WO2018139653A1 - (z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法 - Google Patents

(z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法 Download PDF

Info

Publication number
WO2018139653A1
WO2018139653A1 PCT/JP2018/002785 JP2018002785W WO2018139653A1 WO 2018139653 A1 WO2018139653 A1 WO 2018139653A1 JP 2018002785 W JP2018002785 W JP 2018002785W WO 2018139653 A1 WO2018139653 A1 WO 2018139653A1
Authority
WO
WIPO (PCT)
Prior art keywords
extraction solvent
chloro
distillation
composition
trifluoropropene
Prior art date
Application number
PCT/JP2018/002785
Other languages
English (en)
French (fr)
Inventor
厚史 藤森
真理 市野川
岡本 秀一
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2018139653A1 publication Critical patent/WO2018139653A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • C07C17/386Separation; Purification; Stabilisation; Use of additives by distillation with auxiliary compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the present invention relates to a method for producing (Z) -1-chloro-2,3,3-trifluoropropene.
  • Hydrochlorofluorocarbon has an adverse effect on the ozone layer, so its production is scheduled to be regulated.
  • HCFC is, for example, 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC-225ca) and 1,3-dichloro-1,1,2,2,3-pentafluoropropane ( HCFC-225cb) and the like, but in accordance with the above regulations, development of a compound replacing HCFC is desired.
  • HCFO-1233yd 1-chloro-2,3,3-trifluoropropene
  • HCFO-1233yd is a new compound that has a low global warming potential (GWP) and is useful for cleaning, solvent, refrigerant, blowing agent and aerosol applications.
  • GWP global warming potential
  • stereoisomers of HCFO-1233yd there are E form (HCFO-1233yd (E)) and Z form (HCFO-1233yd (Z)) of HCFO-1233yd, and HCFO-1233yd (Z) is mainly used. .
  • HCFO-1233yd (E) may be used alone or HCFO-1233yd (Z) and HCFO-1233yd (E) may be mixed at a desired ratio depending on the application and compatibility with the components to be mixed. Also do.
  • HCFO-1233yd 3-chloro-1,1,2,2-tetrafluoropropane (HCFC-244ca) is reacted with an alkali in the presence of a catalyst to be dehydrofluorinated to obtain HCFO-1233yd.
  • a catalyst for example, see Patent Document 1.
  • HCFO-1233yd produced by the above method is usually a mixture of HCFO-1233yd (E) and HCFO-1233yd (Z). Further, the product obtained by the above method contains HCFC-244ca which is an unreacted raw material in addition to HCFO-1233yd. From an industrial point of view, in addition to purifying the above product to obtain HCFO-1233yd (Z), HCFC-244ca was also required to be purified from the reaction mixture and reused in the reaction.
  • the boiling points of HCFO-1233yd (Z) and HCFC-244ca are 54 ° C. and 53 ° C. (both under atmospheric pressure), respectively, and the boiling points are close. Therefore, when HCFC-244ca remains in the reaction mixture, it is difficult to separate HCFC-244ca from the reaction mixture by a general method such as distillation.
  • extractive distillation is known as a method for separating one component from a mixture containing two components having very close boiling points or an azeotropic or azeotrope-like composition comprising two components (for example, , See Patent Document 2).
  • the mixture containing HCFO-1233yd (Z) and HCFC-244ca can be efficiently separated, for example, in a distillation column having a small number of stages, and the two are separated to obtain a high concentration HCFO-1233yd (Z ) Was not known.
  • JP 2016-164152 A Japanese Patent No. 2827912
  • the present invention has been made from the above viewpoint, and efficiently separates HCFC-244ca from a composition containing HCFO-1233yd (Z) and HCFC-244ca to obtain a high concentration HCFO-1233yd (Z). It is an object of the present invention to provide a method for producing HCFO-1233yd (Z) which can be manufactured.
  • HCFO-1233yd which is a stereoisomer of 1-chloro-2,3,3-trifluoropropene
  • HCFO-1233yd hereinafter, also simply referred to as “1233yd”.
  • E form HCFO-1233yd (E), hereinafter also simply referred to as “1233yd (E)”
  • Z form HCFO-1233yd (Z), hereinafter also simply referred to as “1233yd (Z)”.
  • 1233yd (Z) The compound to be separated is 3-chloro-1,1,2,2-tetrafluoropropane (HCFC-244ca, hereinafter also simply referred to as “244ca”).
  • the present invention provides a method for producing 1233yd (Z) having the following configuration.
  • (Z) with respect to the total molar amount of (Z) -1-chloro-2,3,3-trifluoropropene and 3-chloro-1,1,2,2-tetrafluoropropane in the composition (Z ) -1-Chloro-2,3,3-trifluoropropene has a molar amount ratio of 1 to 99 mol% (Z) -1-chloro-2,3,3- A method for producing trifluoropropene.
  • the extraction solvent has a relative volatility of (Z) -1-chloro-2,3,3-trifluoropropene with respect to 3-chloro-1,1,2,2-tetrafluoropropane of 0.9 or less
  • the process for producing (Z) -1-chloro-2,3,3-trifluoropropene according to any one of [1] to [4], wherein the solvent is 1.2 or more.
  • the extraction solvent is methanol, acetone, chloroform, ethyl acetate, carbon tetrachloride, n-hexane, tetrahydrofuran, CF 3 CH 2 OCF 2 CF 2 H and CF 3 CF 2 CF 2 CF 2 CF 2 H.
  • extraction distillation means that an extraction solvent is added to a composition containing two components that have extremely close boiling points or form an azeotropic or azeotrope-like composition that is difficult to separate by ordinary distillation, It means a distillation operation that facilitates separation by separating the relative volatility of the original two components from 1 greatly. This solvent changes the relative volatility of the original two components in order to affect the vapor-liquid equilibrium relationship of the two components.
  • Relative volatility of 1233yd (Z) to 244ca (molar fraction (%) of 1233yd (Z) in the gas phase part / mole fraction (%) of 244ca in the gas phase part) / (1233yd (Z in the liquid phase part) ) Mol fraction (%) / mol fraction of 244ca in the liquid phase part (%))
  • distillate refers to a substance distilled from the top of the distillation column
  • bottom refers to a product extracted from the bottom of the distillation column (can Refers to the substance to be released.
  • main component means that the amount of components other than the component is relatively small.
  • the amount of the “main component” is sufficient if it is 50 mol% or more of the whole, but specifically, it is 60 mol% or more, for example, 80 mol% or more.
  • 244ca can be efficiently separated from a composition containing 1233yd (Z) and 244ca to obtain a high concentration of 1233yd (Z).
  • the boiling point of the compound is a value at normal pressure (1.013 ⁇ 10 5 Pa).
  • a composition containing 1233yd (Z) and 244ca is obtained by mixing alcohols, ethers, nitriles, ketones, carbonates, amides, esters, sulfoxides, 244ca is separated from the composition by distillation in the presence of an extraction solvent comprising at least one compound selected from the group consisting of hydrocarbons, fluorinated hydrocarbons and chlorinated hydrocarbons. .
  • an extraction solvent comprising at least one compound selected from the group consisting of hydrocarbons, fluorinated hydrocarbons and chlorinated hydrocarbons.
  • a part or all of 244ca contained in this composition is isolate
  • a composition containing 1233yd (Z) and 244ca is also referred to as a “distillation composition”.
  • 1233yd (Z) having a high concentration can be obtained by distilling the composition for distillation in the presence of the extraction solvent. That is, by performing distillation in the presence of the extraction solvent, the content of 1233yd (Z) with respect to the total amount of 1233yd (Z) and 244ca in the composition for distillation is reduced in the distillate or bottom product after distillation.
  • the ratio of 1233yd (Z) to the total amount of 1233yd (Z) and 244ca can be increased.
  • composition for distillation contains 1233yd (Z) and 244ca.
  • the composition for distillation may consist only of 1233yd (Z) and 244ca.
  • the composition for distillation may contain other components other than 1233yd (Z) and 244ca, unless the effect of this invention is impaired.
  • other components include 1233yd (E), 1-chloro-3,3-difluoropropyne and the like.
  • a crude liquid containing 1233yd obtained by the production method described in Patent Document 1 may be used as it is, or the crude liquid may be used after being purified by a known method.
  • the content of other components in the composition for distillation is preferably 15% by mass or less, more preferably 13% by mass or less, and further preferably 10% by mass or less.
  • the content rate of 1233yd (Z) in the composition for distillation is not specifically limited, 50 mass% or more is preferable from a viewpoint of distillation efficiency, 70 mass% or more is more preferable, and 80 mass% or more is further more preferable. Since 1233yd (Z) and 244ca have close boiling points and further form an azeotropic or azeotrope-like composition at a specific composition, the relative volatility of 1233yd (Z) to 244ca is close to 1.
  • an azeotropic composition composed of 1233yd (Z) and 244ca is a composition in which the content ratio of 1233yd (Z) is 87 mol% and the content ratio of 244ca is 13 mol%, The boiling point at 1.011 ⁇ 10 6 Pa is 52.6 ° C.
  • the composition of the gas phase generated by vaporization of the liquid phase is the same as the composition of the liquid phase, or the composition of the liquid phase generated by liquefaction of the gas phase is the same as the composition of the gas phase.
  • the composition of the azeotropic composition does not change due to evaporation and condensation. Note that the composition of the azeotropic composition varies depending on the pressure condition.
  • the azeotrope-like composition composed of 1233yd (Z) and 244ca is a composition having a content ratio of 1233yd (Z) of 99 to 1 mol% and a content ratio of 244ca of 1 to 99 mol%.
  • the boiling point of the azeotrope-like composition composed of 1233yd (Z) and 244ca is 52 to 53 ° C.
  • An azeotrope-like composition refers to a composition having a relative volatility of 1233yd (Z) to 244ca determined by the above formula in the range of 1.00 ⁇ 0.1.
  • An azeotrope-like composition is one that behaves like an azeotrope composition. That is, in the azeotrope-like composition, the composition of the gas phase generated by vaporization of the liquid phase is substantially the same as the composition of the liquid phase, or the composition of the liquid phase generated by liquefaction of the gas phase is the gas phase. The composition is substantially the same. Therefore, the ratio of the molar amount of 1233yd (Z) to the total molar amount of 1233yd (Z) and 244ca in the composition for distillation is preferably 1 to 99 mol%.
  • the composition for distillation is obtained by extractive distillation using an extraction solvent that makes the relative volatility of 1233yd (Z) greater than 1 or 244ca greater than 1 or less than 1. Isolate 244ca inside. In other words, by making one of 1233yd (Z) and 244ca less likely to volatilize, 244ca is efficiently separated from the distillation composition as a distillate or bottom product, and the concentration of 1233yd (Z) is increased. Is what you get.
  • the extraction solvent in this embodiment is a group consisting of alcohols, ethers, nitriles, ketones, carbonates, amides, esters, sulfoxides, hydrocarbons, chlorinated hydrocarbons and fluorinated hydrocarbons. At least one compound selected from the group consisting of
  • the alcohol is a compound having at least one alcoholic hydroxyl group and having no halogen atom, preferably an aliphatic alcohol having 1 to 6 carbon atoms in the main chain, and having 1 to 4 carbon atoms. Aliphatic alcohols are more preferred.
  • methanol, ethanol, and 2-propanol are preferable from the viewpoint of easy availability and productivity in the distillation process.
  • Ethers are compounds having at least one ether group and no halogen atom, and may be cyclic or linear.
  • the ether has preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms.
  • 1,3-dioxolane, 1,4-dioxane, and tetrahydrofuran are preferable from the viewpoint of easy availability and productivity in the distillation process.
  • Nitriles are compounds represented by the general formula: R 1 -CN (R 1 represents an unsubstituted aliphatic hydrocarbon group).
  • R 1 represents an unsubstituted aliphatic hydrocarbon group.
  • nitriles having 1 to 5 carbon atoms in R 1 in the above general formula are preferable.
  • Specific examples include acetonitrile, propionitrile, butyronitrile, isobutyronitrile and the like. Among these, acetonitrile is preferable from the viewpoint of easy availability and productivity in the distillation process.
  • Ketones are compounds represented by the general formula: R 2 —C ( ⁇ O) —R 3 (R 2 and R 3 represent the same or different unsubstituted aliphatic hydrocarbon groups). is there.
  • ketones in the above general formula, ketones in which R 2 and R 3 each have 1 to 2 carbon atoms and R 2 and R 3 have a total carbon number of 2 to 4 are preferable.
  • Specific examples include acetone, methyl ethyl ketone, and diethyl ketone. Among these, acetone is preferable from the viewpoint of easy availability and productivity in the distillation process.
  • the carbonic acid esters are preferably chain carbonic acid esters having 1 to 6 carbon atoms or aliphatic cyclic carbonic acid esters. Specific examples include dimethyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate. Among these, dimethyl carbonate and diethyl carbonate are preferred from the viewpoint of easy availability and productivity in the distillation process.
  • amides include chain amides having 3 to 5 carbon atoms or aliphatic cyclic amides, and tertiary amides in which all of the hydrogen atoms of the amino group are substituted with alkyl groups are preferred.
  • Specific examples include formamide, acetamide, N, N-dimethylformamide, and N, N-dimethylacetamide.
  • N, N-dimethylformamide and N, N-dimethylacetamide are preferable from the viewpoint of easy availability and productivity in the distillation process.
  • Esters are compounds having an ester group other than carbonate.
  • the esters include chain esters having 3 to 6 carbon atoms or aliphatic cyclic esters, and chain esters having 4 to 6 carbon atoms are preferable.
  • Specific examples of the esters include methyl acetate, ethyl acetate, propyl acetate, and butyl acetate. Among these, ethyl acetate is preferable from the viewpoint of easy availability and productivity in the distillation process.
  • the sulfoxides are compounds represented by the general formula: R 4 —S ( ⁇ O) —R 5 (R 4 and R 5 represent the same or different unsubstituted aliphatic hydrocarbon groups). is there.
  • DMSO dimethyl sulfoxide in which R 4 and R 5 are both methyl groups is preferable from the viewpoint of easy availability and productivity in the distillation step.
  • hydrocarbons examples include aliphatic chain hydrocarbons having 3 to 6 carbon atoms or aliphatic cyclic hydrocarbons having no halogen atom, and aliphatic chain hydrocarbons having 3 to 6 carbon atoms are preferable.
  • Specific examples include n-pentane, i-pentane, n-hexane, cyclohexane and the like. Among these, n-hexane is preferable from the viewpoint of easy availability and productivity in the distillation process.
  • Chlorinated hydrocarbons are compounds in which one or more of the hydrogen atoms of aliphatic chain hydrocarbons or aliphatic cyclic hydrocarbons having 1 to 4 carbon atoms are substituted with chlorine atoms, and fluorinated hydrocarbons Is not included.
  • Specific examples of chlorinated hydrocarbons include dichloromethane, chloroform (CHCl 3 ), carbon tetrachloride (CCl 4 ), 1,2-dichloropropane, perchloroethylene, and the like.
  • chlorinated hydrocarbons include dichloromethane, chloroform (CHCl 3 ), carbon tetrachloride (CCl 4 ), 1,2-dichloropropane, perchloroethylene, and the like.
  • carbon tetrachloride is preferable from the viewpoint of easy availability and productivity in the distillation process.
  • Fluorinated hydrocarbons are compounds in which one or more hydrogen atoms of an aliphatic chain hydrocarbon having 1 to 10 carbon atoms or an aliphatic cyclic hydrocarbon are substituted with fluorine atoms.
  • the fluorinated hydrocarbons may have an ether bond or a double bond between carbon-carbon bonds, and the hydrogen of the hydrocarbon may be substituted with a chlorine atom, a hydroxyl group or the like.
  • fluorinated hydrocarbons include CF 3 CH 2 OCF 2 CF 2 H (Asahi Glass Co., Ltd., trade name: AE3000), tetrafluoropropanol, CF 3 CF 2 CF 2 CF 2 OCF 3 (Sumitomo 3M).
  • the extraction solvent among the aforementioned compounds, those having a boiling point of 40 to 250 ° C. are preferable, and those having a boiling point of 40 to 150 ° C. are more preferable.
  • the boiling point of the extraction solvent is in the above range, the productivity in the distillation process is further improved. From the viewpoint of productivity, a compound having a small molecular weight is preferable as the extraction solvent.
  • the extraction solvent has affinity only for 244ca of 1233yd (Z) and 244ca, and makes 244ca less likely to volatilize, thereby increasing the value of relative volatility of 1233yd (Z) to 244ca greater than 1.
  • 1233yd (1233yd) for 244ca by having an affinity only for 1233yd (Z) of 1233yd (Z) and 244ca
  • the solvent is classified into a solvent (second extraction solvent) that makes the value of the relative volatility of Z) smaller than 1.
  • the first extraction solvent preferably has a relative volatility of 1233yd (Z) with respect to 244ca of approximately 1.1 or more, and more preferably 1.12 or more.
  • a relative volatility of 1233yd (Z) with respect to 244ca is equal to or more than the lower limit value, 1233yd (Z) is likely to volatilize.
  • the second extraction solvent preferably has a relative volatility of 1233yd (Z) with respect to 244ca of approximately 0.9 or less, and more preferably 0.85 or less.
  • a relative volatility of 1233yd (Z) with respect to 244ca is equal to or less than the upper limit value, 244ca is easily volatilized.
  • the relative volatility of 1233yd (Z) to 244ca tends to be larger than 1.
  • the compound having a fluorine atom is a fluorinated hydrocarbon among the extraction solvents described above.
  • the relative volatility of 1233yd (Z) to 244ca tends to be smaller than 1.
  • the compound having no fluorine atom include alcohols, ethers, nitriles, ketones, amides, esters, sulfoxides, and chlorinated hydrocarbons among the above-described compounds.
  • the first extraction solvent for increasing the relative volatility of 1233yd (Z) to 244ca to be greater than 1 for example, CF 3 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CF 2 CF 2 CF 2 H, CF 3 CF 2 CF 2 CF 2 CF 2 CH 2 CH 3 , CF 3 CF 2 CF (CH 3 ) OCF (CF 3 ) 2 are preferred, CF 3 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CF 2 CF 2 CF 2 H are more preferable.
  • the second extraction solvent for reducing the relative volatility of 1233yd (Z) to 244ca to be less than 1 includes, for example, methanol, acetone, chloroform, carbon tetrachloride, ethyl acetate, n-hexane among the above-mentioned compounds. THF is preferred.
  • the amount of the extraction solvent is not particularly limited, and the molar ratio represented by the extraction solvent: 244ca is preferably 0.1: 1 to 1000: 1, preferably 0.1: 1 to 500: 1 is more preferable, and 0.1: 1 to 300: 1 is further preferable from the viewpoint of production efficiency.
  • the extractive distillation uses an apparatus generally used for distillation, for example, a distillation column such as a plate column or a packed column, and supplies the distillation composition and the extraction solvent to the distillation column.
  • a distillation column such as a plate column or a packed column
  • the distillation column can be made of glass, stainless steel, or carbon steel lined with at least one of tetrafluoroethylene resin, chlorofluorofluoroethylene resin, vinylidene fluoride resin, PFA resin, and the like.
  • the distillation composition and the extraction solvent may be supplied to the distillation column in the distillation column as long as the distillation composition is distilled in the presence of the extraction solvent. Good.
  • an extraction solvent may be added to the distillation composition and then supplied to the distillation column.
  • the distillation composition and the extraction solvent are contacted in the distillation column by a method such as supplying the extraction solvent to the distillation column supplied with the distillation composition, and distilled simultaneously with mixing. Is preferably performed.
  • extraction distillation is preferably performed under pressure, for example, 0 to 5 ⁇ 10 6 Pa, preferably 0 to 3 ⁇ 10 6 Pa, particularly 0 to 2 ⁇ 10.
  • the pressure gauge pressure is preferably 6 Pa.
  • the temperature at the top and bottom of the distillation column is determined according to the operating pressure and the composition of the distillate and bottoms. Considering the temperature of the condenser and reheater provided at the top and bottom of the column, in order to carry out the distillation operation economically, the temperature at the top of the column is 40 to 100 ° C., and the temperature at the bottom of the column is 50 to 200. It is preferable to set it as ° C. Extractive distillation can be carried out either batchwise or continuously, sometimes in semi-continuous mode where the distillate and bottoms are withdrawn intermittently, or the distillation composition is intermittently charged. Is preferably continuously supplied to the distillation column.
  • the first extraction solvent makes the relative volatility of 1233yd (Z) to 244ca greater than 1. Therefore, a distillate containing 1233yd (Z) as a main component is obtained from the top side of the distillation column by extractive distillation of the mixed solution containing the composition for distillation and the first extraction solvent.
  • the composition of the distillate is not limited as long as it contains 1233yd (Z) as a main component.
  • the mole fraction (%) of 1233yd (Z) with respect to the sum of 1233yd (Z) and 244ca in the distillate is preferably 90 mol% or more.
  • the distillate can be distilled again in the presence of the extraction solvent. Thereby, 1233yd (Z) of higher concentration can be obtained.
  • a bottom product containing the extraction solvent and 244ca is obtained from the bottom side of the distillation column.
  • the bottoms include 1233yd (Z), but the molar fraction of 1233yd (Z) relative to the sum of 1233yd (Z) and 244ca is 1233yd (Z) relative to the sum of 1233yd (Z) and 244ca in the distillation composition. Compared with the mole fraction of Z), it is greatly reduced.
  • the mole fraction of 1233yd (Z) relative to the sum of 1233yd (Z) and 244ca in the bottoms is, for example, the mole fraction of 1233yd (Z) relative to the sum of 1233yd (Z) and 244ca in the distillation composition. What is necessary is just to reduce to 1/10 or less.
  • 1233yd (Z) is contained in the distillate at a very high concentration by extractive distillation.
  • the bottoms can be distilled again in the presence of the extraction solvent. Thereby, the mole fraction of 1233yd (Z) with respect to the sum total of 1233yd (Z) and 244ca in the bottom can be further reduced. 244ca in the obtained bottom product can be separated by ordinary distillation and can be reused as a raw material for producing 1233yd (Z).
  • the second extraction solvent makes the relative volatility of 1233yd (Z) to 244ca smaller than 1. Therefore, a distillate containing 244ca as a main component can be obtained from the top of the distillation column by extractive distillation of the mixed solution containing the distillation composition and the second extraction solvent.
  • the distillate also includes 1233yd (Z), but the mole fraction of 1233yd (Z) relative to the sum of 1233yd (Z) and 244ca is 1233yd (Z) relative to the sum of 1233yd (Z) and 244ca in the distillation composition. Compared with the mole fraction of Z), it is greatly reduced.
  • the mole fraction of 1233yd (Z) relative to the sum of 1233yd (Z) and 244ca in the distillate is, for example, the mole fraction of 1233yd (Z) relative to the sum of 1233yd (Z) and 244ca in the distillation composition. What is necessary is just to reduce to 1/10 or less. Thus, 244ca is separated by extractive distillation. By distilling the distillate again in the presence of the extraction solvent, the concentration of 244ca in the distillate can be increased and reused as a raw material for producing 1233yd (Z).
  • a bottom product containing the second extraction solvent and 1233yd (Z) is obtained from the bottom side of the distillation column. It is preferable that the molar fraction (%) of 1233yd (Z) with respect to the sum total of 1233yd (Z) and 244ca is 90 mol% or more.
  • the bottom product can be distilled again in the presence of the extraction solvent. Thereby, the molar fraction of 244ca with respect to the sum total of 1233yd (Z) and 244ca in the bottom can be further reduced, and 1233yd (Z) having a higher concentration can be obtained.
  • 244ca is efficiently separated from the composition for distillation by using the second extraction solvent.
  • the second extraction solvent in the bottoms can be separated by ordinary distillation, whereby a high concentration of 1233yd (Z) is obtained.
  • the distillation composition contains 1233yd (E)
  • a distillate containing 1233yd (E) and 244ca is obtained from the top of the distillation column by extractive distillation in the presence of the second extraction solvent. It is done.
  • 1233yd (Z) and 1233yd (E) can be mixed in a desired ratio as needed, and can be used for various applications.
  • Table 1 shows that the relative volatility of 1233yd (Z) with respect to 244ca can be increased by using AE3000, AC2000, AC6000, and Novec7300 as the first extraction solvent. For this reason, according to these 1st extraction solvents, it turns out that 1233yd (Z) of high concentration is obtained as a distillate of a distillation column.
  • Example 1 As the distillation column, a multistage distillation column having 40 theoretical plates was prepared. The distillation composition was charged into the distillation column so that the molar ratio represented by 1233yd (Z): 244ca was 92.0: 8.0. Heating was adjusted so that the operating pressure was atmospheric pressure and the dropping rate of the gas phase condensate was appropriate, and the boiling was maintained for 3 hours in a stable state. Thereafter, methanol as an extraction solvent was supplied at a supply rate of 15 ml / min from the 10th stage from the top of the distillation column. During distillation, a distillate was extracted from the top of the column and a bottom was extracted from the bottom of the column.
  • molar ratio represented by 1233yd (Z): 244ca was 92.0: 8.0. Heating was adjusted so that the operating pressure was atmospheric pressure and the dropping rate of the gas phase condensate was appropriate, and the boiling was maintained for 3 hours in a stable state. Thereafter, methanol as an extraction solvent was supplied at a supply rate of 15
  • composition ratio of 244ca and 1233yd (Z) was calculated
  • Table 3 shows the composition ratio of 1233yd (Z) and 244ca in the distillation composition, distillate, and bottom product, the type of extraction solvent, the bath temperature, the temperature in the kettle, and the temperature at the top of the column.
  • Example 1 Distillation and measurement were performed in the same manner as in Example 1 except that the extraction solvent was not supplied and that the operating conditions were as shown in Table 3.
  • Table 3 shows the composition ratio of 1233yd (Z) and 244ca in the distillation composition, distillate, and bottom product, the type of extraction solvent, the bath temperature, the temperature in the kettle, and the temperature at the top of the column.
  • Example 1 shows that when methanol is used as the extraction solvent, a distillate containing a high concentration of 244ca can be efficiently separated from the distilled composition. This distillate can be reused as a raw material for producing 1233yd (Z). On the other hand, it can be seen from Comparative Example 1 that 244ca cannot be separated from the distilled composition when no extraction solvent is used.
  • Example 2 As in Example 1, except that AC2000 was used instead of methanol as the extraction solvent, and the molar ratio of 1233yd (Z) and 244ca in the distillation composition and the operating conditions were as shown in Table 4. Distillation and measurement were performed. Table 4 shows the composition ratio of 1233yd (Z) and 244ca in the distillation composition, distillate, and bottom product, the type of extraction solvent, the bath temperature, the temperature in the kettle, and the temperature at the top of the column.
  • Example 2 Distillation and measurement were performed in the same manner as in Example 2 except that the extraction solvent was not supplied.
  • Table 4 shows the composition ratio of 1233yd (Z) and 244ca in the distillation composition, distillate, and bottom product, the type of extraction solvent, the bath temperature, the temperature in the kettle, and the temperature at the top of the column.
  • Example 2 shows that when AC2000 is used as the extraction solvent, a composition having a concentration of 1233yd (Z) increased to such an extent that it can be used as a distillate for various purposes. On the other hand, it can be seen from Comparative Example 2 that when no extraction solvent is used, a composition with an increased concentration of 1233yd (Z) cannot be obtained.
  • 1233yd (Z) or 244ca can be efficiently separated from the composition for distillation containing 1233yd (Z) and 244ca by this example to obtain a high concentration of 1233yd (Z).

Abstract

1233yd(Z)と244caを含む組成物から244caを効率よく分離して、高濃度の1233yd(Z)を得ることのできる1233yd(Z)の製造方法を提供する。1233yd(Z)と244caを含む組成物を、アルコール類、エーテル類、ニトリル類、ケトン類、カーボネート類、アミン類、エステル類、スルホキシド類、炭化水素類、塩化炭化水素類およびフッ化炭化水素類からなる群から選ばれる少なくとも一種の化合物からなる抽出溶媒の存在下に蒸留することで、1233yd(Z)と244caとを分離する1233yd(Z)の製造方法。

Description

(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法
 本発明は、(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法に関する。
 ハイドロクロロフルオロカーボン(HCFC)は、オゾン層に悪影響を及ぼすことから、その生産の規制が予定されている。HCFCは、例えば、3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン(HCFC-225ca)や1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(HCFC-225cb)等が挙げられるが、上記規制に伴い、HCFCに代わる化合物の開発が望まれている。
 HCFCに代わる化合物の一例は、1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd)である。HCFO-1233ydは、地球温暖化係数(GWP)が小さく、洗浄剤、溶媒、冷媒、発泡剤およびエアゾールの用途に有用な新たな化合物である。HCFO-1233ydの立体異性体として、HCFO-1233ydのE体(HCFO-1233yd(E))とZ体(HCFO-1233yd(Z))が存在するが、主としてHCFO-1233yd(Z)が使用される。また、用途や混合される成分との相溶性などによって、HCFO-1233yd(E)を単独で用いたり、HCFO-1233yd(Z)とHCFO-1233yd(E)を所望の比率で混合して用いたりもする。
 HCFO-1233ydの製造方法としては、3-クロロ-1,1,2,2-テトラフルオロプロパン(HCFC-244ca)を、触媒存在下でアルカリと反応させて脱フッ化水素化させ、HCFO-1233ydを製造する方法が開示されている(例えば、特許文献1参照。)。
 しかしながら、上記の方法で生成するHCFO-1233ydは、通常HCFO-1233yd(E)とHCFO-1233yd(Z)の混合物である。さらに上記の方法で得られる生成物には、HCFO-1233yd以外にも未反応原料であるHCFC-244caが含まれる。
 工業的な観点からは、上記生成物を精製してHCFO-1233yd(Z)を得ることに合わせて、HCFC-244caも該反応混合物から精製して再度反応に利用することが求められていた。
 ところが、HCFO-1233yd(Z)およびHCFC-244caの沸点はそれぞれ54℃および53℃(いずれも大気圧下)であり、沸点が近い。そのため、反応混合物中にHCFC-244caが残存する場合には、蒸留などの一般的な方法では反応混合物中からHCFC-244caを分離することは困難であった。
 これに対し、脱フッ化水素化反応の過程でHCFC-244caを消失させてHCFO-1233ydと分離する方法が考えられる。ところが、脱フッ化水素化反応の過程でHCFC-244caを消失させるには反応系の温度を上昇させ、また、長時間反応させる必要がある。反応時間や温度が過剰になると、目的物であるHCFO-1233ydがさらに脱フッ化水素化した化合物(1-クロロ-3,3-ジフルオロプロピン)が副生し、HCFO-1233ydの収率が低下するといった問題点があった。
 ここで、従来から、沸点が極めて近い2つの成分を含む混合物や2成分からなる共沸または共沸様組成物から、一方の成分を分離する方法として、抽出蒸留法が知られている(例えば、特許文献2参照。)。しかしながら、どのような抽出溶媒を使用すれば、HCFO-1233yd(Z)とHCFC-244caを含む混合物から効率よく、例えば少ない段数の蒸留塔で、両者を分離して高濃度のHCFO-1233yd(Z)を得られるかは知られていなかった。
特開2016-164152号公報 特許第2827912号
 本発明は、上記観点からなされたものであり、HCFO-1233yd(Z)とHCFC-244caを含む組成物からHCFC-244caを効率よく分離して、高濃度のHCFO-1233yd(Z)を得ることのできるHCFO-1233yd(Z)の製造方法を提供することを目的とする。
 なお、本明細書における製造対象の化合物は、1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd、以下単に、「1233yd」ともいう。)の立体異性体である、HCFO-1233ydのE体(HCFO-1233yd(E)、以下単に、「1233yd(E)」ともいう。)とZ体(HCFO-1233yd(Z)、以下単に、「1233yd(Z)」ともいう。)のうち、1233yd(Z)である。
 また、分離対象の化合物は、3-クロロ-1,1,2,2-テトラフルオロプロパン(HCFC-244ca、以下単に、「244ca」ともいう。)
 本発明は、以下に示す構成の1233yd(Z)の製造方法を提供する。
 [1](Z)-1-クロロ-2,3,3-トリフルオロプロペンと3-クロロ-1,1,2,2-テトラフルオロプロパンを含む組成物を、アルコール類、エーテル類、ニトリル類、ケトン類、炭酸エステル類、アミド類、エステル類、スルホキシド類、炭化水素類、塩化炭化水素類およびフッ化炭化水素類からなる群から選ばれる少なくとも一種の化合物からなる抽出溶媒の存在下に蒸留することで、前記組成物から、前記3-クロロ-1,1,2,2-テトラフルオロプロパンを分離することを特徴とする、(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
 [2]前記組成物中の、(Z)-1-クロロ-2,3,3-トリフルオロプロペンと3-クロロ-1,1,2,2-テトラフルオロプロパンの合計モル量に対する、(Z)-1-クロロ-2,3,3-トリフルオロプロペンのモル量の割合が、1~99モル%である、[1]に記載の(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
 [3]前記抽出溶媒が、沸点が40℃~250℃の化合物である、[1]または[2]に記載の(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
 [4]前記抽出溶媒の量が、抽出溶媒:3-クロロ-1,1,2,2-テトラフルオロプロパンで示されるモル比で、0.1:1~1000:1となる量である、[1]~[3]のいずれかに記載の(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
 [5]前記抽出溶媒が、3-クロロ-1,1,2,2-テトラフルオロプロパンに対する(Z)-1-クロロ-2,3,3-トリフルオロプロペンの比揮発度を0.9以下または1.2以上とする溶媒である[1]~[4]のいずれかに記載の(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
 [6]前記抽出溶媒は、メタノール、アセトン、クロロホルム、酢酸エチル、四塩化炭素、n-ヘキサン、テトラヒドロフラン、CFCHOCFCFHおよびCFCFCFCFCFCFHからなる群から選ばれる少なくとも一種の化合物である[1]~[5]のいずれかに記載の(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
 本明細書において、「抽出蒸留」とは、沸点が極めて近いか、共沸または共沸様組成を形成する、通常の蒸留による分離が困難な2成分を含む組成物に、抽出溶媒を加え、元の2成分の比揮発度を1から大きく隔たらせることにより、分離を容易にする蒸留操作を意味する。この溶媒は、2成分の気液平衡関係に影響を与えるために、元の2成分の比揮発度を変化させる。
 本明細書において比揮発度としては、以下の式で示される、244caに対する1233yd(Z)の比揮発度を用いる。
 244caに対する1233yd(Z)の比揮発度=(気相部における1233yd(Z)のモル分率(%)/気相部における244caのモル分率(%))/(液相部における1233yd(Z)のモル分率(%)/液相部における244caのモル分率(%))
 この場合、抽出溶媒の添加により244caに対する1233yd(Z)の比揮発度が1より相当量大きくなれば、「抽出蒸留」において1233yd(Z)を留出物成分として、244caを溶媒と共に缶出物成分としてそれぞれ容易に取り出すことができる。反対に、溶媒の添加により244caに対する1233yd(Z)の比揮発度が1より相当量小さくなれば「抽出蒸留」において244caを留出物成分として、1233yd(Z)を溶媒と共に缶出物成分としてそれぞれ容易に取り出すことができる。
 また、本明細書において、「留出物」とは、蒸留塔の塔頂側から留出される物質をいい、「缶出物」とは、蒸留塔の塔底側から抜き出される(缶出される)物質をいう。
 さらに、本明細書において、「主成分」なる語は、当該成分以外の成分の量が相対的に少ないことを意味する。「主成分」の量は全体の50モル%以上であれば十分であるが、具体的には60モル%以上、例えば80モル%以上である。
 なお、本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記し、必要に応じて化合物名に代えてその略称を用いる。また、分子内に二重結合を有し、E体とZ体が存在する化合物については、E体とZ体をそれぞれ化合物の略称の末尾に(E)、(Z)と表記して示す。
 本発明の製造方法によれば、1233yd(Z)と244caを含む組成物から、244caを効率よく分離して、高濃度の1233yd(Z)を得ることができる。
 以下、本発明の実施形態を詳細に説明する。本発明は以下の実施形態に限定されるものではない。なお、本明細書において、特に断りのない限り、化合物の沸点は常圧(1.013×10Pa)での値である。
 本実施形態の1233yd(Z)の製造方法は、1233yd(Z)と244caを含む組成物を、アルコール類、エーテル類、ニトリル類、ケトン類、炭酸エステル類、アミド類、エステル類、スルホキシド類、炭化水素類、フッ化炭化水素類および塩化炭化水素類からなる群から選ばれる少なくとも一種の化合物からなる抽出溶媒の存在下に蒸留して、前記組成物から、244caを分離することを特徴とする。なお、本実施形態の1233yd(Z)の製造方法によれば、該組成物に含まれる244caの一部または全部が分離される。以下、「1233yd(Z)と244caを含む組成物」を「蒸留用組成物」ともいう。
 本実施形態の1233yd(Z)の製造方法によれば、蒸留用組成物を前記抽出溶媒の存在下で蒸留することにより、高濃度の1233yd(Z)を得ることができる。すなわち、抽出溶媒の存在下に蒸留を行うことにより、蒸留用組成物中の1233yd(Z)と244caの合計量に対する1233yd(Z)の含有割合より、蒸留後の留出物または缶出物中の、1233yd(Z)と244caの合計量に対する1233yd(Z)の割合を大きくできる。
(蒸留用組成物)
 蒸留用組成物は、1233yd(Z)と244caを含む。蒸留用組成物は、1233yd(Z)と244caのみからなってもよい。
 また、蒸留用組成物は、本発明の効果を損なわない限り、1233yd(Z)および244ca以外のその他の成分を含んでいてもよい。その他の成分としては、1233yd(E)、1-クロロ-3,3-ジフルオロプロピン等が挙げられる。例えば、蒸留用組成物として、特許文献1等に記載の製造方法により得られる1233ydを含む粗液をそのまま用いてもよく、該粗液を公知の方法により精製してから用いてもよい。
 蒸留用組成物中のその他の成分の含有割合は、15質量%以下であることが好ましく、13質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 蒸留用組成物中の1233yd(Z)の含有割合は、特に限定されないが、蒸留効率の観点から50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。
 1233yd(Z)と244caは沸点が近く、さらに、特定の組成において共沸組成物または共沸様組成物を形成するため、244caに対する1233yd(Z)の比揮発度は1に近い。
 具体的な例として、1233yd(Z)と244caからなる共沸組成物は、1233yd(Z)の含有割合が87モル%であり、244caの含有割合が13モル%の組成物であって、圧力1.011×10Paにおける沸点が52.6℃である。共沸組成物は、液相の気化により生成される気相の組成が該液相の組成と同一となり、または、気相の液化により生成される液相の組成が該気相の組成と同一となるものとして定義される。共沸組成物は、蒸発、凝縮により組成が変化しない。なお、共沸組成物の組成は、圧力条件により変化する。
 1233yd(Z)と244caからなる共沸様組成物は、1233yd(Z)の含有割合が99~1モル%であり、244caの含有割合が1~99モル%の組成物である。また、1233yd(Z)と244caからなる共沸様組成物の沸点は52~53℃である。
 共沸様組成物とは上記式で求められる244caに対する1233yd(Z)の比揮発度が1.00±0.1の範囲にある組成物をいう。共沸様組成物は、共沸組成物に類似した挙動を示すものである。すなわち、共沸様組成物は、液相の気化により生成される気相の組成が該液相の組成と略同一となり、または、気相の液化により生成される液相の組成が該気相の組成と略同一となる。
 よって、蒸留用組成物中の1233yd(Z)と244caの合計モル量に対する1233yd(Z)のモル量の割合は、1~99モル%であることが好ましい。
 本実施形態の1233yd(Z)の製造方法では、244caに対する1233yd(Z)の比揮発度を1よりも大きくさせる抽出溶媒、または1よりも小さくさせる抽出溶媒を用い、抽出蒸留によって蒸留用組成物中の244caを分離する。言い換えれば、1233yd(Z)と244caのいずれかを揮発させにくくすることで、前記蒸留用組成物から留出物または缶出物として244caを効率よく分離し、濃度の高められた1233yd(Z)を得るものである。
(抽出溶媒)
 本実施形態における抽出溶媒は、アルコール類、エーテル類、ニトリル類、ケトン類、炭酸エステル類、アミド類、エステル類、スルホキシド類、炭化水素類、塩化炭化水素類およびフッ化炭化水素類からなる群から選ばれる少なくとも1種の化合物である。
 ここで、アルコール類とは、少なくとも1つのアルコール性水酸基を有し、ハロゲン原子を有しない化合物であり、主鎖の炭素数が1~6の脂肪族アルコールが好ましく、炭素数が1~4の脂肪族アルコールがより好ましい。具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、1-ペンタノール、2-ペンタノール、1-エチル-1-プロパノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノールが挙げられる。これらの中でも、入手しやすい点、蒸留工程における生産性の点から、メタノール、エタノール、2-プロパノールが好ましい。
 エーテル類とは、少なくとも1つのエーテル基を有し、ハロゲン原子を有しない化合物であり、環状であっても直鎖状であってもよい。エーテル類の炭素数は1~6が好ましく、1~4がより好ましい。具体的には、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、エチルメチルエーテル、エチルプロピルエーテル、エチルイソプロピルエーテル、1,3-ジオキソラン、1,4-ジオキサン、トリメトキシエタン、トリエトキシエタン、フラン、2-メチルフラン、テ卜ラヒドロフラン(THF)等が挙げられる。これらの中でも、入手しやすい点、蒸留工程における生産性の点から、1,3-ジオキソラン、1,4-ジオキサン、テトラヒドロフランが好ましい。
 ニトリル類とは、一般式:R-CN(Rは非置換の脂肪族炭化水素基を示す。)で表される化合物である。ニトリル類としては、上記一般式において、Rの炭素数が1~5であるニトリル類が好ましい。具体的には、アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル等が挙げられる。これらの中でも入手しやすい点、蒸留工程における生産性の点から、アセトニトリルが好ましい。
 ケトン類とは、一般式:R-C(=O)-R(RおよびRは、互いに同じまたは相異なる非置換の脂肪族炭化水素基を示す。)で表される化合物である。ケトン類としては、上記一般式において、RおよびRの炭素数がそれぞれ1~2であってRおよびRの炭素数の合計が2~4のケトン類が好ましい。具体的には、アセトン、メチルエチルケトン、ジエチルケトン等が挙げられる。これらの中でも、入手しやすい点、蒸留工程における生産性の点から、アセトンが好ましい。
 炭酸エステル類は、炭素数1~6の鎖状炭酸エステルまたは脂肪族環状炭酸エステルが好ましい。具体的には炭酸ジメチル、炭酸ジエチル、炭酸エチレン、炭酸プロピレンが挙げられる。これらの中でも入手しやすい点、蒸留工程における生産性の点から、炭酸ジメチル、炭酸ジエチルが好ましい。
 アミド類とは、炭素数3~5の鎖状アミドまたは脂肪族環状アミドが挙げられ、アミノ基の水素原子が全てアルキル基に置換された3級アミド類が好ましい。具体的には、ホルムアミド、アセトアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが挙げられる。この中でも入手しやすい点、蒸留工程における生産性の点から、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが好ましい。
 エステル類としては、炭酸エステル以外のエステル基を有する化合物である。エステル類は、炭素数3~6の鎖状エステル類または脂肪族環状エステル類が挙げられ、炭素数4~6の鎖状エステル類が好ましい。エステル類は、具体的には、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。これらの中でも入手しやすい点、蒸留工程における生産性の点から、酢酸エチルが好ましい。
 スルホキシド類とは、一般式:R-S(=O)-R(RおよびRは、互いに同じまたは相異なる非置換の脂肪族炭化水素基を示す。)で表される化合物である。具体的には、上記一般式において、RおよびRが共にメチル基であるジメチルスルホキシド(DMSO)が、入手しやすい点、蒸留工程における生産性の点から好ましい。
 炭化水素類としては、炭素数3~6の脂肪族鎖状炭化水素または脂肪族環状炭化水素で、ハロゲン原子を有しない化合物が挙げられ、炭素数3~6の脂肪族鎖状炭化水素が好ましい。具体的には、n-ペンタン、i-ペンタン、n-ヘキサン、シクロヘキサン等が挙げられる。これらの中でも、入手しやすい点、蒸留工程における生産性の点から、n-ヘキサンが好ましい。
 塩化炭化水素類とは、炭素数1~4の脂肪族鎖状炭化水素または脂肪族環状炭化水素の有する水素原子のうち1つ以上が塩素原子に置換された化合物であり、フッ化炭化水素類は含まない。塩化炭化水素類として具体的には、ジクロロメタン、クロロホルム(CHCl)、四塩化炭素(CCl)、1,2-ジクロロプロパン、パークロロエチレン等が挙げられる。これらの中でも、入手しやすい点、蒸留工程における生産性の点から、四塩化炭素が好ましい。
 フッ化炭化水素類は、炭素数1~10の脂肪族鎖状炭化水素または脂肪族環状炭化水素の有する水素原子のうち1つ以上がフッ素原子に置換された化合物である。フッ化炭化水素類は、炭素-炭素結合間にエーテル結合や二重結合を有していてもよく、また、炭化水素の水素が塩素原子、水酸基等に置換されていてもよい。
 フッ化炭化水素類としては、具体的には、CFCHOCFCFH(旭硝子社製、商品名:AE3000)、テトラフルオロプロパノール、CFCFCFCFOCF(住友スリーエム社製、商品名:Novec7100)、CFCFCFCFOCHCH(住友スリーエム社製、商品名:Novec7200)、CClFCFCHClF(旭硝子社製、商品名:AK225G)、CFCFCFCFCFCFCHCH(旭硝子社製、商品名:AC6000)、CFCFCFCFCFCFH(旭硝子社製、商品名:AC2000)、CFCFCHFCHFCF(デュポン社製、商品名:Vertrel4310)、CFCFCF(CH)OCF(CF(住友スリーエム社製、商品名:Novec7300)、式(1)で表される化合物(住友スリーエム社製、商品名:FC-77)、式(2)で表される化合物(ソルベー社製、商品名:SV-55)、式(3)で表される化合物(ソルベー社製、商品名:HT-70、HT-80、HT-110、HT-135)が入手しやすい点、蒸留工程における生産性の点から、好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 抽出溶媒としては、前記した化合物のなかでも、沸点が40~250℃であるものが好ましく、沸点が40~150℃であるものがより好ましい。抽出溶媒の沸点が前記範囲であれば、蒸留工程における生産性がさらに優れる。また、生産性の観点からは、抽出溶媒として分子量の小さい化合物が好ましい。
 上記抽出溶媒は、1233yd(Z)と244caのうちの244caに対してのみ親和性を有し、244caを揮発しにくくすることで、244caに対する1233yd(Z)の比揮発度の値を1より大きくする溶媒(第1の抽出溶媒)、および1233yd(Z)と244caのうちの1233yd(Z)に対してのみ親和性を有し、1233yd(Z)を揮発しにくくすることで、244caに対する1233yd(Z)の比揮発度の値を1より小さくする溶媒(第2の抽出溶媒)に分類される。
 第1の抽出溶媒は、244caに対する1233yd(Z)の比揮発度を概ね1.1以上にすることが好ましく、1.12以上にすることがより好ましい。244caに対する1233yd(Z)の比揮発度が前記下限値以上であることで、1233yd(Z)が揮発しやすくなる。
 第2の抽出溶媒は、244caに対する1233yd(Z)の比揮発度を概ね0.9以下にすることが好ましく、0.85以下にすることがより好ましい。244caに対する1233yd(Z)の比揮発度が前記上限値以下であることで、244caが揮発しやすくなる。
 抽出溶剤を添加した場合の244caに対する1233yd(Z)の比揮発度の値は次のように測定することができる。1233yd(Z)と244caの9:1(モル比)混合物に、抽出溶媒を、抽出溶媒:1233yd(Z):244ca=80:18:2(モル比)となるように添加して測定試料とする。測定試料を蒸留装置に入れ、大気圧下で還流させながら外部ヒータによって徐々に加熱し、沸騰させる。沸騰状態が安定した後、一定時間保持して蒸留装置内の組成を安定化させる。次いで、気相および液相からそれぞれ測定試料のサンプルを採取して、ガスクロマトグラフにより分析し、1233yd(Z)と244caのモル比を測定する。そして、両者のモル比から抽出溶媒を添加した後の244caに対する1233yd(Z)の比揮発度が求められる。
 また、抽出溶媒としてフッ素原子を有する化合物を用いた場合、244caに対する1233yd(Z)の比揮発度が1より大きくなる傾向がある。フッ素原子を有する化合物としては、前記した抽出溶媒のうち、フッ化炭化水素類である。
 抽出溶媒としてフッ素原子を有しない化合物を用いた場合、244caに対する1233yd(Z)の比揮発度が1より小さくなる傾向がある。フッ素原子を有しない化合物としては、上記したうちの、アルコール類、エーテル類、ニトリル類、ケトン類、アミド類、エステル類、スルホキシド類、塩化炭化水素類である。
 244caに対する1233yd(Z)の比揮発度を1よりも大きくする第1の抽出溶媒としては、例えば、CFCHOCFCFH、CFCFCFCFCFCFH、CFCFCFCFCFCFCHCH、CFCFCF(CH)OCF(CFが好ましく、CFCHOCFCFH、CFCFCFCFCFCFHがより好ましい。
 また、244caに対する1233yd(Z)の比揮発度を1よりも小さくする第2の抽出溶媒としては、上記した化合物のうち、例えば、メタノール、アセトン、クロロホルム、四塩化炭素、酢酸エチル、n-ヘキサン、THFが好ましい。
 本実施形態の製造方法において抽出溶媒の量は特に限定されず、抽出溶媒:244caで示されるモル比を0.1:1~1000:1とすることが好ましく、0.1:1~500:1とすることがより好ましく、生産効率の点から、0.1:1~300:1とすることがさらに好ましい。
(蒸留)
 本実施形態の製造方法では、抽出蒸留は、一般に蒸留に使用される装置、例えば棚段塔、充填塔などの蒸留塔を使用して、当該蒸留塔に、蒸留用組成物と抽出溶媒を供給して行うことができる。蒸留塔は、ガラス、ステンレス鋼、あるいは四フッ化エチレン樹脂、クロロ卜リフルオロエチレン樹脂、フッ化ビニリデン樹脂、PFA樹脂等の少なくとも一種を内部にライニングした炭素鋼により製造したものを使用できる。
 蒸留塔への蒸留用組成物と抽出溶媒の供給は、蒸留塔内で、蒸留用組成物が抽出溶媒の存在下で蒸留されれば、いずれが先であってもよく、同時であってもよい。例えば、蒸留用組成物に抽出溶媒を加え、その後、蒸留塔に供給するようにしてもよい。しかし、蒸留作業の効率の観点から、蒸留用組成物が供給された蒸留塔に抽出溶媒を供給するなどの方法で、蒸留用組成物と抽出溶媒が蒸留塔内で接触され、混合と同時に蒸留が行われるようにすることが好ましい。
 抽出蒸留の種々の条件、例えば、操作温度、操作圧力、還流比、蒸留塔の総段数、仕込み段の位置、抽出溶媒供給段の位置等は、特に限定されるものではなく、目的とする分離を達成するために適宜選択することができる。1233yd(Z)と244caはいずれも低い沸点を有するため、加圧下で抽出蒸留するのが好ましく、例えば0~5×10Pa、好ましくは0~3×10Pa、特に0~2×10Paの圧力(ゲージ圧)とすることが好ましい。
 さらに、蒸留塔の塔頂部および塔底部の温度は、操作圧力ならびに留出物および缶出物の組成に応じて決まる。塔頂部や塔底部に設けられる凝縮器および再加熱器の温度を考慮して、経済的に蒸留操作を行うためには、塔頂部の温度は40~100℃、塔底部の温度は50~200℃とするのが好ましい。抽出蒸留は、バッチ式でも連続式でも、場合により留出物および缶出物を間欠的に抜き出したり、間欠的に蒸留用組成物の仕込みを行う半連続式でも行うことができるが、抽出溶媒は、蒸留塔に連続的に供給することが好ましい。
 第1の抽出溶媒は、244caに対する1233yd(Z)の比揮発度を1より大きくする。したがって、蒸留用組成物と第1の抽出溶媒を含む混合液を抽出蒸留することにより、1233yd(Z)を主成分とする留出物が、蒸留塔の塔頂側から得られる。この留出物は、1233yd(Z)を主成分として含むものであれば組成は限定されない。留出物中の1233yd(Z)と244caの合計に対する1233yd(Z)のモル分率(%)は、90モル%以上であることが好ましい。また、留出物を抽出溶媒の存在下に再度蒸留することができる。これにより、より高濃度の1233yd(Z)を得ることができる。
 また、蒸留塔の塔底側から、抽出溶媒と244caを含む缶出物が得られる。缶出物には、1233yd(Z)も含まれるが、1233yd(Z)と244caの合計に対する1233yd(Z)のモル分率は、蒸留用組成物における1233yd(Z)と244caの合計に対する1233yd(Z)のモル分率に比べて大幅に減少している。缶出物中の1233yd(Z)と244caとの合計に対する1233yd(Z)のモル分率は、蒸留用組成物における1233yd(Z)と244caの合計に対する1233yd(Z)のモル分率の例えば、1/10以下に減少していればよい。このように、1233yd(Z)は抽出蒸留により、留出物中に極めて高濃度に含有される。
 また、缶出物を抽出溶媒の存在下に再度蒸留することができる。これにより、缶出物中の1233yd(Z)と244caとの合計に対する1233yd(Z)のモル分率をより減少させることができる。得られた缶出物中の244caは通常の蒸留によって分離することができ、1233yd(Z)の製造原料として再利用することができる。
 このように、本実施形態において、第1の抽出溶媒を用いることで、蒸留用組成物から244caが効率よく分離され、留出物の主成分として高濃度の1233yd(Z)が得られる。
 なお、蒸留用組成物が1233yd(E)を含む場合、第1の抽出溶媒の存在下に抽出蒸留することによって、蒸留塔の塔底側から1233yd(E)、抽出溶媒および244caを含む缶出物が得られる。これらは通常の蒸留により分離することができる。このため、必要に応じて1233yd(Z)と1233yd(E)を所望の比率に混合して、種々の用途に用いることができる。
 第2の抽出溶媒は、244caに対する1233yd(Z)の比揮発度を1より小さくする。したがって、蒸留用組成物と第2の抽出溶媒を含む混合液を抽出蒸留することにより、244caを主成分とする留出物が、蒸留塔の塔頂側から得られる。留出物には、1233yd(Z)も含まれるが、1233yd(Z)と244caの合計に対する1233yd(Z)のモル分率は、蒸留用組成物における1233yd(Z)と244caの合計に対する1233yd(Z)のモル分率に比べて大幅に減少している。留出物中の1233yd(Z)と244caとの合計に対する1233yd(Z)のモル分率は、蒸留用組成物における1233yd(Z)と244caの合計に対する1233yd(Z)のモル分率の例えば、1/10以下に減少していればよい。このように、244caは抽出蒸留により分離される。前記留出物を、抽出溶媒の存在下に再度蒸留することにより、留出物中の244caの濃度を高めて、1233yd(Z)の製造原料として再利用することができる。
 また、蒸留塔の塔底側から、第2の抽出溶媒と1233yd(Z)を含む缶出物が得られる。缶出物は、1233yd(Z)と244caの合計に対する1233yd(Z)のモル分率(%)が90モル%以上であることが好ましい。また、缶出物を抽出溶媒の存在下に再度蒸留することができる。これにより、缶出物中の1233yd(Z)と244caとの合計に対する244caのモル分率をより減少させることができ、より高濃度の1233yd(Z)を得ることができる。
 このように、第2の抽出溶媒を用いることで、蒸留用組成物から244caが効率よく分離される。缶出物中の第2の抽出溶媒は通常の蒸留により分離することができ、これにより高濃度の1233yd(Z)が得られる。
 なお、蒸留用組成物が1233yd(E)を含む場合、第2の抽出溶媒の存在下に抽出蒸留することによって、蒸留塔の塔頂側から1233yd(E)および244caを含む留出物が得られる。これらは通常の蒸留により分離することができる。このため、必要に応じて1233yd(Z)と1233yd(E)を所望の比率に混合して、種々の用途に用いることができる。
 以下に実施例を示して本発明を具体的に説明する。ただし、本発明は以下の実施例に限定されない。
[分析条件]
 以下の各種比揮発度の測定において、得られた液の組成分析はガスクロマトグラフ(GC)を用いた。カラムはDB-1301(長さ60m×内径250μm×厚み1μm、アジレント・テクノロジー株式会社製)を用いた。
[比揮発度の測定]
 オスマー型平衡蒸留装置を用い、表1に示す量の1233yd(Z)、244caおよび抽出溶媒を仕込んだ後、加熱して沸騰させ(約80℃)、大気圧で還流させた。1233yd(Z)、244caおよび抽出溶媒の混合割合は、いずれの例も、抽出溶媒:1233yd(Z):244caで示されるモル比で、80:18:2である。気相凝縮液の滴下速度が適正になるように加熱を調整し、沸騰が安定した状態で2時間保ち、圧力および沸点が安定していることを確認した。
 その後、液相側と気相側のサンプルを採取し、ガスクロマトグラフで分析した。分析結果を用い、上記比揮発度の式によって、244caに対する1233yd(Z)の比揮発度を求めた。各例について、1233yd(Z)、244caおよび抽出溶媒の仕込み量、比揮発度について表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1より、AE3000、AC2000、AC6000、Novec7300を第1の抽出溶媒として用いることで、244caに対する1233yd(Z)の比揮発度を大きくできることが分かる。このため、これらの第1の抽出溶媒によれば、蒸留塔の留出物として、高濃度の1233yd(Z)が得られることが分かる。
 また、メタノール、アセトン、クロロホルム(CHCl)、四塩化炭素(CCl)、n-ヘキサン、テトラヒドロフラン(THF)、酢酸エチルを第2の抽出溶媒として用いることで、244caに対する1233yd(Z)の比揮発度を小さくできることが分かる。このため、これらの第2の抽出溶媒によれば、蒸留塔の缶出物から、高濃度の1233yd(Z)が得られることが分かる。
 オスマー型平衡蒸留装置を用い、表2に示す量の1233yd(Z)、1233yd(E)、244caおよび抽出溶媒を仕込んだ後、加熱して沸騰させ(約80℃)、大気圧で還流させた。1233yd(Z)、244caおよび抽出溶媒の混合割合は、いずれの例も、抽出溶媒:1233yd(Z):244caで示されるモル比で、80:18:2である。気相凝縮液の滴下速度が適正になるように加熱を調整し、沸騰が安定した状態で2時間保ち、圧力および沸点が安定していることを確認した。
 その後、液相側と気相側のサンプルを採取し、ガスクロマトグラフで分析した。分析結果を用い、上記比揮発度の式によって、244caに対する1233yd(Z)の比揮発度を求めた。各例について、1233yd(Z)、1233yd(E)、244caおよび抽出溶媒の仕込み量、244caに対する1233yd(Z)の比揮発度について表2に示す。
Figure JPOXMLDOC01-appb-T000005
 表2より、1233yd(Z)と244ca以外に、1233yd(E)を含む場合にも、AE3000、AC2000を第1の抽出溶媒として用いることで、244caに対する1233yd(Z)の比揮発度を大きくできることが分かる。このため、これらの第1の抽出溶媒によれば、蒸留塔の留出物として、高濃度の1233yd(Z)が得られることが分かる。
 また、1233yd(Z)と244ca以外に、1233yd(E)を含む場合にも、メタノールを第2の抽出溶媒として用いることで、244caに対する1233yd(Z)の比揮発度を小さくできることが分かる。このため、これらの第2の抽出溶媒によれば、蒸留塔の缶出物から、高濃度の1233yd(Z)が得られることが分かる。
(実施例1)
 蒸留塔として、40段の理論段数を有する多段式の蒸留塔を用意した。蒸留用組成物として、1233yd(Z):244caで示されるモル比が92.0:8.0になるように蒸留塔内に仕込んだ。運転圧力を大気圧とし、気相凝縮液の滴下速度が適正になるように加熱を調整し、沸騰が安定した状態で3時間保った。その後、この蒸留塔の塔頂から10段目の部分より、抽出溶媒としてメタノールを15ml/minの供給量で供給した。蒸留中、塔頂より留出物を抜き出すとともに、塔底より缶出物を抜き出した。そして、抽出溶媒を供給開始から3時間が経過した時の留出物、缶出物について、ガスクロマトグラフィーを使用して244caおよび1233yd(Z)の組成比を求めた。表3に蒸留用組成物、留出物、缶出物中の1233yd(Z)と244caの組成比、抽出溶媒の種類、バス温度、釜内温度、塔頂部の温度をそれぞれ示す。
(比較例1)
 抽出溶媒を供給しないことと、運転条件を表3に示す条件としたことを除いて、実施例1と同様に蒸留、測定を行った。表3に蒸留用組成物、留出物、缶出物中の1233yd(Z)と244caの組成比、抽出溶媒の種類、バス温度、釜内温度、塔頂部の温度をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000006
 実施例1から、抽出溶媒としてメタノールを使用した場合には、蒸留組成物から高濃度の244caを含む留出物を効率よく分離できることがわかる。この留出物は、1233yd(Z)の製造原料として再利用することができる。
一方、比較例1から、抽出溶媒を使用しなかった場合、蒸留組成物から244caを分離できないことがわかる。
(実施例2)
 抽出溶媒としてメタノールの代わりにAC2000を使用したこと、および蒸留用組成物中の1233yd(Z)と244caのモル比と運転条件を表4に示す条件としたこと以外は、実施例1と同様に蒸留、測定を行った。表4に、蒸留用組成物、留出物、缶出物中の1233yd(Z)と244caの組成比、抽出溶媒の種類、バス温度、釜内温度、塔頂部の温度をそれぞれ示す。
(比較例2)
 抽出溶媒を供給しないことを除いて、実施例2と同様に蒸留、測定を行った。表4に蒸留用組成物、留出物、缶出物中の1233yd(Z)と244caの組成比、抽出溶媒の種類、バス温度、釜内温度、塔頂部の温度をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000007
 実施例2から、抽出溶媒としてAC2000を使用した場合、留出物として種々の用途に用いることができる程度まで1233yd(Z)の濃度が高められた組成物が得られることがわかる。一方、比較例2から、抽出溶媒を使用しなかった場合、1233yd(Z)の濃度が高められた組成物は得られないことがわかる。
 以上より、本実施例により、1233yd(Z)と244caを含む蒸留用組成物から、1233yd(Z)または244caを効率よく分離して、高濃度の1233yd(Z)を得られることがわかった。

Claims (7)

  1.  (Z)-1-クロロ-2,3,3-トリフルオロプロペンと3-クロロ-1,1,2,2-テトラフルオロプロパンを含む組成物を、
     アルコール類、エーテル類、ニトリル類、ケトン類、炭酸エステル類、アミド類、エステル類、スルホキシド類、炭化水素類、塩化炭化水素類およびフッ化炭化水素類からなる群から選ばれる少なくとも一種の化合物からなる抽出溶媒の存在下に蒸留して、
     前記組成物から、前記3-クロロ-1,1,2,2-テトラフルオロプロパンを分離することを特徴とする、(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
  2.  前記組成物中の、(Z)-1-クロロ-2,3,3-トリフルオロプロペンと3-クロロ-1,1,2,2-テトラフルオロプロパンの合計モル量に対する、(Z)-1-クロロ-2,3,3-トリフルオロプロペンのモル量の割合が、1~99モル%である、請求項1に記載の(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
  3.  前記抽出溶媒が、沸点が40~250℃の化合物である、請求項1または2に記載の(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
  4.  前記抽出溶媒の量が、抽出溶媒:3-クロロ-1,1,2,2-テトラフルオロプロパンで示されるモル比で、0.1:1~1000:1となる量である、請求項1~3のいずれか一項に記載の(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
  5.  前記抽出溶媒が、3-クロロ-1,1,2,2-テトラフルオロプロパンに対する(Z)-1-クロロ-2,3,3-トリフルオロプロペンの比揮発度を0.9以下または1.1以上とする溶媒である、請求項1~4のいずれか一項に記載の(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
  6.  前記抽出溶媒が、メタノール、アセトン、クロロホルム、酢酸エチル、四塩化炭素、n-ヘキサン、テトラヒドロフランからなる群から選ばれる少なくとも一種の化合物である、請求項1~5のいずれか一項に記載の(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
  7.  前記抽出溶媒が、CFCHOCFCFHおよびCFCFCFCFCFCFHからなる群から選ばれる少なくとも一種の化合物である、請求項1~5のいずれか一項に記載の(Z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
PCT/JP2018/002785 2017-01-30 2018-01-29 (z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法 WO2018139653A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017014197 2017-01-30
JP2017-014197 2017-06-30

Publications (1)

Publication Number Publication Date
WO2018139653A1 true WO2018139653A1 (ja) 2018-08-02

Family

ID=62978542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002785 WO2018139653A1 (ja) 2017-01-30 2018-01-29 (z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法

Country Status (1)

Country Link
WO (1) WO2018139653A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10487030B2 (en) * 2015-07-27 2019-11-26 AGC Inc. Solvent composition, cleaning method, method of forming a coating film, heat transfer fluid, and heat cycle system
JP2020183495A (ja) * 2019-05-09 2020-11-12 セントラル硝子株式会社 溶剤組成物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083082A (ja) * 1994-04-20 1996-01-09 Daikin Ind Ltd ペンタフルオロエタンの製造方法
JP2010202640A (ja) * 2009-02-03 2010-09-16 Central Glass Co Ltd (z)−1−クロロ−3,3,3−トリフルオロプロペンの精製方法
WO2014103582A1 (ja) * 2012-12-27 2014-07-03 旭硝子株式会社 テトラフルオロプロペンの精製方法
JP2016027030A (ja) * 2014-07-02 2016-02-18 セントラル硝子株式会社 精製イオン性錯体の製造方法
JP2016164152A (ja) * 2015-02-27 2016-09-08 ダイキン工業株式会社 1−クロロ−2,3,3−トリフルオロプロペンの製造方法
WO2017018011A1 (ja) * 2015-07-27 2017-02-02 旭硝子株式会社 溶剤組成物、洗浄方法、塗膜の形成方法、熱移動媒体および熱サイクルシステム
WO2017018412A1 (ja) * 2015-07-27 2017-02-02 旭硝子株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
WO2017122802A1 (ja) * 2016-01-15 2017-07-20 旭硝子株式会社 溶剤組成物、水切り乾燥方法およびフラックスの洗浄方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083082A (ja) * 1994-04-20 1996-01-09 Daikin Ind Ltd ペンタフルオロエタンの製造方法
JP2010202640A (ja) * 2009-02-03 2010-09-16 Central Glass Co Ltd (z)−1−クロロ−3,3,3−トリフルオロプロペンの精製方法
WO2014103582A1 (ja) * 2012-12-27 2014-07-03 旭硝子株式会社 テトラフルオロプロペンの精製方法
JP2016027030A (ja) * 2014-07-02 2016-02-18 セントラル硝子株式会社 精製イオン性錯体の製造方法
JP2016164152A (ja) * 2015-02-27 2016-09-08 ダイキン工業株式会社 1−クロロ−2,3,3−トリフルオロプロペンの製造方法
WO2017018011A1 (ja) * 2015-07-27 2017-02-02 旭硝子株式会社 溶剤組成物、洗浄方法、塗膜の形成方法、熱移動媒体および熱サイクルシステム
WO2017018010A1 (ja) * 2015-07-27 2017-02-02 旭硝子株式会社 溶剤組成物、洗浄方法、塗膜の形成方法、熱移動媒体および熱サイクルシステム
WO2017018412A1 (ja) * 2015-07-27 2017-02-02 旭硝子株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
WO2017122802A1 (ja) * 2016-01-15 2017-07-20 旭硝子株式会社 溶剤組成物、水切り乾燥方法およびフラックスの洗浄方法
WO2017122801A1 (ja) * 2016-01-15 2017-07-20 旭硝子株式会社 溶剤組成物、洗浄方法、塗膜の形成方法、熱移動媒体および熱サイクルシステム
WO2017122803A1 (ja) * 2016-01-15 2017-07-20 旭硝子株式会社 溶剤組成物、フラックスの洗浄方法および金属加工油の洗浄方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Handbook of Chemistry, Applied Chemistry", 2014, article "p. 177 (c. azeotropic distillation and extractive distillation)p. 268 (b. extractive distillation)", pages: 177, 268 *
ENCYCLOPEDIA OF EXPERIMENTAL CHEMISTRY 1 , BASIC PROCEDURES 1, 1985, pages 415 - 416 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10487030B2 (en) * 2015-07-27 2019-11-26 AGC Inc. Solvent composition, cleaning method, method of forming a coating film, heat transfer fluid, and heat cycle system
US10975008B2 (en) 2015-07-27 2021-04-13 AGC Inc. Solvent composition, cleaning method, method of forming a coating film, heat transfer fluid, and heat cycle system
US11427521B2 (en) 2015-07-27 2022-08-30 AGC Inc. Solvent composition, cleaning method, method of forming a coating film, heat transfer fluid, and heat cycle system
JP2020183495A (ja) * 2019-05-09 2020-11-12 セントラル硝子株式会社 溶剤組成物

Similar Documents

Publication Publication Date Title
US8524956B2 (en) Method of purifying (Z)-1-chloro-3,3,3-trifluoropropene
JP6102917B2 (ja) 共沸または共沸様組成物、および2,3,3,3−テトラフルオロプロペンまたはクロロメタンの製造方法
JP6168068B2 (ja) テトラフルオロプロペンの精製方法
EP3345888B1 (en) Extractive distillation processes to separate e-1,2,3,3,3-pentafluoropropene from z-1,2,3,3,3-pentafluoropropene
JP6358263B2 (ja) 2,3,3,3−テトラフルオロプロペンの精製方法
US10836692B2 (en) Method for isolating HFC-245cb and (E)-HFO-1234ze from composition containing both compounds
JP6011008B2 (ja) 共沸または共沸様組成物、および2,3,3,3−テトラフルオロプロペンまたはヘキサフルオロプロペンの製造方法
JP2021191787A (ja) 組成物
WO2018139653A1 (ja) (z)-1-クロロ-2,3,3-トリフルオロプロペンの製造方法
JP5069560B2 (ja) 1,1,1,3,3−ペンタクロロプロパンと四塩化炭素とを含む共沸様組成物
US10934235B2 (en) Method of purifying (Z)-1-chloro-2,3,3,3-tetrafluoropropene
JP2021109828A (ja) 1,3−ジクロロ−2,3,3−トリフルオロプロペンと、アルコールとの共沸または共沸様組成物の製造方法
JP7132523B2 (ja) 精製されたトランス-1,2-ジフルオロエチレン(hfo-1132(e))及び/又は1,1,2-トリフルオロエチレン(hfo-1123)の製造方法
JP2013230997A (ja) 共沸または共沸様組成物、およびクロロメタンまたはクロロトリフルオロエチレンの製造方法
JP2013230998A (ja) 共沸または共沸様組成物、およびクロロメタンまたはヘキサフルオロプロペンの製造方法
JP2018002602A (ja) 2,3,3,3−テトラフルオロプロペンとヘキサフルオロプロペンの分離方法および2,3,3,3−テトラフルオロプロペンの製造方法
JP2018002601A (ja) 2,3,3,3−テトラフルオロプロペンとクロロトリフルオロエチレンの分離方法および2,3,3,3−テトラフルオロプロペンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP