WO2014077125A1 - 成膜マスクの製造方法 - Google Patents

成膜マスクの製造方法 Download PDF

Info

Publication number
WO2014077125A1
WO2014077125A1 PCT/JP2013/079305 JP2013079305W WO2014077125A1 WO 2014077125 A1 WO2014077125 A1 WO 2014077125A1 JP 2013079305 W JP2013079305 W JP 2013079305W WO 2014077125 A1 WO2014077125 A1 WO 2014077125A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
mask
mark
forming
magnetic metal
Prior art date
Application number
PCT/JP2013/079305
Other languages
English (en)
French (fr)
Inventor
水村 通伸
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to KR1020157014247A priority Critical patent/KR102137222B1/ko
Priority to CN201380058995.0A priority patent/CN104797733B/zh
Publication of WO2014077125A1 publication Critical patent/WO2014077125A1/ja
Priority to US14/714,175 priority patent/US10208373B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/048Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories

Definitions

  • the present invention relates to a method of manufacturing a composite film forming mask in which a resin film obtained by laser processing a plurality of opening patterns corresponding to a thin film pattern is supported by a thin plate-shaped magnetic metal member, and in particular, formation of a plurality of opening patterns.
  • the present invention relates to a method for manufacturing a film formation mask for improving the positional accuracy.
  • a first resist pattern having a plurality of through openings is formed on a metal plate, and etching is performed through the through openings of the first resist pattern to penetrate the metal plate.
  • the first resist pattern is removed, and a second resist having a plurality of second through openings each exposing a predetermined width of the metal edge around each of the plurality of opening patterns
  • a pattern is formed on the metal plate, and etching is performed through the second through-openings of the second resist pattern, so that the mask main body around each of the plurality of through-openings and the periphery of the mask main body are positioned.
  • the second resist pattern is removed after the peripheral portion having a thickness larger than the thickness of the mask main body to be formed is formed (for example, Patent Document 1). Irradiation).
  • a metal plate is wet-etched to form a plurality of opening patterns penetrating the metal plate.
  • a precise opening pattern could not be formed with high accuracy.
  • the opening pattern on the entire surface of the mask cannot be formed uniformly due to the occurrence of etching unevenness.
  • the applicant applied a thin film-like film having a resin film formed with an opening pattern having the same shape and dimension as the thin film pattern formed on the substrate, and a through hole containing the opening pattern.
  • a composite-type film-forming mask in which a magnetic metal member is in close contact with the magnetic metal member has been proposed.
  • the composite film-formation mask is formed by laser processing an opening pattern in a thin resin film having a thickness of about 10 ⁇ m to 30 ⁇ m, and can form a high-definition opening pattern with high accuracy.
  • Such a large-area film formation mask has a feature that an opening pattern can be uniformly formed over the entire mask surface.
  • the aperture pattern is formed by laser processing of the film
  • the peripheral portion including the laser processing portion of the film formation mask is lifted by the impact of the irradiation energy of the laser beam L.
  • the position of the same part is shifted. Therefore, when a plurality of opening patterns are formed while relatively moving the stage on which the film formation mask is placed and the laser irradiation optical system at regular intervals, there is a possibility that the forming positions of the opening patterns are shifted.
  • an object of the present invention is to provide a method for manufacturing a film formation mask that addresses such problems and attempts to improve the formation position accuracy of a plurality of opening patterns.
  • a method of manufacturing a film formation mask according to the present invention includes a resin film in which an opening pattern having the same shape and dimension as a thin film pattern formed on a substrate is formed.
  • a method of manufacturing a composite film-formation mask in which a thin plate-like magnetic metal member having a through-hole having a size including the opening pattern is in close contact with the magnetic metal member having the through-hole formed therein,
  • a step of forming a mask member having a structure in close contact with the resin film before forming the opening pattern; and the film in the through hole of the mask member is irradiated with laser light to have a certain shape Forming a mark having a certain depth, and irradiating a laser beam at a predetermined position with reference to the mark to form the opening pattern penetrating the film.
  • the mark which is the opening pattern formation target
  • the mark can be formed with high positional accuracy without being affected by the impact of laser processing. it can. Furthermore, even when the position of the mark is displaced due to the impact of laser processing, the opening pattern is formed while the mark is detected by the imaging device to correct the position displacement of the mark, thereby improving the position accuracy of the opening pattern. can do.
  • FIG. 1 It is a front view which shows embodiment of the laser processing apparatus used for the manufacturing method of the film-forming mask by this invention. It is a figure which shows one structural example of the film-forming mask manufactured by the method of this invention, (a) is a top view, (b) is the OO sectional view taken on the arrow line of (a). It is explanatory drawing which shows the pre-process of the manufacturing method of the film-forming mask by this invention. It is explanatory drawing which shows the intermediate process of the manufacturing method of the film-forming mask by this invention. It is explanatory drawing which shows the post process of the manufacturing method of the film-forming mask by this invention. It is a modification of the film-forming mask manufactured by the method of this invention. It is a figure which shows the further modification of the film-forming mask manufactured by the method of this invention, (a) is a top view, (b) is sectional drawing.
  • FIG. 1 is a front view showing an embodiment of a laser processing apparatus used in a method for manufacturing a film formation mask according to the present invention.
  • This laser processing apparatus is for forming an opening pattern having the same shape and dimension as a thin film pattern formed on a substrate on a resin film.
  • the objective lens 3, the mask 4, the imaging device 5, and the illumination device 6 are configured.
  • the XY stage 1 mounts a mask member 7 in which a magnetic metal member having a through-hole having a size including an opening pattern and a resin film that transmits visible light are in close contact with each other, in the XY direction.
  • the first laser interferometer 8 for measuring the moving distance in the X and Y directions is provided.
  • the XY stage 1 integrates a mask member 7 placed and positioned on a reference substrate 9 on which a reference mark serving as a reference for forming the opening pattern is previously formed. Step by step.
  • a laser device 2 is disposed above the XY stage 1.
  • This laser device 2 is a third harmonic or a fourth harmonic of an excimer laser or a YAG laser having a wavelength of 400 nm or less, for example, KrF 248 nm, and the cross-sectional shape orthogonal to the optical axis is shaped to the same shape as the thin film pattern
  • the film is ablated by irradiating a laser beam L having an energy density of 1 J / cm 2 to 20 J / cm 2 to form an opening pattern.
  • it is comprised including the beam expander which expands the size of a laser beam to predetermined magnitude
  • An objective lens 3 is provided on the optical path of the laser beam L so as to face the XY stage 1.
  • the objective lens 3 is for condensing the laser light L on the film and laser processing the film, and is provided so as to be movable up and down along the optical axis.
  • the image of the through-opening of the mask 4 is reduced and projected on the film, and the reference mark on the reference substrate 9 and the mark to be described later, which is the formation target of the opening pattern formed on the film, are provided on the light receiving element surface of the imaging device 5 to be described later An image is formed on the top.
  • a second laser interferometer 11 is attached to the objective lens 3, and it is possible to detect the amount of positional deviation of the objective lens 3 in the XY directions based on the mechanical accuracy of a drive mechanism that moves the objective lens 3 up and down. It is like that.
  • a mask 4 is detachably provided between the laser device 2 and the objective lens 3 on the optical path of the laser light L.
  • the mask 4 is similar to the first mask 4A in which a first through-opening having a shape similar to the opening pattern to be formed on the film is formed, and the mark for forming the opening pattern formation target.
  • the second mask 4B is formed with a second through-opening having a shape.
  • the first through-opening and the second through-opening are formed at positions separated from each other on the same mask 4, and the mask 4 is slid in a plane parallel to the XY plane, so that the first through-opening and the second through-opening are formed.
  • the through-opening may be switched and used.
  • An imaging device 5 is provided on the optical path where the optical path from the objective lens 3 through the imaging lens 10 to the mask 4 is branched by the half mirror 12.
  • the imaging device 5 is a two-dimensional CCD camera for detecting a reference mark provided on the reference substrate 9 and a mark formed on the film.
  • the imaging position of the objective lens 3 and the light receiving surface of the imaging device 5 and the mask 4 are arranged in a conjugate relationship.
  • the illumination device 6 is provided on the optical path where the optical path from the objective lens 3 toward the imaging lens 10 is branched by the half mirror 13.
  • the illumination device 6 is for illuminating a reference mark provided on the reference substrate 9 and a mark formed on the film so that the image pickup device 5 can detect the reference mark and mark.
  • a white light source such as a lamp.
  • the film formation mask of the present invention using the laser processing apparatus configured as described above.
  • the step of forming the mask member 7 having a structure in which the magnetic metal member in which the through hole is formed and the resin film before forming the opening pattern are in close contact with each other will be described.
  • the manufactured film formation mask corresponds to a plurality of thin film patterns to be formed on the substrate, and has the same arrangement pitch as the thin film pattern and a rectangular shape having a larger dimension than the thin film pattern.
  • a magnetic metal member 15 having through-holes 14 in the form of a matrix, and a film 17 corresponding to a plurality of thin film patterns and having an opening pattern 16 having the same arrangement pitch as the thin film pattern and the same dimension as the thin film pattern in a matrix form A case where the structure has a close contact with each other will be described.
  • reference numeral 18 denotes a mask side alignment mark.
  • FIG. 3 is an explanatory view showing the formation stage of the mask member 7.
  • a magnetic metal sheet 19 made of a magnetic metal material having a thickness of about 30 ⁇ m to 50 ⁇ m made of, for example, nickel, a nickel alloy, Invar, or Invar alloy is used.
  • a film 17 that transmits visible light having a thickness of about 10 ⁇ m to 30 ⁇ m is applied by applying a resin liquid such as polyimide or polyethylene terephthalate (PET) to one surface 19a of the magnetic metal sheet 19 and drying it.
  • a resin liquid such as polyimide or polyethylene terephthalate (PET)
  • a resist is applied on the other surface 19b of the magnetic metal sheet 19 by spraying, for example, and then dried to form a resist film.
  • the resist is formed using a photomask. After the film is exposed, it is developed to form a resist mask 21 having a plurality of openings 20 having a shape dimension larger than that of the thin film pattern at a position corresponding to the plurality of thin film patterns.
  • the magnetic metal sheet 19 is wet-etched using the resist mask 21 to remove the portion of the magnetic metal sheet 19 corresponding to the opening 20 of the resist mask 21 and penetrate therethrough.
  • the resist mask 21 is removed by dissolving it in an organic solvent, for example. Thereby, the mask member 7 in which the magnetic metal member 15 and the resin film 17 are brought into close contact with each other is formed.
  • an etching solution for etching the magnetic metal sheet 19 is appropriately selected according to the material of the magnetic metal sheet 19 to be used, and a known technique can be applied.
  • the alignment is made with respect to the substrate side alignment mark previously provided on the substrate at a predetermined position outside the formation region of the plurality of through holes 14.
  • a mask-side alignment mark 18 may be formed at the same time.
  • an alignment mark opening may be provided at a position corresponding to the mask side alignment mark 18.
  • FIG. 4 is an explanatory diagram showing a mark formation stage which is an opening pattern formation target.
  • the film 17 surface of the mask member 7 is brought into close contact with the other surface 9b of the reference substrate 9 in which the reference mark 22 is formed on one surface 9a of the transparent substrate.
  • the two marks are in a certain positional relationship (for example, Align so that the centers match.
  • the integrated mask member 7 and reference substrate 9 are placed on the XY stage 1 so that the reference substrate 9 is on the stage side. Further, the illumination device 6 is turned on to illuminate the vicinity region including the imaging position of the objective lens 3, and at the same time, the imaging device 5 is activated to acquire an image of the imaging position of the objective lens 3.
  • the XY stage 1 is moved in the XY direction, and the through hole 14 located at, for example, the upper left corner of the magnetic metal member 15 shown in FIG. 2A is positioned below the objective lens 3. Then, while observing with the imaging device 5, the objective lens 3 is moved up and down to adjust the focus of the objective lens 3 so that the image of the reference mark 22 on the reference substrate 9 becomes clear.
  • the XY stage 1 is finely adjusted so that the center of the reference mark 22 matches the center of the visual field of the objective lens 3 by processing.
  • the second mask 4B is attached as the mask 4 of the laser processing apparatus, and the center of the second through opening is aligned with the optical axis of the optical system of the laser processing apparatus.
  • the objective lens 3 When the detection of the reference mark 22 is completed, the objective lens 3 is raised, and the focus point of the objective lens 3 is positioned on the surface of the film 17. At this time, the amount of displacement of the objective lens 3 in the XY direction is measured by the second laser interferometer 11. Then, the XY stage 1 is finely adjusted so as to correct the positional deviation amount of the objective lens 3 while measuring the movement amount of the stage by the first laser interferometer 8.
  • the laser device 2 is activated and the laser beam L is emitted to irradiate the second mask 4B.
  • the laser light L emitted from the second mask 4B is shaped so that the cross-sectional shape intersecting the optical axis is similar to the outer shape of the mark that is the formation target of the opening pattern 16 by the second through-opening of the second mask 4B.
  • the light is condensed on the film 17 through the imaging lens 10 and the objective lens 3.
  • the second through-opening is reduced and projected onto the film 17 by the imaging lens 10 and the objective lens 3, and the mark 23 is formed on the film 17 corresponding to the reference mark 22 as shown in FIG. Is formed.
  • the mark 23 is formed by fewer shots, for example, two shots. Thereby, a shallow recess (scratch) to be the mark 23 is formed in the film 17.
  • the mark 23 is preferably formed with an irradiation energy smaller than the irradiation energy of the laser beam L for forming the opening pattern 16.
  • the XY stage 1 is stepped in the XY direction (for example, the direction opposite to the arrow in FIG. 4B) from the processing start position, As shown in FIG. 4C, the mark 23 is formed at a predetermined position in each through hole 14 of the magnetic metal member 15. When the formation of all the marks 23 is completed, the XY stage 1 is returned to the processing start position.
  • FIG. 5 is an explanatory view showing the laser processing stage of the opening pattern 16.
  • the second mask 4B of the laser processing apparatus is replaced with the first mask 4A, and the center of the first through opening of the first mask 4A is aligned with the optical axis of the optical system of the laser processing apparatus.
  • the mark 23 at the processing start position is detected by the imaging device 5, and the XY stage 1 is finely adjusted so that the center of the mark 23 coincides with the center of the visual field of the objective lens 3.
  • the laser device 2 is activated to emit, for example, 25 shots of laser light L for forming the opening pattern 16.
  • the laser light L is shaped so that the cross-sectional shape intersecting the optical axis is similar to the opening pattern 16 by the first through-opening of the first mask 4A, and is reduced and projected onto the film 17 by the imaging lens 10 and the objective lens 3. Is done.
  • the first opening pattern 16 is formed through the film 17 in the portion of the film 17 corresponding to the mark 23.
  • the XY stage 1 is stepped by the same distance as the arrangement pitch (design value) of the aperture pattern 16 in the opposite direction to the arrow shown in FIG. It is positioned above the adjacent mark 23 adjacent to the mark 23 at the start position.
  • the mask member 7 may be partially lifted by the impact of the first opening pattern 16 by laser processing, and the position of the mark 23 may be displaced. Therefore, in the present invention, before the second aperture pattern 16 is laser processed, the second mark 23 formed on the film 17 is photographed and detected by the imaging device 5, and the center of the mark 23 is the objective lens 3.
  • the position of the XY stage 1 is finely adjusted so as to match the visual field center.
  • the laser device 2 When the positional deviation of the mark 23 is corrected as described above, the laser device 2 is activated and a plurality of shots of the laser light L is irradiated onto the mark 23, and the second shot as shown in FIG.
  • the opening pattern 16 is laser processed.
  • the XY stage 1 is moved stepwise in the XY direction (for example, the direction opposite to the arrow in FIG. 5B), and each time the mark 23 is detected by the imaging device 5 and the positional deviation of the mark 23 is corrected.
  • the laser beam L is irradiated later, and each opening pattern 16 is laser processed.
  • the laser beam L is accurately applied onto the mark 23 that is the formation target of the opening pattern 16. Irradiation can form the opening pattern 16, and the formation position accuracy of the opening pattern 16 can be improved.
  • each through hole 14 of the magnetic metal member 15 has been described.
  • the present invention is not limited to this, and the inside of the through hole 14 is not limited thereto.
  • a plurality of opening patterns 16 may be formed.
  • FIG. 6 shows a modification of the film formation mask manufactured by the method of the present invention.
  • This film-forming mask has a size in which the through holes 14 provided in the magnetic metal member 15 include a plurality of opening patterns 16, and the plurality of opening patterns 16 have marks 23 in the through holes 14. It is formed at a predetermined position as the center.
  • Such a film formation mask can be manufactured as follows. First, a first mask 4A provided with a plurality of first through openings at a predetermined position centering on a position that matches the optical axis of the optical system of the laser processing apparatus, so that the center matches the optical axis. A second mask 4B provided with a second through opening is prepared.
  • the second mask 4B is replaced with the first mask 4A, the mark 23 is photographed by the imaging device 5, and the XY stage 1 is finely adjusted so as to correct the positional deviation of the mark 23 to adjust the mark 23.
  • the center is matched with the center of the visual field of the objective lens 3.
  • a plurality of opening patterns 16 are simultaneously formed at a predetermined position around the mark 23 by irradiating the laser beam L.
  • the laser beam L is irradiated, The opening pattern 16 is laser processed.
  • the plurality of opening patterns 16 are processed based on the marks 23 formed in advance, the plurality of opening patterns 16 can be formed with high positional accuracy.
  • the deposition mask is composed of the magnetic metal member 15 and the film 17 .
  • the present invention is not limited to this, and the deposition mask is as shown in FIG.
  • the film 17 is disposed on one end face 25a of a frame-like frame 25 having a plurality of through holes 14 of the magnetic metal member 15 and an opening 24 having a size including the through holes 26 for alignment marks formed simultaneously with the through holes 14. It may be bonded to the peripheral edge of the magnetic metal member 15 on the side opposite to the close side.
  • the mask member 7 from which the peripheral portion of the film 17 has been removed is stretched around the frame 25 and the magnetic metal member 15 and the frame 25 are spot welded, and then laser-processed to form the mark 23, and It is desirable that the opening pattern 16 is formed in the through hole 14 with the mark 23 as a reference, and the mask side alignment mark 18 is formed in the alignment mark through hole 26. Accordingly, when the mask member 7 is stretched over the frame 25, it is possible to prevent the mask member 7 from extending and the positions of the opening pattern 16 and the mask side alignment mark 18 from being shifted.
  • the formation of the mark 23 and the opening pattern 16 may be performed sequentially in the X direction or the Y direction while moving the XY stage 1 stepwise, or may be performed in an XY zigzag manner.

Abstract

 本発明は、貫通孔を形成した薄板状の磁性金属部材と、樹脂製フィルムとが密接された構造のマスク用部材7を形成する段階と、前記マスク用部材の前記貫通孔内の前記フィルムにレーザ光を照射して一定深さのマークを形成する段階と、前記マークを基準にして予め定められた位置にレーザ光を照射して前記フィルムを貫通する前記開口パターンを形成する段階と、を含むものである。

Description

成膜マスクの製造方法
 本発明は、薄膜パターンに対応して複数の開口パターンをレーザ加工した樹脂製フィルムを薄板状の磁性金属部材で支持した複合型の成膜マスクの製造方法に関し、特に、複数の開口パターンの形成位置精度を向上しようとする成膜マスクの製造方法に係るものである。
 従来の成膜マスクの製造方法は、複数の貫通開口を有する第1レジストパターンを金属板上に形成し、上記第1レジストパターンの貫通開口を介してエッチング処理を行なって上記金属板に貫通する複数の開口パターンを形成した後、上記第1レジストパターンを除去し、上記複数の開口パターンの各々の周りの所定幅の金属縁部を各々が露出せしめる複数の第2貫通開口を有する第2レジストパターンを上記金属板上に形成し、上記第2レジストパターンの第2貫通開口を介してエッチング処理を行なって上記複数の貫通開口の各々の周りのマスク本体部と該マスク本体部の周囲に位置するマスク本体部の厚さより大なる厚さを有する周縁部とを形成した後、上記第2レジストパターンを除去するものとなっていた(例えば、特許文献1参照)。
特開2001-237072号公報
 しかし、このような従来の成膜マスクの製造方法においては、金属板をウェットエッチング処理して該金属板に貫通する複数の開口パターンを形成しているので、ウェットエッチングの等方性により高精細な開口パターンを精度よく形成することができなかった。特に、一辺の長さが数10cm以上の大面積の例えば有機EL表示パネル用の成膜マスクの場合、エッチングむらの発生によりマスク全面の開口パターンを均一に形成することができなかった。
 そこで、出願人は、基板に成膜される薄膜パターンに対応して該薄膜パターンと形状寸法の同じ開口パターンを形成した樹脂製のフィルムと、開口パターンを内包する貫通孔を形成した薄板状の磁性金属部材とを密接させた複合型の成膜マスクを提案している。
 上記複合型の成膜マスクは、厚みが10μm~30μm程度の薄い樹脂製フィルムに開口パターンをレーザ加工して形成するものであり、高精細な開口パターンを精度よく形成することができると共に、上述のような大面積の成膜マスクもマスク全面に亘って均一に開口パターンを形成することができるという特長を有している。
 この場合、フィルムをレーザ加工して開口パターンを形成しているため、開口パターンがフィルムを貫通するとレーザ光Lの照射エネルギーによる衝撃で、成膜マスクのレーザ加工部を含むその周辺部分が浮き上り、同部分の位置がずれるおそれがある。したがって、成膜マスクを載置するステージとレーザ照射光学系とを一定間隔で相対的にステップ移動させながら複数の開口パターンを形成する場合、各開口パターンの形成位置がずれるおそれがあった。
 そこで、本発明は、このような問題点に対処し、複数の開口パターンの形成位置精度を向上しようとする成膜マスクの製造方法を提供することを目的とする。
 上記目的を達成するために、本発明による成膜マスクの製造方法は、基板に成膜される薄膜パターンに対応して該薄膜パターンと形状寸法の同じ開口パターンを形成した樹脂製のフィルムと、前記開口パターンを内包する大きさの貫通孔を形成した薄板状の磁性金属部材とを密接させた複合型の成膜マスクの製造方法であって、前記貫通孔を形成した前記磁性金属部材と、前記開口パターンを形成する前の樹脂製フィルムとが密接された構造のマスク用部材を形成する段階と、前記マスク用部材の前記貫通孔内の前記フィルムにレーザ光を照射して一定形状を有する一定深さのマークを形成する段階と、前記マークを基準にして予め定められた位置にレーザ光を照射して前記フィルムを貫通する前記開口パターンを形成する段階と、を含むものである。
 本発明によれば、事前に開口パターンの形成目標となるマークをフィルム上に浅い深さで形成しているので、上記マークはレーザ加工の衝撃による影響を受けることなく位置精度よく形成することができる。さらに、開口パターンの形成は、レーザ加工の衝撃によりマークの位置がずれた場合でも撮像装置により上記マークを検出してマークの位置ずれを補正しながら行われるので、開口パターンの形成位置精度を向上することができる。
本発明による成膜マスクの製造方法に使用するレーザ加工装置の実施形態を示す正面図である。 本発明の方法により製造される成膜マスクの一構成例を示す図であり、(a)は平面図、(b)は(a)のO-O線断面矢視図である。 本発明による成膜マスクの製造方法の前工程を示す説明図である。 本発明による成膜マスクの製造方法の中間工程を示す説明図である。 本発明による成膜マスクの製造方法の後工程を示す説明図である。 本発明の方法により製造される成膜マスクの変形例である。 本発明の方法により製造される成膜マスクの更なる変形例を示す図であり、(a)は平面図、(b)は断面図である。
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明による成膜マスクの製造方法に使用するレーザ加工装置の実施形態を示す正面図である。このレーザ加工装置は、基板に成膜される薄膜パターンに対応して該薄膜パターンと形状寸法の同じ開口パターンを樹脂製のフィルムに形成するためのもので、XYステージ1と、レーザ装置2と、対物レンズ3と、マスク4と、撮像装置5と、照明装置6とを備えて構成されている。
 上記XYステージ1は、開口パターンを内包する大きさの貫通孔を形成した磁性金属部材と、可視光を透過する樹脂製のフィルムとを密接させたマスク用部材7を載置して、XY方向にステップ移動させるものであり、X,Y方向への移動距離を計測する第1のレーザ干渉計8を備えている。
 詳細には、上記XYステージ1は、上記開口パターンを形成するための基準となる基準マークを予め形成した基準基板9上に位置決めして載置されたマスク用部材7を、基準基板9と一体的にステップ移動するものである。
 上記XYステージ1の上方には、レーザ装置2が配設されている。このレーザ装置2は、波長が400nm以下の、例えばKrF248nmのエキシマレーザやYAGレーザの第3高調波或いは第4高調波であり、光軸に直交する断面形状が薄膜パターンと同じ形状寸法に整形されたエネルギー密度が1J/cm~20J/cmのレーザ光Lを照射してフィルムをアブレーションし、開口パターンを形成するためのものである。そして、レーザビームのサイズを所定の大きさまで拡張するビームエキスパンダを含んで構成されている。
 上記レーザ光Lの光路上には、上記XYステージ1に対向させて対物レンズ3が設けられている。この対物レンズ3は、レーザ光Lをフィルム上に集光してフィルムをレーザ加工するためのもので、光軸に沿って上下動可能に設けられ、結像レンズ10と協働して後述のマスク4の貫通開口の像をフィルム上に縮小投影すると共に、上記基準基板9の基準マーク及びフィルム上に形成される開口パターンの形成目標となる後述のマークを後述の撮像装置5の受光素子面上に結像するようになっている。また、上記対物レンズ3には、第2のレーザ干渉計11が取り付けられており、対物レンズ3を上下動させる駆動機構の機械精度に基づく対物レンズ3のXY方向への位置ずれ量を検出できるようになっている。
 上記レーザ光Lの光路上にて上記レーザ装置2と対物レンズ3との間には、マスク4が着脱可能に設けられている。このマスク4は、フィルムに形成しようとする開口パターンと相似形の第1貫通開口を形成した第1のマスク4Aと、上記開口パターンの形成目標となるマークを形成するための、該マークと相似形の第2貫通開口を形成した第2のマスク4Bから成っている。なお、上記第1貫通開口と第2貫通開口とを同一のマスク4上の互いに離れた位置に形成し、マスク4をXY平面に平行な面内をスライド移動して第1貫通開口と第2貫通開口とを切替えて使用できるようにしてもよい。
 上記対物レンズ3から結像レンズ10を通って上記マスク4に向かう光路がハーフミラー12により分岐された光路上には、撮像装置5が設けられている。この撮像装置5は、上記基準基板9に設けられた基準マーク及びフィルムに形成されたマークを検出するためのもので、二次元CCDカメラである。そして、対物レンズ3の結像位置と撮像装置5の受光面及びマスク4とは共役の関係に配置されている。
 上記対物レンズ3から上記結像レンズ10に向かう光路がハーフミラー13により分岐された光路上には、照明装置6が設けられている。この照明装置6は、上記基準基板9に設けられた基準マーク及びフィルムに形成されたマークを照明して撮像装置5により上記基準マーク及びマークが検出できるようにするためのものであり、例えばハロゲンランプ等の白色光源である。
 次に、このように構成されたレーザ加工装置を使用して本発明の成膜マスクを製造する方法について説明する。
 最初に、貫通孔を形成した磁性金属部材と開口パターンを形成する前の樹脂製フィルムとが密接された構造のマスク用部材7を形成する段階について説明する。なお、ここでは、製造される成膜マスクが、図2に示すように基板に形成しようとする複数の薄膜パターンに対応して該薄膜パターンと同じ配列ピッチで薄膜パターンよりも形状寸法の大きい矩形状の貫通孔14をマトリクス状に有する磁性金属部材15と、複数の薄膜パターンに対応して該薄膜パターンと同じ配列ピッチで薄膜パターンと形状寸法の同じ開口パターン16をマトリクス状に有するフィルム17とを密接させた構造を有するものである場合について説明する。なお、同図において、符号18はマスク側アライメントマークを示す。
 図3はマスク用部材7の形成段階を示す説明図である。
 先ず、同図(a)に示すように、例えばニッケル、ニッケル合金、インバー又はインバー合金等からなる厚みが30μm~50μm程度の磁性金属材料の磁性金属シート19を、成膜対象である基板の表面積に合わせて切り出し、該磁性金属シート19の一面19aに例えばポリイミド又はポリエチレンテレフタレート(PET)等の樹脂液を塗布し、これを乾燥させて厚みが10μm~30μm程度の可視光を透過するフィルム17を形成する。
 次いで、図3(b)に示すように、磁性金属シート19の他面19bにレジストを例えばスプレー塗布した後、これを乾燥させてレジストフィルムを形成し、次に、フォトマスクを使用してレジストフィルムを露光した後、現像して複数の薄膜パターンに対応した位置に該薄膜パターンよりも形状寸法の大きい複数の開口20を有するレジストマスク21を形成する。
 続いて、図3(c)に示すように、上記レジストマスク21を使用して磁性金属シート19をウェットエッチングし、レジストマスク21の開口20に対応した部分の磁性金属シート19を除去して貫通孔14を形成して磁性金属部材15を形成した後、レジストマスク21を例えば有機溶剤に溶解させて除去する。これにより、磁性金属部材15と樹脂製のフィルム17とを密接させたマスク用部材7が形成される。なお、磁性金属シート19をエッチングするためのエッチング液は、使用する磁性金属シート19の材料に応じて適宜選択され、公知の技術を適用することができる。
 また、磁性金属シート19をエッチングして貫通孔14を形成する際に、複数の貫通孔14の形成領域外の予め定められた位置に基板に予め設けられた基板側アライメントマークに対して位置合わせするためのマスク側アライメントマーク18を同時に形成してもよい。この場合、レジストマスク21を形成する際に、マスク側アライメントマーク18に対応した位置にアライメントマーク用の開口を設けるとよい。
 次に、マスク用部材7の貫通孔14内のフィルム17にレーザ光Lを照射して一定形状を有する一定深さのマークを形成する段階について説明する。
 図4は開口パターンの形成目標となるマーク形成段階を示す説明図である。
 先ず、図4(a)に示すように、透明な基板の一面9aに基準マーク22を形成した基準基板9の他面9bにマスク用部材7のフィルム17面を密着させて一体化する。この際、磁性金属部材15のマスク側アライメントマーク18と基準基板9に予め設けられた基板側アライメントマークとを顕微鏡で観察しながら、両マークが一定の位置関係を成すように(例えば両マークの中心が合致するように)位置合わせする。
 次いで、一体化された上記マスク用部材7及び基準基板9は、基準基板9がステージ側となるようにしてXYステージ1上に載置される。また、照明装置6が点灯されて対物レンズ3の結像位置を含むその近傍領域が照明され、同時に、撮像装置5が起動されて対物レンズ3の結像位置の像が取得される。
 続いて、XYステージ1をXY方向に移動して、図2(a)に示す磁性金属部材15の、例えば左上端隅部に位置する貫通孔14を対物レンズ3の下側に位置付ける。そして、撮像装置5により観察しながら、対物レンズ3を上下動して基準基板9の基準マーク22の像が鮮明になるように対物レンズ3のフォーカス調整を行った後、基準マーク22の画像を処理して基準マーク22の中心が対物レンズ3の視野中心に合致するようにXYステージ1を微動調整する。このとき、レーザ加工装置のマスク4としては、第2のマスク4Bが取り付けられており、第2貫通開口の中心がレーザ加工装置の光学系の光軸に合致されている。
 基準マーク22の検出が終了すると、対物レンズ3が上昇され、対物レンズ3のフォーカス点がフィルム17の表面に位置付けられる。このとき、第2のレーザ干渉計11により対物レンズ3のXY方向への位置ずれ量を計測する。そして、第1のレーザ干渉計8によりステージの移動量を計測しながら、対物レンズ3の位置ずれ量を補正するようにXYステージ1を微動調整する。
 次に、レーザ装置2が起動されてレーザ光Lが発射され、第2のマスク4Bに照射する。第2のマスク4Bを射出するレーザ光Lは、第2のマスク4Bの第2貫通開口により光軸に交差する断面形状が開口パターン16の形成目標となるマークの外形と相似形に整形され、結像レンズ10及び対物レンズ3を通ってフィルム17上に集光される。これにより、上記第2貫通開口が結像レンズ10及び対物レンズ3によりフィルム17上に縮小投影され、図4(b)に示すように、上記基準マーク22に対応したフィルム17部分に上記マーク23が形成される。この場合、レーザ光Lの複数ショット(例えば25ショット)により開口パターン16を形成するときには、マーク23の形成はそのショット回数よりも少ない、例えば2ショットで形成する。これにより、フィルム17には、上記マーク23となる深さの浅い凹部(傷)が形成される。
 なお、開口パターン16がレーザ光Lの1ショットで形成されるときには、上記マーク23は開口パターン16を形成するためのレーザ光Lの照射エネルギーよりも小さい照射エネルギーで形成するとよい。
 以降、形成しようとする複数の開口パターン16の、配列の設計値に基づいて、XYステージ1が加工開始位置からXY方向(例えば、図4(b)の矢印と反対方向)にステップ移動され、図4(c)に示すように磁性金属部材15の各貫通孔14内の所定位置に上記マーク23が形成される。そして、全てのマーク23の形成が終了すると、XYステージ1が加工開始位置まで戻される。
 次に、フィルム17を貫通する開口パターン16のレーザ加工段階について説明する。
 図5は開口パターン16のレーザ加工段階を示す説明図である。
 先ず、レーザ加工装置の第2のマスク4Bが第1のマスク4Aに取り替えられ、第1のマスク4Aの第1貫通開口の中心がレーザ加工装置の光学系の光軸に合致される。
 続いて、撮像装置5により加工開始位置のマーク23が検出され、マーク23の中心が対物レンズ3の視野中心に合致するようにXYステージ1が微動調整される。それが終了すると、レーザ装置2が起動されて開口パターン16を形成するための例えば25ショットのレーザ光Lが発射される。レーザ光Lは、第1のマスク4Aの第1貫通開口により光軸に交差する断面形状が開口パターン16に相似の形状に整形され、結像レンズ10及び対物レンズ3によりフィルム17上に縮小投影される。これにより、図5(a)に示すように、上記マーク23に対応したフィルム17部分に最初の開口パターン16がフィルム17を貫通して形成される。
 最初の開口パターン16の形成が終わると、XYステージ1を開口パターン16の配列ピッチ(設計値)と同じ距離だけ図5(b)に示す矢印と反対方法にステップ移動し、対物レンズ3を加工開始位置のマーク23に隣接した隣のマーク23の上方に位置付ける。この場合、最初の開口パターン16のレーザ加工による衝撃によりマスク用部材7が部分的に浮き上りマーク23の位置がずれることがある。そこで、本発明においては、2番目の開口パターン16をレーザ加工する前に、フィルム17に形成された2番目のマーク23を撮像装置5により撮影して検出し、マーク23の中心が対物レンズ3の視野中心に合致するようにXYステージ1の位置を微調整する。
 上記のようにしてマーク23の位置ずれが補正されると、レーザ装置2が起動されて複数ショットのレーザ光Lが上記マーク23上に照射され、図5(b)に示すように2番目の開口パターン16がレーザ加工される。
 以降、XYステージ1をXY方向(例えば、図5(b)の矢印とは反対方向)にステップ移動しながら、その都度、撮像装置5によるマーク23の検出及びマーク23の位置ずれ補正を行なった後にレーザ光Lを照射し、各開口パターン16をレーザ加工する。これにより、開口パターン16のレーザ加工による衝撃でマスク用部材7が部分的に浮き上って位置ずれが生じた場合でも、開口パターン16の形成目標であるマーク23上に正確にレーザ光Lを照射して開口パターン16を形成することができ、開口パターン16の形成位置精度を向上することができる。
 なお、以上の説明においては、磁性金属部材15の各貫通孔14内に、それぞれ一つずつ開口パターン16が形成される場合について述べたが、本発明はこれに限られず、貫通孔14内には、複数の開口パターン16が形成されてもよい。
 図6は本発明の方法により製造される成膜マスクの変形例である。
 この成膜マスクは、磁性金属部材15に設けられた貫通孔14が複数の開口パターン16を内包する大きさを有しており、上記貫通孔14内には複数の開口パターン16がマーク23を中心として予め定められた位置に形成されている。
 このような成膜マスクは、以下のようにして製造することができる。
 先ず、レーザ加工装置の光学系の光軸に合致する位置を中心として予め定められた位置に複数の第1貫通開口を設けた第1のマスク4Aと、上記光軸に中心が合致するように第2貫通開口を設けた第2のマスク4Bとを準備する。
 次に、上記第2のマスク4Bを使用し、前述と同様に、XYステージ1をXY方向に予め定められた距離だけステップ移動しながら、マスク用部材7のフィルム17に深さの浅い複数のマーク23を形成する。
 続いて、第2のマスク4Bを第1のマスク4Aに取り替え、撮像装置5により上記マーク23を撮影すると共に、マーク23の位置ずれを補正するようにXYステージ1を微動調整してマーク23の中心を対物レンズ3の視野中心に合致させる。
 その後、レーザ光Lを照射して上記マーク23を中心に予め定められた位置に複数の開口パターン16(図6において、破線で囲まれた例えば6つの開口パターン16)を同時に形成する。そして、上述と同様にして、XYステージ1をXY方向にステップ移動しながら、その都度、撮像装置5によるマーク23の検出及びマーク23の位置ずれ補正を行なった後にレーザ光Lを照射し、複数の開口パターン16をレーザ加工する。
 この場合も、複数の開口パターン16が事前に形成されたマーク23を基準にして加工されるため、複数の開口パターン16を位置精度よく形成することができる。
 以上の説明においては、成膜マスクが磁性金属部材15とフィルム17とで構成されたものである場合について述べたが、本発明はこれに限られず、成膜マスクは、図7に示すように磁性金属部材15の複数の貫通孔14及び該貫通孔14と同時に形成されたアライメントマーク用貫通孔26を内包する大きさの開口24を有する枠状のフレーム25の一端面25aを、フィルム17が密接された側とは反対側の磁性金属部材15の周縁部に接合したものであってもよい。この場合、フィルム17の周縁部が除去されたマスク用部材7をフレーム25に張架して磁性金属部材15とフレーム25とをスポット溶接した後、レーザ加工して上記マーク23を形成すると共に、該マーク23を基準にして、貫通孔14内に開口パターン16を形成し、アライメントマーク用貫通孔26内にマスク側アライメントマーク18を形成するのが望ましい。これにより、マスク用部材7をフレーム25に張架する際に、マスク用部材7が延びて開口パターン16及びマスク側アライメントマーク18の位置がずれるのを防止することができる。なお、マーク23及び開口パターン16の形成は、XYステージ1をステップ移動しながら、X方向又はY方向に順繰りに行ってもよく、XYのジクザグに行ってもよい。
 7…マスク用部材
 14…貫通孔
 15…磁性金属部材
 16…開口パターン
 17…フィルム
 23…マーク
 24…フレームの開口
 25…フレーム
 

Claims (8)

  1.  基板に成膜される薄膜パターンに対応して該薄膜パターンと形状寸法の同じ開口パターンを形成した樹脂製のフィルムと、前記開口パターンを内包する大きさの貫通孔を形成した薄板状の磁性金属部材とを密接させた複合型の成膜マスクの製造方法であって、
     前記貫通孔を形成した前記磁性金属部材と、前記開口パターンを形成する前の樹脂製フィルムとが密接された構造のマスク用部材を形成する段階と、
     前記マスク用部材の前記貫通孔内の前記フィルムにレーザ光を照射して一定形状を有する一定深さのマークを形成する段階と、
     前記マークを基準にして予め定められた位置にレーザ光を照射して前記フィルムを貫通する前記開口パターンを形成する段階と、
    を含むことを特徴とする成膜マスクの製造方法。
  2.  前記磁性金属部材は、ブリッジで分離された複数の前記貫通孔を一列に並べて備えると共に一定の配列ピッチで複数列備えたものであり、
     前記各貫通孔内には、それぞれ一つずつ前記開口パターンが形成される、
    ことを特徴とする請求項1記載の成膜マスクの製造方法。
  3.  前記貫通孔内には、複数の前記開口パターンが形成されることを特徴とする請求項1記載の成膜マスクの製造方法。
  4.  前記マークは、前記開口パターンを形成するためのレーザ光の照射ショット回数よりも少ないショット回数で形成されることを特徴とする請求項1~3のいずれか1項に記載の成膜マスクの製造方法。
  5.  前記マークは、前記開口パターンを形成するためのレーザ光の照射エネルギーよりも小さい照射エネルギーで形成されることを特徴とする請求項1~3のいずれか1項に記載の成膜マスクの製造方法。
  6.  前記マスク用部材を形成する段階と前記マークを形成する段階との間に、前記磁性金属部材の前記貫通孔を内包する大きさの開口を有する枠状のフレームの一端面を、前記フィルムが密接された側とは反対側の前記磁性金属部材の周縁部に接合する段階を含むことを特徴とする請求項1~3のいずれか1項に記載の成膜マスクの製造方法。
  7.  前記マスク用部材を形成する段階と前記マークを形成する段階との間に、前記磁性金属部材の前記貫通孔を内包する大きさの開口を有する枠状のフレームの一端面を、前記フィルムが密接された側とは反対側の前記磁性金属部材の周縁部に接合する段階を含むことを特徴とする請求項4記載の成膜マスクの製造方法。
  8.  前記マスク用部材を形成する段階と前記マークを形成する段階との間に、前記磁性金属部材の前記貫通孔を内包する大きさの開口を有する枠状のフレームの一端面を、前記フィルムが密接された側とは反対側の前記磁性金属部材の周縁部に接合する段階を含むことを特徴とする請求項5記載の成膜マスクの製造方法。
     
PCT/JP2013/079305 2012-11-15 2013-10-29 成膜マスクの製造方法 WO2014077125A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157014247A KR102137222B1 (ko) 2012-11-15 2013-10-29 성막 마스크의 제조 방법
CN201380058995.0A CN104797733B (zh) 2012-11-15 2013-10-29 成膜掩模的制造方法
US14/714,175 US10208373B2 (en) 2012-11-15 2015-05-15 Production method for deposition mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012250974A JP5958824B2 (ja) 2012-11-15 2012-11-15 蒸着マスクの製造方法
JP2012-250974 2012-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/714,175 Continuation US10208373B2 (en) 2012-11-15 2015-05-15 Production method for deposition mask

Publications (1)

Publication Number Publication Date
WO2014077125A1 true WO2014077125A1 (ja) 2014-05-22

Family

ID=50731043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079305 WO2014077125A1 (ja) 2012-11-15 2013-10-29 成膜マスクの製造方法

Country Status (6)

Country Link
US (1) US10208373B2 (ja)
JP (1) JP5958824B2 (ja)
KR (1) KR102137222B1 (ja)
CN (1) CN104797733B (ja)
TW (1) TWI587081B (ja)
WO (1) WO2014077125A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070933A (ja) * 2016-10-27 2018-05-10 大日本印刷株式会社 蒸着マスクの製造方法、蒸着マスク準備体、有機半導体素子の製造方法、及び有機elディスプレイの製造方法
CN108779549A (zh) * 2016-03-18 2018-11-09 鸿海精密工业股份有限公司 蒸镀遮罩、蒸镀遮罩的制造方法及有机半导体元件的制造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671414B (zh) * 2013-03-26 2019-09-11 日商大日本印刷股份有限公司 蒸鍍遮罩、蒸鍍遮罩準備體、蒸鍍遮罩之製造方法、及有機半導體元件之製造方法
JP6035548B2 (ja) * 2013-04-11 2016-11-30 株式会社ブイ・テクノロジー 蒸着マスク
JP6168944B2 (ja) * 2013-09-20 2017-07-26 株式会社ブイ・テクノロジー 成膜マスク
CN106536784B (zh) * 2014-06-06 2019-08-30 大日本印刷株式会社 蒸镀掩模及其前体、以及有机半导体元件的制造方法
KR102330942B1 (ko) 2014-06-06 2021-11-26 다이니폰 인사츠 가부시키가이샤 증착 마스크, 프레임을 갖는 증착 마스크, 증착 마스크 준비체, 및 유기 반도체 소자의 제조 방법
JP6424521B2 (ja) * 2014-09-03 2018-11-21 大日本印刷株式会社 蒸着マスク、フレーム付き蒸着マスク、及び有機半導体素子の製造方法
JP6394879B2 (ja) * 2014-09-30 2018-09-26 大日本印刷株式会社 蒸着マスク、蒸着マスク準備体、フレーム付き蒸着マスク、及び有機半導体素子の製造方法
WO2017006821A1 (ja) * 2015-07-03 2017-01-12 大日本印刷株式会社 蒸着マスクの製造方法、蒸着マスク準備体、有機半導体素子の製造方法、有機elディスプレイの製造方法、及び蒸着マスク
CN105154822A (zh) * 2015-08-22 2015-12-16 昆山允升吉光电科技有限公司 一种小开口蒸镀用掩模板
KR102557891B1 (ko) * 2015-10-16 2023-07-21 삼성디스플레이 주식회사 마스크의 제조 방법
CN108495947B (zh) * 2016-01-26 2020-09-08 鸿海精密工业股份有限公司 蒸镀掩模、其制造方法以及使用该蒸镀掩模的有机发光二极管的制造方法
JP6345901B2 (ja) * 2016-03-29 2018-06-20 鴻海精密工業股▲ふん▼有限公司 蒸着マスク、蒸着マスクの製造方法、蒸着方法および有機el表示装置の製造方法
WO2019014947A1 (zh) * 2017-07-21 2019-01-24 深圳市柔宇科技有限公司 掩膜板的制造方法和掩膜板
CN109097727A (zh) * 2018-08-01 2018-12-28 京东方科技集团股份有限公司 掩膜版及其制作方法以及显示装置
KR102655323B1 (ko) 2018-10-24 2024-04-08 삼성디스플레이 주식회사 마스크 수리 장치 및 마스크 수리 방법
KR20200055871A (ko) 2018-11-13 2020-05-22 삼성디스플레이 주식회사 기판 식각 방법
EP3736110A1 (en) * 2019-05-09 2020-11-11 LayerWise NV System for aligning laser system to a carrier plate
JP2021175824A (ja) * 2020-03-13 2021-11-04 大日本印刷株式会社 有機デバイスの製造装置の蒸着室の評価方法、評価方法で用いられる標準マスク装置及び標準基板、標準マスク装置の製造方法、評価方法で評価された蒸着室を備える有機デバイスの製造装置、評価方法で評価された蒸着室において形成された蒸着層を備える有機デバイス、並びに有機デバイスの製造装置の蒸着室のメンテナンス方法
KR20220004893A (ko) * 2020-07-03 2022-01-12 삼성디스플레이 주식회사 표시 장치의 제조 장치 및 표시 장치의 제조 방법
CN112376016B (zh) * 2020-11-24 2022-08-02 昆山工研院新型平板显示技术中心有限公司 蒸镀掩膜板组件及其制作方法
KR102406220B1 (ko) * 2021-12-30 2022-06-08 풍원정밀(주) Ldi 방식을 이용한 oled 증착용 메탈 마스크 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190057A (ja) * 2002-12-09 2004-07-08 Nippon Filcon Co Ltd パターニングされたマスク被膜と支持体からなる積層構造の薄膜パターン形成用マスク及びその製造方法
JP2006188748A (ja) * 2005-01-05 2006-07-20 Samsung Sdi Co Ltd シャドウマスクパターンの形成方法
JP2012077328A (ja) * 2010-09-30 2012-04-19 Mitsubishi Plastics Inc 蒸着用マスク、その製造方法及び蒸着方法
WO2013089138A1 (ja) * 2011-12-13 2013-06-20 株式会社ブイ・テクノロジー 蒸着マスク及び蒸着マスクの製造方法
WO2013105643A1 (ja) * 2012-01-12 2013-07-18 大日本印刷株式会社 蒸着マスクの製造方法、及び有機半導体素子の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796382A (ja) * 1993-09-28 1995-04-11 Mitsui Petrochem Ind Ltd レーザ加工装置
JPH09143677A (ja) * 1995-11-20 1997-06-03 Toppan Printing Co Ltd 透明導電膜の形成方法
JP3523952B2 (ja) * 1995-12-26 2004-04-26 日東電工株式会社 ポリイミド−金属箔複合フィルム
JP3348283B2 (ja) * 2000-01-28 2002-11-20 住友重機械工業株式会社 レーザ加工装置及びレーザ加工用マスク並びにその製造方法
JP2001237072A (ja) 2000-02-24 2001-08-31 Tohoku Pioneer Corp メタルマスク及びその製造方法
US20070000884A1 (en) * 2005-06-30 2007-01-04 Salama Islam A Pattern ablation using laser patterning
JP4969932B2 (ja) * 2006-07-18 2012-07-04 株式会社アルバック アライメント装置及びアライメント方法
KR100937767B1 (ko) * 2007-07-30 2010-01-20 주식회사 코윈디에스티 레이저를 이용한 금속패턴 가공 장치 및 그 방법
CN102318451B (zh) * 2008-12-13 2013-11-06 万佳雷射有限公司 用于激光加工相对窄和相对宽的结构的方法和设备
JP5533769B2 (ja) * 2011-04-14 2014-06-25 ウシオ電機株式会社 マスクとワークの位置合せ方法
WO2013039196A1 (ja) * 2011-09-16 2013-03-21 株式会社ブイ・テクノロジー 蒸着マスク、蒸着マスクの製造方法及び薄膜パターン形成方法
CN102492920A (zh) * 2011-12-21 2012-06-13 信利半导体有限公司 一种制作掩膜板的方法和掩膜板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190057A (ja) * 2002-12-09 2004-07-08 Nippon Filcon Co Ltd パターニングされたマスク被膜と支持体からなる積層構造の薄膜パターン形成用マスク及びその製造方法
JP2006188748A (ja) * 2005-01-05 2006-07-20 Samsung Sdi Co Ltd シャドウマスクパターンの形成方法
JP2012077328A (ja) * 2010-09-30 2012-04-19 Mitsubishi Plastics Inc 蒸着用マスク、その製造方法及び蒸着方法
WO2013089138A1 (ja) * 2011-12-13 2013-06-20 株式会社ブイ・テクノロジー 蒸着マスク及び蒸着マスクの製造方法
WO2013105643A1 (ja) * 2012-01-12 2013-07-18 大日本印刷株式会社 蒸着マスクの製造方法、及び有機半導体素子の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779549A (zh) * 2016-03-18 2018-11-09 鸿海精密工业股份有限公司 蒸镀遮罩、蒸镀遮罩的制造方法及有机半导体元件的制造方法
CN108779549B (zh) * 2016-03-18 2021-04-06 鸿海精密工业股份有限公司 蒸镀遮罩、蒸镀遮罩的制造方法及有机半导体元件的制造方法
JP2018070933A (ja) * 2016-10-27 2018-05-10 大日本印刷株式会社 蒸着マスクの製造方法、蒸着マスク準備体、有機半導体素子の製造方法、及び有機elディスプレイの製造方法

Also Published As

Publication number Publication date
JP2014098196A (ja) 2014-05-29
TW201435484A (zh) 2014-09-16
JP5958824B2 (ja) 2016-08-02
CN104797733A (zh) 2015-07-22
KR20150086285A (ko) 2015-07-27
CN104797733B (zh) 2017-06-23
TWI587081B (zh) 2017-06-11
KR102137222B1 (ko) 2020-07-23
US20150259780A1 (en) 2015-09-17
US10208373B2 (en) 2019-02-19

Similar Documents

Publication Publication Date Title
JP5958824B2 (ja) 蒸着マスクの製造方法
KR102148970B1 (ko) 성막 마스크의 제조 방법 및 레이저 가공 장치
US10626491B2 (en) Method for manufacturing deposition mask and deposition mask
TWI555862B (zh) 蒸鍍遮罩、蒸鍍遮罩的製造方法及薄膜圖案形成方法
KR102155259B1 (ko) 성막 마스크의 제조 방법 및 성막 마스크
JP5517308B2 (ja) マスクの製造方法、マスク及びマスクの製造装置
WO2014097728A1 (ja) 成膜マスクの製造方法
JP6527408B2 (ja) 成膜マスクの製造方法及びその製造装置
JP5976527B2 (ja) 蒸着マスク及びその製造方法
TW201343939A (zh) 蒸鍍罩體及蒸鍍罩體之製造方法
JP5895382B2 (ja) 薄膜パターン形成方法及び有機el表示装置の製造方法
JP5294490B2 (ja) フォトマスク
JP2014004596A (ja) レーザ加工装置及びレーザ加工方法
JP2007171546A (ja) 配向膜溶液印刷用版の修正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157014247

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13855063

Country of ref document: EP

Kind code of ref document: A1