WO2014109233A1 - 結晶積層構造体及び発光素子 - Google Patents

結晶積層構造体及び発光素子 Download PDF

Info

Publication number
WO2014109233A1
WO2014109233A1 PCT/JP2013/084683 JP2013084683W WO2014109233A1 WO 2014109233 A1 WO2014109233 A1 WO 2014109233A1 JP 2013084683 W JP2013084683 W JP 2013084683W WO 2014109233 A1 WO2014109233 A1 WO 2014109233A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
crystal
nitride semiconductor
dielectric layer
Prior art date
Application number
PCT/JP2013/084683
Other languages
English (en)
French (fr)
Inventor
嘉克 森島
慎九郎 佐藤
後藤 健
飯塚 和幸
倉又 朗人
Original Assignee
株式会社タムラ製作所
株式会社光波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所, 株式会社光波 filed Critical 株式会社タムラ製作所
Priority to US14/759,178 priority Critical patent/US20150364646A1/en
Priority to EP13870949.8A priority patent/EP2945187A4/en
Priority to KR1020157021449A priority patent/KR20150104199A/ko
Priority to CN201380068787.9A priority patent/CN104885195B/zh
Publication of WO2014109233A1 publication Critical patent/WO2014109233A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Definitions

  • the present invention relates to a crystal multilayer structure and a light emitting element.
  • Patent Document 1 As a conventional light-emitting element, one formed by growing a crystal film on a surface of a translucent substrate on which a concavo-convex pattern is formed is known (for example, see Patent Document 1).
  • Patent Document 1 a GaN-based semiconductor layer is grown on the surface of the sapphire substrate on which the concavo-convex pattern is formed.
  • the concavo-convex pattern of the sapphire substrate of Patent Document 1 is emitted from the light emitting layer in the GaN-based semiconductor layer due to the difference in refractive index between the sapphire substrate and the GaN-based semiconductor layer at the interface between the sapphire substrate and the GaN-based semiconductor layer. It has a function to suppress reflection of light. By suppressing such reflection, absorption of reflected light by the light emitting layer and attenuation due to multiple reflection of reflected light can be reduced, and the light extraction efficiency of the light emitting element can be improved.
  • One embodiment of the present invention provides a crystal laminated structure according to [1] to [5] in order to achieve the above object.
  • the Ga 2 O 3 substrate, the Ga 2 O 3 is formed to the upper surface of the substrate so as to partially cover the difference in refractive index between the Ga 2 O 3 substrate Is formed on the Ga 2 O 3 substrate via the dielectric layer, and is formed on the dielectric layer and the dielectric layer on the upper surface of the Ga 2 O 3 substrate. And a nitride semiconductor layer in contact with an uncovered portion.
  • another aspect of the present invention provides a light emitting device according to [6].
  • a light-emitting element that includes the crystal multilayer structure according to [1] or [2] and energizes the Ga 2 O 3 substrate and the nitride semiconductor layer.
  • the present invention capable of light output to achieve a high light-emitting element, to provide the crystalline layered structure including a Ga 2 O 3 substrate and the nitride semiconductor layer, and a light emitting device including a crystal laminate structure be able to.
  • FIG. 1 is a vertical cross-sectional view of the crystal multilayer structure according to the first embodiment.
  • FIG. 2A is a vertical cross-sectional view illustrating a manufacturing process of the crystal multilayer structure according to the first embodiment.
  • FIG. 2B is a vertical cross-sectional view illustrating a manufacturing process of the crystal stacked structure according to the first embodiment.
  • FIG. 2C is a vertical cross-sectional view illustrating a manufacturing process of the crystal multilayer structure according to the first embodiment.
  • FIG. 2D is a vertical cross-sectional view illustrating a manufacturing process of the crystal multilayer structure according to the first embodiment.
  • FIG. 3A is a SEM photograph of the crystal multilayer structure according to the first embodiment before forming a nitride semiconductor layer.
  • FIG. 3A is a SEM photograph of the crystal multilayer structure according to the first embodiment before forming a nitride semiconductor layer.
  • FIG. 3B is an SEM photograph after the nitride semiconductor layer is formed in the crystal multilayer structure according to the first embodiment.
  • FIG. 3C is an SEM photograph after the formation of the nitride semiconductor layer of the crystal multilayer structure according to the first embodiment.
  • FIG. 4A is an SEM photograph of the crystal multilayer structure according to the comparative example before forming the nitride semiconductor layer.
  • FIG. 4B is an SEM photograph after the formation of the nitride semiconductor layer of the crystal multilayer structure according to the comparative example.
  • FIG. 4C is an SEM photograph after the formation of the nitride semiconductor layer of the crystal multilayer structure according to the comparative example.
  • FIG. 4A is an SEM photograph of the crystal multilayer structure according to the comparative example before forming the nitride semiconductor layer.
  • FIG. 4B is an SEM photograph after the formation of the nitride semiconductor layer of the crystal multilayer structure according to the comparative example.
  • FIG. 4C is an S
  • FIG. 5 is a graph showing the full width at half maximum of the X-ray rocking curve of the nitride semiconductor layer of the crystal multilayer structure according to the first embodiment and the comparative example.
  • FIG. 6 is a graph showing the current-voltage characteristics in the vertical direction when the dielectric layer of the crystal multilayer structure according to the first embodiment and the comparative example is a SiN layer.
  • FIG. 7 is a vertical sectional view of a crystal laminated structure to which electrodes for measuring current-voltage characteristics are connected.
  • FIG. 8 is a vertical sectional view of a light emitting device according to the second embodiment.
  • FIG. 9 is a graph showing current-voltage characteristics in the vertical direction when the dielectric layer of the light emitting device according to the second embodiment and the comparative example is a SiN layer.
  • FIG. 10 is a graph showing light output characteristics of the light emitting elements according to the second embodiment and the comparative example.
  • FIG. 11 is a graph showing an example of the relationship between the material of the dielectric layer and the light extraction efficiency of the light emitting element obtained by optical simulation.
  • Ga 2 O 3 when forming a crystalline layered structure having a substrate and a nitride semiconductor layer, the Ga 2 O 3 substrate and Ga 2 O 3 the refractive index of the substrate and the nitride semiconductor layer at the interface between the nitride semiconductor layer
  • a method of growing a nitride semiconductor crystal on the surface of the Ga 2 O 3 substrate on which the concavo-convex pattern is formed can be considered.
  • a nitride semiconductor layer with high crystal quality cannot be obtained when a nitride semiconductor crystal is grown on the surface of the Ga 2 O 3 substrate on which the concavo-convex pattern is formed. .
  • the crystal face of the Ga 2 O 3 crystal capable of growing a high-quality nitride semiconductor crystal is limited.
  • various crystal planes including crystal planes that are not suitable for the growth of high-quality nitride semiconductor crystals appear, so that a nitride semiconductor layer with high crystal quality can be obtained. I can't.
  • FIG. 1 is a vertical cross-sectional view of the crystal multilayer structure according to the first embodiment.
  • the crystal laminated structure 1 includes a Ga 2 O 3 substrate 2, a dielectric layer 3 on the Ga 2 O 3 substrate 2, and a nitride semiconductor layer 4 on the dielectric layer 3.
  • the Ga 2 O 3 substrate 2 is made of ⁇ -Ga 2 O 3 single crystal.
  • the upper surface of the Ga 2 O 3 substrate 2 is a flat surface without unevenness, and can be a base for the growth of high-quality nitride semiconductor crystals, such as (101), ( ⁇ 201), (100), etc.
  • the refractive index of the Ga 2 O 3 substrate 2 is approximately 1.9.
  • the refractive index of the Ga 2 O 3 substrate 2 is 1.9
  • the refractive index of the dielectric layer 3 is 1.75 or more and 2.05 or less.
  • the dielectric layer 3, on the Ga 2 O 3 substrate 2, are formed the upper surface of the Ga 2 O 3 substrate 2 so as to partially cover.
  • the pattern shape of the dielectric layer 3 is not limited and is, for example, a dot pattern, a hole pattern, or a line and space pattern.
  • Refractive index of the dielectric layer 3 is close to the refractive index of the Ga 2 O 3 substrate 2, Ga 2 O 3 substrate 2 and the dielectric layer 3 at the interface reflectivity is small.
  • the dielectric layer 3 is an SiN layer, it may contain elements other than Si and N such as O, but the difference between the refractive index of the dielectric layer 3 and the refractive index of the Ga 2 O 3 substrate 2 is made smaller.
  • it is preferable to consist essentially of SiN.
  • the refractive index of the dielectric layer 3 is preferably equal to or lower than the refractive index of the Ga 2 O 3 substrate 2.
  • the refractive index of the dielectric layer 3 is adjusted, and the difference between the refractive index of the dielectric layer 3 and the refractive index of the Ga 2 O 3 substrate 2 is determined. It can be made smaller.
  • the case of forming the SiO 2 layer a difference in refractive index is large between the Ga 2 O 3 substrate 2, instead of the dielectric layer 3, SiO 2 layer and the Ga 2 O 3 reflectivity of the interface between the substrate 2 is large
  • the light transmittance between the Ga 2 O 3 substrate 2 and the nitride semiconductor layer 4 becomes low.
  • the refractive index of the SiO 2 layer is about 1.5 to 1.6, and the difference from the refractive index of the Ga 2 O 3 substrate 2 is 0.3 or more.
  • the crystal of the nitride semiconductor layer 4 in the configuration of the crystal multilayer structure 1 of the present embodiment. Quality can be increased.
  • the nitride semiconductor layer 4 may have a multilayer structure in which a plurality of layers made of different nitride semiconductor crystals are stacked.
  • the light emitting layer and the clad layer sandwiching the light emitting layer can be constituted by the nitride semiconductor layer 4.
  • the Ga 2 O 3 substrate 2 and the nitride semiconductor layer 4 may contain a conductivity type impurity such as Si.
  • the dielectric layer 3 does not completely cover the upper surface of the Ga 2 O 3 substrate 2.
  • the nitride semiconductor layer 4 is in contact with the dielectric layer 3 and a portion of the upper surface of the Ga 2 O 3 substrate 2 that is not covered with the dielectric layer 3.
  • the nitride semiconductor crystal constituting the nitride semiconductor layer 4 grows from a region not covered by the dielectric layer 3 on the upper surface of the Ga 2 O 3 substrate 2 and does not grow from the dielectric layer 3.
  • the nitride semiconductor layer 4 is formed by selective growth of a nitride semiconductor crystal, the dislocation density in the nitride semiconductor layer 4 is reduced and the crystal quality is improved.
  • Such a crystal growth method using selective growth is called ELO (Epitaxial Lateral Overgrowth).
  • the thickness of the dielectric layer 3 for improving the transmittance is determined by the wavelength of light incident on the dielectric layer 3 from the nitride semiconductor layer 4.
  • the thickness of the dielectric layer 3 is desirably larger than this wavelength.
  • the thickness is preferably 0.5 ⁇ m or more.
  • the crystal laminated structure 1 In the crystal laminated structure 1, light is easily transmitted between the nitride semiconductor layer 4 and the dielectric layer 3 due to the uneven shape of the dielectric layer 3. Further, between the dielectric layer 3 and Ga 2 O 3 substrate 2, light is easily transmitted since the difference in refractive index of the dielectric layer 3 and Ga 2 O 3 substrate 2 is small. For this reason, the light transmittance between the nitride semiconductor layer 4 and the Ga 2 O 3 substrate 2 in the crystal multilayer structure 1 is high.
  • FIGS. 2A to 2D are vertical sectional views showing the manufacturing process of the crystal multilayer structure according to the first embodiment.
  • the Ga 2 O 3 substrate 2 is transferred into a chamber of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • a film-like dielectric layer 3 is formed on the Ga 2 O 3 substrate 2.
  • This film-like dielectric layer 3 is made of SiH 4 as a Si raw material, NH 3 gas as an N raw material, and N 2 gas as an atmospheric gas while maintaining the temperature in the chamber at 300 to 350 ° C. Is supplied into the chamber, and SiN is formed on the Ga 2 O 3 substrate 2 by volume.
  • the dielectric layer 3 is a substantially uniform film having a thickness of about 1 ⁇ m.
  • the raw materials for each element are not limited to the above.
  • a resist pattern 5 is formed on the dielectric layer 3.
  • the pattern shape of the resist pattern 5 is, for example, a dot pattern in which the dot diameter is 2 ⁇ m and the pitch is 3 ⁇ m. Moreover, other patterns, such as a hole pattern and a line and space pattern, may be sufficient.
  • the resist pattern 5 is formed by, for example, photolithography.
  • the dielectric layer 3 is etched by BHF (buffered hydrofluoric acid) using the resist pattern 5 as a mask, and the pattern of the resist pattern 5 is transferred to the dielectric layer 3.
  • BHF buffered hydrofluoric acid
  • the remaining resist pattern 5 is removed. Thereafter, NH 3 gas as a raw material of N, trimethylgallium (TMG) gas as a raw material of Ga, trimethylaluminum (TMA) gas as a raw material of Al, and trimethylindium (TMI) gas as a raw material of In are contained in the chamber. And an Al x Ga y In z N crystal, which is a nitride semiconductor crystal, is selectively grown on the Ga 2 O 3 substrate 2 to form the nitride semiconductor layer 4. Thereby, the crystal laminated structure 1 is obtained.
  • TMG trimethylgallium
  • TMA trimethylaluminum
  • TMI trimethylindium
  • the nitride semiconductor layer 4 is composed of a buffer layer composed of an AlGaInN-based crystal and a GaN layer thereon is shown.
  • the surface of the structure composed of the Ga 2 O 3 substrate 2 and the dielectric layer 3 is cleaned by organic cleaning and SPM cleaning, and is put into an MOCVD apparatus.
  • NH 3 as a raw material of N
  • trimethylgallium (TMG) as a raw material of Ga
  • trimethylaluminum (TMA) as a raw material of Al
  • trimethylindium (TMI) as a raw material of In
  • Si as an n-type impurity
  • substrate A low temperature AlGaN buffer layer is formed by maintaining the surface temperature at around 500 ° C. Thereafter, the temperature of the substrate surface is raised to around 1000 ° C. to form initial n-GaN nuclei and grown as they are by about 2 ⁇ m. Then, the surface of the substrate is raised to around 1100 ° C. to form an n-GaN layer having a thickness of 2 ⁇ m, and a nitride semiconductor layer 4 is obtained.
  • FIG. 3A is a SEM (Scanning Electron Microscope) photograph of the crystal multilayer structure according to the first embodiment before the formation of the nitride semiconductor layer
  • FIGS. 3B and 3C are SEM photographs after the formation of the nitride semiconductor layer. is there.
  • FIGS. 3A and 3C show a Ga 2 O 3 substrate 2 and a SiN layer as a dielectric layer 3, and FIGS. 3B and 3C show a GaN layer having a top surface orientation (002) as a nitride semiconductor layer 4. Yes.
  • FIG. 4A is an SEM photograph of the crystal multilayer structure according to the comparative example before the formation of the nitride semiconductor layer
  • FIGS. 4B and 4C are SEM photographs after formation of the nitride semiconductor layer.
  • FIG. 4A shows the Ga 2 O 3 substrate 2 whose upper surface is processed to be uneven
  • FIGS. 4B and 4C are GaN layers whose upper surface orientation is (002) corresponding to the nitride semiconductor layer 4 of the present embodiment. Is shown.
  • FIG. 3A and 4A are photographs of the upper surface of the Ga 2 O 3 substrate 2 taken obliquely from above.
  • the frustoconical object in FIG. 3A is SiN formed in a dot pattern constituting the dielectric layer 3.
  • the frustoconical object in FIG. 4A is a convex portion on the upper surface of the Ga 2 O 3 substrate 2 processed into a dot pattern.
  • FIGS. 4B and 4C show that the upper surface of the nitride semiconductor layer 4 according to the present embodiment is flat, and the crystal quality of the nitride semiconductor layer 4 is high.
  • the darkly colored portions shown in FIGS. 4B and 4C are portions where the crystal has grown abnormally, and it can be seen that the crystal quality of the nitride semiconductor layer of the comparative example is poor.
  • the abnormal growth This means that a nitride semiconductor layer having a high thickness can be obtained.
  • FIG. 5 is a graph showing the full width at half maximum of the X-ray rocking curve of the nitride semiconductor layer of the crystal multilayer structure according to the first embodiment and the comparative example.
  • the dielectric layer 3 of the first embodiment used for the measurement according to FIG. 5 is a SiN layer. Further, the nitride semiconductor layer 4 of the first embodiment and the nitride semiconductor layer of the comparative example are both made of GaN crystal, and the plane orientation of the upper surface is (002).
  • the half widths of the X-ray rocking curves of the (002) plane and the (101) plane perpendicular to the (002) plane are indicated by marks “ ⁇ ” and “ ⁇ ”, respectively.
  • the half width of the (002) plane X-ray rocking curve evaluates the orientation of the plane parallel to the top surface of the nitride semiconductor layer
  • the half width of the (101) plane X-ray rocking curve is the top surface of the nitride semiconductor layer. It is possible to evaluate the orientation of the plane perpendicular to the.
  • both the half width of the (002) plane X-ray rocking curve and the half width of the (101) plane X-ray rocking curve are the crystal laminated structure according to the comparative example having no dielectric layer 3. It becomes narrower in the crystal laminated structure 1 according to the first embodiment having the dielectric layer 3 than the body, and is particularly remarkable in the (101) plane. This result indicates that the provision of the dielectric layer 3 improves the crystal quality of the nitride semiconductor layer.
  • FIG. 6 is a graph showing the current-voltage characteristics in the vertical direction (vertical direction) when the dielectric layer of the crystal multilayer structure according to the first embodiment and the comparative example is a SiN layer.
  • the horizontal axis indicates voltage (V)
  • the vertical axis indicates current density (A / cm 2 ).
  • the dielectric layer 3 of the first embodiment used for the measurement according to FIG. 6 is a SiN layer.
  • the dielectric layer 3 is an SiN layer, it has been confirmed that particularly excellent current-voltage characteristics in the vertical direction (vertical direction) of the crystal multilayer structure 1 can be obtained.
  • the crystal stacked structure according to the comparative example shown in FIG. 6 does not include the dielectric layer 3 that is a SiN layer, and is nitrided with a Ga 2 O 3 substrate. It is comprised only from a physical semiconductor layer. Further, the nitride semiconductor layer 4 of the first embodiment and the nitride semiconductor layer of the comparative example are both made of GaN crystal, and the plane orientation of the upper surface is (002).
  • FIG. 6 The current-voltage characteristics shown in FIG. 6 were measured by connecting electrodes to the surfaces of the Ga 2 O 3 substrate and the nitride semiconductor layer and applying a voltage in the longitudinal direction of the crystal multilayer structure.
  • FIG. 7 shows a state in which electrodes are connected to the Ga 2 O 3 substrate 2 and the nitride semiconductor layer 4 of the crystal laminated structure 1. Electrodes 6 a and 6 b were connected to the Ga 2 O 3 substrate 2 and the nitride semiconductor layer 4, respectively. The electrodes were similarly connected to the crystal laminated structure according to the comparative example.
  • FIG. 6 shows that a potential barrier exists at the interface between the Ga 2 O 3 substrate 2 and the nitride semiconductor layer in the crystal laminated structure according to the comparative example that does not have the dielectric layer 3 that is the SiN layer
  • the crystal multilayer structure 1 according to the first embodiment having the dielectric layer 3 that is a SiN layer there is no potential barrier at the interface between the Ga 2 O 3 substrate 2 and the nitride semiconductor layer 4, and Ga It shows that the 2 O 3 substrate 2 and the nitride semiconductor layer 4 are in ohmic contact. This result shows that the electrical resistance in the longitudinal direction of the crystal multilayer structure 1 is reduced by providing the dielectric layer 3 which is a SiN layer.
  • the dielectric layer 3 which is the SiN layer according to the first embodiment used in the above-described photographs of FIG. 3, FIG. 5, FIG. 6 or measurement is a plasma CVD apparatus (PD-220 / manufactured by Samco Corporation)
  • PD-220 a plasma CVD apparatus
  • the film was formed at a film forming temperature of 300 ° C., and the refractive index was 1.89.
  • the nitride semiconductor layer 4 and the Ga 2 O 3 substrate are formed by forming the nitride semiconductor layer 4 on the upper surface of the Ga 2 O 3 substrate 2 on which the dielectric layer 3 is formed.
  • the light transmittance between the two can be improved.
  • the crystal quality of the nitride semiconductor layer 4 can be improved.
  • the dielectric layer 3 is a SiN layer
  • the Ga 2 O 3 substrate 2 and the nitride semiconductor layer 4 can be ohmically joined.
  • the nitride semiconductor layer 4 is a GaN layer, the crystal quality can be improved by the present embodiment.
  • the second embodiment is an embodiment of a light emitting element including the crystal multilayer structure 1 of the first embodiment.
  • a light emitting element including the crystal multilayer structure 1 of the first embodiment.
  • FIG. 8 is a vertical sectional view of a light emitting device according to the second embodiment.
  • the light emitting device 100 includes a Ga 2 O 3 substrate 12, a dielectric layer 13 on the Ga 2 O 3 substrate 12, an n-type cladding layer 14 on the dielectric layer 13, and a light-emitting layer 15 on the n-type cladding layer 14.
  • This is an LED element having an n-type electrode 19 on the side surface.
  • the Ga 2 O 3 substrate 12 and the dielectric layer 13 correspond to the Ga 2 O 3 substrate 2 and the dielectric layer 3 of the first embodiment, respectively.
  • the n-type cladding layer 14 is made of a nitride semiconductor crystal
  • at least the n-type cladding layer 14 corresponds to the nitride semiconductor layer 4 of the first embodiment.
  • the n-type cladding layer 14 and the layer made of the nitride semiconductor crystal thereon correspond to the nitride semiconductor layer 4.
  • the n-type cladding layer 14 the light emitting layer 15, the p-type cladding layer 16, and the contact layer 17 are made of a nitride semiconductor crystal, these all correspond to the nitride semiconductor layer 4.
  • the light emitting element 100 is a vertical drive type light emitting element, and energizes the above-described layers corresponding to the Ga 2 O 3 substrate 12 and the nitride semiconductor layer 4 during operation.
  • Emitting element 100 since it is formed by using a crystalline layered structure 1 according to the first embodiment, which corresponds to the Ga 2 O 3 substrate 12 and the nitride semiconductor layer 4 which corresponds to the Ga 2 O 3 substrate 2 Light transmittance between the layer including the n-type cladding layer 14 is high. For this reason, when the light emitting element 100 is a face-down type light emitting element that extracts light from the Ga 2 O 3 substrate 12 side, the light emitted from the light emitting layer 15 toward the Ga 2 O 3 substrate 12 is efficiently transmitted, High light output can be obtained.
  • the light emitting element 100 is a face-up type light emitting element that extracts light from the contact layer 17 side
  • the light emitted from the light emitting layer 15 toward the Ga 2 O 3 substrate 12 is emitted from the n-type cladding layer 14 and Ga 2 O. 3 It is possible to suppress reflection at the interface with the substrate 12 and absorption by the light emitting layer 15 and the like. Thereby, a high light output can be obtained.
  • the specific structure of the light-emitting element 100 used for measuring these current-voltage characteristics and light output characteristics is shown below.
  • the Ga 2 O 3 substrate 12 is an n-type ⁇ -Ga 2 O 3 substrate having a thickness of 400 ⁇ m and a top surface orientation of ( ⁇ 201).
  • the dielectric layer 13 has a thickness of 1 ⁇ m, a refractive index of 1.89, and a coverage (a ratio of the dielectric layer 13 covering a region immediately below the nitride semiconductor layer 14 on the upper surface of the Ga 2 O 3 substrate 12). 15% SiN layer.
  • the n-type cladding layer 14 is an n-type GaN crystal film having a thickness of 6 ⁇ m.
  • the light emitting layer 15 is composed of seven layers of GaN crystal films and seven layers of InGaN crystal films formed by alternately stacking 2.8 nm thick GaN crystal films and 12 nm thick InGaN crystal films. Is a layer.
  • the p-type cladding layer 16 is a p-type GaN crystal film having a thickness of 0.2 ⁇ m.
  • the contact layer 17 is a p-type GaN crystal film having a thickness of 0.15 ⁇ m.
  • the configuration of the light emitting device according to the comparative example is obtained by omitting the dielectric layer 13 from the configuration of the light emitting device 100.
  • FIG. 9 is a graph showing the current-voltage characteristics in the vertical direction of the light emitting device when the dielectric layer according to the second embodiment and the comparative example is a SiN layer.
  • the horizontal axis represents voltage (V) and the vertical axis represents current (mA).
  • the dielectric layer 13 of the second embodiment used for the measurement according to FIG. 9 is a SiN layer.
  • the dielectric layer 13 is a SiN layer, it has been confirmed that particularly excellent current-voltage characteristics in the longitudinal direction (vertical direction) of the light emitting device 100 can be obtained.
  • the light emitting device 100 according to the present embodiment having the dielectric layer 13 that is a SiN layer is more than the light emitting device according to the comparative example that does not have the dielectric layer 13 that is a SiN layer.
  • the voltage required to pass a specific current is small. This result indicates that the drive voltage of the light emitting element can be reduced by providing the dielectric layer 13 which is a SiN layer.
  • FIG. 10 is a graph showing the light output characteristics of the light emitting elements according to the second embodiment and the comparative example.
  • the horizontal axis in FIG. 10 indicates the emission wavelength (nm), and the vertical axis indicates the light output (arbitrary unit).
  • the p-type electrode 18 side of the light emitting element 100 was mounted on a mount, and total luminous flux measurement was performed.
  • FIG. 10 shows that the light output of the light emitting device 100 according to the present embodiment having the dielectric layer 13 is larger than that of the light emitting device according to the comparative example not having the dielectric layer 13. This result shows that the light output of the light emitting element can be improved by providing the dielectric layer 13.
  • the provision of the dielectric layer 13 improves the crystal quality of the n-type cladding layer 14, the light emitting layer 15, the p-type cladding layer 16, and the contact layer 17 corresponding to the nitride semiconductor layer 4. This is considered to be due to a decrease in reflectance at the interface between the Ga 2 O 3 substrate 12 and the n-type cladding layer 14.
  • the SiN layer is used as the dielectric 13
  • the ohmic junction between the Ga 2 O 3 substrate 12 and the n-type cladding layer 14 also greatly contributes.
  • FIG. 11 is a graph showing an example of the relationship between the material of the dielectric layer and the light extraction efficiency of the light emitting element obtained by optical simulation.
  • the refractive index of the Ga 2 O 3 substrate 12 is 1.9
  • the dielectric layer corresponding to the dielectric layer 13 is composed of a dot pattern with a diameter of 2 ⁇ m, a pitch of 3 ⁇ m, and a height of 1 ⁇ m, and emits light.
  • the light emitted from the layer was taken out from the Ga 2 O 3 substrate 12 side.
  • only the SiN layer satisfies the refractive index condition of the dielectric layer 13 of the present embodiment.
  • the light extraction efficiency of FIG. 11 is standardized based on the light extraction efficiency when unevenness of the same shape is formed on the surface of the Ga 2 O 3 substrate 12 instead of the dielectric layer 13 in the light emitting device 100 of the present embodiment. It has become.
  • the standard light extraction efficiency is that the n-type clad layer 14, the light emitting layer 15, the p-type clad layer 16, and the contact layer 17 having good crystal quality are formed on the Ga 2 O 3 substrate 12 having irregularities formed on the surface. It is a theoretical value when it is assumed that is formed. Actually, as described with reference to FIG. 4, it is difficult to form a nitride semiconductor layer having a good crystal quality on a Ga 2 O 3 substrate having irregularities formed on the surface. It is difficult to obtain the n-type cladding layer 14, the light emitting layer 15, the p-type cladding layer 16, and the contact layer 17.
  • FIG. 11 shows that the light extraction efficiency is highest when a SiN layer that satisfies the refractive index condition of the dielectric layer 13 is used as the dielectric layer.
  • the light extraction efficiency is about 98.5% or more of the reference value.
  • the crystal quality of the nitride semiconductor layer 4 is high, and the crystal laminated structure 1 according to the first embodiment in which the Ga 2 O 3 substrate 2 and the nitride semiconductor layer 4 are in ohmic contact is provided. By using it, the light emitting element 100 with high light output and low driving voltage can be obtained.
  • a crystal multilayer structure having a Ga 2 O 3 substrate and a nitride semiconductor layer, and a light-emitting element including the crystal multilayer structure, which can realize a light-emitting element with high light output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 光出力が高い発光素子を実現することのできる、Ga23基板と窒化物半導体層とを有する結晶積層構造体、及びその結晶積層構造体を含む発光素子を提供する。 一実施の形態において、Ga23基板2と、Ga23基板2上に、Ga23基板2の上面を部分的に覆うように形成された、Ga23基板2との屈折率の差が0.15以下である誘電体層3と、Ga23基板2上に誘電体層3を介して形成され、誘電体層3、及びGa23基板2の上面の誘電体層3に覆われていない部分に接触する窒化物半導体層4と、を有する結晶積層構造体1を提供する。

Description

結晶積層構造体及び発光素子
 本発明は、結晶積層構造体及び発光素子に関する。
 従来の発光素子として、透光性基板の凹凸パターンが形成された面の上に結晶膜を成長させることにより形成されるものが知られている(例えば、特許文献1参照)。特許文献1においては、サファイア基板の凹凸パターンが形成された面上にGaN系半導体層を成長させる。
 特許文献1のサファイア基板の凹凸パターンは、サファイア基板とGaN系半導体層との界面における、サファイア基板とGaN系半導体層との屈折率の違いに起因するGaN系半導体層中の発光層から発せられた光の反射を抑える機能を有する。このような反射を抑えることにより、発光層による反射光の吸収や、反射光の多重反射による減衰を低減し、発光素子の光取出効率を向上させることができる。
特許第3595277号公報
 本発明の目的は、光出力が高い発光素子を実現することのできる、Ga23基板と窒化物半導体層とを有する結晶積層構造体、及びその結晶積層構造体を含む発光素子を提供することにある。
 本発明の一態様は、上記目的を達成するために、[1]~[5]の結晶積層構造体を提供する。
[1]Ga23基板と、前記Ga23基板上に、前記Ga23基板の上面を部分的に覆うように形成された、前記Ga23基板との屈折率の差が0.15以下である誘電体層と、前記Ga23基板上に前記誘電体層を介して形成され、前記誘電体層、及び前記Ga23基板の上面の前記誘電体層に覆われていない部分に接触する窒化物半導体層と、を有する結晶積層構造体。
[2]前記誘電体層がSiNを主成分とするSiN層である、前記[1]に記載の結晶積層構造体。
[3]前記窒化物半導体層がGaN層である、前記[1]又は[2]に記載の結晶積層構造体。
[4]前記窒化物半導体層の上面の面方位が(002)である、前記[3]に記載の結晶積層構造体。
[5]前記誘電体層の厚さが0.5μm以上である、前記[1]又は[2]に記載の結晶積層構造体。
 また、本発明の他の態様は、上記目的を達成するために、[6]の発光素子を提供する。
[6]前記[1]又は[2]に記載の結晶積層構造体を含み、前記Ga23基板及び前記窒化物半導体層に通電する発光素子。
 本発明によれば、光出力が高い発光素子を実現することのできる、Ga23基板と窒化物半導体層とを有する結晶積層構造体、及びその結晶積層構造体を含む発光素子を提供することができる。
図1は、第1の実施の形態に係る結晶積層構造体の垂直断面図である。 図2Aは、第1の実施の形態に係る結晶積層構造体の製造工程を表す垂直断面図である。 図2Bは、第1の実施の形態に係る結晶積層構造体の製造工程を表す垂直断面図である。 図2Cは、第1の実施の形態に係る結晶積層構造体の製造工程を表す垂直断面図である。 図2Dは、第1の実施の形態に係る結晶積層構造体の製造工程を表す垂直断面図である。 図3Aは、第1の実施の形態に係る結晶積層構造体の窒化物半導体層形成前のSEM写真である。 図3Bは、第1の実施の形態に係る結晶積層構造体の窒化物半導体層形成後のSEM写真である。 図3Cは、第1の実施の形態に係る結晶積層構造体の窒化物半導体層形成後のSEM写真である。 図4Aは、比較例に係る結晶積層構造体の窒化物半導体層形成前のSEM写真である。 図4Bは、比較例に係る結晶積層構造体の窒化物半導体層形成後のSEM写真である。 図4Cは、比較例に係る結晶積層構造体の窒化物半導体層形成後のSEM写真である。 図5は、第1の実施の形態及び比較例に係る結晶積層構造体の窒化物半導体層のX線ロッキングカーブの半値幅を示すグラフである。 図6は、第1の実施の形態及び比較例に係る結晶積層構造体の誘電体層がSiN層である場合の縦方向の電流-電圧特性を示すグラフである。 図7は、電流-電圧特性の測定のための電極を接続した結晶積層構造体の垂直断面図である。 図8は、第2の実施の形態に係る発光素子の垂直断面図である。 図9は、第2の実施の形態及び比較例に係る発光素子の誘電体層がSiN層である場合の縦方向の電流-電圧特性を示すグラフである。 図10は、第2の実施の形態及び比較例に係る発光素子の光出力特性を示すグラフである。 図11は、光学シミュレーションにより求めた誘電体層の材料と発光素子の光取出効率の関係の一例を表すグラフである。
 Ga23基板と窒化物半導体層とを有する結晶積層構造体を形成する場合、Ga23基板と窒化物半導体層との界面におけるGa23基板と窒化物半導体層の屈折率の違いによる光の反射を低減するためには、Ga23基板の凹凸パターンが形成された面上に窒化物半導体結晶を成長させる方法が考えられる。
 しかしながら、本発明者等は、Ga23基板の凹凸パターンが形成された面上に窒化物半導体結晶を成長させた場合、結晶品質の高い窒化物半導体層が得られないという知見を得た。この理由の一つとして、品質の高い窒化物半導体結晶を成長させることのできるGa23結晶の結晶面が限られていることが考えられる。Ga23基板の上面に凹凸パターンを形成すると、品質の高い窒化物半導体結晶の成長の下地に適さない結晶面を含む様々な結晶面が現れるため、結晶品質の高い窒化物半導体層が得られない。
 そこで、この様な問題を回避するため、本発明者等は、鋭意研究の結果、下記実施の形態を一例とするような発明に至ったものである。
〔第1の実施の形態〕
(結晶積層構造体の構造)
 図1は、第1の実施の形態に係る結晶積層構造体の垂直断面図である。結晶積層構造体1は、Ga23基板2と、Ga23基板2上の誘電体層3と、誘電体層3上の窒化物半導体層4を含む。
 Ga23基板2は、β-Ga23単結晶からなる。Ga23基板2の上面は、凹凸のない平坦な面であり、品質の高い窒化物半導体結晶の成長の下地となることのできる、(101)、(-201)、(100)等の面方位を有する面である。Ga23基板2の屈折率は、およそ1.9である。
 誘電体層3は、SiNを主成分とするSiN層やHfO2を主成分とするHfO2層等の、Ga23基板2との屈折率の差が0.15以下である誘電体層である。例えば、Ga23基板2の屈折率が1.9である場合は、誘電体層3の屈折率は1.75以上かつ2.05以下である。
 誘電体層3は、Ga23基板2上に、Ga23基板2の上面を部分的に覆うように形成される。誘電体層3のパターン形状は限定されず、例えば、ドットパターン、ホールパターン、ラインアンドスペースパターンである。
 誘電体層3の屈折率はGa23基板2の屈折率に近いため、Ga23基板2と誘電体層3の界面の反射率が小さい。誘電体層3がSiN層である場合は、O等のSi、N以外の元素を含んでもよいが、誘電体層3の屈折率とGa23基板2の屈折率の差をより小さくするためには、ほぼSiNのみからなることが好ましい。
 また、誘電体層3からGa23基板2へ向かう光の全反射を防ぐために、誘電体層3の屈折率は、Ga23基板2の屈折率以下であることが好ましい。
 誘電体層3の成膜温度等の形成条件を制御することにより、誘電体層3の屈折率を調整して、誘電体層3の屈折率とGa23基板2の屈折率の差をより小さくすることができる。
 なお、例えば、誘電体層3の代わりにGa23基板2との屈折率の差が大きいSiO2層を形成した場合、SiO2層とGa23基板2の界面の反射率が大きく、Ga23基板2と窒化物半導体層4の間の光透過率が低くなる。SiO2層の屈折率はおよそ1.5~1.6であり、Ga23基板2の屈折率との差が0.3以上である。
 窒化物半導体層4は、窒化物半導体結晶、すなわちAlxGayInzN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)結晶からなる。特に、窒化物半導体層4がGaN結晶(y=1、x=z=0)からなるGaN層である場合、本実施の形態の結晶積層構造体1の構成において、窒化物半導体層4の結晶品質を高くすることができる。
 窒化物半導体層4は、異なる窒化物半導体結晶からなる複数の層を積層した多層構造を有してもよい。例えば、結晶積層構造体1を用いて発光素子を形成する場合、発光層及びそれを挟むクラッド層等を窒化物半導体層4により構成することができる。
 なお、Ga23基板2及び窒化物半導体層4は、Si等の導電型不純物を含んでもよい。
 窒化物半導体層4は、Ga23基板2の上面を下地とするエピタキシャル結晶成長により形成されるため、誘電体層3がGa23基板2の上面を完全に覆うことはない。窒化物半導体層4は、誘電体層3、及びGa23基板2の上面の誘電体層3に覆われていない部分に接触する。
 窒化物半導体層4を構成する窒化物半導体結晶は、Ga23基板2の上面の誘電体層3に覆われていない領域から成長し、誘電体層3からは成長しない。このように、窒化物半導体層4は窒化物半導体結晶の選択成長により形成されるため、窒化物半導体層4中の転位密度が低減され、結晶品質が向上する。なお、このような選択成長を用いた結晶成長方法はELO(Epitaxial Lateral Overgrowth)などと呼ばれる。  
 窒化物半導体層4から誘電体層3に入射する光の波長によって、透過率を向上させるための誘電体層3の厚さが決定される。誘電体層3の厚さはこの波長よりも大きいことが望ましい。例えば、誘電体層3がSiN層である結晶積層構造体1を用いて、発光波長が400nm程度である発光層が窒化物半導体層4に含まれる発光素子を形成する場合、誘電体層3の厚さが0.5μm以上であることが好ましい。
 結晶積層構造体1においては、窒化物半導体層4と誘電体層3の間では、誘電体層3の凹凸形状のため光が透過しやすい。また、誘電体層3とGa23基板2との間では、誘電体層3とGa23基板2の屈折率の差が小さいため光が透過しやすい。このため、結晶積層構造体1における窒化物半導体層4とGa23基板2の間の光の透過率が高い。
(結晶積層構造体の製造方法)
 以下に、本実施の形態の結晶積層構造体の製造工程の一例として、誘電体層3がSiN層である場合の製造工程の例について説明する。
 図2A~2Dは、第1の実施の形態に係る結晶積層構造体の製造工程を表す垂直断面図である。
 まず、CMP(Chemical Mechanical Polishing)処理されたGa23基板2に有機洗浄、SPM(Sulfuric acid/ hydrogen peroxide mixture)洗浄、及びHF液による洗浄を施す。  
 次に、MOCVD(Metal Organic Chemical Vapor Deposition)装置のチャンバー内にGa23基板2を搬送する。  
 次に、図2Aに示されるように、Ga23基板2上に膜状の誘電体層3を形成する。この膜状の誘電体層3は、チャンバー内の温度を300~350℃に保持した状態で、Siの原料としてのSiH4、Nの原料としてのNH3ガス、及び雰囲気ガスとしてのN2ガスをチャンバー内に供給して、SiNをGa23基板2上に体積させることにより形成される。この段階では、誘電体層3はほぼ均一の1μm程度の厚さを有する膜である。なお、それぞれの元素の原料は上記のものに限られない。
 次に、図2Bに示されるように、誘電体層3上にレジストパターン5を形成する。レジストパターン5のパターン形状は、例えば、ドットの直径が2μm、ピッチが3μmのドットパターンである。また、ホールパターン、ラインアンドスペースパターン等の他のパターンであってもよい。レジストパターン5は、例えば、フォトリソグラフィにより形成される。
 次に、図2Cに示されるように、レジストパターン5をマスクとして誘電体層3にBHF(バッファドフッ酸)によりエッチングを施し、レジストパターン5のパターンを誘電体層3に転写する。
 次に、図2Dに示されるように、残ったレジストパターン5を除去する。その後、Nの原料としてのNH3ガス、Gaの原料としてのトリメチルガリウム(TMG)ガス、Alの原料としてのトリメチルアルミニウム(TMA)ガス、及びInの原料としてのトリメチルインジウム(TMI)ガスをチャンバー内に供給して、窒化物半導体結晶であるAlxGayInzN結晶をGa23基板2上に選択成長させ、窒化物半導体層4を形成する。これにより、結晶積層構造体1が得られる。
 以下に、窒化物半導体層4がAlGaInN系結晶からなるバッファ層とその上のGaN層からなる場合の具体的な製造方法の例を示す。まず、有機洗浄及びSPM洗浄によりGa23基板2及び誘電体層3からなる構造体の表面を清浄化し、MOCVD装置に投入する。次に、Nの原料としてNH3、Gaの原料としてトリメチルガリウム(TMG)、Alの原料としてトリメチルアルミニウム(TMA)、Inの原料としてトリメチルインジウム(TMI)、n型不純物としてSiを用いて、基板表面の温度を500℃付近に保持して、低温AlGaNバッファ層を形成する。その後、基板表面の温度を1000℃付近にまで上昇させて初期n-GaN核の形成を行い、そのまま2μmほど成長させる。そして基板表面を1100℃付近まで上昇させて、厚さ2μmのn-GaN層を形成し、窒化物半導体層4を得る。
(結晶積層構造体の特性)
 図3Aは、第1の実施の形態に係る結晶積層構造体の窒化物半導体層形成前のSEM(Scanning Electron Microscope)写真であり、図3B、3Cは、窒化物半導体層形成後のSEM写真である。  
 図3AはGa23基板2と誘電体層3としてのSiN層を示しており、図3B、3Cは窒化物半導体層4としての上面の面方位が(002)であるGaN層を示している。
 図4Aは、比較例に係る結晶積層構造体の窒化物半導体層形成前のSEM写真であり、図4B、4Cは、窒化物半導体層形成後のSEM写真である。
 図4に示される比較例に係る結晶積層構造体は、誘電体層3が形成される代わりに、Ga23基板2の上面が凹凸加工されている。図4Aは上面が凹凸加工されたGa23基板2を示しており、図4B、4Cは本実施の形態の窒化物半導体層4に対応する上面の面方位が(002)であるGaN層を示している。
 図3A及び図4Aは、Ga23基板2の上面を斜め上方から写した写真である。図3Aの円錐台形状の物体は、誘電体層3を構成するドットパターンに形成されたSiNである。図4Aの円錐台形状の物体は、ドットパターンに加工されたGa23基板2の上面の凸部分である。
 図3B、3Cは、本実施の形態に係る窒化物半導体層4の上面が平坦であり、窒化物半導体層4の結晶品質が高いことを示している。一方、図4B、4Cに示される色の濃い部分は結晶の異常成長した部分であり、比較例の窒化物半導体層の結晶品質が悪いことがわかる。この結果は、Ga23基板2の上面に凹凸パターンを形成するよりも、Ga23基板2の平坦な上面上に誘電体層3を形成した方が、異常成長することなく結晶品質の高い窒化物半導体層が得られることを表している。
 図5は、第1の実施の形態及び比較例に係る結晶積層構造体の窒化物半導体層のX線ロッキングカーブの半値幅を示すグラフである。
 図5に示される比較例に係る結晶積層構造体は、第1の実施の形態に係る結晶積層構造体1と異なり、誘電体層3を含まず、Ga23基板2と窒化物半導体層のみから構成される。
 図5に係る測定に用いられた第1の実施の形態の誘電体層3はSiN層である。また、第1の実施の形態の窒化物半導体層4、比較例の窒化物半導体層は、いずれも、GaN結晶からなり、上面の面方位が(002)である。
 図5の左側の「誘電体層あり」が第1の実施の形態に係る結晶積層構造体1の測定値であり、右側の「誘電体層なし」が比較例に係る結晶積層構造体の測定値である。
 図5には、(002)面、および(002)面に垂直な(101)面のX線ロッキングカーブの半値幅がそれぞれマーク"□"、"◇"で示されている。(002)面のX線ロッキングカーブの半値幅は、窒化物半導体層の上面に平行な面の配向を評価し、(101)面のX線ロッキングカーブの半値幅は、窒化物半導体層の上面に垂直な面の配向を評価することができる。
 図5に示されるように、(002)面のX線ロッキングカーブの半値幅、(101)面のX線ロッキングカーブの半値幅ともに、誘電体層3を有さない比較例に係る結晶積層構造体よりも誘電体層3を有する第1の実施の形態に係る結晶積層構造体1において狭くなり、とくに(101)面においては顕著である。この結果は、誘電体層3を設けることにより、窒化物半導体層の結晶品質が向上することを表している。
 図6は、第1の実施の形態及び比較例に係る結晶積層構造体の誘電体層がSiN層である場合の縦方向(垂直方向)の電流-電圧特性を示すグラフである。図6の横軸は電圧(V)、縦軸は電流密度(A/cm2)を示す。
 図6に係る測定に用いられた第1の実施の形態の誘電体層3はSiN層である。誘電体層3がSiN層である場合に、特に優れた結晶積層構造体1の縦方向(垂直方向)の電流-電圧特性が得られることが確認されている。
 図6に示される比較例に係る結晶積層構造体は、第1の実施の形態に係る結晶積層構造体1と異なり、SiN層である誘電体層3を含まず、Ga23基板と窒化物半導体層のみから構成される。また、第1の実施の形態の窒化物半導体層4、比較例の窒化物半導体層は、いずれも、GaN結晶からなり、上面の面方位が(002)である。
 図6の「SiN層あり」が第1の実施の形態に係る結晶積層構造体1の測定値であり、「SiN層なし」が比較例に係る結晶積層構造体の測定値である。
 図6に示される電流-電圧特性は、Ga23基板と窒化物半導体層の表面にそれぞれ電極を接続し、結晶積層構造体の縦方向に電圧を印加して測定した。図7に、結晶積層構造体1のGa23基板2と窒化物半導体層4に電極を接続した様子を示す。Ga23基板2と窒化物半導体層4に、それぞれ電極6a、6bを接続した。比較例に係る結晶積層構造体へも、同様に電極を接続した。
 図6は、SiN層である誘電体層3を有さない比較例に係る結晶積層構造体においては、Ga23基板2と窒化物半導体層との界面に電位障壁が存在し、一方、SiN層である誘電体層3を有する第1の実施の形態に係る結晶積層構造体1においては、Ga23基板2と窒化物半導体層4との界面に電位障壁が存在せず、Ga23基板2と窒化物半導体層4とがオーミック接合していることを示している。この結果は、SiN層である誘電体層3を設けることにより、結晶積層構造体1の縦方向の電気抵抗が低減することを示している。
 上記の図3、図5、図6の写真又は測定に用いられた第1の実施の形態に係るSiN層である誘電体層3は、プラズマCVD装置(PD-220/サムコ(株)製)により、SiH4ガス、NH3ガス、N2ガスをプロセスガスとして用いて、300℃の成膜温度で形成され、屈折率は1.89であった。
(第1の実施の形態の効果)
 第1の実施の形態によれば、誘電体層3が形成されたGa23基板2の上面上に窒化物半導体層4を形成することにより、窒化物半導体層4とGa23基板2の間の光の透過率を向上させることができる。また、窒化物半導体層4の結晶品質を向上させ、特に誘電体層3がSiN層である場合は、Ga23基板2と窒化物半導体層4をオーミック接合させることができる。また、窒化物半導体層4がGaN層である場合は、本実施の形態により結晶品質を向上させることができる。
〔第2の実施の形態〕
(発光素子の構造)
 第2の実施の形態は、第1の実施の形態の結晶積層構造体1を含む発光素子についての形態である。以下に、その発光素子の一例について説明する。
 図8は、第2の実施の形態に係る発光素子の垂直断面図である。発光素子100は、Ga23基板12と、Ga23基板12上の誘電体層13と、誘電体層13上のn型クラッド層14と、n型クラッド層14上の発光層15と、発光層15上のp型クラッド層16と、p型クラッド層16上のコンタクト層17と、コンタクト層17上のp型電極18と、Ga23基板12の誘電体層13と反対側の面上のn型電極19とを有するLED素子である。
 Ga23基板12及び誘電体層13は、それぞれ第1の実施の形態のGa23基板2、誘電体層3に相当する。また、n型クラッド層14が窒化物半導体結晶からなるため、少なくともn型クラッド層14が第1の実施の形態の窒化物半導体層4に相当する。n型クラッド層14上の層が窒化物半導体結晶からなる場合は、n型クラッド層14及びその上の窒化物半導体結晶からなる層が窒化物半導体層4に相当する。例えば、n型クラッド層14、発光層15、p型クラッド層16、及びコンタクト層17が窒化物半導体結晶からなる場合は、これら全てが窒化物半導体層4に相当する。
 発光素子100は、垂直駆動型の発光素子であり、動作時にGa23基板12及び窒化物半導体層4に相当する上記の層に通電する。
 発光素子100は、第1の実施の形態に係る結晶積層構造体1を用いて形成されるため、Ga23基板2に相当するGa23基板12と窒化物半導体層4に相当するn型クラッド層14を含む層との間の光の透過率が高い。このため、発光素子100がGa23基板12側から光を取り出すフェイスダウン型の発光素子である場合、発光層15から発せられてGa23基板12に向かう光を効率よく透過させ、高い光出力を得ることができる。
 また、発光素子100がコンタクト層17側から光を取り出すフェイスアップ型の発光素子である場合、発光層15から発せられてGa23基板12に向かう光がn型クラッド層14とGa23基板12との界面で反射し、発光層15等に吸収されることを抑制できる。これにより、高い光出力を得ることができる。
(発光素子の特性)
 以下に、本実施の形態に係る発光素子100の電流-電圧特性、及び光出力特性を比較例に係る発光素子の特性と比較して説明する。
 これらの電流-電圧特性、及び光出力特性の測定に用いた発光素子100の具体的な構成を次に示す。
 Ga23基板12は、厚さが400μm、上面の面方位が(-201)のn型のβ-Ga23基板である。誘電体層13は、厚さが1μm、屈折率が1.89、被覆率(Ga23基板12の上面の窒化物半導体層14の直下の領域を誘電体層13が被覆する割合)が15%のSiN層である。n型クラッド層14は、厚さ6μmのn型のGaN結晶膜である。発光層15は、厚さ2.8nmのGaN結晶膜と厚さ12nmのInGaN結晶膜とを交互に積層して形成される、7層のGaN結晶膜と7層のInGaN結晶膜で構成される層である。p型クラッド層16は、厚さ0.2μmのp型のGaN結晶膜である。コンタクト層17は、厚さ0.15μmのp型のGaN結晶膜である。
 比較例に係る発光素子の構成は、発光素子100の構成から誘電体層13を省いたものである。
 図9は、第2の実施の形態及び比較例に係る誘電体層がSiN層である場合の発光素子の縦方向の電流-電圧特性を示すグラフである。図9の横軸は電圧(V)、縦軸は電流(mA)を示す。
 図9に係る測定に用いられた第2の実施の形態の誘電体層13はSiN層である。誘電体層13がSiN層である場合に、特に優れた発光素子100の縦方向(垂直方向)の電流-電圧特性が得られることが確認されている。
 図9に示されるように、SiN層である誘電体層13を有する本実施の形態に係る発光素子100の方が、SiN層である誘電体層13を有さない比較例に係る発光素子よりも、特定の電流を流すために必要な電圧が小さい。この結果は、SiN層である誘電体層13を設けることにより、発光素子の駆動電圧を低減できることを表している。
 図10は、第2の実施の形態及び比較例に係る発光素子の光出力特性を示すグラフである。図10の横軸は発光波長(nm)、縦軸は光出力(任意単位)を示す。この測定では、発光素子100のp型電極18側をマウントに実装し、全光束測定を行った。
 図10は、誘電体層13を有する本実施の形態に係る発光素子100の方が、誘電体層13を有さない比較例に係る発光素子よりも、光出力が大きいことを示している。この結果は、誘電体層13を設けることにより、発光素子の光出力を向上できることを示している。
 以上の結果は、誘電体層13を設けることにより、窒化物半導体層4に相当するn型クラッド層14、発光層15、p型クラッド層16、及びコンタクト層17の結晶品質が向上したこと、Ga23基板12とn型クラッド層14との界面の反射率が低減したこと等によるものと考えられる。また、誘電体13としてSiN層を用いているために、Ga23基板12とn型クラッド層14がオーミック接合することも大きく寄与している。
 図11は、光学シミュレーションにより求めた誘電体層の材料と発光素子の光取出効率の関係の一例を表すグラフである。
 この光学シミュレーションにおいては、Ga23基板12の屈折率が1.9であり、誘電体層13に対応する誘電体層が直径2μm、ピッチ3μm、高さ1μmのドットパターンから構成され、発光層から発せられた光をGa23基板12側から取り出すものとした。ここで、誘電体層として、SiO2層(n=1.46)、SiN層(n=1.9)、及びZnO層(n=2.2)を用いた。このうち、SiN層のみが本実施の形態の誘電体層13の屈折率の条件を満たす。
 図11の光取出効率は、本実施の形態の発光素子100において、誘電体層13の代わりに同じ形状の凹凸をGa23基板12の表面に形成した場合の光取出効率を基準として規格化したものである。ただし、この基準となる光取出効率は、表面に凹凸が形成されたGa23基板12上に結晶品質のよいn型クラッド層14、発光層15、p型クラッド層16、及びコンタクト層17が形成されたと仮定した場合の理論値である。実際には、図4を用いて説明したように、表面に凹凸が形成されたGa23基板上に結晶品質のよい窒化物半導体層を形成することは困難であるため、結晶品質のよいn型クラッド層14、発光層15、p型クラッド層16、及びコンタクト層17を得ることは困難である。
 図11は、誘電体層13の屈折率の条件を満たすSiN層を誘電体層として用いた場合に、最も光取出効率が高くなることを示している。
 また、光学シミュレーションによれば、誘電体層の屈折率が1.75以上かつ2.05以下であるとき、すなわちGa23基板12との屈折率差が0.15以下であるときに、光取出効率が基準値のおよそ98.5%以上になることが求まる。
(第2の実施の形態の効果)
 第2の実施の形態によれば、窒化物半導体層4の結晶品質が高く、Ga23基板2と窒化物半導体層4がオーミック接合した第1の実施の形態の結晶積層構造体1を用いることにより、光出力が高く、かつ駆動電圧が低い発光素子100を得ることができる。
 以上、本発明の実施の形態を説明したが、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。
 また、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
 光出力が高い発光素子を実現することのできる、Ga23基板と窒化物半導体層とを有する結晶積層構造体、及びその結晶積層構造体を含む発光素子を提供する。
1…結晶積層構造体、 2、12…Ga23基板、 3、13…誘電体層、 4…窒化物半導体層、 100…発光素子

Claims (6)

  1.  Ga23基板と、
     前記Ga23基板上に、前記Ga23基板の上面を部分的に覆うように形成された、前記Ga23基板との屈折率の差が0.15以下である誘電体層と、
     前記Ga23基板上に前記誘電体層を介して形成され、前記誘電体層、及び前記Ga23基板の上面の前記誘電体層に覆われていない部分に接触する窒化物半導体層と、
     を有する結晶積層構造体。
  2.  前記誘電体層がSiNを主成分とするSiN層である、
     請求項1に記載の結晶積層構造体。
  3.  前記窒化物半導体層がGaN層である、
     請求項1又は2に記載の結晶積層構造体。
  4.  前記窒化物半導体層の上面の面方位が(002)である、
     請求項3に記載の結晶積層構造体。
  5.  前記誘電体層の厚さが0.5μm以上である、
     請求項1又は2に記載の結晶積層構造体。
  6.  請求項1又は2に記載の結晶積層構造体を含み、
     前記Ga23基板及び前記窒化物半導体層に通電する発光素子。
PCT/JP2013/084683 2013-01-11 2013-12-25 結晶積層構造体及び発光素子 WO2014109233A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/759,178 US20150364646A1 (en) 2013-01-11 2013-12-25 Crystal layered structure and light emitting element
EP13870949.8A EP2945187A4 (en) 2013-01-11 2013-12-25 CRYSTAL SHIELD STRUCTURE AND LIGHT-EMITTING ELEMENT
KR1020157021449A KR20150104199A (ko) 2013-01-11 2013-12-25 결정 적층 구조체 및 발광 소자
CN201380068787.9A CN104885195B (zh) 2013-01-11 2013-12-25 晶体层叠结构体和发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013003941A JP5865271B2 (ja) 2013-01-11 2013-01-11 結晶積層構造体及び発光素子
JP2013-003941 2013-01-11

Publications (1)

Publication Number Publication Date
WO2014109233A1 true WO2014109233A1 (ja) 2014-07-17

Family

ID=51166890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084683 WO2014109233A1 (ja) 2013-01-11 2013-12-25 結晶積層構造体及び発光素子

Country Status (7)

Country Link
US (1) US20150364646A1 (ja)
EP (1) EP2945187A4 (ja)
JP (1) JP5865271B2 (ja)
KR (1) KR20150104199A (ja)
CN (1) CN104885195B (ja)
TW (1) TW201434174A (ja)
WO (1) WO2014109233A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143622A (ja) * 2015-02-04 2016-08-08 株式会社タムラ製作所 Led照明装置、投光器及びヘッドライト
JP6811646B2 (ja) * 2017-02-28 2021-01-13 株式会社タムラ製作所 窒化物半導体テンプレート及びその製造方法
GB201705755D0 (en) * 2017-04-10 2017-05-24 Norwegian Univ Of Science And Tech (Ntnu) Nanostructure
JP6991503B2 (ja) * 2017-07-06 2022-01-12 株式会社タムラ製作所 ショットキーバリアダイオード

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3595277B2 (ja) 2001-03-21 2004-12-02 三菱電線工業株式会社 GaN系半導体発光ダイオード
WO2012093601A1 (ja) * 2011-01-07 2012-07-12 三菱化学株式会社 エピタキシャル成長用基板およびGaN系LEDデバイス
WO2012137781A1 (ja) * 2011-04-08 2012-10-11 株式会社タムラ製作所 半導体積層体及びその製造方法、並びに半導体素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3966207B2 (ja) * 2003-03-28 2007-08-29 豊田合成株式会社 半導体結晶の製造方法及び半導体発光素子
JP2006253172A (ja) * 2005-03-08 2006-09-21 Toshiba Corp 半導体発光素子、半導体発光装置及び半導体発光素子の製造方法
JP5060055B2 (ja) * 2006-02-09 2012-10-31 浜松ホトニクス株式会社 窒化化合物半導体基板及び半導体デバイス
KR101020958B1 (ko) * 2008-11-17 2011-03-09 엘지이노텍 주식회사 산화갈륨기판 제조방법, 발광소자 및 발광소자 제조방법
JP5529420B2 (ja) * 2009-02-09 2014-06-25 住友電気工業株式会社 エピタキシャルウエハ、窒化ガリウム系半導体デバイスを作製する方法、窒化ガリウム系半導体デバイス、及び酸化ガリウムウエハ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3595277B2 (ja) 2001-03-21 2004-12-02 三菱電線工業株式会社 GaN系半導体発光ダイオード
WO2012093601A1 (ja) * 2011-01-07 2012-07-12 三菱化学株式会社 エピタキシャル成長用基板およびGaN系LEDデバイス
WO2012137781A1 (ja) * 2011-04-08 2012-10-11 株式会社タムラ製作所 半導体積層体及びその製造方法、並びに半導体素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2945187A4

Also Published As

Publication number Publication date
JP2014135450A (ja) 2014-07-24
JP5865271B2 (ja) 2016-02-17
TW201434174A (zh) 2014-09-01
KR20150104199A (ko) 2015-09-14
CN104885195B (zh) 2018-01-16
US20150364646A1 (en) 2015-12-17
EP2945187A1 (en) 2015-11-18
CN104885195A (zh) 2015-09-02
EP2945187A4 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP4307113B2 (ja) 半導体発光素子およびその製造方法
KR101646064B1 (ko) 질화물 반도체 발광 소자의 제조 방법, 웨이퍼, 질화물 반도체 발광 소자
JP5468709B2 (ja) 窒化物半導体発光素子、光源及びその製造方法
TWI437732B (zh) 半導體發光元件
JP2001160627A (ja) Iii族窒化物系化合物半導体発光素子
JP2003152220A (ja) 半導体発光素子の製造方法および半導体発光素子
KR20010110430A (ko) 질화물 반도체 소자 및 그 제조방법
WO2015146069A1 (ja) 発光ダイオード素子
JP2009021349A (ja) 半導体発光素子の製造方法及び半導体発光素子
TW201411699A (zh) 磊晶晶圓及其製造方法、紫外發光元件
JP5401145B2 (ja) Iii族窒化物積層体の製造方法
JP2009117641A (ja) 半導体発光素子
JP2018513557A (ja) 紫外線発光素子
JP6654069B2 (ja) 半導体発光素子及びその製造方法
JP2009071174A (ja) 半導体発光素子
JP5865271B2 (ja) 結晶積層構造体及び発光素子
JP5873260B2 (ja) Iii族窒化物積層体の製造方法
TW200847564A (en) Semiconductor laser diode
JP2009021346A (ja) 半導体発光素子
JP7227463B2 (ja) 発光素子及びその製造方法
TW202234479A (zh) 半導體基板、半導體基板之製造方法、半導體基板之製造裝置、電子零件及電子機器
JP2011082248A (ja) 半導体発光素子及びその製造方法、並びにランプ
JP2007161525A (ja) 半導体装置用基材およびその製造方法
JP2009212343A (ja) 窒化物半導体素子および窒化物半導体素子の製造方法
JP4897285B2 (ja) 半導体装置用基材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870949

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14759178

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013870949

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157021449

Country of ref document: KR

Kind code of ref document: A