WO2014103582A1 - テトラフルオロプロペンの精製方法 - Google Patents

テトラフルオロプロペンの精製方法 Download PDF

Info

Publication number
WO2014103582A1
WO2014103582A1 PCT/JP2013/081448 JP2013081448W WO2014103582A1 WO 2014103582 A1 WO2014103582 A1 WO 2014103582A1 JP 2013081448 W JP2013081448 W JP 2013081448W WO 2014103582 A1 WO2014103582 A1 WO 2014103582A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
hfo
extraction solvent
compound
solvent
Prior art date
Application number
PCT/JP2013/081448
Other languages
English (en)
French (fr)
Inventor
古田 昇二
哲央 大塚
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP13866573.2A priority Critical patent/EP2939994B1/en
Priority to CN201380068345.4A priority patent/CN104884414B/zh
Priority to JP2014554252A priority patent/JP6168068B2/ja
Publication of WO2014103582A1 publication Critical patent/WO2014103582A1/ja
Priority to US14/749,877 priority patent/US9302964B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • C07C17/386Separation; Purification; Stabilisation; Use of additives by distillation with auxiliary compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/18Preparation of halogenated hydrocarbons by replacement by halogens of oxygen atoms of carbonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/395Separation; Purification; Stabilisation; Use of additives by treatment giving rise to a chemical modification of at least one compound

Definitions

  • the present invention relates to a composition comprising 2,3,3,3-tetrafluoropropene (hereinafter also referred to as “HFO-1234yf”) and chloromethane (hereinafter also referred to as “R40”). -Relates to a process for obtaining tetrafluoropropene or chloromethane.
  • HFO-1234yf 2,3,3,3-tetrafluoropropene
  • R40 chloromethane
  • Patent Document 1 a method for producing HFO-1234yf from a raw material containing chlorofluorocarbons by a single reaction involving thermal decomposition has been proposed.
  • a method for producing HFO-1234yf from a raw material containing chlorofluorocarbons by a single reaction involving thermal decomposition has been proposed.
  • a mixture of chloromethane (R40) and chlorodifluoromethane (R22) and / or tetrafluoroethylene (TFE) is usually used as an electric heater in a reactor.
  • a method of obtaining HFO-1234yf by heating and decomposing to a temperature of 700 to 950 ° C. by the heating means is proposed (Patent Document 1).
  • the reaction mixture obtained contains unreacted raw materials such as R40 in addition to the target substance HFO-1234yf.
  • R40 was also required to be purified from the reaction mixture and reused in the reaction.
  • the boiling points of HFO-1234yf and R40 are ⁇ 29 ° C. and ⁇ 24 ° C. (both under atmospheric pressure), respectively, and since they are close to each other, it is difficult to separate them by distillation.
  • a method for producing HFO-1234yf for example, in the method described in the background art described above, since R40 as a raw material is mixed, there is a method for efficiently obtaining HFO-1234yf or R40 from a composition containing HFO-1234yf and R40. It is desired.
  • the present inventors tried to separate both from a composition containing HFO-1234yf and R40 the inventors found that an azeotropic composition or an azeotrope-like composition was formed and the two could not be easily separated.
  • the present invention has been made from the above viewpoint, and an object thereof is to provide a method for efficiently separating HFO-1234yf or R40 from a composition containing HFO-1234yf and R40.
  • the present inventors have found that it is possible to separate HFO-1234yf and R40 azeotrope or azeotrope-like composition, and at the same time, there is also a solvent for efficiently separating the two.
  • the headline and the present invention were completed. That is, as a result of intensive studies on various substances, the present inventors have changed the relative volatility of HFO-1234yf with respect to R40 by bringing a specific compound into contact with an azeotropic composition or azeotrope-like composition. As a result, the present invention has been completed.
  • the present invention has the following gist. 1. An azeotropic or azeotrope-like composition of 2,3,3,3-tetrafluoropropene and chloromethane is contacted with an extraction solvent, and 2,3,3,3-substantially free of chloromethane A process for producing 2,3,3,3-tetrafluoropropene, which comprises obtaining tetrafluoropropene.
  • the extraction solvent is at least one compound selected from the group consisting of hydrocarbons, chlorinated hydrocarbons, alcohols, ethers, nitriles, ketones, carbonates, amines, esters, and sulfoxides.
  • a compound having no fluorine atom, a fluorine compound having a fluorination rate of less than 0.8 and having a polar group, or a fluorine compound having a fluorination rate of less than 0.9 and having no polar group The method according to 1 above.
  • the hydrocarbon is pentane, hexane, heptane, octane, nonane, decane, undecane or dodecane
  • the chlorinated hydrocarbon is dichloromethane, trichloromethane, perchloromethane, 1.2-dichloropropane or perchloroethylene
  • Alcohol is methanol, ethanol, propanol, butanol or pentanol
  • ether is 1,3-dioxolane or tetrahydrofuran
  • nitrile is acetonitrile
  • ketone is acetone, methyl ethyl ketone, diethyl ketone or methyl isobutyl ketone.
  • the carbonates are dimethyl carbonate
  • the amines are dimethylformamide, dimethylacetamide, N-methylpyrrolidone or N-formylnorphorin
  • sulfoxides is dimethyl sulfoxide
  • a method for efficiently separating HFO-1234yf or R40 from a composition containing 2,3,3,3-tetrafluoropropene (HFO-1234yf) and chloromethane (R40) can be provided.
  • FIG. 2 is a schematic diagram illustrating a method for efficiently separating HFO-1234yf and R40 from a composition containing 2,3,3,3-tetrafluoropropene (HFO-1234yf) and chloromethane (R40).
  • the azeotropic composition comprising HFO-1234yf and R40 of the present invention is a composition having a HFO-1234yf content of 63 mol% and a R40 content of 37 mol%, and a pressure of 1.011 ⁇ 10 6.
  • the boiling point at 6 Pa is 41.3 ° C.
  • An azeotropic composition is advantageous in that, when the composition is repeatedly evaporated and condensed, there is no change in composition, and when used in applications such as refrigerants, performance is obtained extremely stably.
  • the azeotropic composition has a relative volatility represented by the following formula of 1.00.
  • the azeotrope-like composition comprising HFO-1234yf and R40 of the present invention is a composition having an HFO-1234yf content of 58-78 mol% and an R40 content of 22-42 mol%. Fluctuation in composition when evaporation and condensation are repeated is small.
  • the azeotrope-like composition refers to a composition having a relative volatility determined by the above formula in the range of 1.00 ⁇ 0.20.
  • the azeotrope-like composition comprising HFO-1234yf and R40 of the present invention has a boiling point of 41 to 42 ° C. at a pressure of 1.011 ⁇ 10 6 Pa.
  • the azeotrope-like composition of the present invention can be handled almost the same as the azeotrope composition of the present invention, and has the advantage that stable performance and the like equivalent to those of the azeotrope composition can be obtained when used for applications such as refrigerants. is there.
  • an azeotrope-like composition is described as including an azeotrope composition.
  • extractive distillation is used in the sense of being used in the technical field of the present invention, particularly in the field of chemical engineering, and an azeotropic composition or a liquid composition that is difficult to be separated by distillation because of the close boiling point. It is a kind of distillation separation method used for the separation.
  • extractive distillation by adding a third component to a composition mainly composed of two components, it is possible to facilitate distillation separation by changing the relative volatility of the composition mainly composed of two components at the beginning. it can.
  • the third component here is referred to as an extraction solvent in this specification.
  • the extraction solvent refers to a compound that can be used for extractive distillation, and may be a liquid that is not liquid at room temperature, but is present as a liquid when performing extractive distillation.
  • an azeotropic composition or a liquid composition that is difficult to separate by distillation because the boiling points are close to each other any of the two components that are not absorbed by the extraction solvent, that is, Any component that is desired to be separated can be separated.
  • the azeotropic composition may contain a small amount of other components.
  • the present invention relates to a method for separating HFO-1234yf substantially free of R40 from a composition comprising HFO-1234yf and R40, characterized in that the composition is contacted with an extraction solvent. Is a method of separating.
  • the present invention also relates to a method for separating R40 substantially free of HFO-1234yf from a composition comprising HFO-1234yf and R40, wherein the composition is contacted with an extraction solvent. It is a method of separation.
  • composition containing HFO-1234yf and R40 Since the composition containing HFO-1234yf and R40 has close boiling points, it is difficult to separate them by distillation.
  • separation by extractive distillation is applied to a composition containing HFO-1234yf and R40, for example, for the separation of HFO-1234yf, it is necessary to use a solvent having a high relative volatility of HFO-1234yf to R40.
  • HFO-1234yf substantially free of R40 can be separated from a composition containing HFO-1234yf and R40 by using a specific extraction solvent.
  • R40 substantially free of HFO-1234yf can be separated from the composition containing HFO-1234yf and R40 by using a specific extraction solvent.
  • the present inventors examined the effect of each compound on the method of separating HFO-1234yf by extractive distillation from a composition containing HFO-1234yf and R40. And the result which is mentioned later about the above-mentioned relative volatility was obtained.
  • a compound that can change its relative volatility is referred to herein as an extraction solvent.
  • the relative volatility when no extraction solvent is added (two components) is compared with the relative volatility when the extraction solvent is added. If the numerical value obtained by the above formula is increased, it is understood that the extraction solvent absorbs R40.
  • 1234yf can be separated from the composition containing HFO-1234yf and R40 by extractive distillation.
  • the numerical value obtained by the above formula is decreased, it is understood that the extraction solvent absorbs HFO-1234yf.
  • R40 can be separated by extractive distillation from a composition containing HFO-1234yf and R40.
  • the extraction solvent means a liquid that is liquid at room temperature and normal pressure, but for example, if it exists as a liquid under the reaction conditions in the distillation column, it is treated as the extraction solvent of the present invention.
  • the extraction solvent in the present invention is at least one selected from the group consisting of hydrocarbons, chlorinated hydrocarbons, alcohols, ethers, nitriles, ketones, carbonates, amines, esters and sulfoxides. And a compound having no fluorine atom.
  • Hydrocarbons refer to compounds having only carbon and hydrogen atoms in the molecule.
  • the hydrocarbons are preferably pentane, hexane, heptane, octane, nonane, decane, undecane or dodecane. Particularly preferred is pentane, hexane, heptane, octane, nonane or decane.
  • Chlorinated hydrocarbons refer to hydrocarbon compounds having a chlorine atom in the molecule.
  • chlorinated hydrocarbons chlorinated hydrocarbons having 1 to 5 carbon atoms are preferable, and dichloromethane, trichloromethane, perchloromethane, 1.2-dichloropropane or perchloroethylene is particularly preferable.
  • Alcohols are compounds in which a hydrocarbon hydrogen atom is replaced with a hydroxy group.
  • a compound in which a hydrogen atom of a hydrocarbon having 1 to 8 carbon atoms is replaced with a hydroxy group is preferable, and methanol, ethanol, propanol, butanol or pentanol is more preferable. Of these, methanol, ethanol or butanol is particularly preferable.
  • Ethers refer to linear ethers in which two hydrocarbon groups are bonded to oxygen atoms and cyclic ethers having oxygen atoms as atoms constituting the ring.
  • ethers ethers having 3 to 5 carbon atoms are preferable, and 1,3-dioxolane or tetrahydrofuran is preferable.
  • ketones are preferably dimethyl ketone (acetone), methyl ethyl ketone, diethyl ketone or methyl isobutyl ketone. Particularly preferred is dimethyl ketone or methyl ethyl ketone.
  • the carbonate is preferably an aliphatic carbonate having 3 to 5 carbon atoms, specifically dimethyl carbonate.
  • esters refer to linear or cyclic esters.
  • a linear or cyclic ester having 3 to 5 carbon atoms is preferred, and specifically ⁇ -butyrolactone is preferred.
  • dimethyl sulfoxide is preferred as the sulfoxide.
  • siloxanes may be used. Specifically, decamethylcyclopentasiloxane is preferable as the siloxane.
  • the extraction solvent in the present invention is preferably a fluorine compound having a fluorination rate of less than 0.8 and having a polar group.
  • the fluorination rate is preferably 0.75 or less.
  • the fluorination rate in the present invention means a numerical value calculated by the following formula.
  • the fluorine-containing compound having a polar group means a compound having a polar group which is a polar atomic group regardless of whether or not the molecule has fluorine, and the atomic group is present in an organic compound. This means a compound having polarity.
  • the polar group is preferably an ether group, an ester group, an amide group, or a hydroxyl group.
  • the compound having an ether group is preferably a compound having 3 to 8 carbon atoms
  • the compound having an ester group is preferably a compound having 3 to 5 carbon atoms
  • the compound having an amide group is preferably 3 to 5 carbon atoms.
  • a compound is preferred, and a compound having a hydroxyl group is preferably a compound having 1 to 8 carbon atoms.
  • Examples of the compounds definitive present invention specifically, CF 3 CH 2 OCF 2 CF 2 H ( manufactured by Asahi Glass Co., Ltd., trade name: AE3000), tetrafluoropropanol (manufactured by Asahi Glass Co., Ltd.), CF 3 CF 2 CF 2 CF 2 OCF 3 (manufactured by Sumitomo 3M Limited, trade name: Novec7100) or CF 3 CF 2 CF 2 CF 2 OCH 2 CH 3 ( manufactured by Sumitomo 3M Limited, trade name: Novec7200) are preferred.
  • CF 3 CH 2 OCF 2 CF 2 H manufactured by Asahi Glass Co., Ltd., trade name: AE3000
  • tetrafluoropropanol manufactured by Asahi Glass Co., Ltd.
  • CF 3 CF 2 CF 2 CF 2 OCF 3 manufactured by Sumitomo 3M Limited, trade name: Novec7100
  • the extraction solvent in the present invention is preferably a fluorine compound having a fluorination rate of less than 0.9 and having no polar group.
  • the fluorination rate is preferably 0.85 or less.
  • Specific examples of the compound in the present invention include CClF 2 CF 2 CHClF (manufactured by Asahi Glass Co., Ltd., trade name: AK225cb), CF 3 CF 2 CF 2 CF 2 CF 2 CH 2 CH 3 (manufactured by Asahi Glass Co., Ltd., (Trade name: AC6000) or CF 3 CF 2 CHFCHFCF 3 (manufactured by DuPont, trade name: HFC4310) is preferable.
  • a fluorine compound having a fluorination rate of 0.8 or more and having a polar group is preferable.
  • CF 3 CF 2 CF (CH 3 ) OCF (CF 3 ) 2 (trade name Novec 7300, manufactured by Sumitomo 3M Limited), a compound represented by formula (1) (Sumitomo 3M) (Trade name FC-77), a compound represented by formula (2) (trade name SV-55, manufactured by Solvay) or a compound represented by formula (3) (trade name HT-110, manufactured by Solvay). preferable.
  • the extraction solvent in the present invention is preferably a compound having a fluorination rate of 0.9 or more and having no polar group.
  • CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 H (Asahi Glass Co., Ltd., trade name AC2000) or CF 3 CF 2 CF 2 CF 2 CF 3 (Sumitomo).
  • the product name PF-5060 manufactured by 3M is preferred.
  • Examples 2 to 15 Gas phase and liquid phase samples were collected in the same manner as in Example 1 except that the type of the solvent used was changed to the solvent shown in Table 1, and HFO-1234yf and R40 were analyzed by gas chromatography. The composition ratio was measured. The relative volatility was determined from the formula for determining the relative volatility from the composition ratio of the two.
  • Example 16 A composition obtained by mixing 186 g of HFO-1234yf and 28 g of R40 in a substance amount ratio is put into a 500 mL autoclave equipped with a pressure gauge, and gradually, by an external heater so that the pressure becomes 1.011 ⁇ 10 6 Pa. Heated. After the pressure in the autoclave reached a predetermined value of 1.011 ⁇ 10 6 Pa, the composition in the autoclave was stabilized by maintaining for a certain period of time.
  • Example 17 to 20 Samples in the gas phase and the liquid phase were collected in the same manner as in Example 1 except that the solvent used was changed to the solvent shown in Table 3, and HFO-1234yf and R40 were analyzed by gas chromatography. It was measured. The relative volatility was obtained from the formula for obtaining the relative volatility from the composition ratio of both. The results are shown in Table 4.
  • Example 21 A composition obtained by mixing 55 g of HFO-1234yf, 8 g of R40, and 195 g of CClF 2 CF 2 CHClF (AK225cb) in a weight of 195 g was put in a 500 mL autoclave equipped with a pressure gauge, and the pressure was 1.011 ⁇ 10 It was gradually heated by an external heater so as to be 6 Pa. After the pressure in the autoclave reached a predetermined value of 1.011 ⁇ 10 6 Pa, the composition in the autoclave was stabilized by maintaining for a certain period of time.
  • Example 22 to 23 Vapor phase and liquid phase samples were collected in the same manner as in Example 21 except that the solvent used, HFO-1234yf, R40, and the amount of solvent charged were changed to the conditions shown in Table 5, and HFO- 1234yf and R40 were analyzed, the composition ratio of the two was measured, and the relative volatility was determined from the formula for determining the relative volatility from the composition ratio of both. The results are shown in Table 6.
  • Example of fluorine compound having a fluorination rate of 0.8 or more and having a polar group> 34 g of HFO-1234yf, 5 g of R40, and 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-trifluoromethylpentane were mixed at a weight of 208 g.
  • the resulting composition was placed in a 500 mL autoclave with a pressure gauge and gradually heated by an external heater so that the pressure became 1.011 ⁇ 10 6 Pa. After the pressure in the autoclave reached a predetermined value of 1.011 ⁇ 10 6 Pa, the composition in the autoclave was stabilized by maintaining for a certain period of time.
  • Examples 25 to 27 A gas phase and a liquid phase sample were collected in the same manner as in Example 24 except that the solvent used was changed to the solvent shown in Table 7, and HFO-1234yf and R40 were analyzed by gas chromatography. It was measured. The relative volatility was determined from the formula for determining the relative volatility from the composition ratio of the two. The results are shown in Table 8.
  • Example of fluorine compound having a fluorination rate of 0.9 or more and having no polar group A composition obtained by mixing 37 g of HFO-1234yf, 5 g of R40, and 209 g of tridecafluorohexane (AC2000) at a mass ratio of 209 g was placed in a 500 mL autoclave with a pressure gauge, and the pressure was 1.011 ⁇ It was gradually heated by an external heater so as to be 10 6 Pa. After the pressure in the autoclave reached a predetermined value of 1.011 ⁇ 10 6 Pa, the composition in the autoclave was stabilized by maintaining for a certain period of time.
  • AC2000 tridecafluorohexane
  • Example 29 Gas phase and liquid phase samples were collected in the same manner as in Example 28 except that the solvent used was changed to perfluorohexane, and HFO-1234yf and R40 were analyzed by gas chromatography to determine the composition ratio of the two. The relative volatility was determined from the formula for determining the relative volatility from the composition ratio of the two.
  • Example 30 A composition obtained by mixing 143 g of HFO-1234yf and 63 g of R40 in a substance amount ratio is put in a 500 mL autoclave with a pressure gauge, and gradually an external heater so that the pressure becomes 1.011 ⁇ 10 6 Pa. Heated by. After the pressure in the autoclave reached a predetermined value of 1.011 ⁇ 10 6 Pa, the composition in the autoclave was stabilized by maintaining for a certain period of time. Samples of the composition were taken from the gas phase and the liquid phase, HFO-1234yf and R40 were analyzed by gas chromatography, and the composition ratio of the two was measured. The relative volatility was determined from the formula for determining the relative volatility from the composition ratio of the two. The results are shown in Table 9, Table 10, and Table 12.
  • composition 1 comprising HFO-1234yf and R40 is fed to an extractive distillation column 2 operated under pressure.
  • the extractive distillation column 2 the number of theoretical plates and the operating conditions are appropriately set according to the solvent used and the purity of the target HFO-1234yf of the distillate 4.
  • the composition 1 supplied to the extractive distillation column 2 is distilled while being in contact with an extractant 3 that is an extraction solvent.
  • an extraction solvent having a high affinity for R40 is used as the extractant 3
  • a distillate 4 having a higher concentration of HFO-1234yf than that of the composition 1 can be obtained from the top of the column.
  • a bottom product 5 having an increased concentration of R40 can be obtained.
  • the composition of HFO-1234yf and R40 (molar ratio 6: 4) was continuously added to the extractive distillation tower of the first stage of the solvent recovery section, the 19th concentration section, and the 10th recovery section at a rate of 89 g per hour from the lower part of the concentration section. It was assumed that N-methylpyrrolidone was continuously supplied at 297 g / hr as an extraction solvent from the lower part of the solvent recovery section. Further, the first fraction is continuously withdrawn at 68 g / h while the reflux ratio is controlled at the tower top side, and the second fraction is continuously withdrawn at 317 g / h on the tower bottom side to perform extractive distillation. It was. During this time, the pressure in the extractive distillation column (inside the system) was 0.5 MPaG (gauge pressure), the column top temperature was 11 ° C., and the column bottom temperature was 123 ° C.
  • HFO-1234yf in the first fraction (distillate 4 in FIG. 1) obtained from the extractive distillation column was 99.5 mol%. Further, the extraction solvent contained 40 mol ppm in the first fraction.
  • HFO-1234yf in the second fraction obtained from the extractive distillation column (the bottom 5 in FIG. 1) is 579 mol ppm, R40 is 11.7 mol%, and the balance is substantially occupied by N-methylpyrrolidone. It became a thing.
  • the obtained second fraction was continuously fed at a rate of 317 g per hour at the position of the first stage from the bottom to the solvent recovery tower having 15 stages. Further, the third fraction is continuously withdrawn at 20 g / h while the reflux ratio is controlled at the top of the column, and the fourth fraction is continuously withdrawn at 297 g / h at the bottom of the column to perform recovery distillation. It was. During this time, the pressure in the solvent recovery tower (inside the system) was 0.5 MPaG (gauge pressure), the tower top temperature was 20 ° C., and the tower bottom temperature was 277 ° C.
  • a composition of HFO-1234yf and R40 (molar ratio 6: 4) was continuously added to the extractive distillation column of the first stage of the solvent recovery unit, the 24th concentration unit, and the fifth recovery unit at a rate of 89 g per hour from the lower part of the concentration unit.
  • perchlorethylene was continuously supplied at 829 g per hour as an extraction solvent from the lower part of the solvent recovery unit.
  • the first fraction is continuously withdrawn at 61 g / h while the reflux ratio is controlled at the top of the column, and the second fraction is continuously withdrawn at 857 g / h at the bottom of the column to perform extractive distillation. It was.
  • the pressure in the extractive distillation column (inside the system) was 0.5 MPaG (gauge pressure)
  • the column top temperature was 14 ° C.
  • the column bottom temperature was 141 ° C.
  • HFO-1234yf in the first fraction obtained from the extractive distillation column was 99 mol%. Further, the extraction solvent contained 0.5 mol% in the first fraction.
  • HFO-1234yf in the second fraction obtained from the extractive distillation column was 1.3 mol%, R40 was 7.3 mol%, and the remainder was substantially occupied by perchloroethylene.
  • the obtained second fraction was continuously supplied to a solvent recovery tower having 30 stages at a rate of 857 g per hour at the position of the first stage from the bottom. Further, the third fraction is continuously withdrawn at 40 g / h while the reflux ratio is controlled at the top of the column, and the fourth fraction is continuously withdrawn at 817 g / h at the bottom of the column to perform recovery distillation. It was. During this time, the pressure in the solvent recovery tower (inside the system) was 0.2 MPaG (gauge pressure), the tower top temperature was 44 ° C., and the tower bottom temperature was 147 ° C.
  • R40 in the third fraction obtained from the solvent recovery tower was 68 mol% or more.
  • the perchlorethylene in the 4th fraction obtained from a solvent collection tower became 98 mol% or more.
  • the resulting fourth fraction was recycled to the extractive distillation column.
  • the composition of HFO-1234yf and R40 was continuously fed from the lower part of the concentrating part at 89 g / h to the extractive distillation column of the solvent recovering part 5 stages, the concentrating part 40 stages, and the recovering part 5 stages. From the lower part of the solvent recovery section, 1,3-dichloro-1,1,2,2,3-pentafluoropropane is continuously supplied as an extraction solvent at 2029 g per hour. did. Furthermore, while controlling the reflux ratio to 1.5 at the top of the column, the first fraction was continuously withdrawn at 63 g / h, and the second fraction was continuously withdrawn at 2055 g / h at the bottom of the column to perform extractive distillation. To do. During this time, the pressure in the extractive distillation column (inside the system) was 0.5 MPaG (gauge pressure), the column top temperature was 15 ° C., and the column bottom temperature was 96 ° C.
  • R40 was not contained in the first fraction obtained from the extractive distillation tower, and HFO-1234yf was 99.8 mol%. Further, the extraction solvent contained 0.2 mol% in the first fraction.
  • HFO-1234yf in the second fraction obtained from the extractive distillation column was 0.5 mol%
  • R40 was 3.9 mol%
  • the balance was substantially occupied by AK225cb.
  • the obtained second fraction was continuously supplied at a rate of 2055 g per hour at the position of the first stage from the bottom to the solvent recovery tower having 40 stages. Further, the third fraction is continuously withdrawn at 27 g / h while the reflux ratio is controlled at the top of the column, and the fourth fraction is continuously withdrawn at 2028 g / h at the bottom of the column to perform recovery distillation. It was. During this time, the pressure in the solvent recovery tower (inside the system) was 0.2 MPaG (gauge pressure), the tower top temperature was 23 ° C., and the tower bottom temperature was 78 ° C.
  • R40 in the third fraction obtained from the solvent recovery tower was 87 mol% or more.
  • AK225cb in the fourth fraction obtained from the solvent recovery tower was 99 mol% or more.
  • the fourth fraction obtained was recirculated to the extractive distillation column.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 2,3,3,3-テトラフルオロプロペン(HFO-1234yf)およびクロロメタン(R40)を含む組成物から、HFO-1234yfおよびR40を効率よく分離する方法を提供する。 HFO-1234yfとR40の共沸組成物ないし共沸様組成物を特定の抽出溶媒と接触させ、実質的にR40を含まないHFO-1234yfを分離する方法。

Description

テトラフルオロプロペンの精製方法
 本発明は、2,3,3,3-テトラフルオロプロペン(以下、「HFO-1234yf」とも記す)とクロロメタン(以下、「R40」とも記す)を含む組成物から2,3,3,3-テトラフルオロプロペンまたはクロロメタンを得る方法に関する。
 2,3,3,3-テトラフルオロプロペンは、温室効果ガスである1,1,1,2-テトラフルオロエタン(HFC-134a)に代わる新しい冷媒として、近年大きな期待が寄せられている。
なお、本明細書において、ハロゲン化炭化水素については化合物名の後の括弧内にその化合物の略称を記すが、必要に応じて化合物名に代えてその略称を用いる。
 また、クロロフルオロカーボン類を含む原料から熱分解を伴う1回の反応でHFO-1234yfを製造する方法が提案されている。
 このような方法として、例えば、特許文献1には、クロロメタン(R40)とクロロジフルオロメタン(R22)および/またはテトラフルオロエチレン(TFE)との混合物を、反応器内で電気ヒータのような通常の加熱手段により700~950℃の温度に加熱・分解して、HFO-1234yfを得る方法が提示されている(特許文献1)。
 ここで、上記方法によりHFO-1234yfを製造する場合、得られる反応混合物中には、目的物質のHFO-1234yf以外にR40などの未反応原料が含まれる。工業的な観点からは、該反応混合物を精製してHFO-1234yfを製品として得ることにあわせて、R40も該反応混合物から精製して再度反応に利用することが求められていた。
米国特許第2931840号明細書
 HFO-1234yfおよびR40の沸点は、各々-29℃および-24℃(いずれも大気圧下)であり、沸点が近いため蒸留によりこれらを分離するのは困難である。
 HFO-1234yfの製造方法として、たとえば上述の背景技術に記載した方法においては、原料のR40が混入することから、HFO-1234yfおよびR40を含む組成物からHFO-1234yfまたはR40を効率良く得る方法が望まれている。
 本発明者らは、HFO-1234yfおよびR40を含む組成物から両者を分離しようとする際には、共沸組成物ないし共沸様組成物が生じ、両者を容易には分離できなことを見出した。
 このように通常の蒸留では分離することが困難な組成物を分離する際には、組成物の一部の物質に親和性を持つ化合物と接触させることを特徴とする分離方法、例えば抽出蒸留や吸収などを用いて分離することが知られている。
 これらの抽出蒸留や吸収などによる分離をHFO-1234yfとR40を含む組成物に用いる場合、R40に対するHFO-1234yfの比揮発度が大きい化合物を用いる必要がある。しかしながら、ある化合物についてR40に対するHFO-1234yfの比揮発度の値を予測すること、または、ある物質についてHFO-1234yfに対するR40の比揮発度の値を予測することは困難である。このため、抽出蒸留や吸収などにより、たとえばHFO-1234yfをR40から分離する方法において、どのような物質を用いれば分離できるか予測することはできない。
 本発明は、上記観点からなされたものであり、HFO-1234yfおよびR40を含む組成物から、HFO-1234yfまたはR40を効率よく分離する方法を提供することを目的とする。
 本発明者らは、HFO-1234yfおよびR40の共沸組成物ないし共沸様組成物において、両者を分離することが可能であることを見出すと同時に、両者を効率的に分離するための溶媒も見出し、本発明を完成した。
 すなわち、本発明者らは、種々の物質について鋭意検討を行った結果、特定の化合物と共沸組成物ないし共沸様組成物を接触させることで、R40に対するHFO-1234yfの比揮発度が変化することを見出し、本発明を完成するに至った。
 本発明は、以下の要旨を有する。
  1.2,3,3,3-テトラフルオロプロペンとクロロメタンの共沸組成物ないし共沸様組成物を抽出溶媒と接触させ、実質的にクロロメタンを含まない2,3,3,3-テトラフルオロプロペンを得ることを特徴とする2,3,3,3-テトラフルオロプロペンの製造方法。
 2.前記抽出溶媒として、炭化水素類、塩素化炭化水素類、アルコール類、エーテル類、ニトリル類、ケトン類、カーボネート類、アミン類、エステル類、およびスルホキシド類からなる群より選ばれる少なくとも1種の化合物であってフッ素原子を有しない化合物、フッ素化率が0.8未満でありかつ極性基を有するフッ素化合物、または、フッ素化率が0.9未満でありかつ極性基を有しないフッ素化合物を用いる、上記1に記載の方法。
 3.炭化水素類がペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカンまたはドデカンであり、塩素化炭化水素類がジクロロメタン、トリクロロメタン、パークロロメタン、1.2-ジクロロプロパンまたはパークロロエチレンであり、アルコール類がメタノール、エタノール、プロパノール、ブタノールまたはペンタノールであり、エーテル類が1,3-ジオキソランまたはテトラヒドロフランであり、ニトリル類がアセトニトリルであり、ケトン類がアセトン、メチルエチルケトン、ジエチルケトンまたはメチルイソブチルケトンであり、カーボネート類がジメチルカーボネートであり、アミン類がジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンまたはN-ホルミルノルホリンであり、エステル類がγ-ブチロラクトンであり、スルホキシド類がジメチルスルホキシドである、上記2に記載の方法。
 4.2,3,3,3-テトラフルオロプロペンとクロロメタンの共沸組成物ないし共沸様組成物から、実質的に2,3,3,3-テトラフルオロプロペンを含まないクロロメタンを製造する方法であって、前記組成物を抽出溶媒と接触させて抽出蒸留する、クロロメタンの製造方法。
 5.前記抽出溶媒として、フッ素化率が0.8以上でありかつ極性基を有するフッ素化合物、または、フッ素化率が0.9以上でありかつ極性基を有しないフッ素化合物を用いる、上記4に記載の方法。
 本発明によれば、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)およびクロロメタン(R40)を含む組成物から、HFO-1234yfまたはR40を効率よく分離する方法を提供できる。
2,3,3,3-テトラフルオロプロペン(HFO-1234yf)およびクロロメタン(R40)を含む組成物から、HFO-1234yfおよびR40を効率よく分離する方法を説明する概略模式図である。
 [共沸組成物]
 本発明のHFO-1234yfとR40からなる共沸組成物は、HFO-1234yfの含有割合が63モル%であり、R40の含有割合が37モル%の組成物であって、圧力1.011×10Paにおける沸点が41.3℃である。共沸組成物は、該組成物を繰り返し蒸発、凝縮させた場合、組成変化がなく、冷媒等の用途に用いた場合に、極めて安定して性能が得られる利点がある。なお、共沸組成物は、以下の式で示される比揮発度が1.00である。
 (比揮発度を求める式)
 比揮発度=(気相部におけるHFO-1234yfのモル%/気相部におけるR40のモル%)/(液相部におけるHFO-1234yfのモル%/液相部におけるR40のモル%)
 [共沸様組成物]
 本発明のHFO-1234yfとR40からなる共沸様組成物は、HFO-1234yfの含有割合が58~78モル%であり、R40の含有割合が22~42モル%の組成物である。蒸発、凝縮を繰り返した場合の組成の変動が小さい。なお、本明細書において、共沸様組成物とは、上記式で求められる比揮発度が1.00±0.20の範囲にある組成物をいう。また、本発明のHFO-1234yfとR40からなる共沸様組成物は、圧力が1.011×10Paにおける沸点が41~42℃である。
 本発明の共沸様組成物は、上記本発明の共沸組成物とほぼ同等に取り扱え、冷媒等の用途に用いた場合に、共沸組成物と同等の安定した性能等が得られる利点がある。なお、以下の説明において共沸様組成物は、共沸組成物を含むものとして記載する。
 本明細書において抽出蒸留とは、本発明の技術分野、特に化学工学の分野において使用される意味で使用し、共沸組成物または沸点が近接しているため蒸留分離が困難な液体組成物などの分離に用いられる蒸留分離方法の一種をいう。
 抽出蒸留においては、主に2成分からなる組成物に第3の成分を加えることにより、当初の主に2成分からなる組成物の比揮発度を変化させることにより蒸留分離を行い易くすることができる。ここでいう第3の成分を本明細書において抽出溶媒と呼ぶ。
 当該抽出溶媒は、抽出蒸留に用いることのできる化合物をいい、常温で液体でないものであってもよいが、抽出蒸留を行う際には液体で存在するものである。当該抽出溶媒を、共沸組成物または沸点が近接しているため蒸留分離が困難な液体組成物に加えることで、2成分のいずれかの成分であって、当該抽出溶媒に吸収されない成分、すなわち分離したいいずれかの成分の分離が可能になる。さらに共沸組成物には少量の他の成分が含有していても良い。
 本発明は、HFO-1234yfとR40を含む組成物から実質的にR40を含まないHFO-1234yfを分離する方法であって、前記組成物を抽出溶媒と接触させることを特徴とする、HFO-1234yfを分離する方法である。
 また本発明は、HFO-1234yfとR40を含む組成物から実質的にHFO-1234yfを含まないR40を分離する方法であって、前記組成物を抽出溶媒と接触させることを特徴とする、R40を分離する方法である。
 HFO-1234yfとR40を含む組成物は、両者の沸点が近いため蒸留によりこれらを分離するのは困難である。抽出蒸留による分離をHFO-1234yfとR40を含む組成物に適用する場合、たとえばHFO-1234yfの分離には、R40に対するHFO-1234yfの比揮発度が大きい溶媒を用いる必要がある。
 そこで、本発明者等が検討した結果、特定の抽出溶媒を用いることで、HFO-1234yfとR40を含む組成物から、実質的にR40を含まないHFO-1234yfを分離できることが明らかとなった。
 また、特定の抽出溶媒を用いることで、HFO-1234yfとR40を含む組成物から、実質的にHFO-1234yfを含まないR40を分離できることが明らかとなった。
 本発明者らは、HFO-1234yfとR40とを含む組成物から、HFO-1234yfを抽出蒸留により分離する方法について、各化合物による効果について検討を加えた。そして、前述の比揮発度について後述するような結果を得た。
 従来、特定の化合物が存在することによって2成分の気液平衡関係が変化する場合があることが知られている。このような化合物が当該気液平衡関係に影響を与える場合には、上述の式で求められる比揮発度が変化する。
 比揮発度を変化させ得る化合物を本明細書においては抽出溶媒と呼ぶ。
 抽出溶媒を加えていない状態(2成分)での比揮発度と抽出溶媒を加えた場合の比揮発度を比較する。上記式で得られる数値が増加していれば、R40を吸収する抽出溶媒であることが理解される。かかる抽出溶媒を用いることで、HFO-1234yfとR40とを含む組成物から1234yfを抽出蒸留により分離することができる。
 一方で、上記式で得られる数値が減少していれば、HFO-1234yfを吸収する抽出溶媒であることが理解される。かかる抽出溶媒を用いることで、HFO-1234yfとR40とを含む組成物からR40を抽出蒸留により分離することができる。
 なお、本明細書で抽出溶媒とは常温常圧で液体のものをいうが、たとえば蒸留塔内の反応条件下において液体で存在するものであれば本発明の抽出溶媒として扱うものとする。
 <HFO-1234yfの分離>
 本発明おける抽出溶媒としては、炭化水素類、塩素化炭化水素類、アルコール類、エーテル類、ニトリル類、ケトン類、カーボネート類、アミン類、エステル類およびスルホキシド類からなる群より選ばれる少なくとも1種の化合物であってフッ素原子を有しない化合物が挙げられる。
 炭化水素類としては、分子中に炭素原子と水素原子のみを有する化合物をいう。炭化水素類としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカンまたはドデカンが好ましい。特に好ましくは、ペンタン、ヘキサン、ヘプタン、オクタン、ノナンまたはデカンである。
 塩素化炭化水素類としては、分子中に塩素原子を有する炭化水素類の化合物をいう。塩素化炭化水素類としては、炭素数1~5の塩素化炭化水素類が好ましく、ジクロロメタン、トリクロロメタン、パークロロメタン、1.2-ジクロロプロパンまたはパークロロエチレンが特に好ましい。
 アルコール類としては、炭化水素の水素原子をヒドロキシ基で置き換えた化合物をいう。アルコール類としては、炭素数1~8の炭化水素の水素原子をヒドロキシ基で置き換えた化合物が好ましく、メタノール、エタノール、プロパノール、ブタノールまたはペンタノールがさらに好ましい。なかでも、メタノール、エタノールまたはブタノールが特に好ましい。
 エーテル類としては、酸素原子に2つの炭化水素基が結合した線状エーテルと環を構成する原子として酸素原子を有する環状エーテルをいう。エーテル類としては、炭素数3~5のエーテル類が好ましく、1,3-ジオキソランまたはテトラヒドロフランが好ましい。
 ニトリル類としては、具体的にはアセトニトリルが好ましい。
  ケトン類としては、具体的には、ジメチルケトン(アセトン)、メチルエチルケトン、ジエチルケトンまたはメチルイソブチルケトンが好ましい。特に好ましくは、ジメチルケトンまたはメチルエチルケトンである。
  カーボネートとして類は、炭素数3~5の脂肪族のカーボネートが好ましく、具体的にはジメチルカーボネートが好ましい。
 アミン類としては、具体的にはジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンまたはN-ホルミルノルホリンが好ましい。
  エステル類としては、線状または環状エステルをいう。炭素数3~5の線状または環状エステルが好ましく、具体的にはγ-ブチロラクトンが好ましい。
  スルホキシド類としては、具体的にはジメチルスルホキシドが好ましい。
 本発明おける抽出溶媒としてはシロキサン類でもよい。シロキサン類としては、具体的にはデカメチルシクロペンタシロキサンが好ましい。
 また、本発明おける抽出溶媒としては、フッ素化率が0.8未満でありかつ極性基を有するフッ素化合物が好ましい。特に、フッ素化率は0.75以下が好ましい。
 本発明における「フッ素化率」とは、以下の式で計算される数値をいう。
 フッ素化率=炭素原子に結合したフッ素原子数/(炭素原子に結合した水素原子数+炭素原子に結合したフッ素原子数)
 本発明において極性基を有する含フッ素化合物とは、分子内にフッ素を有するか有しないに関わらず、極性のある原子団である極性基を有する化合物をいい、該原子団が有機化合物中に存在することにより極性を持つ化合物をいう。極性基としては具体的にはエーテル基、エステル基、アミド基、または水酸基が好ましい。
 極性基を有する化合物としては、
エーテル基を有する化合物としては、炭素数3~8の化合物が好ましく、エステル基を有する化合物としては、炭素数3~5の化合物が好ましく、アミド基を有する化合物としては、炭素数3~5の化合物が好ましく、水酸基を有する化合物としては、炭素数1~8の化合物が好ましい。
 本発明おける上記の化合物としては、具体的には、CFCHOCFCFH(旭硝子社製、商品名:AE3000)、テトラフルオロプロパノール(旭硝子社製)、CFCFCFCFOCF(住友スリーエム社製、商品名:Novec7100)またはCFCFCFCFOCHCH(住友スリーエム社製、商品名:Novec7200)が好ましい。
 さらに、本発明おける抽出溶媒としては、フッ素化率が0.9未満でありかつ極性基を有しないフッ素化合物が好ましい。特に、フッ素化率は0.85以下が好ましい。
 本発明おける上記の化合物としては、具体的にはCClFCFCHClF(旭硝子社製、商品名:AK225cb)、CFCFCFCFCFCFCHCH(旭硝子社製、商品名:AC6000)またはCFCFCHFCHFCF(デュポン社製、商品名:HFC4310)が好ましい。
 <R40の分離>
 また、本発明者が検討した結果、特定の抽出溶媒を用いることで、2,3,3,3-テトラフルオロプロペンとクロロメタンを含む組成物から、実質的に2,3,3,3-テトラフルオロプロペンを含まないクロロメタンを分離できることが明らかとなった。
 本発明おける抽出溶媒としては、フッ素化率が0.8以上でありかつ極性基を有するフッ素化合物が好ましい。
 本発明おける上記の化合物としては、具体的にはCFCFCF(CH)OCF(CF(住友スリーエム社製、商品名Novec7300)、式(1)で表わされる化合物(住友スリーエム社製、商品名FC-77)、式(2)で表わされる化合物(ソルベー社製、商品名SV-55)または式(3)で表わされる化合物(ソルベー社製、商品名HT-110)が好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 さらに、本発明おける抽出溶媒としては、フッ素化率が0.9以上でありかつ極性基を有しない化合物が好ましい。
 本発明おける上記の化合物としては、具体的にはCFCFCFCFCFCFH(旭硝子社製、商品名AC2000)またはCFCFCFCFCFCF(住友スリーエム社製、商品名PF-5060)が好ましい。
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定して解釈されない。
 <フッ素原子を有しない化合物を用いる例>
 [例1]
 HFO-1234yfを176g、R40を26g、およびメタノールを99gの重量比で混合して得られる組成物を、500mLの圧力計付きオートクレーブに入れ、圧力が1.011×10Paとなるように徐々に外部ヒータによって加熱した。なお、溶媒:HFO-1234yf:R40=60:30:10のモル%比になるように調整した。オートクレーブ内の圧力が所定の1.011×10Paとなった後、一定時間保持して、オートクレーブ内の組成を安定化させた。気相および液相から組成物のサンプルを採取し、ガスクロマトグラフィーでHFO-1234yfとR40を分析し、両者の組成比を測定した。両者の組成比から下記の式の比揮発度を求める式により比揮発度を求めた。

 比揮発度=(気相部におけるHFO-1234yfのモル%/気相部におけるR40のモル%)/(液相部におけるHFO-1234yfのモル%/液相部におけるR40のモル%)
 [例2~15]
 使用する溶媒の種類を表1に示した溶媒に変更した以外は実施例1と同様にして気相及び液相のサンプルを採取し、ガスクロマトグラフィーでHFO-1234yfとR40を分析し、両者の組成比を測定した。両者の組成比から比揮発度を求める式により比揮発度を求めた。
Figure JPOXMLDOC01-appb-T000004
 結果を表2に示す。非フッ素系の溶媒を用いた場合の比揮発度は、溶媒を使わなかった場合の比揮発度0.904よりも大きくなった。これは非フッ素系の溶媒が存在することによって、HFO-1234yfとR40の気液平衡関係が変化し、気相部にHFO-1234yfが多くなった結果であると言える。
Figure JPOXMLDOC01-appb-T000005
 <フッ素化率が0.8未満でありかつ極性基を有するフッ素化合物の例>
 [例16]
 HFO-1234yfを186gとR40を28gの物質量比で混合して得られる組成物を、500mLの圧力計付きオートクレーブに入れ、圧力が1.011×10Paとなるように徐々に外部ヒータによって加熱した。オートクレーブ内の圧力が所定の1.011×10Paとなった後、一定時間保持してオートクレーブ内の組成を安定化させた。気相および液相から組成物のサンプルを採取し、ガスクロマトグラフィーでHFO-1234yfとR40を分析し、両者の組成比を測定した。両者の組成比から比揮発度を求める式により比揮発度を求めた。結果を表4に示す。
 [例17~20]
 使用する溶媒を表3に示した溶媒に変更した以外は例1と同様にして気相及び液相のサンプルを採取し、ガスクロマトグラフィーでHFO-1234yfとR40を分析し、両者の組成比を測定した。両者の組成比から比揮発度を求める式により比揮発度を求めた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4に示すように、フッ素化率が0.8未満のフッ素系の溶媒を用いた場合には、比揮発度は溶媒を使用しない例16よりも大きくなった。これはフッ素化率が0.8未満のフッ素系の溶媒の効果で気相部のR40が液相部へと移動し、気相部にHFO-1234yfが濃縮した結果と考えられる。
 <フッ素化率が0.9未満でありかつ極性基を有しないフッ素化合物の例>
 [例21]
 HFO-1234yfを55gと、R40を8gと、CClFCFCHClF(AK225cb)を195gの重量で混合して得られる組成物を、500mLの圧力計付きオートクレーブに入れ、圧力が1.011×10Paとなるように徐々に外部ヒータによって加熱した。オートクレーブ内の圧力が所定の1.011×10Paとなった後、一定時間保持してオートクレーブ内の組成を安定化させた。気相および液相から組成物のサンプルを採取し、ガスクロマトグラフィーでHFO-1234yfとR40を分析し、両者の組成比を測定した。両者の組成比から比揮発度を求める式により比揮発度を求めた。結果を表6に示す。
 [例22~23]
 使用する溶媒と、HFO-1234yf、R40、および溶媒の仕込み量を表5に示す条件に変更した以外は例21と同様にして気相及び液相のサンプルを採取し、ガスクロマトグラフィーでHFO-1234yfとR40を分析し、両者の組成比を測定両者の組成比から比揮発度を求める式により比揮発度を求めた。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表6に示すように、フッ素化率が0.9未満のフッ素系の溶媒を用いた場合には、比揮発度は溶媒を使用しない例16よりも大きくなった。これはフッ素化率が0.9未満のフッ素系の溶媒の効果で気相部のR40が液相部へと移動し、気相部にHFO-1234yfが濃縮した結果であると考えられる。
 <フッ素化率が0.8以上でありかつ極性基を有するフッ素化合物の例>
 [例24]
 HFO-1234yfを34gと、R40を5gと、1,1,1,2,2,3,4,5,5,5-デカフルオロー3-メトキシー4-トリフルオロメチルペンタンを208gの重量で混合して得られる組成物を、500mLの圧力計付きオートクレーブに入れ、圧力が1.011×10Paとなるように徐々に外部ヒータによって加熱した。オートクレーブ内の圧力が所定の1.011×10Paとなった後、一定時間保持してオートクレーブ内の組成を安定化させた。気相および液相から組成物のサンプルを採取し、ガスクロマトグラフィーでHFO-1234yfとR40を分析し、両者の組成比を測定した。両者の組成比から比揮発度を求める式により比揮発度を求めた。結果を表8に示す。
 [例25~27]
 使用する溶媒を表7に示した溶媒に変更した以外は例24と同様にして気相及び液相のサンプルを採取し、ガスクロマトグラフィーでHFO-1234yfとR40を分析し、両者の組成比を測定した。両者の組成比から比揮発度を求める式により比揮発度を求めた。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表8、表9に示すように、フッ素化率が0.8以上のフッ素系の溶媒を用いた場合には、比揮発度は1よりも小さくなった。これは含フッ素率が0.52以上のフッ素系溶媒の効果で、HFO-1234yfが液相部に濃縮した結果であると考えられる。
 <フッ素化率が0.9以上でありかつ極性基を有しないフッ素化合物の例>
 [例28]
 HFO-1234yfを37gと、R40を5gと、トリデカフルオロヘキサン(AC2000)を209gの物質量比で混合して得られる組成物を、500mLの圧力計付きオートクレーブに入れ、圧力が1.011×10Paとなるように徐々に外部ヒータによって加熱した。オートクレーブ内の圧力が所定の1.011×10Paとなった後、一定時間保持してオートクレーブ内の組成を安定化させた。気相および液相から組成物のサンプルを採取し、ガスクロマトグラフィーでHFO-1234yfとR40を分析し、両者の組成比を測定した。両者の組成比から比揮発度を求める式により比揮発度を求めた。表10に結果を示す。
 [例29]
 使用する溶媒をパーフルオロヘキサンに変更した以外は例28と同様にして気相及び液相のサンプルを採取し、ガスクロマトグラフィーでHFO-1234yfとR40を分析し、両者の組成比を測定した。両者の組成比から比揮発度を求める式により比揮発度を求めた。
 [例30]
 HFO-1234yfを143gと、R40を63gの物質量比で混合して得られる組成物を、500mLの圧力計付きオートクレーブに入れ、圧力が1.011×10Paとなるように徐々に外部ヒータによって加熱した。オートクレーブ内の圧力が所定の1.011×10Paとなった後、一定時間保持してオートクレーブ内の組成を安定化させた。気相および液相から組成物のサンプルを採取し、ガスクロマトグラフィーでHFO-1234yfとR40を分析し、両者の組成比を測定した。両者の組成比から比揮発度を求める式により比揮発度を求めた。結果を表9、表10、および表12に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表11に示すように、フッ素化率が0.9以上のフッ素系の溶媒を用いた場合には比揮発度は溶媒を使用しない例16よりも小さくなった。また、表12に示すように、フッ素化率が0.9以上のフッ素系の溶媒を用いた場合には比揮発度は溶媒を使用しない例30よりも小さくなった。これはフッ素化率が0.9以上のフッ素系溶媒の効果でHFO-1234yfが液相部に濃縮した結果であると考えられる。
 <抽出蒸留>
 HFO-1234yfおよびR40を含んで成る組成物1は、加圧で操作される抽出蒸留塔2に供給される。抽出蒸留塔2としては、使用する溶媒や、留出物4が目的のHFO-1234yfの純度などに応じて、理論段数や操作条件は適宜設定される。抽出蒸留塔2に供給された組成物1は、抽出溶媒である抽出剤3と接触しながら蒸留される。 R40と親和性の高い抽出溶媒を抽出剤3として用いた場合には、塔頂より組成物1よりもHFO-1234yfの濃度の増加した留出物4を得ることができ、組成物1よりもR40の濃度の増加した缶出物5を得ることができる。
 また、HFO-1234yfと親和性の高い抽出溶媒を抽出剤3として用いた場合には、塔頂より組成物1よりR40の純度の高い留出物4を得ることができ、組成物1よりもHFO-1234yfの濃度の増加した缶出物5を得ることができる。この缶出物を、加圧で操作される溶媒回収塔6に供給することにより、例えば、抽出蒸留塔2でR40と親和性の高い抽出溶媒を抽出剤3として用いた場合は、塔頂部より組成物1よりもR40の濃度が増加した留出物7を得ることができる。また、缶出物5を加圧で操作される溶媒回収塔6に供給することにより、例えば、抽出蒸留塔2において、HFO-1234yfと親和性の高い抽出溶媒を抽出剤3として用いた場合は、塔頂より組成物1よりHFO-1234yfの純度の高い留出物7を得ることができる。
 さらに、溶媒回収塔6の塔底部からは、実質的にHFO-1234yfおよびR40を含まない抽出溶媒を缶出物8として回収し、この缶出物を必要に応じて熱交換器9にて、加熱もしくは冷却して抽出蒸留塔2に供給し、抽出溶媒である抽出剤3として再使用する。 
 <実施例1>
 抽出溶媒がN-メチルピロリドンについて、本発明を実施した場合をシミュレーションした。
 溶媒回収部1段、濃縮部19段、および回収部10段の抽出蒸留塔に、HFO-1234yfとR40の組成物(モル比6:4)を、濃縮部の下部から毎時89gで連続的に供給を行うものとし、また、溶媒回収部の下部から、抽出溶媒としてN-メチルピロリドンを毎時297gで連続的に供給を行うものとした。さらに、塔頂側にて還流比15に制御しつつ、第1フラクションを毎時68gで連続的に抜き出し、塔底側にて第2フラクションを毎時317gで連続的に抜き出して、抽出蒸留を行うものとした。この間の抽出蒸留塔内(系内)の圧力は0.5MPaG(ゲージ圧)とし、塔頂温度は11℃、塔底温度は123℃となった。
 抽出蒸留塔より得られる第1フラクション中(図1の留出物4)のHFO-1234yfは99.5モル%となった。また、第1フラクション中に抽出溶媒は40モルppm含まれるものとなった。
 他方、抽出蒸留塔より得られる第2フラクション中(図1の缶出物5)のHFO-1234yfは579モルppm、R40は11.7モル%となり、残部は実質的にN-メチルピロリドンが占めるものとなった。
 得られる第2フラクションを、15段の段数を有する溶媒回収塔へ、下から1段目の位置にて毎時317gで連続的に供給を行うものとした。さらに、塔頂側にて還流比52に制御しつつ、第3フラクションを毎時20gで連続的に抜き出し、塔底側にて第4フラクションを毎時297gで連続的に抜き出して、回収蒸留を行うものとした。この間の溶媒回収塔内(系内)の圧力は0.5MPaG(ゲージ圧)とし、塔頂温度は20℃、塔底温度は277℃となった。
 溶媒回収塔より得られる第3フラクション中(図1の留出物7)のR40は99.5モル%以上となった。他方、溶媒回収塔より得られる第4フラクション中(図1の缶出物8)のN-メチルピロリドンは99.7モル%以上となった。得られる第4フラクションは、抽出蒸留塔へ再循環させるものとした。
 <実施例2>
 抽出溶媒がパークロロエチレンについて、本発明を実施した場合をシミュレーションした。
 溶媒回収部1段、濃縮部24段、および回収部5段の抽出蒸留塔に、HFO-1234yfとR40の組成物(モル比6:4)を、濃縮部の下部から毎時89gで連続的に供給を行うものとし、また、溶媒回収部の下部から、抽出溶媒としてパークロロエチレンを毎時829gで連続的に供給を行うものとした。さらに、塔頂側にて還流比10に制御しつつ、第1フラクションを毎時61gで連続的に抜き出し、塔底側にて第2フラクションを毎時857gで連続的に抜き出して、抽出蒸留を行うものとした。この間の抽出蒸留塔内(系内)の圧力は0.5MPaG(ゲージ圧)とし、塔頂温度は14℃、塔底温度は141℃となった。
 抽出蒸留塔より得られる第1フラクション中のHFO-1234yfは99モル%となった。また、第1フラクション中に抽出溶媒は0.5モル%含まれるものとなった。
 他方、抽出蒸留塔より得られる第2フラクション中のHFO-1234yfは1.3モル%、R40は7.3モル%となり、残部は実質的にパークロロエチレンが占めるものとなった。
 得られる第2フラクションを、30段の段数を有する溶媒回収塔へ、下から1段目の位置にて毎時857gで連続的に供給を行うものとした。さらに、塔頂側にて還流比2に制御しつつ、第3フラクションを毎時40gで連続的に抜き出し、塔底側にて第4フラクションを毎時817gで連続的に抜き出して、回収蒸留を行うものとした。この間の溶媒回収塔内(系内)の圧力は0.2MPaG(ゲージ圧)とし、塔頂温度は44℃、塔底温度は147℃となった。
 溶媒回収塔より得られる第3フラクション中のR40は68モル%以上となった。他方、溶媒回収塔より得られる第4フラクション中のパークロロエチレンは98モル%以上となった。得られる第4フラクションは、抽出蒸留塔へ再循環させるものとした。
 <実施例3>
 抽出溶媒が1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(AK225cb)について、本発明を実施した場合をシミュレーションした。
 溶媒回収部5段、濃縮部40段、および回収部5段の抽出蒸留塔に、HFO-1234yfとR40の組成物(モル比6:4)を、濃縮部の下部から毎時89gで連続的に供給を行うものとし、また、溶媒回収部の下部から、抽出溶媒として1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパンを、毎時2029gで連続的に供給を行うものとした。さらに、塔頂側にて還流比1.5に制御しつつ、第1フラクションを毎時63gで連続的に抜き出し、塔底側にて第2フラクションを毎時2055gで連続的に抜き出して、抽出蒸留を行うものとした。この間の抽出蒸留塔内(系内)の圧力は0.5MPaG(ゲージ圧)とし、塔頂温度は15℃、塔底温度は96℃となった。
 抽出蒸留塔より得られる第1フラクション中にR40は含まれず、HFO-1234yfは99.8モル%となった。また、第1フラクション中に抽出溶媒は0.2モル%含まれるものとなった。
 他方、抽出蒸留塔より得られる第2フラクション中のHFO-1234yfは0.5モル%、R40は3.9モル%となり、残部は実質的にAK225cbが占めるものとなった。
 得られる第2フラクションを、40段の段数を有する溶媒回収塔へ、下から1段目の位置にて毎時2055gで連続的に供給を行うものとした。さらに、塔頂側にて還流比111に制御しつつ、第3フラクションを毎時27gで連続的に抜き出し、塔底側にて第4フラクションを毎時2028gで連続的に抜き出して、回収蒸留を行うものとした。この間の溶媒回収塔内(系内)の圧力は0.2MPaG(ゲージ圧)とし、塔頂温度は23℃、塔底温度は78℃となった。
 溶媒回収塔より得られる第3フラクション中のR40は87モル%以上となった。
 他方、溶媒回収塔より得られる第4フラクション中のAK225cbは99モル%以上となった。
 得られる第4フラクションは、抽出蒸留塔へ再循環させるものとした。
 本発明の抽出溶媒を用いた、2,3,3,3-テトラフルオロプロペンおよびクロロメタンを含む組成物から、それぞれを分離、精製する方法は、効率が良く、高純度の製品を得ることが可能であり、産業上、有用である。
 なお、2012年12月27日に出願された日本特許出願2012-285248号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
1.組成物、2.抽出蒸留塔、3.抽出剤、4.留出物、5.缶出物、6.溶媒回収塔、7.留出物、8.缶出物、9.熱交換器。

Claims (5)

  1.  2,3,3,3-テトラフルオロプロペンとクロロメタンの共沸組成物ないし共沸様組成物を抽出溶媒と接触させ、実質的にクロロメタンを含まない2,3,3,3-テトラフルオロプロペンを得ることを特徴とする2,3,3,3-テトラフルオロプロペンの製造方法。
  2.  前記抽出溶媒として、
     炭化水素類、塩素化炭化水素類、アルコール類、エーテル類、ニトリル類、ケトン類、カーボネート類、アミン類、エステル類、およびスルホキシド類からなる群より選ばれる少なくとも1種の化合物であってフッ素原子を有しない化合物を用いるか、
     フッ素化率が0.8未満でありかつ極性基を有するフッ素化合物を用いるか、または、 フッ素化率が0.9未満でありかつ極性基を有しないフッ素化合物を用いる、
     請求項1に記載の方法。
  3.  炭化水素類がペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカンまたはドデカンであり、塩素化炭化水素類がジクロロメタン、トリクロロメタン、パークロロメタン、1.2-ジクロロプロパンまたはパークロロエチレンであり、アルコール類がメタノール、エタノール、プロパノール、ブタノールまたはペンタノールであり、エーテル類が1,3-ジオキソランまたはテトラヒドロフランであり、ニトリル類がアセトニトリルであり、ケトン類がアセトン、メチルエチルケトン、ジエチルケトンまたはメチルイソブチルケトンであり、カーボネート類がジメチルカーボネートであり、アミン類がジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンまたはN-ホルミルノルホリンであり、エステル類がγ-ブチロラクトンであり、スルホキシド類がジメチルスルホキシドである、請求項2に記載の方法。
  4.  2,3,3,3-テトラフルオロプロペンとクロロメタンの共沸組成物ないし共沸様組成物から、実質的に2,3,3,3-テトラフルオロプロペンを含まないクロロメタンを製造する方法であって、
     前記組成物を抽出溶媒と接触させることを特徴とするクロロメタンの製造方法。
  5.  前記抽出溶媒として、
     フッ素化率が0.8以上でありかつ極性基を有するフッ素化合物を用いるか、または、
     フッ素化率が0.9以上でありかつ極性基を有しないフッ素化合物を用いる、請求項4に記載の方法。
PCT/JP2013/081448 2012-12-27 2013-11-21 テトラフルオロプロペンの精製方法 WO2014103582A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13866573.2A EP2939994B1 (en) 2012-12-27 2013-11-21 Method for purifying tetrafluoropropene
CN201380068345.4A CN104884414B (zh) 2012-12-27 2013-11-21 四氟丙烯的纯化方法
JP2014554252A JP6168068B2 (ja) 2012-12-27 2013-11-21 テトラフルオロプロペンの精製方法
US14/749,877 US9302964B2 (en) 2012-12-27 2015-06-25 Method for purifying tetrafluoropropene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-285248 2012-12-27
JP2012285248 2012-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/749,877 Continuation US9302964B2 (en) 2012-12-27 2015-06-25 Method for purifying tetrafluoropropene

Publications (1)

Publication Number Publication Date
WO2014103582A1 true WO2014103582A1 (ja) 2014-07-03

Family

ID=51020676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081448 WO2014103582A1 (ja) 2012-12-27 2013-11-21 テトラフルオロプロペンの精製方法

Country Status (5)

Country Link
US (1) US9302964B2 (ja)
EP (1) EP2939994B1 (ja)
JP (1) JP6168068B2 (ja)
CN (1) CN104884414B (ja)
WO (1) WO2014103582A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150008357A1 (en) * 2012-04-09 2015-01-08 Asahi Glass Company, Limited Azeotropic or azeotrope-like composition, and method for producing 2,3,3,3-tetrafluoropropene or chloromethane
WO2015072460A1 (ja) * 2013-11-14 2015-05-21 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンと1,1,1,2-テトラフルオロエタンの分離方法および2,3,3,3-テトラフルオロプロペンの製造方法
WO2018139653A1 (ja) * 2017-01-30 2018-08-02 Agc株式会社 (z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法
JPWO2017146190A1 (ja) * 2016-02-26 2018-12-20 Agc株式会社 精製1−クロロ−2,3,3,3−テトラフルオロプロペンおよび精製1−クロロ−2,3,3,3−テトラフルオロプロペン(z)の製造方法
JP2018538316A (ja) * 2015-12-23 2018-12-27 アルケマ フランス 2,3,3,3−テトラフルオロ−1−プロペンを製造及び精製するための方法
JP2019501862A (ja) * 2016-01-14 2019-01-24 エスアールエフ リミテッド 含フッ素オレフィンの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3046161B1 (fr) * 2015-12-23 2019-12-13 Arkema France Procede de production et de purification du 2,3,3,3-tetrafluoro-1-propene.
CN106631683A (zh) * 2016-11-16 2017-05-10 西安近代化学研究所 一种提纯1,1,1,3,3‑五氟丙烷的方法
WO2019220454A1 (en) 2018-05-16 2019-11-21 Srf Limited Process for purification of olefin feed comprising 1234yf
CN111253211B (zh) * 2020-03-16 2022-08-05 天津绿菱气体有限公司 一种高纯电子级四氟丙烯HFO-1234yf的分离纯化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2931840A (en) 1958-11-25 1960-04-05 Du Pont Process for preparing 2, 3, 3, 3-tetrafluoropropene
JP2008506793A (ja) * 2004-04-16 2008-03-06 ハネウェル・インターナショナル・インコーポレーテッド テトラフルオロフ゜ロヘ゜ンとトリフルオロヨート゛メタンとの共沸性組成物
JP2009513719A (ja) * 2005-11-01 2009-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 2,3,3,3−テトラフルオロプロペンとフッ化水素とを含む共沸組成物およびその使用
JP2010202640A (ja) * 2009-02-03 2010-09-16 Central Glass Co Ltd (z)−1−クロロ−3,3,3−トリフルオロプロペンの精製方法
WO2011030026A1 (fr) * 2009-09-11 2011-03-17 Arkema France Fluide refrigerant binaire
WO2012011609A1 (en) * 2010-07-23 2012-01-26 Daikin Industries, Ltd. Purification method of 2,3,3,3-tetrafluoropropene
WO2012105700A1 (ja) * 2011-02-04 2012-08-09 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンの精製方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7413674B2 (en) 2004-04-16 2008-08-19 Honeywell International Inc. Azeotrope-like trifluoroiodomethane compositions
US20100119460A1 (en) * 2008-11-11 2010-05-13 Honeywell International Inc. Azeotrope-Like Compositions Of 2,3,3,3-Tetrafluoropropene And 3,3,3-Trifluoropropene
JP5149456B1 (ja) 2012-03-14 2013-02-20 旭硝子株式会社 2,3,3,3−テトラフルオロプロペンおよび1,1−ジフルオロエチレンの製造方法
JP5201284B1 (ja) 2012-03-14 2013-06-05 旭硝子株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
EP2837613B1 (en) * 2012-04-09 2017-12-20 Asahi Glass Company, Limited Azeotropic or azeotrope like composition, and method for producing 2,3,3,3-tetrafluoropropene or chloromethane
CN105612139B (zh) * 2013-10-09 2017-09-19 旭硝子株式会社 2,3,3,3‑四氟丙烯的纯化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2931840A (en) 1958-11-25 1960-04-05 Du Pont Process for preparing 2, 3, 3, 3-tetrafluoropropene
JP2008506793A (ja) * 2004-04-16 2008-03-06 ハネウェル・インターナショナル・インコーポレーテッド テトラフルオロフ゜ロヘ゜ンとトリフルオロヨート゛メタンとの共沸性組成物
JP2009513719A (ja) * 2005-11-01 2009-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 2,3,3,3−テトラフルオロプロペンとフッ化水素とを含む共沸組成物およびその使用
JP2010202640A (ja) * 2009-02-03 2010-09-16 Central Glass Co Ltd (z)−1−クロロ−3,3,3−トリフルオロプロペンの精製方法
WO2011030026A1 (fr) * 2009-09-11 2011-03-17 Arkema France Fluide refrigerant binaire
WO2012011609A1 (en) * 2010-07-23 2012-01-26 Daikin Industries, Ltd. Purification method of 2,3,3,3-tetrafluoropropene
WO2012105700A1 (ja) * 2011-02-04 2012-08-09 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンの精製方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150008357A1 (en) * 2012-04-09 2015-01-08 Asahi Glass Company, Limited Azeotropic or azeotrope-like composition, and method for producing 2,3,3,3-tetrafluoropropene or chloromethane
US9023233B2 (en) * 2012-04-09 2015-05-05 Asahi Glass Company, Limited Azeotropic or azeotrope-like composition, and method for producing 2,3,3,3-tetrafluoropropene or chloromethane
WO2015072460A1 (ja) * 2013-11-14 2015-05-21 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンと1,1,1,2-テトラフルオロエタンの分離方法および2,3,3,3-テトラフルオロプロペンの製造方法
JP2018538316A (ja) * 2015-12-23 2018-12-27 アルケマ フランス 2,3,3,3−テトラフルオロ−1−プロペンを製造及び精製するための方法
JP2019501862A (ja) * 2016-01-14 2019-01-24 エスアールエフ リミテッド 含フッ素オレフィンの製造方法
JP7014709B2 (ja) 2016-01-14 2022-02-01 エスアールエフ リミテッド 含フッ素オレフィンの製造方法
JPWO2017146190A1 (ja) * 2016-02-26 2018-12-20 Agc株式会社 精製1−クロロ−2,3,3,3−テトラフルオロプロペンおよび精製1−クロロ−2,3,3,3−テトラフルオロプロペン(z)の製造方法
WO2018139653A1 (ja) * 2017-01-30 2018-08-02 Agc株式会社 (z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法

Also Published As

Publication number Publication date
US20150291490A1 (en) 2015-10-15
EP2939994A4 (en) 2016-08-03
CN104884414B (zh) 2018-01-09
JPWO2014103582A1 (ja) 2017-01-12
EP2939994A1 (en) 2015-11-04
CN104884414A (zh) 2015-09-02
JP6168068B2 (ja) 2017-07-26
US9302964B2 (en) 2016-04-05
EP2939994B1 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6168068B2 (ja) テトラフルオロプロペンの精製方法
JP5288069B2 (ja) 2,3,3,3−テトラフルオロプロペンの精製方法
KR101655257B1 (ko) 2-클로로-3,3,3-트리플루오로프로펜(HCFC-1233xf), 2-클로로-1,1,1,2-테트라플루오로프로판(HCFC-244bb), 및 하이드로겐 플루오라이드(HF)의 공비 조성물
JP6102917B2 (ja) 共沸または共沸様組成物、および2,3,3,3−テトラフルオロプロペンまたはクロロメタンの製造方法
KR101686248B1 (ko) 3,3,3-트라이플루오로프로펜 및 플루오르화수소를 포함하는 공비 조성물 및 이의 분리방법
KR102136117B1 (ko) 공비 증류에 의한 플루오르화수소로부터의 1,3,3,3-테트라플루오로프로펜의 분리 방법
JP5477011B2 (ja) (z)−1−クロロ−3,3,3−トリフルオロプロペンの精製方法
EP3345888B1 (en) Extractive distillation processes to separate e-1,2,3,3,3-pentafluoropropene from z-1,2,3,3,3-pentafluoropropene
US10836692B2 (en) Method for isolating HFC-245cb and (E)-HFO-1234ze from composition containing both compounds
JP6011008B2 (ja) 共沸または共沸様組成物、および2,3,3,3−テトラフルオロプロペンまたはヘキサフルオロプロペンの製造方法
WO2017146190A1 (ja) 精製1-クロロ-2,3,3,3-テトラフルオロプロペンおよび精製1-クロロ-2,3,3,3-テトラフルオロプロペン(z)の製造方法
WO2018139653A1 (ja) (z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法
JP5267657B2 (ja) ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法
JP2018002603A (ja) クロロメタンとヘキサフルオロプロペンの分離方法およびクロロメタンの製造方法
WO2015072460A1 (ja) 2,3,3,3-テトラフルオロプロペンと1,1,1,2-テトラフルオロエタンの分離方法および2,3,3,3-テトラフルオロプロペンの製造方法
WO2019098337A1 (ja) (z)-1-クロロ-2,3,3,3-テトラフルオロプロペンの精製方法
JP2021109828A (ja) 1,3−ジクロロ−2,3,3−トリフルオロプロペンと、アルコールとの共沸または共沸様組成物の製造方法
WO2018044787A1 (en) SEPARATION OF (Z)-1-CHLORO-3,3,3-TRIFLUOROPROPENE (HCFO-1233zd(Z)) AND 1-CHLORO-1,3,3,3-TETRAFLUOROPROPANE (HCFC-244fa) BY ADDING A THIRD COMPONENT
JP2006306726A (ja) フッ素化エーテルの製造法
JP2018002602A (ja) 2,3,3,3−テトラフルオロプロペンとヘキサフルオロプロペンの分離方法および2,3,3,3−テトラフルオロプロペンの製造方法
JP2024076897A (ja) クロロジフルオロメタンとヘキサフルオロプロピレンの分離方法及び組成物
JP2018002601A (ja) 2,3,3,3−テトラフルオロプロペンとクロロトリフルオロエチレンの分離方法および2,3,3,3−テトラフルオロプロペンの製造方法
JP2013230998A (ja) 共沸または共沸様組成物、およびクロロメタンまたはヘキサフルオロプロペンの製造方法
JP2020533431A (ja) フッ化水素及びフルオロカーボンを含む共沸組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554252

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013866573

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE