WO2014079142A1 - 一种复合氧化物、其制造方法及其应用 - Google Patents

一种复合氧化物、其制造方法及其应用 Download PDF

Info

Publication number
WO2014079142A1
WO2014079142A1 PCT/CN2013/001217 CN2013001217W WO2014079142A1 WO 2014079142 A1 WO2014079142 A1 WO 2014079142A1 CN 2013001217 W CN2013001217 W CN 2013001217W WO 2014079142 A1 WO2014079142 A1 WO 2014079142A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
source
hours
water
reaction
Prior art date
Application number
PCT/CN2013/001217
Other languages
English (en)
French (fr)
Other versions
WO2014079142A8 (zh
Inventor
张舒冬
金英杰
倪向前
李�杰
张喜文
张信伟
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司抚顺石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司抚顺石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to KR1020157014527A priority Critical patent/KR101880623B1/ko
Priority to US14/440,096 priority patent/US9314776B2/en
Priority to EP13857060.1A priority patent/EP2915582B1/en
Priority to PL13857060T priority patent/PL2915582T3/pl
Publication of WO2014079142A1 publication Critical patent/WO2014079142A1/zh
Publication of WO2014079142A8 publication Critical patent/WO2014079142A8/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • C07C29/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to a composite oxide, particularly a lanthanum vanadium molybdenum composite oxide, and to a process for producing the composite oxide and its use as a catalyst for selective oxidation of methane. Background technique
  • the inventors of the present invention have found through diligent research that if a specific complex oxide is used as a catalyst, ethanol and acetaldehyde can be co-produced by selective oxidation reaction of decane, and thus the present invention has been completed.
  • the invention relates primarily to the following aspects.
  • Ni:Co 0.01 to 20:1, preferably 0.1 to 10:1, more preferably 1 to 3:1 in terms of a molar ratio.
  • the composite oxide according to any of the preceding aspects, wherein the weight ratio of the composite oxide to the carrier is from 0.01 to 1:1, preferably from 0.1 to 0.5:1, more preferably from 0.1 to 0.3:1.
  • the carrier is selected from one or more of the inorganic refractory oxides, preferably selected from the group consisting of SiO 2 , A 1 2 0 3 , MgO-SiO 2 , MgO-Al 2 O 3 , Al 2 0 3 -SiO 2 ,
  • One or more of CaO-SiO 2 and CaO-MgO-SiO 2 are more preferably one or more selected from the group consisting of SiO 2 , A 1 2 3 3 , MgO-SiO 2 , and MgO-Al 2 0 3 .
  • the composite oxide according to any of the preceding aspects which exhibits a crystalline state, preferably in its powder X-ray diffraction pattern, at least at a diffraction angle of 2 ⁇ 28.5 ⁇ 0.5. There is a diffraction peak, and more preferably at least a diffraction angle of 2 ⁇ 18.5 ⁇ 0.5. 28.5 ⁇ 0.5. , 31.5 ⁇ 0.5. And 34.5 ⁇ 0.5. There are diffraction peaks.
  • a method for producing a composite oxide comprising the steps of: optionally providing a Rh source, a Mo source, a V source, and optionally a Ni source and/or optionally using in the presence of a carrier; Co source contact (preferably mixing), a reaction occurs to obtain a composite oxide, wherein a relative amount ratio of the Rh source, the Mo source, the V source, the Ni source, and the Co source is such that the obtained composite
  • is a positive number, representing the oxygen reaching price in the composite oxide
  • the composite oxide is partially reduced such that ⁇ reaches greater than 0 to ⁇ /2, preferably greater than 0 to ⁇ /4.
  • Rh source is one or more selected from the group consisting of oxides, hydroxides, inorganic acid salts and organic acid salts of Rh, preferably a water-soluble inorganic acid selected from Rh.
  • the Ni source being selected from the group consisting of oxides and hydroxides of Ni, One or more of a mineral acid salt and an organic acid salt, preferably one or more selected from the group consisting of a water-soluble inorganic acid salt of Ni and a water-soluble organic acid salt, more preferably a nitrate and acetic acid selected from the group consisting of Ni
  • the Co source being selected from one or more of the oxides, hydroxides, inorganic acid salts and organic acid salts of Co, preferably selected from the group consisting of water-soluble inorganic acid salts of Co and One or more of the water-soluble organic acid salts, more preferably one selected from the group consisting of nitrates and acetates of Co Or a plurality of, the Mo source is selected from one or more of the oxides, hydroxides
  • Rh source, the Mo source, the V source, the Ni source, and the Co source are provided in the form of an aqueous solution by causing a coprecipitation reaction of the aqueous solution.
  • An aqueous slurry is obtained, and then the aqueous slurry is dehydrated, dried and calcined to obtain the composite oxide.
  • reaction conditions are: pH 3 - 10, preferably 5-9, under stirring, reaction temperature 60-90 ° C, preferably 70-80 ° C, reaction time 1-12 hours, preferably 3-10 hours;
  • drying conditions are: drying temperature 60-150 ° C, preferably 100-120 ° C, drying time 4-48 hours, preferably 6-36 hours, more preferably 8 - 24 hours;
  • the calcination conditions are: calcination temperature 400-900 ° C, preferably 500-700 ° C, more preferably 580-680 ° C, calcination time 3-10 hours, preferably 4-8 hours.
  • aqueous solution of the Mo source further contains ammonia at a concentration of 1-3 mol/L
  • the aqueous solution of the V source further contains a concentration of 0.1 - 0.5 mol/L.
  • a method for co-producing ethanol and acetaldehyde by a selective oxidation reaction of methane characterized in that the composite oxide of any of the foregoing aspects or the composite oxide produced by the production method of any of the foregoing aspects is used as a catalyst
  • the decane is selectively oxidized to co-produce ethanol and acetaldehyde.
  • the present invention has the following advantages over the prior art.
  • a catalyst suitable for co-production of ethanol and acetaldehyde by a selective oxidation reaction of methane is obtained for the first time.
  • a molybdenum vanadium center having a methane selective oxidation function is bonded to a ruthenium center having a sterol carbonylation function in a crystalline form, and the crystalline active phase provides d electron holes on the one hand, and Providing lattice oxygen on the one hand, which has better decane activation and selective oxidation properties, thus achieving higher decane conversion (eg, up to 17% or more) and ethanol and acetaldehyde selectivity (ie total Selectivity, such as up to 78% or more).
  • selective oxidation of methane can be achieved at a lower reaction pressure (e.g., below IMPa).
  • the composite oxide according to the present invention is simple in its production method and is advantageous for industrial production.
  • 1 to 8 are powder X-ray diffraction patterns of the composite oxides prepared in Examples 1, 5, 9, 11, 12, 19, 25 and 28, respectively.
  • the phrase "the value at which the oxygen in the composite oxide reaches the equilibrium of the valence state" means that Rh is +3 valence, Mo is +6 valence, V is +5 valence, and Ni in the composite oxide.
  • Rh is +3 valence
  • Mo is +6 valence
  • V is +5 valence
  • Ni in the composite oxide.
  • Co is +2
  • 0 is -2
  • a 0, a value required for the electrically neutral composite oxide is formed.
  • x 0 to 3.0, preferably 0.01 to 3.0, more preferably 0.5 to 2.5, still more preferably 1.0 to 2.0.
  • y 0.1 - 0.9, preferably 0.2 - 0.7, more preferably 0.4 - 0.6.
  • z 0.1 - 0.9, preferably 0.2 - 0.9, more preferably 0.5 - 0.8.
  • a 0 to ⁇ / 2, preferably 0 to ⁇ / 4, more preferably 0.
  • Ni:Co 0.01 -20:1, preferably 0.1 - 10:1 , more preferably 1 -3:1, in terms of molar ratio.
  • the composite oxide may be a supported composite oxide (also referred to as a composite oxide in the present specification for convenience of description), that is, a composite oxide is supported on a carrier.
  • a supported composite oxide also referred to as a composite oxide in the present specification for convenience of description
  • an inorganic refractory oxide is preferred as the carrier.
  • the inorganic Refractory oxide such as may include Si0 2, A1 2 0 3, MgO-Si0 2, MgO-Al 2 0 3, Al 2 0 3 -Si0 2, CaO-Si0 2 and CaO-MgO-Si0 2 and the like, Among them, SiO 2 , A 1 2 0 3 , Mg ⁇ -SiO 2 , MgO-Al 2 ⁇ 3 or a combination thereof is preferable.
  • the ratio of the composite oxide to the carrier is not particularly limited, and is usually 0.01 - 1 : 1 , preferably 0.1 - 0.5 : 1, more preferably 0.1 - 0.3 : 1 by weight.
  • the composite oxide preferably exhibits a crystalline state. This crystalline state can be confirmed by powder X-ray diffraction measurement of the composite oxide (or supported composite oxide) and identification of a clear diffraction peak from the obtained powder X-ray diffraction pattern.
  • the composite oxide when it is in a crystalline state, it is preferably at least 25.6 ⁇ 0.5 in the powder X-ray diffraction pattern at a diffraction angle of 2 ⁇ .
  • a strongest diffraction peak also called a main diffraction peak
  • main diffraction peak at a position (for example, near 28.8)
  • soil 0.5 There are clear diffraction peaks.
  • the diffraction angle 2 ⁇ is at least 18.80. 28.80. 31.47. And 34.60.
  • diffraction peaks corresponding to the [101], [103], [004], and [200] crystal planes There are clear diffraction peaks corresponding to the [101], [103], [004], and [200] crystal planes, and the interplanar spacing and relative diffraction intensity have the following characteristics.
  • the composite oxide can be produced by the following production method.
  • the manufacturing method comprises the steps of contacting a Rh source, a Mo source, a V source, and optionally a Ni source and/or an optionally used Co source (sequentially or simultaneously) to react to obtain a composite oxide. .
  • the relative amount ratio of the Rh source, the Mo source, the V source, the Ni source (optional), and the Co source (optional) is such that the composition of the obtained composite oxide is used
  • 0 - 3.0, preferably 0.01 - 3.0, more preferably 0.5 - 2.5, further preferably 1.0 - 2.0.
  • y 0.1 - 0.9, preferably 0.2 - 0.7, more preferably 0.4 - 0.6.
  • z 0.1 - 0.9, preferably 0.2 - 0.9, more preferably 0.5 - 0.8.
  • 0 to ⁇ /2, preferably 0 to ⁇ /4, more preferably 0.
  • Ni:Co 0.01 -20:1, preferably 0.1-10:1, more preferably 1-3:1, in terms of molar ratio.
  • the manner of the contact is not limited as long as the Rh source, the Mo source, the V source, and optionally the Ni source and/or the Co source optionally used can be made.
  • the composite oxide A may be formed by reacting with each other to form a chemical reaction, and for example, a method of mixing these sources (sequentially or simultaneously) in a solution or in a molten form may be mentioned.
  • the contacting can be carried out in the presence of a support, whereby a supported composite oxide A (also referred to as composite oxide A) is obtained.
  • a supported composite oxide A also referred to as composite oxide A
  • an inorganic refractory oxide or a precursor thereof is preferred as the carrier.
  • the inorganic refractory oxide include SiO 2 , A1 2 0 3 , MgO-SiO 2 , MgO-Al 2 O 3 , Al 2 0 3 -SiO 2 , CaO-SiO 2 and CaO-MgO-.
  • Si0 2 or the like among which, Si0 2 , A1 2 0 3 , MgO-SiO 2 , MgO-Al 2 O 3 or a combination thereof is preferable.
  • the precursor of the inorganic refractory oxide has a general meaning in the art, and means that it can be converted into inorganic refractory oxidation during the process of the composite oxide production method of the present invention (for example, by a calcination step as described below).
  • any material of the material for example, aluminum nitrate, aluminum chloride, aluminum silicate, aluminum isopropoxide, sodium silicate, ethyl orthosilicate, silica sol, magnesium nitrate, magnesium chloride, calcium nitrate, calcium chloride Etc., preferably, aluminum nitrate, aluminum chloride, aluminum acid, sodium silicate, ethyl orthosilicate, nitric acid, calcium nitrate, more preferably aluminum nitrate, aluminum sulphate, sodium silicate, magnesium nitrate.
  • the amount of the carrier used at this time is not particularly limited, but it is preferred that the carrier be used in an amount such that the weight ratio of the composite oxide A to the carrier (in terms of inorganic refractory oxide) is 0.01. -1 : 1 , preferably 0.1 - 0.5: 1 , more preferably 0.1 - 0.3: 1.
  • examples of the Rh source include oxides, hydroxides, inorganic acid salts and organic acid salts of Rh (including hydrates of these compounds), among which water-soluble inorganic acid salts of Rh and water-soluble are preferred.
  • the organic acid salt is more preferably a nitrate and an acetate selected from the group consisting of Rh, such as Rh(N0 3 ) 3 or a hydrate thereof.
  • examples of the Ni source include oxides, hydroxides, inorganic acid salts, and organic acid salts of Ni (including hydrates of these compounds), among which water-soluble inorganic acid salts of Ni and water-soluble are preferable.
  • Organic acid salt more preferably nitrate and acetate of Ni, For example, Ni(N0 3 ) 2 or a hydrate thereof.
  • examples of the Co source include oxides, hydroxides, inorganic acid salts, and organic acid salts of Co (including hydrates of these compounds), among which water-soluble inorganic acid salts of Co and water-soluble are preferable.
  • the organic acid salt is more preferably a nitrate or acetate of Co, such as Co(N0 3 ) 2 or a hydrate thereof.
  • examples of the Mo source include oxides of Mo, hydroxides, inorganic acid salts, organic acid salts, and ammonium oxyacid salts (including hydrates of these compounds), of which water solubility of Mo is preferred.
  • the inorganic mineral acid salt, the water-soluble organic acid salt and the ammonium oxyacid salt are more preferably an ammonium oxyacid salt of Mo, such as (NH 4 ) 6 Mo 7 0 24 or a hydrate thereof.
  • examples of the V source include oxides of V, hydroxides, inorganic acid salts, organic acid salts, and ammonium oxyacid salts (including hydrates of these compounds), of which water solubility of V is preferred.
  • the inorganic mineral acid salt, the water-soluble organic acid salt and the ammonium oxyacid salt are more preferably an ammonium oxyacid salt of V such as NH 4 V0 3 or a hydrate thereof.
  • the Rh source, the Mo source, the V source, the Ni source (optional) and the Co source (optional) are provided in the form of an aqueous solution, optionally
  • These composite oxides A are obtained by mixing these aqueous solutions (sequentially or simultaneously) in the presence of the carrier to cause a reaction.
  • the aqueous solution of the Mo source when supplied in the form of an aqueous solution, further contains 1-3 mol/L of ammonia.
  • the aqueous solution of the V source when provided in the form of an aqueous solution, further contains 0.1 to 0.5 mol/L of a C 2-6 polycarboxylic acid (preferably a C 2-6 dicarboxylic acid, Preferably oxalic acid).
  • a C 2-6 polycarboxylic acid preferably a C 2-6 dicarboxylic acid, Preferably oxalic acid.
  • the reaction of the Rh source, the Mo source, the V source, the Ni source (optional) and the Co source (optional) is preferably carried out in the presence of agitation.
  • the Rh source, the Mo source, the V source, the Ni source (optional), and the Co source (optional), when the reaction is carried out are generally:
  • the pH of the system is from 3 to 10, preferably from 5 to 9
  • the reaction temperature is from 60 to 90 ° C, preferably from 70 to 8 CTC
  • the reaction time is from 1 to 12 hours, preferably from 3 to 10 hours.
  • the composite oxide A of the present invention can also be formed into a suitable particle form such as a strip shape, a sheet shape, a column shape or the like according to a technique known in the art as needed.
  • the ratio of more than 0 to ⁇ /4 is selected, and the composite oxide at this time is also referred to as a composite oxide ruthenium.
  • a part of the metal element in the composite oxide crucible may be present in a reduced valence state (such as ⁇ ⁇ , V 3+ or V Q , etc.).
  • the present invention is also not specific to the type of metal element in which the partial reduction occurs.
  • a composite oxide B represented by the formula RhR x Mo y V z O a can be obtained, wherein a is greater than 0 to ⁇ /2, preferably greater than 0 to ⁇ /4, and other symbols are the same Pre-description.
  • the partial reduction method for example, a method in which the composite oxide ruthenium is brought into contact with a reducing agent (e.g., hydrogen) under appropriate reaction conditions to cause a reduction reaction.
  • a reducing agent e.g., hydrogen
  • the reaction conditions for example, a reaction temperature of 60 to 600 ° C, a reaction pressure of 15 to 1500 psia, and a portion sufficient to reduce the composite oxide A to ⁇ greater than 0 to ⁇ / 2 (preferably greater than 0 to ⁇ / 4) may be mentioned.
  • Reaction time (such as 0.5-12 hours, but sometimes not limited to this).
  • the composition of the composite oxide (including the composite oxide ruthenium and the composite oxide B) can be identified by atomic emission spectrometry (ICP) or X-ray fluorescence spectroscopy (XRF).
  • ICP atomic emission spectrometry
  • XRF X-ray fluorescence spectroscopy
  • the Rh source, the Mo source, the V source, and optionally the Ni source and/or the Co source optionally used are generated by the contacting The coprecipitation reaction (neutralization reaction), thereby obtaining a crystalline composite oxide A (referred to as in situ crystallization).
  • the Rh source, the Mo source, the V source, the Ni source (optional), and the Co source (optional) are provided in the form of an aqueous solution.
  • These aqueous solutions are optionally mixed (sequentially or simultaneously) in the presence of the support to cause a coprecipitation reaction to obtain an aqueous slurry.
  • the aqueous solution of the Mo source when supplied in the form of an aqueous solution, further contains ammonia at a concentration of 1-3 mol/L.
  • the aqueous solution of the V source when provided in the form of an aqueous solution, further contains a C 2-6 polycarboxylic acid (preferably a C 2-6 dicarboxylic acid) having a concentration of 0.1 to 0.5 mol/L. Acid, more preferably oxalic acid).
  • a C 2-6 polycarboxylic acid preferably a C 2-6 dicarboxylic acid having a concentration of 0.1 to 0.5 mol/L. Acid, more preferably oxalic acid).
  • the Rh source, the Mo source, the V source, the Ni source (optional), and the Co source (optional) are respectively dissolved in water to prepare respective aqueous solutions.
  • These aqueous solutions and optionally used carriers are added to the reaction system (such as a reaction vessel) in a predetermined amount, sequentially or simultaneously (preferably first added to the carrier, and/or finally added to the aqueous solution of the Mo source), and the mixture is adjusted.
  • the pH of the reaction system is 3-10 (preferably 5-9, such as using nitric acid or aqueous ammonia solution), and the coprecipitation is carried out for 1-12 hours (preferably 3) at a reaction temperature of 60-9 CTC (preferably 70-80 ° C). -10 hours), thereby obtaining the aqueous slurry.
  • the composite oxide A can be obtained by dehydrating, optionally forming, drying, and calcining the aqueous slurry.
  • the dehydration can be carried out in a manner known in the art, and examples thereof include an evaporation water removal method or a filtration water removal method.
  • the molding can be carried out in a manner known in the art (e.g., extrusion, granulation) to facilitate obtaining a composite oxide A having a suitable particle form (e.g., strip shape, sheet shape, column shape, etc.).
  • a suitable particle form e.g., strip shape, sheet shape, column shape, etc.
  • the drying can be carried out in a manner known in the art, and examples thereof include a spray drying method, a vacuum drying method, a hot oven drying method, and the like.
  • the drying and the molding can be carried out as one step as needed.
  • the drying conditions for example, a drying temperature of 60 to 150 ° C, preferably 100 to 120 ° C, and a drying time of 4 to 48 hours, preferably 6 to 36 hours, more preferably 8 to 24 hours are mentioned.
  • the dried aqueous slurry is completely converted into the crystalline composite oxide A by the calcination, while the precursor of the inorganic refractory oxide (when used) is converted into inorganic refractory Oxide.
  • the conditions for the calcination for example, a calcination temperature of 400 to 900 ° C, preferably 500 to 700 ° C, more preferably 580 to 680 ° C, and a calcination time of 3 to 10 hours, preferably 4 to 8 hours are mentioned.
  • the calcination can be carried out in an oxygen-containing atmosphere (e.g., air) as needed.
  • the present invention relates to a process for co-producing ethanol and acetaldehyde by selective oxidation of methane, comprising the co-production of ethanol and acetaldehyde by selective oxidation of methane using the composite oxide of the present invention as a catalyst. step.
  • the reaction conditions of the methane selective oxidation reaction are: a reaction temperature of 300 to 800 ° C, preferably 400 to 700 ° C, more preferably 500 to 600 ° C; and a reaction pressure of 0.1 to 5.0 MPa (gauge pressure) It is preferably 0.2-2.0 MPa (gauge pressure), more preferably 0.5-1.0 MPa (gauge pressure);
  • the space velocity of methane is 1200-3500 h" 1 , preferably 2000-2800! ⁇ 1 .
  • Example 1 The invention is further illustrated by the following examples, but the invention is not limited to the examples.
  • Example 1 The invention is further illustrated by the following examples, but the invention is not limited to the examples.
  • Rh(N0 3 ) 3 .2H 2 0 was weighed and dissolved in 25 g of deionized water to prepare an aqueous solution of cerium nitrate.
  • 0.9 g of NH 4 VO 3 was dissolved in 25 g of deionized water, and then treated with an equimolar amount of oxalic acid with NH 4 V 0 3 to prepare a dark blue homogenous solution of the vanadium-containing precursor, and uniformly mixed with the solution containing cerium nitrate. , heated to 75 ° C in a water bath.
  • Example 2 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 1 is shown in Fig. 1, indicating that the composite oxide exhibited a crystalline state.
  • Example 2 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 1 is shown in Fig. 1, indicating that the composite oxide exhibited a crystalline state.
  • Rh(N0 3 ) 3 was weighed and dissolved in 25 g of deionized water to prepare an aqueous solution of cerium nitrate.
  • 0.9 g of NH4VO3 was dissolved in 25 g of deionized water, and then treated with an equimolar amount of oxalic acid with NH 4 V0 3 to prepare a dark blue homogenous solution of the vanadium-containing precursor, and uniformly mixed with the solution containing cerium nitrate, water bath Heat to 75 °C.
  • the composite oxide has a composition formula of RhV 9 Mo 0 . 4 O 5 .
  • the conversion of decane was determined to be 8.8%, and the total selectivity of ethanol and acetaldehyde was 65.6%.
  • Rh(N0 3 ) 3 , 2H 2 0 was weighed and dissolved in 25 g of deionized water to prepare an aqueous solution of cerium nitrate.
  • the composite oxide of l.Og is used for selective oxidation of decane.
  • the methane conversion was determined to be 7.3%, and the total selectivity of ethanol and acetaldehyde was 57.9%.
  • the solution is slowly added dropwise to the above mixed solution containing cerium nitrate and a vanadium-containing precursor, and the pH is adjusted to about 9 with nitric acid or ammonia water. After stirring at 75 ° C for 6 hours, the stirring is stopped, and the temperature is kept constant until no.
  • the clear water was dried at 100 ° C for 16 hours and calcined at 600 ° C for 8 hours to obtain a composite oxide.
  • the composite oxide has a composition formula of RhV 7 Mo. . 7 0 5 . 4 .
  • the composite oxide of l.Og is used for selective oxidation of decane.
  • the methane conversion was determined to be 12.9%, and the total selectivity of ethanol and acetaldehyde was 74.8%.
  • Example 6 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 5 is shown in Fig. 2, indicating that the composite oxide exhibited a crystalline state.
  • Example 6 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 5 is shown in Fig. 2, indicating that the composite oxide exhibited a crystalline state.
  • Rh(N0 3 ) 3 was weighed and dissolved in 25 g of deionized water to prepare an aqueous solution of cerium nitrate. Dissolving 1.8 g of NH 4 V0 3 in 25 g of deionized water, and then treating with an equimolar amount of oxalic acid with NH 4 V0 3 to prepare a dark blue homogenous solution of the vanadium-containing precursor, and mixing with the solution containing cerium nitrate Evenly, heat in a water bath to 75 °C.
  • the composite oxide of l.Og is used for the selective oxidation of decane.
  • the conversion of decane was determined to be 12.4%, and the total selectivity of ethanol and acetaldehyde was 76.3%.
  • Rh(N0 3 ) 3 was weighed and dissolved in 25 g of deionized water to prepare an aqueous solution of cerium nitrate.
  • the composition of the composite oxide is RhV0.7Mo0.7O5 4/Al2O3.
  • the selective oxidation of decane was carried out with 1.0 g of the composite oxide.
  • the methane conversion was determined to be 10.6%, and the total selectivity of ethanol and acetaldehyde was 78.8%.
  • Rh(N0 3 ) 3 was weighed and dissolved in 25 g of deionized water to prepare an aqueous solution of cerium nitrate.
  • 1.8 g of NH 4 V0 3 was dissolved in 25 g of deionized water, and then treated with an equimolar amount of oxalic acid with NH 4 V 0 3 to obtain a dark blue homogeneous solution containing a vanadium precursor, and uniformly mixed with a solution containing cerium nitrate.
  • 12.0 g of water-containing boehmite containing 5% by weight of MgO was added, and heated to 75 ° C in a water bath.
  • Rh(N0 3 ) 3 was weighed and dissolved in 25 g of deionized water to prepare an aqueous solution of cerium nitrate.
  • the composition of the composite oxide is RhVo.7Moo.7O54/MgO-S1O2.
  • the methane conversion was determined to be 13.8%, and the total selectivity of ethanol and acetaldehyde was 73.7%.
  • Example 10 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 9 is shown in Fig. 3, indicating that the composite oxide exhibited a crystalline state.
  • Example 10 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 9 is shown in Fig. 3, indicating that the composite oxide exhibited a crystalline state.
  • Rh(N0 3 ) 3 was weighed and dissolved in 25 g of deionized water to prepare an aqueous solution of cerium nitrate.
  • 1.8 g of NH 4 V0 3 was dissolved in 25 g of deionized water, and then treated with an equimolar amount of oxalic acid with NH 4 V 0 3 to prepare a dark blue homogenous solution of the vanadium-containing precursor, and uniformly mixed with the solution containing cerium nitrate. , heated to 75 ° C in a water bath.
  • the composite oxide has a composition formula of RhV. 6 Mo Q . 6 0 5 . 8 .
  • the composite oxide obtained by hydrogen reduction has a reduction pressure of 0.1 MPa, a temperature of 350 ° C, a space velocity of 1000 h" 1 , a reduction time of lh, and a composition formula of the composite oxide after reduction is RhV 7 Moo 7 0 29 .
  • the methane conversion rate was determined to be 7.3%, and the total selectivity of ethanol and acetaldehyde was 61.2%.
  • the composition of the composite oxide is RhCo 5 V 7 Mo 2 0 4 . 4 .
  • Selective oxidation of methane, the feed gas with a composite oxide l.Og molar composition of CH 4: 0 2: H 2 0 2: 1: 4, CH 4 200011-1 space velocity, and the reaction IMPa It was carried out at 550 ° C for 4 hours.
  • the methane conversion was determined to be 12.7%, and the total selectivity of ethanol and acetaldehyde was 53.9%.
  • Example 12 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 11 is shown in Fig. 4, indicating that the composite oxide exhibited a crystalline state.
  • Example 12 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 11 is shown in Fig. 4, indicating that the composite oxide exhibited a crystalline state.
  • the composition of the composite oxide is RhNi 07 V 07 Mo 9 O 6 . 7 .
  • the conversion of decane was determined to be 8.9%, and the selectivity of ethanol and acetaldehyde was 57.6%.
  • Example 13 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 12 is shown in Fig. 5, indicating that the composite oxide exhibited a crystalline state.
  • Example 13 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 12 is shown in Fig. 5, indicating that the composite oxide exhibited a crystalline state.
  • Rh(N0 3 )3'2H 2 0 was dissolved in 35 g of deionized water to prepare a mixed solution containing cobalt nitrate, nickel nitrate and cerium nitrate.
  • 0.6g of NH4VO3 was added to 20g of deionized water, and then treated with oxalic acid equivalent to NH 4 V0 3 to obtain a dark blue homogenized solution containing vanadium precursor, and nitrated with nickel, cobalt and bismuth.
  • the solution was mixed and hooked, and heated to 70 ° C in a water bath.
  • 0.25 g of ( ⁇ 4 ) 6 ⁇ 7 0 24 ⁇ 4 ⁇ 2 0 was dissolved in 20 g of an 8% by weight aqueous solution of ammonia to form an aqueous solution of (NH 4 ) 6 Mo 7 0 2 4 in ammonia.
  • the solution is slowly added dropwise to the above mixed solution containing nickel nitrate, cobalt nitrate, cerium nitrate and vanadium-containing precursor, and the pH is adjusted with nitric acid or ammonia water.
  • the composition of the composite oxide is RhNi 1 C) Coo. 5 V 0 . 8 Mo 2 0 5 . 6 .
  • the composite oxide of l.Og is used for selective oxidation of decane.
  • the conversion of decane was determined to be 9.1%, and the selectivity of ethanol and acetaldehyde was 65.0%.
  • Rh(N0 3 ) 3 *2H 2 dissolved in 35 g of deionized water, to prepare a mixed solution containing cobalt nitrate, nickel nitrate and cerium nitrate.
  • 1.8g of NH4VO3 was added to 20g of deionized water, and then treated with oxalic acid equivalent to NH 4 V0 3 to obtain a dark blue homogenous solution containing vanadium precursor, and nitrated with nickel, cobalt and bismuth. The solution was mixed and heated to 75 ° C in a water bath.
  • Og ( ⁇ 4 ) 6 ⁇ 7 ⁇ 24 ⁇ 4 ⁇ 2 0 was dissolved in 40 g of an 8% by weight aqueous ammonia solution to form an aqueous solution of (NH 4 ) 6 Mo 7 0 24 ammonia.
  • the solution was slowly added dropwise to the above mixed solution containing nickel nitrate, cobalt nitrate, cerium nitrate and vanadium-containing precursor, and the pH was adjusted to 8 with nitric acid or ammonia water, and stirred at 75 ° C for 6 hours, and the stirring was stopped.
  • the temperature was kept constant until there was no clear water, dried at 110 ° C for 24 hours, and calcined at 600 ° C for 8 hours to obtain a composite oxide.
  • the composition of the composite oxide is RhNiL5CoL5Vo.9Moo.9OK).
  • the selective oxidation of decane is carried out by using 1.00 g of the composite oxide.
  • the conversion of decane was determined to be 8.3%, and the selectivity of ethanol and acetaldehyde was 66.5%.
  • the temperature was kept constant until there was no clear water, dried at 10 ° C for 24 hours, and calcined at 600 ° C for 8 hours to obtain a composite oxide.
  • the composition of the composite oxide is RhNi 8 CoQ. 2 V. . 3 Moo. 8 0 4 . 2 .
  • the methane selective oxidation reaction is carried out by using the composite oxide of 1.0 g.
  • the methane conversion was determined to be 12.7%, and the selectivity to ethanol and acetaldehyde was 68.5%.
  • the temperature was kept constant until there was no clear water, dried at 10 ° C for 24 hours, and calcined at 600 ° C for 8 hours to obtain a composite oxide.
  • the composition of the composite oxide is RhNicMCowV sMocnO ⁇ a.
  • the composite oxide is used for the selective oxidation of methane.
  • the rate was 280011 - 1 and the reaction was carried out at 1 MPa and 550 ° C for 4 hours.
  • the conversion of decane was determined to be 10.5%, and the selectivity of ethanol and acetaldehyde was 61.6%.
  • Rh(N0 3 )3*2H 2 dissolved in 35 g of deionized water, to prepare a mixed solution containing cobalt nitrate, nickel nitrate and cerium nitrate.
  • 1.4g of NH4VO3 was added to 20g of deionized water, and then treated with oxalic acid equivalent to NH 4 V0 3 to obtain a dark blue homogenized solution containing vanadium precursor, and nitrated with nickel, cobalt and bismuth. The solution was mixed and heated to 75 °C in a water bath.
  • the temperature was kept constant until there was no clear water, dried at 10 ° C for 24 hours, and calcined at 600 ° C for 8 hours to obtain a composite oxide.
  • the composition of the composite oxide is RhNi 2 Coo. 2Vo.7Mo 6 0 5 . 5 .
  • Example 20 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 19 is shown in Fig. 6, indicating that the composite oxide exhibited a crystalline state.
  • Example 20 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 19 is shown in Fig. 6, indicating that the composite oxide exhibited a crystalline state.
  • the solution was mixed and heated to 75 °C in a water bath.
  • 0.8 g ( ⁇ 4 ) 6 ⁇ ⁇ 7 0 24 ⁇ 4 ⁇ 2 0 was dissolved in 30 g of an 8% by weight aqueous ammonia solution to form an aqueous solution of (NH 4 ) 6 Mo 7 0 24 in ammonia.
  • the solution was slowly added dropwise to the above mixed solution containing nickel nitrate, cobalt nitrate, cerium nitrate and vanadium-containing precursor, and the pH was adjusted to 6 with nitric acid or ammonia water, and stirred at 75 ° C for 6 hours, and the stirring was stopped.
  • the temperature was kept constant until there was no clear water, dried at 10 ° C for 24 hours, and calcined at 600 ° C for 8 hours to obtain a composite oxide.
  • the composition of the composite oxide is RhNi 1 0 Co 0 . 5 V 5 Mo a 7O6.4.
  • the composite oxide of l.Og is used for selective oxidation of decane.
  • the conversion of decane was determined to be 15.1%, and the selectivity of ethanol and acetaldehyde was 73.2%.
  • the temperature was kept constant until there was no clear water, dried at 110 ° C for 24 hours, and calcined at 600 ° C for 8 hours to obtain a composite oxide.
  • the composition of the composite oxide is RhNiLoCo ⁇ VcuMocnC ⁇
  • the space velocity was SOOOh and the reaction was carried out at 2 MPa and 550 ° C for 4 hours.
  • the methane conversion was determined to be 10.7%, and the selectivity of ethanol and acetaldehyde was 51.7%.
  • the temperature was kept constant until there was no clear water, dried at U0 ° C for 24 hours, and calcined at 600 ° C for 8 hours to obtain a composite oxide.
  • the composition of the composite oxide is RhNiLoCoo.sVo.sMoojO.
  • the composite oxide obtained by hydrogen reduction has a reduction pressure of 0.1 MPa, a temperature of 350 ° C, a space velocity of 1000 h, a reduction time of 0.5 h, and a composite oxide composition after reduction.
  • RhNlL0Co0.5V0.5MO0.7O50 The methane selective oxidation reaction is carried out by using the reduced composite oxide of 1.0 g.
  • the hydrochloric acid solution was mixed and hooked, and 7.0 g of pseudoboehmite was added, and the mixture was heated to 75 ° C in a water bath.
  • 2.7 g ( ⁇ 4 ) 6 ⁇ 7 0 24 ⁇ 4 ⁇ 2 0 was dissolved in 30 g of an 8% by weight aqueous ammonia solution to form an aqueous solution of (NH 4 ) 6 Mo 7 0 24 ammonia.
  • the solution is slowly added dropwise to the above mixed solution containing nickel nitrate, cobalt nitrate, cerium nitrate and vanadium-containing precursor, adjusted to pH 7 with nitric acid or ammonia water, stirred at 75 ° C for 6 hours, and stirred under water bath.
  • Example 24 It was evaporated to dryness, dried at U 0 ° C for 24 hours, and calcined at 600 ° C for 8 hours to obtain a composite oxide.
  • the composition of the composite oxide is RhNi 2 Coo. 2 Vo. 7 Mo 0 7 0 5 8 /Al 2 0 3 .
  • Example 24 Example 24
  • 1.8 g of NH 4 V0 3 was added to 20 g of deionized water, and then treated with an equimolar amount of oxalic acid with NH 4 V0 3 to obtain a dark blue homogeneous solution containing a vanadium precursor, and a nitric acid containing nickel, cobalt and ruthenium.
  • the hydrochloric acid solution was mixed and hooked, and 7.0 g of pseudoboehmite was added, and the mixture was heated to 75 ° C in a water bath.
  • 2.7 g ( ⁇ 4 ) 6 ⁇ 7 0 24 ⁇ 4 ⁇ 2 0 was dissolved in 30 g of an 8% by weight aqueous ammonia solution to form an aqueous solution of (NH 4 ) 6 Mo 7 0 24 ammonia.
  • the solution is slowly added dropwise to the above mixed solution containing nickel nitrate, cobalt nitrate, cerium nitrate and vanadium-containing precursor, adjusted to pH 7 with nitric acid or ammonia water, stirred at 75 ° C for 6 hours, and stirred under water bath.
  • the composition of the composite oxide is RhNi 2 Coo. 2 Vo. 75 MoQ. 75 0 6 . 4 /Al 2 0 3 .
  • the composite oxide obtained by hydrogen reduction has a reduction pressure of 0.1 MPa, a temperature of 350 ° C, a space velocity of 1000 h, a reduction time of 0.5 h, and a composite oxide composition after reduction. RhNi. . 2 Co. . 2 V 7 Mo 7 0 5 . 5 /Al 2 0 3 .
  • the selective oxidation of decane was carried out by using 1.0 g of the reduced composite oxide.
  • the composition of the composite oxide is RhNi 10 Co 10 V 0 . 5 Mo 06 O 64 /MgO-SiO 2 .
  • Example 26 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 25 is shown in Fig. 7, indicating that the composite oxide exhibited a crystalline state.
  • Example 26 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 25 is shown in Fig. 7, indicating that the composite oxide exhibited a crystalline state.
  • the hydrochloric acid solution was mixed and hooked, and heated to 75 ° C in a water bath. Slowly add 8% by weight of aqueous ammonia solution to the above mixed solution containing nickel nitrate, cobalt nitrate, cerium nitrate and vanadium-containing precursor, and adjust the pH to 7, 7 °C with nitric acid or ammonia water. Stirring 6 In an hour, the stirring was stopped, the temperature was kept constant until there was no clear water, dried at 110 ° C for 24 hours, and air-fired at 600 ° C for 8 hours to obtain a Co, Ni, Rh, V composite oxide.
  • the composite oxide composition is The composite oxide obtained by hydrogen reduction has a reduction pressure of 0.1 MPa, a temperature of 35 CTC, a space velocity of 1000 h, a reduction time of 0.5 h, and a composition formula of the composite oxide after reduction is RhNi 08 Co 12 V 07 Mo 05 O 37 .
  • the selective oxidation of decane is carried out by using 1.00 g of the composite oxide.
  • the conversion of decane was determined to be 5.5%, and the selectivity of ethanol and acetaldehyde was 0.7%.
  • the yttrium-vanadium-aluminum oxide supported yttrium-vanadium-molybdenum composite oxide was produced by the impregnation method Weigh 6.9 g of Rh(N0 3 ) 3 «2H 2 0, dissolved in 10 g of deionized water to prepare an aqueous solution of cerium nitrate. 1.8 g of NH 4 V0 3 was dissolved in 10 g of deionized water and then treated with an equimolar amount of oxalic acid with NH 4 V ⁇ 3 to prepare a dark blue homogeneous solution containing the vanadium precursor.
  • the methane selective oxidation reaction is carried out with 1.0 nm of the composite oxide.
  • the conversion of decane was determined to be 8.6%, and the total selectivity of ethanol and acetaldehyde was 0.5%.
  • Example 29 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 28 is shown in Fig. 8, indicating that the composite oxide does not have a crystalline state.
  • Example 29 The powder X-ray diffraction spectrum of the composite oxide obtained in Example 28 is shown in Fig. 8, indicating that the composite oxide does not have a crystalline state.
  • the yttrium-vanadium-aluminum oxide supported yttrium-vanadium-molybdenum composite oxide was produced by the impregnation method Weigh 1.2g of Co(N0 3 ) 2 *6H 2 0, 1.2 g of Ni(N0 3 ) 2 '6H 2 0 and 6.9g of Rh(N0 3 ) 3 '2H 2 0, dissolved in 10g of deionized water to prepare nitric acid An aqueous solution of cobalt, nickel nitrate, and cerium nitrate.
  • the air atmosphere is 600 ° C for 8 hours.
  • a composite oxide of the same composition and content as in Example 23 was obtained.
  • the composition of the composite oxide is RhNio. 2 Coo. 2 V 0 . 7 Mo 0 . 7 0 5 . 8 /Al 2 0 3 .
  • the composite oxide of l.Og is used for the selective oxidation of decane.
  • the methane conversion was determined to be 10.9%, and the total selectivity of ethanol and acetaldehyde was 0.3%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种复合氧化物、其制造方法及其作为甲烷选择性氧化催化剂的应用。该复合氧化物的组成用式RhRxMoyVzOδ-α表示,其中各符号的说明同说明书。在作为甲烷选择性氧化催化剂使用时,该复合氧化物表现出甲烷转化率和目标产物选择性高的特点。

Description

一种复合氧化物、 其制造方法及其应用 技术领域
本发明涉及一种复合氧化物, 特别是铑钒钼复合氧化物, 本发明还 涉及该复合氧化物的制造方法及其作为甲烷选择性氧化催化剂的应 用。 背景技术
曱烷选择性氧化制醛和醇是天然气资源开发利用的新途径,是化石 类能源结构调整的重要举措, 多年来一直倍受关注。 然而, 现有技术 至今仍没有开发出可实现有工业化意义的醇酪收率的催化剂。 主要是 由于甲烷惰性强, 在较高的活化温度下操作, 不仅非催化气相氧化反 应的竟争性增强, 而且催化反应生成的选择氧化产物也因自身反应活 性较曱烷高而易被进一步氧化, 生成较高氧化态产物, 如 CO 和 C02 和 H20。 因此, 如何降低曱烷活化温度, 提高目标产物的选择性, 是 该领域研究中首要解决的关键问题之一。
另外,现有技术主要致力于开发通过甲烷选择性氧化反应来制造曱 醛和甲醇的技术, 而通过曱烷选择性氧化反应来制造乙醇或乙醛的技 术则鲜有报道。
因此, 现有技术需要一种曱烷选择性氧化催化剂, 其尤其适合通过 甲烷选择性氧化反应来联产乙醇和乙醛。 发明内容
本发明的发明人通过刻苦的研究发现,如果使用一种特定的复合氧 化物作为催化剂, 就能够通过曱烷的选择性氧化反应来联产乙醇和乙 醛, 并由此完成了本发明。
具体而言, 本发明主要涉及以下方面的内容。
1. 一种复合氧化物, 其特征在于, 组成用式 RhRxMoyVzO 表示, 其中, R是 Ni、 Co或 Ni与 Co的组合, x=0-3.0 , 优选 0.01 -3.0, 更优 选 0.5-2.5 ,进一步优选 1.0-2.0 , y=0. 1 -0.9 ,优选 0.2-0.7 ,更优选 0.4-0.6 , z=0. 1 -0.9 , 优选 0.2-0.9 , 更优选 0.5-0.8 , δ是正数, 代表该复合氧化物 中氧达到价态平衡时的值, α=0至 δ/2 , 优选 0至 δ/4 , 更优选 0 , 在 R 是 Ni与 Co的组合时, 以摩尔比计, Ni:Co=0.01-20: 1, 优选 0.1-10:1, 更优选 1-3:1。
2. 前述任一方面的复合氧化物, 负载于载体上, 其中所述复合氧 化物与所述载体的重量比为 0.01-1: 1,优选 0.1-0.5:1,更优选 0.1-0.3:1, 所述载体选自无机耐熔氧化物中的一种或多种,优选选自 Si02、 A1203、 MgO-Si02、 MgO-Al203、 Al203-Si02、 CaO-Si02和 CaO-MgO-Si02中的 一种或多种, 更优选选自 Si02、 A1203、 MgO-Si02、 MgO-Al203中的一 种或多种。
3. 前述任一方面的复合氧化物, 呈现为结晶态, 优选在其粉末 X 射线衍射图中, 至少在衍射角 2Θ为 28.5士0.5。处有衍射峰, 更优选至少 在衍射角 2Θ为 18.5±0.5。、28.5士0.5。、31.5±0.5。和34.5士0.5。处有衍射峰。
4. 一种复合氧化物的制造方法, 其特征在于, 包括以下步骤: 任选在载体的存在下, 使 Rh 源、 Mo 源、 V 源和任选使用的 Ni 源和 /或任选使用的 Co 源接触 (优选混合) , 发生反应而获得复合氧 化物, 其中所述 Rh源、 所述 Mo源、 所述 V源、 所述 Ni源和所述 Co 源的相对用量比使得所获得的复合氧化物的组成用式 RhRxMoy νζΟ α 表示, 其中, R是 Ni、 Co或 Ni与 Co的组合, x=0-3.0, 优选 0.01-3.0, 更优选 0.5-2.5, 进一步优选 1.0-2.0, y=0.1-0.9, 优选 0.2-0.7, 更优选 0.4-0.6, z=0.1-0.9, 优选 0.2-0.9, 更优选 0.5-0.8, δ是正数, 代表该复 合氧化物中氧达到价态平衡时的值, α-0, 在 R是 Ni与 Co的组合时, 以摩尔比计, Ni:Co=0.01-20:1, 优选 0.1-10:1, 更优选 1-3:1; 和任选对 所述复合氧化物进行部分还原, 以使 α达到大于 0至 δ/2, 优选大于 0 至 δ/4。
5. 前述任一方面的制造方法, 其中所述 Rh源选自 Rh的氧化物、 氢氧化物、 无机酸盐和有机酸盐中的一种或多种, 优选选自 Rh的水溶 性无机酸盐和水溶性有机酸盐中的一种或多种, 更优选选自 Rh的硝酸 盐和醋酸盐中的一种或多种, 所述 Ni源选自 Ni的氧化物、 氢氧化物、 无机酸盐和有机酸盐中的一种或多种, 优选选自 Ni的水溶性无机酸盐 和水溶性有机酸盐中的一种或多种, 更优选选自 Ni的硝酸盐和醋酸盐 中的一种或多种, 所述 Co源选自 Co的氧化物、 氢氧化物、 无机酸盐 和有机酸盐中的一种或多种,优选选自 Co的水溶性无机酸盐和水溶性 有机酸盐中的一种或多种, 更优选选自 Co的硝酸盐和醋酸盐中的一种 或多种, 所述 Mo源选自 Mo的氧化物、 氢氧化物、 无机酸盐、 有机酸 盐和含氧酸铵盐中的一种或多种, 优选选自 Mo的水溶性无机酸盐、 水 溶性有机酸盐和含氧酸铵盐中的一种或多种, 更优选 Mo 的含氧酸铵 盐, 所述 V源选自 V的氧化物、 氢氧化物、 无机酸盐、 有机酸盐和含 氧酸铵盐中的一种或多种, 优选选自 V的水溶性无机酸盐、 水溶性有 机酸盐和含氧酸铵盐中的一种或多种, 更优选 V的含氧酸铵盐, 所述 载体选自无机耐熔氧化物和其前体中的一种或多种, 优选选自 Si02、 A1203、 MgO-Si02、 MgO-Al203、 Al203-Si02、 CaO-Si02、 CaO-MgO-Si02 和这些无机耐熔氧化物的前体中的一种或多种, 更优选选自 Si02、 A1203、 MgO-Si02、 MgO-Al203和其前体中的一种或多种, 并且所述载 体的用量使得所述复合氧化物与以无机耐熔氧化物计的所述载体的重 量比达到 0.01 -1 : 1 , 优选 0.1-0.5 : 1 , 更优选 1 -3: 1。
6. 前述任一方面的制造方法, 其中以水溶液的形式提供所述 Rh 源、 所述 Mo源、 所述 V源、 所述 Ni源和所述 Co源, 通过使这些水 溶液发生共沉淀反应而获得含水浆液, 然后脱水、 干燥和焙烧所述含 水浆液, 获得所述复合氧化物。
7. 前述任一方面的制造方法,其中所述反应的条件是: pH值 3 - 10, 优选 5-9, 在搅拌下, 反应温度 60-90°C , 优选 70-80°C, 反应时间 1-12 小时, 优选 3- 10小时; 所述干燥的条件是: 千燥温度 60- 150°C, 优选 100- 120°C , 干燥时间 4-48小时, 优选 6-36小时, 更优选 8-24小时; 所述焙烧的条件是: 焙烧温度 400-900 °C , 优选 500-700°C , 更优选 580-680 °C , 焙烧时间 3- 10小时, 优选 4-8小时。
8. 前述任一方面的制造方法, 其中所述 Mo 源的水溶液中还含有 浓度为 l -3mol/L 的氨, 和 /或所述 V 源的水溶液中还含有浓度为 0.1 -0.5mol/L的 C2-6多元羧酸, 优选乙二酸。
9. 前述任一方面的复合氧化物或者通过前述任一方面的制造方法 制造的复合氧化物作为曱烷选择性氧化催化剂的用途。
10. 一种通过甲烷选择性氧化反应联产乙醇和乙醛的方法, 其特征 在于, 以前述任一方面的复合氧化物或者通过前述任一方面的制造方 法制造的复合氧化物作为催化剂, 通过曱烷选择性氧化反应来联产乙 醇和乙醛。
1 1. 前述任一方面的联产乙醇和乙醛的方法, 其中所述曱烷选择性 氧化反应的反应条件为: 反应温度为 300-800°C, 优选 400-700°C, 更 优选 500-600°C; 反应压力为 0.1-5. OMPa (表压), 优选 0.2-2. OMPa (表 压) , 更优选 0.5-1. OMPa (表压) ; 以摩尔比为计, 原料气的组成为 CH4: 02: H20=1: 0.1-1: 0.2-10, 优选 1: 0.25-0.5: 2-4; 曱烷的空速 为 1200-3500 h—1, 优选 2000-2800 h 。 技术效果
与现有技术相比, 本发明具有以下优点。
根据本发明, 通过利用原位结晶法来合成复合氧化物, 首次得到适 于通过甲烷选择性氧化反应来联产乙醇和乙醛的催化剂。
根据本发明的复合氧化物,将具有甲烷选择性氧化功能的钼钒中心 与具有曱醇羰基化功能的铑中心以结晶态形式结合在一起, 结晶态活 性相一方面提供 d 电子空穴, 另一方面提供晶格氧, 兼具较好的曱烷 活化和选择氧化的性能, 因而可实现较高的曱烷转化率 (比如最高可 达 17%以上) 和乙醇及乙醛选择性 (即总选择性, 比如最高可达 78% 以上) 。
根据本发明的复合氧化铝, 可以在较低(比如 IMPa以下)的反应 压力下实现甲烷的选择性氧化。
根据本发明的复合氧化物, 其制造方法简单, 利于工业生产。 附图说明
图 1至图 8分别为实施例 1、 5、 9、 11、 12、 19、 25和 28制得的 复合氧化物的粉末 X射线衍射谱图。 该粉末 X射线衍射的测试条件为 以 Cu靶 Κα辐射源 (λ = 0.154056nm) , 管电压 40kV, 管电流 80mA, 扫描速度 mm—1, 扫描步长 0.1°, 扫描范围 5〜70°。 具体实施方式
下面对本发明的具体实施方式进行详细说明, 但是需要指出的是, 本发明的保护范围并不受这些具体实施方式的限制, 而是由附录的权 利要求书来确定。
本说明书提到的所有出版物、 专利申请、 专利和其它参考文献全都 引于此供参考。 除非另有定义, 本说明书所用的所有技术和科学术语 都具有本发明所属领域内一般技术人员常理解的相同意思。 在有沖突 的情况下, 包括定义在内, 以本说明书为准。
当本说明书以 "本领域技术人员已知的 "或者 "本领域常规已知的 " 或类似用语来描述材料、 方法、 部件、 装置或设备时, 该术语表示本 说明书包括提出本申请时本领域常规使用的那些, 但也包括目前还不 常用, 但将变成本领域公认为适用于类似目的的那些。
此外, 本说明书提到的各种范围均包括它们的端点在内, 除非另有 明确说明。 此外, 当对量、 浓度或其它值或参数给出范围、 一个或多 个优选范围或很多优选上限值与优选下限值时, 应把它理解为具体公 开了由任意对任意范围上限值或优选值与任意范围下限值或优选值所 形成的所有范围, 不论是否一一公开了这些数值对。
最后,在没有明确指明的情况下 ,本说明书内所提到的所有百分数、 份数、 比率等都是以重量为基准的, 除非以重量为基准时不符合本领 域技术人员的常规认识。
根据本发明, 涉及一种组成用式 RhRxMoyVzO a表示的复合氧化 物,其中 R是 Ni、 Co或 Ni与 Co的组合, x=0-3.0, y=0. 1-0.9, z=0. 1-0.9 , δ是正数, 代表该复合氧化物中氧达到价态平衡时的值, α=0-δ/2。
在本说明书的上下文中, 所谓"复合氧化物中氧达到价态平衡时的 值", 指的是该复合氧化物中 Rh为 +3价、 Mo为 +6价、 V为 +5价、 Ni 为 +2价、 Co为 +2价、 0为 -2价并且 a=0时, 形成电中性的复合氧化 物所要求的值。
根据本发明, x=0-3.0 , 优选 0.01 -3.0 , 更优选 0.5-2.5 , 进一步优选 1.0-2.0。
根据本发明, y=0.1 -0.9, 优选 0.2-0.7 , 更优选 0.4-0.6。
才艮据本发明, z=0.1 -0.9 , 优选 0.2-0.9 , 更优选 0.5-0.8。
根据本发明, a=0至 δ/2 , 优选 0至 δ/4 , 更优选 0。
根据本发明, 在 R 是 Ni 与 Co 的组合时, 以摩尔比计, Ni:Co=0.01 -20: 1 , 优选 0.1 - 10: 1 , 更优选 1 -3: 1。
根据本发明, 所述复合氧化物可以是负载型复合氧化物(为了方便 表述起见, 在本说明书中也简称为复合氧化物) , 即复合氧化物被负 载于载体上。
根据本发明, 作为所述载体, 优选无机耐熔氧化物。 作为所述无机 耐熔氧化物, 比如可以举出 Si02、 A1203、 MgO-Si02、 MgO-Al203、 Al203-Si02、 CaO-Si02和 CaO-MgO-Si02等, 其中优选 Si02、 A1203、 Mg〇-Si02、 MgO-Al23或其组合。
根据本发明, 对所述复合氧化物与所述载体的比例没有特别的限 定, 按照重量比计, 一般为 0.01 - 1 : 1 ,优选 0.1 -0.5: 1, 更优选 0.1 -0.3: 1。
根据本发明, 所述复合氧化物优选呈现为结晶态。 该结晶态可以 通过对该复合氧化物 (或负载型复合氧化物) 进行粉末 X射线衍射测 试, 并从所获得的粉末 X射线衍射图中鉴别出明确的衍射峰而得以确 认。
根据本发明,在所述复合氧化物呈现为结晶态时,优选在其粉末 X 射线衍射图中, 至少在衍射角 2Θ为 28.5士 0.5。处(比如 28.8附近)有最 强的衍射峰(也称为主衍射峰), 更优选至少在衍射角 2Θ为 18.5士0.5°、 28.5±0.5° (主衍射峰) 、 31.5士 0.5。和 34.5土 0.5。处有明确的衍射峰。 比 如, 在根据实施例 9制造的复合氧化物的粉末 X射线衍射图中, 至少 在衍射角 2Θ为 18.80。、 28.80。、 31.47。和 34.60。处有明确的衍射峰, 这 些衍射峰分别对应于 [101]、 [ 103]、 [004]和 [200]晶面, 并且其晶面间距 及相对衍射强度具有如下特征。
Figure imgf000007_0001
根据本发明, 所述复合氧化物可以通过如下的制造方法进行制造。 根据本发明, 所述制造方法包括使 Rh源、 Mo源、 V源和任选使 用的 Ni源和 /或任选使用的 Co源 (先后或同时)接触, 发生反应而获 得复合氧化物的步骤。
根据本发明, 所述 Rh源、 所述 Mo源、 所述 V源、 所述 Ni源(任 选)和所述 Co源 (任选) 的相对用量比使得所获得的复合氧化物的组 成用式 RhRxMoyVzOs_a ( α=0, 以下将其称为复合氧化物 A ) 表示, 其 中, R是 Ni、 Co或 Ni与 Co的组合, x=0-3.0 , y=0.1 -0.9 , z=0. 1 -0.9 , δ是正数, 代表该复合氧化物中氧达到价态平衡时的值 (如前所述) 。
根据本发明, χ=0-3.0 , 优选 0.01 -3.0 , 更优选 0.5-2.5 , 进一步优选 1.0-2.0。 根据本发明, y=0.1 -0.9, 优选 0.2-0.7 , 更优选 0.4-0.6。
根据本发明, z=0.1-0.9 , 优选 0.2-0.9, 更优选 0.5-0.8。
根据本发明, α=0至 δ/2, 优选 0至 δ/4 , 更优选 0。
根据本发明, 在 R 是 Ni 与 Co 的组合时, 以摩尔比计, Ni:Co=0.01 -20: l , 优选 0.1-10: 1 , 更优选 1-3: 1。
根据本发明,对所述接触的方式没有限定,只要能够使所述 Rh源、 所述 Mo源、 所述 V源和任选使用的所述 Ni源和 /或任选使用的所述 Co源彼此反应而发生化学反应, 由此生成所述复合氧化物 A即可, 比 如可以举出使这些源 (先后或同时) 以溶液或熔融的形式彼此混合的 方式。
根据本发明, 所述接触可以在载体的存在下进行, 由此获得负载 的复合氧化物 A (也称为复合氧化物 A ) 。
根据本发明, 作为所述载体, 优选无机耐熔氧化物或其前体。 作为 所述无机耐熔氧化物, 比如可以举出 Si02、 A1203、 MgO-Si02、 MgO-Al203、 Al203-Si02、 CaO-Si02和 CaO-MgO-Si02等,其中优选 Si02、 A1203、 MgO-Si02、 MgO-Al203或其组合。 作为所述无机耐熔氧化物的 前体, 具有本领域通常的含义, 指的是在本发明的复合氧化物制造方 法过程中 (比如通过如下所述的焙烧步骤) 能够转化为无机耐熔氧化 物的任何材料, 比如可以举出硝酸铝、 氯化铝、 石克酸铝、 异丙醇铝、 硅酸钠、 正硅酸乙酯、 硅溶胶、 硝酸镁、 氯化镁、 硝酸钙、 氯化钙等, 优选硝酸铝、 氯化铝、 酸铝、 硅酸钠、 正硅酸乙酯、 硝酸镇、 硝酸 钙、 , 更优选硝酸铝、 ¾酸铝、 硅酸钠、 硝酸镁。
根据本发明, 对所述载体此时的用量没有特别的限定,但优选所述 载体的用量使得所迷复合氧化物 A与所述载体 (以无机耐熔氧化物为 计) 的重量比例达到 0.01 -1 : 1 , 优选 0.1 -0.5: 1 , 更优选 0.1 -0.3: 1。
根据本发明, 作为所述 Rh源, 比如可以举出 Rh的氧化物、 氢氧 化物、 无机酸盐和有机酸盐 (包括这些化合物的水合物) , 其中优选 Rh 的水溶性无机酸盐和水溶性有机酸盐, 更优选选自 Rh的硝酸盐和 醋酸盐, 比如 Rh(N03)3或其水合物。
根据本发明, 作为所述 Ni 源, 比如可以举出 Ni 的氧化物、 氢氧 化物、 无机酸盐和有机酸盐 (包括这些化合物的水合物) , 其中优选 Ni的水溶性无机酸盐和水溶性有机酸盐,更优选 Ni的硝酸盐和醋酸盐, 比如 Ni(N03)2或其水合物。
根据本发明, 作为所述 Co源, 比如可以举出 Co的氧化物、 氢氧 化物、 无机酸盐和有机酸盐 (包括这些化合物的水合物) , 其中优选 Co的水溶性无机酸盐和水溶性有机酸盐, 更优选 Co 的硝酸盐和醋酸 盐, 比如 Co(N03)2或其水合物。
根据本发明, 作为所述 Mo源, 比如可以举出 Mo的氧化物、 氢氧 化物、无机酸盐、有机酸盐和含氧酸铵盐(包括这些化合物的水合物), 其中优选 Mo的水溶性无机酸盐、 水溶性有机酸盐和含氧酸铵盐, 更优 选 Mo的含氧酸铵盐, 比如 (NH4)6Mo7024或其水合物。
根据本发明, 作为所述 V源, 比如可以举出 V的氧化物、 氢氧化 物、 无机酸盐、 有机酸盐和含氧酸铵盐 (包括这些化合物的水合物) , 其中优选 V的水溶性无机酸盐、 水溶性有机酸盐和含氧酸铵盐, 更优 选 V的含氧酸铵盐, 比如 NH4V03或其水合物。
根据本发明一个优选的实施方式,以水溶液的形式提供所述 Rh源、 所述 Mo源、 所述 V源、 所述 Ni源 (任选) 和所述 Co源 (任选) , 通过任选在所述载体的存在下, (先后或同时) 混合这些水溶液使其 发生反应而获得所述复合氧化物 A。
根据本发明优选的是, 在以水溶液的形式提供时, 所述 Mo源的水 溶液中还含有 l -3mol/L的氨。
根据本发明优选的是, 在以水溶液的形式提供时, 所述 V源的水 溶液中还含有 0.1 -0.5mol/L的 C2-6多元羧酸(优选 C2-6二元羧酸, 更优 选乙二酸) 。
根据本发明, 所述 Rh源、 所述 Mo源、 所述 V源、 所述 Ni源(任 选) 和所述 Co源 (任选) 的所述反应优选在搅拌的存在下进行。
根据本发明, 所述 Rh源、 所述 Mo源、 所述 V源、 所述 Ni源(任 选) 和所述 Co源 (任选)在进行所述反应时, 其反应条件一般是: 反 应体系的 pH值为 3- 10, 优选 5-9 , 反应温度 60-90°C , 优选 70-8CTC , 反应时间 1 - 12小时, 优选 3-10小时。
在制造后, 本发明的复合氧化物 A也可以根据需要, 按照本领域 公知的技术成型为适宜的颗粒形态, 比如条形、 片形、 柱形等。
根据本发明的制造方法, 虽然并不必要,但任选还包括对所述复合 氧化物 A ( α=0 ) 进行部分还原的步骤, 使其 α达到大于 0至 δ/2 , 优 选大于 0至 δ/4 , 此时的复合氧化物也称为复合氧化物 Β。 够使该复合氧化物 Α中的一部分金属元素呈现为还原价态 (比如 Νιΰ、 V3+或 VQ等)即可。 本发明对发生该部分还原的金属元素的种类也不特 定。
根据本发明, 通过该部分还原, 可以获得组成用式 RhRxMoyVzO a 表示的复合氧化物 B , 其中 a为大于 0至 δ/2 , 优选大于 0至 δ/4, 其 他符号同前说明。
根据本发明,作为该部分还原法, 比如可以举出使所述复合氧化物 Α 与还原剂 (比如氢气) 在适当的反应条件下接触而发生还原反应的 方法。 作为所述反应条件, 比如可以举出: 反应温度 60-600 °C , 反应 压力 15-1500psia,以及足以使复合氧化物 A部分还原至 α大于 0至 δ/2 (优选大于 0至 δ/4 ) 的反应时间 (比如 0.5-12小时, 但有时并不限于 此) 。
根据本发明,所述复合氧化物(包括复合氧化物 Α和复合氧化物 B ) 的组成可以用原子发射光谱法(ICP )或 X射线荧光光谱法(XRF )进 行鉴定。
根据本发明一个优选的实施方式, 通过所述接触, 使所述 Rh源、 所述 Mo源、 所述 V源和任选使用的所述 Ni 源和 /或任选使用的所述 Co源发生共沉淀反应 (中和反应) , 由此获得结晶态的复合氧化物 A (称为原位结晶法) 。
根据本发明所述的原位结晶法, 以水溶液的形式提供所述 Rh源、 所述 Mo源、 所述 V源、 所述 Ni源 (任选) 和所述 Co源 (任选) , 通过任选在所述载体的存在下, (先后或同时) 混合这些水溶液, 使 其发生共沉淀反应而获得含水浆液。
根据本发明优选的是, 在以水溶液的形式提供时, 所述 Mo源的水 溶液中还进一步含有浓度为 l -3mol/L的氨。
根据本发明优选的是, 在以水溶液的形式提供时, 所述 V源的水 溶液中还进一步含有浓度为 0.1 -0.5mol/L 的 C2-6多元羧酸 (优选 C2-6 二元羧酸, 更优选乙二酸) 。
举例而言, 使所述 Rh源、 所述 Mo源、 所述 V源、 所述 Ni源(任 选)和所述 Co源 (任选)分别溶解在水中而制成各自的水溶液, 在搅 拌条件下, 将这些水溶液和任选使用的载体按照预定用量, 先后或同 时加入 (优选最先加入载体, 和 /或, 最后加入 Mo 源的水溶液) 反应 体系 (比如反应容器) 中, 调节该反应体系的 pH值为 3-10 (优选 5-9, 比如使用硝酸或氨水溶液) , 在反应温度 60-9CTC (优选 70-80°C ) 下, 使共沉淀进行 1-12小时 (优选 3-10小时) , 由此获得所述含水浆液。
然后, 通过脱水、 任选成型、 千燥和焙烧所述含水浆液, 即可获 得所述复合氧化物 A。
根据本发明, 所述脱水可以按照本领域公知的方式进行, 比如可 以举出蒸发除水法或过滤除水法等。
根据本发明, 所述成型可以按照本领域公知的方式(比如挤出、 造 粒) 进行, 有利于获得具有适宜颗粒形态 (比如条形、 片形、 柱形等) 的复合氧化物 A。
根据本发明, 所述千燥可以按照本领域公知的方式进行, 比如可以 举出喷雾干燥法、 真空干燥法、 热烘箱干燥法等。 根据需要, 所述千 燥与所述成型可以作为一个步骤进行。 作为所述干燥的条件, 比如可 以举出干燥温度 60-150°C, 优选 100-120°C, 干燥时间 4-48 小时, 优 选 6-36小时, 更优选 8-24小时。
根据本发明, 通过所述焙烧, 使干燥后的含水浆液完全转化为结 晶态的所述复合氧化物 A, 同时使所述无机耐熔氧化物的前体 (在使 用时) 转化为无机耐熔氧化物。 作为所述焙烧的条件, 比如可以举出 焙烧温度 400-900 °C, 优选 500-700°C, 更优选 580-680°C, 焙烧时间 3-10 小时, 优选 4-8 小时。 根据需要, 该焙烧可以在含氧气气氛 (比 如空气) 中进行。
根据本发明,还涉及本发明前述的复合氧化物作为甲烷选择性氧化 催化剂的用途。 具体而言, 本发明涉及一种通过甲烷选择性氧化反应 联产乙醇和乙醛的方法, 包括以本发明前述的复合氧化物作为催化剂, 通过甲烷选择性氧化反应来联产乙醇和乙醛的步骤。
根据本发明, 所述甲烷选择性氧化反应的反应条件为: 反应温度为 300-800 °C,优选 400-700°C,更优选 500-600°C;反应压力为 0.1-5.0MPa (表压) , 优选 0.2-2.0MPa (表压) , 更优选 0.5-1.0MPa (表压) ; 以摩尔比为计, 原料气的组成为 CH4:02:H20=1 :0.1-1 :0.2-10, 优选 1:0.25-0.5:2-4; 甲烷的空速为 1200-3500 h"1, 优选 2000-2800!^1。 实施例
以下采用实施例进一步详细地说明本发明, 但本发明并不限于这 些实施例。 实施例 1
称取 2.4gRh(N03)3.2H20, 溶于 25g去离子水中, 制得硝酸铑的水 溶液。将 0.9gNH4VO3溶于 25g去离子水中, 然后用与 NH4V03等摩尔 的乙二酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含硝酸铑的溶 液混合均匀, 水浴加热至 75°C。 将 0.6g(NH4)6Mo7O24,4H2O溶于 20.0g 8% (重量) 的氨水溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液 搅拌下緩慢滴加到上述含硝酸铑和含钒前体的混合溶液中, 用硝酸或 氨水调节 pH值为 5左右, 75°C恒温搅拌 4小时后, 停止搅拌, 继续恒 温至无明水, 110°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧 化物。 复合氧化物组成式为 RhV0.9Mo 4O5。 用 l.Og该复合氧化物进行 甲烷选择性氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2:1:4, CH4 空速为 200011-1, 反应在 IMPa和 550°C下进行 4小时。 经测定, 曱烷 转化率为 6.5%, 乙醇及乙醛总选择性为 63.7%。
实施例 1获得的复合氧化物的粉末 X射线衍射谱图如图 1所示, 表明该复合氧化物呈现为结晶态。 实施例 2
称取 2.4gRh(N03)3, 溶于 25g去离子水中, 制得硝酸铑的水溶液。 将 0.9g NH4VO3溶于 25g去离子水中,然后用与 NH4V03等摩尔的乙二 酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含硝酸铑的溶液混合 均匀, 水浴加热至 75°C。 将 0.6g(NH4)6Mo7O24'4H2O溶于 20.0g 8% (重 量) 的氨水溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下 緩慢滴加到上述含硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调 节 pH值为 7左右, 75°C恒温搅拌 4小时后, 停止搅拌, 继续恒温至无 明水, 110°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式为 RhV 9Mo0.4O5。 用 l.Og该复合氧化物进行曱烷选 择性氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2:1:2, CH4空速为 2000^' , 反应在 1.5MPa和 500°C下进行 4小时。 经测定, 曱烷转化率 为 8.8%, 乙醇及乙醛总选择性为 65.6%。 实施例 3
称取 2.4g Rh(N03)3,2H20, 溶于 25g去离子水中, 制得硝酸铑的水 溶液。将 0.2g NH4VO3溶于 25g去离子水中, 然后用与 NH4V03等摩尔 的乙二酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含硝酸铑的溶 液混合均匀, 水浴加热至 80°C。 将 0.3g(NH4)6Mo7O24'4H2O溶于 20.0g 8% (重量) 的氨水溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液 搅拌下緩慢滴加到上述含硝酸铑和含钒前体的混合溶液中, 用硝酸或 氨水调节 pH值为 5左右, 80 °C恒温搅拌 4小时后, 停止搅拌, 继续恒 温至无明水, U 0°C干燥 16小时, 500°C空气焙烧 6小时, 制得复合氧 化物。 复合氧化物组成式为 RhVo.2Mo。.202 6。 用 l .Og该复合氧化物进 行曱烷选择性氧化反应,原料气的摩尔组成为 CH4:02:H20 = 2: 1 :4, CH4 空速为 2000h— 反应在 I MPa和 550°C下进行 4小时。 经测定, 甲烷 转化率为 7.3%, 乙醇及乙醛总选择性为 57.9%。 实施例 4
称取 6.0g Rh(NO3)3 , 溶于 25g去离子水中, 制得硝酸铑的水溶液。 将 1.8g NH4V03溶于 25g去离子水中,然后用与 NH4V03等摩尔的乙二 酸处理,制得含钒前体的深蓝色均勾溶液, 并与含硝酸铑的溶液混合均 匀, 水浴加热至 70°C。将 2.7g (NH4)6Mo7024'4H20 溶于 20g 8% (重量) 的氨水溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下緩慢 滴加到上述含硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 pH 值为 8左右, 70°C恒温搅拌 6小时后, 停止搅拌, 继续恒温至无明水, 1 10°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧 化物组成式为 RhV0 8Mo 8O5.9。 用 l .Og该复合氧^ ί匕物进行甲烷选择性 氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2:0.8:3 , CH4空速为 2400b"1 , 反应在 0.5MPa和 550°C下进行 4小时。 经测定, 曱烷转化率 为 10.8% , 乙醇及乙醛总选择性为 67.6%。 实施例 5 称取 7.9g Rh(N03)3 , 溶于 25g去离子水中, 制得硝酸铑的水溶液。 将 1.8g NH4V03溶于 25g去离子水中,然后用与 NH4V03等摩尔的乙二 酸处理,制得含钒前体的深蓝色均勾溶液, 并与含硝酸铑的溶液混合均 匀, 水浴加热至 75 °C。将 2.7g (NH4)6Mo7024'4H20 溶于 20g 8% (重量) 的氨水溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下緩慢 滴加到上述含硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 pH 值为 9左右, 75 °C恒温搅拌 6小时后, 停止搅拌, 继续恒温至无明水, 100 °C干燥 16小时, 600 °C空气焙烧 8小时, 制得复合氧化物。 复合氧 化物组成式为 RhV 7Mo。.705.4。 用 l .Og该复合氧化物进行曱烷选择性 氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2:0.6:4, CH4空速为 2800^\ 反应在 2.0MPa和 500°C下进行 4小时。 经测定, 甲烷转化率 为 12.9%, 乙醇及乙醛总选择性为 74.8%。
实施例 5获得的复合氧化物的粉末 X射线衍射谱图如图 2所示, 表明该复合氧化物呈现为结晶态。 实施例 6
称取 6.9g Rh(N03)3 , 溶于 25g去离子水中, 制得硝酸铑的水溶液。 将 1.8g NH4V03溶于 25g去离子水中,然后用与 NH4V03等摩尔的乙二 酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含硝酸铑的溶液混合 均匀, 水浴加热至 75 °C。 将 2.7g (ΝΗ4)6Μο7024·4Η20 溶于 20g 8% (重 量) 的氨水溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下 緩慢滴加到上述含硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调 节 pH值为 7左右, 75 °C恒温搅拌 6小时后, 停止搅拌, 继续恒温至无 明水, H 0°C干燥 24小时, 60 TC空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式为 RhV 7Moo.705.4。 用 l .Og该复合氧化物进行曱烷 选择性氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2:0.8:4 , CH4空 速为 2000h— 反应在 IMPa和 550°C下进行 4 小时。 经测定, 曱烷转 化率为 12.4%, 乙醇及乙醛总选择性为 76.3%。 实施例 7
称取 6.9gRh(N03)3, 溶于 25g去离子水中, 制得硝酸铑的水溶液。 将 1.8g NH4V03溶于 25g去离子水中,然后用与 NH4V03等摩尔的乙二 酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含硝酸铑的溶液混合 均 匀 , 力。入 7.0g 拟水薄铝石 , 水浴加热至 75 °C。 将 2.7g (ΝΗ4)6Μο7024·4Η20 溶于 20g 8% (重量 ) 的氨水溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸铑 和含钒前体的混合溶液中, 用硝酸或氨水调节 pH值为 7左右, 75 °C恒 温搅拌 6小时后, 停止搅拌, 继续恒温至无明水, 1 10°C干燥 24小时, 60CTC空气焙烧 8 小时, 制得复合氧化物。 复合氧化物组成式为 RhV0.7Mo0.7O5 4/Al2O3。用 1.0g该复合氧化物进行曱烷选择性氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2: 1 :2 , CH4空速为 SOOOh-^ 反应在 IMPa和 550°C下进行 4小时。 经测定, 甲烷转化率为 10.6% , 乙醇及 乙醛总选择性为 78.8%。 实施例 8
称取 6.9g Rh(N03)3 , 溶于 25g去离子水中, 制得硝酸铑的水溶液。 将 1.8g NH4V03溶于 25g去离子水中,然后用与 NH4V03等摩尔的乙二 酸处理,制得含钒前体的深蓝色均匀溶液, 并与含硝酸铑的溶液混合均 匀,加入 12.0g含 MgO为 5% (重量)的拟水薄铝石,水浴加热至 75 °C。 将 2.7g (ΝΗ4)6Μο7024·4Η20 溶于 20g 8% (重量) 的氨水溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸铑 和含钒前体的混合溶液中, 用硝酸或氨水调节 pH值为 7左右, 75 °C恒 温搅拌 6小时后, 停止搅拌, 继续恒温至无明水, 1 10°C干燥 24小时, 60CTC空气焙烧 8 小时, 制得复合氧化物。 复合氧化物组成式为 RhV 7Moo.705.4/MgO-Al203。用 l .Og该复合氧化物进行曱烷选择性氧化 反应, 原料气的摩尔组成为 CH4:02:H20 = 2: 1 :4, CH4空速为 200011-1。 反应在 I MPa和 600°C下进行 4小时。 经测定, 曱烷转化率为 17.5%, 乙醇及乙醛总选择性为 57.2%。 实施例 9
称取 6.9gRh(N03)3 , 溶于 25g去离子水中, 制得硝酸铑的水溶液。 将 1.8g NH4V03溶于 25g去离子水中,然后用与 NH4V03等摩尔的乙二 酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含硝酸铑的溶液混合 均匀,加入 10.0g含 MgO为 5% (重量)的二氧化硅,水浴加热至 70。C。 将 2.7g (ΝΗ4)6Μο7024·4Η20 溶于 20g 8% (重量) 的氨水溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸铑 和含钒前体的混合溶液中, 用硝酸或氨水调节 pH值为 6左右, 70°C恒 温搅拌 6小时后, 停止搅拌, 继续恒温至无明水, 110°C干燥 24小时, 60CTC空气焙烧 8 小时, 制得复合氧化物。 复合氧化物组成式为 RhVo.7Moo.7O54/MgO-S1O2 用 l.Og该复合氧化物进行甲烷选择性氧化 反应, 原料气的摩尔组成为 CH4:02:H20 = 2:1:4, CH4空速为 200011人 反应在 IMPa和 550°C下进行 4小时。 经测定, 甲烷转化率为 13.8%, 乙醇及乙醛总选择性为 73.7%。
实施例 9获得的复合氧化物的粉末 X射线衍射谱图如图 3所示, 表明该复合氧化物呈现为结晶态。 实施例 10
称取 6.9gRh(N03)3, 溶于 25g去离子水中, 制得硝酸铑的水溶液。 将 1.8gNH4V03溶于 25g去离子水中,然后用与 NH4V03等摩尔的乙二 酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含硝酸铑的溶液混合 均匀, 水浴加热至 75°C。 将 2.7g (ΝΗ4)6Μο7024·4Η20 溶于 20g 8% (重 量) 的氨水溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下 緩慢滴加到上述含硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调 节 pH值为 7左右, 75°C恒温搅拌 6小时后, 停止搅拌, 继续恒温至无 明水, U0°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式为 RhV。.6MoQ.605.8。 使用氢气还原制得的复合氧化 物, 还原压力 O.lMPa, 温度 350°C, 空速 1000 h"1, 还原时间 lh, 还 原后复合氧化物组成式为 RhV 7Moo7029。 用 〗.0g该部分还原的复合 氧化物进行甲烷选择性氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2:0.8:4, CH4空速为 200011-1。 反应在 IMPa和 550°C下进行 4小时。 经 测定, 甲烷转化率为 7.3%, 乙醇及乙醛总选择性为 61.2%。 实施例 11
分别称取 2.9gCo(N03)2'6H20、 4.9g Rh(N03)3'2H20, 溶于 35g 去 离子水中, 制得含硝酸钴和硝酸铑的混合溶液。 将 1.3g NH4V03溶于 20g去离子水中,然后用与 NH4V03等摩尔的乙二酸处理, 制得含钒前 体的深蓝色均勾溶液,并与含钴、铑的溶液混合均勾,水浴加热至 75°C。 将 0.6g (ΝΗ4)6Μο7024·4Η20 溶于 20g 8% (重量)的氨水溶液中, 形成 (ΝΗ4)6Μθ7θ24的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸钴、 硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 ρΗ值为 5, 75 °C 恒温搅拌 6小时, 停止搅拌, 继续恒温至无明水, 110°C干燥 24小时, 600°C空气焙烧 8 小时, 制得复合氧化物。 复合氧化物组成式为 RhCo 5V 7Mo 204.4。 用 l.Og该复合氧化物进行甲烷选择性氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2:1:4, CH4空速为 200011-1, 反应在 IMPa和 550°C下进行 4小时。 经测定, 甲烷转化率为 12.7%, 乙醇及 乙醛总选择性为 53.9%。
实施例 11获得的复合氧化物的粉末 X射线衍射谱图如图 4所示, 表明该复合氧化物呈现为结晶态。 实施例 12
分别称取 1.2gNi(N03)2'6H20、 2. lg Rh(N03)3,2H20, 溶于 35g 去 离子水中, 制得含硝酸镍和硝酸铑的混合溶液。 将 0.5g NH4V03加入 20g去离子水中, 然后用与 NH4V03等摩尔的乙二酸处理, 制得含钒前 体的深蓝色均勾溶液, 并与含钴、 铑的硝酸盐酸性溶液混合均勾, 水 浴加热至 80°C。 将 1.0g(NH4)6Mo7O24*4H2O 溶于 40g 8% (重量)的氨水 溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下緩慢滴加到 上述含硝酸镍、 硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 pH值为 10,80°C恒温搅拌 4小时,停止搅拌,继续恒温至无明水, 110°C 干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组 成式为 RhNi07V07Mo 9O6.7。用 l.Og该复合氧化物进行甲烷选择性氧化 反应,原料气的摩尔组成为 CH4:02:H20 = 2:0.6:2, CH4空速为 24001Ί-1, 反应在 IMPa和 500°C下进行 4小时。 经测定, 曱烷转化率为 8.9%, 乙醇及乙醛选择性为 57.6%。
实施例 12获得的复合氧化物的粉末 X射线衍射谱图如图 5所示, 表明该复合氧化物呈现为结晶态。 实施例 13
分别称取 l.Og Co(N03)2'6H20、 1.9g Νι(Ν03)2·6Η20 和 2.1g Rh(N03 )3'2H20 , 溶于 35g 去离子水中, 制得含硝酸钴、 硝酸镍和硝酸 铑的混合溶液。将 0.6g NH4VO3加入 20g去离子水中,然后用与 NH4V03 等摩尔的乙二酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含镍、 钴、 铑的硝酸盐酸性溶液混合均勾, 水浴加热至 70°C。 将 0.25g (ΝΗ4)6Μο7024·4Η20 溶于 20g 8%(重量)的氨水溶液中 , 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 pH值为
6 , 70°C恒温搅拌 6 小时, 停止搅拌, 继续恒温至无明水, 1 10°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式 为 RhNi1 C)Coo.5V0.8Mo 205.6。用 l .Og该复合氧化物进行曱烷选择性氧化 反应, 原料气的摩尔组成为 CH4:02:H20 = 2:0.8:2 , CH4空速为 2400^, 反应在 0.5MPa和 500°C下进行 4小时。 经测定, 曱烷转化率为 9.1%, 乙醇及乙醛选择性为 65.0%。 实施例 14
分别称取 2.2g Co(N03)2'6H20、 1.4 g Νι(Ν03)2·6Η20 和 2.1g Rh(N03)3'2H20 , 溶于 35g 去离子水中, 制得含硝酸钴、 硝酸镍和硝酸 铑的混合溶液。将 0.5g NH4VO3加入 20g去离子水中,然后用与 NH4V03 等摩尔的乙二酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含镍、 钴、 铑的硝酸盐酸性溶液混合均勾, 水浴加热至 75 °C。 将 0.6g (ΝΗ4)6Μο7024·4Η20 溶于 20g 8%(重量)的氨水溶液中 , 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 pH值为
7, 75 C恒温搅拌 6 小时, 停止搅拌, 继续恒温至无明水, 1 10°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式 为 RhNio sCouVc^Moo sO ^用 l .Og该复合氧化物进行曱烷选择性氧化 反应, 原料气的摩尔组成为 CH4:02:H20 = 2:0.8:3 , CH4空速为 2000h 反应在 2MPa和 600°C下进行 4小时。 经测定, 甲烷转化率为 14.7% , 乙醇及乙醛选择性为 67.7%。 实施例 15
分别称取 4.2g Co(N03)2'6H20、 4.3 g Νι(Ν03)2·6Η20 和 9.8g Rh(N03)3*2H20, 溶于 35g 去离子水中, 制得含硝酸钴、 硝酸镍和硝酸 铑的混合溶液。将 1.8g NH4VO3加入 20g去离子水中,然后用与 NH4V03 等摩尔的乙二酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含镍、 钴、 铑的硝酸盐酸性溶液混合均勾, 水浴加热至 75°C。 将 3.2g (ΝΗ4 )6Μο7024·4Η20 溶于 40g 8%(重量)的氨水溶液中 , 形成 (ΝΗ4)6Μθ7θ24的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 ρΗ值为 8, 75°C恒温搅拌 6 小时, 停止搅拌, 继续恒温至无明水, 110°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式 为 RhNi0.5Co0.5V05Mo 6O5.6。用 l.Og该复合氧化物进行曱烷选择性氧化 反应, 原料气的摩尔组成为 CH4:02:H20 = 2:1:2, CH4空速为 2800^, 反应在 IMPa和 550°C下进行 4小时。 经测定, 曱烷转化率为 14.3%, 乙醇及乙醛选择性为 70.2%。 实施例 16
分别称取 2.8g Co(N03)2*6H20、 2.9g Ni(N03)2'6H20 和 2.1g Rh(N03)3*2H20, 溶于 35g 去离子水中, 制得含硝酸钴、 硝酸镍和硝酸 铑的混合溶液。将 0.7g NH4VO3加入 20g去离子水中,然后用与 NH4V03 等摩尔的乙二酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含镍、 钴、 铑的硝酸盐酸性溶液混合均勾, 水浴加热至 75°C。 将 l.Og (ΝΗ4 )6Μο7θ24·4Η20 溶于 40g 8%(重量)的氨水溶液中 , 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 pH值为 8, 75°C恒温搅拌 6 小时, 停止搅拌, 继续恒温至无明水, 110°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式 为 RhNiL5CoL5Vo.9Moo.9OK)。用 l.Og该复合氧化物进行曱烷选择性氧化 反应, 原料气的摩尔组成为 CH4:02:H20 = 2:1:2, CH4空速为 2800^, 反应在 IMPa和 550°C下进行 4小时。 经测定, 曱烷转化率为 8.3%, 乙醇及乙醛选择性为 66.5%。 实施例 17
分别称取 0.4g Co(N03)2'6H20、 1.5g Νι(Ν03)2·6Η20 和 2.1g Rh(N03 )3«2H20, 溶于 35g 去离子水中, 制得含硝酸钴、 硝酸镍和硝酸 铑的混合溶液。 将 0.25g NH4VO3加入 20g 去离子水中, 然后用与 NH4V03等摩尔的乙二酸处理, 制得含钒前体的深蓝色均匀溶液, 并与 含镍、 钴、 铑的硝酸盐酸性溶液混合均勾, 水浴加热至 75 °C。 将 0.9g (NH4 )6Μο7θ24·4Η20 溶于 40g 8%(重量)的氨水溶液中, 形成 (ΝΗ4)6Μο7θ24的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 ρΗ值为 8 , 75 °C恒温搅拌 6 小时, 停止搅拌, 继续恒温至无明水, 1 10°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式 为 RhNi 8CoQ.2V。.3Moo.804.2。用 l .Og该复合氧化物进行甲烷选择性氧化 反应, 原料气的摩尔组成为 CH4:02:H20 = 2: 1 :2 , CH4空速为 2800h-] , 反应在 I MPa和 550°C下进行 4小时。 经测定, 甲烷转化率为 12.7%, 乙醇及乙醛选择性为 68.5%。 实施例 18
分别称取 3.0g Co(N03)2*6H20、 0.7g Νί(Ν03)2·6Η20 和 2.1 g Rh(N03)3«2H20, 溶于 35g 去离子水中, 制得含硝酸钴、 硝酸镍和硝酸 铑的混合溶液。将 0.6g NH4VO3加入 20g去离子水中,然后用与 NH4V03 等摩尔的乙二酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含镍、 钴、 铑的硝酸盐酸性溶液混合均勾, 水浴加热至 75 °C。 将 0.4g (ΝΗ4 )6Μο7024·4Η20 溶于 40g 8%(重量)的氨水溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 pH值为 8 , 75 °C恒温搅拌 6 小时, 停止搅拌, 继续恒温至无明水, 1 10°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式 为 RhNicMCowV sMocnO^ a用 l .Og该复合氧化物进行甲烷选择性氧化 反应, 原料气的摩尔组成为 CH4:02:H20 = 2: 1 :2, CH4空速为 280011-1, 反应在 I MPa和 550°C下进行 4小时。 经测定, 曱烷转化率为 10.5%, 乙醇及乙醛选择性为 61.6%。 实施例 19
分别称取 0.9g Co(N03)2*6H20、 0.9 g Νι(Ν03)2·6Η20 和 4.9g Rh(N03 )3*2H20, 溶于 35g 去离子水中, 制得含硝酸钴、 硝酸镍和硝酸 铑的混合溶液。将 1.4g NH4VO3加入 20g去离子水中,然后用与 NH4V03 等摩尔的乙二酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含镍、 钴、 铑的硝酸盐酸性溶液混合均勾, 水浴加热至 75 °C。 将 1.6g (ΝΗ4)6Μο7024·4Η20 溶于 30g 8%(重量)的氨水溶液中 , 形成 (ΝΗ4)6 θ7θ24的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 ρΗ值为 7, 75 °C恒温搅拌 6 小时, 停止搅拌, 继续恒温至无明水, 1 10 °C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式 为 RhNi 2Coo.2Vo.7Mo 605.5。用 l .Og该复合氧化物进行甲烷选择性氧化 反应, 原料气的摩尔组成为 CH4:02:H20 = 2: 1 :3, CH4空速为 200011·1 , 反应在 1.5MPa和 550 Γ下进行 4小时。 经测定, 在 550°C下反应可得 到 14.8%的曱烷转化率和 69.7%的乙醇及乙醛选择性。
实施例 19获得的复合氧化物的粉末 X射线衍射谱图如图 6所示, 表明该复合氧化物呈现为结晶态。 实施例 20
分别称取 l .Og Co(N03)2'6H20、 1.9 g Νι(Ν03)2·6Η20 和 2.1g Rh(N03)3'2H20 , 溶于 35g 去离子水中, 制得含硝酸钴、 硝酸镍和硝酸 铑的混合溶液。将 0.4g NH4VO3加入 20g去离子水中,然后用与 NH4V03 等摩尔的乙二酸处理,制得含钒前体的深蓝色均勾溶液, 并与含镍、 钴、 铑的硝酸盐酸性溶液混合均 勾 , 水浴加热至 75 °C。 将 0.8g (ΝΗ4)6Μο7024·4Η20 溶于 30g 8%(重量)的氨水溶液中 , 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 pH值为 6, 75 °C恒温搅拌 6 小时, 停止搅拌, 继续恒温至无明水, 1 10°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式 为 RhNi1 0Co0.5V 5Moa7O6.4。用 l .Og该复合氧化物进行曱烷选择性氧化 反应, 原料气的摩尔组成为 CH4:02:H20 = 2: 1 :4 , CH4空速为 2000h , 反应在 2MPa和 550°C下进行 4小时。 经测定, 曱烷转化率为 15.1 %, 乙醇及乙醛选择性为 73.2%。 分别称取 2.0g Co(N03)2'6H20、 3.8 g Νι(Ν03)2·6Η20 和 4.2g Rh(N03)3'2H20, 溶于 35g 去离子水中, 制得含硝酸钴、 硝酸镍和硝酸 铑的混合溶液。 将 0.15g NH4VO3加入 20g 去离子水中, 然后用与 NH4V03等摩尔的乙二酸处理,制得含钒前体的深蓝色均匀溶液, 并与 含镍、 钴、 铑的硝酸盐酸性溶液混合均句, 水浴加热至 75°C。 将 0.2g (ΝΗ4)6Μο7024·4Η20 溶于 30g 8%(重量)的氨水溶液中 , 形成 (ΝΗ4)6Μθ7θ24的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 ρΗ值为 6, 75°C恒温搅拌 6 小时, 停止搅拌, 继续恒温至无明水, 110°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式 为 RhNiLoCo^VcuMocnC ^用 l.Og该复合氧化物进行曱烷选择性氧化 反应, 原料气的摩尔组成为 CH4:02:H20 = 2:1:4, CH4空速为 SOOOh , 反应在 2MPa和 550°C下进行 4小时。 经测定, 甲烷转化率为 10.7%, 乙醇及乙醛选择性为 51.7%。 实施例 22
分别称取 l.Og Co(N03)2*6H20、 1.9 g Νι(Ν03)2·6Η20 和 2.1g Rh(N03)3,2H20, 溶于 35g 去离子水中, 制得含硝酸钴、 硝酸镍和硝酸 铑的混合溶液。将 0.4g NH4VO3加入 20g去离子水中,然后用与 NH4V03 等摩尔的乙二酸处理,制得含钒前体的深蓝色均勾溶液, 并与含镍、 钴、 铑的硝酸盐酸性溶液混合均 勾 , 水浴加热至 75°C。 将 0.8g (ΝΗ4)6Μο7024·4Η20 溶于 30g 8%(重量)的氨水溶液中 , 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 pH值为 6, 75°C恒温搅拌 6 小时, 停止搅拌, 继续恒温至无明水, U0°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式 为 RhNiLoCoo.sVo.sMoojO 使用氢气还原制得的复合氧化物, 还原压 力 O.lMPa, 温度 350°C, 空速 1000 h , 还原时间 0.5h, 还原后复合氧 化物组成式为 RhNlL0Co0.5V0.5MO0.7O50。用 l.Og该还原后的复合氧化物 进行甲烷选择性氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2:1:4, CH4空速为 200011 反应在 2MPa和 550°C下进行 4小时。 经测定, 甲 烷转化率为 13.7%, 乙醇及乙醛选择性为 63.6%。 实施例 23
分别称取 1.2g Co(N03)2'6H20、 1.2 g Ni(N03)2'6H20 和 6.9g
Figure imgf000023_0001
, 用 35g 20% (重量)的硝酸溶液溶解, 制得含硝酸镍、 硝酸钴和硝酸铑的酸性混合溶液。 将 1.8g NH4V03加入 20g去离子水 中, 然后用与 NH4V03等摩尔的乙二酸处理,制得含钒前体的深蓝色均 匀溶液, 并与含镍、 钴、 铑的硝酸盐酸性溶液混合均勾, 加入 7.0g拟 薄水铝石, 水浴加热至 75 °C。 将 2.7g (ΝΗ4)6Μο7024·4Η20 溶于 30g 8% (重量)的氨水溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅 拌下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含钒前体的混合溶 液中, 用硝酸或氨水调节 pH值为 7, 75 °C恒温搅拌 6小时, 搅拌下水 浴蒸干, U 0°C干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式为 RhNi 2Coo.2Vo.7Mo0 705 8/Al203。 用 l .Og该复合氧 化物进行甲烷选择性氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2: 1 :2 , CH4空速为 200011-1 , 反应在 IMPa和 550°C下进行 4小时。 经测 定, 可得到 15.6%的曱烷转化率和 69.4%的乙醇及乙醛选择性。 实施例 24
分别称取 1.2g Co(N03)2'6H20、 1.2 g Νι(Ν03)2·6Η20 和 6.9g
Rh(N03)3«2H20, 用 35g 20% (重量)的硝酸溶液溶解, 制得含硝酸镍、 硝酸钴和硝酸铑的酸性混合溶液。 将 1.8g NH4V03加入 20g去离子水 中, 然后用与 NH4V03等摩尔的乙二酸处理,制得含钒前体的深蓝色均 匀溶液, 并与含镍、 钴、 铑的硝酸盐酸性溶液混合均勾, 加入 7.0g拟 薄水铝石, 水浴加热至 75 °C。 将 2.7g (ΝΗ4)6Μο7024·4Η20 溶于 30g 8% (重量)的氨水溶液中, 形成 (NH4)6Mo7024的氨水溶液。 将此溶液搅 拌下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含钒前体的混合溶 液中, 用硝酸或氨水调节 pH值为 7, 75 °C恒温搅拌 6小时, 搅拌下水 浴蒸干, 1 10 Ό干燥 24小时, 600°C空气焙烧 8小时, 制得复合氧化物。 复合氧化物组成式为 RhNi 2Coo.2Vo.75MoQ.7506.4/Al203。 使用氢气还原 制得的复合氧化物, 还原压力 O. lMPa, 温度 350°C , 空速 lOOO h , 还 原 时 间 0.5h , 还 原 后 复 合 氧 化 物 组 成 式 为 RhNi。.2Co。.2V 7Mo 705.5/Al203。 用 1.0g该还原后的复合氧化物进行曱 烷选择性氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2:1:2, CH4空 速为 2000b-1, 反应在 IMPa和 550°C下进行 4小时。 经测定, 可得到 15.1 %的甲烷转化率和 68.9%的乙醇及乙酪选择性。 实施例 25
分别称取 2.7g Co(N03)2*6H20、 2.7g Νί(Ν03)2·6Η20 和 3.0g Rh(N03)3'2H20, 用 35g 20% (重量)的硝酸溶液溶解, 制得含硝酸镍、 硝酸钴和硝酸铑的酸性混合溶液。 将 0.55g NH4VO3加入 20g去离子水 中, 然后用与 NH4V03等摩尔的乙二酸处理, 制得含钒前体的深蓝色 均匀溶液, 并与含镍、 钴、 铑的硝酸盐酸性溶液混合均勾, 加入 15.0g 含 MgO 为 5% (重量) 的二氧化硅, 水浴加热至 75°C。 将 l.Og (ΝΗ4)6Μο7θ24·4Η20 溶于 30g 8%(重量)的氨水溶液中 , 形成 (ΝΗ4)6Μθ7θ24的氨水溶液。 将此溶液搅拌下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含钒前体的混合溶液中, 用硝酸或氨水调节 ρΗ值为 7, 75°C恒温搅拌 6小时, 搅拌下水浴蒸干, 110°C干燥 24小时, 600°C 空气焙烧 8 小时, 制得复合氧化物。 复合氧化物组成式为 RhNi10Co10V0.5Mo06O64/MgO-SiO2。 用 l.Og该复合氧化物进行甲烷选 择性氧化反应, 原料气的摩尔组成为 CH4:〇2:H20 = 2:1:4, CH4空速为 2400b"1, 反应在 IMPa和 550°C下进行 4小时。 经测定, 可得到 16.5% 的曱烷转化率和 70.9%的乙醇及乙醛选择性。
实施例 25获得的复合氧化物的粉末 X射线衍射谱图如图 7所示, 表明该复合氧化物呈现为结晶态。 实施例 26
分别称取 2.2g Co(N03)2*6H20、 1.4 g Νι(Ν03)2·6Η20 和 2.1g Rh(N03)3«2H20, 溶于 35g 去离子水中, 制得含硝酸钴、 硝酸镍和硝酸 铑的混合溶液。将 0.5g NH4V03加入 20g去离子水中,然后用与 NH4V03 等摩尔的乙二酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含镍、 钴、 铑的硝酸盐酸性溶液混合均勾, 水浴加热至 75°C。 将 8% (重量)的 氨水溶液搅拌条件下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含 钒前体的混合溶液中, 用硝酸或氨水调节 pH值为 7, 75°C恒温搅拌 6 小时, 停止搅拌, 继续恒温至无明水, 110°C干燥 24 小时, 600°C空气 焙烧 8小时,制得 Co、 Ni、 Rh、 V复合氧化物。将 0.6g (ΝΗ4)6Μο7024·4Η20 溶于 20g去离子水中, 形成 (NH4)6Mo7024的水溶液。将此含 Mo水溶液 加入至 Co、 Ni、 Rh、 V复合氧化物中, 室温老化 2 小时, 110°C干燥 24小时, 600°C空气焙烧 8小时,制得组成与实施例 14相同的复合氧化 物。 复合氧化物组成式为 RhNi 8CoL2V0.7Mo0.5O68。 用 l.Og该复合氧化 物进行甲烷选择性氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2:0.8:3, CH4空速为 2000h , 反应在 2MPa和 600°C下进行 4小时。 经 测定, 曱烷转化率为 3.7%, 乙醇及乙醛选择性为 5.7%。 实施例 27
分别称取 2.2g Co(N03)2'6H20、 1.4 g Νί(Ν03)2·6Η20 和 2.1g Rh(N03)3*2H20, 溶于 35g 去离子水中, 制得含硝酸钴、 硝酸镍和硝酸 铑的混合溶液。将 0.5g NH4VO3加入 20g去离子水中,然后用与 NH4V03 等摩尔的乙二酸处理, 制得含钒前体的深蓝色均勾溶液, 并与含镍、 钴、 铑的硝酸盐酸性溶液混合均勾, 水浴加热至 75°C。 将 8% (重量)的 氨水溶液搅拌条件下緩慢滴加到上述含硝酸镍、 硝酸钴、 硝酸铑和含 钒前体的混合溶液中, 用硝酸或氨水调节 pH值为 7, 75°C恒温搅拌 6 小时, 停止搅拌, 继续恒温至无明水, 110°C干燥 24 小时, 600°C空气 焙烧 8小时,制得 Co、Ni、Rh、 V复合氧化物。将 0.6g (ΝΗ4)6Μο7024·4Η20 溶于 20g去离子水中, 形成 (NH4)6Mo7024的水溶液。将此含 Mo水溶液 加入至 Co、 Ni、 Rh、 V复合氧化物中, 室温老化 2 小时, 110°C干燥 24小时, 600°C空气焙烧 8小时,制得组成与实施例 14相同的复合氧化 物。 复合氧化物组成式为
Figure imgf000025_0001
使用氢气还原制得 的复合氧化物, 还原压力 O.lMPa, 温度 35CTC, 空速 lOOOh , 还原时 间 0.5h, 还原后复合氧化物组成式为 RhNi08Co12V07Mo05O37。 用 l.Og 该复合氧化物进行曱烷选择性氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2:0.8:3, CH4空速为 2000h , 反应在 2MPa和 600°C下进 行 4小时。 经测定, 曱烷转化率为 5.5%, 乙醇及乙醛选择性为 0.7%。 实施例 28
采用浸渍法制造 γ-三氧化二铝负载的铑钒钼复合氧化物。 称取 6.9gRh(N03)3«2H20, 溶于 lOg去离子水中, 制得硝酸铑的水溶液。 将 1.8g NH4V03溶于 10g去离子水中, 然后用与 NH4V〇3等摩尔的乙二酸 处理,制得含钒前体的深蓝色均匀溶液。将 2.7g (NH4)6Mo7024*4H20 溶 于 10g去离子水中, 形成 (NH4)6Mo7024的水溶液。 将上述三种溶液分 步浸渍负载于由 7.0g 拟水薄铝石制成的 γ-三氧化二铝中, 每步浸渍后 均千燥焙烧, 干燥条件为 1 10 °C , 24小时, 焙烧条件为空气气氛 600°C, 8小时。 制得与实施例 7相同组分与含量的复合氧化物。 复合氧化物组 成式为 RhV。.7Mo。.705 4/Al203。用 l .Og该复合氧化物进行甲烷选择性氧 化反应,原料气的摩尔组成为 CH4:02:H20 = 2: 1 :2 , CH4空速为 2000h人 反应在 I MPa和 55CTC下进行 4小时。 经测定, 曱烷转化率为 8.6%, 乙醇及乙醛总选择性为 0.5%。
实施例 28获得的复合氧化物的粉末 X射线衍射谱图如图 8所示, 表明该复合氧化物不具有结晶态。 实施例 29
采用浸渍法制造 γ-三氧化二铝负载的铑钒钼复合氧化物。称取 1.2g Co(N03)2*6H20、 1.2 g Ni(N03)2'6H20和 6.9gRh(N03)3'2H20, 溶于 10g 去离子水中, 制得硝酸钴、 硝酸镍、 硝酸铑的水溶液。 将 1.8g NH4V03 溶于 10g去离子水中, 然后用与 NH4V03等摩尔的乙二酸处理, 制得 含钒前体的深蓝色均匀溶液。 将 2.7g (ΝΗ4)6Μο7024·4Η20 溶于 10g去 离子水中, 形成 (NH4)6Mo7024的水溶液。 将上述三种溶液分步浸渍负 载于由 7.0g 拟水薄铝石制成的 γ-三氧化二铝中, 每步浸渍后均干燥焙 烧, 干燥条件为 1 10 °C, 24小时, 焙烧条件为空气气氛 600 °C , 8小时。 制得与实施例 23相同组分与含量的复合氧化物。 复合氧化物组成式为 RhNio.2Coo.2V0.7Mo0.705.8/Al203。 用 l .Og该复合氧化物进行曱烷选择性 氧化反应, 原料气的摩尔组成为 CH4:02:H20 = 2: 1 :2 , CH4 空速为 2000h人 反应在 IMPa和 550°C下进行 4小时。 经测定, 甲烷转化率为 10.9% , 乙醇及乙醛总选择性为 0.3%。

Claims

权 利 要 求
1. 一种复合氧化物, 其特征在于, 组成用式 RhRxMoyVzOs-a表示, 其中, R是 Ni、 Co或 Ni与 Co的组合, x=0-3.0, 优选 0.01-3.0, 更优 选 0.5-2.5,进一步优选 1.0-2.0, y=0.1-0.9,优选 0.2-0.7,更优选 0.4-0.6, z=0.1-0.9, 优选 0.2-0.9, 更优选 0.5-0.8, δ是正数, 代表该复合氧化物 中氧达到价态平衡时的值, α=0至 δ/2, 优选 0至 δ/4, 更优选 0, 在 R 是 Ni与 Co的组合时, 以摩尔比计, Ni:Co=0.01-20:1, 优选 0.1-10:1, 更优选 1-3:1。
2. 根据权利要求 1 所述的复合氧化物, 负载于载体上, 其中所述 复合氧化物与所述载体的重量比为 0.01-1:1, 优选 0.1-0.5:1, 更优选 0.1-0.3:1, 所述载体选自无机耐熔氧化物中的一种或多种, 优选选自 S1O2、 A1203、 MgO-Si02、 MgO-Al203、 Al203-Si02、 CaO-Si02 和 CaO-MgO-Si02中的一种或多种, 更优选选自 Si02、 A1203、 MgO-Si02、 MgO-Al203中的一种或多种。
3. 根据权利要求 1或 2所述的复合氧化物, 呈现为结晶态, 优选 在其粉末 X射线衍射图中, 至少在衍射角 2Θ为 28.5±0.5。处有衍射峰, 更优选至少在衍射角 2Θ为 18.5±0.5。、 28.5士 0.5。、 31.5士 0.5。和 34.5士 0.5。 处有衍射峰。
4. 一种复合氧化物的制造方法, 其特征在于, 包括以下步骤: 任选在载体的存在下, 使 Rh 源、 Mo 源、 V 源和任选使用的 Ni 源和 /或任选使用的 Co 源接触 (优选混合) , 发生反应而获得复合氧 化物, 其中所述 Rh源、 所述 Mo源、 所述 V源、 所述 Ni源和所述 Co 源的相对用量比使得所获得的复合氧化物的组成用式 RhRxMoy VzOs-a 表示, 其中, R是 Ni、 Co或 Ni与 Co的组合, x=0-3.0, 优选 0.01-3.0, 更优选 0.5-2.5, 进一步优选 1.0-2.0, y=0.1-0.9, 优选 0.2-0.7, 更优选 0.4-0.6, z=0.1-0.9, 优选 0.2-0.9, 更优选 0.5-0.8, δ是正数, 代表该复 合氧化物中氧达到价态平衡时的值, α=0, 在 R是 Ni与 Co的组合时, 以摩尔比计, Ni:Co=0.01-20:1, 优选 0.1-10:1, 更优选 1-3:1; 和任选对 所述复合氧化物进行部分还原, 以使 a达到大于 0至 δ/2, 优选大于 0 至 δ/4。
5. 根据权利要求 4所述的制造方法, 其中所述 Rh源选自 Rh的氧 化物、 氢氧化物、 无机酸盐和有机酸盐中的一种或多种, 优选选自 Rh 的水溶性无机酸盐和水溶性有机酸盐中的一种或多种, 更优选选自 Rh 的硝酸盐和醋酸盐中的一种或多种, 所述 Ni 源选自 Ni 的氧化物、 氢 氧化物、 无机酸盐和有机酸盐中的一种或多种, 优选选自 Ni的水溶性 无机酸盐和水溶性有机酸盐中的一种或多种, 更优选选自 Ni的硝酸盐 和醋酸盐中的一种或多种, 所述 Co源选自 Co的氧化物、 氢氧化物、 无机酸盐和有机酸盐中的一种或多种,优选选自 Co的水溶性无机酸盐 和水溶性有机酸盐中的一种或多种, 更优选选自 Co的硝酸盐和醋酸盐 中的一种或多种, 所述 Mo源选自 Mo的氧化物、氢氧化物、无机酸盐、 有机酸盐和含氧酸铵盐中的一种或多种,优选选自 Mo的水溶性无机酸 盐、 水溶性有机酸盐和含氧酸铵盐中的一种或多种, 更优选 Mo的含氧 酸铵盐, 所述 V源选自 V的氧化物、 氢氧化物、 无机酸盐、 有机酸盐 和含氧酸铵盐中的一种或多种, 优选选自 V的水溶性无机酸盐、 水溶 性有机酸盐和含氧酸铵盐中的一种或多种, 更优选 V的含氧酸铵盐, 所述载体选自无机耐熔氧化物和其前体中的一种或多种, 优选选自
Si02 、 A1203 、 MgO-Si02 、 MgO-Al203 、 Al203-Si02 、 CaO-Si02 、 CaO-MgO-Si02和这些无机耐熔氧化物的前体中的一种或多种, 更优选 选自 Si02、 A1203、 MgO-Si02、 MgO-Al203和其前体中的一种或多种, 并且所述载体的用量使得所述复合氧化物与以无机耐熔氧化物计的所 述载体的重量比达到 0.01 -1 : 1 , 优选 0.1 -0.5: 1 , 更优选 1 -3: 1。
6. 根据权利要求 4或 5所述的制造方法, 其中以水溶液的形式提 供所述 Rh源、 所述 Mo源、 所述 V源、 所述 Ni源和所述 Co源 , 通过 使这些水溶液发生共沉淀反应而获得含水浆液, 然后脱水、 干燥和焙 烧所述含水浆液, 获得所述复合氧化物。
7. 根据权利要求 6所述的制造方法, 其中所述反应的条件是: pH 值 3-10 , 优选 5-9 , 在搅拌下, 反应温度 60-90°C , 优选 70-80°C , 反应 时间 1- 12小时,优选 3-10小时;所述干燥的条件是:干燥温度 60-150°C , 优选 100-120°C , 干燥时间 4-48小时, 优选 6-36小时, 更优选 8-24小 时; 所述焙烧的条件是: 焙烧温度 400-900°C , 优选 500-700°C , 更优 选 580-680°C , 焙烧时间 3-10小时, 优选 4-8小时。
8. 根据权利要求 6或 7所述的制造方法, 其中所述 Mo源的水溶 液中还含有浓度为 l -3mol/L的氨,和 /或所述 V源的水溶液中还含有浓 度为 0.1-0.5mol/L的 C2_6多元羧酸, 优选乙二酸。
9. 根据权利要求 1-3 任一项所述的复合氧化物或者通过根据权利 要求 4-8 任一项所述的制造方法制造的复合氧化物作为甲烷选择性氧 化催化剂的用途。
10. 一种通过甲烷选择性氧化反应联产乙醇和乙醛的方法, 其特征 在于,以根据权利要求 1-3任一项所述的复合氧化物或者通过根据权利 要求 4-8任一项所述的制造方法制造的复合氧化物作为催化剂,通过曱 烷选择性氧化反应来联产乙醇和乙醛。
11. 根据权利要求 10 所述的联产乙醇和乙醛的方法, 其中所述甲 烷选择性氧化反应的反应条件为: 反应温度为 300-800°C, 优选 400-700 °C, 更优选 500-600°C; 反应压力为 0.1-5. OMPa (表压) , 优选 0.2-2. OMPa (表压) , 更优选 0.5-1.OMPa (表压) ; 以摩尔比为计, 原 料气的组成为 CH4: 〇2: Η2Ο-1:0.1-1:0.2-10, 优选 1:0.25-0.5:2-4; 甲 烷的空速为 1200-3500 h 优选 2000-2800 If1
PCT/CN2013/001217 2012-11-01 2013-10-10 一种复合氧化物、其制造方法及其应用 WO2014079142A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157014527A KR101880623B1 (ko) 2012-11-01 2013-10-10 복합 산화물, 그의 제조 방법 및 그의 용도
US14/440,096 US9314776B2 (en) 2012-11-01 2013-10-10 Composite oxide, preparation method for same, and application thereof
EP13857060.1A EP2915582B1 (en) 2012-11-01 2013-10-10 Composite oxide, preparation method for same, and application thereof
PL13857060T PL2915582T3 (pl) 2012-11-01 2013-10-10 Złożony tlenek, sposób jego wytwarzania i jego zastosowanie

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210427642 2012-11-01
CN201210427646 2012-11-01
CN201210427642.0 2012-11-01
CN201210427646.9 2012-11-01

Publications (2)

Publication Number Publication Date
WO2014079142A1 true WO2014079142A1 (zh) 2014-05-30
WO2014079142A8 WO2014079142A8 (zh) 2015-05-28

Family

ID=50698999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001217 WO2014079142A1 (zh) 2012-11-01 2013-10-10 一种复合氧化物、其制造方法及其应用

Country Status (7)

Country Link
US (1) US9314776B2 (zh)
EP (1) EP2915582B1 (zh)
KR (1) KR101880623B1 (zh)
CN (1) CN103801327B (zh)
PL (1) PL2915582T3 (zh)
TW (1) TWI605030B (zh)
WO (1) WO2014079142A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106552618A (zh) * 2015-09-25 2017-04-05 上海华谊能源化工有限公司 一种芳香族羧酸酯类苯环选择性加氢的催化剂及其制备方法和应用
CN106596224B (zh) * 2016-12-14 2019-02-19 中国石油大学(华东) 两步法制备天然气水合物岩样的实验装置及方法
CN109731571B (zh) * 2019-02-26 2020-07-10 武汉大学 一种用于高选择催化甲烷转化为乙醇的催化剂及其制备方法和用途
CN115734957A (zh) * 2020-06-30 2023-03-03 国立研究开发法人科学技术振兴机构 烷烃的部分氧化方法
CN114477298B (zh) * 2020-10-27 2024-02-09 中国石油化工股份有限公司 一种复合氧化物及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239316A (zh) * 2007-02-09 2008-08-13 中国石油化工股份有限公司 一种甲烷选择氧化制甲醛催化剂及其制备方法和应用
WO2010133461A1 (de) * 2009-05-20 2010-11-25 Basf Se Anlage und verfahren zur herstellung von höherwertigen kohlenwasserstoffen aus methan

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2628101B1 (fr) * 1988-03-03 1990-07-20 Rhone Poulenc Chimie Procede d'oxydation catalytique d'alcanes en melanges d'alcools et de cetones
US5220080A (en) * 1992-06-29 1993-06-15 Sun Company, Inc. (R&M) Chromia on metal oxide catalysts for the oxidation of methane to methanol
US5702838A (en) * 1995-08-18 1997-12-30 Matsushita Electric Industrial Co., Ltd. Fuel cell device equipped with catalyst material for removing carbon monoxide and method for removing carbon monoxide
KR100343550B1 (ko) * 1999-11-26 2002-07-20 한국화학연구원 희박농도의 메탄 산화촉매 및 그 제조방법
US20050107252A1 (en) * 2003-11-17 2005-05-19 Gaffney Anne M. Process for preparing mixed metal oxide catalyst
KR20050112375A (ko) * 2004-05-25 2005-11-30 주식회사 엘지화학 저온형 연료전지용 백금-로듐 합금 양극 촉매
CN101146753A (zh) * 2005-02-24 2008-03-19 罗伊·A·佩里亚纳 用于将烃转化成官能化产物的新型催化体系
CN101239310B (zh) * 2007-02-09 2010-05-19 中国石油化工股份有限公司 甲烷选择氧化制甲醛催化剂及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239316A (zh) * 2007-02-09 2008-08-13 中国石油化工股份有限公司 一种甲烷选择氧化制甲醛催化剂及其制备方法和应用
WO2010133461A1 (de) * 2009-05-20 2010-11-25 Basf Se Anlage und verfahren zur herstellung von höherwertigen kohlenwasserstoffen aus methan

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DING, SHI ET AL.: "Catalytic partial oxidation of methane over rhodium coated foam monolith", JOURNAL OF CHEMICAL INDUSTRY AND ENGINEERING (CHINA), vol. 58, no. 9, September 2007 (2007-09-01), pages 2255 - 2258, XP055252321 *
See also references of EP2915582A4 *
YANG QINGHUA ET AL.: "Development status of C1 chemical catalyst", HENAN CHEMICAL INDUSTRY, 1996, pages 8 - 10, XP008179140 *

Also Published As

Publication number Publication date
TWI605030B (zh) 2017-11-11
KR20150103664A (ko) 2015-09-11
CN103801327A (zh) 2014-05-21
CN103801327B (zh) 2016-01-06
EP2915582B1 (en) 2017-12-27
US20150321179A1 (en) 2015-11-12
US9314776B2 (en) 2016-04-19
KR101880623B1 (ko) 2018-07-19
WO2014079142A8 (zh) 2015-05-28
EP2915582A4 (en) 2016-07-13
PL2915582T3 (pl) 2018-06-29
TW201431824A (zh) 2014-08-16
EP2915582A1 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP4317211B2 (ja) 気相部分酸化反応用触媒及びその製造方法
WO2014079142A1 (zh) 一种复合氧化物、其制造方法及其应用
JP6355030B2 (ja) 混合金属酸化物アンモ酸化触媒用の焼成前添加物
KR20140108264A (ko) 알칸 탈수소화에 유용한 아연 및/또는 망간 알루미네이트 촉매
CN106693981A (zh) 一种甲醇氧化合成甲醛的铁钼催化剂及制法和应用
JPH10156185A (ja) アクリロニトリルへのプロピレンのアンモ酸化のための触媒
JP2007038224A (ja) アルカンおよびアルケンのアンモ酸化用のアンチモン酸塩触媒を調製する方法
MX2011001164A (es) Metodo de elaboracion de catalizadores de oxido metal mezclados para la amoxidacion y/u oxidacion de hidrocarburos de alcanos inferiores.
JP2013169482A (ja) アクリロニトリル製造用触媒、該アクリロニトリル製造用触媒の製造方法および該アクリロニトリル製造用触媒を用いたアクリロニトリルの製造方法
CN103201031A (zh) 新型甘油脱水用催化剂及其制造方法
WO2006001360A1 (ja) メタクリル酸合成用触媒の製造方法
CN110743562B (zh) 一种催化甲苯燃烧Ni-α-MnO2催化剂的合成方法
JP4743620B2 (ja) 改良触媒
CN112619645A (zh) 用于制备丙烯酸的催化剂及其制备方法和应用
JP2005329363A (ja) 複合酸化物触媒の製造方法
JP2008284416A (ja) 金属酸化物触媒の製造方法
KR101309259B1 (ko) 감마-비스무스 몰리브데이트 단일상 촉매 및 이를 이용한 1,3-부타디엔의 제조방법
JP2006512196A (ja) ピロリン酸バナジル触媒を製造する方法
TWI723839B (zh) 觸媒、觸媒之製造方法、丙烯腈之製造方法
JP4535611B2 (ja) 触媒およびこれを用いた不飽和ニトリルの製造方法
CN116371417B (zh) 一种用于合成3,4-二甲基吡咯的催化剂及其制备方法与应用
KR20190063657A (ko) 에탄의 산화탈수소화 반응용 촉매 시스템, 이의 제조방법 및 이를 이용한 에탄으로부터 에틸렌의 제조방법
CN109876854B (zh) 一种萘液相氧化催化剂、其制备方法和应用
JP7495497B2 (ja) シクロヘキサンジカルボン酸の異性化方法
JP5078222B2 (ja) 複合酸化物触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440096

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013857060

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157014527

Country of ref document: KR

Kind code of ref document: A