WO2011161962A1 - 多能性幹細胞コロニーの識別方法及び装置並びに多能性幹細胞の自動培養方法及び装置 - Google Patents

多能性幹細胞コロニーの識別方法及び装置並びに多能性幹細胞の自動培養方法及び装置 Download PDF

Info

Publication number
WO2011161962A1
WO2011161962A1 PCT/JP2011/003574 JP2011003574W WO2011161962A1 WO 2011161962 A1 WO2011161962 A1 WO 2011161962A1 JP 2011003574 W JP2011003574 W JP 2011003574W WO 2011161962 A1 WO2011161962 A1 WO 2011161962A1
Authority
WO
WIPO (PCT)
Prior art keywords
colony
undifferentiated
colonies
stem cells
pluripotent stem
Prior art date
Application number
PCT/JP2011/003574
Other languages
English (en)
French (fr)
Inventor
慶三 渡壁
櫻井 隆
修 王子
中嶋 勝己
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP11797850.2A priority Critical patent/EP2586872B1/en
Priority to JP2012521332A priority patent/JP5696144B2/ja
Priority to US13/805,767 priority patent/US8977031B2/en
Publication of WO2011161962A1 publication Critical patent/WO2011161962A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability

Definitions

  • the present invention relates to a method and apparatus for identifying pluripotent stem cell colonies and a method and apparatus for automatically culturing pluripotent stem cells, and more specifically, an undifferentiated colony containing only undifferentiated pluripotent stem cells and other colonies And a method and apparatus for automatically culturing pluripotent stem cells using these methods and apparatus.
  • pluripotent stem cells such as ES cells and iPS cells (in this specification, “ES cells” and “iPS cells” are collectively referred to as “pluripotent stem cells”) have been artificially created. Therefore, a great contribution is expected in fields such as regenerative medicine. Since pluripotent stem cells have the pluripotency that can be differentiated into various cells constituting the living body, by using the patient's own iPS cells, skin, cartilage, bone, blood vessels, It becomes possible to regenerate nerves, organs and the like.
  • pluripotent stem cells have pluripotency as described above, some pluripotent stem cells may start to differentiate during the culture. Thus, a cell that has started differentiation cannot be returned to an undifferentiated state again, and cannot be used to create a target organ or organ. Therefore, in the passage of pluripotent stem cells, it is important to determine whether or not the cultured stem cell colonies are undifferentiated, and finally to isolate only undifferentiated pluripotent stem cells.
  • Such identification of undifferentiated pluripotent stem cells can be performed, for example, by “CellSelector (registered trademark)” of “AVISO” by staining cells or observing fluorescence.
  • CellSelector registered trademark
  • AVISO AVISO
  • staining is often performed after the cells are fixed, and since the dye is often toxic to the cells, it is difficult to observe the cells alive.
  • a low-toxic dye is used, it is still toxic to cells and is inappropriate for application in the field of regenerative medicine.
  • a captured image of the culture vessel is obtained, and using the captured image obtained by image processing, it is determined whether or not each colony is an undifferentiated colony. Attempts have been made based on Japanese Patent Application No. 2009-235306. However, when an undifferentiated colony is identified based only on the brightness of the colony, accurate identification may not be possible depending on conditions. Moreover, since all the colonies must be determined one by one, it takes a long time to complete the determination for the entire culture container, and the state of the cells changes in the culture container. is there.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and the object of the present invention is to differentiate colonies on a culture vessel during culturing of pluripotent stem cells. It is an object of the present invention to provide a method and an apparatus capable of discriminating between them, and a method and an apparatus capable of rapidly culturing undifferentiated pluripotent stem cells.
  • the colony identification method of the present invention is a colony identification method for identifying an undifferentiated colony and an undefined colony based on a captured image in a culture vessel of pluripotent stem cells,
  • the predetermined first threshold value is C1
  • the second threshold value is C2 (C1 ⁇ C2)
  • pluripotent stem cells refers to cells including “differentiated pluripotent stem cells” and “undifferentiated pluripotent stem cells”, and “differentiated pluripotent stem cells”
  • differentiated pluripotent stem cell refers to a pluripotent stem cell in which differentiation has started or a cell differentiated from a pluripotent stem cell.
  • circularity C (4 ⁇ S) / (L ⁇ L).
  • S is the area of the colony
  • the above-described colony identifying method may further include a configuration for determining that a colony satisfying C ⁇ C1 is the differentiated colony containing pluripotent stem cells.
  • the undifferentiated colony, the undefined colony, and the differentiated colony are identified based on the luminance B in the outline of the colony in the captured image in addition to the circularity. can do.
  • the identification of the colony by brightness indicates that undifferentiated pluripotent stem cells appear dark in the captured image, differentiated pluripotent stem cells appear bright in the captured image, and multi-layered pluripotent stem cells are stacked in multiple layers. The case is based on the finding that it appears darker than undifferentiated pluripotent stem cells.
  • the undifferentiated colony identified based on the circularity C is (A), the undetermined colony is (B), the differentiated colony is (C), the predetermined first threshold value of the colony brightness is B1, When the threshold value of 2 is B2, the third threshold value is B3, and the fourth threshold value is B4 (B1 ⁇ B2 ⁇ B3 ⁇ B4), colonies in which all the luminances in the colony outline are B2 ⁇ B ⁇ B3 It is determined that the colony is an undifferentiated colony (a), and a colony in which a part of brightness in the outline of the colony is B ⁇ B1 is determined to be a multilayer colony (d), and a part of brightness in the outline of the colony is A colony satisfying B4 ⁇ B is determined to be a differentiated colony (c), and colonies other than the undifferentiated colony (a), the multilayered colony (d), and the differentiated colony (c) are determined as undefined colonies (b).
  • ((A) and (a ) Is determined to be the undifferentiated colony, and the colonies to be ((A) and (b) or (B) and (a) or (B) and (b)) are the undefined colonies.
  • the colony to be (d) is determined to be the multilayer colony in which pluripotent stem cells are stacked in multiple layers, and ((c) or (C) and (a) or (C) and (b)) It can be configured to determine that the colony to be is the differentiated colony.
  • the colony identification method of the present invention further obtains a fine image for the undefined colony, and when all the cells in the undefined colony in the fine image are smaller than a predetermined size, the undefined colony is the unidentified colony. It can be configured to be identified as a differentiated colony.
  • Such discrimination based on the size of cells in an undefined colony is based on the finding that undifferentiated pluripotent stem cells are small and differentiated pluripotent stem cells are larger than undifferentiated pluripotent stem cells.
  • the captured image is contour-enhanced by image processing.
  • the method for automatically culturing pluripotent stem cells of the present invention comprises the step of discriminating between the undifferentiated colonies and colonies other than the undifferentiated colonies by the above-described colony identifying method, the undifferentiated colonies and colonies other than the undifferentiated colonies A step of acquiring position information of the cell, a step of introducing a cell detaching agent into the culture vessel, a step of peeling the undifferentiated colony based on the position information, and collecting an undifferentiated colony obtained by peeling the undifferentiated colony Including the step of:
  • the method for automatically culturing pluripotent stem cells of the present invention includes a step of identifying colonies other than the undifferentiated colonies by the above-described colony identification method, a step of obtaining position information of colonies other than the undifferentiated colonies, A step of introducing a cell peeling agent into a culture vessel, a step of peeling colonies other than the undifferentiated colonies based on the positional information, a step of removing pluripotent stem cells obtained by peeling of colonies other than the undifferentiated colonies, And a step of separating the undifferentiated colonies to recover the undifferentiated colonies.
  • the method for automatically culturing pluripotent stem cells of the present invention obtains the step of identifying the undifferentiated colonies by the above-described colony identification method, the number of undifferentiated colonies, and the number of colonies other than the undifferentiated colonies. Including a step and, when (the number of undifferentiated colonies) / (the total number of colonies) is larger than a predetermined threshold, introducing a cell detachment agent into the culture vessel to detach and collect all colonies. And
  • the undifferentiated colony and the You may include the process of selectively peeling and collect
  • the colony identification device of the present invention distinguishes between differentiated colonies and undifferentiated colonies based on image acquisition means for obtaining a captured image in the incubator of pluripotent stem cells, and the degree of circularity C of the colony obtained from the captured image.
  • Identification means for performing the identification and when the predetermined first threshold value of the degree of circularity of the colony is C1 and the second threshold value is C2 (C1 ⁇ C2), the identification means It is determined that the undifferentiated colony includes only differentiated pluripotent stem cells, and a colony satisfying C1 ⁇ C ⁇ C2 is determined to be an undefined colony that may be an undifferentiated colony, and C ⁇ C1. The colony is judged to be the differentiated colony containing differentiated pluripotent stem cells.
  • the identification unit identifies the undifferentiated colony, the undefined colony, and the differentiated colony based on the luminance B in the outline of the colony in the captured image in addition to the circularity. It can be constituted as follows.
  • the undifferentiated colony identified based on the circularity C is (A), the undetermined colony is (B), the differentiated colony is (C), the predetermined first threshold value of the colony brightness is B1, When the threshold value of 2 is B2, the third threshold value is B3, and the fourth threshold value is B4 (B1 ⁇ B2 ⁇ B3 ⁇ B4), colonies in which all the luminances in the colony outline are B2 ⁇ B ⁇ B3 It is determined that the colony is an undifferentiated colony (a), and a colony in which a part of brightness in the outline of the colony is B ⁇ B1 is determined to be a multilayer colony (d), and a part of brightness in the outline of the colony is A colony satisfying B4 ⁇ B is determined to be a differentiated colony (c), and colonies other than the undifferentiated colony (a), the multilayered colony (d), and the differentiated colony (c) are determined as undefined colonies (b).
  • ((A) and (a ) Is determined to be the undifferentiated colony, and the colonies to be ((A) and (b) or (B) and (a) or (B) and (b)) are the undefined colonies.
  • the colony to be (d) is determined to be the multilayer colony in which pluripotent stem cells are stacked in multiple layers, and ((c) or (C) and (a) or (C) and (b)) It can be configured to determine that the colony to be is the differentiated colony.
  • the colony identification apparatus of the present invention further includes a fine image acquisition unit that obtains a fine image for the uncertain colony, and the identification unit has all cells in the undetermined colony in the fine image smaller than a predetermined size.
  • the undetermined colony can be identified as the undifferentiated colony.
  • the captured image is contour-enhanced by image processing.
  • the pluripotent stem cell automatic culture apparatus of the present invention includes the colony identification apparatus, a release agent introduction means for introducing a cell release agent into the culture container, and the undifferentiated colony based on the position information of each colony.
  • a pipetting device is provided that exfoliates and collects undifferentiated colonies obtained by exfoliating the undifferentiated colonies.
  • the pluripotent stem cell automatic culture apparatus of the present invention introduces the colony identification apparatus, position information acquisition means for acquiring position information of colonies other than the undifferentiated colonies, and a cell releaser into the culture container.
  • Release agent introducing means for The colony other than the undifferentiated colony is detached based on the position information acquired by the position information acquisition means, the pluripotent stem cells obtained by the separation of the colony other than the undifferentiated colony are removed, and the undifferentiated colony is further detached.
  • a pipetting device for collecting undifferentiated colonies.
  • the automatic culturing apparatus for pluripotent stem cells of the present invention comprises the above-described colony identification device, a colony number acquiring means for acquiring the number of undifferentiated colonies and colonies other than the undifferentiated colonies, ) / (Total number of colonies) is equipped with a pipetting device that introduces a cell detachment agent into the culture vessel and detaches and collects all colonies.
  • a fine image acquisition for further acquiring a fine image for each of the undefined colonies Further comprising means,
  • the colony number acquisition means adds the number of those determined to be undifferentiated colonies based on the fine image to the number of undifferentiated colonies as a new undifferentiated colony number,
  • the pipetting device is In the case of (number of new undifferentiated colonies) / (total number of colonies) ⁇ (predetermined threshold), a cell detachment agent is introduced into the culture container and all colonies are detached and collected, If (new number of undifferentiated colonies) / (total number of colonies) ⁇ (predetermined threshold value), the undifferentiated colonies and the undefined colonies determined to be undifferentiated colonies based on the fine image are selectively selected. It is also possible to add a configuration for separating and collecting.
  • a method and apparatus for identifying pluripotent stem cell colonies and a method and apparatus for automatically culturing pluripotent stem cells obtain a captured image of a colony in a culture container for pluripotent stem cells, perform image processing on the image, and determine the circularity of each colony. Since differentiated colonies and undifferentiated colonies are identified based on the above, it is possible to identify whether the colonies are undifferentiated or differentiated. Therefore, even when some of the colonies start to differentiate during the culture of pluripotent stem cells, only undifferentiated colonies can be identified.
  • (A) is a schematic diagram showing a scattering state of illumination light in a dish where pluripotent stem cells are not present
  • (b) is a schematic diagram showing a scattering state of illumination light in a dish where undifferentiated pluripotent stem cells are present
  • (c) is a schematic diagram showing a scattering state of illumination light in a dish where differentiated pluripotent stem cells are present
  • (d) is a schematic diagram showing a scattering state of illumination light in a dish where multilayered pluripotent stem cells are present. is there. It is a conceptual diagram which shows the threshold value in the case of identifying based on the brightness
  • the present invention is based on the knowledge that the shape of a colony formed only by undifferentiated pluripotent stem cells is close to a circle, and the shape of a colony containing differentiated pluripotent stem cells does not become a circle. It was done.
  • the colony identifying method of the present invention in addition to identifying whether a differentiated colony containing differentiated pluripotent stem cells or an undifferentiated colony containing only undifferentiated pluripotent stem cells, Identification as to whether there is a possible indeterminate colony is automatically performed using a computer or the like.
  • an undefined colony refers to a colony that cannot be specified as a differentiated colony or an undifferentiated colony but may be an undifferentiated colony.
  • multilayer colonies containing pluripotent stem cells stacked in multiple layers can also be identified.
  • a colony determined to be an undefined colony is further differentiated or undifferentiated by using a fine image as described later.
  • Such identification is performed by obtaining a wide-field image over a wide range of the culture vessel of pluripotent stem cells after culturing forming colonies and processing the image after processing this, and the circularity and brightness of each colony. It is done by seeking.
  • the image processing here includes processing for emphasizing the outline of the colony, and processing for normalizing the luminance of each pixel to a luminance in the range of, for example, monochrome 0 to 255 gradations (8 bits).
  • the luminance is represented by 8-bit 256 gradations, but the present invention is not limited to this, and the number of gradations can be made larger or smaller than this.
  • the colony circularity C (4 ⁇ S) / (L ⁇ L) (S is the area of the colony, L is the circumference of the colony), and the closer the circularity of the colony is to 1, the more included in the colony There is a high probability that the pluripotent stem cells are only undifferentiated.
  • the degree of circularity of the colony is determined by the formula (4 ⁇ S) / (L ⁇ L).
  • the present invention is not limited to this, and any expression that can determine the degree of circularity is used. Alternatively, it may be obtained using another formula.
  • the threshold value of the boundary between the circularity of the unconfirmed colony for which differentiation undifferentiation cannot be determined and the circularity of the differentiated colony containing differentiated pluripotent stem cells is set to the first threshold.
  • the threshold value C1 is set, and the threshold value of the boundary between the circularity of an undifferentiated colony including only undifferentiated pluripotent stem cells and the circularity of an undefined colony is set as a second threshold C2 (C1 ⁇ C2).
  • a colony satisfying C2 ⁇ C is an undifferentiated colony
  • a colony satisfying C1 ⁇ C ⁇ C2 is determined to be an undefined colony
  • a colony satisfying C ⁇ C1 is a differentiated colony. It is judged that there is.
  • a Gaussian filter or an intermediate value filter is used.
  • noise and images of feeder cells can be removed.
  • differentiated colonies and undifferentiated colonies may not be accurately identified because, for example, these filters cannot remove images from large feeder cells.
  • the identification of colonies by luminance is based on the following knowledge. That is, as shown in FIG. 1A, when cells or the like are not attached to the bottom surface 10 of the dish, the illumination light 12 passes through the bottom surface 10 of the dish and is hardly scattered and then is used as the imaging light 13 as a camera. Therefore, the obtained image becomes bright. On the other hand, as shown in FIG. 1B, when pluripotent stem cells or the like are attached to the bottom surface 10 of the dish, the illumination light 12 is scattered by the undifferentiated pluripotent stem cells 21a. Become.
  • the undifferentiated pluripotent stem cell 21a is smaller than the differentiated pluripotent stem cell described later, and the size of the nucleus 22 of the cell is not greatly changed by undifferentiated differentiation.
  • the proportion of the portion other than the nucleus 22 is relatively small compared to the differentiated pluripotent stem cell, and the illumination light 12 is scattered relatively large as shown in FIG. 1 (b). become. Therefore, the imaging light 14 reaching the imaging device 11 is reduced, and the obtained image of the portion of the undifferentiated pluripotent stem cell 21a becomes dark.
  • the differentiated pluripotent stem cell as shown in FIG.
  • the portion other than the nucleus 22 is relatively large with respect to the nucleus 22, and therefore, the undifferentiated pluripotent stem cell of FIG. 1 (b).
  • the scattering received by the illumination light 12 is smaller, and the imaging light 15 reaching the imaging device 11 is increased. Therefore, the obtained image of the portion of the differentiated pluripotent stem cell 21b becomes brighter than in the case of the undifferentiated pluripotent stem cell of FIG.
  • the pluripotent stem cells are excessively cultured or the like, as shown in FIG. 1D, in the case of a multi-layer colony in which the pluripotent stem cells 21c are stacked in multiple layers, the illumination light 12 is shown in FIG. ), The imaging light 16 that reaches the imaging device 11 is very small, and the resulting image of the pluripotent stem cell 21c is very dark.
  • differentiated pluripotent stem cells are bright and undifferentiated pluripotent stem cells are moderately bright because the appearance of cells varies depending on the illumination method.
  • a threshold is set for the brightness of the captured image.
  • the first threshold value B1 is used as the threshold value of the boundary between the brightness of the multi-layered pluripotent stem cells and the brightness of the uncertain pluripotent stem cells.
  • the second threshold value B2 and the third threshold value B3 are threshold values for the boundary with the luminance of the pluripotent stem cell, and the threshold value for the boundary between the luminance of the undetermined pluripotent stem cell and the luminance of the differentiated pluripotent stem cell is the first threshold value.
  • 4 threshold values B4 (B1 ⁇ B2 ⁇ B3 ⁇ B4), respectively.
  • the colonies in which all the luminances in the colony contours are B2 ⁇ B ⁇ B3 are undifferentiated colonies, and some luminances in the colony contours Is determined to be a multi-layer colony, and a colony having a luminance of B4 ⁇ B in the outline of the colony is determined to be a differentiated colony, an undifferentiated colony, a multi-layer colony, and a differentiated colony It is determined that the other colonies are indeterminate colonies.
  • the fine image refers to a part of the wide-field image represented by the same size as the wide-field image. Since the undifferentiated pluripotent stem cell 21a (FIG. 1 (b)) is smaller than the pluripotent stem cell 21b (FIG. 1 (c)) differentiated as described above, the size of the cell is determined using a fine image. Can be identified as an undifferentiated colony or a differentiated colony.
  • FIG. 3 is a flowchart showing a procedure for identifying colonies in one embodiment of the present invention.
  • a wide field image is acquired by photographing the inside of a dish 41 in which pluripotent stem cells are cultured with a camera 43 through a lid 42 (step 50).
  • the captured image (step 52) obtained by enhancing the contour of this image by image processing and further normalized to 8-bit luminance is obtained.
  • the identification of the colonies and the acquisition of the position information of each colony are performed. Is called.
  • the photographing in the dish 41 may be performed with the lid 42 removed.
  • the identification by the colony circularity C step 54 in FIG.
  • the identification based on the circularity C and the identification based on the luminance B are performed in parallel. However, the identification of one of these is performed first, and then the other identification is performed. Also good.
  • the colony satisfying C2 ⁇ C is determined to be an undifferentiated colony (A), and the colony satisfying C1 ⁇ C ⁇ C2 is determined as an undefined colony. It is determined that (B), and the colony where C ⁇ C1 is determined to be a differentiated colony (C).
  • the identification based on the luminance B of the pluripotent stem cells as shown in FIGS.
  • the colonies in which all the luminances within the colony outline are B2 ⁇ B ⁇ B3 are undifferentiated colonies (a )
  • a colony whose partial brightness in the colony contour is B ⁇ B1 is determined to be a multilayer colony (d)
  • a partial brightness in the colony contour is B4 ⁇ B.
  • Colonies are determined to be differentiated colonies (c), and colonies other than undifferentiated colonies (a), multilayer colonies (d), and differentiated colonies (c) are determined to be undefined colonies (b).
  • the final colony identification is performed based on the identification result based on the circularity C of the colony and the identification result based on the luminance B in the colony outline.
  • (A) and (a) Is determined to be an undifferentiated colony, (A) and (b) or (B) and (a) or (B) and (b) Is determined to be an indeterminate colony, (D) Is determined to be a multi-layer colony, (C) or (C) and (a) or (C) and (b) Is determined to be a differentiated colony.
  • FIG. 4 is a flowchart showing processing after colony identification is performed.
  • the ratio between the number of undifferentiated colonies determined in (A) and (a) and the total number of colonies in the entire culture container, that is, (number of undifferentiated colonies) / (total number of colonies) is obtained.
  • Step 60 If this ratio is compared to a predetermined threshold and greater than or equal to the threshold, all colonies in the culture vessel are detached and cells containing both undifferentiated and differentiated pluripotent stem cells are collectively It is used for the next passage (step 67). Peeling of all colonies in the culture container is performed by introducing a cell peeling agent into the culture container and then discharging the culture solution from the pipetting device to the entire surface of the culture container.
  • a fine image is further acquired for each of the undefined colonies (step 62).
  • this fine image is also subjected to the same image processing as the above-described wide-field image.
  • the undifferentiated pluripotent stem cells are small, and the differentiated pluripotent stem cells appear large, so if all the cells in the fine image are smaller than the predetermined size, the unidentified colony Is identified as an undifferentiated colony, and if a fine image includes cells larger than a predetermined size, the undefined colony is identified as a differentiated colony including cells that have started differentiation (step 63). ).
  • the ratio of (number of undifferentiated colonies) / (total number of colonies) is obtained again. Then, this ratio is compared with a predetermined threshold value as described above (step 64), and if it is greater than or equal to the threshold value, all colonies in the culture vessel are detached as described above, and undifferentiated and differentiated. Cells containing both of the pluripotent stem cells that have been subjected to the next passage. Thus, by performing the next passage using both undifferentiated and differentiated pluripotent stem cells, it becomes possible to omit the time required for selection of undifferentiated and differentiated pluripotent stem cells, and culture time Overall shortening can be achieved.
  • FIG. 8 schematically shows a captured image of a culture vessel in which undifferentiated colonies and differentiated colonies are mixed. The undifferentiated region is dark and the differentiated portion is shown in white.
  • isolated undifferentiated colonies 31 and 35 consisting only of undifferentiated pluripotent stem cells are colonies to be recovered by detachment. Differentiated colonies 32 that have started to differentiate, differentiated colonies 33 that have differentiated entirely, and differentiated colonies 34 that have partially differentiated inside are also excluded from the colonies to be separated.
  • the colony 36 is composed only of undifferentiated pluripotent stem cells.
  • the differentiation existing in the vicinity where the action of the liquid flow of pipetting can reach. Since the pluripotent stem cell differentiated from the colony 37 is detached, the undifferentiated colony 36 is not selected.
  • a cloning ring or glass capillary with higher positional accuracy than pipetting as the peeling method, only undifferentiated colonies can be peeled even when the distance between undifferentiated colonies and differentiated colonies is small. .
  • the undifferentiated colonies are collected by a pipetting device.
  • a cell peeling agent is introduced into the entire culture container.
  • the type, concentration, amount, etc. of the stripping agent can be used to strip cells attached to the bottom of the dish for a predetermined time by stripping the culture fluid by discharging the pipetting device. It is determined that the cells do not detach from the bottom surface of the dish in the absence of the above.
  • the medium is discharged from the pipetting device 44 to the selected undifferentiated colonies, and only the undifferentiated colonies are peeled by the liquid flow. become.
  • the discharge of the culture medium from the pipetting device is not limited to one time, and can be performed a plurality of times at the same position or while moving, and the discharge speed, the liquid amount, etc. can be changed.
  • the dish 41 is tilted as necessary, and the liquid containing the undifferentiated colonies is collected by the pipetting device 44, and further passage is required. In such a case, it will be dispensed into the dish 41 containing a new medium.
  • the whole undifferentiated colony is peeled off.
  • the upper half of the undifferentiated colony 45 is peeled off by pipetting twice, and after confirming the state, undifferentiated by further pipetting twice.
  • the lower half of the colony 45 is peeled off to complete the peeling of the whole undifferentiated colony.
  • FIG. 13 when a differentiated colony 46 or the like is present in the vicinity of the undifferentiated colony 45, the region 48 a, the region 48, and the region 48 are not separated without pipetting. Only the three regions 48b and 48c are peeled off by pipetting.
  • a captured image of a colony in a culture vessel of pluripotent stem cells is obtained, this is image-processed, and differentiated and undifferentiated colonies are identified based on the circularity and brightness of each colony. Therefore, it is possible to accurately identify whether the colony is undifferentiated or differentiated. Therefore, even when some of the colonies start to differentiate during the culture of pluripotent stem cells, only undifferentiated colonies can be identified. In addition, when there are many undifferentiated colonies in this way, it is possible to rapidly cultivate undifferentiated pluripotent stem cells finally by subculturing all the colonies in the culture vessel. It becomes possible.
  • the method and apparatus for identifying pluripotent stem cell colonies and the method and apparatus for automatically culturing pluripotent stem cells of the present invention it is possible to selectively and rapidly pass undifferentiated pluripotent stem cells. It can be used in the field of regenerative medicine.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 多能性幹細胞の培養に際して、培養容器上のコロニーが分化であるか未分化であるかを識別し得る方法及び装置を提供し、並びに未分化多能性幹細胞を迅速に培養し得る方法及び装置が提供される。多能性幹細胞の培養容器内の画像処理後の撮像画像におけるコロニーの円形度Cにより、未分化の多能性幹細胞のみからなる未分化コロニーとそれ以外のコロニーとを識別する。即ち、コロニーの円形度の第1の閾値をC1、第2の閾値をC2(C1<C2)とした場合に、C2≦Cとなるコロニーを前記未分化コロニーであると判断し、C1≦C<C2となるコロニーを前記未確定コロニーであると判断し、C<C1となるコロニーを分化コロニーであると判断する。

Description

多能性幹細胞コロニーの識別方法及び装置並びに多能性幹細胞の自動培養方法及び装置
 本発明は、多能性幹細胞コロニーの識別方法及び装置並びに多能性幹細胞の自動培養方法及び装置に関し、より詳細には、未分化の多能性幹細胞のみを含む未分化コロニーとそれ以外のコロニーとを識別する方法及び装置と、これらの方法及び装置を用いた多能性幹細胞の自動培養方法及び装置に関する。
 近年、ES細胞やiPS細胞などの多能性幹細胞(本明細書においては、「ES細胞」と「iPS細胞」とを総称して「多能性幹細胞」という。)が人工的に創り出されるに至り、再生医療などの分野で大きな寄与が期待されている。多能性幹細胞は生体を構成する種々の細胞に分化し得る分化万能性を有しているため、患者自身のiPS細胞を用いることにより、拒絶反応を起こすことなく皮膚、軟骨、骨、血管、神経、臓器等を再生することが可能となる。
 多能性幹細胞は上述のように分化万能性を有しているため、培養の途中で一部の多能性幹細胞が分化を開始してしまう場合がある。このように分化を開始した細胞は再び未分化の状態に戻すことはできず、目的とする臓器や器官の作成には使用できないこととなる。従って、多能性幹細胞の継代に際しては、培養された幹細胞のコロニーが未分化であるか否かを見極め、最終的に未分化多能性幹細胞のみを分離することが重要である。
 このような未分化多能性幹細胞の識別は、例えば「AVISO社」の「CellCelector(登録商標)」を用い、細胞の染色や蛍光観察により行うことができる。しかしながら、一般に染色は細胞を固定化してから行うことが多く、また色素が細胞に対して毒性を示すことが多いため、細胞を生きたまま観察することは困難である。また、低毒性の色素を用いたとしても、細胞にとってはやはり毒であり、再生医療分野への応用は不適切である。
 また、未分化多能性幹細胞の識別を行うに際して培養容器の撮像画像を取得し、これを画像処理した撮像画像を用いてコロニー毎に未分化コロニーであるか否かの判断をそのコロニーの輝度に基づいて行う試みが為されている(特願2009-235306号)。しかし、コロニーの輝度のみに基づいて未分化コロニーを識別する場合、条件によっては正確な識別ができない場合がある。また、全てのコロニーについて一つ一つ判断しなければならないため、培養容器全体についての判断が終了するまでに長時間を要し、培養容器内で細胞の状態が変化してしまうという問題点がある。
 本発明は、上記従来技術の問題点を解決するために為されたものであり、本発明の目的は、多能性幹細胞の培養に際して、培養容器上のコロニーが分化であるか未分化であるかを識別し得る方法及び装置を提供し、並びに未分化多能性幹細胞を迅速に培養し得る方法及び装置を提供することである。
 本発明は、未分化の多能性幹細胞のみにより形成されるコロニーの形状が円形に近く、分化した多能性幹細胞を含むコロニーの形状は円形にはならないという知見に基づいて為されたものである。即ち、本発明のコロニーの識別方法は、多能性幹細胞の培養器内の撮像画像に基づいて未分化コロニーと未確定コロニーとの識別を行うコロニーの識別方法であって、コロニーの円形度の所定の第1の閾値をC1、第2の閾値をC2(C1<C2)とした場合に、コロニーの円形度Cを演算により求め、C2≦Cとなるコロニーを未分化多能性幹細胞のみを含む前記未分化コロニーであると判断し、C1≦C<C2となるコロニーを未分化コロニーである可能性のある未確定コロニーであると判断することを特徴とする。
 ここで、本明細書においては、「多能性幹細胞」とは、「分化した多能性幹細胞」及び「未分化の多能性幹細胞」を含む細胞をいい、「分化した多能性幹細胞」及び「分化多能性幹細胞」とは、分化が始まった多能性幹細胞又は多能性幹細胞から分化した細胞のことをいう。また、円形度C=(4πS)/(L×L)によって定義される値をいう。ここで、Sはコロニーの面積、Lはコロニーの周囲長である。従って、コロニーの形状が円形の場合は円形度C=1となり、コロニーの形状が歪むに従って円形度Cは小さくなり、また、コロニーの外周がギザギザである場合も円形度Cは小さくなることが分かる。
 上記コロニーの識別方法には、更に、C<C1となるコロニーを多能性幹細胞を含む前記分化コロニーであると判断する構成を付加することができる。
 また、上記の識別方法においては、前記円形度に加え、前記撮像画像におけるコロニーの輪郭内の輝度Bに基づいて、未分化コロニーと、前記未確定コロニーと、分化コロニーとを識別するように構成することができる。
 コロニーの輝度による識別は、未分化の多能性幹細胞は撮像画像において暗く見え、分化した多能性幹細胞は撮像画像において明るく見え、更に多能性幹細胞が多層に重なった多層多能性幹細胞の場合は未分化の多能性幹細胞より更に暗く見えるという知見に基づいている。
 具体的には、円形度Cに基づいて識別した未分化コロニーを(A)、未確定コロニーを(B)、分化コロニーを(C)、コロニーの輝度の所定の第1の閾値をB1、第2の閾値をB2、第3の閾値をB3、第4の閾値をB4(B1<B2<B3<B4)とした場合に、コロニーの輪郭内全ての輝度がB2≦B≦B3となるコロニーを未分化コロニー(a)であると判断し、コロニーの輪郭内の一部の輝度がB<B1となるコロニーを多層コロニー(d)であると判断し、コロニーの輪郭内の一部の輝度がB4<Bとなるコロニーを分化コロニー(c)であると判断し、前記未分化コロニー(a)、前記多層コロニー(d)、前記分化コロニー(c)以外のコロニーを未確定コロニー(b)であると判断した後、最終的に((A) かつ(a))となるコロニーを前記未分化コロニーであると判断し、((A)かつ(b)又は(B)かつ(a)又は(B)かつ(b))となるコロニーを前記未確定コロニーであると判断し、(d)となるコロニーを多能性幹細胞が多層に重なった前記多層コロニーであると判断し、((c)又は(C)かつ(a)又は(C)かつ(b))となるコロニーを前記分化コロニーであると判断するように構成することができる。
 更に、本発明のコロニーの識別方法は、前記未確定コロニーについて更に精細画像を得、該精細画像における該未確定コロニー内の細胞全てが所定の大きさより小さい場合に、前記未確定コロニーが前記未分化コロニーであると識別するように構成することができる。
 このような未確定コロニー内の細胞の大きさによる識別は、未分化の多能性幹細胞は小さく、分化した多能性幹細胞は未分化多能性幹細胞より大きいという知見に基づいている。
 本発明のコロニーの識別方法においては、前記撮像画像は、画像処理により輪郭強調することが好ましい。
 本発明の多能性幹細胞の自動培養方法は、上記のコロニーの識別方法により前記未分化コロニーと該未分化コロニー以外のコロニーとを識別する工程、前記未分化コロニーと該未分化コロニー以外のコロニーの位置情報を取得する工程、前記培養容器に細胞剥離剤を導入する工程、前記位置情報に基づいて前記未分化コロニーを剥離させる工程、及び該未分化コロニーの剥離により得られる未分化コロニーを回収する工程を包含することを特徴とする。
 また、本発明の多能性幹細胞の自動培養方法は、上記のコロニーの識別方法により前記未分化コロニー以外のコロニーを識別する工程、前記未分化コロニー以外のコロニーの位置情報を取得する工程、前記培養容器に細胞剥離剤を導入する工程、前記位置情報に基づいて、前記未分化コロニー以外のコロニーを剥離させる工程、該未分化コロニー以外のコロニーの剥離により得られる多能性幹細胞を取り除く工程、及び前記未分化コロニーを剥離させて未分化コロニーを回収する工程を包含することを特徴とする。
 更に、本発明の多能性幹細胞の自動培養方法は、上記のコロニーの識別方法により前記未分化コロニーを識別する工程、前記未分化コロニーの数及び該未分化コロニー以外のコロニーの数を取得する工程、及び(未分化コロニー数)/(コロニー総数)が所定の閾値より大きい場合に、前記培養容器に細胞剥離剤を導入して全てのコロニーを剥離させて回収する工程を包含することを特徴とする。
 また、上記において、更に、(未分化コロニー数)/(コロニー総数)<(所定の閾値)の場合に、前記未確定コロニーのそれぞれについて、更に精細画像を取得し、該精細画像に基づいて未分化コロニーであると判断したものの数を前記未分化コロニー数に加えて新たな未分化コロニー数とし、(新たな未分化コロニー数)/(コロニー総数)≧(所定の閾値)の場合に、前記培養容器に細胞剥離剤を導入して全てのコロニーを剥離させて回収するとともに、(新たな未分化コロニー数)/(コロニー総数)<(所定の閾値)の場合に、前記未分化コロニーと前記精細画像に基づいて未分化コロニーであると判断した未確定コロニーとを選択的に剥離させて回収する工程を包含していてもよい。
 本発明のコロニー識別装置は、多能性幹細胞の培養器内の撮像画像を得る画像取得手段と、前記撮像画像から求めたコロニーの円形度Cに基づいて分化コロニーと未分化コロニーとの識別を行う識別手段とを備え、該識別手段は、コロニーの円形度の所定の第1の閾値をC1、第2の閾値をC2(C1<C2)とした場合に、C2≦Cとなるコロニーを未分化多能性幹細胞のみを含む前記未分化コロニーであると判断し、C1≦C<C2となるコロニーを未分化コロニーである可能性のある未確定コロニーであると判断し、C<C1となるコロニーを分化した多能性幹細胞を含む前記分化コロニーであると判断することを特徴とする。
 また、上記において、前記識別手段は、前記円形度に加え、前記撮像画像におけるコロニーの輪郭内の輝度Bに基づいて、前記未分化コロニーと、前記未確定コロニーと、前記分化コロニーとを識別するように構成することができる。
 具体的には、円形度Cに基づいて識別した未分化コロニーを(A)、未確定コロニーを(B)、分化コロニーを(C)、コロニーの輝度の所定の第1の閾値をB1、第2の閾値をB2、第3の閾値をB3、第4の閾値をB4(B1<B2<B3<B4)とした場合に、コロニーの輪郭内全ての輝度がB2≦B≦B3となるコロニーを未分化コロニー(a)であると判断し、コロニーの輪郭内の一部の輝度がB<B1となるコロニーを多層コロニー(d)であると判断し、コロニーの輪郭内の一部の輝度がB4<Bとなるコロニーを分化コロニー(c)であると判断し、前記未分化コロニー(a)、前記多層コロニー(d)、前記分化コロニー(c)以外のコロニーを未確定コロニー(b)であると判断した後、最終的に((A) かつ(a))となるコロニーを前記未分化コロニーであると判断し、((A)かつ(b)又は(B)かつ(a)又は(B)かつ(b))となるコロニーを前記未確定コロニーであると判断し、(d)となるコロニーを多能性幹細胞が多層に重なった前記多層コロニーであると判断し、((c)又は(C)かつ(a)又は(C)かつ(b))となるコロニーを前記分化コロニーであると判断するように構成することができる。
 更に、本発明のコロニー識別装置は、前記未確定コロニーについて精細画像を得る精細画像取得手段を更に備え、前記識別手段は、該精細画像における該未確定コロニー内全ての細胞が所定の大きさより小さい場合に、前記未確定コロニーが前記未分化コロニーであると識別するように構成することができる。
 本発明のコロニーの識別装置においては、前記撮像画像は、画像処理により輪郭強調することが好ましい。
 本発明の多能性幹細胞の自動培養装置は、上記のコロニー識別装置と、前記培養容器に細胞剥離剤を導入する剥離剤導入手段と、前記各コロニーの位置情報に基づいて前記未分化コロニーを剥離させるとともに、該未分化コロニーの剥離により得られる未分化コロニーを回収するピペッティング装置とを備えたことを特徴とする。
 また、本発明の多能性幹細胞の自動培養装置は、上記のコロニー識別装置と、前記未分化コロニー以外のコロニーの位置情報を取得する位置情報取得手段と、前記培養容器に細胞剥離剤を導入する剥離剤導入手段と、
 前記位置情報取得手段において取得した位置情報に基づいて前記未分化コロニー以外のコロニーを剥離させ、該未分化コロニー以外のコロニーの剥離により得られる多能性幹細胞を取り除き、更に前記未分化コロニーを剥離させて未分化コロニーを回収するピペッティング装置とを備えたことを特徴とする。
 更に、本発明の多能性幹細胞の自動培養装置は、上記のコロニー識別装置と、前記未分化コロニー及び該未分化コロニー以外のコロニーの数を取得するコロニー数取得手段と、(未分化コロニー数)/(コロニー総数)が所定の閾値より大きい場合に前記培養容器に細胞剥離剤を導入して全てのコロニーを剥離させて回収するピペッティング装置とを備えたことを特徴とする。
 上記多能性幹細胞の自動培養装置においては、(未分化コロニー数)/(コロニー総数)<(所定の閾値)の場合に、前記未確定コロニーのそれぞれについて、更に精細画像を取得する精細画像取得手段を更に備え、
 前記コロニー数取得手段は、該精細画像に基づいて未分化コロニーであると判断したものの数を前記未分化コロニー数に加えて新たな未分化コロニー数とし、
 前記ピペッティング装置は、
 (新たな未分化コロニー数)/(コロニー総数)≧(所定の閾値)の場合に、前記培養容器に細胞剥離剤を導入して全てのコロニーを剥離させて回収するとともに、
 (新たな未分化コロニー数)/(コロニー総数)<(所定の閾値)の場合に、前記未分化コロニーと前記精細画像に基づいて未分化コロニーであると判断した未確定コロニーとを選択的に剥離させて回収する構成を付加することもできる。
 多能性幹細胞コロニーの識別方法及び装置並びに多能性幹細胞の自動培養方法及び装置は、多能性幹細胞の培養容器内のコロニーの撮像画像を得、これを画像処理し、各コロニーの円形度に基づいて分化コロニーと未分化コロニーとを識別しているため、コロニーが未分化であるか分化であるかについて識別を行うことを可能としている。従って、多能性幹細胞の培養に際してその一部のコロニーが分化を開始した場合にも、未分化コロニーのみを識別することが可能となる。
(a)は多能性幹細胞が存在しないディッシュにおける照明光の散乱状態を示す模式図、(b)は未分化の多能性幹細胞が存在するディッシュにおける照明光の散乱状態を示す模式図、(c)は分化した多能性幹細胞が存在するディッシュにおける照明光の散乱状態を示す模式図、(d)は多層化した多能性幹細胞が存在するディッシュにおける照明光の散乱状態を示す模式図である。 ディッシュ内のコロニーについて、その撮像画像の輝度に基づき識別を行う場合の閾値を示す概念図である。 本発明の一実施形態におけるコロニーの識別手順を示すフローチャートである。 コロニーの識別が行われた後の処理を示すフローチャートである。 ディッシュ内の撮像画像を取得する撮像装置(カメラ)を示す斜視図である。 ピペッティングにより培養液を吐出して未分化コロニーの剥離を行うピペッティング装置を示す斜視図である。 ピペッティングにより剥離した未分化コロニーの回収を行うピペッティング装置を示す斜視図である。 分化した多能性幹細胞を含む分化コロニーと、未分化多能性幹細胞のみを含む未分化コロニーとが混在する培養容器内の模式図である。 1回のピペッティングにより剥離される範囲を表す模式図である。 未分化コロニーの大きさが1回のピペッティングにより剥離される範囲より小さい場合のピペッティング操作を示す模式図である。 未分化コロニーの大きさが1回のピペッティングにより剥離される範囲より大きい場合のピペッティングの範囲を示す模式図である。 未分化コロニーの大きさが1回のピペッティングにより剥離される範囲より大きい場合のピペッティング操作の手順を示す模式図である。 未分化コロニーの近傍に分化コロニーが存在する場合のピペッティング操作を示す模式図である。
 本発明の実施形態について、図面を参照しながら以下に説明するが、本発明は以下の記載に限定されるものではない。
 本発明は、上述のように、未分化の多能性幹細胞のみにより形成されるコロニーの形状が円形に近く、分化した多能性幹細胞を含むコロニーの形状は円形にはならないという知見に基づいて為されたものである。本発明のコロニーの識別方法においては、分化した多能性幹細胞を含む分化コロニーであるか、未分化の多能性幹細胞のみを含む未分化コロニーであるかの識別に加えて、未分化コロニーである可能性のある未確定コロニーであるかについての識別がコンピュータなどを用いて自動的に行われる。ここで、未確定コロニーとは、分化コロニー及び未分化コロニーの何れであるかを特定することができないが、未分化コロニーである可能性のあるコロニーをいう。また、これらの識別に加えて、多層に重なった多能性幹細胞を含む多層コロニーの識別も行うことができる。未確定コロニーであると判断されたコロニーについては、後述するように更に精細画像を用いることにより、分化コロニーであるか未分化コロニーであるかの識別が行われる。
 このような識別は、コロニーを形成している培養後の多能性幹細胞の培養容器の広範囲に亘る広視野画像を得、これを画像処理した後の画像に基づいて各コロニーの円形度及び輝度を求めることにより行われる。なお、ここでの画像処理には、コロニーの輪郭を強調する処理と、各画素の輝度を例えばモノクロの0~255階調(8ビット)の範囲の輝度にノーマライズする処理とが含まれる。また、本実施形態では輝度を8ビット256階調で表しているが、本発明はこれに限定されるものではなく、これより階調数を大きく又は小さくすることが可能である。
 本発明においては、まず、コロニーの形状に基づいて識別が行われる。具体的には、コロニーの円形度C=(4πS)/(L×L)(Sはコロニーの面積、Lはコロニーの周囲長)を求め、コロニーの円形度が1に近いほどそのコロニーに含まれる多能性幹細胞が未分化のみである蓋然性が高いことになる。なお、本実施形態ではコロニーの円形度を(4πS)/(L×L)の式により求めたが、本発明はこれに限定されるものではなく、円形度を求めることができる式であれば、他の式を用いて求めてもよい。
 本発明においては、コロニーの円形度Cについて、分化未分化を確定することができない未確定コロニーの円形度と分化した多能性幹細胞を含む分化コロニーの円形度との境界の閾値を第1の閾値C1とし、未分化の多能性幹細胞のみを含む未分化コロニーの円形度と未確定コロニーの円形度との境界の閾値が第2の閾値C2(C1<C2)として設定される。これらの閾値に基づき、C2≦Cとなるコロニーが未分化コロニーであると判断され、C1≦C<C2となるコロニーが未確定コロニーであると判断され、C<C1となるコロニーが分化コロニーであると判断される。
 上述のコロニーの識別に用いる撮像画像を得るに際しては、例えば、ガウシアンフィルタや中間値フィルタが使用される。これらのフィルタを使用することにより、ノイズやフィーダ細胞の画像を除去することができる。しかし、これらのフィルタによっては大きなフィーダ細胞による画像は除去することができない等の理由により、円形度のみによっては分化コロニーと未分化コロニーの識別を正確に行うことができない場合がある。本実施形態においては、以下の輝度によるコロニーの識別を並行して行うことにより、更に正確なコロニーの識別を行うことが可能となっている。
 輝度によるコロニーの識別は、以下のような知見に基づいている。即ち、図1(a)に示すように、ディッシュの底面10に細胞などが付着していない場合、照明光12はディッシュの底面10を透過した後、殆ど散乱せずに撮像光13としてカメラなどからなる撮像装置11に到達するため、得られる画像は明るいものになる。これに対して、図1(b)に示すように、ディッシュの底面10に多能性幹細胞等が付着している場合、照明光12は未分化の多能性幹細胞21aによって散乱されることになる。ここで、未分化の多能性幹細胞21aは後述する分化した多能性幹細胞に比較して小さく、また、細胞の核22の大きさは分化未分化によって大きな変化はないため、未分化の多能性幹細胞21aでは分化した多能性幹細胞に比較して核22以外の部分の占める割合が相対的に小さく、図1(b)に示すように、照明光12は比較的大きく散乱されることになる。そのため、撮像装置11に到達する撮像光14は少なくなり、得られる未分化の多能性幹細胞21aの部分の画像は暗くなる。一方、分化した多能性幹細胞では、図1(c)に示すように、核22に対して核22以外の部分が相対的に大きく、そのため、図1(b)の未分化多能性幹細胞の場合より照明光12が受ける散乱は小さくなり、撮像装置11に到達する撮像光15は多くなる。従って、得られる分化多能性幹細胞21bの部分の画像は、図1(b)の未分化多能性幹細胞の場合より明るくなる。更に、多能性幹細胞の培養が過剰に行われるなどにより、図1(d)に示すように、多能性幹細胞21cが多層に重なった多層コロニーの場合は、照明光12は図1(b)の場合より大きく散乱されるため、撮像装置11に到達する撮像光16は非常に少なくなり、得られる多能性幹細胞21cの部分の画像は非常に暗くなる。
 なお、上記のように散乱光の強弱によりコロニーの識別を行う場合、照明方法によって細胞の見え方は異なるので、分化した多能性幹細胞は明るく、未分化の多能性幹細胞は中程度の明るさに、多層化した多能性幹細胞は暗く見えるようにするために、照明光として、観察位置に対して透過照明光を一方向から照射することが好ましい。
 本発明においては、図2に示すように、撮像画像の輝度について閾値が定められる。具体的には、多層化した多能性幹細胞の輝度と未確定の多能性幹細胞の輝度との境界の閾値として第1の閾値B1が、未確定の多能性幹細胞の輝度と未分化の多能性幹細胞の輝度との境界の閾値として第2の閾値B2及び第3の閾値B3が、未確定の多能性幹細胞の輝度と分化した多能性幹細胞の輝度との境界の閾値が第4の閾値B4(B1<B2<B3<B4)としてそれぞれ設定される。多能性幹細胞の輝度Bに基づくコロニーの識別においては、コロニーの輪郭内全ての輝度がB2≦B≦B3となるコロニーが未分化コロニーであると判断され、コロニーの輪郭内の一部の輝度がB<B1となるコロニーが多層コロニーであると判断され、コロニーの輪郭内の一部の輝度がB4<Bとなるコロニーが分化コロニーであると判断され、未分化コロニー、多層コロニー、分化コロニー以外のコロニーが未確定コロニーであると判断される。
 本発明においては、分化未分化を確定することができない未確定コロニーに対しては、更に精細画像(拡大画像)を取得することにより、最終的に未分化コロニーであるか分化コロニーであるかの判断が行われる。ここで、精細画像とは、広視野画像の中の一部を広視野画像と同じ大きさで表したものをいう。上述のように分化した多能性幹細胞21b(図1(c))に比較して未分化の多能性幹細胞21a(図1(b))は小さいため、精細画像を用いて細胞の大きさを判断することにより、未分化コロニーであるか分化コロニーであるかを識別することができる。
 図3は、本発明の一実施形態においてコロニーの識別が行われる手順を示すフローチャートである。本実施形態では、まず、図5に示すように、多能性幹細胞を培養したディッシュ41内を蓋42を介してカメラ43により撮影して広視野の画像が取得される(ステップ50)。この画像を画像処理により輪郭強調し、更に8ビットの輝度にノーマライズした撮像画像(ステップ52)を得、この撮像画像用いて、上記のコロニーの識別と、各コロニーの位置情報の取得とが行われる。なお、ディッシュ41内の撮影は、蓋42を外した状態で行ってもよい。本実施形態では、コロニーの円形度Cによる識別(図3のステップ54)とコロニーの輪郭内の輝度Bによる識別(図3のステップ56)とが並行して行われる。なお、本実施形態では、円形度Cによる識別と輝度Bによる識別とを並行して行ったが、これらの何れか一方の識別を先に行った後、他方の識別を行うように構成してもよい。
 コロニーの円形度Cによる識別においては、前述の図3に示すように、C2≦Cとなるコロニーが未分化コロニー(A)であると判断され、C1≦C<C2となるコロニーが未確定コロニー(B)であると判断され、C<C1となるコロニーが分化コロニー(C)であると判断される。同様に、多能性幹細胞の輝度Bに基づく識別においては、前述の図2及び図3に示すように、コロニーの輪郭内全ての輝度がB2≦B≦B3となるコロニーが未分化コロニー(a)であると判断され、コロニーの輪郭内の一部の輝度がB<B1となるコロニーが多層コロニー(d)であると判断され、コロニーの輪郭内の一部の輝度がB4<Bとなるコロニーが分化コロニー(c)であると判断され、未分化コロニー(a)、多層コロニー(d)、分化コロニー(c)以外のコロニーが未確定コロニー(b)であると判断される。
 本実施形態では、上記コロニーの円形度Cによる識別結果と、上記コロニーの輪郭内の輝度Bによる識別結果とに基づいて、最終的なコロニーの識別が行われる。本実施形態では、
    (A) かつ (a)
となるコロニーが未分化コロニーであると判断され、
    (A)かつ(b)又は(B)かつ(a)又は(B)かつ(b)
となるコロニーが未確定コロニーであると判断され、
    (d)
となるコロニーが多層コロニーであると判断され、
    (c)又は(C)かつ(a)又は(C)かつ(b)
となるコロニーが分化コロニーであると判断される。
 図4は、コロニーの識別が行われた後の処理を示すフローチャートである。本実施形態においては、まず、(A)かつ(a)で判断された未分化コロニー数と、培養容器全体におけるコロニーの総数との比率、即ち(未分化コロニー数)/(コロニー総数)が求められる(ステップ60)。この比率が所定の閾値と比較され、閾値より大きいか等しい場合には、培養容器内の全てのコロニーの剥離が行われ、未分化及び分化した多能性幹細胞の両方を含む細胞が一括して次の継代に供される(ステップ67)。培養容器内の全てのコロニーの剥離は、培養容器に細胞剥離剤を導入した後、ピペッティング装置から培養液を培養容器の全面に吐出することにより行われる。
 このように未分化及び分化した両方の細胞を用いて一括継代を行うことにより、未分化及び分化した多能性幹細胞の選別に要する時間を省略することが可能となり、培養時間全体の短縮を図ることができる。また、このような継代は分化を開始した多能性幹細胞の継代を伴うことになるが、このような分化した多能性幹細胞は未分化の多能性幹細胞とは性質が異なるため、細胞培養の最終段階における継代で未分化の多能性幹細胞を分離すれば、分化した多能性幹細胞を容易に排除することができる。
 一方、上記の(未分化コロニー数)/(コロニー総数)の比率が閾値より小さい場合(ステップ61)には、未確定コロニーのそれぞれについて更に精細画像(拡大画像)が取得される(ステップ62)。本実施形態では、この精細画像についても、前述の広視野画像と同様の画像処理が行われる。コロニーの精細画像においては、前述のように未分化の多能性幹細胞は小さく、分化した多能性幹細胞は大きく見えるので、精細画像における全ての細胞が所定の大きさより小さい場合に当該未確定コロニーは未分化コロニーであると識別され、精細画像において所定の大きさより大きい細胞が含まれている場合には当該未確定コロニーは分化を開始した細胞を含む分化コロニーであると識別される(ステップ63)。
 このようにして全ての未確定コロニーについて未分化コロニーであるか分化コロニーであるかの識別が終了した後、再度(未分化コロニー数)/(コロニー総数)の比率が求められる。そして、上述と同様にこの比率が所定の閾値と比較され(ステップ64)、閾値より大きいか等しい場合には、上述と同様に培養容器内の全てのコロニーの剥離が行われ、未分化及び分化した多能性幹細胞の両方を含む細胞が次の継代に供される。このように未分化及び分化した両方の多能性幹細胞を用いて次の継代を行うことにより、未分化及び分化した多能性幹細胞の選別に要する時間を省略することが可能となり、培養時間全体の短縮を図ることができる。
 一方、上記の(未分化コロニー数)/(コロニー総数)の比率が閾値より小さい場合には、未分化コロニーのみの選択的剥離が行われる(ステップ66)。図8は未分化コロニーと分化コロニーとが混在している培養容器の撮像画像を模式的に示しており、未分化の領域は濃く、分化した部分は白抜きで示されている。図8において、未分化の多能性幹細胞のみからなる孤立した未分化コロニー31及び35が剥離により回収すべきコロニーである。周辺が分化を開始した分化コロニー32、全体が分化してしまった分化コロニー33、及び内部が部分的に分化している分化コロニー34も分離すべきコロニーから除外される。一方、コロニー36は未分化の多能性幹細胞のみからなるが、後述するようにピペッティング装置からの液の吐出により剥離を行うと、ピペッティングの液流の作用が及び得る近傍に存在する分化コロニー37から分化した多能性幹細胞が剥離してしまうため、未分化コロニー36は選択されない。このような未分化コロニーの選択に際しては、ピペッティング装置に装着するチップの種類や吐出液の吐出速度等によって物理的な力の作用する範囲が変化することを考慮する必要がある。剥離方法としてピペッティングよりも位置精度の高いクローニングリング、ガラスキャピラリ等を用いる場合は、未分化コロニーと分化コロニーとの間の距離が小さい場合にも、未分化コロニーのみの剥離を行うことができる。
 次に、回収すべき未分化コロニーが選択された後、ピペッティング装置による未分化コロニーの回収が行われる。まず、培養容器全体に細胞剥離剤が導入される。この剥離剤の種類、濃度、量等は、剥離を行う所定時間の間、ディッシュの底面に付着した細胞をピペッティング装置の吐出による培養液の液流により剥離させることができ、かつ、液流がない状態では細胞がディッシュ底面から剥離しないように決められる。細胞剥離剤を含む剥離液を導入した後、図6に示すように、選択された未分化コロニーに対してピペッティング装置44から培地が吐出され、その液流により未分化コロニーのみが剥離することになる。ピペッティング装置からの培地の吐出は1回に限らず、同じ位置で又は移動しながら複数回行うことも可能であり、吐出速度、液量なども変更可能である。剥離すべき未分化コロニーの剥離が完了すると、図7に示すように、必要に応じてディッシュ41を傾斜させて、未分化コロニーを含む液がピペッティング装置44により回収され、更に継代が必要な場合は、新たな培地を入れたディッシュ41に分注されることとなる。
 ここで、未分化コロニーの剥離を行う場合のピペッティング操作について説明する。図9に示すように、ピペッティングにより細胞が剥離される範囲の半径をrとする。近傍に分化コロニーなどの剥離対象となっていないコロニーが存在せず、完全に孤立しているコロニーの場合で、図10に示すように、ピペッティングにより剥離される半径rが剥離されるべき未分化コロニーの半径Rより大きい場合には、1回のピペッティングによりコロニー全体を剥離させることができる。また、ピペッティングにより細胞が剥離される範囲の半径rが剥離されるべき未分化コロニーの半径Rより小さい場合には、図11に示すように、複数回(図11では4回)のピペッティングにより未分化コロニー全体の剥離が行われる。その場合の手順は、図12に示すように、まず、2回のピペッティングにより、未分化コロニー45の上側半分が剥離され、その状態を確認した後、更に2回のピペッティングにより、未分化コロニー45の下側半分が剥離されて未分化コロニー全体の剥離が完了する。一方、図13に示すように、未分化コロニー45の近傍に分化コロニー46などが存在する場合は、分化コロニー46を含む領域47の部分についてはピペッティングによる剥離を行うことなく、領域48a、領域48b及び領域48cの3つの領域のみについてピペッティングによる剥離が行われる。
 本実施形態においては、多能性幹細胞の培養容器内のコロニーの撮像画像を得、これを画像処理し、各コロニーの円形度及び輝度に基づいて分化コロニーと未分化コロニーとを識別しているため、コロニーが未分化であるか分化であるかについて正確な識別を行うことを可能としている。従って、多能性幹細胞の培養に際してその一部のコロニーが分化を開始した場合にも、未分化コロニーのみを識別することが可能となる。また、このようにコロニーを識別し、未分化コロニーが多い場合には培養容器内の全てのコロニーについて継代を行うことにより、最終的に未分化の多能性幹細胞を迅速に培養することが可能となる。
 なお、上記では、未分化コロニーのみを剥離させて回収する場合について説明したが、未分化コロニー以外の全てのコロニーを剥離させてピペッティング装置44を用いてディッシュから除去した後、ディッシュに残った全ての未分化コロニーを一挙に剥離させて回収するように構成することも可能である。また、未分化コロニーの回収と未分化コロニー以外のコロニーの除去とを別々のピペッティング装置を用いて行ってもよい。
 本発明の多能性幹細胞コロニーの識別方法及び装置並びに多能性幹細胞の自動培養方法及び装置によれば、未分化の多能性幹細胞を選択的にかつ迅速に継代することができるので、再生医療の分野で利用可能である。
          10 ディッシュ底面
          11 撮像装置
          12 照明光
 13,14,15,16 撮像光
         21a 未分化の多能性幹細胞
         21b 分化した多能性幹細胞
         21c 多層に重なった多能性幹細胞
          22 核
          41 ディッシュ
          42 蓋
          43 カメラ
          31 未分化コロニー
    32,33,34 分化コロニー
       35,36 未分化コロニー
          37 分化コロニー
          44 ピペッティング装置
          45 未分化コロニー
          46 分化コロニー
          47 剥離領域
 48a,48b,48c 剥離領域

Claims (19)

  1.  多能性幹細胞の培養器内の撮像画像に基づいて未分化コロニーと未確定コロニーとの識別を行うコロニーの識別方法であって、コロニーの円形度の所定の第1の閾値をC1、第2の閾値をC2(C1<C2)とした場合に、コロニーの円形度Cを演算により求め、
       C2≦C
    となるコロニーを未分化多能性幹細胞のみを含む前記未分化コロニーであると判断し、
       C1≦C<C2
    となるコロニーを未分化コロニーである可能性のある未確定コロニーであると判断することを特徴とするコロニーの識別方法。
  2.  更に、
       C<C1
    となるコロニーを多能性幹細胞を含む前記分化コロニーであると判断することを特徴とする請求項1に記載のコロニーの識別方法。
  3.  前記円形度に加え、前記撮像画像におけるコロニーの輝度Bに基づいて、未分化コロニーと、前記未確定コロニーと、分化コロニーとを識別することを特徴とする請求項1又は2に記載のコロニーの識別方法。
  4.  円形度Cに基づいて識別した未分化コロニーを(A)、未確定コロニーを(B)、分化コロニーを(C)、コロニーの輝度の所定の第1の閾値をB1、第2の閾値をB2、第3の閾値をB3、第4の閾値をB4(B1<B2<B3<B4)とした場合に、
    コロニーの輪郭内全ての輝度がB2≦B≦B3となるコロニーを未分化コロニー(a)であると判断し、コロニーの輪郭内の一部の輝度がB<B1となるコロニーを多層コロニー(d)であると判断し、コロニーの輪郭内の一部の輝度がB4<Bとなるコロニーを分化コロニー(c)であると判断し、前記未分化コロニー(a)、前記多層コロニー(d)、前記分化コロニー(c)以外のコロニーを未確定コロニー(b)であると判断した後、
        (A) かつ (a)
    となるコロニーを前記未分化コロニーであると判断し、
        (A)かつ(b)又は(B)かつ(a)又は(B)かつ(b)
    となるコロニーを前記未確定コロニーであると判断し、
        (d)
    となるコロニーを多能性幹細胞が多層に重なった多層コロニーであると判断し、
        (c)又は(C)かつ(a)又は(C)かつ(b)
    となるコロニーを分化コロニーであると判断する
     ことを特徴とする請求項3に記載のコロニーの識別方法。
  5.  前記未確定コロニーについて更に精細画像を得、該精細画像における該未確定コロニー内の細胞が所定の大きさより小さい場合に、前記未確定コロニーが前記未分化コロニーであると識別することを特徴とする請求項1乃至4の何れか一項に記載のコロニーの識別方法。
  6.  前記撮像画像は、画像処理により輪郭強調することを特徴とする請求項1乃至5の何れか一項に記載のコロニーの識別方法。
  7.  請求項1乃至6の何れか一項に記載のコロニーの識別方法により前記未分化コロニーと該未分化コロニー以外を識別する工程、
     前記未分化コロニーと該未分化コロニー以外の位置情報を取得する工程、
     前記培養容器に細胞剥離剤を導入する工程、
     前記位置情報に基づいて前記未分化コロニーを剥離させる工程、及び
     該未分化コロニーの剥離により得られる未分化コロニーを回収する工程
     を包含することを特徴とする多能性幹細胞の自動培養方法。
  8.  請求項1乃至6の何れか一項に記載のコロニーの識別方法により前記未分化コロニー以外のコロニーを識別する工程、
     前記未分化コロニー以外のコロニーの位置情報を取得する工程、
     前記培養容器に細胞剥離剤を導入する工程、
     前記位置情報に基づいて、前記未分化コロニー以外のコロニーを剥離させる工程、
     該未分化コロニー以外のコロニーの剥離により得られる多能性幹細胞を取り除く工程、及び
     前記未分化コロニーを剥離させて未分化コロニー多能性幹細胞を回収する工程
     を包含することを特徴とする多能性幹細胞の自動培養方法。
  9.  請求項1乃至6の何れか一項に記載のコロニーの識別方法により前記未分化コロニーを識別する工程、
     前記未分化コロニーの数及び該未分化コロニー以外のコロニーの数を取得する工程、及び
     (未分化コロニー数)/(コロニー総数)≧(所定の閾値)の場合に、前記培養容
    器に細胞剥離剤を導入して全てのコロニーを剥離させて回収する工程
     を包含することを特徴とする多能性幹細胞の自動培養方法。
  10.  更に、(未分化コロニー数)/(コロニー総数)<(所定の閾値)の場合に、前記未確定コロニーのそれぞれについて、更に精細画像を取得し、該精細画像に基づいて未分化コロニーであると判断したものの数を前記未分化コロニー数に加えて新たな未分化コロニー数とし、
     (新たな未分化コロニー数)/(コロニー総数)≧(所定の閾値)の場合に、前記培養容器に細胞剥離剤を導入して全てのコロニーを剥離させて回収するとともに、
     (新たな未分化コロニー数)/(コロニー総数)<(所定の閾値)の場合に、前記未分化コロニーと前記精細画像に基づいて未分化コロニーであると判断した未確定コロニーとを選択的に剥離させて回収する工程
     を包含することを特徴とする請求項9に記載の多能性幹細胞の自動培養方法。
  11.  多能性幹細胞の培養器内の撮像画像を得る画像取得手段と、
     前記撮像画像から求めたコロニーの円形度Cに基づいて分化コロニーと未分化コロニーとの識別を行う識別手段と
     を備え、
     該識別手段は、コロニーの円形度の所定の第1の閾値をC1、第2の閾値をC2(C1<C2)とした場合に、
       C2≦C
    となるコロニーを未分化多能性幹細胞のみを含む前記未分化コロニーであると判断し、
       C1≦C<C2
    となるコロニーを未分化コロニーである可能性のある未確定コロニーであると判断し、
       C<C1
    となるコロニーを多能性幹細胞を含む前記分化コロニーであると判断することを特徴とするコロニー識別装置。
  12.  前記識別手段は、前記円形度に加え、前記撮像画像におけるコロニーの輝度Bに基づいて、前記未分化コロニーと、前記未確定コロニーと、前記分化コロニーとを識別することを特徴とする請求項11に記載のコロニーの識別装置。
  13.  前記識別手段は、前記円形度Cに基づいて識別した未分化コロニーを(A)、未確定コロニーを(B)、分化コロニーを(C)、コロニーの輝度の所定の第1の閾値をB1、第2の閾値をB2、第3の閾値をB3、第4の閾値をB4(B1<B2<B3<B4)とした場合に、
    コロニーの輪郭内全ての輝度がB2≦B≦B3となるコロニーを未分化コロニー(a)であると判断し、コロニーの輪郭内の一部の輝度がB<B1となるコロニーを多層コロニー(d)であると判断し、コロニーの輪郭内の一部の輝度がB4<Bとなるコロニーを分化コロニー(c)であると判断し、前記未分化コロニー(a)、前記多層コロニー(d)、前記分化コロニー(c)以外のコロニーを未確定コロニー(b)であると判断した後、
        (A) かつ (a)
    となるコロニーを前記未分化コロニーであると判断し、
        (A)かつ(b)又は(B)かつ(a)又は(B)かつ(b)
    となるコロニーを前記未確定コロニーであると判断し、
        (d)
    となるコロニーを多能性幹細胞が多層に重なった多層コロニーであると判断し、
        (c)又は(C)かつ(a)又は(C)かつ(b)
    となるコロニーを分化コロニーであると判断する
     ことを特徴とする請求項12に記載のコロニーの識別装置。
  14.  前記未確定コロニーについて精細画像を得る精細画像取得手段を更に備え、前記識別手段は、該精細画像における該未確定コロニー内の細胞が所定の大きさより小さい場合に、前記未確定コロニーが前記未分化コロニーであると識別する請求項11乃至13の何れか一項に記載のコロニーの識別装置。
  15.  前記撮像画像は、画像処理により輪郭強調することを特徴とする請求項11乃至14の何れか一項に記載のコロニーの識別装置。
  16.  請求項11乃至15の何れか一項に記載のコロニー識別装置と、
     前記培養容器に細胞剥離剤を導入する剥離剤導入手段と、
     前記各コロニーの位置情報に基づいて前記未分化コロニーを剥離させるとともに、該未分化コロニーの剥離により得られる未分化コロニーを回収するピペッティング装置と
     を備えたことを特徴とする多能性幹細胞の自動培養装置。
  17.  請求項11乃至15の何れか一項に記載のコロニー識別装置と、
     前記未分化コロニー以外のコロニーの位置情報を取得する位置情報取得手段と、
     前記培養容器に細胞剥離剤を導入する剥離剤導入手段と、
     前記位置情報取得手段において取得した位置情報に基づいて前記未分化コロニー以外のコロニーを剥離させ、該未分化コロニー以外のコロニーの剥離により得られる多能性幹細胞を取り除き、更に前記未分化コロニーを剥離させて未分化コロニーを回収するピペッティング装置と
     を備えたことを特徴とする多能性幹細胞の自動培養装置。
  18.  請求項11乃至15の何れか一項に記載のコロニー識別装置と、
     前記未分化コロニー及び該未分化コロニー以外のコロニーの数を取得するコロニー数取得手段と、
     (未分化コロニー数)/(コロニー総数)≧(所定の閾値)の場合に前記培養容器に細胞剥離剤を導入して全てのコロニーを剥離させて回収するピペッティング装置と
     を備えたことを特徴とする多能性幹細胞の自動培養装置。
  19.  (未分化コロニー数)/(コロニー総数)<(所定の閾値)の場合に、前記未確定コロニーのそれぞれについて、更に精細画像を取得する精細画像取得手段を更に備え、
     前記コロニー数取得手段は、該精細画像に基づいて未分化コロニーであると判断したものの数を前記未分化コロニー数に加えて新たな未分化コロニー数とし、
     前記ピペッティング装置は、
     (新たな未分化コロニー数)/(コロニー総数)≧(所定の閾値)の場合に、前記培養容器に細胞剥離剤を導入して全てのコロニーを剥離させて回収するとともに、
     (新たな未分化コロニー数)/(コロニー総数)<(所定の閾値)の場合に、前記未分化コロニーと前記精細画像に基づいて未分化コロニーであると判断した未確定コロニーとを選択的に剥離させて回収する
     ことを特徴とする請求項18に記載の多能性幹細胞の自動培養装置。
PCT/JP2011/003574 2010-06-25 2011-06-22 多能性幹細胞コロニーの識別方法及び装置並びに多能性幹細胞の自動培養方法及び装置 WO2011161962A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11797850.2A EP2586872B1 (en) 2010-06-25 2011-06-22 Method and device for identifying multipotent stem cell colony, and method and device for automatic culturing of multipotent stem cells
JP2012521332A JP5696144B2 (ja) 2010-06-25 2011-06-22 多能性幹細胞コロニーの識別方法及び装置並びに多能性幹細胞の自動培養方法及び装置
US13/805,767 US8977031B2 (en) 2010-06-25 2011-06-22 Method and device for identifying multipotent stem cell colony, and method and device for automatically culturing multipotent stem cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010145468 2010-06-25
JP2010-145468 2010-06-25

Publications (1)

Publication Number Publication Date
WO2011161962A1 true WO2011161962A1 (ja) 2011-12-29

Family

ID=45371167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003574 WO2011161962A1 (ja) 2010-06-25 2011-06-22 多能性幹細胞コロニーの識別方法及び装置並びに多能性幹細胞の自動培養方法及び装置

Country Status (4)

Country Link
US (1) US8977031B2 (ja)
EP (1) EP2586872B1 (ja)
JP (1) JP5696144B2 (ja)
WO (1) WO2011161962A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017480A1 (ja) * 2012-07-23 2014-01-30 東京エレクトロン株式会社 画像解析による多能性幹細胞の評価方法
WO2014041935A1 (ja) * 2012-09-13 2014-03-20 浜松ホトニクス株式会社 多能性幹細胞の分化の度合いを判別する方法
WO2014115799A1 (ja) * 2013-01-23 2014-07-31 東京エレクトロン株式会社 多能性幹細胞の継代培養方法
WO2016042956A1 (ja) * 2014-09-18 2016-03-24 富士フイルム株式会社 細胞培養装置および方法
WO2016088243A1 (ja) * 2014-12-05 2016-06-09 株式会社ニコン 判定装置、観察システム、観察方法、そのプログラム、細胞の製造方法、および細胞
JP2016116460A (ja) * 2014-12-19 2016-06-30 パナソニック株式会社 細胞培養装置
US10007835B2 (en) 2014-03-17 2018-06-26 Fujifilm Corporation Cell region display control device, method, and program
JPWO2019177135A1 (ja) * 2018-03-15 2021-03-18 テルモ株式会社 シート状細胞培養物の製造方法
WO2021085034A1 (ja) * 2019-10-28 2021-05-06 富士フイルム株式会社 多能性幹細胞の選別方法、分化誘導結果の予測方法及び細胞製品の製造方法
WO2023100750A1 (ja) * 2021-11-30 2023-06-08 国立研究開発法人理化学研究所 試料調製システム、試料調製方法、及び試料解析システム
JP7486160B2 (ja) 2020-05-25 2024-05-17 パナソニックIpマネジメント株式会社 細胞培養装置および細胞培養方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5745919B2 (ja) * 2011-04-28 2015-07-08 浜松ホトニクス株式会社 細胞解析方法、細胞解析装置、および細胞解析プログラム
US8705834B2 (en) * 2011-11-08 2014-04-22 Perkinelmer Cellular Technologies Germany Gmbh Methods and apparatus for image analysis using threshold compactness features
JP6097951B2 (ja) * 2013-08-22 2017-03-22 富士フイルム株式会社 幹細胞分化判定装置および方法並びにプログラム
CA3213737A1 (en) 2014-07-01 2016-01-07 Anellotech, Inc. Improved processes for recovering valuable components from a catalytic fast pyrolysis process
EP3865566A4 (en) * 2018-10-12 2022-08-03 Nikon Corporation SUB CULTURE LEVEL CALCULATION DEVICE AND SUB CULTURE LEVEL CALCULATION METHOD AND PROGRAM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030179916A1 (en) * 2002-02-06 2003-09-25 Magnuson Terry R. High-throughput cell identification and isolation method and apparatus
JP2009044974A (ja) * 2007-08-16 2009-03-05 Univ Nagoya 細胞の品質を予測する予測モデルの構築法、予測モデルの構築用ブログラム、該プログラムを記録した記録媒体、予測モデルの構築用装置
JP2009235306A (ja) 2008-03-28 2009-10-15 Sekisui Film Kk 補強用プリプレグシート及び構造体の補強方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720928A (en) 1988-09-15 1998-02-24 New York University Image processing and analysis of individual nucleic acid molecules
US6147198A (en) 1988-09-15 2000-11-14 New York University Methods and compositions for the manipulation and characterization of individual nucleic acid molecules
US6610256B2 (en) 1989-04-05 2003-08-26 Wisconsin Alumni Research Foundation Image processing and analysis of individual nucleic acid molecules
JP4511636B2 (ja) 1995-04-03 2010-07-28 ウィスコンシン アルムニ リサーチ ファウンデーション 顕微鏡的イメージングにより核酸の物理的特性を測定する方法
US6404497B1 (en) 1999-01-25 2002-06-11 Massachusetts Institute Of Technology Polarized light scattering spectroscopy of tissue
WO2001042786A2 (en) 1999-12-09 2001-06-14 Cellomics, Inc. System for cell based screening : cell spreading
US6587792B1 (en) 2000-01-11 2003-07-01 Richard A. Thomas Nuclear packing efficiency
JP3929283B2 (ja) 2000-11-08 2007-06-13 シスメックス株式会社 骨髄有核細胞の分類計数方法
US7049093B2 (en) 2000-11-08 2006-05-23 Sysmex Corporation Method of classifying and counting nucleated bone marrow cells
US20070274963A1 (en) * 2003-12-08 2007-11-29 President And Fellows Of Harvard College Methods for Culturing Keratinocytes from Human Embryonic Stem Cells
JP4911601B2 (ja) 2004-02-10 2012-04-04 ベックマン コールター, インコーポレイテッド 有核赤血球細胞の計測方法
US7711174B2 (en) * 2004-05-13 2010-05-04 The Charles Stark Draper Laboratory, Inc. Methods and systems for imaging cells
JP2006042663A (ja) 2004-08-03 2006-02-16 Reprocell Inc Es細胞の識別マーカー
JP4355832B2 (ja) 2005-07-14 2009-11-04 パナソニックエコシステムズ株式会社 コメットアッセイ解析方法およびコメットアッセイ画像解析装置およびコメットアッセイ解析装置
DE602007008627D1 (de) * 2006-02-14 2010-10-07 Genetix Ltd Zellkulturmedium
WO2008117813A1 (ja) 2007-03-28 2008-10-02 Hiroshima University ニワトリ胚性幹細胞およびその評価方法
CA2691793A1 (en) 2007-06-29 2009-01-08 Cellular Dynamics International, Inc. Automated method and apparatus for embryonic stem cell culture
JP5569892B2 (ja) 2007-09-25 2014-08-13 公立大学法人横浜市立大学 軸索内移動粒子の自動追跡システム
US8417011B2 (en) * 2008-09-18 2013-04-09 Molecular Devices (New Milton) Ltd. Colony detection
JP5430122B2 (ja) * 2008-10-30 2014-02-26 栄研化学株式会社 微生物の検出方法、装置およびプログラム
JP5355275B2 (ja) * 2009-07-24 2013-11-27 オリンパス株式会社 細胞画像解析装置
US9008406B2 (en) 2009-10-09 2015-04-14 Kawasaki Jukogyo Kabushiki Kaisha Method and apparatus for discriminating undifferentiated pluripotent stem cells, and automated culture method and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030179916A1 (en) * 2002-02-06 2003-09-25 Magnuson Terry R. High-throughput cell identification and isolation method and apparatus
JP2009044974A (ja) * 2007-08-16 2009-03-05 Univ Nagoya 細胞の品質を予測する予測モデルの構築法、予測モデルの構築用ブログラム、該プログラムを記録した記録媒体、予測モデルの構築用装置
JP2009235306A (ja) 2008-03-28 2009-10-15 Sekisui Film Kk 補強用プリプレグシート及び構造体の補強方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATSUMI NAKASHIMA ET AL.: "Development of the automatic cell processing machine for the adherent cell", INFLAMM REGEN, vol. 29, no. 2, 2009, pages 131 - 134, XP055095336 *
SEIKI INOUE ET AL., C-GENGO DE MANABU JISSEN GAZO SHORI, 1999, pages 84 - 91 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017480A1 (ja) * 2012-07-23 2014-01-30 東京エレクトロン株式会社 画像解析による多能性幹細胞の評価方法
US9435786B2 (en) 2012-09-13 2016-09-06 Hamamatsu Photonics K.K. Method for determining differentiation level of pluripotent stem cells
WO2014041935A1 (ja) * 2012-09-13 2014-03-20 浜松ホトニクス株式会社 多能性幹細胞の分化の度合いを判別する方法
GB2520899A (en) * 2012-09-13 2015-06-03 Hamamatsu Photonics Kk Method for discriminating differentiation degree of pluripotent stem cell
GB2520899B (en) * 2012-09-13 2020-01-01 Hamamatsu Photonics Kk Method for discriminating differentiation degree of pluripotent stem cell
JP2017148081A (ja) * 2012-09-13 2017-08-31 浜松ホトニクス株式会社 多能性幹細胞の分化の度合いを判別する方法
JPWO2014041935A1 (ja) * 2012-09-13 2016-08-18 浜松ホトニクス株式会社 多能性幹細胞の分化の度合いを判別する方法
WO2014115799A1 (ja) * 2013-01-23 2014-07-31 東京エレクトロン株式会社 多能性幹細胞の継代培養方法
JPWO2014115799A1 (ja) * 2013-01-23 2017-01-26 東京エレクトロン株式会社 多能性幹細胞の継代培養方法
US10007835B2 (en) 2014-03-17 2018-06-26 Fujifilm Corporation Cell region display control device, method, and program
JP2016059329A (ja) * 2014-09-18 2016-04-25 富士フイルム株式会社 細胞培養装置および方法
WO2016042956A1 (ja) * 2014-09-18 2016-03-24 富士フイルム株式会社 細胞培養装置および方法
WO2016088243A1 (ja) * 2014-12-05 2016-06-09 株式会社ニコン 判定装置、観察システム、観察方法、そのプログラム、細胞の製造方法、および細胞
JP2016116460A (ja) * 2014-12-19 2016-06-30 パナソニック株式会社 細胞培養装置
JPWO2019177135A1 (ja) * 2018-03-15 2021-03-18 テルモ株式会社 シート状細胞培養物の製造方法
WO2021085034A1 (ja) * 2019-10-28 2021-05-06 富士フイルム株式会社 多能性幹細胞の選別方法、分化誘導結果の予測方法及び細胞製品の製造方法
JP7486160B2 (ja) 2020-05-25 2024-05-17 パナソニックIpマネジメント株式会社 細胞培養装置および細胞培養方法
WO2023100750A1 (ja) * 2021-11-30 2023-06-08 国立研究開発法人理化学研究所 試料調製システム、試料調製方法、及び試料解析システム

Also Published As

Publication number Publication date
US8977031B2 (en) 2015-03-10
EP2586872A1 (en) 2013-05-01
EP2586872A4 (en) 2014-02-26
JP5696144B2 (ja) 2015-04-08
EP2586872B1 (en) 2017-07-26
JPWO2011161962A1 (ja) 2013-08-19
US20130130228A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP5696144B2 (ja) 多能性幹細胞コロニーの識別方法及び装置並びに多能性幹細胞の自動培養方法及び装置
JP5997826B2 (ja) 未分化多能性幹細胞の識別方法及び装置並びに自動培養方法及び装置
JP6952683B2 (ja) 身体試料中の実体を検出する方法および装置
Poostchi et al. Image analysis and machine learning for detecting malaria
CN107748256B (zh) 一种循环肿瘤细胞的液体活检检测方法
Osman et al. Colour image segmentation of tuberculosis bacilli in Ziehl-Neelsen-stained tissue images using moving k-mean clustering procedure
CN112750118A (zh) 一种基于自动视觉检测的单细胞孔板测序中鉴定细胞个数的新方法及系统
CN116757998A (zh) 基于ai的ctc细胞和ctc样细胞的筛查方法及装置
JP6475134B2 (ja) 細胞評価装置および方法
JP2007510893A (ja) 細胞試料の自動分析
JP2006095223A (ja) 角層細胞の鑑別法
Yelampalli et al. Blood vessel segmentation and classification of diabetic retinopathy images using gradient operator and statistical analysis
Yan Cell Expression in Congenital Heart Disease
Burduk et al. Automatic detection and counting of platelets in microscopic image
CN113344868A (zh) 一种基于混合转移学习的无标记细胞分类筛查系统
CN109983117A (zh) 修复润滑剂污染的洗涤溶液和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797850

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521332

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011797850

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011797850

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13805767

Country of ref document: US