtained by the method of the present invention rapidly develops on the cell adhesion surface of the culture vessel after passage because of the loose binding between the cells. Can do.
  • the cell conglomerate obtained by the method of the present invention is also seeded at a controlled position in the culture container (hereinafter referred to as “ Sometimes referred to as precision sowing).
  • a step of dispersing a cell mass of pluripotent stem cells at the time of passage detachment of cells from the cell adhesion surface
  • pluripotent stem cells that are physiologically or physically detached from the cell adhesion surface can be used in the adhesion culture.
  • an enzyme for detaching pluripotent stem cells from the cell adhesion surface an enzyme used in a conventional method can be used, and for example, enzymes such as trypsin, dispase, actase and collagenase can be used.
  • the detachment of pluripotent stem cells from the cell adhesion surface may also be performed using a chemical substance having a cell detaching action, such as a chelating agent of divalent ions (particularly Mg 2+ ) such as ethylenediaminetetraacetic acid (EDTA), These may be performed in combination with the above enzyme.
  • a chemical substance having a cell detaching action such as a chelating agent of divalent ions (particularly Mg 2+ ) such as ethylenediaminetetraacetic acid (EDTA), These may be performed in combination with the above enzyme.
  • vibration such as high-frequency vibration may be applied to the cell adhesion surface, and / or a cell scraper may be used.
  • the cells may be detached by combining the above physiological detachment method and physical detachment method. Those skilled in the art will be able to appropriately remove the pluripotent stem cells from the cell adhesion surface using the well-known peeling method as described above.
  • the cell mass can be dissociated to the single cell level.
  • the dissociation of the cell mass may be performed simultaneously with the detachment of the cell from the culture surface, or may be performed after the cell mass is detached.
  • the exfoliated cell mass can be dispersed after being dissociated to a single cell level by, for example, pipetting water flow.
  • “dispersed to a single cell level” means a cell mass such that the average number of cells contained in one cell mass is 1 to 100, preferably 1 to 10. Is dissociated and then dispersed, and includes completely dissociating into single cells and then dispersing. Therefore, in the present invention, the cell mass may be dissociated after being completely dissociated into single cells, or may be dispersed after being dissociated so that most of the cells become single cells.
  • cell mass after dispersion is large, when the cell mass is seeded in the microwell, the number of cells seeded in each microwell tends to vary, and thus the cell mass after dispersion is preferably small.
  • the cell mass separated from the culture surface may be dispersed to the single cell level by further processing using an enzyme.
  • Enzymes that can be used to dissociate cells to the single cell level include those that can break cell-cell bonds and cell-extracellular matrix (ECM) bonds. Can be mentioned and these enzymes are well known to those skilled in the art. Dissociation of the cell mass using an enzyme or a water flow can be automated, and the process (a) can be automated.
  • a compound that suppresses adverse effects eg, cell death
  • Y-27632 and other ROCK inhibitors can be added.
  • step (B) Step of seeding cells obtained by dispersion in microwells
  • the cells or cell mass obtained by dispersion in step (a) (hereinafter sometimes simply referred to as “cells”) ) Can be successfully grown after passage after forming a cell clump. Formation of cell clumps can be performed by seeding the obtained cells in microwells.
  • the cells obtained by dispersing in the step (a) naturally sink by gravity in the culture solution. Therefore, when cells are seeded in a well having a slope, the cells gather in the well by utilizing the slope of the well. Thereafter, the cells form cell clumps with adjacent cells to form cell clumps.
  • the well has a shape that gathers when the cells sink, for example, a shape that becomes smaller as the inner circumference approaches the bottom surface. That is, the well preferably has a shape with a concave bottom, for example, a conical shape, a round bottom, a V bottom, a U bottom, and a chamfered flat bottom (having a bottom surface but with a corner and a concave bottom. It is preferable to have a shape of a shape.
  • the shape of the upper opening of each well can be appropriately selected in consideration of ease of processing and the shape in which a large number of wells can be arranged. For example, the shape of a polygon such as a triangle, a quadrangle, or a hexagon Or it can have a circular shape.
  • the cell agglomerates to be prepared have a certain size.
  • the size of the cell clump to be prepared is determined by the number of cells seeded in each microwell, in step (b), the number of cells seeded in each microwell is made uniform. Preferably it is.
  • the fixed amount means that the average number of cells seeded in each microwell in step (b) is, for example, 10 to 3,500 (that is, the average diameter of the formed cell clump is 35 to 350 ⁇ m).
  • the average diameter of the formed cell clumps is from 50 to 200 ⁇ m), more preferably from 40 to 500 (ie the average of the formed cell clumps) It means that the diameter is 60 to 160 ⁇ m), more preferably 55 to 220 (that is, the average diameter of the formed cell clumps is 69 to 115 ⁇ m).
  • the cells are sufficiently suspended in the suspension. Sowing.
  • a well for forming a cell agglomeration is called a “microwell”.
  • the “microwell” is an upper opening having a side or a diameter of 1 mm or more. It is not a term intended to exclude wells having a section, and “microwell” includes a well having a top opening with a side or diameter of 1 mm or more.
  • the size of the upper opening of the microwell can be determined by the size of the cell clump to be formed.
  • the area of the microwell is equivalent to a circle having a diameter of 100 ⁇ m to 3 mm, a diameter of 200 ⁇ m to 800 ⁇ m, or a diameter of 400 ⁇ m to 600 ⁇ m. It can be a well with an upper opening.
  • a large number of microwells are arranged on the bottom surface of the container, and there are no gaps (no flat portion between adjacent wells). Or the like so that the gap between wells is minimized.
  • the arrangement of the microwells on the bottom surface of the container will be described in more detail in the item of step (d ′) relating to precision seeding.
  • the shape of the microwell of the container is uniform from the viewpoint of uniforming the size of the cell clump to be formed.
  • the cells obtained by dispersing in the step (a) are preferably prepared using a multiwell plate in which a large number of uniform-shaped microwells are arranged on the bottom surface.
  • a multiwell plate is not particularly limited.
  • AggreWell trademark
  • the step (b) can be performed on the surface provided with the microwell using the closed culture vessel of the present invention described later.
  • the surface of the microwell can be coated with a non-adhesive coating for cells.
  • the number of cells seeded in the microwell can be adjusted as appropriate.
  • seeding of the cells in the microwell can be performed uniformly by sufficiently suspending the cells. Since these operations can be automated, the step of seeding a certain amount of cells in a microwell in step (b) can also be fully automated.
  • Step of forming a cell clump from cells seeded in the microwell the cells seeded in the microwell are allowed to stand as they are, so that they are placed on the bottom of the microwell by gravity. The cells gather and adhere to each other to form a cell clump. The cells may be collected at the bottom of the microwell by centrifuging a container with the microwell using a centrifugation technique.
  • centrifugation at 400 g to 3000 g for 1 minute to 10 minutes can be performed. In this way, cells can be effectively collected on the bottom surface of the microwell.
  • cells can be densely aggregated when a cell clump is formed using a centrifugation technique, but in the present invention, it is not always necessary to use a centrifugation technique. That is, after seeding cells dispersed to the level of a single cell in a microwell, without using a centrifugation method, for example, by simply allowing the cells to stand in a microwell, the cells become pluripotent stem cells within a few hours. Cell clumps can be formed. Thus, in the present invention, cell clumps can be formed without using a centrifugation method.
  • cell clumps can be formed in pluripotent stem cells by allowing them to stand in microwells.
  • the standing time may be longer than the time necessary for the pluripotent stem cells to form a cell clump, for example, 8 hours or longer.
  • the standing time can be, for example, 8 hours to 24 hours, preferably 8 hours to 16 hours, and more preferably 8 hours to 12 hours.
  • the shorter the standing time the looser the bonds between the cells in the cell clumps, so that the cell clumps are more fragile, while the cell clumps develop quickly after seeding in the culture vessel. is there.
  • the cell agglomerates prepared in the step (c) of the present invention have a uniform size.
  • the average number of cells contained in each cell clump is, for example, 10 to 3,500 (that is, the average diameter of the cell clump is 35 to 350 ⁇ m), preferably Is 25 to 870 (that is, the average diameter of the cell clump is 50 to 200 ⁇ m), more preferably 40 to 500 (that is, the average diameter of the cell clump is 60 to 160 ⁇ m), and even more preferably Is 55 to 220 (that is, the average diameter of the cell clump is 69 to 115 ⁇ m), and the average diameter of the cell clump can be appropriately adjusted according to the size of the microwell and the number of cells to be seeded.
  • a microwell having a size larger than the size of the cell clump to be produced can be selected.
  • a cell clump having an average diameter of 50 ⁇ m using human iPS cells 24 wells in which 1200 microwells per well (for example, the microwell size is 400 ⁇ m ⁇ 400 ⁇ m) are engraved. Plates (2 cm 2 / well) can be seeded with 2.8 ⁇ 10 4 cells / well.
  • 1.8 ⁇ 10 5 cells per 24-well plate (2 cm 2 / well) engraved with 1200 microwells per well. / Well cells can be seeded.
  • the cell aggregates of human iPS cells with diameters of 50 ⁇ m, 100 ⁇ m and 200 ⁇ m are calculated to include about 23, about 151 and about 981 cells, respectively.
  • a person skilled in the art will be able to calculate the required number of cells according to the diameter of the cell clump to be produced and obtain a cell clump having a desired size.
  • step (c) can be fully automated.
  • the cell agglomerate formed in the container provided with the microwell by the step (c) of seeding the obtained cell agglomeration on the culture surface of the culture container is then transferred to the culture container (that is, Culture surface).
  • This step (d) can be performed by collecting the cell clumps, suspending them in a medium, and seeding them on the culture surface of the culture vessel, and this step (d) can be fully automated.
  • the seeded cell cluster can be rapidly developed after seeding, and then cultured well in a state where pluripotency is maintained. From the viewpoint of uniformly seeding the cell clumps on the culture surface of the culture vessel, it is preferable to seed the cell suspension containing the cell clumps after sufficient suspension.
  • step (d) cell seeding can be precisely seeded in step (d).
  • the step (d ′) is carried out by reversing the container provided with the microwells so that the cell agglomeration is dropped on the culture surface of the culture vessel. Precise seeding can be performed on the culture surface of the culture vessel.
  • the container equipped with microwells in the step (d ′) is turned upside down, the cell conglomerate falls from the microwells almost vertically onto the culture surface of the culture vessel. So that it is seeded on the culture surface.
  • the arrangement of the microwells is designed based on how the cell clumps are to be dropped (similarly, the arrangement of the microwells in the container having the microwells used in the step (b))
  • Cell clumps can be seeded (precision seeding) in a controlled arrangement.
  • the cell clump can be precisely seeded on the culture surface of the culture vessel. Precision seeding can be used, for example, to uniformly seed cell clumps on the culture surface of a culture vessel, whereby the cells can be uniformly grown on the culture surface.
  • the microwells are preferably arranged in a honeycomb shape, for example (the arrangement of the microwells in the vessel equipped with the microwells used in the step (b) is also possible. The same). By doing in this way, the useless space between colonies formed by pluripotent stem cells can be reduced, and the culture surface can be used efficiently.
  • the microwells are arranged in a honeycomb shape means that a plurality of microwell rows extending in one predetermined direction are formed, and each microwell row is a plurality of microwells continuously arranged in the one direction. It means that microwells including wells and included in a certain microwell array are alternately arranged with respect to microwells included in an adjacent microwell array.
  • the step (d) includes the step (d ′) including the step of dropping the cell conglomerate onto the culture surface of the culture vessel by reversing the vessel equipped with the microwells upside down.
  • the sedimentation rate of the cell agglomeration due to gravity is not so fast, so even if the microwell and the cell agglomeration are not adhered, if the container equipped with the microwell is inverted upside down, the cells will be relatively good.
  • Agglomerates can be aligned on the culture surface of the culture vessel.
  • the adhesion between the microwell and the cell clump can be dissociated using impact, liquid flow and vibration (for example, low frequency vibration or high frequency vibration). it can.
  • the top-bottom reversal of the culture vessel comprises a closed-system culture vessel, for example a closed-system culture comprising a surface with a microwell and a culture surface, the two surfaces being arranged facing each other. This can be done easily using a container.
  • the present invention provides a closed culture vessel comprising a surface having a microwell (preferably a plurality of aligned microwells) and a culture surface, and these two surfaces are arranged to face each other.
  • seeding of the cells dispersed in step (a) into the microwell is performed by, for example, using a sufficiently suspended cell suspension. It can be performed by pouring into a container and then leaving the surface with the microwells on the ground side. Moreover, what is necessary is just to reverse the whole container upside down for the upside down reversal of the container.
  • the process (d ') can also be fully automated. From the viewpoint of facilitating full automation of the process, as described above, it is preferable to use the closed culture vessel of the present invention in the process (d ′).
  • the method for subculturing pluripotent stem cells of the present invention can be performed by steps (a) to (d). As mentioned above, all of these steps can be automated.
  • the method for subculturing pluripotent stem cells of the present invention may include (a ′) a step of removing differentiated cells between steps (a) and (b).
  • Step (A ′) Step of removing differentiated cells
  • Step (a ′) is a step relating to the separation and removal of differentiated cells, and is introduced into the subculture of pluripotent stem cells for the first time in the present invention that can disperse pluripotent stem cells into single cells. This is a process that has become possible. That is, the step (a ′) is a step based on the premise that the pluripotent stem cells are dispersed into single cells in the step (a).
  • the inventor of the present invention revealed that cells separated into single cells can be classified into undifferentiated cells and cells that have started differentiation based on the size, according to the examples described later. Specifically, in human iPS cells, undifferentiated cells were distributed in a size of about 14 to 20 ⁇ m centering on a diameter of 17 ⁇ m, but cells that started differentiation were mainly distributed in a diameter of 23 ⁇ m or more. Based on this finding, if the step (a ′) of classifying the cells based on the size is performed after the step (a), cells that have started differentiation are removed, and the proportion of undifferentiated cells is increased and passaged. Is possible.
  • step (a ′) cells having a diameter exceeding a threshold (threshold is a value of 20 ⁇ m or more, preferably 23 ⁇ m or more) are removed by classification to remove undifferentiated cells.
  • the ratio can be increased.
  • the classification threshold value in the step (a ′) is preferably a value of 25 ⁇ m or less, for example, 20 ⁇ m, 21 ⁇ m, 22 ⁇ m, 23 ⁇ m, 24 ⁇ m or 25 ⁇ m, more preferably 23 ⁇ m, 24 ⁇ m or 25 ⁇ m, More preferably, it is 23 ⁇ m.
  • the threshold is set low, the ratio of mixed differentiated cells decreases, but at the same time, the recovery rate of undifferentiated cells decreases.
  • the threshold value is set high, the recovery rate of undifferentiated cells is improved, but the contamination rate of differentiated cells is also increased.
  • a person skilled in the art can appropriately set the threshold based on the cell recovery rate and the contamination rate.
  • the classification of cells in the step (a ′) is not particularly limited, and can be performed using, for example, a cell fractionation filter or a cell sorter.
  • Cell fractionation filters are often used to classify cells in suspension cell systems and can classify cells of various sizes.
  • a cell fractionation filter for example, a filter of Filcon S, size 20 ⁇ m (manufactured by ASONE, product number: 2-7210-01) is commercially available and can be used.
  • methods for producing a cell separation filter for example, JP-A-2001-178) are known, and those skilled in the art can produce a cell separation filter to classify cells.
  • Cell classification can also be performed using a cell sorter, and those skilled in the art can classify cells based on, for example, a manufacturer's manual.
  • the removal of differentiated cells can be performed based on the presence or absence of the expression of a marker (surface marker) that is expressed on the surface of the cell.
  • Surface markers that can be used to remove differentiated cells include undifferentiated markers expressed by pluripotent stem cells. Examples of such undifferentiated markers include alkaline phosphatase, SSEA-3, SSEA-4, Undifferentiated markers such as TRA-1-60 and TRA-1-81 are known. Methods for separating cells based on the presence or absence of surface marker expression are well known, and those skilled in the art can appropriately separate and remove differentiated cells. Separation of cells based on the surface marker can be performed using a technique such as flow cytometry.
  • the fully automated subculture system of pluripotent stem cells for carrying out the method of the present invention is a means (1) for culturing pluripotent stem cells; pluripotent stem cells are detached from the culture surface and brought to a single cell level.
  • Means for dispersing (2); means for seeding the dispersed cells on the multi-microwell plate (where the multi-microwell plate may be centrifuged after seeding) (3); and the formed cell clumps One or more means selected from the group consisting of means (4) for seeding on the culture surface of the culture vessel, preferably all means.
  • a fully automated subculture system for pluripotent stem cells for carrying out the method of the present invention comprises the closed culture vessel of the present invention, and means (4) comprises the closed culture of the present invention. This is achieved by means (5) for reversing the container upside down.
  • the cells subcultured by the method of the present invention can be cryopreserved according to a normal cryopreservation protocol. After thawing the frozen cells, for example, steps (a) to (d) subsequent to step (a) and step (a) can be performed.
  • the cell conglomerate can be stored frozen after step (c).
  • the cell aggregate can be cryopreserved, for example, after the cell aggregate has been pelletized using a centrifugation technique, and then can be performed according to a normal cryopreservation protocol. After the frozen cells are thawed, the step following step (a) and step (a) may be performed, or the step following step (c) and step (c) (for example, step (d)) is performed. May be.
  • Freezing of the dispersed cells or cell clumps can be performed by using a freezing method corresponding to the cell freezing solution, and those skilled in the art can appropriately select a freezing method.
  • Example 1 Examination of human iPS cells into single cells and subsequent passage methods When pluripotent stem cells such as ES cells and iPS cells are separated into single cells during passage, cell death is induced. Is done. In addition, there is a concern that cells may start to differentiate when embryoid bodies are formed. In this example, it was examined whether cell death or differentiation problems would occur when cell clumps were rapidly formed after being dissociated into single cells and then passaged.
  • human iPS cells established strain by Kawasada Laboratory, Cell Evaluation Group, Advanced Medical Promotion Foundation
  • the culture was performed under feeder-less conditions.
  • a medium obtained by adding bFGF (manufactured by Wako Pure Chemical Industries, product number: 064-04541) final concentration of 5 ng / mL to ReproFF2 medium (manufactured by ReproCell, product number: RCHEMD006) was used.
  • a culture vessel a 10 mm cell culture dish (manufactured by BD, product number: REF353003) is used, and in order to ensure adhesion of iPS cells to the culture vessel, according to the method described in the manufacturer's instruction manual, Before culturing, the inside of the culture vessel was coated with ECM.
  • ECM BD Matrigel (manufactured by BD, product number: 356234) was used.
  • the cells were cultured until they became confluent by a conventional method. Thereafter, the medium was removed by aspiration for passage, and the cells were washed once with 10 mL of phosphate buffered saline (Life Technologies, product number: 14190). Thereafter, the cells were treated with 1 mL of accutase solution (Innovative cell technologies, product number: AT104) at 37 ° C. for 5 minutes, and the cells were collected in a tube.
  • phosphate buffered saline Life Technologies, product number: 14190
  • the cells were collected by centrifugation (440 g, 5 minutes), the supernatant was removed by aspiration, the cells were resuspended in 1 mL of medium, and ROCK inhibitor Y-27632 (manufactured by STEMGENT, product number: 04-0012) was added to the medium. ) was added to a final concentration of 10 ⁇ M to obtain a cell suspension. The cells were then crushed by pipetting water flow until single cell level. The cell concentration in the cell suspension was adjusted, and the cell suspension was injected into the well of AggreWell 800 (manufactured by STEMCELL Technologies). Thereafter, the AggreWell 800 was centrifuged (2000 g, 5 minutes) or not, and cultured at 37 ° C.
  • AggreWell 800 manufactured by STEMCELL Technologies
  • FIG. 1A The state of the cells immediately after seeding and after 1 day with and without centrifugation was as shown in FIG. 1A. That is, when centrifugation was performed, cells gathered at the bottom of the inverted pyramid-shaped well immediately after seeding (FIG. 1A—upper left), but when centrifugation was not performed, no cells gathered ( FIG. 1A—upper right). However, after one day, the cells gathered at the bottom of the well to form a cell conglomerate whether centrifugation was performed (FIG. 1A-lower left) or not (FIG. 1A-lower right). Moreover, the obtained cell clump had a substantially uniform size (FIG. 1B).
  • the obtained cell clumps were collected with a pipette so as not to break as much as possible, and seeded on a 6-well plate (300 cell clumps / well).
  • a pipette so as not to break as much as possible
  • a 6-well plate 300 cell clumps / well.
  • the cell conglomerate obtained in this example has a three-dimensional structure artificially accumulated, the situation is greatly different from that of normal subculture, but in this example, it was unexpectedly produced in this way. Even when a multi-layered cell agglomeration was cultured, it naturally developed, and after that, it was possible to form a colony of pluripotent stem cells found in normal culture and to carry out the culture suitably.
  • the cells are seeded on a 6-well plate, collected 5 days later, fixed with paraformaldehyde, and then subjected to fluorescent immunostaining. It was. Nuclear staining was performed by incubating the cells for 15 minutes in phosphate buffered saline containing 1 ⁇ g / mL DAPI.
  • Fluorescent immunostaining uses an anti-Nanog antibody (manufactured by ReproCell, product number: RAB0003P) as an antibody to confirm the expression of Nanog, Oct3 / 4 is an anti-Oct3 / 4 antibody (manufactured by Santa Cruz Biotechnology, product number) : Sc-5279) according to a conventional method.
  • the bright field image was acquired using a phase contrast microscope (Olympus, product number: IX-81).
  • Example 2 Examination of formation time of cell clumps
  • cell clumps were formed using AggreWell, but the formation time was 24 hours. In this example, the optimum time for forming a cell clump was examined.
  • Example 2 a cell suspension was obtained in the same manner as in Example 1. The obtained cell suspension was injected into the wells of AggreWell, and the subsequent formation of cell clumps was monitored over time (FIG. 5). As a result, no change in the shape of the cells was observed in about 10 hours, whether or not centrifugation was performed after cell suspension injection. Probably, the reason why the change in shape is no longer observed is that a bond is formed between cells.
  • the number of cells 168 hours (7 days) after the injection of the cell suspension into the wells of AggreWell was counted. Then, the number of cells was particularly large when the standing time was 8 hours, but when the standing time was 10 hours or more, the number of cells did not change so much (FIG. 7).
  • Example 3-1 Examination of appropriate cell clump size
  • the optimum cell clump size in subculture was examined.
  • Example 2 a cell suspension was obtained in the same manner as in Example 1.
  • the cell clump formation conditions were set as shown in Table 1, and the cell suspension was injected into the wells of AggreWell.
  • the cell mass is passaged in a substantially monolayer state.
  • a multilayer cell cluster was formed using AggreWell and seeded. According to Examples 1 to 3, the cell conglomerate developed during culture under various conditions and was monolayered.
  • the survival rate of the colonies after subculture under each condition was examined.
  • the survival rate (%) is calculated by the following formula: The number of colonies on the dish was counted 3 days after passage, and divided by the number of cell clumps seeded.
  • the cell engraftment rate tended to be good under the condition of a large cell clump size (FIG. 11).
  • the survival rate also tended to be good under conditions where no centrifugation with AggreWell was performed (FIG. 11).
  • the ratio of colonies with multiple cells was compared under each condition. Then, in conditions 3 and 6 where the cell clump size was large, the ratio of multilayer colonies was large, and in conditions 1 and 4 where the cell agglomerate size was small, the ratio of multilayer colonies was small (FIG. 12).
  • pluripotent stem cells could be cultured well under various conditions as described above, it was found that differences in the subsequent culture occurred due to the size of the cell clumps to be formed and the conditions for forming the cell clumps. It was. That is, if the cell clumps are large, it takes time for the cell clumps to expand, which means that the cell clumps cannot be fully expanded by the next passage, and centrifugation is performed when forming the cell clumps. If the above method is used, the cell agglomeration becomes strong and the cell agglomeration is difficult to break, but it takes time to expand.If the cell agglomeration is small, the cell recovery rate increases, but the colony growth takes time. When the method of centrifugation was not used for the formation of the clumps, it became clear that shortening the cell clump formation time softens the cell clumps, and the cell clumps tend to collapse, but the development is accelerated.
  • the size of the growing colonies was relatively uniform even when subculture was performed under any condition (FIG. 8). This means that the method of the present invention is excellent in terms of stability of the quality of cells to be cultured and culture efficiency.
  • Example 3-2 Examination of an appropriate cell clump size In Example 3-1, a result suggesting that the subsequent culture is affected by the size of the cell clump to be formed was obtained. In this example, an appropriate cell clump size was examined in more detail.
  • a cell suspension was obtained according to the method described in Example 1. Thereafter, the cell concentration in the cell suspension was appropriately adjusted to form a cell clump, and the relationship between the cell clump diameter (y) and the average number of cells per cell clump ( ⁇ ) was examined. .
  • the diameter of the cell clump was measured immediately after the cells were allowed to stand in the well for 24 hours to form a cell clump and seeded on the culture surface of the culture vessel.
  • the measurement is performed using an optical microscope, and the diameter of the cell clump is obtained by first obtaining the area of the cell clump calculated from the microscopic image of the cell clump and assuming that the cell clump is spherical. Calculated.
  • the cell concentration was adjusted so that the average number of cells per cell clump was 11 to 3,415 (FIG. 15). In any case, cell clumps were formed well. I was able to.
  • Example 3-1 if the size of the cell clump is large, it takes a long time to develop on the culture surface. For example, depending on the size of the cell clump, it may not be able to expand even after 8 days of passage. It was done. Therefore, the relationship between the development of the cell clump after passage and the size of the cell clump was examined in detail.
  • the average number of cells per cell cluster is preferably 1,209 (corresponding to a diameter of 216 ⁇ m) or less, preferably 867 (corresponding to a diameter of 195 ⁇ m) or less from the viewpoint of developability. It became clear that it was more preferable.
  • the adhesion rate to the culture surface and the cell agglomeration after seeding the cell agglomerate on the culture surface The relationship with size was examined in detail. Then, it became clear that the adhesion rate to the culture surface increased as the number of cells per cell cluster increased (the size of the cell cluster increased) (FIG. 17).
  • the adhesion rate (y) of the cell clumps to the culture surface has a relationship approximated by the following formula with the average number of cells per cell clump ( ⁇ ). It was found (Fig. 17).
  • the average number of cells per cell cluster is preferably adjusted to be about 28 (corresponding to a diameter of about 51.6 ⁇ m) or more.
  • the approximation error is considered to be relatively large particularly in a region where the engraftment rate is low (for example, the average number of cells is around 28 (that is, equivalent to a diameter of around 50 ⁇ m)). This does not mean that culturing is not possible with cell clumps having an average number of cells of 28 or less (ie, 50 ⁇ m in diameter).
  • FIG. 18 shows the relationship between the average number of cells per cell clump and the number of cell clumps obtained when the number of cells used for passage is constant. Then, from the result of the adhesion rate of the obtained cell clump (FIG. 17) and the result of FIG. 18, the amplification factor of the cells up to the next passage (cell amplification factor per passage) was calculated. Specifically, the passage timing is when the size of the colony formed by the development of the cell clumps reaches a diameter of 2 mm, and the number of cells per unit area of the colony is 4000 cells / mm 2 . .
  • passage is performed when the number of cells per colony reaches 12,566. Then, in consideration of the relationship between the size of the cell clump, the number of cell clumps, and the adhesion rate (FIGS. 17 and 18), the amplification factor of the cells up to the next passage after the passage was calculated. Then, when the number of cells per cell clump was 76, a convex graph with the maximum cell amplification factor was drawn (FIG. 19). Further, when the size of the cell clump and the number of days until the next passage were examined, it was found that there was a relationship as shown in FIG. From this, the amplification factor of the cells per day was calculated.
  • the size of the cell clump when seeded is not uniform.
  • the size of the cell clump can be easily adjusted to a certain size by adjusting the number of cells to be seeded in each microwell. Each size can be made uniform. Therefore, it is clear that the proliferation efficiency of pluripotent stem cells can be easily increased by the method of the present invention.
  • Example 4 Examination of seeding method of cell agglomeration on culture surface of culture vessel
  • the cell agglomerate formed in the microwell was passaged to a new culture vessel by collecting with a pipette. Careful pipetting operation was required, taking time to avoid breaking the cell conglomerate. Therefore, in this example, a simpler cell agglomeration method was examined.
  • the inventors examined the use of a closed culture vessel having a surface having a microwell and a culture surface, and these two surfaces are arranged to face each other.
  • the surface of the closed culture vessel having the microwells was formed by arranging square-shaped microwells having a square bottom shape and a top opening of 1000 ⁇ m ⁇ 1000 ⁇ m in a grid shape.
  • the culture surface was coated with BD Matrigel (trademark).
  • FIG. 23 is a diagram showing the arrangement of cell clumps dropped on the culture surface. As shown in FIG. 23, the cell clumps were regularly aligned on the culture surface. The arrangement of these cell clumps reflects the arrangement pattern of the microwells used, and the cell clump spacing in FIG. 23 is the pitch of the microwells (1000 ⁇ m) of the closed culture vessel used in this example. Matched.
  • the cell agglomeration in the microwell can be dropped onto the culture surface of the culture vessel while maintaining the arrangement pattern of the microwell. It is considered that the seeding position of the cell cluster can be freely controlled by changing the arrangement of the microwells. Moreover, it became clear that control of sowing and sowing position can be performed by a very easy operation of turning the container upside down.
  • pluripotent stem cells can be well cultured while maintaining an undifferentiated state by forming cell clusters immediately after being dispersed into single cells. It was possible. Further, by seeding the cell suspension in a culture vessel having a surface on which a plurality of microwells are arranged, it was possible to easily form a cell aggregate having a uniform size. Furthermore, the cell clumps developed rapidly after seeding in the culture vessel, and the cells proliferated well. Since the size of the formed cell clump was uniform, the cell clump development rate and the subsequent growth rate were also uniform. In addition, the uniform size of the cell clumps increased the efficiency of subculture and facilitated cell quality control.
  • the cell clumps in the microwells could be seeded on the culture surface of the culture vessel by a simple operation.
  • the arrangement pattern of the seeded cell agglomeration reflects the arrangement pattern of the microwells, and it was shown that the cell agglomeration can be precisely seeded by a simple operation.
  • formation of a uniform cell clump, uniform seeding of the cell clump, and the like can be performed by a very simple mechanical operation.
  • the method of the present invention not only facilitates maintaining the quality of pluripotent stem cells, but also opens the way to full automation of subculture of pluripotent stem cells.
  • Example 5 Classification of cells based on size According to the above example, even when pluripotent stem cells are dissociated to the level of a single cell, they can be cultured well by rapidly forming cell clusters. I understood. In this example, taking advantage of the present invention that can be made into a single cell, the possibility of classifying cells based on size was evaluated.
  • iPS cell colony judged visually undifferentiated (i.e., good) and iPS cell colony judged to have started differentiation (i.e., poor) in a part of the colony were isolated using a pipette, The cells were dispersed into single cells using an enzyme, and then observed under a microscope to confirm the distribution of the size of the single cells.
  • the cells obtained from the iPS cell colonies determined to be good had a size of about 14 to 20 ⁇ m centering on 17 ⁇ m, and showed a tendency that the sizes of the respective cells were uniform, but poor From the cells obtained from the iPS cell colonies determined to be, the presence of cells having a size of 22 ⁇ m or more or 23 ⁇ m or more was confirmed (FIG.
  • the cells having a size of 22 ⁇ m or more or 23 ⁇ m or more are expected to be cells that have started to differentiate within the colony in comparison with cells obtained from a good colony.
  • the cells were evaluated as having lost their ability. From these results, it was shown that the classification operation could remove cells (differentiated cells) that started differentiation and lost pluripotency.
  • the removal of differentiated cells can also be performed by flow cytometry.
  • pluripotent stem cells Maintaining the quality of pluripotent stem cells is an important issue in subculture of pluripotent stem cells.
  • differentiated cells in pluripotent stem cells dispersed into single cells can be removed by a simple mechanical operation. Therefore, it can be said that the present invention opens up the path of automating the removal of differentiated cells in subculture.

Abstract

[課題]本発明は、多能性幹細胞の簡便で均質な継代培養方法を提供することを目的とする。 [解決手段]多能性幹細胞を継代する際に、培養して得られる細胞塊を単一細胞レベルにまで分散させ、その後、迅速に細胞集塊を形成させる、多能性幹細胞の継代培養方法。

Description

多能性幹細胞の継代培養方法 関連出願の参照
 本願は、先行する日本国特許出願である特願2013-010161(出願日:2013年1月23日)の優先権の利益を享受するものであり、その開示内容全体は引用することにより本明細書の一部とされる。
 本発明は、多能性幹細胞の継代培養方法に関する。より具体的には、本発明は、簡便かつ均質な多能性幹細胞の継代培養方法に関する。
 接着培養では、細胞は、酵素処理またはセルスクレイパーなどを用いて培養容器の接着面から剥離し、新鮮な培地を含む培養容器に継代される。多能性幹細胞は、単一細胞にまで解離させると死滅してしまうことが知られており、継代の際には、細胞塊の状態で継代することが必須となっている。そのため、多能性幹細胞の継代においては、培養容器から細胞を剥離する際には、多能性幹細胞をコロニーとして剥離し、ピペッティング等で適当な大きさの細胞塊に砕き、その後に新しいディッシュに播種している。
 しかしながら、このような方法には、ピペッティングの技術によって細胞塊の大きさが変化し、また、得られる細胞塊のサイズが均等にはなりにくいという問題がある。継代の際のピペッティング操作により細胞塊のサイズがばらつくと、継代後の培養において生じるコロニーのサイズにもばらつきが生じ、細胞の品質管理の観点では万全とは言い切れない。また、各コロニーのサイズにばらつきが生じていると、あるコロニーが継代すべき一定サイズに達したとしても、他のコロニーでは細胞が十分に増殖できていないという問題が起こりうる。そのため、培養中のコロニーサイズのばらつきは、細胞の生産効率の観点で悪影響を及ぼす。
 多能性幹細胞を単一細胞化して播種する方法が知られているが、この方法は、単一の性質を有する多能性幹細胞をクローニングすることを目的とした方法であって、細胞増殖という観点からは効率が非常に悪い方法であるため、多能性幹細胞の継代培養には適した方法ではない(非特許文献1)。また、単一細胞化した多能性幹細胞を凝集させることで均一なサイズの胚様体(Embryonic Body)を形成させて分化誘導を効率化する方法が知られているが(非特許文献2)、そもそも、このような胚様体は多能性幹細胞の分化誘導を促進するために作製されるものである(非特許文献2および3)。多能性幹細胞は一度分化を開始すると多能性を失うと考えられており、未分化状態の維持を目的として、多能性幹細胞に胚様体を形成させることは考え得ない。
 大量の多能性幹細胞の維持培養のためには、できるだけ簡便な手段で多能性幹細胞を効率的かつ均質に継代できる方法を確立する必要があるが、未分化状態を維持させたまま多能性幹細胞を均質に継代培養する方法は確立されていない。大量の多能性幹細胞の維持培養のためにはまた、全自動化に適した多能性幹細胞の継代培養の方法を確立する必要があるが、そのような方法も知られていない。
Watanabe, K., et. al., "A ROCK inhibitor permits survival of dissociated human embryonic stem cells", Nature biotechnology, (2007) 25: 681. Spelke D.P., et. al., "Methods for embryoid body formation: the microwell approach", Methods in Molecular Biology (2011) 690: 151-162. 島崎琢也、岡田洋平、吉崎崇仁および岡野栄之著、蛋白質核酸酵素、共立出版、2006年、第51巻、第13号、1854~1861頁
 本発明は、多能性幹細胞の維持培養のための効率的かつ均質な継代培養方法を提供することを目的とする。
 本発明者らは、多能性幹細胞を継代する際に、培養して得られる細胞塊を単一細胞レベルにまで分散させた場合であっても、その後、迅速に細胞塊を再形成させれば(すなわち、細胞集塊を形成させれば)単一細胞への分散による細胞の死滅を防ぐことができること、および、細胞集塊の形成方法を工夫することにより一定の大きさおよび形状を有する均質な細胞集塊が得られることを見出した。本発明者らはまた、得られた細胞集塊は、細胞が立体的に集合したものであったが、ディッシュに播種すると迅速にディッシュの細胞接着面に展開し、良好かつ均一に増殖すること、さらには、培養を続けると未分化の良好な多能性幹細胞コロニーを形成することを見出した。しかも、得られた細胞集塊は、良好な未分化状態を維持した状態で何継代にもわたり好適に維持培養することが可能であった。より詳細な解析の結果、本発明者らは、細胞集塊のサイズを調整することにより細胞の培養効率を容易に向上させることができることをさらに見出した。本発明者らはさらにまた、単一細胞レベルにまで分散させた細胞をサイズに基づいて分級することにより、継代する細胞中の未分化細胞の割合を向上させることができることも見出した。本発明者らはさらにまた、ウェル中で形成された細胞集塊は、当該ウェルを備えた容器を天地逆転させて培養容器の培養面に落下させることにより、培養容器中の特定の位置に播種(精密播種)することができることを見出した。本発明はこのような知見に基づく発明である。
 すなわち、本発明によれば以下の発明が提供される。
(1)多能性幹細胞の継代培養方法であって、
(a)継代時に多能性幹細胞の細胞塊を分散させる工程と、
(b)分散させて得られた細胞をマイクロウェル中に播種する工程と、
(c)マイクロウェル中に播種された細胞から細胞集塊を形成させる工程と、
(d)得られた細胞集塊を培養容器の培養面に播種する工程
とを含んでなる、方法。
(2)工程(d)が、(d’)マイクロウェルを備えた容器を天地逆転させて細胞集塊を培養容器の培養面上に落下させる工程を含んでなる、上記(1)に記載の方法。
(3)工程(a)において細胞塊を1~100個の細胞からなる細胞塊に解離させる、上記(1)または(2)に記載の方法。
(4)工程(a)において細胞塊を1~10個の細胞からなる細胞塊に解離させる、上記(3)に記載の方法。
(5)工程(a)において細胞塊を単一細胞にまで解離させる、上記(4)に記載の方法。
(6)工程(b)において各マイクロウェルに播種される細胞の平均細胞数が、10~3,500個である、上記(1)~(5)のいずれかに記載の方法。
(7)工程(b)において各マイクロウェルに播種される細胞の平均細胞数が、25~870個である、上記(6)に記載の方法。
(8)工程(b)において各マイクロウェルに播種される細胞の平均細胞数が、40~500個である、上記(7)に記載の方法。
(9)工程(b)において各マイクロウェルに播種される細胞数が、55~220個である、上記(8)に記載の方法。
(10)工程(c)がマイクロウェル中で細胞を、細胞集塊を形成するために十分な時間静置することを含んでなる、上記(1)~(9)のいずれかに記載の方法。
(11)工程(c)がマイクロウェル中で細胞を8~24時間静置することを含んでなる、上記(10)に記載の方法。
(12)工程(c)がマイクロウェル中で細胞を8~12時間静置することを含んでなる、上記(11)に記載の方法。
(13)工程(c)が遠心分離を用いることなく行われる、上記(1)~(12)のいずれかに記載の方法。
(14)多能性幹細胞が、ヒト多能性幹細胞である、上記(1)~(13)のいずれかに記載の方法。
(15)ヒト多能性幹細胞が、ヒトES細胞またはヒトiPS細胞である、上記(14)に記載の方法。
(16)工程(a)の後に、分化細胞を除去する工程(a’)をさらに含んでなる、上記(1)~(15)のいずれかに記載の方法。
(17)分化細胞を除去する工程(a’)が、分化細胞を分級することにより除去することを含んでなる、上記(16)に記載の方法。
(18)閾値(閾値は、20μm以上の値である)を超えた直径を有する細胞を分級により除去する、上記(17)に記載の方法。
(19)閾値(閾値は、23μm以上の値である)を超えた直径を有する細胞を分級により除去する、上記(18)に記載の方法。
(20)分化細胞を除去する工程(a’)が、細胞の表面マーカーの発現の有無に基づいて行われる、上記(16)に記載の方法。
(21)細胞の表面マーカーが、多能性幹細胞が細胞表面に発現する未分化マーカーである、上記(20)に記載の方法。
(22)未分化マーカーが、アルカリフォスファターゼ、SSEA-3、SSEA-4、TRA-1-60およびTRA-1-81からなる群から選択される1以上の未分化マーカーである、上記(21)に記載の方法。
(23)マイクロウェルを備えた面と培養面とを備えてなり、これら2つの面が向かい合うように配置された、閉鎖系培養容器。
(24)マイクロウェルが、その内周が底面に近づくほど小さくなる形状を有する、上記(23)に記載の閉鎖系培養容器。
(25)マイクロウェルが、丸底、V底、U底または角取平面底を有する、上記(24)に記載の閉鎖系培養容器。
(26)整列した複数のマイクロウェルを備えた、上記(23)~(25)のいずれかに記載の閉鎖系培養容器。
(27)工程(d’)が、上記(23)~(26)のいずれかに記載の閉鎖系培養容器を天地逆転させることにより行われる、上記(2)に記載の方法。
(28)上記(1)~(22)および(27)のいずれかに記載の方法を実施するための多能性幹細胞の全自動継代培養システム。
 本発明の方法は、簡便かつ迅速に、均質な多能性幹細胞の細胞集塊を得ることができ、それにより、安定的な多能性幹細胞の継代が可能となる点で有利である。本発明の方法はまた、マイクロウェルを備えた容器を天地逆転させて細胞集塊を培養容器に落下させることにより細胞集塊の播種位置を制御でき、例えば、細胞の均質な播種が可能となる点で有利である。本発明の方法はさらに、継代の際に分化細胞を除去することができるため、未分化細胞の割合を高めることが可能である点で有利である。また、本発明の多能性幹細胞の継代培養方法は、全自動化に適しており、全行程を自動化することが可能である。
図1は、単一細胞レベルにまで分散させたヒトiPS細胞を、AggreWell 800に播種した直後および1日後の細胞の状態(図1A)並びに得られた細胞集塊(図1B)を示す図である。 図2は、遠心分離を行ってまたは行わずに得られた細胞集塊の継代後の細胞の位相差顕微鏡像である。細胞集塊または細胞コロニーの色の濃い部分は細胞が多層になっている部分である。 図3は、得られた細胞集塊の継代後の成長曲線を示す図である。細胞の成長は、ディッシュ上の細胞が占める面積(mm)を測定することにより求めた。 図4は、継代後のコロニーの蛍光免疫染色像を示す図である。 図5は、AggreWell上での細胞集塊の形成過程を経時的に観察した位相差顕微鏡像である。 図6は、AggreWell上での静置時間とその後の細胞の増殖の位相差顕微鏡像を示す図である。図6では、AggreWellへの細胞の播種48時間後に位相差顕微鏡像を取得した。 図7は、AggreWell上での静置時間とその後の細胞の増殖の位相差顕微鏡像を示す図である。図7では、AggreWellへの細胞の播種168時間後に位相差顕微鏡像を取得した。 図8は、細胞集塊の形成条件を変えたときの播種7日後の細胞の状態を示す位相差顕微鏡像である。 図9は、細胞集塊の形成条件を変えたときの播種7日後の細胞の状態を示す位相差顕微鏡像である。 図10は、遠心分離を行って細胞集塊を形成させたときの、5継代目での細胞の状態を示す位相差顕微鏡像である。図10では、播種2日後~7日後までの細胞集塊の展開の状況および増殖の状況が示されている。 図11は、細胞集塊の形成条件を変えたときのコロニーの生着率を示す図である。P1~P5は、継代数を示す。具体的には、P1は1回目の継代後のデータを示し、P2~P5はそれぞれ、2~5回目の継代後のデータを示す。図中で数値が100%を超えるものが見られる理由は、継代時に細胞集塊が崩れることが原因と思われる。 図12は、細胞集塊の形成条件を変えたときの多層コロニーの割合を示す図である。 図13は、細胞集塊の形成条件を変えたときの細胞の回収率を示す図である。P1~P5は、継代数を示す。 図14は、細胞集塊の形成条件を変えたときの細胞の死亡率を示す図である。P1~P5は、継代数を示す。 図15は、細胞集塊1つあたりに含まれる細胞数と細胞集塊の直径との関係を示す図である。 図16は、細胞集塊1つあたりに含まれる細胞数と細胞集塊播種後の細胞の展開率との関係を示す図である。 図17は、細胞集塊1つあたりに含まれる細胞数と細胞集塊播種後の細胞の接着率との関係を示す図である。 図18は、10,000個の細胞を用いて均等なサイズの細胞集塊を得たときの、細胞集塊1つあたりに含まれる細胞数と得られる細胞集塊の個数の関係を示す図である。 図19は、細胞集塊1つあたりに含まれる細胞数と1継代あたりの細胞の増幅倍率との関係を示す図である。 図20は、細胞集塊1つあたりに含まれる細胞数と各細胞集塊に由来するコロニーが直径2mmに達するために必要な日数との関係を示す図である。 図21は、細胞集塊1つあたりに含まれる細胞数と1日あたりの細胞の増幅倍率との関係を示す図である。 図22は、細胞集塊1つあたりに含まれる細胞数と45.42日後の細胞の増幅倍率との関係を示す図である。 図23は、良好なiPS細胞コロニーから得られた細胞の直径と不良なiPS細胞コロニーから得られた細胞の直径との違いを示す図である。 図24は、培養容器の培養面に落下させた細胞集塊の培養面上での配置を示す図である。
発明の具体的な説明
 本発明で用いられる多能性幹細胞としては、胚性幹細胞(ES細胞)、誘導性多能性幹細胞(iPS細胞または人工多能性幹細胞)、Muse細胞(Multilineage-differentiating Stress Enduring Cell)、胚性腫瘍細胞(EC細胞)または、胚性生殖幹細胞(EG細胞)などの多能性幹細胞が挙げられ、好ましくは、ES細胞またはiPS細胞である。本発明に用いる多能性幹細胞はまた、好ましくは、霊長類または齧歯類などの哺乳類の多能性幹細胞であり、より好ましくは、ヒトの多能性幹細胞である。本発明に用いる多能性幹細胞は、最も好ましくは、ヒトES細胞またはヒトiPS細胞である。
 本発明の多能性幹細胞の継代培養方法は、
(a)継代時に多能性幹細胞の細胞塊を分散させる工程と、
(b)分散させて得られた細胞をマイクロウェル中に播種する工程と、
(c)遠心分離の手法を用いてまたは用いずにマイクロウェル中に播種された細胞から細胞集塊を形成させる工程と、
(d)得られた細胞集塊を培養容器の培養面に播種する工程
とを含んでなる。本発明の多能性幹細胞の継代培養は、接着培養系で行われる。本発明では、多能性幹細胞は良好な未分化状態を維持したまま維持培養することができる。
 本発明の多能性幹細胞の継代培養方法により得られる細胞集塊は、細胞間に緩い結合を有している。従って、単一細胞化による細胞死を免れることができるが、本発明の方法により得られる細胞集塊はその細胞間の結合の緩さ故に継代後には培養容器の細胞接着面に迅速に展開し得る。本発明の方法により得られる細胞集塊はまた、マイクロウェルを備えた容器を天地逆転させて培養容器の培養面上に落下させることにより、培養容器中の制御された位置に播種(以下、「精密播種」ということがある)することができる。
 以下、本発明の多能性幹細胞の継代培養方法の各工程を説明する。
(a)継代時に多能性幹細胞の細胞塊を分散させる工程
(細胞接着面からの細胞の剥離)
 本発明では、接着培養において、生理学的にまたは物理的に細胞接着面から剥離させた多能性幹細胞を用いることができる。本発明では、多能性幹細胞を細胞接着面から剥離させる酵素としては、常法で用いられる酵素を用いることができ、例えば、トリプシン、ディスパーゼ、アキュターゼおよびコラゲナーゼなどの酵素を用いることができる。多能性幹細胞の細胞接着面からの剥離はまた、エチレンジアミン四酢酸(EDTA)などの二価イオン(特にMg2+)のキレート剤など、細胞剥離作用を有する化学物質を用いて行ってもよく、これらを上記酵素と組み合わせて用いて行ってもよい。本発明ではまた、多能性幹細胞を細胞接着面から剥離させるために、細胞の接着表面に高周波振動などの振動を与えてもよく、および/または、セルスクレイパーを用いてもよい。本発明では更に、上記の生理学的な剥離法と物理的な剥離法を組み合わせて細胞を剥離してもよい。当業者であれば、細胞接着面からの多能性幹細胞の剥離は上記のような周知の剥離法を用いて適宜行うことができるであろう。
 本発明では、細胞塊は単一細胞レベルにまで解離させることができる。細胞塊の解離は、細胞の培養面からの剥離と同時に行ってもよいし、細胞塊として剥離させた後に行ってもよい。
(細胞の分散)
 接着面から剥離させた細胞が細胞塊の形状を保っている場合には、剥離させた細胞塊は、例えば、ピペッティングの水流により単一細胞レベルにまで解離させてから分散させることができる。本明細書では、「単一細胞レベルにまで分散させる」とは、細胞塊1つ当りに含まれる細胞数の平均が、1~100個、好ましくは、1~10個となるように細胞塊を解離させてから分散させることを意味し、完全に単一細胞にまで解離させてから分散させることを含むものとする。従って、本発明では、細胞塊は完全に単一細胞にまで解離させてから分散させてもよいし、大部分が単一細胞となるように解離させてから分散させてもよいし、大部分が1~100個、好ましくは、1~10個の細胞からなる細胞塊となるように解離させてから分散させてもよい。分散後の細胞塊が大きい場合は、細胞塊をマイクロウェルに播種する際に、それぞれのマイクロウェルに播種される細胞数にばらつきが生じやすくなるため、分散後の細胞塊は小さい方が好ましい。
 また、培養面から剥離させた細胞塊は、酵素を用いてさらに処理することにより単一細胞レベルにまで分散させてもよい。細胞を単一細胞レベルにまで解離させるために用いることができる酵素としては、細胞-細胞間の結合を切断することのできる酵素や細胞-細胞外基質(ECM)間の結合を切断することのできる酵素を挙げることができ、これらの酵素は、当業者に周知である。酵素や水流を用いた細胞塊の解離は、自動化が可能であり、工程(a)は自動化が可能である。
 細胞を単一細胞レベルにまで解離させ分散させた後は、分散させた細胞の懸濁液に、細胞を分散させたことによる細胞への悪影響(例えば、細胞死等)を抑制する化合物、例えば、Y-27632などのROCK阻害剤を添加することができる。
(b)分散させて得られた細胞をマイクロウェル中に播種する工程
 本発明によれば、工程(a)で分散させて得られた細胞または細胞塊(以下、単に「細胞」ということがある)は、細胞集塊を形成させた後に継代するとその後良好に増殖させることができる。細胞集塊の形成は、得られた細胞をマイクロウェルに播種することにより行うことができる。工程(a)で分散させて得られた細胞は、培養液中では重力により自然と沈む。従って、傾斜を有するウェル(くぼみ)中に細胞を播種すると、ウェル中では細胞がウェルの傾斜を利用して集まる。その後、細胞は、隣り合う細胞と細胞接着を形成して細胞集塊を形成する。従って、本発明では、ウェルは、細胞が沈んだときに集まる形状、例えば、その内周が底面に近づくほど小さくなる形状を有していることが好ましい。すなわち、ウェルは、底がすぼんだ形状を有していることが好ましく、例えば、錐形状、丸底、V底、U底および角取平面底(底面を有するが角が取れて底がすぼんだ形状となったもの)の形状を有していることが好ましい。また、各ウェルの上部開口部の形状は、加工の容易性やウェルを大量に配置できる形状を考慮して適宜選択することができるが、例えば、三角形、四角形若しくは六角形などの多角形の形状または円の形状を有することができる。
 本発明では、作製する細胞集塊は一定の大きさに揃っていることが好ましい。ここで、作製する細胞集塊の大きさは、各マイクロウェルに播種される細胞数により決定されるので、工程(b)では、各マイクロウェルに播種される細胞数は一定量に揃えられていることが好ましい。ここで、一定量とは、工程(b)で各マイクロウェルに播種される細胞数の平均が、例えば、10~3,500個(すなわち、形成される細胞集塊の平均直径は35~350μmである)、好ましくは、25~870個(すなわち、形成される細胞集塊の平均直径は50~200μmである)、より好ましくは、40~500個(すなわち、形成される細胞集塊の平均直径は60~160μmである)、さらに好ましくは、55~220個(すなわち、形成される細胞集塊の平均直径は69~115μmである)であることを意味する。工程(b)で各マイクロウェルに播種される細胞数を一定量に揃えるためには、細胞懸濁液中の細胞の濃度を調整した後に、懸濁液中で細胞を十分に懸濁してから播種すればよい。
 通常の細胞培養プレートのウェルと区別するために、本明細書では、細胞集塊を形成させるためのウェルを「マイクロウェル」と呼ぶが、「マイクロウェル」は、一辺または直径1mm以上の上部開口部を有するウェルを除外することを意図する用語ではなく、「マイクロウェル」には、一辺または直径1mm以上の上部開口部を有するウェルが含まれる。マイクロウェルの上部開口部の大きさは、形成させる細胞集塊の大きさにより決定することができ、例えば、直径100μm~3mm、直径200μm~800μm、または直径400μm~600μmの円と同等の面積を有する上部開口部を備えたウェルとすることができる。
 また、細胞集塊を大量に取得可能とする観点では、マイクロウェルは、容器の底面に多数配置されていることが好ましく、マイクロウェルは隙間無く(隣り合うウェルの間に平坦な部分が存在しないように)またはウェル間の隙間を最小限とするように配置されていることが好ましい。容器底面のマイクロウェルの配置に関しては、精密播種に関する工程(d’)の項目においてさらに詳細に説明する。
 さらに、形成させる細胞集塊の大きさを揃える観点からは、容器のマイクロウェルの形状は均一であることが好ましい。このようにすることで、細胞を比較的均一にマイクロウェル中に分散させることが容易となり、結果として均一な大きさの細胞集塊を形成させることが可能となる。従って、本発明では、工程(a)で分散させて得られた細胞は、均一な形状のマイクロウェルを底面に多数配置させたマルチウェルプレートを用いて作製することが好ましい。このようなマルチウェルプレートとしては、特に限定されないが、例えば、AggreWell(商標)(STEMCELL Technologies社製)が市販されている。 また、工程(b)は、後述される、本発明の閉鎖系培養容器を用い、そのマイクロウェルを備えた面上で行うこともできる。
 本発明では、マイクロウェルの表面は、細胞に対して非接着性のコーティングを施しておくことができる。
 マイクロウェルに播種する細胞の数は、適宜調整することができる。また、マイクロウェルへの細胞の播種は、細胞を十分に懸濁することにより均一に行うことができる。これらの操作は自動化が可能であるから、工程(b)において、一定量の細胞をマイクロウェルに播種する工程も全自動化が可能である。
(c)マイクロウェル中に播種された細胞から細胞集塊を形成させる工程
 本発明によれば、マイクロウェル中に播種された細胞は、そのまま静置しておくことで重力によりマイクロウェルの底に集まり、細胞同士が接着し、細胞集塊を形成する。細胞は、マイクロウェルを有する容器を遠心分離の手法を用いて遠心することによってマイクロウェルの底に集めてもよい。
 遠心分離の手法を用いる場合には、特に限定されないが、400g~3000gで1分~10分間の遠心分離を行うことができる。このようにすることで、細胞を効果的にマイクロウェルの底面に集めることができる。
 本発明によれば、遠心分離の手法を用いて細胞集塊を形成させると、細胞を密に凝集させることができると考えられるが、本発明では、必ずしも遠心分離の手法を用いる必要は無い。すなわち、マイクロウェルに単一細胞レベルまで分散させた細胞を播種した後、遠心分離の手法を用いることなく、例えば、マイクロウェル中で細胞を静置するだけでも数時間以内に多能性幹細胞に細胞集塊を形成させることができる。このように、本発明では、遠心分離の手法を用いることなく細胞集塊を形成させることができる。
 本発明では、マイクロウェル中で静置することにより多能性幹細胞に細胞集塊を形成させることができる。静置時間は、多能性幹細胞が細胞集塊を形成させるために必要な時間以上であればよく、例えば、8時間以上である。細胞集塊の形成時間を短縮する観点では、静置時間は、例えば、8時間~24時間、好ましくは8時間~16時間、さらに好ましくは8時間~12時間とすることができる。本発明の方法では、静置時間が短いほど細胞集塊中の細胞間の結合は緩いため、細胞集塊が壊れやすい一方、培養容器への播種後は細胞集塊が素早く展開するという利点がある。
 本発明の工程(c)で作製する細胞集塊は、作製する細胞集塊は一定の大きさに揃っていることが好ましい。工程(b)に記載されるように、それぞれの細胞集塊に含まれる平均細胞数は、例えば、10~3,500個(すなわち、細胞集塊の平均直径は35~350μmである)、好ましくは、25~870個(すなわち、細胞集塊の平均直径は50~200μmである)、より好ましくは、40~500個(すなわち、細胞集塊の平均直径は60~160μmである)、さらに好ましくは、55~220個(すなわち、細胞集塊の平均直径は69~115μmである)であり、細胞集塊の平均直径は、マイクロウェルのサイズと播種する細胞数により適宜調整することができる。また、マイクロウェルは、作製したい細胞集塊のサイズより大きいサイズのものを選択することができる。
 例えば、ヒトiPS細胞を用いて50μmの平均直径を有する細胞集塊を作製する場合には、1ウェル当り1200のマイクロウェル(例えば、マイクロウェルの大きさが400μm×400μm)が刻まれた24ウェルプレート(2cm/ウェル)に対して2.8×10個/ウェルの細胞を播種することができる。また、例えば、100μmの平均直径を有する細胞集塊を作製する場合には、1ウェル当り1200のマイクロウェルが刻まれた24ウェルプレート(2cm/ウェル)に対して1.8×10個/ウェルの細胞を播種することができる。また、例えば、200μmの平均直径を有する細胞集塊を作製する場合には、1ウェル当り300のマイクロウェル(例えば、マイクロウェルの大きさが800μm×800μm)が刻まれた24ウェルプレート(2cm/ウェル)に対して2.9×10個/ウェルの細胞を播種することができる。50μm、100μmおよび200μmの直径のヒトiPS細胞の細胞集塊にはそれぞれ、約23個、約151個および約981個の細胞が含まれる計算となる。当業者であれば、作製したい細胞集塊の直径に応じて必要な細胞数を計算し、所望のサイズの細胞集塊を得ることができるであろう。
 マイクロウェルに播種された細胞は、遠心分離工程を行って、あるいは行わずに単に静置するだけで細胞集塊を形成する。従って、工程(c)は全自動化が可能である。
(d)得られた細胞集塊を培養容器の培養面に播種する工程
 工程(c)によりマイクロウェルを備えた容器中で形成された細胞集塊は、その後、培養容器(すなわち、培養容器の培養面)に播種することができる。この工程(d)は、細胞集塊を回収し、培地に懸濁し、培養容器の培養面に播種することにより行うことができ、この工程(d)は、全自動化が可能である。播種された細胞集塊は、播種後速やかに展開し、その後、多能性を維持した状態で良好に培養することができる。細胞集塊を培養容器の培養面上に均一に播種する観点では、細胞集塊を含む細胞懸濁液は、十分に懸濁してから播種することが好ましい。
 本発明の方法では、工程(d)において、細胞集塊の精密播種が可能である。具体的には、工程(d)において、工程(d’)マイクロウェルを備えた容器を天地逆転させて細胞集塊を培養容器の培養面上に落下させる工程を行うことにより、細胞集塊を培養容器の培養面に精密播種することができる。工程(d’)においてマイクロウェルを備えた容器を天地逆転させると、細胞集塊は、マイクロウェルからほぼ垂直に培養容器の培養面に落下するため、天地逆転させたマイクロウェルの配置と鏡映しの配置で培養面上に播種されることになる。ここで、マイクロウェルの配置をどのような配置で細胞集塊を落下させたいかに基づいて設計すれば(工程(b)で用いるマイクロウェルを備えた容器におけるマイクロウェルの配置の設計も同様)、制御された配置に細胞集塊を播種(精密播種)することができる。このように、本発明の方法では、工程(d)において工程(d’)を行うことにより、細胞集塊を培養容器の培養面に精密播種することができる。精密播種は、例えば、培養容器の培養面上に細胞集塊を均一に播種するために用いることができ、これにより、細胞は培養面上で均一に増殖し得る。
 培養容器の培養面を効率的に利用する観点からは、マイクロウェルは、例えば、ハニカム状に配置されていることが好ましい(工程(b)で用いるマイクロウェルを備えた容器におけるマイクロウェルの配置も同様)。このようにすることで、多能性幹細胞により形成されるコロニー間の無駄な隙間を小さくすることができ、培養面の効率的な利用が可能となる。本明細書では、マイクロウェルがハニカム状に配置されるとは、所定の一方向に延びる複数のマイクロウェル列が形成され、各マイクロウェル列は前記一方向に連続して配置された複数のマイクロウェルを含み、あるマイクロウェル列に含まれるマイクロウェルは、隣接するマイクロウェル列に含まれるマイクロウェルに対して互い違いに配置されることを意味する。このように、本発明の方法では、工程(d)は、工程(d’)マイクロウェルを備えた容器を天地逆転させて細胞集塊を培養容器の培養面上に落下させる工程を含む工程とすることができる。重力による細胞集塊の沈降速度はそれほど速くないので、マイクロウェルと細胞集塊とが接着していない場合であっても、マイクロウェルを備えた容器を天地逆転させれば、比較的良好に細胞集塊を培養容器の培養面上で整列させることができる。細胞集塊がマイクロウェルに接着している場合には、マイクロウェルと細胞集塊との接着は、衝撃、液流および振動(例えば、低周波振動または高周波振動)等を用いて解離させることができる。
 工程(d’)では、培養容器の天地逆転は、閉鎖系培養容器、例えば、マイクロウェルを備えた面と培養面とを備えてなり、これら2つの面が向かい合うように配置された閉鎖系培養容器を用いると容易に行うことができる。
 従って、本発明では、マイクロウェル(好ましくは、整列した複数のマイクロウェル)を備えた面と培養面とを備えてなり、これら2つの面が向かい合うように配置された閉鎖系培養容器が提供される。このような閉鎖系培養容器を用いる際には、工程(a)により分散させた細胞のマイクロウェルへの播種(工程(b)に対応)は、例えば、十分に懸濁した細胞懸濁液を容器内に注入し、その後、マイクロウェルを備えた面を地側にして静置することにより行うことができる。また、その後の容器の天地逆転は、容器全体を天地逆転させればよい。
 本発明によれば、工程(d’)も全自動化が可能である。工程の全自動化を容易にする観点では、上述のように、工程(d’)では本発明の閉鎖系培養容器を用いることが好ましい。
 以上のように、本発明の多能性幹細胞の継代培養方法は、工程(a)~(d)により行うことができる。上述のように、これらの工程はすべて自動化が可能である。
 本発明によれば、本発明の多能性幹細胞の継代培養方法は、工程(a)と(b)との間に、(a’)分化細胞を除去する工程を含んでいてもよい。
(a’)分化細胞を除去する工程
 本発明の方法によれば、多能性幹細胞を単一細胞にまで分散させた場合であっても、細胞に細胞死等の有害事象の発生を抑制することができる。また、その後細胞集塊を形成させることにより効率的に細胞の継代が可能である。本発明では、多能性幹細胞を単一細胞にまで分散させる利点として、細胞1つ1つの性状に基づく分化細胞の分離除去が可能となる。工程(a’)は、分化細胞の分離除去に関する工程であり、多能性幹細胞を単一細胞にまで分散させることができるようになった本発明で初めて多能性幹細胞の継代培養に導入可能となった工程である。すなわち、工程(a’)は、工程(a)において多能性幹細胞を単一細胞にまで分散させることを前提とする工程である。
 本発明者は、後述の実施例により、単一細胞にまで分離させた細胞は、そのサイズに基づいて、未分化細胞と分化を開始した細胞とを分級することができることを明らかにした。具体的には、ヒトiPS細胞では、未分化細胞は直径が17μmを中心に14~20μm程度の大きさに分布したが、分化を開始した細胞は主に直径23μm以上に分布した。この知見に基づけば、工程(a)の後に、サイズに基づいて細胞を分級する工程(a’)を行えば、分化を開始した細胞が除去され、未分化な細胞の割合を高めて継代することが可能である。
 本発明によれば、工程(a’)では、閾値(閾値は、20μm以上、好ましくは23μm以上の値である)を超えた直径を有する細胞を分級により除去することにより、未分化な細胞の割合を高めることができる。工程(a’)における分級の閾値は、好ましくは25μm以下の値であり、例えば、20μm、21μm、22μm、23μm、24μmまたは25μmとすることができ、より好ましくは23μm、24μmまたは25μmであり、さらに好ましくは23μmである。閾値を低く設定すれば、分化した細胞が混入する割合が低下するが同時に未分化細胞の回収率が低下する。また、閾値を高く設定すれば未分化細胞の回収率は向上するが分化した細胞の混入率も高まる。当業者であれば、細胞の回収率や混入率に基づいて、適宜閾値を設定することが可能である。
 本発明では、工程(a’)における細胞の分級は、特に限定されないが、例えば、細胞分画フィルターまたはセルソーターを用いて行うことができる。細胞分画フィルターは、浮遊細胞系において細胞を分級するためによく用いられており、様々なサイズの細胞を分級することができる。このような細胞分画フィルターとしては、例えば、フィルコンS、サイズ20μm(アズワン社製、製品番号:2-7210-01)などのフィルターが市販されており、利用することができる。その他、細胞の分離フィルターを作製する方法(例えば、特開2001-178号公報など)が知られており、当業者であれば、細胞の分離フィルターを作製して細胞を分級することができる。また、細胞の分級は、セルソーターを用いても行うことが可能であり、当業者であれば、例えば、製造者のマニュアル等に基づいて細胞を分級することができる。
 また、分化細胞の除去は、細胞の表面に発現するマーカー(表面マーカー)の発現の有無に基づいて行うこともできる。分化細胞の除去に用いることができる表面マーカーとしては、多能性幹細胞が発現する未分化マーカーが挙げられ、このような未分化マーカーとしては、例えば、アルカリフォスファターゼ、SSEA-3、SSEA-4、TRA-1-60およびTRA-1-81などの未分化マーカーが知られている。表面マーカーの発現の有無に基づく細胞の分離方法は周知であり、当業者であれば、分化細胞を適宜分離し、除去することができる。表面マーカーに基づく細胞の分離は、例えば、フローサイトメトリーなどの技術を用いて行うことができる。
 分化細胞の分級やフローサイトメトリーは自動化が可能である。従って、工程(a’)は、自動化が可能である。
 上述のように、本発明の方法では、工程(a)、工程(a’)、工程(b)、工程(c)、工程(d)および工程(d’)のすべての工程が自動化可能である。従って、本発明の方法は全自動化が可能である。
 従って、本発明によれば、本発明の方法を実施するための多能性幹細胞の全自動継代培養システムが提供される。本発明の方法を実施するための多能性幹細胞の全自動継代培養システムは、多能性幹細胞を培養する手段(1);多能性幹細胞を培養面から剥離し、単一細胞レベルに分散させる手段(2);分散させた細胞をマルチマイクロウェルプレート上に播種する手段(ここで、播種後にマルチマイクロウェルプレートを遠心してもよい)(3);並びに、形成された細胞集塊を培養容器の培養表面に播種する手段(4)からなる群から選択される1以上の手段、好ましくはすべての手段を備える。ある特定の態様では、本発明の方法を実施するための多能性幹細胞の全自動継代培養システムは、本発明の閉鎖系培養容器を備え、手段(4)が、本発明の閉鎖系培養容器を天地逆転させる手段(5)により達成される。
 なお、本発明の方法により継代培養した細胞は、通常の凍結保存プロトコルに従って凍結保存することができる。凍結した細胞は解凍後、例えば、工程(a)および工程(a)に続く工程(例えば、工程(a’)~(d))を行うことができる。
 本発明によればまた、工程(c)の後には、細胞集塊を凍結保存することができる。細胞集塊の凍結保存は、例えば、細胞集塊を遠心分離の手法を用いてペレットにした後に、通常の凍結保存プロトコルに従って行うことができる。凍結した細胞は解凍後、工程(a)および工程(a)に続く工程を行ってもよいし、あるいは、工程(c)および工程(c)に続く工程(例えば、工程(d))を行ってもよい。
 分散させた細胞または細胞集塊の凍結は、細胞凍結用液に応じた凍結手法を用いることによって行うことができ、当業者であれば適宜凍結手法を選択することができる。
実施例1:ヒトiPS細胞の単一細胞化とその後の継代方法の検討
 ES細胞やiPS細胞などの多能性幹細胞は、継代の際に単一細胞にまでばらばらにすると細胞死が誘導される。また、胚様体様にすると細胞が分化を開始することが懸念される。本実施例では、単一細胞にまでばらばらにした後に、速やかに細胞集塊を形成させてから、継代を行った場合に細胞死や分化の問題が生じるか否かを検討した。
 本実施例では、細胞としては、ヒトiPS細胞(公益財団法人 先端医療振興財団 細胞評価グループ 川真田研究室による樹立株)を用いた。培養は、フィーダーレスの条件で行った。培地は、ReproFF2培地(ReproCell社製、製品番号:RCHEMD006)にbFGF(和光純薬工業社製、製品番号:064-04541)最終濃度5ng/mLを添加した培地を用いた。また、培養容器としては、10mm細胞培養ディッシュ(BD社製、製品番号:REF353003)を用い、iPS細胞の培養容器への接着性を担保するため、製造業者の取扱説明書に記載の方法に従って、培養前に培養容器内をECMでコーティングした。ECMは、BDマトリゲル(BD社製、製品番号:356234)を用いた。
 細胞は常法によりコンフルエントになるまで培養した。その後、継代のために培地を吸引除去し、10mLのリン酸緩衝生理食塩水(Life technologies社製、製品番号:14190)で細胞を1回洗浄した。その後、1mLのアキュターゼ溶液(Innovative cell technologies社製、製品番号:AT104)で37℃で5分間処理し、細胞をチューブに回収した。
 遠心分離(440g、5分)により細胞を回収し、上清を吸引除去して細胞を1mLの培地に再懸濁し、培地にROCK阻害剤Y-27632(STEMGENT社製、製品番号:04-0012)を最終濃度10μMとなるように添加して細胞懸濁液を得た。その後、細胞は、単一細胞レベルになるまでピペッティングの水流により細胞塊を砕いた。細胞懸濁液中の細胞濃度を調整し、細胞懸濁液をAggreWell 800(STEMCELL Technologies社製)のウェルに注入した。その後、AggreWell 800の遠心分離(2000g、5分)を行い、または、行わないで、37℃で一晩培養して細胞集塊を形成させた。遠心を行った場合および行わなかった場合の播種直後および1日後の細胞の状態は、図1Aに示される通りであった。すなわち、遠心を行った場合には、播種直後から逆ピラミッド形状のウェルの底に細胞が集まっていたが(図1A-左上)、遠心を行わなかった場合には、細胞は集まっていなかった(図1A-右上)。しかし、1日経過すると遠心を行った場合(図1A-左下)も行わなかった場合(図1A-右下)も細胞はウェルの底に集まり細胞集塊を形成していた。また、得られた細胞集塊は、ほぼ均一なサイズを有していた(図1B)。
 得られた細胞集塊は、できるだけ壊さないようにピペットで回収し、6ウェルプレートに播種した(300個の細胞集塊/ウェル)。播種後の細胞の成長を位相差顕微鏡にて観察すると、遠心分離を行った場合でも行わなかった場合でも、細胞集塊は良好に展開し、その後も細胞は良好に成長した(図2)。
 本実施例で得られた細胞集塊は人工的に集積させた立体構造を有することから、通常の継代培養とは状況が大きく異なるが、本実施例では、意外にもこのように作製した多層の細胞集塊であっても培養をすると自然に展開し、その後、通常の培養で見られる多能性幹細胞のコロニーを形成し好適に培養を行うことが可能であった。
 細胞集塊の形成の際に遠心を行わなかった場合には、遠心を行った場合よりも細胞の展開が早かった(図2、播種2日後)。このように、iPS細胞の継代培養においては、遠心分離を行わない方がよい結果となり得ることが示唆された。
 さらに詳細に解析するために、6ウェルプレートに播種してからの細胞の成長を成長曲線により比較したが、細胞の成長速度に関しては両者に大きな違いは見られなかった(図3)。
 その後、継続して培養した細胞が未分化状態を保っていることを確認するために、6ウェルプレートに播種して5日後に細胞を回収し、パラホルムアルデヒドで固定してから蛍光免疫染色を行った。核染色は、1μg/mLのDAPIを含むリン酸緩衝生理食塩水で細胞を15分ほどインキュベートして行った。蛍光免疫染色は、Nanogの発現を確認するために抗体として抗Nanog抗体(ReproCell社製、製品番号:RCAB0003P)を用い、Oct3/4は、抗Oct3/4抗体(Santa Cruz Biotechnology社製、製品番号:sc-5279)を用いて常法に従って免疫染色した。明視野画像は、位相差顕微鏡(オリンパス社製、製品番号:IX-81)を用いて取得した。
 その結果、すべての未分化マーカーが良好に発現していることが明らかとなった(図4)。
 これらの結果から、細胞を単一細胞レベルまでばらばらにくずして培養した場合でも、その後、細胞集塊を形成させることにより細胞死を起こすことがないこと、細胞集塊は迅速に(~1日)形成すること、得られた細胞集塊からは良好な多能性幹細胞コロニーが得られ、また、未分化状態で培養できることが示された。
実施例2:細胞集塊の形成時間の検討
 実施例1では、AggreWellを用いて細胞集塊を形成させたが、形成させる時間は24時間としていた。本実施例では、細胞集塊を形成させるための最適な時間の検討を行った。
 まず、実施例1と同じ方法で細胞懸濁液を得た。得られた細胞懸濁液をAggreWellのウェルに注入し、その後の細胞集塊の形成を経時的にモニターした(図5)。その結果、細胞懸濁液注入後に遠心分離を行った場合でも行わなかった場合でも細胞は約10時間で塊の形状に変化が見られなくなった。おそらく、形状に変化が見られなくなった理由としては、細胞間に結合が形成されたことが考えられる。
 そこで、AggreWellのウェルに細胞懸濁液を注入後、8時間、10時間、12時間および24時間静置し、順次、ウェルから細胞集塊を回収して6ウェルプレートに細胞塊を壊さないように播種した。注入48時間後に、直径が1mm以上のコロニーの数をカウントした。その結果、静置時間が短い方がコロニー数が大きいことが分かった(図6)。このことから静置時間を短くすることで細胞集塊のコロニーへの展開が早くなることが示唆された。
 次に、AggreWellのウェルへの細胞懸濁液の注入の168時間(7日)後に再び播種した細胞の様子を観察したが、いずれも良好に展開し成長していた。そこで、直径が1mmに満たないコロニーの数をカウントすると、静置時間が8時間の場合は、10時間以上静置する場合と比較して、直径1mm以下のコロニー数が多いことが明らかとなった(図7)。その原因は、静置時間が短いと細胞集塊の集合が弱く、6ウェルプレートに播種する際に細胞集塊がくずれてしまうからであると考えられる。
 また、AggreWellのウェルへの細胞懸濁液の注入の168時間(7日)後の細胞数をそれぞれカウントした。すると、細胞数は静置時間が8時間のときに特に多かったが、10時間以上の場合はそれほど大きく変わらなかった(図7)。
 このことから、AggreWellのウェル中での静置時間は8時間~12時間あれば十分であることが明らかとなった。
実施例3-1:適切な細胞集塊サイズの検討
 本実施例では、継代培養における最適な細胞集塊サイズを検討した。
 まず、実施例1と同じ方法で細胞懸濁液を得た。細胞集塊を形成させるために、細胞集塊の形成条件を表1の通りに設定し、AggreWellのウェルに細胞懸濁液を注入した。
Figure JPOXMLDOC01-appb-T000001
※1 AggreWell 800では、ウェルの底面に、800μm×800μmの逆ピラミッド状のマイクロウェルが1ウェル当り300個刻まれている。
※2 AggreWell 400では、ウェルの底面に、400μm×400μmの逆ピラミッド状のマイクロウェルが1ウェル当り1,200個刻まれている。
 表1の条件で細胞をAggreWellに注入した。遠心分離は、条件1~3のいずれでも2000g、5分の条件で行った。AggreWellで24時間静置して細胞集塊を形成させた後に、6ウェルプレートに細胞集塊を崩さないように播種した。プレートがコンフルエントになるか、コロニーの直径が1mmに達した段階で、表1の条件で継代を繰り返し、5継代目の播種7日後にコロニーを位相差顕微鏡で観察した。すると、いずれの条件であっても継代に成功したが(図8)、条件1ではコロニー数が明らかに少なかった(図8-左上)。また、継代中のコロニーを観察すると、播種7日後になると細胞集塊サイズが大きいもの(100μmおよび200μm)ではコロニー内の細胞が多層化しやすい傾向が見られた(図9)。なお、試験例4は3継代目、それ以外は4継代目でコロニーを確認した。
 5継代目の継代2日後~7日後までのコロニーの展開を経時的に観察した。すると、条件5では、細胞集塊は素早く展開してコロニーを形成したが、試験例6の条件では、コロニーが展開しきることなく、細胞が多層化した部分を残したまま継代すべき直径まで成長した(図10)。
 通常の多能性幹細胞の培養では、細胞塊はほぼ単層の状態で継代が行われる。しかし、本実施例の方法では、AggreWellを用いて多層の細胞集塊を形成し、播種した。実施例1~3によれば、多くの条件で細胞集塊は培養中に展開し、単層化した。
 各条件による継代後のコロニーの生着率を調べた。生着率(%)は、下記式:
Figure JPOXMLDOC01-appb-M000002
を用いて、継代3日後にディッシュ上のコロニー数をカウントし、播種した細胞集塊数で割って算出した。
 すると、細胞の生着率は細胞集塊サイズが大きい条件で良い傾向を示した(図11)。生着率はまた、AggreWellでの遠心分離は行わない条件で良い傾向を示した(図11)。
 次に、細胞が多層になっているコロニーの割合を各条件で比較した。すると、細胞集塊サイズが大きい条件3および6では、多層コロニーの割合が多く、小さい条件1および4では、多層コロニーの割合は少なかった(図12)。なお、多層コロニーは、目視でコロニーの面積の半分以上が多層となっているものを多層コロニーとしてカウントした。また、カウントは継代4回後に行った。
 各条件による継代後の細胞の成長曲線を比較したが、いずれの条件でも成長曲線に大きな差異は見られなかった(データ示さず)。
 また、各条件による継代後の細胞の回収率(%)を調べた。細胞の回収率(%)は、下記式:
Figure JPOXMLDOC01-appb-M000003
を用いて、細胞数の比を取ることにより算出した。細胞の継代は、コロニーサイズが直径1mmを超えたとき、またはディッシュがコンフルエントになったときとしたため、継代間の培養日数は条件毎にばらつきを示した(表2)。
Figure JPOXMLDOC01-appb-T000004
 しかしながら、いずれの場合でも、通常のディッシュ培養(300~400%を示す)と同等かそれ以上の回収率を示した(図13)。
 さらに各条件による継代後の細胞の死亡率を比較した。細胞のカウントは継代2日後に行った。細胞の死亡率(%)は、下記式:
Figure JPOXMLDOC01-appb-M000005
を用いて算出した。すると、細胞の死亡率は、条件1でやや低い傾向を示したが、条件による大きな違いは認められなかった(図14)。なお、死亡率の数値が100%以上になるのは、細胞が増殖しているからであると考えられる。
 このように様々な条件で多能性幹細胞の良好な培養が可能であったが、形成させる細胞集塊の大きさや細胞集塊の形成条件の違いにより、その後の培養に差が生じることが分かった。すなわち、細胞集塊が大きいと細胞集塊が展開するのに時間がかかること、これにより、細胞塊が次の継代時期までに展開しきらないこと、細胞集塊を形成する際に遠心分離の手法を用いると細胞集塊が強固となり細胞集塊は壊れ難くなるが展開に時間がかかること、細胞集塊が小さいと細胞の回収率は高まるがコロニーの成長に時間がかかること、細胞集塊の形成に遠心分離の手法を用いない場合には細胞集塊の形成時間を短縮すると細胞集塊が柔らかくなり細胞集塊は崩れやすくなるが展開は早くなることなどが明らかとなった。
 また、いずれの条件を選んで継代を行った場合でも、成長するコロニーの大きさは比較的揃っていた(図8)。このことは、本発明の方法が、培養させる細胞の品質の安定性や培養の効率性の観点で優れていることを意味する。
実施例3-2:適切な細胞集塊サイズの検討
 実施例3-1では、形成させる細胞集塊のサイズにより、その後の培養が影響を受けることを示唆する結果が得られた。本実施例では、適切な細胞集塊サイズをより詳細に検討した。
 まず、実施例1に記載の方法に従って細胞懸濁液を得た。その後、細胞懸濁液中の細胞濃度を適宜調整して細胞集塊を形成させ、細胞集塊の直径(y)と細胞集塊1個あたりの平均細胞数(χ)との関連を調べた。
 細胞集塊の直径は、ウェル中で細胞を24時間静置して細胞集塊を形成させ、培養容器の培養表面に播種した直後に測定した。測定は、光学顕微鏡を用いて行い、細胞集塊の直径は、細胞集塊の顕微鏡画像から計算される細胞集塊の面積をまず求めて、細胞集塊が球形であるとの仮定の下で算出した。
すると、細胞集塊の直径(y)は、細胞集塊1個あたりの細胞数(χ)とは、下記式に示される関係を有する(R=0.96)ことが分かった(図15)。
Figure JPOXMLDOC01-appb-M000006
 本実施例では、1つの細胞集塊あたりの平均細胞数が11~3,415個となるように細胞濃度を調整したが(図15)、いずれの場合でも良好に細胞集塊を形成させることができた。
 実施例3-1では、細胞集塊のサイズが大きいと培養面での展開に時間がかかり、例えば、細胞集塊のサイズによっては継代8日後においても展開しきらない場合があることが示された。そこで、細胞集塊の継代後の展開と細胞集塊のサイズとの関係を詳細に調べた。
 その結果、形成する細胞集塊あたりの平均細胞数が867個(直径195μmに相当)の場合には、継代後6~8日目においてほぼ100%の細胞集塊が展開する様子が観察された(図16)。一方で、細胞集塊あたりの平均細胞数が1,209個(直径216μmに相当)またはそれ以上の場合には、完全には展開しきらなかった(図16)。このことから、展開性の観点では、1つの細胞集塊あたりの平均細胞数は、1,209個(直径216μmに相当)以下であることが好ましく、867個(直径195μmに相当)以下であることがより好ましいことが明らかとなった。
 さらに、細胞増幅率を高める観点で、細胞集塊サイズを最適化するための指針を得ることを目的として、細胞集塊を培養面に播種した後の、培養面への接着率と細胞集塊サイズとの関係を詳細に調べた。すると、1つの細胞集塊あたりの細胞数が増えるほど(細胞集塊のサイズが大きくなるほど)培養面への接着率は上昇することが明らかとなった(図17)。得られた結果を回帰分析したところ、細胞集塊の培養面への接着率(y)は、1つの細胞集塊あたりの平均細胞数(χ)とは、下記式で近似される関係を有することが分かった(図17)。
Figure JPOXMLDOC01-appb-M000007
 すなわち、細胞集塊あたりの平均細胞数が約28個(直径約51.6μmに相当)以下の場合には接着率が極めて低くなることが明らかとなった。従って、接着性の観点からは、理論上は、細胞集塊あたりの平均細胞数が約28個(直径約51.6μmに相当)以上となるように調整することが好ましいといえる。但し、生着率のばらつきが大きいため、特に生着率の低い領域(例えば、平均細胞数が28個付近(すなわち、直径50μm付近に相当))では、近似誤差が相対的に大きくなると考えられ、平均細胞数が28個(すなわち、直径50μm)以下の細胞集塊で培養ができないことを意味するものではない。
 本発明者らはさらに、細胞増幅倍率の観点から最適な細胞集塊のサイズを検討した。まず、継代に用いる細胞数が一定であるとした場合の、細胞集塊あたりの平均細胞数と得られる細胞集塊の個数の関係は図18のようになる。そして、得られた細胞集塊の接着率の結果(図17)と図18の結果から、次の継代までの細胞の増幅倍率(1回の継代あたりの細胞増幅倍率)を算出した。具体的には、継代のタイミングは、細胞集塊が展開して形成されるコロニーのサイズが直径2mmに達したときとし、コロニーの単位面積当りの細胞数は、4000個/mmとする。すなわち、コロニーあたりの細胞数が12,566個に達した時点で継代を行うものとする。そして、細胞集塊のサイズと細胞集塊の個数と接着率との関係(図17および18)を考慮して、継代後の次の継代までの細胞の増幅倍率を算出した。すると、1つの細胞集塊あたりの細胞数が76個であるときに細胞の増幅倍率が最大となる凸形状のグラフが描かれた(図19)。また、細胞集塊のサイズと次の継代までの日数を調べたところ、図20のような関係があることが分かった。ここからさらに、一日あたりの細胞の増幅倍率を算出した。すると、1つの細胞集塊あたりの細胞数が96個であるときに増幅倍率が最大となる凸形状のグラフが描かれた(図21)。そして、図21で細胞増幅倍率が最大となる条件で、細胞が5×10倍になるまでの日数を算出すると、理論上45.42日必要であることが分かる。そこで、さらに、細胞集塊サイズと45.42日後の細胞増幅倍率との関係を調べた(図22)。すると、1つの細胞集塊あたりの細胞数が42~496個である場合に、細胞増幅倍率の最大値の1/10以上の増幅倍率が期待できることが分かった。また、1つの細胞集塊あたりの細胞数が55~217個である場合に、細胞増幅倍率の最大値の1/2以上の増幅倍率が期待できることが分かった。
 これらのことから、形成させる細胞集塊のサイズを調整することで、細胞の培養効率が格段に向上することが明らかとなり、また、細胞集塊のサイズを最適化するための指針が得られた。
 一般的な培養方法では、播種する際の細胞集塊のサイズは不均一である。それに対して、本発明の方法では、細胞集塊のサイズは、各マイクロウェルに播種する細胞数を調整することにより容易に一定の大きさに調整することができ、また、得られる細胞集塊各々の大きさを一定に揃えることができる。そのため、本発明の方法では、多能性幹細胞の増殖効率を容易に高めることができることが明らかである。
実施例4:培養容器の培養面への細胞集塊の播種方法の検討
 上記実施例では、マイクロウェル中で形成された細胞集塊は、ピペットで回収することにより新しい培養容器に継代したが、細胞集塊を壊さないために時間をかけた慎重なピペッティング操作が求められた。そこで、本実施例では、より簡便な細胞集塊の播種法を検討した。
 ここで発明者らは、マイクロウェルを有する面と培養面とを備え、これら2つの面が対向して配置された閉鎖系培養容器を用いることを検討した。この閉鎖系培養容器のマイクロウェルを有する面は、角取平面底形状で上部開口部が1000μm×1000μmの四角形形状のマイクロウェルが碁盤状に整列したものとした。また、培養面は、BDマトリゲル(商標)によりコーティングしたものとした。
 次に、実施例1に記載の方法により、単一細胞にまで分散させたiPS細胞の細胞懸濁液を得た。得られた細胞懸濁液を上述の閉鎖系培養容器に注入し、マイクロウェルを有する面を下にして37℃、5%CO雰囲気下で24時間静置した。光学顕微鏡を用いて細胞集塊が形成されたのを確認した後に、培養面が下になるよう閉鎖系培養容器を天地逆転させると、細胞集塊はマイクロウェル内から垂直に培養面に落下した。図23は、培養面に落下した細胞集塊の配置を示す図である。図23に示されるように、細胞集塊は培養面上で規則正しく整列した。これらの細胞集塊の配置は、用いたマイクロウェルの配置パターンを反映しており、図23の細胞集塊の間隔は、本実施例で用いた閉鎖系培養容器のマイクロウェルのピッチ(1000μm)と一致した。
 このことから、マイクロウェル中の細胞集塊は、マイクロウェルの配置パターンを維持したまま、培養容器の培養面に落下させることが可能であることが明らかとなった。マイクロウェルの配置を変えることにより、細胞集塊の播種位置は自在に制御し得るものと考えられる。また、播種および播種位置の制御は、容器を天地逆転させるという、非常に容易な操作により行うことができることが明らかとなった。
 実施例1~3によれば、多能性幹細胞は単一細胞にまで分散させても、その後すぐに細胞集塊を形成させることにより、未分化状態を維持させたまま良好に培養することが可能であった。また、細胞懸濁液を複数のマイクロウェルが配置された面を有する培養容器に播種することにより、簡便に均一なサイズの細胞集塊を形成させることができた。さらに、細胞集塊は、培養容器への播種後速やかに展開し、細胞は良好に増殖した。形成させた細胞集塊のサイズは均一であったため、細胞集塊の展開速度およびその後の増殖速度も均一であった。また、細胞集塊のサイズが均一であることにより、継代培養の効率が上昇し、細胞の品質管理も容易なものとなった。また、実施例4によれば、マイクロウェル中の細胞集塊は、簡便な操作により培養容器の培養面に播種することができた。播種した細胞集塊の配置パターンは、マイクロウェルの配置パターンを反映しており、簡便な操作により細胞集塊の精密播種が可能であることが示された。このように、本発明の方法により、均一な細胞集塊の形成や細胞集塊の均一な播種などが極めて単純な機械的操作により可能となった。本発明の方法は、これにより多能性幹細胞の品質維持を容易なものとするのみならず、多能性幹細胞の継代培養の全自動化への途を切り拓くものであると言える。
実施例5:サイズに基づく細胞の分級
 上記実施例により、多能性幹細胞が、単一細胞レベルに解離させた場合でも迅速に細胞集塊を形成させることにより、その後良好に培養することができることが分かった。本実施例では、単一細胞化できる本発明の利点を活かして、サイズに基づく細胞の分級の可能性を評価した。
 目視で未分化(すなわち、良好)と判断されたiPS細胞コロニーと、コロニーの一部で分化を開始した(すなわち、不良)と判断されたiPS細胞コロニーそれぞれをピペットを用いて単離し、次いで、酵素を用いて単細胞に分散させ、その後、顕微鏡観察を行ない、単細胞の大きさの分布を確認した。その結果、良好と判定されたiPS細胞コロニーから得られた細胞は17μmを中心に14~20μm程度の大きさを有し、それぞれの細胞の大きさが揃っている傾向を示すのに対し、不良と判断されたiPS細胞コロニーから得られた細胞からは、22μm以上または23μm以上の大きさを有する細胞の存在が確認された(図24)。この22μm以上または23μm以上の大きさを有する細胞は、良好なコロニーから得られる細胞との対比からコロニー内で分化を開始した細胞であると予想され、位相差顕微鏡の観察から、分化し、多能性を失った細胞であると評価された。この結果から、分級操作によって、分化を開始して多能性を失った細胞(分化細胞)を除去することができる可能性が示された。なお、分化細胞の除去は、フローサイトメトリーによっても実施することが可能である。
 多能性幹細胞の品質維持は、多能性幹細胞の継代培養における重要な課題である。本発明では、単一細胞にまで分散させた多能性幹細胞中の分化細胞は、単純な機械的操作により除去することができる。従って、本発明は、継代培養における分化細胞の除去の自動化の途を切り拓くものであると言える。

Claims (28)

  1.  多能性幹細胞の継代培養方法であって、
    (a)継代時に多能性幹細胞の細胞塊を分散させる工程と、
    (b)分散させて得られた細胞をマイクロウェル中に播種する工程と、
    (c)マイクロウェル中に播種された細胞から細胞集塊を形成させる工程と、
    (d)得られた細胞集塊を培養容器の培養面に播種する工程
    とを含んでなる、方法。
  2.  工程(d)が、(d’)マイクロウェルを備えた容器を天地逆転させて細胞集塊を培養容器の培養面上に落下させる工程を含んでなる、請求項1に記載の方法。
  3.  工程(a)において細胞塊を1~100個の細胞からなる細胞塊に解離させる、請求項1または2に記載の方法。
  4.  工程(a)において細胞塊を1~10個の細胞からなる細胞塊に解離させる、請求項3に記載の方法。
  5.  工程(a)において細胞塊を単一細胞にまで解離させる、請求項4に記載の方法。
  6.  工程(b)において各マイクロウェルに播種される細胞の平均細胞数が、10~3,500個である、請求項1~5のいずれか一項に記載の方法。
  7.  工程(b)において各マイクロウェルに播種される細胞の平均細胞数が、25~870個である、請求項6に記載の方法。
  8.  工程(b)において各マイクロウェルに播種される細胞の平均細胞数が、40~500個である、請求項7に記載の方法。
  9.  工程(b)において各マイクロウェルに播種される細胞数が、55~220個である、請求項8に記載の方法。
  10.  工程(c)がマイクロウェル中で細胞を、細胞集塊を形成するために十分な時間静置することを含んでなる、請求項1~9のいずれか一項に記載の方法。
  11.  工程(c)がマイクロウェル中で細胞を8~24時間静置することを含んでなる、請求項10に記載の方法。
  12.  工程(c)がマイクロウェル中で細胞を8~12時間静置することを含んでなる、請求項11に記載の方法。
  13.  工程(c)が遠心分離を用いることなく行われる、請求項1~12のいずれか一項に記載の方法。
  14.  多能性幹細胞が、ヒト多能性幹細胞である、請求項1~13のいずれか一項に記載の方法。
  15.  ヒト多能性幹細胞が、ヒトES細胞またはヒトiPS細胞である、請求項14に記載の方法。
  16.  工程(a)の後に、分化細胞を除去する工程(a’)をさらに含んでなる、請求項1~15のいずれか一項に記載の方法。
  17.  分化細胞を除去する工程(a’)が、分化細胞を分級することにより除去することを含んでなる、請求項16に記載の方法。
  18.  閾値(閾値は、20μm以上の値である)を超えた直径を有する細胞を分級により除去する、請求項17に記載の方法。
  19.  閾値(閾値は、23μm以上の値である)を超えた直径を有する細胞を分級により除去する、請求項18に記載の方法。
  20.  分化細胞を除去する工程(a’)が、細胞の表面マーカーの発現の有無に基づいて行われる、請求項16に記載の方法。
  21.  細胞の表面マーカーが、多能性幹細胞が細胞表面に発現する未分化マーカーである、請求項20に記載の方法。
  22.  未分化マーカーが、アルカリフォスファターゼ、SSEA-3、SSEA-4、TRA-1-60およびTRA-1-81からなる群から選択される1以上の未分化マーカーである、請求項21に記載の方法。
  23.  マイクロウェルを備えた面と培養面とを備えてなり、これら2つの面が向かい合うように配置された、閉鎖系培養容器。
  24.  マイクロウェルが、その内周が底面に近づくほど小さくなる形状を有する、請求項23に記載の閉鎖系培養容器。
  25.  マイクロウェルが、丸底、V底、U底または角取平面底を有する、請求項24に記載の閉鎖系培養容器。
  26.  整列した複数のマイクロウェルを備えた、請求項23~25のいずれか一項に記載の閉鎖系培養容器。
  27.  工程(d’)が、請求項23~26のいずれか一項に記載の閉鎖系培養容器を天地逆転させることにより行われる、請求項2に記載の方法。
  28.  請求項1~22および27のいずれか一項に記載の方法を実施するための多能性幹細胞の全自動継代培養システム。
PCT/JP2014/051362 2013-01-23 2014-01-23 多能性幹細胞の継代培養方法 WO2014115799A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/762,921 US20150353884A1 (en) 2013-01-23 2014-01-23 Method of subculturing pluripotent stem cells
EP14743585.3A EP2949746A4 (en) 2013-01-23 2014-01-23 METHOD OF SUB-CULTURE OF PLURIPOTENT STEM CELLS
JP2014558609A JPWO2014115799A1 (ja) 2013-01-23 2014-01-23 多能性幹細胞の継代培養方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013010161 2013-01-23
JP2013-010161 2013-01-23

Publications (1)

Publication Number Publication Date
WO2014115799A1 true WO2014115799A1 (ja) 2014-07-31

Family

ID=51227588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051362 WO2014115799A1 (ja) 2013-01-23 2014-01-23 多能性幹細胞の継代培養方法

Country Status (4)

Country Link
US (1) US20150353884A1 (ja)
EP (1) EP2949746A4 (ja)
JP (1) JPWO2014115799A1 (ja)
WO (1) WO2014115799A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159950A1 (ja) * 2014-04-17 2015-10-22 東京エレクトロン株式会社 多能性幹細胞の細胞集塊製造方法および細胞集塊製造システム
WO2016052657A1 (ja) * 2014-09-30 2016-04-07 国立研究開発法人産業技術総合研究所 万能性幹細胞の培養方法
WO2016147239A1 (ja) * 2015-03-16 2016-09-22 パナソニック株式会社 ピペットチップ及びピペッティング方法
WO2017199737A1 (ja) * 2016-05-16 2017-11-23 富士フイルム株式会社 培養細胞の回収方法および培養細胞分散液
JPWO2016140327A1 (ja) * 2015-03-04 2017-12-14 国立研究開発法人産業技術総合研究所 マイクロチャンバーアレイプレート
WO2020218579A1 (ja) * 2019-04-26 2020-10-29 国立大学法人京都大学 分化誘導のために馴化された多能性幹細胞の作製方法
JPWO2019069378A1 (ja) * 2017-10-03 2020-11-05 オリンパス株式会社 培養情報処理装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102136478B1 (ko) * 2016-05-06 2020-07-21 후지필름 가부시키가이샤 다능성 줄기 세포의 계대 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002000178A (ja) 2000-06-19 2002-01-08 Miyamura Tekkosho:Kk トラブル解消機構を備えた回転胴形茶葉蒸機
WO2007114351A1 (ja) * 2006-03-31 2007-10-11 Asubio Pharma Co., Ltd. 新規細胞培養方法、およびその方法を用いた細胞塊の生産および回収方法
JP2010233456A (ja) * 2009-03-30 2010-10-21 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 細胞集合体形成器具、細胞集合体培養器具、細胞集合体転写キット及び細胞集合体の培養方法
WO2011022507A1 (en) * 2009-08-21 2011-02-24 The Board Of Trustees Of The Leland Stanford Junior University Enhanced efficiency of induced pluripotent stem cell generation from human somatic cells
WO2011068879A2 (en) * 2009-12-02 2011-06-09 Research Development Foundation Selection of stem cell clones with defined differentiation capabilities
WO2011161962A1 (ja) * 2010-06-25 2011-12-29 川崎重工業株式会社 多能性幹細胞コロニーの識別方法及び装置並びに多能性幹細胞の自動培養方法及び装置
WO2012087965A2 (en) * 2010-12-22 2012-06-28 Fate Therapauetics, Inc. Cell culture platform for single cell sorting and enhanced reprogramming of ipscs

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8956867B2 (en) * 2008-11-07 2015-02-17 Wisconsin Alumni Research Foundation Method for culturing stem cells
KR101330327B1 (ko) * 2010-05-07 2013-11-14 한국생명공학연구원 줄기세포로부터 생성된 배아체를 대량 증식 및 유지하는 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002000178A (ja) 2000-06-19 2002-01-08 Miyamura Tekkosho:Kk トラブル解消機構を備えた回転胴形茶葉蒸機
WO2007114351A1 (ja) * 2006-03-31 2007-10-11 Asubio Pharma Co., Ltd. 新規細胞培養方法、およびその方法を用いた細胞塊の生産および回収方法
JP2010233456A (ja) * 2009-03-30 2010-10-21 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 細胞集合体形成器具、細胞集合体培養器具、細胞集合体転写キット及び細胞集合体の培養方法
WO2011022507A1 (en) * 2009-08-21 2011-02-24 The Board Of Trustees Of The Leland Stanford Junior University Enhanced efficiency of induced pluripotent stem cell generation from human somatic cells
WO2011068879A2 (en) * 2009-12-02 2011-06-09 Research Development Foundation Selection of stem cell clones with defined differentiation capabilities
WO2011161962A1 (ja) * 2010-06-25 2011-12-29 川崎重工業株式会社 多能性幹細胞コロニーの識別方法及び装置並びに多能性幹細胞の自動培養方法及び装置
WO2012087965A2 (en) * 2010-12-22 2012-06-28 Fate Therapauetics, Inc. Cell culture platform for single cell sorting and enhanced reprogramming of ipscs

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"AGGREWELL: ARE YOU MAKING EMBRYOID BODIES? (STEMCELL TECHNOLOGIES)", 25 September 2009 (2009-09-25), XP054976485, Retrieved from the Internet <URL:HTTP://WWW.VERITASTK.CO.JP/NEWS.PHP?ID=345, HTTPS://WWW.YOUTUBE.COM/WATCH?V=2P-KGB9WT9I> [retrieved on 20140409] *
HIROMICH YOSHIOKA ET AL.: "iPS Saibo Yurai Bunka Saibo to Mibunka iPS Saibo no Isosa ni yoru Hi Shinshuteki Shikibetsu", DAI 64 KAI ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, 25 September 2012 (2012-09-25), JAPAN, pages 112, XP008179912 *
KANJI YAHIRO ET AL.: "Introduction of stem cell culture, differentiation and assay tools", THE CELL, vol. 44, no. 9, 20 August 2012 (2012-08-20), pages 393 - 397, XP008179927 *
See also references of EP2949746A4
SHIMAZAKI TAKUYA; OKADA YOHEI; YOSIJAKI DHAKAHITO; OKANO HIDEYUKI: "Protein, Nucleic acid and Enzyme", KIORITZ PUBLICATION, vol. 51, no. 13, 2006, pages 1854 - 1861
SPELKE D.P.: "Methods for embryoid body formation: the microwell approach", METHODS IN MOLECULAR BIOLOGY, vol. 690, 2011, pages 151 - 162
STOVER, A.E. ET AL.: "The Generation of Embryoid Bodies from Feeder-Based or Feeder- Free Human Pluripotent Stem Cell Cultures", METHODS IN MOLECULAR BIOLOGY, vol. 767, 2011, pages 391 - 398, XP055265964 *
WATANABE, K.: "A ROCK inhibitor permits survival of dissociated human embryonic stem cells", NATURE BBOTECHNOLOGY, vol. 25, 2007, pages 681, XP002478043, DOI: doi:10.1038/nbt1310

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159950A1 (ja) * 2014-04-17 2015-10-22 東京エレクトロン株式会社 多能性幹細胞の細胞集塊製造方法および細胞集塊製造システム
EP3202896A4 (en) * 2014-09-30 2018-07-04 JTEC Corporation Method for culturing pluripotent stem cells
JPWO2016052657A1 (ja) * 2014-09-30 2017-07-20 国立研究開発法人産業技術総合研究所 万能性幹細胞の培養方法
WO2016052657A1 (ja) * 2014-09-30 2016-04-07 国立研究開発法人産業技術総合研究所 万能性幹細胞の培養方法
US10696951B2 (en) 2014-09-30 2020-06-30 Jtec Corporation Method for culturing pluripotent stem cells
JPWO2016140327A1 (ja) * 2015-03-04 2017-12-14 国立研究開発法人産業技術総合研究所 マイクロチャンバーアレイプレート
US10456779B2 (en) 2015-03-16 2019-10-29 Panasonic Corporation Pipette tip having a straight pipe section with inner protrusion and pipetting method for a liquid including cells
JP6004149B1 (ja) * 2015-03-16 2016-10-05 パナソニック株式会社 ピペットチップ及びピペッティング方法
WO2016147239A1 (ja) * 2015-03-16 2016-09-22 パナソニック株式会社 ピペットチップ及びピペッティング方法
EP3272851A4 (en) * 2015-03-16 2018-01-24 Panasonic Corporation Pipette tip and pipetting method
WO2017199737A1 (ja) * 2016-05-16 2017-11-23 富士フイルム株式会社 培養細胞の回収方法および培養細胞分散液
JPWO2017199737A1 (ja) * 2016-05-16 2019-03-07 富士フイルム株式会社 培養細胞の回収方法および培養細胞分散液
JPWO2019069378A1 (ja) * 2017-10-03 2020-11-05 オリンパス株式会社 培養情報処理装置
JP7018955B2 (ja) 2017-10-03 2022-02-14 オリンパス株式会社 培養情報処理装置
US11256898B2 (en) 2017-10-03 2022-02-22 Olympus Corporation Culture information processing device
WO2020218579A1 (ja) * 2019-04-26 2020-10-29 国立大学法人京都大学 分化誘導のために馴化された多能性幹細胞の作製方法

Also Published As

Publication number Publication date
US20150353884A1 (en) 2015-12-10
JPWO2014115799A1 (ja) 2017-01-26
EP2949746A4 (en) 2016-07-27
EP2949746A1 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
WO2014115799A1 (ja) 多能性幹細胞の継代培養方法
Bajpai et al. Efficient propagation of single cells accutase‐dissociated human embryonic stem cells
Otsuji et al. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production
JP6979687B2 (ja) 幹細胞の凝集塊の集団の調製方法
US20080026460A1 (en) Method for culturing stem cells
US10487312B2 (en) Passaging and harvesting formulation and method for human pluripotent stem cells
JP6935101B2 (ja) 幹細胞を再樹立する方法
US20090130754A1 (en) Method for culturing human embryonic stem cells
EP3202896B1 (en) Method for culturing pluripotent stem cells
CN106381282B (zh) 一种诱导多能干细胞传代方法
JP6983907B2 (ja) 奇形腫の形成が抑制された多分化能性幹細胞由来の神経前駆体球の製造方法
US20190359946A1 (en) Passaging and harvesting formulation for single-cell human pluripotent stem cells
Matsushita et al. Expansion and differentiation of human iPS cells in a three-dimensional culture using hollow fibers and separation of the specific population by magnetic-activated cell sorting
WO2022188395A1 (zh) 一种多能干细胞的培养方法
Li et al. Simple autogeneic feeder cell preparation for pluripotent stem cells
JP2017046592A (ja) 細胞培養容器および細胞継代培養システム並びに細胞継代培養方法
JP2009529859A (ja) ヒト胚盤胞からの幹細胞を増殖ための培養系および方法
WO2021149823A1 (ja) 因子を導入された細胞の培養方法
JP2022104813A (ja) リプログラミング因子を導入された細胞の培養方法
Wang et al. P-1018: Induction of hES cells to endothelial cells
JP2022001027A (ja) 細胞分離方法及び多能性幹細胞塊の細胞懸濁液の製造方法
Choo et al. Expansion of undifferentiated human embryonic stem cells
CA2659133A1 (en) Device and methods for production of cell aggregates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014558609

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014743585

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14762921

Country of ref document: US

Ref document number: 2014743585

Country of ref document: EP