WO2012137781A1 - 半導体積層体及びその製造方法、並びに半導体素子 - Google Patents

半導体積層体及びその製造方法、並びに半導体素子 Download PDF

Info

Publication number
WO2012137781A1
WO2012137781A1 PCT/JP2012/059090 JP2012059090W WO2012137781A1 WO 2012137781 A1 WO2012137781 A1 WO 2012137781A1 JP 2012059090 W JP2012059090 W JP 2012059090W WO 2012137781 A1 WO2012137781 A1 WO 2012137781A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
layer
buffer layer
aln buffer
substrate
Prior art date
Application number
PCT/JP2012/059090
Other languages
English (en)
French (fr)
Inventor
慎九郎 佐藤
倉又 朗人
嘉克 森島
飯塚 和幸
Original Assignee
株式会社タムラ製作所
株式会社光波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所, 株式会社光波 filed Critical 株式会社タムラ製作所
Priority to KR20137029387A priority Critical patent/KR20140030180A/ko
Priority to DE201211001618 priority patent/DE112012001618T5/de
Priority to JP2013508883A priority patent/JP5596222B2/ja
Priority to US14/110,417 priority patent/US9153648B2/en
Priority to CN201280016886.8A priority patent/CN103503148A/zh
Publication of WO2012137781A1 publication Critical patent/WO2012137781A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7789Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface the two-dimensional charge carrier gas being at least partially not parallel to a main surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8122Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8128Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate with recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a semiconductor laminate, a manufacturing method thereof, and a semiconductor element.
  • Patent Document 1 a semiconductor element including a semiconductor laminate including a Ga 2 O 3 substrate, an AlN buffer layer, and a GaN layer is known (see, for example, Patent Document 1).
  • the AlN buffer layer is formed to a thickness of 10 to 30 nm by growing an AlN crystal on a Ga 2 O 3 substrate.
  • the GaN layer is formed by growing a GaN crystal on the AlN buffer layer, and contains Si as a donor.
  • an object of the present invention is to provide a semiconductor laminate having a low electrical resistance in the thickness direction, a method for manufacturing the same, and a semiconductor element including the semiconductor laminate.
  • One embodiment of the present invention provides a semiconductor stacked body of [1] to [9], a [10] semiconductor element, and a method of manufacturing a semiconductor stacked body of [11] to [13] in order to achieve the above object. To do.
  • a Ga 2 O 3 substrate whose main surface is a plane on which oxygen is arranged in a hexagonal lattice, an AlN buffer layer on the Ga 2 O 3 substrate, and a nitride semiconductor layer on the AlN buffer layer Semiconductor stack.
  • a Ga 2 O 3 substrate whose main surface is a plane on which oxygen is arranged in a hexagonal lattice, an AlN buffer layer on the Ga 2 O 3 substrate, and a nitride semiconductor layer on the AlN buffer layer
  • a semiconductor element including a semiconductor stacked body and energized in a thickness direction of the semiconductor stacked body.
  • a step of forming an AlN buffer layer by epitaxially growing an AlN crystal under a temperature condition of 500 ° C. or less on a Ga 2 O 3 substrate whose main surface is a plane on which oxygen is arranged in a hexagonal lattice, and the AlN buffer layer And a step of growing a nitride semiconductor crystal thereon to form a nitride semiconductor layer.
  • the present invention it is possible to provide a semiconductor stacked body having a low electrical resistance in the thickness direction, a method for manufacturing the same, and a semiconductor element including the semiconductor stacked body.
  • a semiconductor stacked body having a low electrical resistance in the thickness direction which is composed of a Ga 2 O 3 substrate, an AlN buffer layer, and a nitride semiconductor layer such as a GaN layer.
  • the inventors have formed an AlN buffer layer by epitaxially growing an AlN crystal on a Ga 2 O 3 substrate having a specific surface as a main surface, so that even if the AlN buffer layer is thin, the surface is specular. It has been found that nitride semiconductor crystals such as GaN crystals can be epitaxially grown. By reducing the thickness of the AlN buffer layer, the electrical resistance in the thickness direction of the semiconductor stacked body can be greatly reduced.
  • a high-performance semiconductor element can be formed by using a semiconductor stacked body having a low electric resistance in the thickness direction.
  • FIG. 1A is a cross-sectional view of the semiconductor stacked body according to the first embodiment.
  • the semiconductor stacked body 1 includes a Ga 2 O 3 substrate 2, an AlN buffer layer 3, and a nitride semiconductor layer 4.
  • the Ga 2 O 3 substrate 2 is made of ⁇ -Ga 2 O 3 single crystal.
  • the Ga 2 O 3 substrate 2 is a substrate whose principal surface is a surface in which oxygen is arranged in a hexagonal lattice, that is, any one of (101), ( ⁇ 201), (301), and (3-10). .
  • the AlN buffer layer 3 is thin (for example, 10 nm or less)
  • a nitride semiconductor crystal having a flat surface can be grown on the AlN buffer layer 3 to form the nitride semiconductor layer 4.
  • the main surface of the Ga 2 O 3 substrate 2 is more preferably (101).
  • the GaN crystal epitaxially grown on the AlN buffer layer grows in a hexagonal hillock shape.
  • the crystal surface does not become a mirror surface.
  • the AlN buffer layer 3 is formed by epitaxially growing an AlN crystal on the Ga 2 O 3 substrate 2 by MOCVD (Metal Organic Chemical Vapor Deposition) method or the like.
  • the growth temperature of the AlN crystal is 350 to 600 ° C., and particularly preferably 380 to 500 ° C.
  • the thickness of the AlN buffer layer 3 is 1 to 5 nm (1 nm or more and 5 nm or less), more preferably 2 to 3 nm.
  • a nitride semiconductor crystal such as a GaN crystal constituting the nitride semiconductor layer 4 grows in a hexagonal hillock shape, and the surface does not become a mirror surface.
  • the electrical resistance in the thickness direction of the semiconductor stacked body 1 increases.
  • the thickness is 2 to 3 nm, the electrical resistance in the thickness direction of the semiconductor stacked body 1 is low, and the surface of the nitride semiconductor crystal grown on the AlN buffer layer 3 becomes a mirror surface relatively easily.
  • the crystal quality of the nitride semiconductor layer 4 is improved as the thickness of the AlN buffer layer 3 is reduced.
  • the nitride semiconductor layer 4 having a sufficient crystal quality can be formed.
  • the nitride semiconductor layer 4 is formed by epitaxially growing a nitride semiconductor crystal such as a GaN crystal on the AlN buffer layer 3 while adding a conductivity type impurity such as Si on the AlN buffer layer 3 by MOCVD or the like.
  • a nitride semiconductor crystal such as a GaN crystal
  • the growth temperature is, for example, 800 to 1100 ° C.
  • the thickness of the nitride semiconductor layer 4 is 2 ⁇ m, for example.
  • the Si concentration of the nitride semiconductor layer 4 is, for example, 2 ⁇ 10 18 / cm 3 .
  • the nitride semiconductor layer 4 of the semiconductor stacked body 1 may include a Si high concentration region 4a in the vicinity of the surface on the AlN buffer layer 3 side.
  • the electrical resistance in the thickness direction of the semiconductor stacked body 1 can be further reduced.
  • the Si high concentration region 4 a is formed by increasing the amount of Si added in the initial stage of growth of the nitride semiconductor crystal on the AlN buffer layer 3.
  • the Si concentration in the high Si concentration region 4a is higher than the Si concentration in the other regions 4b.
  • the Si concentration in the Si high concentration region 4a is 5 ⁇ 10 18 / cm 3 or more, and particularly preferably 1 ⁇ 10 19 / cm 3 or more.
  • the thickness of the Si high concentration region 4a is preferably 2 nm or more.
  • FIG. 2 is a cross-sectional view of a vertical FET, which is a semiconductor element according to the second embodiment.
  • the vertical FET 10 includes a semiconductor laminate 1 including a Ga 2 O 3 substrate 2, an AlN buffer layer 3, and an n + -GaN layer 15 that is a nitride semiconductor layer, and a surface of the n + -GaN layer 15 (in FIG. 2).
  • the GaN-based vertical FET 14 formed on the upper surface), the gate electrode 11 and the source electrode 12 formed on the GaN-based vertical FET 14, and the surface of the Ga 2 O 3 substrate 2 (the lower side in FIG. 2)
  • a drain electrode 13 formed on the surface).
  • the vertical FET 10 is an example of a vertical FET that can be formed using the semiconductor stacked body 1.
  • a vertical FET having a MIS (Metal Insulator Semiconductor) gate structure including the semiconductor multilayer body 1 of the first embodiment will be described.
  • FIG. 3 is a cross-sectional view of a vertical FET which is a semiconductor element according to the third embodiment.
  • the vertical FET 20 includes a semiconductor laminate 1 including a Ga 2 O 3 substrate 2, an AlN buffer layer 3, and a nitride semiconductor layer 4, and a p formed by introducing a p-type impurity into the nitride semiconductor layer 4. + Region 25, Al 0.2 Ga 0.8 N layer 26 formed on the surface of nitride semiconductor layer 4 (upper surface in FIG.
  • n + region 27 formed by introducing an n-type impurity such as Si into the gate electrode 21, a gate electrode 21 formed on the Al 0.2 Ga 0.8 N layer 26 via a gate insulating film 24, and n Source electrode 22 connected to + region 27 and p + region 25 and drain electrode 23 formed on the surface of Ga 2 O 3 substrate 2 (the lower surface in FIG. 3).
  • the thickness of the nitride semiconductor layer 4 is 6 ⁇ m, and the Si concentration is 1 ⁇ 10 18 / cm 3 .
  • the thickness of the p + region 25 is 1 ⁇ m, and the concentration of the p-type impurity is 1 ⁇ 10 18 / cm 3 .
  • the Al 0.2 Ga 0.8 N layer 26 does not contain impurities.
  • the source electrode 22 and the drain electrode 23 are made of a laminate of a Ti film and an Al film, for example.
  • the gate electrode 21 and the gate insulating film 24 are made of, for example, Al and SiO 2 , respectively.
  • the vertical FET 20 is an example of a vertical FET having a MIS gate structure that can be formed using the semiconductor stacked body 1.
  • FIG. 4 is a cross-sectional view of a vertical FET, which is a semiconductor element according to the fourth embodiment.
  • the vertical FET 30 is stacked on the semiconductor stacked body 1 including the Ga 2 O 3 substrate 2, the AlN buffer layer 3, and the nitride semiconductor layer 4, and the surface of the nitride semiconductor layer 4 (upper surface in FIG. 4).
  • a drain electrode 33 formed on the surface (the lower surface in FIG. 4).
  • the thickness of the nitride semiconductor layer 4 is 6 ⁇ m, and the Si concentration is 1 ⁇ 10 16 / cm 3 .
  • the thickness of the p + -GaN layer 34 is 1 ⁇ m, and the concentration of the p-type impurity is 1 ⁇ 10 18 / cm 3 .
  • the thickness of the n + -GaN layer 35 is 200 nm, and the concentration of the n-type impurity is 1 ⁇ 10 18 / cm 3 .
  • the GaN layer 36 does not contain impurities and has a thickness of, for example, 100 nm.
  • the Al 0.2 Ga 0.8 N layer 37 does not contain impurities and has a thickness of, for example, 30 nm.
  • the source electrode 32 and the drain electrode 33 are made of, for example, a laminate of a Ti film and an Al film.
  • the gate electrode 31 is made of, for example, a stacked body of a Ni film and an Au film.
  • the vertical FET 30 is an example of a vertical FET having a Schottky gate structure that can be formed using the semiconductor stacked body 1.
  • FIG. 5 is a cross-sectional view of a vertical FET, which is a semiconductor element according to the fifth embodiment.
  • the vertical FET 40 is formed on the semiconductor stacked body 1 including the Ga 2 O 3 substrate 2, the AlN buffer layer 3, and the nitride semiconductor layer 4, and the surface of the nitride semiconductor layer 4 (upper surface in FIG. 5). and n - and -GaN layer 44, n - a gate electrode 41 formed on the flat portion of the -GaN layer 44, n - formed through the n + -InAlGaN contact layer 45 on the convex portion of the -GaN layer 44 Source electrode 42 and a drain electrode 43 formed on the surface of Ga 2 O 3 substrate 2 (the lower surface in FIG. 5).
  • the thickness of the nitride semiconductor layer 4 is 6 ⁇ m, and the Si concentration is 1 ⁇ 10 18 / cm 3 .
  • the thickness of the flat portion of the n ⁇ -GaN layer 44 is 3 ⁇ m, and the concentration of the n-type impurity is 1 ⁇ 10 16 / cm 3 .
  • the source electrode 42 is made of, for example, WSi.
  • the drain electrode 43 is made of, for example, a laminate of a Ti film and an Al film.
  • the gate electrode 41 is made of, for example, PdSi.
  • the vertical FET 40 is an example of a vertical FET having a Schottky gate structure that can be formed using the semiconductor stacked body 1.
  • HBT heterojunction bipolar transistor
  • FIG. 6 is a cross-sectional view of an HBT that is a semiconductor element according to the sixth embodiment.
  • the HBT 50 includes a semiconductor stacked body 1 including a Ga 2 O 3 substrate 2, an AlN buffer layer 3, and a nitride semiconductor layer 4, and n stacked on the surface of the nitride semiconductor layer 4 (upper surface in FIG. 6).
  • n is stacked on p + -GaN layer 55 + -Al 0.1 Ga 0.9 n layer 56 and n + -GaN layer 57, p + Formed on the base electrode 51 formed on the ⁇ GaN layer 55, the emitter electrode 52 formed on the n + -GaN layer 57, and the surface of Ga 2 O 3 substrate 2 (the lower surface in FIG. 6).
  • Collector electrode 53 is
  • the thickness of the nitride semiconductor layer 4 is 4 ⁇ m, and the Si concentration is 1 ⁇ 10 18 / cm 3 .
  • the thickness of the n ⁇ -GaN layer 54 is 2 ⁇ m and the concentration of the n-type impurity is 1 ⁇ 10 16 / cm 3 .
  • the thickness of the p + -GaN layer 55 is 100 nm, and the concentration of the p-type impurity is 1 ⁇ 10 18 / cm 3 .
  • the thickness of the n + -Al 0.1 Ga 0.9 N layer 56 is 500 nm, and the concentration of n-type impurities is 1 ⁇ 10 18 / cm 3 .
  • the thickness of the n + -GaN layer 57 is 1 ⁇ m, and the concentration of the n-type impurity is 1 ⁇ 10 18 / cm 3 .
  • the emitter electrode 52 is made of, for example, a laminate of a Ti film and an Al film.
  • the collector electrode 53 is made of, for example, a laminate of a Ti film and an Au film.
  • the base electrode 51 is made of, for example, a stacked body of a Ni film and an Au film.
  • the HBT 50 is an example of a heterojunction bipolar transistor that can be formed using the semiconductor stacked body 1.
  • a Schottky barrier diode (SBD) including the semiconductor multilayer body 1 of the first embodiment will be described.
  • FIG. 7 is a cross-sectional view of an SBD that is a semiconductor element according to the seventh embodiment.
  • the SBD 60 is formed on the semiconductor stacked body 1 including the Ga 2 O 3 substrate 2, the AlN buffer layer 3, and the nitride semiconductor layer 4, and the surface of the nitride semiconductor layer 4 (upper surface in FIG. 7).
  • the thickness of the nitride semiconductor layer 4 is 6 ⁇ m, and the Si concentration is 1 ⁇ 10 18 / cm 3 .
  • the thickness of the n ⁇ -GaN layer 63 is 7 ⁇ m, and the concentration of the n-type impurity is 1 ⁇ 10 16 / cm 3 .
  • the anode electrode 61 is made of, for example, Au.
  • the cathode electrode 62 is made of, for example, a laminate of a Ti film and an Au film.
  • the SBD 60 is an example of a Schottky barrier diode that can be formed using the semiconductor stacked body 1.
  • LED light emitting diode
  • FIG. 8 is a cross-sectional view of an LED which is a semiconductor element according to the eighth embodiment.
  • the LED 70 emits light that is stacked on the semiconductor stacked body 1 including the Ga 2 O 3 substrate 2, the AlN buffer layer 3, and the nitride semiconductor layer 4, and on the surface of the nitride semiconductor layer 4 (upper surface in FIG. 8).
  • an n-electrode 72 formed on the substrate is stacked on the semiconductor stacked body 1 including the Ga 2 O 3 substrate 2, the AlN buffer layer 3, and the nitride semiconductor layer 4, and on the surface of the nitride semiconductor layer 4 (upper surface in FIG. 8).
  • the thickness of the nitride semiconductor layer 4 is 5 ⁇ m, and the Si concentration is 1 ⁇ 10 18 / cm 3 .
  • the nitride semiconductor layer 4 functions as an n-type cladding layer.
  • the light emitting layer 73 includes three pairs of multiple quantum well structures composed of a GaN crystal having a thickness of 8 nm and an InGaN crystal having a thickness of 2 nm.
  • the p-type cladding layer 74 is made of a GaN crystal having an Mg concentration of 5.0 ⁇ 10 19 / cm 3 and has a thickness of 150 nm.
  • the p-type contact layer 75 is made of a GaN crystal having an Mg concentration of 1.5 ⁇ 10 20 / cm 3 and has a thickness of 10 nm.
  • the LED 70 is an example of a light emitting diode that can be formed using the semiconductor laminate 1.
  • a surface on which oxygen is arranged in a hexagonal lattice that is, a surface having any one of (101), ( ⁇ 201), (301), and (3-10) as a main surface.
  • the Si high concentration region 4 a having a Si concentration of 5 ⁇ 10 18 / cm 3 or more in the nitride semiconductor layer 4 can be further reduced. It can. This is considered to be due to the fact that by forming the Si high concentration region 4a having a high Si concentration, electrons tunnel through the potential barrier at the heterointerface, and current flows easily.
  • the electrical resistance in the thickness direction of the semiconductor stacked body can be further reduced.
  • a high-performance vertical semiconductor is formed. An element can be obtained.
  • the semiconductor laminate 1 according to the present embodiment was evaluated.
  • Example 1 a plurality of different semiconductor stacked bodies 1 are formed within the range of 0.5 to 32 nm in thickness of the AlN buffer layer 3, and the thickness of the AlN buffer layer 3 and the thickness direction of the semiconductor stacked body 1 are The relationship of electrical resistance was investigated.
  • the formation process of each semiconductor laminated body 1 is as follows.
  • the Ga 2 O 3 substrate 2 whose main surface is (101) was subjected to organic cleaning and acid cleaning, and then placed in an MOCVD apparatus.
  • the surface of the substrate was nitrided in an ammonia (NH 3 ) atmosphere diluted with nitrogen at a substrate temperature of 550 ° C.
  • the substrate temperature was set to 450 ° C., and trimethylaluminum (TMA) and NH 3 were allowed to flow into the furnace to grow AlN crystals, thereby forming an AlN buffer layer 3 which is a low-temperature AlN buffer layer.
  • TMA trimethylaluminum
  • NH 3 trimethylaluminum
  • the furnace atmosphere is switched to hydrogen, and trimethylgallium (TMG), NH 3 and monosilane (MtSiH 3 ) are flowed into the furnace, and the Si concentration is 2.0 ⁇ 10 18 /
  • TMG trimethylgallium
  • NH 3 trimethylgallium
  • MtSiH 3 monosilane
  • the Si concentration is 2.0 ⁇ 10 18 /
  • a GaN crystal of cm 3 was grown to form a nitride semiconductor layer 4 having a thickness of 2 ⁇ m.
  • electrodes were formed on the surfaces of the Ga 2 O 3 substrate 2 and the nitride semiconductor layer 4 manufactured by the above steps. Then, a voltage was applied between the electrodes, and a voltage drop when the current density was 220 A / cm 2 was measured.
  • FIG. 9 is a graph showing the relationship between the thickness of the AlN buffer layer and the voltage drop when the current density is 220 A / cm 2 .
  • the thinner the thickness of the AlN buffer layer 3 is the smaller the voltage drop is, that is, the electric resistance in the thickness direction of the semiconductor stacked body 1 is lower.
  • the voltage drop is as small as 0.5V.
  • the voltage drop is 0.6 V or less, a high-performance semiconductor element can be manufactured using the semiconductor stacked body 1.
  • the crystal quality of the nitride semiconductor layer 4 made of the GaN crystal manufactured by the above process was evaluated using an X-ray diffractometer. Measurement was performed on the (002) plane and the (101) plane of the GaN crystal constituting the nitride semiconductor layer 4.
  • FIG. 10 is a graph showing the relationship between the thickness of the AlN buffer layer and the half width of the rocking curve of X-ray diffraction.
  • FIG. 10 shows that in both the measurement results for the (002) plane and the (101) plane, the half width is smaller and the crystal quality is higher as the thickness of the AlN buffer layer 3 is smaller.
  • Example 2 the LED70 of the eighth embodiment is formed, and measuring the voltage drop V F forward.
  • an n-type ⁇ -Ga 2 O 3 substrate to which Si was added was prepared as a Ga 2 O 3 substrate 2.
  • the thickness of the ⁇ -Ga 2 O 3 substrate is 400 ⁇ m, and the main surface is (101).
  • an AlN buffer layer 3 was formed on the ⁇ -Ga 2 O 3 substrate by growing 2 nm of AlN crystal at a growth temperature of 450 ° C. using an MOCVD apparatus.
  • a GaN crystal having an Si concentration of 1.0 ⁇ 10 18 / cm 3 was grown to 5 ⁇ m to form a nitride semiconductor layer 4 as an n-type cladding layer.
  • three pairs of multiple quantum well structures composed of a GaN crystal having a thickness of 8 nm and an InGaN crystal having a thickness of 2 nm were formed at a growth temperature of 750 ° C., and a light emitting layer 73 was formed by further growing the GaN crystal by 10 nm.
  • a GaN crystal having an Mg concentration of 5.0 ⁇ 10 19 / cm 3 at a growth temperature of 1000 ° C. was grown to 150 nm to form a p-type cladding layer 74.
  • a GaN crystal having an Mg concentration of 1.5 ⁇ 10 20 / cm 3 was grown to 10 nm at a growth temperature of 1000 ° C., and a p-type contact layer 75 was formed.
  • TMG trimethylgallium
  • TMI trimethylindium
  • SiH 3 CH 3 monomethylsilane
  • Cp2Mg cyclopentadienylmagnesium
  • N source NH 3 ammonia
  • the surface of the LED epitaxial wafer produced as described above was etched from the p-type contact layer 75 side to a position deeper than the light emitting layer 73 using an ICP-RIE apparatus to form a mesa shape.
  • a SiO 2 film was formed on the side surface of the light emitting layer 73 using a sputtering apparatus.
  • electrodes that are ohmic-bonded were formed on the p-type contact layer 75 and the Ga 2 O 3 substrate 2 using a vapor deposition device, and an LED 70 having a light extraction surface on the Ga 2 O 3 substrate 2 side was obtained.
  • an LED having an AlN buffer layer 3 with a thickness of 20 nm was formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)
  • Bipolar Transistors (AREA)

Abstract

【課題】厚さ方向の電気抵抗が低い半導体積層体及びその製造方法、並びにその半導体積層体を含む半導体素子を提供する。 【解決手段】酸素が六角格子配置された面を主面とするGa基板2と、Ga基板2上のAlNバッファ層3と、AlNバッファ層3上の窒化物半導体層4と、を含む半導体積層体1を提供する。

Description

半導体積層体及びその製造方法、並びに半導体素子
 本発明は、半導体積層体及びその製造方法、並びに半導体素子に関する。
 従来、Ga基板、AlNバッファ層、及びGaN層からなる半導体積層体を含む半導体素子が知られている(例えば、特許文献1参照)。特許文献1によれば、AlNバッファ層はGa基板上にAlN結晶を成長させることにより、10~30nmの厚さに形成される。また、GaN層はAlNバッファ層上にGaN結晶を成長させることにより形成され、ドナーとしてSiを含む。
特開2006-310765号公報
 特許文献1の半導体素子等の、通電方向が縦方向である縦型の素子においては、半導体積層体の厚さ方向の電気抵抗の低減が重要である。
 したがって、本発明の目的は、厚さ方向の電気抵抗が低い半導体積層体及びその製造方法、並びにその半導体積層体を含む半導体素子を提供することにある。
 本発明の一態様は、上記目的を達成するために、[1]~[9]の半導体積層体、[10]半導体素子、及び[11]~[13]の半導体積層体の製造方法を提供する。
[1]酸素が六角格子配置された面を主面とするGa基板と、前記Ga基板上のAlNバッファ層と、前記AlNバッファ層上の窒化物半導体層と、を含む半導体積層体。
[2]前記Ga基板の前記主面は、(101)、(-201)、(301)、(3-10)のいずれかの面である、前記[1]に記載の半導体積層体。
[3]前記Ga基板の前記主面は、(101)である、前記[2]に記載の半導体積層体。
[4]前記AlNバッファ層の厚さは1nm以上5nm以下である、前記[1]~[3]のいずれか1つに記載の半導体積層体。
[5]前記AlNバッファ層の厚さは2nm以上3nm以下である、前記[4]に記載の半導体積層体。
[6]前記窒化物半導体層はGaN層である、前記[1]に記載の半導体積層体。
[7]厚さ方向の電圧降下が0.6V以下である、前記[1]に記載の半導体積層体。
[8]前記窒化物半導体層は、前記AlNバッファ層側の一部の領域にSi濃度が5×1018/cm以上であるSi高濃度領域を有する、前記[1]に記載の半導体積層体。
[9]前記Si高濃度領域の厚さが2nm以上である、前記[8]に記載の半導体積層体。
[10]酸素が六角格子配置された面を主面とするGa基板と、前記Ga基板上のAlNバッファ層と、前記AlNバッファ層上の窒化物半導体層と、を含む半導体積層体を含み、前記半導体積層体の厚さ方向に通電する、半導体素子。
[11]酸素が六角格子配置された面を主面とするGa基板上に、500℃以下の温度条件でAlN結晶をエピタキシャル成長させてAlNバッファ層を形成する工程と、前記AlNバッファ層上に窒化物半導体結晶を成長させて窒化物半導体層を形成する工程と、を含む半導体積層体の製造方法。
[12]前記AlNバッファ層は1nm以上5nm以下の厚さに形成される、前記[11]に記載の半導体積層体の製造方法。
[13]前記窒化物半導体結晶はGaN結晶である、前記[11]又は[12]に記載の半導体積層体の製造方法。
 本発明によれば、厚さ方向の電気抵抗が低い半導体積層体及びその製造方法、並びにその半導体積層体を含む半導体素子を提供することができる。
第1の実施の形態に係る半導体積層体の断面図 第1の実施の形態に係る半導体積層体の断面図 第2の実施の形態に係る縦型FETの断面図 第3の実施の形態に係る縦型FETの断面図 第4の実施の形態に係る縦型FETの断面図 第5の実施の形態に係る縦型FETの断面図 第6の実施の形態に係るHBTの断面図 第7の実施の形態に係るSBDの断面図 第8の実施の形態に係るLEDの断面図 実施例に係るAlNバッファ層の厚さと電圧降下との関係を表すグラフ 実施例に係るAlNバッファ層の厚さとエックス線回折のロッキングカーブの半値幅との関係を表すグラフ
 本実施の形態によれば、Ga基板、AlNバッファ層、及びGaN層等の窒化物半導体層からなる、厚さ方向の電気抵抗が低い半導体積層体を形成することができる。本発明者等は、特定の面を主面とするGa基板上にAlN結晶をエピタキシャル成長させてAlNバッファ層を形成することにより、AlNバッファ層が薄い場合であっても、表面が鏡面であるGaN結晶等の窒化物半導体結晶をエピタキシャル成長させることができることを見いだした。AlNバッファ層を薄くすることにより、半導体積層体の厚さ方向の電気抵抗を大きく低減することができる。
 また、本実施の形態によれば、厚さ方向の電気抵抗が低い半導体積層体を用いることにより、高性能の半導体素子を形成することができる。以下、その実施の形態の一例について詳細に説明する。
〔第1の実施の形態〕
 図1Aは、第1の実施の形態に係る半導体積層体の断面図である。半導体積層体1は、Ga基板2と、AlNバッファ層3と、窒化物半導体層4を含む。
 Ga基板2は、β-Ga単結晶からなる。Ga基板2は、酸素が六角格子配置された面、すなわち、(101)、(-201)、(301)、(3-10)のいずれかの面を主面とする基板である。この場合、AlNバッファ層3が薄い(例えば10nm以下)場合であっても、表面が平坦な窒化物半導体結晶をAlNバッファ層3上に成長させ、窒化物半導体層4を形成することができる。特に、Ga基板2の主面は(101)であることがより好ましい。
 なお、上記の面以外の面、例えば(100)、を主面とするGa基板上に薄いAlNバッファ層を形成すると、AlNバッファ層上にエピタキシャル成長させるGaN結晶は六角ヒロック状に成長し、結晶表面が鏡面にならない。
 AlNバッファ層3は、MOCVD(Metal Organic Chemical Vapor Deposition)法等により、Ga基板2上にAlN結晶をエピタキシャル成長させることにより形成される。AlN結晶の成長温度は、350~600℃であり、特に、380~500℃であることが好ましい。
 AlNバッファ層3の厚さは、1~5nm(1nm以上、5nm以下)であり、より好ましくは2~3nmである。厚さが1nm未満の場合は、窒化物半導体層4を構成するGaN結晶等の窒化物半導体結晶は六角ヒロック状に成長し、表面が鏡面にならない。また、厚さが5nmを超える場合は、半導体積層体1の厚さ方向の電気抵抗が大きくなる。厚さが2~3nmである場合、半導体積層体1の厚さ方向の電気抵抗が低く、かつAlNバッファ層3上に成長する窒化物半導体結晶の表面が比較的容易に鏡面になる。
 また、AlNバッファ層3の厚さが薄いほど、窒化物半導体層4の結晶品質が向上する。例えば、AlNバッファ層3の厚さは、1~5nmである場合には、十分な結晶品質の窒化物半導体層4を形成することができる。
 窒化物半導体層4は、MOCVD法等により、AlNバッファ層3上にGaN結晶等の窒化物半導体結晶をSi等の導電型不純物を添加しつつエピタキシャル成長させることにより形成される。窒化物半導体結晶としてGaN結晶を用いる場合、その成長温度は、例えば、800~1100℃である。窒化物半導体層4の厚さは、例えば、2μmである。窒化物半導体層4のSi濃度は、例えば、2×1018/cmである。
 また、図1Bに示されるように、半導体積層体1の窒化物半導体層4は、AlNバッファ層3側の表面近傍にSi高濃度領域4aを含んでもよい。Si高濃度領域4aが窒化物半導体層4中に形成されることにより、半導体積層体1の厚さ方向の電気抵抗をより低減することができる。
 Si高濃度領域4aは、AlNバッファ層3上での窒化物半導体結晶の成長の初期段階において、Siの添加量を大きくすることにより形成される。
 Si高濃度領域4aのSi濃度は、その他の領域4bのSi濃度よりも高い。Si高濃度領域4aのSi濃度は、5×1018/cm以上であり、特に、1×1019/cm以上であることが好ましい。
 また、半導体積層体1の厚さ方向の電気抵抗をより低減するために、Si高濃度領域4aの厚さは、2nm以上であることが好ましい。
〔第2の実施の形態〕
 第2の実施の形態として、第1の実施の形態の半導体積層体1を含む縦型FET(Field effect transistor)について述べる。
 図2は、第2の実施の形態に係る半導体素子である縦型FETの断面図である。縦型FET10は、Ga基板2、AlNバッファ層3、及び窒化物半導体層であるn-GaN層15を含む半導体積層体1と、n-GaN層15の表面(図2における上側の面)上に形成されたGaN系縦型FET14と、GaN系縦型FET14上に形成されたゲート電極11及びソース電極12と、Ga基板2の表面(図2における下側の面)上に形成されたドレイン電極13と、を含む。
 なお、縦型FET10は、半導体積層体1を用いて形成することのできる縦型FETの一例である。
〔第3の実施の形態〕
 第3の実施の形態として、第1の実施の形態の半導体積層体1を含むMIS(Metal Insulator Semiconductor)ゲート構造の縦型FETについて述べる。
 図3は、第3の実施の形態に係る半導体素子である縦型FETの断面図である。縦型FET20は、Ga基板2、AlNバッファ層3、及び窒化物半導体層4を含む半導体積層体1と、窒化物半導体層4中にp型不純物を導入することにより形成されたp領域25と、窒化物半導体層4の表面(図3における上側の面)上に形成されたAl0.2Ga0.8N層26と、Al0.2Ga0.8N層26中にSi等のn型不純物を導入することにより形成されたn領域27と、Al0.2Ga0.8N層26上にゲート絶縁膜24を介して形成されたゲート電極21と、n領域27及びp領域25に接続されたソース電極22と、Ga基板2の表面(図3における下側の面)上に形成されたドレイン電極23と、を含む。
 ここで、例えば、窒化物半導体層4の厚さは6μmであり、Si濃度は1×1018/cmである。また、例えば、p領域25の厚さは1μmであり、p型不純物の濃度は1×1018/cmである。Al0.2Ga0.8N層26は不純物を含まない。ソース電極22及びドレイン電極23は、例えば、Ti膜とAl膜の積層体からなる。ゲート電極21及びゲート絶縁膜24は、例えば、それぞれAl及びSiOからなる。
 なお、縦型FET20は、半導体積層体1を用いて形成することのできるMISゲート構造の縦型FETの一例である。
〔第4の実施の形態〕
 第4の実施の形態として、第1の実施の形態の半導体積層体1を含むショットキーゲート構造の縦型FETについて述べる。
 図4は、第4の実施の形態に係る半導体素子である縦型FETの断面図である。縦型FET30は、Ga基板2、AlNバッファ層3、及び窒化物半導体層4を含む半導体積層体1と、窒化物半導体層4の表面(図4における上側の面)上に積層されたp-GaN層34、n-GaN層35、GaN層36、及びAl0.2Ga0.8N層37と、Al0.2Ga0.8N層37上に形成されたゲート電極31と、p-GaN層34、n-GaN層35、GaN層36、及びAl0.2Ga0.8N層37に接続されたソース電極32と、Ga基板2の表面(図4における下側の面)上に形成されたドレイン電極33と、を含む。
 ここで、例えば、窒化物半導体層4の厚さは6μmであり、Si濃度は1×1016/cmである。また、例えば、p-GaN層34の厚さは1μmであり、p型不純物の濃度は1×1018/cmである。また、例えば、n-GaN層35の厚さは200nmであり、n型不純物の濃度は1×1018/cmである。GaN層36は不純物を含まず、厚さは、例えば、100nmである。Al0.2Ga0.8N層37は不純物を含まず、厚さは、例えば、30nmである。ソース電極32及びドレイン電極33は、例えば、Ti膜とAl膜の積層体からなる。ゲート電極31は、例えば、Ni膜とAu膜の積層体からなる。
 なお、縦型FET30は、半導体積層体1を用いて形成することのできるショットキーゲート構造の縦型FETの一例である。
〔第5の実施の形態〕
 第5の実施の形態として、第1の実施の形態の半導体積層体1を含む他のショットキーゲート構造の縦型FETについて述べる。
 図5は、第5の実施の形態に係る半導体素子である縦型FETの断面図である。縦型FET40は、Ga基板2、AlNバッファ層3、及び窒化物半導体層4を含む半導体積層体1と、窒化物半導体層4の表面(図5における上側の面)上に形成されたn-GaN層44と、n-GaN層44の平坦部上に形成されたゲート電極41と、n-GaN層44の凸部上にn-InAlGaNコンタクト層45を介して形成されたソース電極42と、Ga基板2の表面(図5における下側の面)上に形成されたドレイン電極43と、を含む。
 ここで、例えば、窒化物半導体層4の厚さは6μmであり、Si濃度は1×1018/cmである。また、例えば、n-GaN層44の平坦部の厚さは3μmであり、n型不純物の濃度は1×1016/cmである。ソース電極42は、例えば、WSiからなる。ドレイン電極43は、例えば、Ti膜とAl膜の積層体からなる。ゲート電極41は、例えば、PdSiからなる。
 なお、縦型FET40は、半導体積層体1を用いて形成することのできるショットキーゲート構造の縦型FETの一例である。
〔第6の実施の形態〕
 第6の実施の形態として、第1の実施の形態の半導体積層体1を含むヘテロ接合バイポーラトランジスタ(HBT)について述べる。
 図6は、第6の実施の形態に係る半導体素子であるHBTの断面図である。HBT50は、Ga基板2、AlNバッファ層3、及び窒化物半導体層4を含む半導体積層体1と、窒化物半導体層4の表面(図6における上側の面)上に積層されたn-GaN層54及びp-GaN層55と、p-GaN層55上に積層されたn-Al0.1Ga0.9N層56及びn-GaN層57と、p-GaN層55上に形成されたベース電極51と、n-GaN層57上に形成されたエミッタ電極52と、Ga基板2の表面(図6における下側の面)上に形成されたコレクタ電極53と、を含む。
 ここで、例えば、窒化物半導体層4の厚さは4μmであり、Si濃度は1×1018/cmである。また、例えば、n-GaN層54の厚さは2μmであり、n型不純物の濃度は1×1016/cmである。また、例えば、p-GaN層55の厚さは100nmであり、p型不純物の濃度は1×1018/cmである。また、例えば、n-Al0.1Ga0.9N層56の厚さは500nmであり、n型不純物の濃度は1×1018/cmである。また、例えば、n-GaN層57の厚さは1μmであり、n型不純物の濃度は1×1018/cmである。エミッタ電極52は、例えば、Ti膜とAl膜の積層体からなる。コレクタ電極53は、例えば、Ti膜とAu膜の積層体からなる。ベース電極51は、例えば、Ni膜とAu膜の積層体からなる。
 なお、HBT50は、半導体積層体1を用いて形成することのできるヘテロ接合バイポーラトランジスタの一例である。
〔第7の実施の形態〕
 第7の実施の形態として、第1の実施の形態の半導体積層体1を含むショットキーバリアダイオード(SBD)について述べる。
 図7は、第7の実施の形態に係る半導体素子であるSBDの断面図である。SBD60は、Ga基板2、AlNバッファ層3、及び窒化物半導体層4を含む半導体積層体1と、窒化物半導体層4の表面(図7における上側の面)上に形成されたn-GaN層63と、n-GaN層63上に形成されたアノード電極61と、Ga基板2の表面(図7における下側の面)上に形成されたカソード電極62と、を含む。
 ここで、例えば、窒化物半導体層4の厚さは6μmであり、Si濃度は1×1018/cmである。また、例えば、n-GaN層63の厚さは7μmであり、n型不純物の濃度は1×1016/cmである。アノード電極61は、例えば、Auからなる。カソード電極62は、例えば、Ti膜とAu膜の積層体からなる。
 なお、SBD60は、半導体積層体1を用いて形成することのできるショットキーバリアダイオードの一例である。
〔第8の実施の形態〕
 第8の実施の形態として、第1の実施の形態の半導体積層体1を含む発光ダイオード(LED)について述べる。
 図8は、第8の実施の形態に係る半導体素子であるLEDの断面図である。LED70は、Ga基板2、AlNバッファ層3、及び窒化物半導体層4を含む半導体積層体1と、窒化物半導体層4の表面(図8における上側の面)上に積層された発光層73、p型クラッド層74、及びp型コンタクト層75と、p型コンタクト層75上に形成されたp電極71と、Ga基板2の表面(図8における下側の面)上に形成されたn電極72と、を含む。
 ここで、例えば、窒化物半導体層4の厚さは5μmであり、Si濃度は1×1018/cmである。窒化物半導体層4は、n型クラッド層として働く。また、例えば、発光層73は、厚さ8nmのGaN結晶と厚さ2nmのInGaN結晶からなる多重量子井戸構造を3ペア含む。また、例えば、p型クラッド層74はMg濃度が5.0×1019/cmのGaN結晶からなり、厚さは150nmである。また、例えば、p型コンタクト層75はMg濃度が1.5×1020/cmのGaN結晶からなり、厚さが10nmである。
 なお、LED70は、半導体積層体1を用いて形成することのできる発光ダイオードの一例である。
(実施の形態の効果)
 第1の実施の形態によれば、酸素が六角格子配置された面、すなわち、(101)、(-201)、(301)、(3-10)のいずれかの面を主面とするGa基板2上にAlN結晶をエピタキシャル成長させてAlNバッファ層3を形成することにより、AlNバッファ層3が薄い場合であっても、表面が鏡面であるGaN結晶等の窒化物半導体結晶をエピタキシャル成長させ、表面が鏡面である窒化物半導体層4を形成することができる。AlNバッファ層3を薄くすることにより、半導体積層体1の厚さ方向の電気抵抗を大きく低減することができる。
 また、Si濃度が5×1018/cm以上であるSi高濃度領域4aを窒化物半導体層4中に形成することにより、半導体積層体1の厚さ方向の電気抵抗をより低減することができる。これは、Si濃度の高いSi高濃度領域4aを形成することにより、電子がヘテロ界面の電位障壁をトンネルし、電流が流れやすくなることによると考えられる。
 また、Si高濃度領域4aの厚さを2nm以上とすることにより、半導体積層体の厚さ方向の電気抵抗をより低減できる。
 また、第2~8の実施の形態によれば、半導体積層体1を含み、通電方向が半導体積層体1の厚さ方向の縦型の半導体素子を形成することにより、高性能の縦型半導体素子を得ることができる。
 以下の実施例1、2に示すように、本実施の形態に係る半導体積層体1の評価を行った。
 実施例1においては、AlNバッファ層3の厚さが0.5~32nmの範囲内で異なる複数の半導体積層体1を形成し、AlNバッファ層3の厚さと半導体積層体1の厚さ方向の電気抵抗の関係を調べた。各半導体積層体1の形成工程は次の通りである。
 まず、主面が(101)であるGa基板2を有機洗浄及び酸洗浄した後、MOCVD装置の中に設置した。次に、窒素希釈したアンモニア(NH)雰囲気中で基板温度を550℃にして表面を窒化した。
 その後、基板温度を450℃にしてトリメチルアルミニウム(TMA)とNHを炉内に流してAlN結晶を成長させ、低温AlNバッファ層であるAlNバッファ層3を形成した。
 基板温度を1050℃まで上昇させた後に、炉内雰囲気を水素に切り替えて、トリメチルガリウム(TMG)とNHとモノシラン(MtSiH)を炉内に流し、Si濃度が2.0×1018/cmであるGaN結晶を成長させ、厚さ2μmの窒化物半導体層4を形成した。
 そして、上記の工程により製造したGa基板2及び窒化物半導体層4の表面上に各々電極を形成した。そして、電極間に電圧を印加し、電流密度が220A/cmであるときの電圧降下を測定した。
 図9は、AlNバッファ層の厚さと電流密度が220A/cmであるときの電圧降下との関係を表すグラフである。図9に示されるように、AlNバッファ層3の厚さが小さいほど電圧降下が小さい、すなわち半導体積層体1の厚さ方向の電気抵抗が低い。特に、AlNバッファ層3の厚さが4nm以下であるときには、電圧降下が0.5Vと非常に小さい。例えば、電圧降下が0.6V以下である場合に、半導体積層体1を用いて高性能な半導体素子を製造することができる。
 また、上記の工程により製造したGaN結晶からなる窒化物半導体層4の結晶品質をエックス線回折装置を用いて評価した。窒化物半導体層4を構成するGaN結晶の(002)面及び(101)面に対して測定を行った。
 図10は、AlNバッファ層の厚さとエックス線回折のロッキングカーブの半値幅との関係を表すグラフである。図10は、(002)面及び(101)面のいずれについての測定結果においても、AlNバッファ層3の厚さが小さいほど半値幅が小さく、結晶品質が高いことを示している。
 実施例2においては、第8の実施の形態のLED70を形成し、順方向の電圧降下Vを測定した。
 まず、Siを添加したn型のβ-Ga基板をGa基板2として用意した。ここで、β-Ga基板の厚さは400μmであり、主面は(101)である。
 次に、β-Ga基板上に、MOCVD装置を用いて成長温度450℃でAlN結晶を2nm成長させてAlNバッファ層3を形成した。次に、Si濃度1.0×1018/cmのGaN結晶を5μm成長させてn型クラッド層としての窒化物半導体層4を形成した。
 次に、成長温度750℃で厚さ8nmのGaN結晶と厚さ2nmのInGaN結晶からなる多重量子井戸構造を3ペア形成し、さらにGaN結晶を10nm成長させて発光層73を形成した。
 次に、成長温度1000℃でMg濃度が5.0×1019/cmのGaN結晶を150nm成長させ、p型クラッド層74を形成した。次に、成長温度1000℃でMg濃度が1.5×1020/cmのGaN結晶を10nm成長させ、p型コンタクト層75を形成した。
 以上の工程において、Ga原料としてTMG(トリメチルガリウム)、In原料としてTMI(トリメチルインジウム)、Si原料としてSiHCH(モノメチルシラン)ガス、Mg原料としてCp2Mg(シクロペンタジエニルマグネシウム)、N原料としてNH(アンモニア)ガスを用いた。
 上記のようにして作製したLEDエピタキシャルウエハ表面を、ICP-RIE装置を用いてp型コンタクト層75側から発光層73より深い位置までエッチングし、メサ形状を形成した。次に、スパッタ装置を用いてSiO膜を発光層73の側面に形成した。更に、蒸着装置を用いてp型コンタクト層75上及びGa基板2上にそれぞれオーミック接合する電極を形成し、光取り出し面がGa基板2側にあるLED70を得た。
 また、比較例として、AlNバッファ層3の厚さが20nmあるLEDを形成した。
 その後、LED70及び比較例のLEDをキャンタイプのステムにAgペーストを用いてそれぞれ実装し、20mAの電流Iが流れるときの電圧降下Vを測定した。その結果、比較例の従来型のLEDの電圧降下Vが4.32Vであったのに対して、LED70の電圧降下Vは3.12Vであり、発光素子として実用可能なレベルの電圧降下Vを示すことが確認された。
 以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
1…半導体積層体、2…Ga基板、3…AlNバッファ層、4…窒化物半導体層、4a…Si高濃度領域、4b…領域、10、20、30、40…縦型FET、50…HBT、60…SBT、70…LED

Claims (13)

  1.  酸素が六角格子配置された面を主面とするGa基板と、
     前記Ga基板上のAlNバッファ層と、
     前記AlNバッファ層上の窒化物半導体層と、
     を含む半導体積層体。
  2.  前記Ga基板の前記主面は、(101)、(-201)、(301)、(3-10)のいずれかの面である、
     請求項1に記載の半導体積層体。
  3.  前記Ga基板の前記主面は、(101)である、
     請求項2に記載の半導体積層体。
  4.  前記AlNバッファ層の厚さは1nm以上5nm以下である、
     請求項1~3のいずれか1つに記載の半導体積層体。
  5.  前記AlNバッファ層の厚さは2nm以上3nm以下である、
     請求項4に記載の半導体積層体。
  6.  前記窒化物半導体層はGaN層である、
     請求項1に記載の半導体積層体。
  7.  厚さ方向の電圧降下が0.6V以下である、
     請求項1に記載の半導体積層体。
  8.  前記窒化物半導体層は、前記AlNバッファ層側の一部の領域にSi濃度が5×1018/cm以上であるSi高濃度領域を有する、
     請求項1に記載の半導体積層体。
  9.  前記Si高濃度領域の厚さが2nm以上である、
     請求項8に記載の半導体積層体。
  10.  酸素が六角格子配置された面を主面とするGa基板と、前記Ga基板上のAlNバッファ層と、前記AlNバッファ層上の窒化物半導体層と、を含む半導体積層体を含み、
     前記半導体積層体の厚さ方向に通電する、
     半導体素子。
  11.  酸素が六角格子配置された面を主面とするGa基板上に、500℃以下の温度条件でAlN結晶をエピタキシャル成長させてAlNバッファ層を形成する工程と、
     前記AlNバッファ層上に窒化物半導体結晶を成長させて窒化物半導体層を形成する工程と、
     を含む半導体積層体の製造方法。
  12.  前記AlNバッファ層は1nm以上5nm以下の厚さに形成される、
     請求項11に記載の半導体積層体の製造方法。
  13.  前記窒化物半導体結晶はGaN結晶である、
     請求項11又は12に記載の半導体積層体の製造方法。
PCT/JP2012/059090 2011-04-08 2012-04-03 半導体積層体及びその製造方法、並びに半導体素子 WO2012137781A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR20137029387A KR20140030180A (ko) 2011-04-08 2012-04-03 반도체 적층체 및 그 제조 방법과 반도체 소자
DE201211001618 DE112012001618T5 (de) 2011-04-08 2012-04-03 Gestapelter Halbleiterkörper, Verfahren zum Herstellen desselben und Halbleiterelement
JP2013508883A JP5596222B2 (ja) 2011-04-08 2012-04-03 半導体積層体及びその製造方法、並びに半導体素子
US14/110,417 US9153648B2 (en) 2011-04-08 2012-04-03 Semiconductor stacked body, method for manufacturing same, and semiconductor element
CN201280016886.8A CN103503148A (zh) 2011-04-08 2012-04-03 半导体层叠体及其制造方法以及半导体元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-086805 2011-04-08
JP2011086805 2011-04-08

Publications (1)

Publication Number Publication Date
WO2012137781A1 true WO2012137781A1 (ja) 2012-10-11

Family

ID=46969177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059090 WO2012137781A1 (ja) 2011-04-08 2012-04-03 半導体積層体及びその製造方法、並びに半導体素子

Country Status (7)

Country Link
US (1) US9153648B2 (ja)
JP (2) JP5596222B2 (ja)
KR (1) KR20140030180A (ja)
CN (1) CN103503148A (ja)
DE (1) DE112012001618T5 (ja)
TW (1) TW201248921A (ja)
WO (1) WO2012137781A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109233A1 (ja) * 2013-01-11 2014-07-17 株式会社タムラ製作所 結晶積層構造体及び発光素子
JP2014177400A (ja) * 2011-09-08 2014-09-25 Tamura Seisakusho Co Ltd Ga含有酸化物層成長用β−Ga2O3系単結晶基板
JP2014199839A (ja) * 2013-03-29 2014-10-23 株式会社タムラ製作所 結晶積層構造体及びその製造方法、並びに半導体素子
WO2016132681A1 (ja) * 2015-02-18 2016-08-25 出光興産株式会社 積層体及び積層体の製造方法
WO2017221863A1 (ja) * 2016-06-24 2017-12-28 スタンレー電気株式会社 Iii族窒化物積層体、及び該積層体を備えた縦型半導体デバイス

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107653490A (zh) 2011-09-08 2018-02-02 株式会社田村制作所 晶体层叠结构体
JP6195125B2 (ja) * 2015-02-25 2017-09-13 株式会社タムラ製作所 窒化物半導体テンプレート及びその製造方法
JP6721816B2 (ja) 2015-06-29 2020-07-15 株式会社タムラ製作所 窒化物半導体テンプレート及び紫外線led
CN104988579A (zh) * 2015-07-08 2015-10-21 西安电子科技大学 基于蓝宝石衬底的氧化镓薄膜及其生长方法
CN104962858A (zh) * 2015-07-08 2015-10-07 西安电子科技大学 基于GaAs衬底的氧化镓薄膜及其生长方法
JP2017157725A (ja) * 2016-03-02 2017-09-07 株式会社タムラ製作所 窒化物半導体テンプレート及びその製造方法、並びに紫外線led
JP2022147881A (ja) 2021-03-24 2022-10-06 アダマンド並木精密宝石株式会社 Ga2O3系単結晶基板並びにGa2O3系単結晶基板の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340308A (ja) * 2004-05-24 2005-12-08 Koha Co Ltd 半導体素子の製造方法
JP2006310765A (ja) * 2005-03-31 2006-11-09 Toyoda Gosei Co Ltd 低温成長バッファ層の形成方法、発光素子の製造方法、発光素子、および発光装置
JP2008156141A (ja) * 2006-12-21 2008-07-10 Koha Co Ltd 半導体基板及びその製造方法
JP2010183026A (ja) * 2009-02-09 2010-08-19 Sumitomo Electric Ind Ltd エピタキシャルウエハ、窒化ガリウム系半導体デバイスを作製する方法、窒化ガリウム系半導体デバイス、及び酸化ガリウムウエハ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690700B2 (en) * 1998-10-16 2004-02-10 Agilent Technologies, Inc. Nitride semiconductor device
JP3679097B2 (ja) * 2002-05-31 2005-08-03 株式会社光波 発光素子
US20070134833A1 (en) 2005-12-14 2007-06-14 Toyoda Gosei Co., Ltd. Semiconductor element and method of making same
TW200908393A (en) * 2007-06-15 2009-02-16 Rohm Co Ltd Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
JP5378829B2 (ja) * 2009-02-19 2013-12-25 住友電気工業株式会社 エピタキシャルウエハを形成する方法、及び半導体素子を作製する方法
JP5313816B2 (ja) * 2009-09-11 2013-10-09 住友電気工業株式会社 窒化物系半導体素子、及び窒化物系半導体素子を作製する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340308A (ja) * 2004-05-24 2005-12-08 Koha Co Ltd 半導体素子の製造方法
JP2006310765A (ja) * 2005-03-31 2006-11-09 Toyoda Gosei Co Ltd 低温成長バッファ層の形成方法、発光素子の製造方法、発光素子、および発光装置
JP2008156141A (ja) * 2006-12-21 2008-07-10 Koha Co Ltd 半導体基板及びその製造方法
JP2010183026A (ja) * 2009-02-09 2010-08-19 Sumitomo Electric Ind Ltd エピタキシャルウエハ、窒化ガリウム系半導体デバイスを作製する方法、窒化ガリウム系半導体デバイス、及び酸化ガリウムウエハ

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177400A (ja) * 2011-09-08 2014-09-25 Tamura Seisakusho Co Ltd Ga含有酸化物層成長用β−Ga2O3系単結晶基板
EP2754738A4 (en) * 2011-09-08 2015-02-25 Tamura Seisakusho Kk SUBSTRATE FOR EPITAXIAL GROWTH AND CRYSTALLINE STRATIFIED STRUCTURE
US9142623B2 (en) 2011-09-08 2015-09-22 Tamura Corporation Substrate for epitaxial growth, and crystal laminate structure
US9685515B2 (en) 2011-09-08 2017-06-20 Tamura Corporation Substrate for epitaxial growth, and crystal laminate structure
WO2014109233A1 (ja) * 2013-01-11 2014-07-17 株式会社タムラ製作所 結晶積層構造体及び発光素子
EP2945187A4 (en) * 2013-01-11 2016-08-24 Tamura Seisakusho Kk CRYSTAL SHIELD STRUCTURE AND LIGHT-EMITTING ELEMENT
JP2014199839A (ja) * 2013-03-29 2014-10-23 株式会社タムラ製作所 結晶積層構造体及びその製造方法、並びに半導体素子
WO2016132681A1 (ja) * 2015-02-18 2016-08-25 出光興産株式会社 積層体及び積層体の製造方法
WO2017221863A1 (ja) * 2016-06-24 2017-12-28 スタンレー電気株式会社 Iii族窒化物積層体、及び該積層体を備えた縦型半導体デバイス
JPWO2017221863A1 (ja) * 2016-06-24 2019-04-11 スタンレー電気株式会社 Iii族窒化物積層体、及び該積層体を備えた縦型半導体デバイス
US10731274B2 (en) 2016-06-24 2020-08-04 Stanley Electric Co., Ltd. Group III nitride laminate and vertical semiconductor device having the laminate

Also Published As

Publication number Publication date
US9153648B2 (en) 2015-10-06
JPWO2012137781A1 (ja) 2014-07-28
KR20140030180A (ko) 2014-03-11
JP5596222B2 (ja) 2014-09-24
DE112012001618T5 (de) 2014-03-27
CN103503148A (zh) 2014-01-08
US20140048823A1 (en) 2014-02-20
JP2014199935A (ja) 2014-10-23
TW201248921A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
JP5596222B2 (ja) 半導体積層体及びその製造方法、並びに半導体素子
JP5099008B2 (ja) SiC基板を用いた化合物半導体装置とその製造方法
CN104919604B (zh) 氮化物半导体发光元件
US8486807B2 (en) Realizing N-face III-nitride semiconductors by nitridation treatment
US20090189191A1 (en) Semiconductor device
CN105428482B (zh) 一种led外延结构及制作方法
US9029832B2 (en) Group III nitride semiconductor light-emitting device and method for producing the same
JP2008263023A (ja) Iii−v族化合物半導体の製造方法、ショットキーバリアダイオード、発光ダイオード、レーザダイオード、およびそれらの製造方法
US20150084163A1 (en) Epitaxial substrate, semiconductor device, and method for manufacturing semiconductor device
JP4725763B2 (ja) 半導体素子形成用板状基体の製造方法
CN108807620A (zh) 一种发光二极管外延片及其制备方法
JP5460751B2 (ja) 半導体装置
WO2012137783A1 (ja) 半導体積層体及びその製造方法、並びに半導体素子
JP2009076864A (ja) 窒化物系発光素子
JP2008227039A (ja) 半導体装置
KR101337615B1 (ko) 질화갈륨계 화합물 반도체 및 그 제조방법
US9680055B2 (en) Hetero-substrate, nitride-based semiconductor light emitting device, and method for manufacturing the same
JP5059205B2 (ja) ウェーハ及び結晶成長方法
WO2016002801A1 (ja) 半導体積層構造体及び半導体素子
KR100974924B1 (ko) 질화물계 발광소자
TW201305398A (zh) 以iii族氮化物為基礎的多層堆疊結構、帶有該多層堆疊結構的部件以及該多層堆疊結構的製造方法
US20150069322A1 (en) Semipolar emitter
JP2005217446A (ja) 3族窒化物半導体発光素子
JP2013033778A (ja) 半導体基板および電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508883

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120016181

Country of ref document: DE

Ref document number: 112012001618

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14110417

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137029387

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12767692

Country of ref document: EP

Kind code of ref document: A1