WO2014091789A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2014091789A1
WO2014091789A1 PCT/JP2013/069980 JP2013069980W WO2014091789A1 WO 2014091789 A1 WO2014091789 A1 WO 2014091789A1 JP 2013069980 W JP2013069980 W JP 2013069980W WO 2014091789 A1 WO2014091789 A1 WO 2014091789A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tire
inclined groove
lug
width direction
Prior art date
Application number
PCT/JP2013/069980
Other languages
English (en)
French (fr)
Inventor
松本 賢一
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to RU2014139442/11A priority Critical patent/RU2561661C1/ru
Priority to EP13862847.4A priority patent/EP2853416B9/en
Priority to JP2014506665A priority patent/JP5578296B1/ja
Priority to CN201380028025.6A priority patent/CN104334372B/zh
Priority to US14/410,007 priority patent/US9174494B2/en
Publication of WO2014091789A1 publication Critical patent/WO2014091789A1/ja
Priority to FIU20164162U priority patent/FI11357U1/fi

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1259Depth of the sipe
    • B60C11/1263Depth of the sipe different within the same sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • B60C11/1625Arrangements thereof in the tread patterns, e.g. irregular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • B60C2011/0383Blind or isolated grooves at the centre of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface

Definitions

  • the present invention relates to a pneumatic tire having a tread pattern formed in a tread portion.
  • a pneumatic tire for example, a winter pneumatic tire represented by a stud tire, a plurality of tires extending in a tire circumferential direction and a tire width direction in a tread portion so that traction (driving performance) on snow can be secured.
  • a tread pattern composed of a plurality of grooves is provided.
  • Such a pneumatic tire is required to have traction on snow, and at the same time, it is desired that the braking / driving performance on a dry road surface without snow does not deteriorate.
  • the ratio of the groove area in the tread By reducing the ratio of the groove area in the tread, specifically the ratio of the groove area to the contact area in the contact surface, and increasing the contact area, the adhesion friction force increases, and the pneumatic tire is on ice. It is known to increase performance. On the other hand, it is also known that by increasing the groove area, drainage by the tread pattern is improved when the tire rolls on a wet road surface having a water film.
  • pneumatic radial tire that has a center rib by forming a plurality of grooves in the circumferential direction at the center of the tread portion and maintains drainage while suppressing the occurrence of pattern noise (see, for example, Patent Document 2). ).
  • an object of this invention is to provide the pneumatic tire which improved on-ice performance, on-snow performance, and wet performance.
  • One aspect of the present invention is a pneumatic tire.
  • a tread pattern is formed in each of the half tread regions of the tread portion located on both sides in the tire width direction with the tire center line as a boundary.
  • Each of the half-tread regions is A first inclined groove group in which a plurality of first inclined grooves are provided in the tire circumferential direction, with a position spaced from the center line as a starting end and extending in the tire circumferential direction while extending toward the first direction in the tire circumferential direction.
  • Each of the first inclined grooves extends from the outer end portion in the tire width direction toward the first direction in the tire circumferential direction, and inclines outward in the tire width direction and extends to the ground contact end.
  • the tire width is greater than the first inclined groove.
  • a first lug groove group in which a plurality of first lug grooves having a small angle with the direction are provided in the tire circumferential direction;
  • a plurality of second inclined grooves extending inward in the tire width direction and extending in the tire width direction are provided in the tire circumferential direction from the respective outer ends in the tire width direction of the first inclined grooves toward the first direction in the tire circumferential direction.
  • the first lug groove extends from the middle of each of the first lug grooves toward the first direction in the tire circumferential direction and extends outwardly in the tire width direction, and has a larger angle with the tire width direction than the first lug groove.
  • a third inclined groove group in which a plurality of three inclined grooves are provided in the tire circumferential direction; Is provided. The third inclined groove is closed without reaching another first lug groove adjacent to the first lug groove in the first direction.
  • it further comprises a branch groove extending from the middle of the first inclined groove toward the center line, and the branch groove is formed at the branch position where the branch groove branches from the first inclined groove.
  • the groove bottom has a shallow depth with respect to the groove bottom, and the depth of the branch groove gradually decreases toward the center line.
  • the branch groove is a groove that is closed before reaching the center line, and the branch groove has a first edge located on the first direction side and a direction opposite to the first direction.
  • the first edge and the second edge are curved and extend in a curved line, and the other extends in a straight line.
  • the branch groove may be a fourth inclined groove that extends inward in the tire width direction while extending in the first direction in the tire circumferential direction.
  • the branch groove may be a fourth inclined groove extending in a second direction that is opposite to the first direction in the tire circumferential direction, or a groove extending in parallel along the tire width direction.
  • a branch groove extending from the middle of the first inclined groove toward the center line.
  • a second lug groove extending in parallel with the first lug groove is provided between two first lug grooves adjacent to each other in the tire circumferential direction.
  • the branch position in the tire circumferential direction where the branch groove branches from the first inclined groove is 0.2 times or more and 0.8 times or less the distance Le from the tire circumferential position A at the ground contact end of the first lug groove
  • the second lug groove is located in a region proceeding toward the tire circumferential direction position B at the ground contact end.
  • a second lug groove extending in parallel with the first lug groove is provided between two first lug grooves adjacent to each other in the tire circumferential direction among the plurality of first lug grooves.
  • the second inclined groove extends to at least another first inclined groove adjacent in the tire circumferential direction.
  • the second inclined groove extends through another first inclined groove adjacent in the tire circumferential direction.
  • a second lug groove extending in parallel with the first lug groove is provided between two first lug grooves adjacent in the tire circumferential direction, and the third inclined groove is It is preferable to extend at least to the second lug groove.
  • a second lug groove extending in parallel with the first lug groove is provided between two first lug grooves adjacent to each other in the tire circumferential direction among the plurality of first lug grooves, and the third inclined groove May extend across the second lug groove.
  • the groove width of the portion on the inner side in the tire width direction from the intersection with the third inclined groove of the second lug groove is the groove at the portion on the outer side in the tire width direction with respect to the intersection with the third inclined groove. It is preferably narrower than the width.
  • the angle formed between the straight line connecting both ends of the first inclined groove and the tire width direction is preferably 50 ° to 80 °.
  • the angle formed between the straight line connecting both ends of the second inclined groove and the tire width direction is preferably 10 ° to 65 °.
  • the angle formed between the straight line connecting both ends of the third inclined groove and the tire width direction is preferably 50 ° to 80 °.
  • the starting end of the first inclined groove of the first inclined groove group on one side of the center line is adjacent to the starting end of the first inclined groove of the first inclined groove group on the other side. It is preferable that the average interval in the tire circumferential direction is shifted by 1/10 to 4/10.
  • the land portion of the tread portion is provided with a plurality of sipes, and the sipe provided in the land portion surrounded by the first lug groove, the first inclined groove, the second inclined groove, and the tread grounding end, It is preferable that the first inclined groove and the second inclined groove are inclined with respect to a sipe provided in a land portion on the inner side in the tire width direction.
  • a stud mounting hole is provided in a land portion surrounded by the first lug groove, the first inclined groove, the second inclined groove, and the tread grounding end.
  • FIG. 3 is a cross-sectional view taken along arrow III-III in FIG. 2. It is an expanded view which shows the tread pattern of the pneumatic tire which is one Embodiment of this invention. It is an expanded view which shows the tread pattern of the pneumatic tire which is other embodiment of this invention.
  • (A), (b) is the figure which planarly viewed the tread pattern of the tire of further another embodiment of the present invention.
  • FIG. 1 is a perspective view showing a pneumatic tire 10 according to an embodiment of the present invention.
  • the pneumatic tire 10 (hereinafter referred to as the tire 10) is a passenger car tire.
  • the structure and rubber member of the tire 10 of the present invention a known one may be used, or a new one may be used, and there is no particular limitation in the present invention.
  • the tire width direction L is a direction parallel to the rotation axis Axis of the pneumatic tire 10.
  • the outer side in the tire width direction is the side away from the tire center line CL (see FIG. 3) of the two directions in the tire width direction L.
  • the inner side in the tire width direction is the side closer to the tire center line CL in the two directions of the tire width direction L.
  • the tire rotation direction C is a direction in which the tread portion T rotates around the rotation axis Axis of the tire when the vehicle moves forward with the tire attached to the vehicle in the tire circumferential direction.
  • the tire radial direction R is a direction orthogonal to the rotation axis Axis of the pneumatic tire.
  • the outer side in the tire radial direction refers to the side away from the rotation axis Axis. Further, the inner side in the tire radial direction is a side closer to the rotation axis Axis.
  • the tire contact ends E1 and E2 and the contact width W described below are applied to a flat plate under a specified internal pressure, for example, an internal pressure condition of 200 kPa and 88% of a specified load when the tire is mounted on a specified rim.
  • a specified internal pressure for example, an internal pressure condition of 200 kPa and 88% of a specified load when the tire is mounted on a specified rim.
  • This is the longest straight distance between the ground contact edges in the tire width direction L on the ground contact surface formed on the flat plate.
  • the prescribed rim refers to “Measuring Rim” prescribed in ETRTO (2011 version).
  • the specified rim can also mean “applied rim” defined in JATMA and “Design ⁇ Rim ”defined in TRA.
  • the specified internal pressure means “INFLATION PRESSURES” defined by ETRTO.
  • the specified internal pressure can also mean the maximum value of “maximum air pressure” specified by JATMA and “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified by TRA.
  • the specified load means “LOAD CAPACITY” defined in ETRTO.
  • the specified load can also mean the maximum value of “maximum load capacity” specified in JATMA and “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified in TRA.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • the tire 10 includes a carcass ply layer 12, a belt layer 14, and a bead core 16 as a skeleton material.
  • the tire 10 mainly includes a tread rubber member 18, a side rubber member 20, a bead filler rubber member 22, a rim cushion rubber member 24, and an inner liner rubber member 26 around these skeleton materials.
  • the carcass ply layer 12 is made of a carcass ply material in which organic fibers are covered with rubber, which is wound between a pair of annular bead cores 16 to form a toroidal shape.
  • the carcass ply layer 12 is wound around the bead core 16.
  • a belt layer 14 composed of two belt members 14a and 14b is provided.
  • Each of the belt members 14a and 14b is a member in which a steel cord disposed with a predetermined angle, for example, 20 to 30 degrees inclined with respect to the tire rotation direction C, is covered with rubber, and the lower belt member 14b is an upper layer.
  • the width in the tire width direction is wider than that of the belt material 14a.
  • the inclination directions of the steel cords of the two-layer belt materials 14a and 14b are opposite to each other. For this reason, belt material 14a, 14b is a crossing layer, and controls expansion of carcass ply layer 12 by the filled air pressure.
  • a tread rubber member 18 is provided on the outer side in the tire radial direction of the belt material 14a.
  • the tread rubber member 18 includes a first tread rubber member 18a that is the outermost layer and a second tread rubber member 18b that is provided on the inner side in the tire radial direction of the first tread rubber member 18a.
  • Side rubber members 20 are connected to both ends of the tread rubber member 18 to form side portions.
  • a rim cushion rubber member 24 is provided at the inner end in the tire radial direction of the side rubber member 20 and is in contact with a rim on which the tire 10 is mounted.
  • the bead core 16 is sandwiched between the portion of the carcass ply layer 12 before being wound around the bead core 16 and the portion of the carcass ply layer 12 that is wound around the bead core 16 on the outer side in the tire radial direction.
  • a bead filler rubber member 22 is provided.
  • An inner liner rubber member 26 is provided on the inner surface of the tire 10 facing the tire cavity region filled with air surrounded by the tire 10 and the rim.
  • a belt cover layer 15 that covers the belt layer 14 from the outer side in the tire radial direction of the belt layer 14 and reinforces the belt layer 14 that is coated with organic fibers with rubber is provided.
  • the tire 10 may include a bead reinforcing material between the carcass ply layer 12 wound around the bead core 16 and the bead filler rubber member 22.
  • the tire structure of the pneumatic tire of the present invention is not limited to the tire structure shown in FIG.
  • FIG. 4 is a development view showing tread patterns 30A and 30B of the pneumatic tire 10.
  • tread patterns 30A and 30B that are characteristic of the present invention are formed in the tread portion T in the half tread regions on both sides in the tire width direction with the tire centerline CL as a boundary. Is formed.
  • the tire 10 having the tread patterns 30A and 30B can be suitably used for a tire for a passenger car.
  • the tread pattern shown in FIG. 4 is provided with stud attachment holes for attaching stud pins, but the tread pattern may not be provided with stud attachment holes. As shown in FIG.
  • a ridge-like protrusion is provided around the stud mounting hole and extends linearly from the periphery of the hole in a direction inclined with respect to the radial direction of the hole.
  • the ridge-shaped protrusion is formed to recognize the mounting position of the stud pin. As shown in FIG. 4, no sipes are provided in the area around the stud mounting hole and the ridge-shaped protrusion.
  • the tire 10 of the present invention has a predetermined tire rotation direction and is mounted on the vehicle so as to rotate in the tire rotation direction C of FIG. 1 when the vehicle moves forward.
  • reference symbol CL indicates a tire centerline.
  • the tread patterns 30A and 30B are in contact with the road surface in the tire width direction region indicated by the contact width W in a state where the tire 10 is mounted on the vehicle.
  • the ground contact ends E1 and E2 are the ends of the ground contact surface in the tire width direction when the tire 10 is assembled to the specified rim, filled with the specified internal pressure, and grounded to a horizontal plane under the condition that 88% of the specified load is a load. is there.
  • the tire width direction refers to the rotation center axis direction of the tire 10
  • the tire circumferential direction refers to rotation of the rotation surface of the tread surface that occurs when the tire 10 is rotated about the rotation center axis of the tire 10.
  • the direction. FIG. 4 shows these directions.
  • the tread patterns 30A and 30B shown in FIG. 4 include a first inclined groove group including a plurality of first inclined grooves 31, a first lug groove group including a plurality of first lug grooves 32, and a plurality of second inclined grooves.
  • a second inclined groove group including the grooves 33 and a third inclined groove group including a plurality of third inclined grooves 34 are provided.
  • the first inclined groove group, the first lug groove group, the second inclined groove group, and the third inclined groove group are provided on both sides in the tire width direction with the center line CL as a boundary.
  • a plurality of the first inclined grooves 31 are provided in the tire circumferential direction, with a position separated from the center line CL as a start end, and in a direction opposite to the tire rotation direction C and inclined toward the outer side in the tire width direction. It extends.
  • the first inclined groove 31 has a shape in which the groove width gradually increases toward the outer side in the tire width direction and the groove width gradually decreases toward the start end.
  • the center point in the groove width direction at the start end of the first inclined groove 31 (the tip when there is no groove width at the start point) and the center point in the groove width direction at the outer end in the tire width direction of the first inclined groove 31 are connected.
  • the angle between the straight line and the tire width direction is preferably 50 ° to 80 °.
  • this angle is referred to as an inclination angle of the first inclined groove 31.
  • the inclination angle of the first inclined groove 31 is 50 ° or more, the turning performance (turning performance on ice, snow, and wet road surface) of the tire 10 is good.
  • the inclination angle of the first inclined groove 31 is 80 ° or less, the braking performance (braking performance on ice, snow, and wet road surface) of the tire 10 is good.
  • the starting end of the first inclined groove 31 of the first inclined groove group on one side of the center line CL is 31S 1
  • the starting end of the first inclined groove 31 of the first inclined groove group on the other side of the center line CL is 31S 2.
  • P the average interval in the tire circumferential direction between the start ends 31S 1 and between the start ends 31S 2
  • P1 / P is 1 / It is preferably 10 to 4/10.
  • Improve traction (driving performance) on snow by shifting the phase of the tread pattern by 10 to 40% in the circumferential direction on both sides of the center line CL (the phase difference is 0.1 to 0.3). Can do.
  • a plurality of first lug grooves 32 are provided in the tire circumferential direction, from the respective outer ends in the tire width direction of the first inclined grooves 31 toward the direction opposite to the tire rotation direction C and toward the outer side in the tire width direction. It inclines and extends to the outside in the tire width direction from the ground contact end.
  • the connection position of the first inclined groove 31 and the first lug groove 32 is provided at a position 30 to 50% away from the tire center line CL, which is 1/2 of the ground contact width W.
  • the angle formed by the tire width direction of the straight line connecting the center points in the groove width direction at both ends of the first lug groove 32 is smaller than the angle formed by the tire width direction of the first inclined groove 31.
  • this angle is referred to as an inclination angle of the first lug groove 32.
  • the inclination angle of the first lug groove 32 is preferably 10 ° to 20 °.
  • the balance between the turning performance and braking performance of the tire is good.
  • a plurality of the second inclined grooves 33 are provided in the tire circumferential direction, from the outer ends in the tire width direction of the first inclined grooves 31 toward the direction opposite to the tire rotation direction C and toward the inner side in the tire width direction. It extends at an angle.
  • the second inclined groove 33 has a shape in which the groove width gradually increases toward the outer side in the tire width direction and the groove width gradually decreases toward the inner side in the tire width direction.
  • the center point in the groove width direction at the inner end in the tire width direction of the second inclined groove 33 (the tip when there is no groove width at the inner end in the tire width direction) and the groove width direction at the outer end in the tire width direction of the second inclined groove 33
  • the angle between the straight line connecting the center point of the tire and the tire width direction is preferably 10 ° to 65 °.
  • this angle is referred to as an inclination angle of the second inclined groove 33.
  • the inclination angle of the second inclined groove 33 is 10 ° or more, the turning performance of the tire is good.
  • the inclination angle of the second inclined groove 33 is 65 ° or less, the braking performance of the tire is good.
  • the second inclined groove 33 preferably extends at least to the other first inclined groove 31 adjacent in the tire circumferential direction. A sufficient drainage path is ensured by extending the second inclined groove 33 to another adjacent first inclined groove 31. Furthermore, the second inclined groove 33 extends to the other first inclined groove 31 adjacent in the tire circumferential direction and ends. However, as will be described later, the second inclined groove 33 preferably extends through the other first inclined grooves 31. As the second inclined groove 33 extends through the first inclined groove 31, a multi-directional edge is created, and the frictional force due to the edge being caught by ice increases (edge effect). For this reason, the braking performance on ice and the turning performance on ice are improved without reducing the performance of braking on snow, turning on snow, wet braking, and wet turning.
  • a plurality of the third inclined grooves 34 are provided in the tire circumferential direction, extending from the middle of each of the first lug grooves 32 in a direction opposite to the tire rotation direction C and inclined toward the outer side in the tire width direction. Yes.
  • the third inclined groove 34 has a shape in which the groove width gradually decreases toward the outer side in the tire width direction, and the groove width gradually increases toward the inner side in the tire width direction.
  • the center point in the groove width direction at the inner end in the tire width direction of the third inclined groove 34 and the center point in the groove width direction at the outer end in the tire width direction of the third inclined groove 34 (when there is no groove width at the outer end in the tire width direction)
  • the angle formed by the straight line connecting the front end) and the tire width direction L is larger than the angle formed by the first lug groove 32 and the tire width direction L.
  • this angle is referred to as an inclination angle of the third inclined groove 34.
  • the inclination angle of the third inclined groove 34 is preferably 50 ° to 80 °. When the inclination angle of the third inclined groove 34 is 50 ° or more, the turning performance of the tire is good. On the other hand, when the inclination angle of the third inclined groove 34 is 80 ° or less, the braking performance of the tire is good.
  • the 2nd lug groove 35 extended in parallel with the 1st lug groove 32 in the range which does not cross
  • the edge effect and drainage effect of the tire 10 are enhanced, and the performance of braking on ice, turning on ice, braking on snow, turning on snow, wet braking, and wet turning is improved.
  • the third inclined groove 34 is closed without reaching the other first lug groove 32 adjacent to the first lug groove 32 in the tire rotation direction C (first direction). .
  • the tread rigidity of a land part can be ensured and the stud attachment hole 45 which can attach a stud pin to a land part can be provided so that it may mention later.
  • the third inclined groove 34 preferably extends at least to the second lug groove 35, and more preferably extends through the second lug groove 35. Since the third inclined groove 34 extends through the second lug groove 35, the snow is compressed and hardened in the second lug groove 35 to increase resistance, and the snow column shear force can be increased.
  • the width of the portion 35 ⁇ / b> A on the inner side in the tire width direction from the intersection of the second lug groove 35 with the third inclined groove 34 is the third inclined groove 34. It is preferable that the width of the portion 35B on the outer side in the tire width direction is narrower than the width of the crossing portion.
  • the width of the portion 35A on the inner side in the tire width direction is narrower than the intersection of the second lug groove 35 with the third inclined groove 34, the first inclined groove 31, the first lug groove 32, the second inclined groove 33, and the tread grounding
  • the area of the land part 41 surrounded by the end increases, and the adhesion frictional force can be increased.
  • a sipe 43 is provided in the land portion 41 surrounded by the first inclined groove 31, the first lug groove 32, the second inclined groove 33, and the tread grounding end.
  • a sipe 44 is provided in the land portion 42 on the inner side in the tire width direction than the first inclined groove 31 and the second inclined groove 33.
  • the sipe 44 extends substantially parallel to the tire width direction L.
  • the sipe 43 is preferably inclined with respect to the sipe 44. When the sipe 43 is inclined with respect to the sipe 44, the turning performance of the tire 10 can be enhanced.
  • a branch groove 60 extending from the middle of the first inclined groove 31 toward the center line CL is provided.
  • the branch groove 60 preferably has a shallow groove bottom with a step with respect to the groove bottom of the first inclined groove 31 at the branch position where the branch groove 60 branches from the first inclined groove 31.
  • the groove depth of the branch groove 60 gradually becomes shallower toward the center line CL.
  • the branch groove 60 is a groove that closes before reaching the center line CL, and the closed end is pointed.
  • the branch groove 60 has a first edge 60a located on the tire rotation direction C (first direction) side and a second edge 60b located on the opposite side to the tire rotation direction C (first direction). It is drawn by. At this time, it is preferable that one of the first edge 60a and the second edge 60b is curved and extends, and the other is linearly extended from the viewpoint of improving the traction performance or the braking performance.
  • the first edge 60a located on the side of the tire rotation direction C (first direction) has a curved shape, more specifically, an arc shape, and the second edge 60b It has a linear shape.
  • FIG. 4 the first edge 60a located on the side of the tire rotation direction C (first direction) has a curved shape, more specifically, an arc shape, and the second edge 60b It has a linear shape.
  • FIG. 4 the first edge 60a located on the side of the tire rotation direction C (first direction) has
  • the first edge 60a extends in the tire width direction perpendicular to the tire rotation direction C as compared to the second edge 60b, so that the first edge 60a has a curved shape.
  • the fact that the first edge 60a extends in the tire width direction perpendicular to the tire rotation direction C as compared to the second edge 60b means that the first edge 60a is in a straight tire width direction connecting both ends of the first edge 60a. It means that the absolute value of the inclination angle is smaller than the absolute value of the inclination angle with respect to the tire width direction of the straight line connecting both ends of the second edge 60b.
  • the second edge 60 b when the second edge 60 b extends in a direction perpendicular to the tire rotation direction C as compared with the first edge 60 a, the second edge 60 b has a curved shape. It is preferable to do. In this case, the braking performance can be improved by making the second edge 60b curved and long.
  • the fact that the second edge 60b extends in the tire width direction compared to the first edge 60a means that the absolute value of the inclination angle with respect to the tire width direction of the straight line connecting both ends of the second edge 60b is the first value. It means that it is smaller than the absolute value of the inclination angle with respect to the tire width direction of a straight line connecting both ends of the edge 60a.
  • the branch groove 60 is the first inclined groove.
  • the branch position in the tire circumferential direction branched from 31 advances from the tire circumferential position A to the tire circumferential position B by 20% to 80% of the distance Le. It is preferable to be located in the area.
  • the first lug groove 32, the branch groove 60, and the second lug groove 35 enter the ground contact area in contact with the ground one after another, so that the edge of the land that affects braking performance or traction performance The function of the component can be exhibited effectively at all times.
  • stud mounting holes 45 are provided in the land portion 41 surrounded by the first inclined groove 31, the first lug groove 32, the second inclined groove 33, and the tread grounding end.
  • the performance on ice such as braking on ice and turning on ice
  • the performance on snow such as braking on snow and turning on snow
  • the wet performance such as wet braking and wet turning can be improved.
  • the second inclined groove 33 having the tread pattern shown in FIG. 4 is formed to extend to the first inclined groove 31.
  • FIG. 5 is a plan view of a tread pattern of a tire according to another embodiment of the present invention.
  • the fourth inclined groove 36 that extends inward in the tire width direction and extends in one direction in the tire circumferential direction is formed as a second lug groove 35.
  • the fourth inclined groove 36 By providing the fourth inclined groove 36, the edge effect in multiple directions is enhanced, and the performance of braking on ice and turning on ice are improved without deteriorating the performance of braking on snow, turning on snow, wet braking, and wet turning.
  • the second inclined groove 33 may not extend through the other first inclined groove 31 adjacent in the tire circumferential direction.
  • 6 (a) and 6 (b) are plan views of a tread pattern of a tire according to still another embodiment of the present invention. In FIGS. 6A and 6B, illustration of sipes, stud mounting holes and stud pins is omitted. As shown in FIG.
  • the second inclined groove 33 extends through the other first inclined groove 31 adjacent in the tire circumferential direction, and is closed before reaching the tire center line CL. Also good.
  • the branch groove 60 extending toward the center line CL from the middle of the first inclined groove 31 may extend in the rotational direction (second direction) C in the tire circumferential direction. Alternatively, it may extend in parallel along the tire width direction L.
  • the branch position of the branch groove 60 from the first inclined groove 31 is preferably located at an intermediate portion between the start ends on the inner side in the tire width direction of the first inclined groove 31 adjacent in the tire circumferential direction.
  • the groove width is substantially constant at the central portion in the extending direction of the first inclined groove 31, while the end portion located within a certain range from the start end starts in the tire width direction.
  • the groove width may be gradually reduced as it approaches the end. At this time, as shown in FIGS. 6A and 6B, the degree of reduction of the groove width may be set freely.
  • first inclined groove 31 extends through the other first inclined groove 31 adjacent in the tire circumferential direction, and the branch groove 60 shown in FIG. 6B is the first inclined groove 31. It is preferable to have a groove bottom that is shallow with a step with respect to the groove bottom of the first inclined groove 31. In this case, it is preferable that the groove depths of these grooves gradually become shallower toward the center line CL.
  • tread patterns 30A and 30B of the tire 10 of the present invention tires provided with tread patterns having the specifications shown in Tables 1 to 3 below were produced, and the tire performance was evaluated.
  • the tire size was 205 / 55R16.
  • the vehicle used for evaluating the tire performance was an FF vehicle with an engine displacement of 2000 cc class.
  • the internal pressure condition was 230 (kPa) for both the front and rear wheels.
  • the load on the tire was 450 kg weight for the front wheels and 300 kg weight for the rear wheels.
  • the first inclined groove 31, the second inclined groove 33, the third inclined groove 34, the first lug groove 32, and the sipes 43 and 44 are formed in the tread portion T. ing.
  • the inclination angles of the first inclined groove 31, the second inclined groove 33, and the third inclined groove 34 are as shown in Table 1, respectively.
  • the inclination angle of the first inclined groove 31 is an angle formed by a straight line connecting both ends of the first inclined groove 31 and the tire width direction L.
  • the inclination angle of the second inclined groove 33 is an angle formed by a straight line connecting both ends of the second inclined groove 33 and the tire width direction L.
  • the inclination angle of the third inclined groove 34 is an angle formed by a straight line connecting both ends of the third inclined groove 34 (when the end has a groove width, the center is in the groove width direction) and the tire width direction. is there.
  • the tire of Example 14 shown in Table 2 below has a shape in which the second inclined groove 33 reaches the first inclined groove 31 in the tire of Example 3.
  • the tire of Example 15 is the same as that of Example 14 except that the second inclined groove 33 penetrates the first inclined groove 31.
  • the second lug groove 35 is further formed between the first lug grooves 32 in the tire of Example 15.
  • the tire of Example 17 has a shape in which the third inclined groove 34 reaches the second lug groove 35 in the tire of Example 16. In this case, the third inclined groove 34 is closed without reaching the first lug groove 32 adjacent in the tire circumferential direction.
  • the tire of Example 18 is the same as the tire of Example 17, except that the third inclined groove 34 penetrates the second lug groove 35. In this case, the third inclined groove 34 is closed without reaching the first lug groove 32 adjacent in the tire circumferential direction.
  • the width of the second lug groove 35 is further set to a portion on the outer side in the tire width direction from the intersection with the third inclined groove 34, and a portion on the inner side in the tire width direction. It has been changed by.
  • the sipe 43 provided in the land portion 41 surrounded by the first lug groove 32, the first inclined groove 31, the second inclined groove 33, and the tread grounding end is the first tire. Inclined by 10 ° with respect to the sipe 44 provided in the land portion 42 on the inner side in the tire width direction than the inclined groove 31 and the second inclined groove 33.
  • the tire of Example 22 is obtained by further forming the fourth inclined groove 36 shown in FIG. 5 on the tire of Example 21.
  • stud pins are attached to the stud attachment holes 45 of the tire of Example 22. In Examples 1 to 22, the stud pin is not attached to the stud attachment hole 45.
  • Comparative Example 1 shown in Table 2 below is a conventional tire, and only the first inclined groove 31 and the first lug groove 32 and the sipe are formed in the tread portion T.
  • the inclination angle of the first inclined groove 31 is 75 °.
  • Comparative Example 2 in addition to Comparative Example 1, the second inclined groove 33 was formed in the tread portion. The inclination angle of the second inclined groove 33 is 35 °.
  • Comparative Example 3 in addition to Comparative Example 1, the third inclined groove 34 was formed in the tread portion. The inclination angle of the third inclined groove 34 is 75 °.
  • the stud pin is not attached to the stud attachment hole 45.
  • the third inclined groove 34 shown in FIG. 4 reaches the first lug groove 32 adjacent to the direction opposite to the tire rotation direction C and is connected to the first lug groove. None of Comparative Examples 1 to 3 reaches the adjacent first lug groove 32.
  • the shape of the first edge 60a and the second edge 60b of the branch groove 60 is changed to a curved shape (arc shape) or a linear shape.
  • the branch position of the branch groove 60 is defined by a distance Le from the position of the first lug groove in the tire circumferential direction (the tire circumferential position A of the first lug groove 32 and the tire circumferential position B of the second lug groove 35 shown in FIG. 4).
  • the distance in the tire circumferential direction) is 0.5 times the distance in the tire circumferential direction. That is, the branch groove 60 is provided at an intermediate position between the first lug groove 32 and the adjacent second lug groove 36.
  • the branch position of the branch groove 60 is set to a distance ⁇ ⁇ Le from the position of the first lug groove in the tire circumferential direction, and ⁇ is 0.15 to 0.85. This is an example of various changes.
  • the shape of the first edge 60a of the branch groove 60 was a curved shape, and the shape of the second edge 609b was a linear shape.
  • stud pins were attached.
  • the average braking distance was obtained by measuring the braking distance when running on the ice road surface at the outdoor tire test site and applying the full brake from 40 km / h five times.
  • the evaluation was performed by using the reciprocal of the measured value, and indicated by an index with the reciprocal of the measured value of the tire of Comparative Example 1 being 100. The larger the index value, the better the braking performance on ice.
  • the average lap time was obtained by making five round turns on the road surface on ice at a turning radius of 30 m at an outdoor tire test site.
  • the evaluation was performed by using the reciprocal of the measured value, and indicated by an index with the reciprocal of the measured value of the tire of Comparative Example 1 being 100. The larger the index value, the better the turning performance on ice.
  • the average braking distance was determined by measuring the braking distance when driving a wet road surface with a water depth of 1.0 mm or more at the outdoor tire test site and measuring the braking distance when the full brake was applied from 40 km / h.
  • the evaluation was performed by using the reciprocal of the measured value, and indicated by an index with the reciprocal of the measured value of the tire of Comparative Example 1 being 100. The larger the index value, the better the braking performance on ice.
  • the wet round turning circuit (skid pad) with wet road surface was turned 5 times with a turning radius of 30 m at an outdoor tire test site, and the average lap time was obtained.
  • the evaluation was performed by using the reciprocal of the measured value, and indicated by an index with the reciprocal of the measured value of the tire of Comparative Example 1 being 100. The larger the index value, the better the turning performance on ice.
  • Example 3 and Comparative Examples 1 to 3 are compared, when both the second inclined groove 33 and the third inclined groove 34 are not present (Comparative Example 1), when the third inclined groove 34 is not present (Comparative Example 2), In the case where both the second inclined groove 33 and the third inclined groove 34 are present (Example 3) than in the case where the second inclined groove 33 is not present (Comparative Example 3), the turning performance and braking on ice, snow, and wet road surface are improved. It can be seen that the performance is improved.
  • the inclination angle of the first inclined groove 31 is changed around the third embodiment. Examining Examples 1 to 5, it can be seen that as the inclination angle of the first inclined groove 31 increases, the edge effect in the lateral direction increases and the turning performance improves. On the other hand, it can be seen that as the inclination angle of the first inclined groove 31 increases, the edge effect with respect to the vertical direction decreases and the braking performance deteriorates. It can be seen that when the inclination angle of the first inclined groove 31 is in the range of 50 ° to 80 °, the balance between the turning performance and the braking performance is good.
  • the inclination angle of the second inclined groove 33 is changed around the third embodiment. Examining Example 3 and Examples 6 to 9, it can be seen that the larger the inclination angle of the second inclined groove 33, the higher the edge effect in the lateral direction and the better the turning performance. On the other hand, it can be seen that as the inclination angle of the second inclined groove 33 is larger, the edge effect in the vertical direction is lowered and the braking performance is deteriorated. It can be seen that when the inclination angle of the second inclined groove 33 is in the range of 10 ° to 65 °, the balance between the turning performance and the braking performance is good.
  • the inclination angle of the third inclined groove 34 is changed around the third embodiment. Examining Example 3 and Examples 10 to 13, it can be seen that the larger the inclination angle of the third inclined groove 34, the higher the edge effect in the lateral direction and the better the turning performance. On the other hand, it can be seen that as the inclination angle of the third inclined groove 34 is larger, the edge effect in the vertical direction is lowered, and the braking performance is deteriorated. It can be seen that when the inclination angle of the third inclined groove 34 is in the range of 50 ° to 80 °, the balance between the turning performance and the braking performance is good.
  • Example 3 When Example 3 is compared with Example 14, the second inclined groove 33 reaches the first inclined groove 31 even when the second inclined groove 33 reaches the first inclined groove 31 (Example 14). It turns out that it is the turning performance and braking performance equivalent to the case (Example 3) which is not.
  • Example 15 has higher ice braking performance, snow braking performance, and wet braking performance, and slightly higher ice turning performance and wet braking performance.
  • Example 15 the braking performance on ice and the braking performance on snow are better when the second lug groove 35 is present (Example 16) than when the second lug groove 35 is not present (Embodiment 15).
  • the wet braking performance, the turning performance on ice, the turning performance on snow, and the wet turning performance are slightly high.
  • Example 16 Comparing Example 16 and Example 17, the third inclined groove reaches the second lug groove 35 as compared with the case where the third inclined groove does not reach the second lug groove 35 (Example 16). In the case (Example 17), the turning performance on ice is higher, and the turning performance on snow and the wet braking performance are also higher.
  • Example 18 Comparing Example 17 and Example 18, when the third inclined groove penetrates the second lug groove 35 than when the third inclined groove does not penetrate the second lug groove 35 (Example 17) ( It can be seen that Example 18) has slightly higher ice braking performance, snow braking performance, ice turning performance, and snow turning performance.
  • Example 18 Comparing Example 18 and Example 19, the second lug groove 35 is more in the tire width direction than the intersection with the third lug groove, compared to the case where the width of the second lug groove 35 is not changed (Example 18). It can be seen that the on-ice braking performance and on-snow braking performance are slightly higher when the inner portion and the outer portion of L change (Example 19). On the other hand, it can be seen that the on-ice turning performance is slightly higher when the width of the second lug groove 35 is not changed (Example 18).
  • Example 19 [Left and right phase difference (pitch)] Comparing Example 19 and Example 20, when the phase difference is 0.3 (Example 20) compared to the case where there is no difference in the phase of the left and right tread patterns (Example 19), the swirl on ice It can be seen that the performance, turning performance on snow, and wet turning performance are slightly high.
  • Example 20 and Example 21 are compared, the sipe 43 is inclined by 10 ° with respect to the sipe 44 as compared to the case where all the directions of the sipes 43 and 44 substantially coincide with the tire width direction L (Example 20). It can be seen that in the case (Example 21), the turning performance on ice, the turning performance on snow, and the wet turning performance are slightly higher.
  • Example 21 and Example 22 are compared, compared with the case where the fourth inclined groove 36 is not provided (Example 21), the case where the fourth inclined groove 36 is provided (Example 22) has particularly wet braking performance. I understand that it is expensive. It can also be seen that the braking performance on ice, the turning performance on snow, and the wet turning performance are high, and the braking performance on snow and the turning performance on ice are slightly high.
  • Example 22 Comparing Example 22 and Example 23, compared to the case where the stud pin is not attached (Example 22), the case where the stud pin is attached (Example 23), the braking performance on ice and the turning performance on ice. It can be seen that the braking performance on snow, the turning performance on snow, the wet braking performance, and the wet turning performance are all high.
  • Example 21 and Comparative Example 4 are compared, the third inclined groove does not reach the other first lug groove as compared with the case where the third inclined groove reaches the other first lug groove (Comparative Example 4). It can be seen that in the case, the braking performance on ice, the turning performance on ice, the braking performance on snow, the turning performance on snow, the wet braking performance, and the wet turning performance are improved.
  • the branch position of the branch groove 60 is located at a distance 0.2 to 0.8 times the distance Le from the position of the first lug groove 32. It turns out that it is preferable at the point which performance, wet braking performance, and wet turning performance improve.
  • Axis Rotating shaft C Tire circumferential direction CL Center line E1, E2 Grounding end R Tire radial direction T Tread portion W Grounding width 10
  • Bead core 18
  • Tread rubber member 18a
  • First tread rubber Member 18b
  • Second tread rubber member 20
  • Side rubber member 22
  • Bead filler rubber member 24
  • Rim cushion rubber member 26
  • Inner liner rubber members 30A, 30B Tread pattern 31 First inclined groove 32 First lug groove 33 Second inclined groove 34 Third inclined groove 35 Second lug groove 36 Fourth inclined groove 41, 42 Land portion 43, 44 Sipe 45 Stud mounting hole

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 空気入りタイヤのトレッドパターンは、センターラインから離間した位置を開始端とし、タイヤ周方向の一方向に向かうとともに、タイヤ幅方向外側に傾斜して延びる第1傾斜溝と、第1傾斜溝のそれぞれのタイヤ幅方向外側端部からタイヤ周方向の一方向に向かうとともに、タイヤ幅方向外側に傾斜して接地端まで延び、第1傾斜溝よりもタイヤ幅方向とのなす角が小さい第1ラグ溝と、第1傾斜溝のそれぞれのタイヤ幅方向外側端部からタイヤ周方向の一方向に向かうとともに、タイヤ幅方向内側に傾斜して延びる第2傾斜溝と、第1ラグ溝のそれぞれの途中からタイヤ周方向の一方向に向かうとともに、タイヤ幅方向外側に傾斜して延び、第1ラグ溝よりもタイヤ幅方向とのなす角が大きい第3傾斜溝と、を備える。前記第3傾斜溝は、前記第1ラグ溝に対して前記第1の方向に隣接する他の第1ラグ溝に達することなく閉塞する。

Description

空気入りタイヤ
 本発明は、トレッド部にトレッドパターンが形成された空気入りタイヤに関する。
 従来、空気入りタイヤ、例えば、スタッドタイヤに代表される冬用の空気入りタイヤでは、雪上でのトラクション(駆動性能)が確保できるように、トレッド部にタイヤ周方向やタイヤ幅方向に延びる複数本の溝からなるトレッドパターンが設けられている。このような空気入りタイヤは、雪上でのトラクションが求められると同時に、雪のない乾燥路面での制駆動性能が低下しないことが望まれている。
 トレッド部における溝面積の比率、具体的には、接地面内における接地面積に対する溝部分の面積の比率を低下させ、接地面積を増加させることで、凝着摩擦力が上がり、空気入りタイヤの氷上性能が高まることが知られている。一方、溝面積を増加させることで、水膜を有するウェット路面上をタイヤが転動するときに、トレッドパターンによる排水性が向上することも知られている。
 タイヤ周方向に周期的に溝が形成されるとともに、タイヤのセンターラインに対して幅方向の一方側と他方側とで位相をずらすことでパターンノイズを改善した空気入りタイヤがある(例えば、特許文献1参照)。
 また、トレッド部の中央部に、周方向に複数の溝を形成することでセンターリブを設け、パターンノイズの発生を抑えながら排水性を維持する空気入りラジアルタイヤもある(例えば、特許文献2参照)。
 また、タイヤのセンターライン側からショルダー部にかけて傾斜する傾斜溝を周方向に間隔を空けて複数設けるとともに、傾斜溝のセンターライン側の端部を隣接する他の傾斜溝に接続する構造により、ヒールアンドトウ摩耗を低減する空気入りラジアルタイヤもある(例えば、特許文献3参照)。
特許第4381787号公報 特開平10-264612号公報 特開平8-142613号公報
 しかし、空気入りタイヤの氷上性能を高めるために、接地面積を増加させて凝着摩擦力を上げると、溝面積が低下することにより、排水性が低下し、ウェット性能(ウェット路面上の旋回性能や制駆動性能)が低下する。また、雪を溝内で圧縮させることにより作られる雪柱のせん断力(雪柱せん断力)も低下し、雪上性能(雪上の旋回性能や制動性能)が低下する。
 一方、排水性や雪柱せん断力を向上させるために溝面積を増加させると、接地面積が減少して凝着摩擦力が低下し、氷上性能(氷上の旋回性能や制駆動性能)が低下する。
 そこで、本発明は、氷上性能、雪上性能およびウェット性能を高めた空気入りタイヤを提供することを目的とする。
 本発明の一つの態様は、空気入りタイヤである。当該空気入りタイヤは、タイヤのセンターラインを境としてタイヤ幅方向の両側に位置するトレッド部の半トレッド領域のそれぞれにトレッドパターンが形成されている。
 前記半トレッド領域のそれぞれは、
 前記センターラインから離間した位置を開始端とし、タイヤ周方向の第1方向に向かうとともに、タイヤ幅方向外側に傾斜して延びる第1傾斜溝がタイヤ周方向に複数設けられた第1傾斜溝群と、
 前記第1傾斜溝のそれぞれのタイヤ幅方向外側端部から前記タイヤ周方向の前記第1方向に向かうとともに、タイヤ幅方向外側に傾斜して接地端まで延び、前記第1傾斜溝よりもタイヤ幅方向とのなす角が小さい第1ラグ溝がタイヤ周方向に複数設けられた第1ラグ溝群と、
 前記第1傾斜溝のそれぞれのタイヤ幅方向外側端部から前記タイヤ周方向の前記第1方向に向かうとともに、タイヤ幅方向内側に傾斜して延びる第2傾斜溝がタイヤ周方向に複数設けられた第2傾斜溝群と、
 前記第1ラグ溝のそれぞれの途中から前記タイヤ周方向の前記第1方向に向かうとともに、タイヤ幅方向外側に傾斜して延び、前記第1ラグ溝よりもタイヤ幅方向とのなす角が大きい第3傾斜溝がタイヤ周方向に複数設けられた第3傾斜溝群と、
を備える。
 前記第3傾斜溝は、前記第1ラグ溝に対して前記第1の方向に隣接する他の第1ラグ溝に達することなく閉塞する。
 このとき、前記第1傾斜溝の途中から、前記センターラインに向かって延びる分岐溝をさらに備え、前記分岐溝は、前記分岐溝が前記第1傾斜溝から分岐する分岐位置において、前記第1傾斜溝の溝底に対して段差を持って浅くなった溝底を有し、前記分岐溝の溝深さは前記センターラインに向かうにつれて徐々に浅くなっている、ことが好ましい。
 また、前記分岐溝は、前記センターラインに到達する前に閉塞する溝であり、前記分岐溝は、前記第1の方向の側に位置する第1の縁と、前記第1の方向と反対方向の側に位置する第2の縁により画され、前記第1の縁および前記第2の縁のいずれか一方は曲線状に湾曲して延び、他方は直線状に延びる、ことが好ましい。
 前記分岐溝は、前記タイヤ周方向の前記第1方向に向かうとともに、タイヤ幅方向内側に傾斜して延びる第4傾斜溝であってもよい。
 前記分岐溝は、あるいは、前記タイヤ周方向のうち前記第1方向と反対方向である第2方向に延びる第4傾斜溝、あるいは前記タイヤ幅方向に沿って平行に延びる溝であってもよい。
 また、前記第1傾斜溝の途中から、前記センターラインに向かって延びる分岐溝をさらに備えることも好ましい。この場合、前記複数の第1ラグ溝のうち、タイヤ周方向に隣接する2つの第1ラグ溝の間に、前記第1ラグ溝と平行に延びる第2ラグ溝が設けられ、タイヤ周方向に隣り合う第1ラグ溝と第2ラグ溝間のタイヤ周方向の距離をLeとしたとき、
 前記分岐溝が前記第1傾斜溝から分岐するタイヤ周方向における分岐位置は、前記第1ラグ溝の接地端におけるタイヤ周方向位置Aから距離Leの0.2倍以上0.8倍以下、前記第2ラグ溝の接地端におけるタイヤ周方向位置Bに向かって進んだ領域内に位置する、ことが好ましい。
 また、前記複数の第1ラグ溝のうち、タイヤ周方向に隣接する2つの第1ラグ溝の間に、前記第1ラグ溝と平行に延びる第2ラグ溝が設けられる、ことが好ましい。
 前記第2傾斜溝は、少なくともタイヤ周方向に隣接する他の第1傾斜溝まで延びる、ことが好ましい。
 あるいは、前記第2傾斜溝は、タイヤ周方向に隣接する他の第1傾斜溝を突き抜けて延びる、ことも同様に好ましい。
 前記複数の第1ラグ溝のうち、タイヤ周方向に隣接する2つの第1ラグ溝の間に、前記第1ラグ溝と平行に延びる第2ラグ溝が設けられ、前記第3傾斜溝は、少なくとも前記第2ラグ溝まで延びる、ことが好ましい。
 また、前記複数の第1ラグ溝のうち、タイヤ周方向に隣接する2つの第1ラグ溝の間に、前記第1ラグ溝と平行に延びる第2ラグ溝が設けられ、前記第3傾斜溝は、前記第2ラグ溝を横切って延びてもよい。
 このとき、前記第2ラグ溝の前記第3傾斜溝との交差部よりもタイヤ幅方向内側の部分の溝幅は、前記第3傾斜溝との交差部よりもタイヤ幅方向外側の部分の溝幅よりも狭い、ことが好ましい。
 前記第1傾斜溝の両端を結ぶ直線とタイヤ幅方向のなす角は50°~80°である、ことが好ましい。
 前記第2傾斜溝の両端を結ぶ直線とタイヤ幅方向のなす角は10°~65°である、ことが好ましい。
 前記第3傾斜溝の両端を結ぶ直線とタイヤ幅方向のなす角は50°~80°である、ことが好ましい。
 前記センターラインの一方側の第1傾斜溝群の第1傾斜溝の開始端は、他方側の第1傾斜溝群の第1傾斜溝の開始端に対して、隣接する前記第1傾斜溝のタイヤ周方向の平均間隔の1/10~4/10ずれている、ことが好ましい。
 さらに、前記トレッド部の陸部には複数のサイプが設けられ、前記第1ラグ溝、前記第1傾斜溝、前記第2傾斜溝及びトレッド接地端により囲まれる陸部に設けられるサイプは、前記第1傾斜溝及び前記第2傾斜溝よりもタイヤ幅方向内側の陸部に設けられるサイプに対して傾斜している、ことが好ましい。
 前記第1ラグ溝、前記第1傾斜溝、前記第2傾斜溝及びトレッド接地端により囲まれる陸部にはスタッド取付用穴が設けられている、ことが好ましい。
 上述の態様によれば、氷上性能、雪上性能およびウェット性能を高めた空気入りタイヤを提供することができる。
本発明の一実施形態である空気入りタイヤを示す斜視図である。 本発明の一実施形態である空気入りタイヤの正面図である。 図2のIII-III矢視断面図である。 本発明の一実施形態である空気入りタイヤのトレッドパターンを示す展開図である。 本発明の他の実施形態である空気入りタイヤのトレッドパターンを示す展開図である。 (a),(b)は本発明のさらに他の実施形態のタイヤのトレッドパターンを平面展開視した図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 図1は本発明の一実施形態である空気入りタイヤ10を示す斜視図である。
 空気入りタイヤ10(以下、タイヤ10という)は、乗用車用タイヤである。
 本発明のタイヤ10の構造及びゴム部材は、公知のものが用いられてもよいし、新規なものが用いられてもよく、本発明において、特に限定されない。
 なお、タイヤ幅方向Lは、空気入りタイヤ10の回転軸Axisと平行な方向である。タイヤ幅方向外側は、タイヤ幅方向Lの2方向のうちタイヤセンターラインCL(図3参照)から離れる側である。また、タイヤ幅方向内側は、タイヤ幅方向Lの2方向のうちタイヤセンターラインCLに近づく側である。タイヤ回転方向Cは、タイヤ周方向のうち、タイヤが車に取り付けられた状態で、車が前進するときに、タイヤの回転軸Axisを回転の中心としてトレッド部Tが回転する方向である。タイヤ径方向Rは、空気入りタイヤの回転軸Axisに直交する方向である。タイヤ径方向外側は、回転軸Axisから離れる側をいう。また、タイヤ径方向内側は、回転軸Axisに近づく側である。
 以降で説明するタイヤの接地端E1、E2及び接地幅Wは、タイヤを規定リムに装着して、規定内圧、例えば200kPaの内圧条件および規定荷重の88%の条件で平板上に垂直方向に負荷させたときの平板上に形成される接地面におけるタイヤ幅方向Lの接地端間の最長直線距離をいう。ここで、規定リムとは、ETRTO(2011年版)に規定される「Measuring Rim」をいう。規定リムとは、あるいは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、をいうこともできる。また、規定内圧とは、ETRTOで規定される「INFLATION PRESSURES」をいう。規定内圧とは、あるいは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値をいうこともできる。また、規定荷重とは、ETRTOに規定される「LOAD CAPACITY」をいう。規定荷重とは、あるいは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値をいうこともできる。
(タイヤ構造)
 図2は空気入りタイヤ10の正面図であり、図3は図2のIII-III矢視断面図である。
 タイヤ10は、図3に示すように、骨格材として、カーカスプライ層12と、ベルト層14と、ビードコア16とを有する。タイヤ10は、これらの骨格材の周りに、トレッドゴム部材18と、サイドゴム部材20と、ビードフィラーゴム部材22と、リムクッションゴム部材24と、インナーライナゴム部材26と、を主に有する。
 カーカスプライ層12は、一対の円環状のビードコア16の間を巻きまわしてトロイダル形状を成した、有機繊維をゴムで被覆したカーカスプライ材で構成されている。カーカスプライ層12は、ビードコア16の周りに巻きまわされている。カーカスプライ層12のタイヤ径方向外側には、2枚のベルト材14a,14bで構成されるベルト層14が設けられている。ベルト材14a,14bのそれぞれは、タイヤ回転方向Cに対して、所定の角度、例えば20~30度傾斜して配されたスチールコードにゴムを被覆した部材であり、下層のベルト材14bが上層のベルト材14aに比べてタイヤ幅方向の幅が広い。2層のベルト材14a,14bのスチールコードの傾斜方向は互いに逆方向である。このため、ベルト材14a,14bは、交錯層となっており、充填された空気圧によるカーカスプライ層12の膨張を抑制する。
 ベルト材14aのタイヤ径方向外側には、トレッドゴム部材18が設けられている。トレッドゴム部材18は、最表層となる第1トレッドゴム部材18aと第1トレッドゴム部材18aのタイヤ径方向内側に設けられる第2トレッドゴム部材18bとを有する。トレッドゴム部材18の両端部には、サイドゴム部材20が接続されてサイド部を形成している。サイドゴム部材20のタイヤ径方向内側の端には、リムクッションゴム部材24が設けられ、タイヤ10を装着するリムと接触する。ビードコア16のタイヤ径方向外側には、ビードコア16の周りに巻きまわす前のカーカスプライ層12の部分と、ビードコア16の周りに巻きまわしたカーカスプライ層12の巻きまわし部分との間に挟まれるようにビードフィラーゴム部材22が設けられている。タイヤ10とリムとで囲まれる空気を充填するタイヤ空洞領域に面するタイヤ10の内表面には、インナーライナゴム部材26が設けられている。
 この他に、ベルト層14のタイヤ径方向外側からベルト層14を覆いベルト層14を補強する、有機繊維をゴムで被覆したベルトカバー層15を備える。また、タイヤ10は、ビードコア16の周りに巻きまわしたカーカスプライ層12とビードフィラーゴム部材22との間にビード補強材を備えることもできる。
 タイヤ10は、このようなタイヤ構造を有するが、本発明の空気入りタイヤのタイヤ構造は、図1に示すタイヤ構造に限定されない。
 図4は空気入りタイヤ10のトレッドパターン30A、30Bを示す展開図である。本発明のタイヤ10は、図4に示すように、トレッド部Tに本発明の特徴とするトレッドパターン30A、30Bが、タイヤのセンターラインCLを境にしたタイヤ幅方向の両側の半トレッド領域に形成されている。トレッドパターン30A、30Bを有するタイヤ10は、乗用車用タイヤに好適に用いることができる。図4に示すトレッドパターンには、スタッドピンを取り付けるスタッド取付用穴が設けられているが、トレッドパターンは、スタッド取付用穴が設けられなくてもよい。図4に示すように、スタッド取付用穴の周りには、この穴の周りから穴の径方向に対して傾斜した方向に直線状に延びるリッジ状突起が設けられている。このリッジ状突起は、スタッドピンの取り付け位置を認識させるために形成されている。図4に示すように、スタッド取付用穴及びリッジ状突起の周囲の領域には、サイプは設けられていない。
 本発明のタイヤ10は、タイヤ回転方向が予め定められており、車両の前進時に図1のタイヤ回転方向Cに回転するように、車両に装着される。タイヤ10のサイドゴム部材20の表面には、この回転移動の方向を指定する記号や情報が表示されている。タイヤ10がタイヤ回転方向Cに回転するとき、トレッド部Tが図4の上から下に回転移動し、トレッド部Tの路面と接触する位置は図4の下から上に移動する。
 図4において、符号CLはタイヤのセンターラインを示す。トレッドパターン30A、30Bは、タイヤ10が車両に装着された状態で、接地幅Wで示すタイヤ幅方向領域において路面に接地する。
 ここで、接地端E1、E2の間隔が接地幅Wである。接地端E1、E2は、タイヤ10を規定リムに組み付け、規定内圧を充填し、規定荷重の88%を負荷荷重とした条件において水平面に接地させたときの接地面のタイヤ幅方向の両端部である。
 本発明においてタイヤ幅方向とは、タイヤ10の回転中心軸方向をいい、タイヤ周方向とは、タイヤ10の回転中心軸を中心にタイヤ10を回転させたときにできるトレッド表面の回転面の回転方向をいう。図4にこれらの方向を記している。
 図4に示すトレッドパターン30A、30Bは、それぞれ、複数の第1傾斜溝31を含む第1傾斜溝群と、複数の第1ラグ溝32を含む第1ラグ溝群と、複数の第2傾斜溝33を含む第2傾斜溝群と、複数の第3傾斜溝34を含む第3傾斜溝群と、を備えている。第1傾斜溝群、第1ラグ溝群、第2傾斜溝群、第3傾斜溝群は、センターラインCLを境にしてタイヤ幅方向の両側に設けられている。
 第1傾斜溝31は、タイヤ周方向に複数設けられており、センターラインCLから離間した位置を開始端とし、タイヤ回転方向Cと反対方向に向かうとともに、タイヤ幅方向外側に向かって傾斜して延びている。第1傾斜溝31は、タイヤ幅方向外側に向かって溝幅が徐々に広くなり、開始端に向かって溝幅が徐々に狭くなる形状をしている。第1傾斜溝31の開始端における溝幅方向の中心点(開始点において溝幅がない場合は先端)と、第1傾斜溝31のタイヤ幅方向外側端における溝幅方向の中心点とを結ぶ直線の、タイヤ幅方向とのなす角は、50°~80°であることが好ましい。以下、この角度を第1傾斜溝31の傾斜角度という。第1傾斜溝31の傾斜角度が50°以上であると、タイヤ10の旋回性能(氷上、雪上、ウェット路面上の旋回性能)が良好となる。一方、第1傾斜溝31の傾斜角度が80°以下であると、タイヤ10の制動性能(氷上、雪上、ウェット路面上の制動性能)が良好となる。
 センターラインCLの一方側の第1傾斜溝群の第1傾斜溝31の開始端を31S、センターラインCLの他方側の第1傾斜溝群の第1傾斜溝31の開始端を31Sとし、開始端31S同士、開始端31S同士のタイヤ周方向の平均間隔をP、開始端31Sと開始端31Sとのタイヤ周方向の平均間隔をP1とすると、P1/Pは1/10~4/10であることが好ましい。センターラインCLの両側でトレッドパターンの位相が周方向に10~40%ずれている(位相差が0.1~0.3である)ことで、雪上でのトラクション(駆動性能)を向上させることができる。
 第1ラグ溝32は、タイヤ周方向に複数設けられており、第1傾斜溝31のそれぞれのタイヤ幅方向外側端部からタイヤ回転方向Cと反対方向に向かうとともに、タイヤ幅方向外側に向かって傾斜して接地端よりもタイヤ幅方向外側まで延びている。第1傾斜溝31と第1ラグ溝32との接続位置は、タイヤセンターラインCLから、接地幅Wの1/2の30~50%離れた位置に設けられる。
 第1ラグ溝32の両端部における溝幅方向の中心点同士を結ぶ直線の、タイヤ幅方向とのなす角は、第1傾斜溝31のタイヤ幅方向とのなす角よりも小さい。以下、この角度を第1ラグ溝32の傾斜角度という。第1ラグ溝32の傾斜角度は10°~20°であることが好ましい。第1ラグ溝32の傾斜角度が10°~20°の範囲であると、タイヤの旋回性能と制動性能のバランスが良好となる。
 第2傾斜溝33は、タイヤ周方向に複数設けられており、第1傾斜溝31のそれぞれのタイヤ幅方向外側端部からタイヤ回転方向Cと反対方向に向かうとともに、タイヤ幅方向内側に向かって傾斜して延びている。第2傾斜溝33は、タイヤ幅方向外側に向かって溝幅が徐々に広くなり、タイヤ幅方向内側に向かって溝幅が徐々に狭くなる形状をしている。第2傾斜溝33のタイヤ幅方向内側端における溝幅方向の中心点(タイヤ幅方向内側端において溝幅がない場合は先端)と、第2傾斜溝33のタイヤ幅方向外側端における溝幅方向の中心点とを結ぶ直線の、タイヤ幅方向とのなす角は、10°~65°であることが好ましい。以下、この角度を第2傾斜溝33の傾斜角度という。第2傾斜溝33の傾斜角度が10°以上であると、タイヤの旋回性能が良好となる。一方、第2傾斜溝33の傾斜角度が65°以下であると、タイヤの制動性能が良好となる。
 第2傾斜溝33は、少なくともタイヤ周方向に隣接する他の第1傾斜溝31まで延びることが好ましい。第2傾斜溝33が隣接する他の第1傾斜溝31まで延びることで、十分な排水経路が確保される。
 さらに、第2傾斜溝33は、タイヤ周方向に隣接する他の第1傾斜溝31まで延びて終了している。しかし、後述するように、第2傾斜溝33は、他の第1傾斜溝31を突き抜けて延びることも好ましい。第2傾斜溝33が第1傾斜溝31を突き抜けて延びることで、多方向のエッジが作られ、エッジが氷に引っかかることによる摩擦力が高まる(エッジ効果)。このため、雪上制動、雪上旋回、ウェット制動、ウェット旋回の性能を低下させることなく、氷上制動、氷上旋回の性能が向上する。
 第3傾斜溝34は、タイヤ周方向に複数設けられており、第1ラグ溝32のそれぞれの途中からタイヤ回転方向Cと反対方向に向かうとともに、タイヤ幅方向外側に向かって傾斜して延びている。第3傾斜溝34は、タイヤ幅方向外側に向かって溝幅が徐々に狭くなり、タイヤ幅方向内側に向かって溝幅が徐々に広くなる形状をしている。第3傾斜溝34のタイヤ幅方向内側端における溝幅方向の中心点と、第3傾斜溝34のタイヤ幅方向外側端における溝幅方向の中心点(タイヤ幅方向外側端において溝幅がない場合は先端)とを結ぶ直線の、タイヤ幅方向Lとのなす角は、第1ラグ溝32とタイヤ幅方向Lとのなす角よりも大きい。以下、この角度を第3傾斜溝34の傾斜角度という。第3傾斜溝34の傾斜角度は50°~80°であることが好ましい。第3傾斜溝34の傾斜角度が50°以上であると、タイヤの旋回性能が良好となる。一方、第3傾斜溝34の傾斜角度が80°以下であると、タイヤの制動性能が良好となる。
 なお、タイヤ周方向に隣接する2つの第1ラグ溝32の間に、第1傾斜溝31および第2傾斜溝33と交差しない範囲で、第1ラグ溝32と平行に延びる第2ラグ溝35を設けてもよい。第2ラグ溝35を設けることで、タイヤ10のエッジ効果及び排水効果が高まり、氷上制動、氷上旋回、雪上制動、雪上旋回、ウェット制動、ウェット旋回の性能が向上する。
 第3傾斜溝34は、図4に示すように、第1ラグ溝32に対してタイヤ回転方向C(第1の方向)に隣接する他の第1ラグ溝32に達することなく閉塞している。これにより、陸部のトレッド剛性を確保することができ、後述するように、陸部にスタッドピンを取り付けることのできるスタッド取付用穴45を設けることができる。
 第2ラグ溝35が設けられている場合、第3傾斜溝34は、少なくとも第2ラグ溝35まで延びることが好ましく、第2ラグ溝35を突き抜けて延びることがより好ましい。第3傾斜溝34が第2ラグ溝35を突き抜けて延びることで、第2ラグ溝35内で雪を圧縮し固めて抵抗を増加させ、雪柱せん断力を高めることができる。
 第3傾斜溝34が第2ラグ溝35を突き抜けて延びる場合、第2ラグ溝35の第3傾斜溝34との交差部よりもタイヤ幅方向内側の部分35Aの幅は、第3傾斜溝34との交差部よりもタイヤ幅方向外側の部分35Bの幅よりも狭いことが好ましい。第2ラグ溝35の第3傾斜溝34との交差部よりもタイヤ幅方向内側の部分35Aの幅を狭くすると、第1傾斜溝31、第1ラグ溝32、第2傾斜溝33及びトレッド接地端により囲まれる陸部41の面積が増加し、凝着摩擦力を高めることができる。
 第1傾斜溝31、第1ラグ溝32、第2傾斜溝33及びトレッド接地端により囲まれる陸部41には、サイプ43が設けられている。また、第1傾斜溝31および第2傾斜溝33よりもタイヤ幅方向内側の陸部42には、サイプ44が設けられている。サイプ44はタイヤ幅方向Lとほぼ平行に延在している。これに対し、サイプ43はサイプ44に対して傾斜していることが好ましい。サイプ43がサイプ44に対して傾斜していることで、タイヤ10の旋回性能を高めることができる。
 また、第1傾斜溝31の途中から、センターラインCLに向かって延びる分岐溝60が設けられている。この分岐溝60は、この分岐溝60が第1傾斜溝31から分岐する分岐位置において、第1傾斜溝31の溝底に対して段差を持って浅くなった溝底を有することが好ましく、この場合、分岐溝60の溝深さはセンターラインCLに向かうにつれて徐々に浅くなっていることが好ましい。これにより、第1傾斜溝31と第2傾斜溝33とで囲まれたセンターラインCLが通過する中央部の陸部42のトレッド剛性を確保することができ、タイヤのトラクション性能を向上させることができる。
 分岐溝60は、センターラインCLに到達する前に閉塞する溝であり、閉塞端は、尖っている。分岐溝60は、タイヤ回転方向C(第1の方向)の側に位置する第1の縁60aと、タイヤ回転方向C(第1の方向)と反対方向の側に位置する第2の縁60bにより画されている。このとき、第1の縁60aおよび第2の縁60bのいずれか一方は曲線状に湾曲して延び、他方は直線状に延びることが、トラクション性能あるいはブレーキング性能を向上させる点で好ましい。図4に示すトレッドパターンでは、タイヤ回転方向C(第1の方向)の側に位置する第1の縁60aは曲線形状、より具体的には円弧形状となっており、第2の縁60bは、直線形状となっている。特に、図4に示すように、第1の縁60aは、第2の縁60bに比べて、タイヤ回転方向Cに対して直交するタイヤ幅方向に延びるので、第1の縁60aを曲線形状にして長くすることで、トラクション性能を向上させることができる。ここで、第1の縁60aが第2の縁60bに比べてタイヤ回転方向Cに対して直交するタイヤ幅方向に延びるとは、第1の縁60aの両端部を結ぶ直線のタイヤ幅方向に対する傾斜角度の絶対値が、第2の縁60bの両端部を結ぶ直線のタイヤ幅方向に対する傾斜角度の絶対値に比べて小さいことをいう。
 また、図4に示すトレッドパターンと異なり、第2の縁60bが、第1の縁60aに比べて、タイヤ回転方向Cに対して直交する方向に延びる場合、第2の縁60bを曲線形状にすることが好ましい。この場合、第2の縁60bを曲線形状にして長くすることで、ブレーキング性能を向上させることができる。ここで第2の縁60bが第1の縁60aに比べてタイヤ幅方向に延びるとは、第2の縁60bの両端部を結ぶ直線のタイヤ幅方向に対する傾斜角度の絶対値が、第1の縁60aの両端部を結ぶ直線のタイヤ幅方向に対する傾斜角度の絶対値に比べて小さいことをいう。
 図4に示すトレッドパターンのタイヤ周方向に隣り合う第1ラグ溝32及び第2ラグ溝35において、第1ラグ溝32の接地端E1,E2におけるタイヤ周方向位置A(溝幅方向の中心位置)と第2ラグ溝35の接地端E1,E2におけるタイヤ周方向位置B(溝幅方向の中心位置)との間のタイヤ周方向の距離をLeとしたとき、分岐溝60が第1傾斜溝31から分岐するタイヤ周方向における分岐位置(分岐溝60の分割位置における溝幅方向の中心位置)は、タイヤ周方向位置Aから距離Leの20%以上80%以下、タイヤ周方向位置Bに進んだ領域内に位置することが好ましい。このようにすることにより、第1ラグ溝32、分岐溝60、及び第2ラグ溝35が次々と地面と接する接地領域内に入るため、ブレーキング性能あるいはトラクション性能に影響を与える陸部のエッジ成分の機能を常時効果的に発揮させることができる。
 また、第1傾斜溝31、第1ラグ溝32、第2傾斜溝33及びトレッド接地端により囲まれる陸部41には、図4に示すように、スタッド取付用穴45が設けられている。スタッド取付用穴に図示しないスタッドピンが取り付けられることで、タイヤ10はスタッドタイヤとして機能し、氷上制動、氷上旋回といった氷上性能が高まる。
 以上の空気入りタイヤ10によれば、氷上制動、氷上旋回といった氷上性能を高めながらも、雪上制動、雪上旋回といった雪上性能およびウェット制動、ウェット旋回といったウェット性能をも高めることができる。
(他の実施形態)
 本実施形態では、図4に示すトレッドパターンの第2傾斜溝33が第1傾斜溝31まで延びるように作られている。しかし、第2傾斜溝33は第1傾斜溝31で終了する一方、第1傾斜溝31の途中から、図4に示す分岐位置とは異なる分岐位置から、センターラインCLに向かって延びる分岐溝を備えるように形成することもできる。図5は本発明の他の実施形態のタイヤのトレッドパターンを平面展開視した図である。
 例えば、図5に示すように、第1傾斜溝31の途中から、タイヤ周方向の一方向に向かうとともに、タイヤ幅方向内側に傾斜して延びる第4傾斜溝36を、第2ラグ溝35の接地端E1,E2におけるタイヤ周方向位置Bと略同じ位置に分岐溝として設けてもよい。第4傾斜溝36を設けることで、多方向に対するエッジ効果が高まり、雪上制動、雪上旋回、ウェット制動、ウェット旋回の性能を低下させることなく、氷上制動、氷上旋回の性能が向上する。この場合、第2傾斜溝33は、タイヤ周方向に隣接する他の第1傾斜溝31を突き抜けて延びなくてもよい。
 図6(a),(b)は本発明のさらに他の実施形態のタイヤのトレッドパターンを平面展開視した図である。図6(a),(b)では、サイプ、スタッド取付用穴及びスタッドピンの図示は省略されている。図6(a)に示すように、第2傾斜溝33がタイヤ周方向に隣接する他の第1傾斜溝31を突き抜けて延び、タイヤセンターラインCLに到達する前に、閉塞する形態であってもよい。
 また、図6(b)に示すように、第1傾斜溝31の途中からセンターラインCLに向かって延びる分岐溝60は、タイヤ周方向のうち回転方向(第2方向)Cに延びてもよく、あるいはタイヤ幅方向Lに沿って平行に延びてもよい。この場合、分岐溝60の第1傾斜溝31からの分岐位置は、タイヤ周方向に隣接する第1傾斜溝31のタイヤ幅方向内側の開始端間の中間部分に位置することが好ましい。この分岐位置を上記中間部分に位置させることで、タイヤ周方向に並ぶ第1傾斜溝31と、第2傾斜溝33と、センターラインCLとにより囲まれて形成されるセンター陸部におけるブロック剛性のタイヤ周方向における変動を小さくすることができる。
 図4に示すように、第1傾斜溝31の延在方向の中央部分では溝幅を略一定にする一方、開始端からある範囲内に位置する端側の部分では、タイヤ幅方向内側の開始端に近づくにつれて溝幅を徐々に縮小してもよい。このとき、図6(a),(b)に示すように、溝幅の縮小率の程度は自在に設定してもよい。
 図6(a)に示す第2傾斜溝33がタイヤ周方向に隣接する他の第1傾斜溝31を突き抜けて延びた部分、及び図6(b)に示す分岐溝60が第1傾斜溝31から延びるとき、第1傾斜溝31の溝底に対して段差を持って浅くなった溝底を有することが好ましい。この場合、これらの溝の溝深さはセンターラインCLに向かうにつれて徐々に浅くなっていることが好ましい。
[実験例]
 本発明のタイヤ10のトレッドパターン30A、30Bの効果を調べるために、以下の表1~3に示す仕様のトレッドパターンを設けたタイヤを作製し、タイヤ性能を評価した。
 タイヤサイズは、205/55R16とした。タイヤ性能を評価するために用いた車両はエンジン排気量が2000ccクラスのFF車を用いた。内圧条件は、前輪、後輪ともに230(kPa)とした。タイヤへの荷重は、前輪では450kg重、後輪では300kg重とした。
 下記表1に示す実施例1~13のタイヤでは、第1傾斜溝31、第2傾斜溝33、第3傾斜溝34および第1ラグ溝32と、サイプ43、44がトレッド部Tに形成されている。第1傾斜溝31、第2傾斜溝33、第3傾斜溝34の傾斜角度は、それぞれ表1に示すとおりである。ここで、第1傾斜溝31の傾斜角度とは、第1傾斜溝31の両端を結ぶ直線とタイヤ幅方向Lのなす角である。同様に、第2傾斜溝33の傾斜角度とは、第2傾斜溝33の両端を結ぶ直線とタイヤ幅方向Lのなす角である。また、第3傾斜溝34の傾斜角度とは、第3傾斜溝34の両端(端が溝幅を有する場合、溝幅方向の中心を端とする)を結ぶ直線とタイヤ幅方向のなす角である。
 下記表2に示す実施例14のタイヤは、実施例3のタイヤにおいて、第2傾斜溝33が第1傾斜溝31に到達する形状としたものである。
 実施例15のタイヤは、実施例14にタイヤにおいて、さらに第2傾斜溝33が第1傾斜溝31を突き抜けている形状としたものである。
 実施例16のタイヤは、実施例15のタイヤにおいて、さらに第2ラグ溝35を第1ラグ溝32の間に形成したものである。
 実施例17のタイヤは、実施例16のタイヤにおいて、さらに第3傾斜溝34が第2ラグ溝35に到達する形状としたものである。この場合、第3傾斜溝34は、タイヤ周方向に隣接する第1ラグ溝32に到達することなく閉塞する。
 実施例18のタイヤは、実施例17のタイヤにおいて、さらに第3傾斜溝34が第2ラグ溝35を突き抜けている形状としたものである。この場合、第3傾斜溝34は、タイヤ周方向に隣接する第1ラグ溝32に到達することなく閉塞する。
 実施例19のタイヤは、実施例18のタイヤにおいて、さらに第2ラグ溝35の幅を、第3傾斜溝34との交差部よりもタイヤ幅方向外側の部分と、タイヤ幅方向内側の部分とで変化させたものである。
 実施例20のタイヤは、実施例19のタイヤにおいて、第1傾斜溝31の開始端同士のタイヤ周方向の平均間隔をPとしたときに、左右のトレッドパターンで第1傾斜溝31の開始端の位置を0.3Pずらした(位相差が0.3である)ものである。
 実施例21のタイヤは、実施例20のタイヤにおいて、第1ラグ溝32、第1傾斜溝31、第2傾斜溝33及びトレッド接地端により囲まれる陸部41に設けられるサイプ43を、第1傾斜溝31および第2傾斜溝33よりもタイヤ幅方向内側の陸部42に設けられるサイプ44に対して10°傾斜させたものである。
 実施例22のタイヤは、実施例21のタイヤに、さらに図5に示す第4傾斜溝36を形成したものである。
 実施例23のタイヤは、実施例22のタイヤのスタッド取付用穴45にスタッドピンを取り付けたものである。なお、実施例1~22では、スタッド取付用穴45にスタッドピンを取り付けていない。
 下記表2に示す比較例1は従来のタイヤであり、第1傾斜溝31および第1ラグ溝32と、サイプのみがトレッド部Tに形成されている。第1傾斜溝31の傾斜角度は、75°である。
 比較例2は、比較例1に加えて、第2傾斜溝33をトレッド部に形成した。第2傾斜溝33の傾斜角度は、35°である。
 比較例3は、比較例1に加えて、第3傾斜溝34をトレッド部に形成した。第3傾斜溝34の傾斜角度は、75°である。
 なお、比較例1~3では、スタッド取付用穴45にスタッドピンを取り付けていない。
 比較例4では、図4に示す第3傾斜溝34がタイヤ回転方向Cと反対側の方向に隣接する第1ラグ溝32に到達してこの第1ラグ溝に接続した形態である。比較例1~3はいずれも、隣接する第1ラグ溝32に到達していない。
 下記表3に示す実施例24~26は、図4に示すトレッドパターンにおいて、分岐溝60の第1の縁60a及び第2の縁60bの形状を曲線形状(円弧形状)あるいは直線形状に変更させた例である。分岐溝60の分岐位置を、第1ラグ溝のタイヤ周方向の位置から距離Le(図4に示す第1ラグ溝32のタイヤ周方向位置Aと第2ラグ溝35のタイヤ周方向位置Bとの間のタイヤ周方向の距離)の0.5倍、タイヤ周方向に離れた位置に設けた。すなわち、第1ラグ溝32と隣り合う第2ラグ溝36との間の中間の位置に、分岐溝60を設けた。
 実施例27~31は、図4に示すトレッドパターンにおいて、分岐溝60の分岐位置を、第1ラグ溝のタイヤ周方向の位置から距離α×Leとし、αを0.15~0.85まで種々変化させた例である。分岐溝60の第1の縁60aの形状は曲線形状とし、第2の縁609bの形状は直線形状とした。実施例24~31では、スタッドピンを装着した。
 以上の試作したタイヤのタイヤ性能として、雪上制動、雪上旋回、ウェット制動、ウェット旋回、氷上制動、氷上旋回の性能を下記のようにして評価した。
 雪上制動については、屋外のタイヤ試験場において、雪上路面を走行し、時速40kmからフルブレーキをかけたときの制動距離を5回測定し、平均制動距離を求めた。評価は、測定値の逆数で行い、比較例1のタイヤの測定値の逆数を100とする指数で示した。指数値が大きいほど雪上制動性能が優れていることを意味する。
 雪上旋回については、屋外のタイヤ試験場において、雪上路面を旋回半径30mで5回の円旋回をし、その平均周回時間を求めた。評価は、測定値の逆数で行い、比較例1のタイヤの測定値の逆数を100とする指数で示した。指数値が大きいほど雪上旋回性能が優れていることを意味する。
 氷上制動については、屋外のタイヤ試験場において、氷上路面を走行し、時速40kmからフルブレーキをかけたときの制動距離を5回測定し、平均制動距離を求めた。評価は、測定値の逆数で行い、比較例1のタイヤの測定値の逆数を100とする指数で示した。指数値が大きいほど氷上制動性能が優れていることを意味する。
 氷上旋回については、屋外のタイヤ試験場において、氷上路面を旋回半径30mで5回の円旋回をし、その平均周回時間を求めた。評価は、測定値の逆数で行い、比較例1のタイヤの測定値の逆数を100とする指数で示した。指数値が大きいほど氷上旋回性能が優れていることを意味する。
 ウェット制動については、屋外のタイヤ試験場において、水深1.0mm以上のウェット路面を走行し、時速40kmからフルブレーキをかけたときの制動距離を5回測定し、平均制動距離を求めた。評価は、測定値の逆数で行い、比較例1のタイヤの測定値の逆数を100とする指数で示した。指数値が大きいほど氷上制動性能が優れていることを意味する。
 ウェット旋回については、屋外のタイヤ試験場において、路面が濡れたウェット円旋回回路(スキッドパッド)を旋回半径30mで5回の円旋回をし、その平均周回時間を求めた。評価は、測定値の逆数で行い、比較例1のタイヤの測定値の逆数を100とする指数で示した。指数値が大きいほど氷上旋回性能が優れていることを意味する。
 雪上制動、雪上旋回、ウェット制動、ウェット旋回、氷上制動、氷上旋回のいずれの値も、102以下では比較例1と有意な差はないものと評価し、103以上であるものを比較例1と比較して良好であると評価した。
 評価結果を、表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
〔第2傾斜溝および第3傾斜溝の有無〕
 実施例3および比較例1~3により、第2傾斜溝33および第3傾斜溝34の有無による旋回性能および制動性能の差異について検討した。
 実施例3と比較例1~3を比較すると、第2傾斜溝33および第3傾斜溝34の両方がない場合(比較例1)、第3傾斜溝34がない場合(比較例2)、第2傾斜溝33がない場合(比較例3)よりも、第2傾斜溝33および第3傾斜溝34の両方がある場合(実施例3)のほうが、氷上、雪上、ウェット路面における旋回性能、制動性能がいずれも向上することがわかる。
〔第1傾斜溝の最適角度〕
 実施例1~5は、実施例3を中心として、第1傾斜溝31の傾斜角度を変更している。実施例1~5を検討すると、第1傾斜溝31の傾斜角度が大きいほど横方向に対するエッジ効果が高まり、旋回性能が良好になることがわかる。一方、第1傾斜溝31の傾斜角度が大きいほど縦方向に対するエッジ効果が低下し、制動性能が悪化することがわかる。第1傾斜溝31の傾斜角度が50°~80°の範囲であると、旋回性能と制動性能のバランスが良く、好ましいことがわかる。
〔第2傾斜溝の最適角度〕
 実施例6~9は、実施例3を中心として、第2傾斜溝33の傾斜角度を変更している。実施例3および実施例6~9を検討すると、第2傾斜溝33の傾斜角度が大きいほど横方向に対するエッジ効果が高まり、旋回性能が良好になることがわかる。一方、第2傾斜溝33の傾斜角度が大きいほど縦方向に対するエッジ効果が低下し、制動性能が悪化することがわかる。第2傾斜溝33の傾斜角度が10°~65°の範囲であると、旋回性能と制動性能のバランスが良く、好ましいことがわかる。
〔第3傾斜溝の最適角度〕
 実施例10~13は、実施例3を中心として、第3傾斜溝34の傾斜角度を変更している。実施例3および実施例10~13を検討すると、第3傾斜溝34の傾斜角度が大きいほど横方向に対するエッジ効果が高まり、旋回性能が良好になることがわかる。一方、第3傾斜溝34の傾斜角度が大きいほど縦方向に対するエッジ効果が低下し、制動性能が悪化することがわかる。第3傾斜溝34の傾斜角度が50°~80°の範囲であると、旋回性能と制動性能のバランスが良く、好ましいことがわかる。
〔第2傾斜溝の第1傾斜溝への到達の有無〕
 実施例3と実施例14を比較すると、第2傾斜溝33が第1傾斜溝31へ到達している場合(実施例14)にも、第2傾斜溝33が第1傾斜溝31へ到達していない場合(実施例3)と同等の旋回性能、制動性能であることがわかる。
〔第2傾斜溝による第1傾斜溝の突き抜けの有無〕
 実施例14と実施例15を比較すると、第2傾斜溝33が第1傾斜溝31を突き抜けない場合(実施例14)よりも、第2傾斜溝33が第1傾斜溝31を突き抜ける場合(実施例15)のほうが、氷上制動性能、雪上制動性能、ウェット制動性能が高く、氷上旋回性能、ウェット制動性能もやや高いことがわかる。
〔第2ラグ溝の有無〕
 実施例15と実施例16を比較すると、第2ラグ溝35がない場合(実施例15)よりも、第2ラグ溝35がある場合(実施例16)のほうが、氷上制動性能、雪上制動性能が高く、ウェット制動性能、氷上旋回性能、雪上旋回性能、ウェット旋回性能もやや高いことがわかる。
〔第3傾斜溝の第2ラグ溝への到達の有無〕
 実施例16と実施例17を比較すると、第3傾斜溝が第2ラグ溝35へ到達していない場合(実施例16)よりも、第3傾斜溝が第2ラグ溝35へ到達している場合(実施例17)のほうが、氷上旋回性能が高く、雪上旋回性能、ウェット制動性能も高いことがわかる。
〔第3傾斜溝による第2ラグ溝の突き抜けの有無〕
 実施例17と実施例18を比較すると、第3傾斜溝が第2ラグ溝35を突き抜けていない場合(実施例17)よりも、第3傾斜溝が第2ラグ溝35を突き抜けている場合(実施例18)のほうが、氷上制動性能、雪上制動性能、氷上旋回性能、雪上旋回性能がやや高いことがわかる。
〔第2ラグ溝の幅の変化の有無〕
 実施例18と実施例19を比較すると、第2ラグ溝35の幅に変化がない場合(実施例18)よりも、第2ラグ溝35が第3ラグ溝との交差部よりもタイヤ幅方向Lの内側部分と外側部分とで変化する場合(実施例19)のほうが、氷上制動性能、雪上制動性能がやや高いことがわかる。一方、氷上旋回性能は第2ラグ溝35の幅に変化がない場合(実施例18)のほうがやや高いことがわかる。
〔左右の位相差(ピッチ)〕
 実施例19と実施例20を比較すると、左右のトレッドパターンの位相に差がない場合(実施例19)と比較して、位相差が0.3の場合(実施例20)のほうが、氷上旋回性能、雪上旋回性能、ウェット旋回性能がやや高いことがわかる。
〔サイプ傾斜角度〕
 実施例20と実施例21を比較すると、サイプ43、44の全ての方向をほぼタイヤ幅方向Lと一致させた場合(実施例20)よりも、サイプ43を、サイプ44に対して10°傾斜させた場合(実施例21)のほうが、氷上旋回性能、雪上旋回性能、ウェット旋回性能がやや高いことがわかる。
〔第4傾斜溝(分岐溝)の有無〕
 実施例21と実施例22を比較すると、第4傾斜溝36がない場合(実施例21)と比較して、第4傾斜溝36がある場合(実施例22)のほうが、特にウェット制動性能が高いことがわかる。また、氷上制動性能、雪上旋回性能、ウェット旋回性能が高く、雪上制動性能、氷上旋回性能がやや高いことがわかる。
〔スタッドピンの装着の有無〕
 実施例22と実施例23を比較すると、スタッドピンを装着していない場合(実施例22)と比較して、スタッドピンを装着した場合(実施例23)のほうが、氷上制動性能、氷上旋回性能、雪上制動性能、雪上旋回性能、ウェット制動性能、ウェット旋回性能のいずれもが高くなることがわかる。
〔隣接する第1ラグ溝への第3傾斜溝の到達の有無〕
 実施例21と比較例4を比較すると、第3傾斜溝が他の第1ラグ溝へ到達する場合(比較例4)と比較して、第3傾斜溝が他の第1ラグ溝へ到達しない場合のほうが、氷上制動性能、氷上旋回性能、雪上制動性能、雪上旋回性能、ウェット制動性能、ウェット旋回性能のいずれも向上することがわかる。
〔分岐溝60の第1の縁及び第2の縁の形状〕
 実施例24~26を比較すると、第1の縁及び第2の縁のいずれか一方は、曲線形状であることが、氷上制動性能、氷上旋回性能、雪上制動性能、雪上旋回性能、ウェット制動性能、ウェット旋回性能のいずれも向上することがわかる。
〔分岐溝60の分岐位置の第1ラグ溝32の位置からのタイヤ周方向における距離〕
 実施例27~31を比較すると、分岐溝60の分岐位置は、第1ラグ溝32の位置から距離Leの0.2~0.8倍の距離に位置することが、氷上制動性能、氷上旋回性能、ウェット制動性能、ウェット旋回性能が向上する点で好ましいことがわかる。
 以上、本発明の空気入りタイヤについて詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
Axis 回転軸
C タイヤ周方向
CL センターライン
E1、E2 接地端
R タイヤ径方向
T トレッド部
W 接地幅
10 タイヤ
12 カーカスプライ層
14 ベルト層
14a,14b ベルト材
16 ビードコア
18 トレッドゴム部材
18a 第1トレッドゴム部材
18b 第2トレッドゴム部材
20 サイドゴム部材
22 ビードフィラーゴム部材
24 リムクッションゴム部材
26 インナーライナゴム部材
30A、30B トレッドパターン
31 第1傾斜溝
32 第1ラグ溝
33 第2傾斜溝
34 第3傾斜溝
35 第2ラグ溝
36 第4傾斜溝
41、42 陸部
43、44 サイプ
45 スタッド取付用穴

Claims (18)

  1.  タイヤのセンターラインを境としてタイヤ幅方向の両側に位置するトレッド部の半トレッド領域のそれぞれにトレッドパターンが形成された空気入りタイヤであって、
     前記半トレッド領域のそれぞれは、
     前記センターラインから離間した位置を開始端とし、タイヤ周方向の第1方向に向かうとともに、タイヤ幅方向外側に傾斜して延びる第1傾斜溝がタイヤ周方向に複数設けられた第1傾斜溝群と、
     前記第1傾斜溝のそれぞれのタイヤ幅方向外側端部から前記タイヤ周方向の前記第1方向に向かうとともに、タイヤ幅方向外側に傾斜して接地端まで延び、前記第1傾斜溝よりもタイヤ幅方向とのなす角が小さい第1ラグ溝がタイヤ周方向に複数設けられた第1ラグ溝群と、
     前記第1傾斜溝のそれぞれのタイヤ幅方向外側端部から前記タイヤ周方向の前記第1方向に向かうとともに、タイヤ幅方向内側に傾斜して延びる第2傾斜溝がタイヤ周方向に複数設けられた第2傾斜溝群と、
     前記第1ラグ溝のそれぞれの途中から前記タイヤ周方向の前記第1方向に向かうとともに、タイヤ幅方向外側に傾斜して延び、前記第1ラグ溝よりもタイヤ幅方向とのなす角が大きい第3傾斜溝がタイヤ周方向に複数設けられた第3傾斜溝群と、
    を備え、
     前記第3傾斜溝は、前記第1ラグ溝に対して前記第1の方向に隣接する他の第1ラグ溝に達することなく閉塞することを特徴とする空気入りタイヤ。
  2.  前記第1傾斜溝の途中から、前記センターラインに向かって延びる分岐溝をさらに備え、前記分岐溝は、前記分岐溝が前記第1傾斜溝から分岐する分岐位置において、前記第1傾斜溝の溝底に対して段差を持って浅くなった溝底を有し、前記分岐溝の溝深さは前記センターラインに向かうにつれて徐々に浅くなっている、請求項1に記載の空気入りタイヤ。
  3.  前記分岐溝は、前記センターラインに到達する前に閉塞する溝であり、前記分岐溝は、前記第1の方向の側に位置する第1の縁と、前記第1の方向と反対方向の側に位置する第2の縁により画され、
     前記第1の縁および前記第2の縁のいずれか一方は曲線状に湾曲して延び、他方は直線状に延びる、請求項2に記載の空気入りタイヤ。
  4.  前記分岐溝は、前記タイヤ周方向の前記第1方向に向かうとともに、タイヤ幅方向内側に傾斜して延びる第4傾斜溝であることを特徴とする請求項2または3に記載の空気入りタイヤ。
  5.  前記分岐溝は、前記タイヤ周方向のうち前記第1方向と反対方向である第2方向に延びる第4傾斜溝、あるいは前記タイヤ幅方向に沿って平行に延びる溝であることを特徴とする請求項2または3に記載の空気入りタイヤ。
  6.  前記第1傾斜溝の途中から、前記センターラインに向かって延びる分岐溝をさらに備え、
     前記複数の第1ラグ溝のうち、タイヤ周方向に隣接する2つの第1ラグ溝の間に、前記第1ラグ溝と平行に延びる第2ラグ溝が設けられ、タイヤ周方向に隣り合う第1ラグ溝と第2ラグ溝間のタイヤ周方向の距離をLeとしたとき、
     前記分岐溝が前記第1傾斜溝から分岐するタイヤ周方向における分岐位置は、前記第1ラグ溝の接地端におけるタイヤ周方向位置Aから距離Leの0.2倍以上0.8倍以下、前記第2ラグ溝の接地端におけるタイヤ周方向位置Bに向かって進んだ領域内に位置する、請求項2~5のいずれか一項に記載の空気入りタイヤ。
  7.  前記複数の第1ラグ溝のうち、タイヤ周方向に隣接する2つの第1ラグ溝の間に、前記第1ラグ溝と平行に延びる第2ラグ溝が設けられた、請求項1~5のいずれか一項に記載の空気入りタイヤ。
  8.  前記第2傾斜溝は、少なくともタイヤ周方向に隣接する他の第1傾斜溝まで延びる、請求項1~7のいずれか一項に記載の空気入りタイヤ。
  9.  前記第2傾斜溝は、タイヤ周方向に隣接する他の第1傾斜溝を突き抜けて延びる、請求項1~7のいずれか一項に記載の空気入りタイヤ。
  10.  前記複数の第1ラグ溝のうち、タイヤ周方向に隣接する2つの第1ラグ溝の間に、前記第1ラグ溝と平行に延びる第2ラグ溝が設けられ、
     前記第3傾斜溝は、少なくとも前記第2ラグ溝まで延びる、請求項1に記載の空気入りタイヤ。
  11.  前記複数の第1ラグ溝のうち、タイヤ周方向に隣接する2つの第1ラグ溝の間に、前記第1ラグ溝と平行に延びる第2ラグ溝が設けられ、
     前記第3傾斜溝は、前記第2ラグ溝を横切って延びる、請求項1に記載の空気入りタイヤ。
  12.  前記第2ラグ溝の前記第3傾斜溝との交差部よりもタイヤ幅方向内側の部分の溝幅は、前記第3傾斜溝との交差部よりもタイヤ幅方向外側の部分の溝幅よりも狭い、請求項11に記載の空気入りタイヤ。
  13.  前記第1傾斜溝の両端を結ぶ直線とタイヤ幅方向のなす角は50°~80°である、請求項1~12のいずれか一項に記載の空気入りタイヤ。
  14.  前記第2傾斜溝の両端を結ぶ直線とタイヤ幅方向のなす角は10°~65°である、請求項1~13のいずれか一項に記載の空気入りタイヤ。
  15.  前記第3傾斜溝の両端を結ぶ直線とタイヤ幅方向のなす角は50°~80°である、請求項1~14のいずれか一項に記載の空気入りタイヤ。
  16.  前記センターラインの一方側の第1傾斜溝群の第1傾斜溝の開始端は、他方側の第1傾斜溝群の第1傾斜溝の開始端に対して、隣接する前記第1傾斜溝のタイヤ周方向の平均間隔の1/10~4/10ずれている、請求項1~15のいずれか一項に記載の空気入りタイヤ。
  17.  前記トレッド部の陸部には複数のサイプが設けられ、
     前記第1ラグ溝、前記第1傾斜溝、前記第2傾斜溝及びトレッド接地端により囲まれる陸部に設けられるサイプは、前記第1傾斜溝及び前記第2傾斜溝よりもタイヤ幅方向内側の陸部に設けられるサイプに対して傾斜している、請求項1~16のいずれか一項に記載の空気入りタイヤ。
  18.  前記第1ラグ溝、前記第1傾斜溝、前記第2傾斜溝及びトレッド接地端により囲まれる陸部にはスタッド取付用穴が設けられている、請求項1~17のいずれか一項に記載の空気入りタイヤ。
     
PCT/JP2013/069980 2012-12-11 2013-07-24 空気入りタイヤ WO2014091789A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2014139442/11A RU2561661C1 (ru) 2012-12-11 2013-07-24 Пневматическая шина
EP13862847.4A EP2853416B9 (en) 2012-12-11 2013-07-24 Pneumatic tire
JP2014506665A JP5578296B1 (ja) 2012-12-11 2013-07-24 空気入りタイヤ
CN201380028025.6A CN104334372B (zh) 2012-12-11 2013-07-24 充气轮胎
US14/410,007 US9174494B2 (en) 2012-12-11 2013-07-24 Pneumatic tire with tread having first lug grooves and first, second and third inclined grooves
FIU20164162U FI11357U1 (fi) 2012-12-11 2016-07-29 Ilmarengas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-270398 2012-12-11
JP2012270398 2012-12-11
JP2013-020037 2013-02-05
JP2013020037 2013-02-05

Publications (1)

Publication Number Publication Date
WO2014091789A1 true WO2014091789A1 (ja) 2014-06-19

Family

ID=50934092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069980 WO2014091789A1 (ja) 2012-12-11 2013-07-24 空気入りタイヤ

Country Status (7)

Country Link
US (1) US9174494B2 (ja)
EP (1) EP2853416B9 (ja)
JP (1) JP5578296B1 (ja)
CN (1) CN104334372B (ja)
FI (1) FI11357U1 (ja)
RU (1) RU2561661C1 (ja)
WO (1) WO2014091789A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106042781A (zh) * 2015-04-03 2016-10-26 住友橡胶工业株式会社 轮胎
JP2016215961A (ja) * 2015-05-26 2016-12-22 住友ゴム工業株式会社 冬用タイヤ

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA159352S (en) * 2014-05-15 2015-09-24 Hankook Tire Co Ltd Tire
CA159328S (en) * 2014-05-15 2015-09-21 Hankook Tire Co Ltd Tire
JP2016068721A (ja) * 2014-09-29 2016-05-09 横浜ゴム株式会社 空気入りタイヤ
WO2017022683A1 (ja) * 2015-07-31 2017-02-09 株式会社ブリヂストン タイヤ
JP6790442B2 (ja) * 2016-04-28 2020-11-25 横浜ゴム株式会社 スタッドピン、及び空気入りタイヤ
JP6834190B2 (ja) * 2016-06-27 2021-02-24 住友ゴム工業株式会社 タイヤ
JP1579047S (ja) * 2016-11-17 2017-06-12
JP6844244B2 (ja) * 2016-12-20 2021-03-17 横浜ゴム株式会社 空気入りタイヤ
JP6985895B2 (ja) * 2017-11-08 2021-12-22 Toyo Tire株式会社 空気入りタイヤ
CN107813662B (zh) * 2017-11-17 2023-11-03 南港(张家港保税区)橡胶工业有限公司 一种雪地胎的花纹
EP3326841B1 (en) * 2017-11-27 2020-01-08 Nokian Renkaat Oyj A groove arrangement of a tread for a tire or a tread band
JP7081229B2 (ja) * 2018-03-13 2022-06-07 住友ゴム工業株式会社 タイヤ
JP7087603B2 (ja) * 2018-04-06 2022-06-21 住友ゴム工業株式会社 タイヤ
CN109501527B (zh) * 2018-10-26 2021-01-01 安徽佳通乘用子午线轮胎有限公司 一种胎面花纹结构的雪地胎
USD964916S1 (en) * 2020-09-16 2022-09-27 The Goodyear Tire & Rubber Company Tire
CN114734759A (zh) * 2022-04-25 2022-07-12 建大橡胶(中国)有限公司 一种高安全性电动车轮胎胎面花纹结构
CN115465021B (zh) * 2022-09-26 2023-07-04 中策橡胶集团股份有限公司 一种提高抓地力的镶钉雪地胎

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08142613A (ja) 1994-11-22 1996-06-04 Bridgestone Corp 空気入りラジアルタイヤ
JPH09188109A (ja) * 1996-01-11 1997-07-22 Bridgestone Corp 重荷重用空気入りタイヤ
JPH10264612A (ja) 1997-03-24 1998-10-06 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP4381787B2 (ja) 2003-11-28 2009-12-09 株式会社ブリヂストン 空気入りタイヤ
JP2009298387A (ja) * 2008-06-17 2009-12-24 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
US20100126645A1 (en) * 2007-04-13 2010-05-27 Samuel Santana Barboza Motorcycle tires and method to improve performance and wear resistance of motorcycle tires
JP2010167931A (ja) * 2009-01-23 2010-08-05 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2011502851A (ja) * 2007-11-06 2011-01-27 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ 二輪車用タイヤ
EP2463123A1 (de) * 2010-12-07 2012-06-13 Continental Reifen Deutschland GmbH Fahrzeugluftreifen
WO2013011681A1 (ja) * 2011-07-15 2013-01-24 株式会社ブリヂストン 空気入りタイヤ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199109A (ja) * 1992-12-28 1994-07-19 Bridgestone Corp 空気入りタイヤ
DE60012220T2 (de) * 1999-11-30 2005-08-04 Pirelli Pneumatici Società per Azioni Multifonctioneller luftreifen für kraftfahrzeug
KR100343968B1 (ko) * 2000-06-22 2002-07-24 한국타이어 주식회사 대칭형 트래드패턴을 갖춘 타이어
WO2010008027A1 (ja) * 2008-07-16 2010-01-21 株式会社ブリヂストン 空気入りタイヤ
USD603326S1 (en) * 2008-11-20 2009-11-03 Nexen Tire Corporation Tire for automobile
JP2010167930A (ja) * 2009-01-23 2010-08-05 Yokohama Rubber Co Ltd:The 空気入りタイヤ
DE102010060945A1 (de) * 2010-12-01 2012-06-06 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08142613A (ja) 1994-11-22 1996-06-04 Bridgestone Corp 空気入りラジアルタイヤ
JPH09188109A (ja) * 1996-01-11 1997-07-22 Bridgestone Corp 重荷重用空気入りタイヤ
JPH10264612A (ja) 1997-03-24 1998-10-06 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP4381787B2 (ja) 2003-11-28 2009-12-09 株式会社ブリヂストン 空気入りタイヤ
US20100126645A1 (en) * 2007-04-13 2010-05-27 Samuel Santana Barboza Motorcycle tires and method to improve performance and wear resistance of motorcycle tires
JP2011502851A (ja) * 2007-11-06 2011-01-27 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ 二輪車用タイヤ
JP2009298387A (ja) * 2008-06-17 2009-12-24 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JP2010167931A (ja) * 2009-01-23 2010-08-05 Yokohama Rubber Co Ltd:The 空気入りタイヤ
EP2463123A1 (de) * 2010-12-07 2012-06-13 Continental Reifen Deutschland GmbH Fahrzeugluftreifen
WO2013011681A1 (ja) * 2011-07-15 2013-01-24 株式会社ブリヂストン 空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2853416A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106042781A (zh) * 2015-04-03 2016-10-26 住友橡胶工业株式会社 轮胎
JP2016215961A (ja) * 2015-05-26 2016-12-22 住友ゴム工業株式会社 冬用タイヤ

Also Published As

Publication number Publication date
CN104334372B (zh) 2016-03-23
US9174494B2 (en) 2015-11-03
EP2853416B1 (en) 2017-03-29
EP2853416B9 (en) 2017-09-20
RU2561661C1 (ru) 2015-08-27
EP2853416A4 (en) 2016-01-06
EP2853416A1 (en) 2015-04-01
CN104334372A (zh) 2015-02-04
US20150191050A1 (en) 2015-07-09
JP5578296B1 (ja) 2014-08-27
FI11357U1 (fi) 2016-08-29
JPWO2014091789A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5578296B1 (ja) 空気入りタイヤ
JP5387659B2 (ja) 空気入りタイヤ
JP5948995B2 (ja) 空気入りタイヤ
JP5835112B2 (ja) 空気入りタイヤ
WO2014091790A1 (ja) 空気入りタイヤ
JP2013071633A (ja) 空気入りタイヤ
WO2019131837A1 (ja) 空気入りタイヤ
JP2013189137A (ja) 空気入りタイヤ
WO2018117083A1 (ja) 空気入りタイヤ
JP2014108653A (ja) 空気入りタイヤ
JP6848413B2 (ja) 空気入りタイヤ
JP7339550B2 (ja) 空気入りタイヤ
WO2020196903A1 (ja) 空気入りタイヤ
JP4255229B2 (ja) 空気入りタイヤ
WO2017043227A1 (ja) 空気入りタイヤ
JP2019073230A (ja) 空気入りタイヤ
JP6819774B2 (ja) 空気入りタイヤ
JP6492605B2 (ja) 空気入りタイヤ
WO2020013152A1 (ja) 空気入りタイヤ
JP7434795B2 (ja) タイヤ
JP7155687B2 (ja) 空気入りタイヤ
JP6565996B2 (ja) 空気入りタイヤ
JP7293840B2 (ja) 空気入りタイヤ
JP2019163019A (ja) 空気入りタイヤ
JP2018034616A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380028025.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014506665

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862847

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014139442

Country of ref document: RU

REEP Request for entry into the european phase

Ref document number: 2013862847

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013862847

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14410007

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE