WO2014068719A1 - 車両の走行制御装置 - Google Patents

車両の走行制御装置 Download PDF

Info

Publication number
WO2014068719A1
WO2014068719A1 PCT/JP2012/078227 JP2012078227W WO2014068719A1 WO 2014068719 A1 WO2014068719 A1 WO 2014068719A1 JP 2012078227 W JP2012078227 W JP 2012078227W WO 2014068719 A1 WO2014068719 A1 WO 2014068719A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling
engine
vehicle
negative pressure
brake
Prior art date
Application number
PCT/JP2012/078227
Other languages
English (en)
French (fr)
Inventor
黒木 錬太郎
琢也 平井
正記 光安
種甲 金
昌樹 松永
康成 木戸
健明 鈴木
隆行 小暮
由香里 岡村
佐藤 彰洋
木下 裕介
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/439,060 priority Critical patent/US9598084B2/en
Priority to CN201280076790.0A priority patent/CN104755727B/zh
Priority to PCT/JP2012/078227 priority patent/WO2014068719A1/ja
Priority to DE112012007072.0T priority patent/DE112012007072B4/de
Priority to JP2014544134A priority patent/JP5962767B2/ja
Publication of WO2014068719A1 publication Critical patent/WO2014068719A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/02Arrangements of pumps or compressors, or control devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18136Engine braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/21Providing engine brake control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/502Neutral gear position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/41Control to generate negative pressure in the intake manifold, e.g. for fuel vapor purging or brake booster
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to a vehicle travel control device, and in particular, in a vehicle capable of coasting traveling with a lower engine braking force than engine braking traveling, the fuel consumption and drivability of the vehicle during coasting
  • the present invention relates to a technology that achieves both improvements.
  • inertial running is considered in which the engine braking force is reduced as compared with the normal running.
  • the device described in Patent Document 1 is an example thereof, and when a return operation of the accelerator pedal is determined during traveling of the vehicle, a clutch provided in a power transmission path between the engine and the drive wheels is released to inertia. Driving is started and the fuel efficiency of the vehicle is improved.
  • inertial running performed in Patent Document 1 is distinguished from inertial running performed with the engine stopped while the clutch is released, or inertial running performed with the engine rotated. Absent.
  • the inertia traveling of the vehicle the first inertia traveling where the engine is stopped while traveling and the engine braking force is reduced as compared with the normal traveling, and the engine is rotated during traveling.
  • a second inertia traveling that travels with the engine braking force reduced compared to the normal traveling can be considered, and the engine is stopped in the first inertia traveling, which is advantageous in terms of fuel consumption.
  • the vehicle as described above is provided with a brake booster that amplifies the braking force of the braking device by using the negative pressure generated in the intake pipe by the rotation of the engine. For this reason, for example, in the first inertial running in a scene where braking is required, the engine is stopped, so that it is impossible to secure the negative pressure used for the brake booster, that is, the brake negative pressure. On the other hand, in the second inertial running, the engine is rotating, so that the brake negative pressure can be ensured, but the engine is kept running except in a scene where braking is required. As a result, there was a problem that the fuel consumption of the vehicle deteriorated. If the brake booster is equipped with a negative pressure tank, the function of amplifying the braking force is not immediately lost just because the engine is stopped, but the function of amplifying the negative pressure is consumed every time the brake is operated. Decreases.
  • the present invention has been made in the background of the above circumstances, and the object of the present invention is a vehicle capable of achieving both improvement in vehicle fuel efficiency and securing of brake negative pressure when braking is required in inertial running of the vehicle. It is in providing a traveling control device.
  • the gist of the present invention includes (a) a soot engine, and a brake booster that amplifies a braking force by using a brake negative pressure generated by the rotation of the engine, and (b ) Normal travel in which the engine and the drive wheels are connected to each other, first inertial travel in which the engine is stopped during travel and the engine braking force is reduced compared to the normal travel, and during travel The second inertial traveling is performed in which the engine braking force is reduced with respect to the normal traveling while the engine is rotated, and the necessity of the brake negative pressure during the first or second inertial traveling is performed.
  • System (C) The upper limit value of the necessity of the brake negative pressure that returns from the first inertia traveling is higher than the upper limit value of the necessity of the brake negative pressure that returns from the second inertia traveling. Is set too small.
  • the upper limit value of the necessity of the brake negative pressure that is restored from the first inertial traveling is equal to the brake negative pressure that is restored from the second inertial traveling. It is set smaller than the upper limit of necessity. For this reason, when the necessity for the brake negative pressure becomes relatively large, the second inertial running for rotating the engine is performed. Therefore, when the brake is necessary, the engine rotates to ensure the brake negative pressure. The In addition, when the necessity for the brake negative pressure is relatively small, the first inertial traveling for stopping the engine can be performed, so that it is possible to perform the inertial traveling with good fuel efficiency. As a result, it is possible to achieve both the improvement of the fuel consumption of the vehicle and the securing of the brake negative pressure when the brake is necessary in the inertial running of the vehicle.
  • the means for determining the necessity of the brake negative pressure determines that the necessity of the brake negative pressure is large when the distance from the preceding vehicle is short, and (b) Judgment that the necessity of the brake negative pressure is large when the downhill of the road on which the vehicle is traveling is large, and (c) ⁇ ⁇ ⁇ ⁇ or the brake negative pressure when the vehicle speed is high when the vehicle is traveling Judge that there is a great need.
  • the driver's future brake input frequency during coasting can be predicted from the distance to the preceding vehicle, the downhill slope of the road surface, or the vehicle speed, The stability of the brake input during braking can be suitably ensured.
  • the first inertia traveling is a free-run inertia traveling in which the engine and the driving wheel are disconnected and the engine is stopped during traveling, and (b) the first inertia traveling is performed.
  • the inertial traveling of 2 is a neutral inertial traveling in which the engine and the drive wheel are separated during traveling and the engine is operated independently to perform inertial traveling. For this reason, in the free-run inertia running and the neutral inertia running, the engine and the driving wheel are separated from each other, so that the engine braking force hardly acts and the running distance by the inertia running is suitably increased.
  • the first inertia traveling is a free-run inertia traveling in which the engine and the driving wheel are disconnected and the engine is stopped during traveling, and (b) the first inertia traveling is performed.
  • the fuel supply to the engine is stopped while the engine and the driving wheel are connected, and at least one of the pistons of a plurality of cylinders and the intake / exhaust valves of the cylinders of the engine is stopped.
  • the engine braking force is reduced in both the free-run inertia traveling and the cylinder deactivation inertia traveling, so that the traveling distance by the inertia traveling is preferable. become longer.
  • the necessity of the brake negative pressure is a magnitude of the negative pressure required to satisfy the amplification action of the brake booster during a predetermined brake operation, and the magnitude of the negative pressure Based on the upper limit value, the inertia traveling is returned to the normal traveling.
  • the normal traveling is restored from the first inertia traveling, and (b) the necessity of the brake negative pressure is recovered from the second inertia traveling during the second inertia traveling.
  • the value exceeds the upper limit value the normal traveling is resumed from the second inertial traveling, so that the brake negative pressure can be suitably ensured when braking is required in the inertial traveling of the vehicle.
  • the necessity of the brake negative pressure becomes greater than the upper limit value of the necessity of the brake negative pressure for returning from the first inertia traveling
  • the second inertia traveling is returned from the first inertia traveling.
  • the necessity of the brake negative pressure is recovered from the second inertia traveling. When it becomes larger than the upper limit of necessity, the normal traveling is resumed from the second inertia traveling.
  • the necessity of the brake negative pressure becomes larger than the upper limit value of the necessity of the brake negative pressure for returning from the first inertia traveling, it is compared with that for returning the normal traveling from the first inertia traveling. Then, the upper limit value of the necessity of the brake negative pressure at which the necessity of the brake negative pressure is restored from the first inertia traveling and the upper limit value of the necessity of the brake negative pressure to be restored from the second inertia traveling. Since the engine braking force is reduced as compared with the normal running, the fuel efficiency of the vehicle during the inertia running of the vehicle is preferably improved.
  • the present invention can be applied to a vehicle including at least an engine as a driving force source.
  • the present invention is preferably applied to a vehicle in which engine power is transmitted to driving wheels via an automatic transmission.
  • the present invention can also be applied to a hybrid vehicle including an electric motor or a motor generator as a driving force source in addition to the engine.
  • the engine is an internal combustion engine that generates power by burning fuel.
  • a clutch device for connecting and disconnecting a power transmission path between the engine and the drive wheels is disposed between the engine and the drive wheels so that the engine can be disconnected from the drive wheels.
  • a hydraulic friction engagement device provided in series in the power transmission path, for example, a hydraulic clutch, is preferably used.
  • Various types of clutches can be employed. It is also possible to use a forward clutch in an automatic transmission that includes a plurality of clutches and brakes and can shift to a plurality of stages.
  • the clutch device for connecting and disconnecting the power transmission path includes, for example, a planetary gear device having a pair of rotating elements connected to the power transmission path inserted in the power transmission path, and the planetary gear device. You may be comprised from the hydraulic brake which blocks
  • the automatic transmission is a belt type continuously variable transmission
  • a forward friction engagement device and a reverse friction engagement device of a forward / reverse switching mechanism provided in the automatic transmission are used as a clutch device.
  • the sleeve of the synchronization mechanism provided in the automatic transmission and the actuator that drives the synchronous mechanism correspond to the clutch device.
  • the conditions for starting the free-run inertia running and the neutral inertia running are, for example, a power transmission path from the engine to the drive wheels is connected by a clutch, and the shift stage of the automatic transmission is a predetermined high-speed side shift stage. That is, the accelerator pedal is operated to return to the original position or a position close to the original position in the relatively high speed steady running state in which the vehicle speed V is set to the above forward speed and the vehicle speed V1 is equal to or higher than the predetermined vehicle speed V1.
  • the free-run inertia running and the neutral inertia running are stopped when at least one of the determination conditions for the relatively high-speed steady running state is removed in order to switch to engine braking running or another running mode, and It is also executed when a brake operation is performed.
  • a hydraulic control device such as a hydraulic friction engagement device is used.
  • the case where the power supply of the battery is required or the case where the power generation of the battery is required by the alternator provided in the engine may be set as an independent condition. This is to preferentially switch to neutral inertia running or engine braking running to rotate the engine to perform warm-up and battery charging.
  • FIG. 5 is a time chart corresponding to the control operation of FIG.
  • FIG. 5 is a time chart corresponding to the control operation of FIG. 4, showing a case where the vehicle speed is returned from the neutral inertia traveling to the normal traveling when the vehicle speed becomes larger than the vehicle speed judgment value for returning from the neutral inertia traveling during the neutral inertia traveling. is there. It is a figure which shows the electronic controller of the vehicle drive device which shows the other Example of this invention, and is a figure corresponding to FIG.
  • FIG. 10 is a time chart corresponding to the control operation of FIG. 9, when the inter-vehicle distance becomes equal to or less than the inter-vehicle distance determination value for returning from the free-run inertia running during the free-run inertia running, and returning from the free-run inertia running to the normal running. Shows the case.
  • FIG. 10 is a time chart corresponding to the control operation of FIG.
  • FIG. 9 shows a case where the neutral inertia traveling returns to the normal traveling when the inter-vehicle distance becomes equal to or less than the inter-vehicle distance determination value for returning from the neutral inertia traveling.
  • FIG. 15 shows the electronic controller of the vehicle drive device which shows the other Example of this invention, and is a figure corresponding to FIG. 1 and FIG. It is a figure which shows the downward gradient of a road surface in the downward gradient determination part provided in the electronic controller of FIG. It is a flowchart explaining the control action regarding the return determination from inertia running performed by the electronic controller of FIG.
  • FIG. 15 is a time chart corresponding to the control operation of FIG.
  • FIG. 15 is a time chart corresponding to the control operation of FIG. 14, showing a case in which during a neutral inertia traveling, the descending slope becomes equal to or greater than a slope determination value for returning from the neutral inertia traveling to return to the normal traveling from the neutral inertia traveling. It is.
  • FIG. 1 is a schematic configuration diagram showing a main part of a control function of an electronic control device 50 corresponding to a travel control device in a vehicle drive device 10 to which the present invention is preferably applied.
  • the vehicle drive device 10 includes an engine 12 that is an internal combustion engine such as a gasoline engine or a diesel engine that generates power by combustion of fuel as a driving force source, and the output of the engine 12 is differential from the automatic transmission 16. It is transmitted to the left and right drive wheels 20 via the gear unit 18.
  • a power transmission device such as a damper device or a torque converter can be provided between the engine 12 and the automatic transmission 16, but a motor generator that functions as a driving force source can also be provided.
  • the engine 12 includes an engine control device 30 having various devices necessary for output control of the engine 12, such as an electronic throttle valve and a fuel injection device, and a cylinder deactivation device.
  • the electronic throttle valve controls the intake air amount
  • the fuel injection device controls the fuel supply amount.
  • the operation amount of the accelerator pedal 70 corresponding to the driver's output request amount that is, the accelerator opening amount. It is controlled according to the degree ⁇ acc.
  • the fuel injection device can stop fuel supply (fuel cut F / C) even when the vehicle is traveling, such as when the accelerator opening degree ⁇ acc is 0 and the accelerator is OFF.
  • the cylinder deactivation device is capable of mechanically separating and stopping some or all of the intake and exhaust valves of a plurality of cylinders such as eight cylinders from the crankshaft by a clutch mechanism or the like. Is stopped so as to be in a closed state or an open state. As a result, the pumping loss when the engine 12 is driven and rotated in the fuel cut state is reduced, and the engine braking force is reduced, so that the traveling distance of inertial traveling can be extended. Instead of stopping the intake / exhaust valve, the piston may be separated from the crankshaft and stopped.
  • the automatic transmission 16 is, for example, a stepped automatic transmission such as a planetary gear type in which a plurality of gear stages having different gear ratios e are established depending on the disengagement state of a plurality of hydraulic friction engagement devices (clutch and brake).
  • the shift control is performed by an electromagnetic hydraulic control valve, a switching valve or the like provided in the hydraulic control device 32.
  • the clutch (clutch device) C1 functions as an input clutch of the automatic transmission 16, and is similarly engaged and released by the hydraulic control device 32.
  • the clutch C1 corresponds to a connection / disconnection clutch that connects or disconnects the power transmission path between the engine 12 and the drive wheels 20.
  • a parallel shaft constantly meshing stepped transmission or a belt-type continuously variable transmission with a forward / reverse switching gear mechanism may be used.
  • the power transmission path is released by releasing the meshing of the synchronous meshing device using an actuator, and in the case of a continuously variable transmission, its forward / reverse switching gear The power transmission path is released by releasing the forward and reverse friction engagement devices provided in the mechanism.
  • the driving wheel 20 is provided with a wheel brake 34, and a braking force is generated according to a brake operation force (stepping force) Brk of the brake pedal 40 that is stepped on by a driver.
  • the brake operation force Brk corresponds to the required brake amount.
  • the brake hydraulic pressure is mechanically generated from the brake master cylinder 44 via the brake booster 42 according to the brake operation force Brk, and the brake hydraulic pressure is controlled by the brake hydraulic pressure. Power is generated.
  • the brake booster 42 amplifies the brake operation force Brk by using the brake negative pressure (negative pressure) generated by the rotation of the engine 12, and the brake hydraulic pressure output from the brake master cylinder 44 is amplified, resulting in a large braking force. Can be obtained.
  • the vehicle drive device 10 configured as described above includes an electronic control device 50.
  • the electronic control unit 50 includes a so-called microcomputer having a CPU, a ROM, a RAM, an input / output interface, and the like, and performs signal processing according to a program stored in advance in the ROM while using a temporary storage function of the RAM. Do.
  • a signal representing the brake operation force Brk (kPa) is supplied from the brake operation amount sensor 66 to the electronic control unit 50, and the accelerator opening degree ⁇ acc (%) that is the operation amount of the accelerator pedal 70 is supplied from the accelerator operation amount sensor 68.
  • a signal representing is provided.
  • a signal representing the rotational speed NE (rpm) of the engine 12 is supplied from the engine rotational speed sensor 72, and a signal representing the vehicle speed V (km / h) is supplied from the vehicle speed sensor 74.
  • various types of information necessary for various types of control are supplied.
  • the electronic control unit 50 performs output control and rotation stop control of the engine 12 in accordance with the accelerator opening ⁇ acc corresponding to the driver's intention to accelerate and the amount of brake operation, and a driver's Based on the required output based on the accelerator opening ⁇ acc corresponding to the intention to accelerate, or on the basis of the accelerator opening ⁇ acc and the vehicle speed V, the shift control for controlling the shift stage of the automatic transmission 16 is executed.
  • the automatic transmission 16 In the inertial traveling state in which the accelerator opening degree ⁇ acc is zero, the automatic transmission 16 is established with a predetermined gear stage exclusively according to the vehicle speed V and the like, and the clutch C1 is held in the engaged state.
  • the engine 12 In this engine brake traveling, the engine 12 is driven to rotate at a predetermined rotational speed determined according to the vehicle speed V and the gear ratio e, and an engine braking force having a magnitude corresponding to the rotational speed is generated.
  • the amplifying action of the brake operation force Brk by the brake booster 42 using the brake negative pressure generated by the engine rotation is appropriately obtained, and the brake operation Sufficient braking force control performance can be obtained.
  • the electronic control unit 50 includes a normal traveling unit 52, a free-run inertia traveling unit 54, a neutral inertia traveling unit 56, an inertia traveling determination unit 60, an inertia traveling switching control unit 64 having a vehicle speed determination unit 62, and the like.
  • the normal travel unit 52 performs normal travel that travels by connecting the power transmission path between the engine 12 and the drive wheels 20 by engaging the clutch C1.
  • the normal traveling unit 52 performs engine brake traveling in which engine braking occurs due to pumping loss, friction torque, and the like due to driven rotation of the engine 12 as shown in FIG. 2 when the accelerator is OFF.
  • the engine 12 may be in the fuel cut F / C state in which the fuel supply is stopped.
  • the engine 12 is in an idling state in which the minimum amount of fuel is supplied as in the neutral inertia travel described later. Be controlled.
  • the free-run inertia running section 54 performs a fuel cut F / C during the return operation of the accelerator pedal 70 to release the clutch C1 in a state where the rotation of the engine 12 is stopped during the inertia running. 1 coasting).
  • the engine braking force becomes smaller than that of the engine braking and the clutch C1 is released, so that the engine braking force becomes substantially 0. Therefore, the running resistance is reduced and the running distance by inertia running is increased. , Fuel economy can be improved.
  • the neutral inertia traveling section 56 does not perform the fuel cut F / C during the return operation of the accelerator pedal 70, and releases the clutch C1 while maintaining the rotation of the engine 12 during inertia traveling. 2 coasting).
  • the engine braking force becomes smaller than the engine braking travel and the clutch C1 is disengaged, so the engine braking force becomes substantially 0. Therefore, the traveling resistance is decreased and the traveling distance by inertia traveling is increased.
  • fuel efficiency can be improved, fuel for maintaining the rotational speed of the engine 12 when the accelerator is OFF is necessary.
  • the rotational speed NE of the engine 12 during the neutral inertia traveling, that is, when the accelerator pedal 70 is returned is an idle rotational speed of, for example, about 700 rpm after warming up, but is, for example, about 1200 rpm during warming up or charging. .
  • the inertial traveling determination unit 60 is configured such that, for example, a power transmission path from the engine 12 to the drive wheel 20 is connected by the clutch C1, and the shift speed of the automatic transmission 16 is set to a forward speed greater than or equal to a predetermined high speed shift speed. It is determined that the inertial running start condition that the accelerator pedal 70 is operated to return to the original position or a position close to the original position in a relatively high-speed steady running state where the vehicle speed V (km / h) is equal to or higher than a predetermined value, for example, FIG. 2, it is determined whether the type of coasting is the free-run coasting or the neutral coasting, that is, the type of coasting is the free-run coasting. It is determined whether the vehicle is traveling.
  • the vehicle speed determination unit 62 determines whether or not the vehicle speed V detected by the vehicle speed sensor 74 is greater than a preset vehicle speed determination value Va and the vehicle speed V detected by the vehicle speed sensor 74 based on a preset vehicle speed determination value Vb. Determine whether it is larger.
  • the vehicle speed determination value Va is an upper limit value of the vehicle speed V set in advance by, for example, an experiment for returning from the free-run inertia traveling to the normal traveling during the free-run inertia traveling
  • the vehicle speed determination value Vb is An upper limit value of the vehicle speed V set in advance by, for example, an experiment for returning from the neutral inertia traveling to the normal traveling during the neutral inertia traveling
  • the vehicle speed determination value Va is smaller than the vehicle speed determination value Vb and the vehicle speed determination
  • the values Va and Vb are set larger than 0 (km / h) (0 ⁇ Va ⁇ Vb).
  • the vehicle speed determination values Va and Vb which are the upper limit values of the preset vehicle speed V, are upper limit values of the magnitude of the negative pressure required to satisfy the amplification action of the brake booster 42 during a predetermined brake operation. That is, it corresponds to the upper limit value of the necessity of the brake negative pressure, and for example, in order to satisfy the amplification effect of the brake booster 42 at the time of the predetermined brake operation as the vehicle speed determination values Va and Vb increase.
  • the upper limit value of the magnitude of the required negative pressure that is, the upper limit value of the necessity of the brake negative pressure is increased.
  • the vehicle speed V is used to predict the driver's future brake input or the frequency of the brake input, that is, the amplification effect of the brake booster 42 at the time of a predetermined brake operation, which is the necessity of the brake negative pressure. This indicates the magnitude of the negative pressure required to satisfy the above.
  • the vehicle speed determination values Va and Vb are determination values for determining the necessity of the brake negative pressure. For example, when the vehicle speed V is equal to or less than the vehicle speed determination value Va during free-run inertia traveling, The possibility of input is low and the necessity of the brake negative pressure is low.
  • the vehicle speed determination unit 62 is a means for determining the necessity of the brake negative pressure during the free-run inertia traveling or the neutral inertia traveling.
  • the inertial travel switching control unit 64 performs free-run inertial travel and neutral inertia based on a vehicle travel condition based on a predetermined relationship when an inertial travel start condition including a return operation of the accelerator pedal 70, for example, an accelerator OFF operation is satisfied. Selectively switch to one of two travel modes of travel. Further, when the inertia running end condition is satisfied, the inertia running so far is ended. Further, the inertia traveling switching control unit 64 performs the engine brake traveling (normal traveling) when the inertia traveling start condition is not satisfied.
  • the inertial travel switching control unit 64 determines that the free-run inertial travel is performed by the inertial travel determination unit 60, and the vehicle speed determination unit 62 determines that the vehicle speed V is greater than the vehicle speed determination value Va, that is, the brake negative pressure. If it is determined that the necessity of the vehicle is relatively large, the engine 12 is restarted, the clutch C1 is engaged, and the free running inertia running is returned to the normal running.
  • the inertial running determination unit 60 determines that free-run inertial traveling is being performed, and the vehicle speed determination unit 62 determines that the vehicle speed V is equal to or less than the vehicle speed determination value Va, that is, the necessity of the brake negative pressure is relatively small. Then, the free run inertia running is continuously executed.
  • inertial traveling switching control unit 64 determines that neutral inertial traveling is being performed by inertial traveling determination unit 60 and vehicle speed determination unit 62 determines that vehicle speed V is greater than vehicle speed determination value Vb. Then, the clutch C1 is engaged to return from the neutral inertia running to the normal running.
  • the inertial running determination unit 60 determines that the neutral inertial running is being performed and the vehicle speed determination unit 62 determines that the vehicle speed V is equal to or less than the vehicle speed determination value Vb
  • the neutral inertial running is continued. And run.
  • the return condition from the free-run inertia running and the neutral inertia running with respect to the vehicle speed V is the upper limit value of the necessity of the brake negative pressure to return from the free-run inertia running, that is, the vehicle speed of the vehicle speed V as shown in FIG.
  • the determination value (upper limit value) Va is set to be smaller than the upper limit value of the necessity of the brake negative pressure to return from the neutral inertia running, that is, the vehicle speed determination value (upper limit value) Vb of the vehicle speed V (Va ⁇ Vb). For example, as shown in FIG.
  • the lower limit value of the brake negative pressure necessary for returning from the free-run inertia traveling that is, the lower limit value (for example, 0) of the vehicle speed V
  • the brake returning from the neutral inertia traveling The lower limit value of the negative pressure necessity, that is, the lower limit value (for example, 0) of the vehicle speed V is set to the same value, or the vehicle returns from the free-run inertia running as shown in FIG.
  • the upper limit value Va of the speed V can be set to the same value as the lower limit value Va of the vehicle speed V that returns from the neutral inertia traveling.
  • the inertial traveling switching control unit 64 is configured to perform engine braking when, for example, at least one of the determination conditions for the relatively high speed steady traveling state described above is removed from the inertial traveling determining unit 60 and / or when a brake operation is performed. In order to switch to traveling or another traveling mode, the free-run inertia traveling and neutral inertia traveling are stopped.
  • FIG. 4 shows a main part of the control operation of the electronic control unit 50, that is, the inertial travel switching control unit 64 performs the return determination from the free-run inertial travel or the neutral inertial travel based on the determination of the vehicle speed determination unit 62. It is a flowchart explaining the control action which returns from these inertial runnings, for example to the above-mentioned normal running.
  • FIG. 5 is a time chart corresponding to the main part of the control operation of the electronic control unit 50 of FIG. 4, and when the vehicle speed V becomes larger than the vehicle speed determination value Va during the free-run inertia running, the free-run inertia running is performed. This shows a case where the vehicle returns to the normal running.
  • FIG. 5 is a time chart corresponding to the main part of the control operation of the electronic control unit 50 of FIG. 4, and when the vehicle speed V becomes larger than the vehicle speed determination value Va during the free-run inertia running, the free-run inertia running is performed.
  • FIG. 6 is a time chart corresponding to the main part of the control operation of the electronic control unit 50 of FIG. 4, and the vehicle speed V becomes larger than the vehicle speed determination value Vb during the neutral inertia traveling, and the neutral inertia traveling is started. This shows the case of returning to normal running.
  • step S ⁇ b> 1 (hereinafter, step is omitted) corresponding to the inertial traveling determination unit 60, whether or not the inertial traveling start condition is satisfied, that is, inertial traveling (the free-run inertial traveling or the neutral inertial traveling). ) Is being determined. If the determination of S1 is negative, S1 is repeatedly executed. For example, as shown at the time t1 in FIG. 5 and the time t1 in FIG. 6, the accelerator pedal 70 is depressed in the relatively high speed steady state. Is OFF and the inertial running is started, the determination of S1 is affirmed and S2 corresponding to the inertial traveling determination unit 60 is executed.
  • inertia running which is being carried out is the free run inertia running or the neutral inertia running. Then, when it is determined in S2 that the free-run inertia traveling in which the clutch C1 is OFF and the rotation of the engine 12 is stopped is performed, for example, between t2 and t3 in FIG. S3 corresponding to is executed. Further, if it is determined in S2 that the neutral inertia running in which the clutch C1 is OFF and the engine 12 is in the idle state is performed, for example, between t2 and t3 in FIG. S4 is executed.
  • S3 it is determined whether or not the vehicle speed V is greater than the vehicle speed determination value Va, that is, whether or not there is a high possibility of brake input by the driver in the future and the necessity of the brake negative pressure is relatively large. If the determination of S3 is negative, S3 is repeatedly executed. For example, if the vehicle speed V is greater than the vehicle speed determination value Va at time t3 in FIG. S5 corresponding to the switching control unit 64 is executed. In S5, fuel injection is started as shown at time t3 in FIG. 5 and then the clutch C1 is engaged to return from the free-run inertia running to the normal running.
  • S4 it is determined whether or not the vehicle speed V is greater than the vehicle speed determination value Vb. If the determination in S4 is negative, S4 is repeatedly executed. For example, if the vehicle speed V is greater than the vehicle speed determination value Vb at time t4 in FIG. S6 corresponding to the switching control unit 64 is executed. In S6, the clutch C1 is engaged and returned from the neutral inertia traveling to the normal traveling as shown at time t4 in FIG.
  • the braking force may be insufficient during traveling that requires the brake negative pressure.
  • an electronically controlled brake such as ECB
  • ECB electronically controlled brake
  • the vehicle speed V is greater than the vehicle speed determination value Va by the vehicle speed determination unit 62, that is, whether or not the necessity of the brake negative pressure is large. Since the ECB device or the negative pressure pump is not required or can be suppressed by continuing the free-run inertia running or returning from the free-run inertia running to the normal running, the cost can be reduced. High can be suppressed.
  • the vehicle speed determination value Va of the vehicle speed V at which the normal traveling is returned from the free-run inertia traveling is the neutral inertia. It is set to be smaller than the vehicle speed judgment value Vb of the vehicle speed V at which the normal running is returned from the running. Therefore, when the vehicle speed V is larger than the vehicle speed determination value Va and the necessity of the brake negative pressure becomes relatively large by the inertial traveling switching control unit 64 having the vehicle speed determining unit 62, the neutral inertial traveling that rotates the engine 12 is performed. Therefore, when the brake is necessary, the engine 12 rotates and the brake negative pressure is secured.
  • the vehicle speed determination unit 62 performs the brake when the vehicle speed V when the vehicle is traveling is greater than the vehicle speed determination value Va. Judge that there is a great need for negative pressure. For this reason, the vehicle speed determination unit 62 can predict the driver's future brake input or the frequency of the brake input at the time of coasting based on the vehicle speed V, and appropriately ensure the stability of the brake input at the time of braking. Can do.
  • the free-run inertia traveling is performed by disconnecting the power transmission path between the engine 12 and the drive wheels 20 during traveling.
  • the neutral inertia traveling the power transmission path between the engine 12 and the drive wheels 20 is disconnected during traveling and the engine 12 is independently operated to perform inertia traveling.
  • the power transmission path between the engine 12 and the drive wheel 20 is disconnected, so that the engine braking force is almost eliminated and the traveling distance by the inertia traveling is suitably increased.
  • the electronic control unit 50 provided in the vehicle drive device 10 of the present embodiment, when the vehicle speed V becomes greater than the vehicle speed determination value Va for returning from the free-run inertia running during the free-run inertia running, When the normal running is returned from the free-running inertia and the vehicle speed V becomes larger than the vehicle speed determination value Vb for returning from the neutral inertia driving during the neutral inertia driving, the normal driving is returned from the neutral inertia driving.
  • the brake negative pressure can be suitably ensured when the brake is necessary in inertial traveling of the vehicle.
  • the electronic control device (running control device) 76 of the vehicle drive device 10 of the present embodiment is a vehicle speed provided with the electronic control device 50 as compared with the electronic control device 50 of the first embodiment described above. The difference is that the determination unit 62 is replaced with an inter-vehicle distance determination unit 78, and the rest is substantially the same as the electronic control device 50 of the first embodiment. Further, as shown in FIGS. 7 and 8, the vehicle drive device 10 receives a signal indicating an inter-vehicle distance (distance) D from the preceding vehicle 84 by a front radar 82 provided at the front portion of the vehicle 80. It is supplied to the electronic control unit 76.
  • the inter-vehicle distance determination unit 78 determines whether the inter-vehicle distance D detected by the front radar 82 is equal to or less than a preset inter-vehicle distance determination value D ⁇ , and the inter-vehicle distance D detected by the front radar 82 is set in advance. It is determined whether it is less than or equal to the determined inter-vehicle distance determination value D ⁇ .
  • the inter-vehicle distance determination value D ⁇ is a lower limit value of the inter-vehicle distance D set in advance by, for example, an experiment for returning from the free-run inertia traveling to the normal traveling during the free-run inertia traveling.
  • the value D ⁇ is a lower limit value of the inter-vehicle distance D set in advance by, for example, an experiment for returning from the neutral inertia traveling to the normal traveling during the neutral inertia traveling, and the inter-vehicle distance determination value D ⁇ is based on the inter-vehicle distance determination value D ⁇ . Is set too small.
  • the inter-vehicle distance determination values D ⁇ and D ⁇ which are the lower limit values of the preset inter-vehicle distance D, are of the magnitude of the negative pressure required to satisfy the amplification action of the brake booster 42 during a predetermined brake operation. This corresponds to the upper limit value, that is, the upper limit value of the necessity of the brake negative pressure.
  • the upper limit value of the magnitude of the negative pressure required to do so that is, the upper limit value of the necessity of the brake negative pressure is increased.
  • the inter-vehicle distance D is a predetermined brake that is used to predict the driver's future brake input or the frequency of the brake input so as not to collide with the preceding vehicle 84, that is, the necessity of the brake negative pressure. This indicates the magnitude of the negative pressure required to satisfy the amplifying action of the brake booster 42 during operation.
  • the inter-vehicle distance determination values D ⁇ and D ⁇ are determination values for determining the necessity of the brake negative pressure.
  • the inter-vehicle distance determination unit 78 is a means for determining the necessity of the brake negative pressure during the free-run inertia traveling or the neutral inertia traveling.
  • the inertial traveling switching control unit 64 having the inter-vehicle distance determining unit 78 determines that the free-run inertial traveling is performed by the inertial traveling determining unit 60, and the inter-vehicle distance determining unit 78 determines that the inter-vehicle distance D is the inter-vehicle distance determination value.
  • D ⁇ the inter-vehicle distance determination value
  • the inter-vehicle distance determining unit 78 determines that the inter-vehicle distance D is greater than the inter-vehicle distance determination value D ⁇ , that is, the necessity of the brake negative pressure is present. If it is determined that the distance is relatively small, the free-run inertia running is continued.
  • the inertial travel switching control unit 64 having the inter-vehicle distance determination unit 78 determines that the neutral travel determination unit 60 performs the neutral inertial travel, and the inter-vehicle distance determination unit 78 determines that the inter-vehicle distance D is the inter-vehicle distance.
  • the clutch C1 is engaged to return the normal traveling from the neutral inertia traveling.
  • the neutral inertial traveling is performed.
  • FIG. 9 shows the main part of the control operation of the electronic control unit 76, that is, the inertial travel switching control unit 64 performs a return determination from the free-run inertial travel or the neutral inertial travel based on the determination of the inter-vehicle distance determination unit 78.
  • FIG. 5 is a flowchart for explaining a control operation for returning the normal running from the inertia running.
  • FIG. FIG. 10 is a time chart corresponding to the main part of the control operation of the electronic control unit 76 of FIG.
  • FIG. 11 is a time chart corresponding to the main part of the control operation of the electronic control unit 76 of FIG. 9, and the neutral inertia traveling when the inter-vehicle distance D becomes equal to or less than the inter-vehicle distance determination value D ⁇ during the neutral inertia traveling. The case where the said normal driving
  • S11 corresponding to the inertial traveling determination unit 60 whether the inertial traveling start condition is satisfied, that is, whether the inertial traveling (the free-run inertial traveling or the neutral inertial traveling) is being performed. Is determined. If the determination of S11 is negative, S11 is repeatedly executed. For example, when the accelerator pedal 70 is depressed and the inertial running is started in the relatively high speed steady running state, The determination is affirmed and S12 corresponding to inertial running determination unit 60 is executed.
  • S12 it is determined whether or not the inertia running that is being performed is the free-run inertia running. If it is determined in S12 that the free-run inertia traveling in which the clutch C1 is OFF and the fuel injection is OFF is performed, for example, between t1 and t2 in FIG. 10, the determination in S12 is positive. Then, S13 corresponding to the inter-vehicle distance determination unit 78 is executed. Further, if it is determined in S12 that neutral inertia running is performed with the clutch C1 OFF and the engine 12 in the idle state, for example, between t3 and t4 in FIG. 11, the determination in S12 is denied. Then, S14 corresponding to the inter-vehicle distance determination unit 78 is executed.
  • S13 it is determined whether or not the inter-vehicle distance D is equal to or less than the inter-vehicle distance determination value D ⁇ , that is, whether or not there is a high possibility of a brake input by the driver in the future and the necessity of the brake negative pressure is relatively large. If the determination in S13 is negative, S13 is repeatedly executed. For example, if the inter-vehicle distance D is equal to or less than the inter-vehicle distance determination value D ⁇ at time t2 in FIG. S15 corresponding to the travel switching control unit 64 is executed. In S15, as shown after time t2 in FIG. 10, fuel injection is started, the engine 12 is restarted, and then the clutch C1 is turned on, whereby the normal running is restored from the free-run inertia running.
  • S14 it is determined whether the inter-vehicle distance D is equal to or less than the inter-vehicle distance determination value D ⁇ .
  • S14 is repeatedly executed. For example, when the inter-vehicle distance D is equal to or less than the inter-vehicle distance determination value D ⁇ at time t4 in FIG. 11, the determination of S14 is affirmed.
  • S16 corresponding to the inertial travel switching control unit 64 is executed. In S16, as shown at t4 in FIG. 11, the clutch C1 is turned on, and the normal running is restored from the neutral inertia running.
  • the inter-vehicle distance determination unit 78 is configured such that the inter-vehicle distance D with the preceding vehicle 84 is equal to or less than the inter-vehicle distance determination value D ⁇ . Therefore, it is determined that the necessity of the brake negative pressure is relatively large. For this reason, the inter-vehicle distance determination unit 78 can predict the driver's future brake input or the frequency of the brake input during coasting based on the inter-vehicle distance D with respect to the preceding vehicle 84, and stabilize the brake input during braking. Property can be suitably secured.
  • the electronic control device (running control device) 86 of the vehicle drive device 10 of the present embodiment is a vehicle speed provided with the electronic control device 50 as compared with the electronic control device 50 of the first embodiment described above.
  • the difference is that the determination unit 62 is replaced by a downward gradient determination unit 88, and the rest is substantially the same as the electronic control device 50 of the first embodiment.
  • the electronic control device 86 is supplied with a signal indicating a downward gradient (gradient) ⁇ (angle) of the road surface R from, for example, a road surface gradient sensor 90 that detects longitudinal acceleration.
  • the downward gradient ⁇ has a positive value as shown in FIG. 13 in the downward gradient and a negative value in the upward gradient.
  • the downward gradient determination unit 88 determines whether the downward gradient ⁇ detected by the road surface gradient sensor 90 is greater than or equal to a preset gradient determination value ⁇ , and the downward gradient ⁇ detected by the road surface gradient sensor 90 is determined in advance. It is determined whether or not the gradient determination value ⁇ is greater than or equal to the set gradient determination value ⁇ .
  • the gradient determination value ⁇ is an upper limit value of the downward gradient ⁇ set in advance by, for example, an experiment for returning from the free-run inertia traveling to the normal traveling during the free-run inertia traveling
  • the gradient determination value ⁇ is set smaller than the gradient determination value ⁇ .
  • the gradient determination values ⁇ and ⁇ which are the upper limit values of the downward gradient ⁇ set in advance, are upper limits of the magnitude of the negative pressure required to satisfy the amplification action of the brake booster 42 during a predetermined brake operation.
  • the upper limit value of the magnitude of the negative pressure required for the brake that is, the upper limit value of the necessity of the brake negative pressure is increased.
  • the downward gradient ⁇ is used to predict the driver's future brake input or the frequency of the brake input, that is, the amplification of the brake booster 42 during a predetermined brake operation, which is the necessity of the brake negative pressure. This indicates the magnitude of the negative pressure required to satisfy the action.
  • the gradient determination values ⁇ and ⁇ are determination values for determining the necessity of the brake negative pressure. For example, during free-run inertia traveling, if the downward gradient ⁇ is smaller than the gradient determination value ⁇ , the driver will input brakes in the future.
  • the descending slope determination unit 88 is a means for determining the necessity of the brake negative pressure during the free-run inertia traveling or the neutral inertia traveling.
  • the inertial traveling switching control unit 64 having the downward gradient determining unit 88 determines that the free-run inertial traveling is being performed by the inertial traveling determining unit 60, and the downward gradient ⁇ is determined to be the gradient determination value ⁇ by the downward gradient determining unit 88. If it is determined that the necessity of the brake negative pressure is relatively large, the engine 12 is restarted and the clutch C1 is engaged to resume the normal running from the free-run inertia running. In addition, when it is determined that the free-run inertia traveling is performed by the inertia traveling determination unit 60, and the downward gradient ⁇ is smaller than the gradient determination value ⁇ by the downward gradient determining unit 88, that is, the necessity of the brake negative pressure is compared. If it is determined that the free run is small, the free-run inertia running is continued.
  • the inertial traveling switching control unit 64 having the downward gradient determining unit 88 determines that the neutral inertial traveling is being performed by the inertial traveling determining unit 60, and the downward gradient ⁇ determines the gradient of the downward gradient ⁇ . If it is determined that the value is greater than or equal to the value ⁇ , the clutch C1 is engaged to resume the normal running from the neutral inertia running. In addition, when it is determined that the neutral inertia traveling is performed by the inertia traveling determination unit 60 and the downward gradient ⁇ is determined to be smaller than the gradient determination value ⁇ by the downward gradient determining unit 88, the neutral inertia traveling is performed. Continue to run.
  • FIG. 14 is a diagram illustrating a main part of the control operation of the electronic control unit 86, that is, the inertial travel switching control unit 64, which determines whether to return from the free-run inertial travel or the neutral inertial travel based on the determination of the downward gradient determination unit 88.
  • FIG. 5 is a flowchart for explaining a control operation for returning the normal running from the inertia running.
  • FIG. FIG. 15 is a time chart corresponding to the main part of the control operation of the electronic control unit 86 of FIG. 14, and the free-run inertia is obtained when the downward gradient ⁇ becomes equal to or greater than the gradient determination value ⁇ during the free-run inertia running. It shows a case where the normal running is returned from the running.
  • FIG. 16 is a time chart corresponding to the main part of the control operation of the electronic control unit 86 of FIG. 14, and the neutral slope travels when the downward slope ⁇ becomes equal to or greater than the slope judgment value ⁇ during the neutral coast travel. The case where the said normal driving
  • in S21 corresponding to the inertial traveling determination unit 60 whether the inertial travel start condition is satisfied, that is, whether the inertial travel (the free-run inertial travel or the neutral inertial travel) is being performed. Is determined. If the determination of S21 is negative, S21 is repeatedly executed. For example, when the accelerator pedal 70 is depressed and the inertial running is started in the relatively high speed steady running state, The determination is affirmed and S22 corresponding to inertial running determination unit 60 is executed.
  • S22 it is determined whether or not the inertia running that is being performed is the free-run inertia running.
  • the determination in S22 is positive.
  • S23 corresponding to the downward gradient determination unit 88 is executed.
  • neutral inertia running with the clutch C1 OFF and the engine 12 in an idle state is performed, for example, between t3 and t4 in FIG. 16, the determination in S22 is denied.
  • S24 corresponding to the downward gradient determination unit 88 is executed.
  • S23 it is determined whether or not the downward gradient ⁇ is equal to or greater than the gradient determination value ⁇ , that is, whether or not there is a high possibility of a brake input by the driver in the future and the necessity of the brake negative pressure is relatively large. If the determination in S23 is negative, S23 is repeatedly executed. For example, at time t2 in FIG. 15, the downward gradient ⁇ becomes equal to or greater than the gradient determination value ⁇ , that is, the necessity for the brake negative pressure becomes relatively large. If the determination in S23 is affirmative, S25 corresponding to the inertial travel switching control unit 64 is executed. In S25, fuel injection is started as shown after time t2 in FIG. 15, the engine 12 is restarted, and then the clutch C1 is engaged, whereby the normal running is restored from the free-run inertia running. .
  • S24 it is determined whether or not the downward gradient ⁇ is equal to or greater than the gradient determination value ⁇ .
  • S24 is repeatedly executed. However, for example, when the downward gradient ⁇ is equal to or greater than the gradient determination value ⁇ at time t4 in FIG. S26 corresponding to the switching control unit 64 is executed.
  • S26 the clutch C1 is engaged as shown at t4 in FIG. 16, and the normal running is restored from the neutral inertia running.
  • the downward gradient determination unit 88 determines that the downward gradient ⁇ of the road surface R on which the vehicle is traveling is the gradient determination value ⁇ .
  • the downward gradient determination unit 88 can predict the driver's future brake input during coasting or the frequency of the brake input based on the downward gradient ⁇ of the road surface R, and the stability of the brake input during braking can be determined. It can be suitably secured.
  • the neutral inertia traveling is used as the second inertia traveling in which the engine braking force is reduced as compared with the normal traveling while the engine 12 is rotated.
  • the engine 12 and the drive wheel 20 The cylinder stop inertia is such that the fuel supply to the engine 12 is stopped while the cylinder 12 is connected, and at least one of the pistons and intake / exhaust valves of the cylinders of the engine 12 is stopped by the cylinder stop device. Travel may be used.
  • the pumping loss when the engine 12 is driven to rotate in the fuel cut state is reduced, and the engine braking force is reduced as compared with the normal running, so that the running distance by inertia running becomes longer.
  • the necessity of the brake negative pressure is indicated by the vehicle speed V in the first embodiment, the inter-vehicle distance D in the second embodiment, and the downward gradient ⁇ in the third embodiment.
  • the necessity for the pressure may be indicated as the magnitude of the negative pressure required to satisfy the amplification action of the brake booster 42 during a predetermined brake operation.
  • the negative pressure required to satisfy the amplification action of the brake booster 42 during a predetermined brake operation by increasing the vehicle speed V, decreasing the inter-vehicle distance D, or increasing the downward gradient ⁇ .
  • the size increases.
  • the downward gradient ⁇ is obtained from a road surface gradient sensor 90 such as a G sensor that detects longitudinal acceleration.
  • the information acquisition means for the downward gradient ⁇ is not limited to the road surface gradient sensor 90.
  • the downward gradient ⁇ may be obtained based on the actual point.
  • the vehicle speed determination values Va and Vb, the inter-vehicle distance determination values D ⁇ and D ⁇ , and the gradient determination values ⁇ and ⁇ are predetermined constant values, but these vehicle speed determination values Va, Vb,
  • the inter-vehicle distance determination values D ⁇ and D ⁇ and the gradient determination values ⁇ and ⁇ are functions of the vehicle state such as the remaining battery level, the engine water temperature, and the necessity of hydraulic pressure, and the determination values are variably set in consideration of them.
  • These variable settings may be such that the vehicle speed determination values Va and Vb, the inter-vehicle distance determination values D ⁇ and D ⁇ , and the gradient determination values ⁇ and ⁇ are changed continuously, or may be changed stepwise including two steps.
  • the above function is set so that the vehicle speed determination values Va and Vb, and the gradient determination values ⁇ and ⁇ become smaller in accordance with, for example, a remaining battery level, a decrease in engine water temperature, and an increase in the necessity of hydraulic pressure. Further, the inter-vehicle distance determination values D ⁇ and D ⁇ are set to increase in accordance with a decrease in the remaining battery capacity, engine water temperature, and an increase in the necessity of hydraulic pressure.
  • the vehicle speed V is greater than the vehicle speed determination value Va, or if the inter-vehicle distance D is less than or equal to the inter-vehicle distance determination value D ⁇ , or the downward gradient ⁇ is the gradient determination value ⁇ . If it is determined as above, the vehicle has returned from the free-run inertia traveling to the normal travel.
  • the vehicle speed V is in a range greater than the vehicle speed determination value Va and less than or equal to the vehicle speed determination value Vb, or a range in which the inter-vehicle distance D is greater than the inter-vehicle distance determination value D ⁇ and less than or equal to the inter-vehicle distance determination value D ⁇ .
  • the neutral inertia traveling is performed and the power transmission path between the engine 12 and the drive wheels 20 is disconnected.
  • the fuel consumption of the vehicle in the inertia running is improved suitably.
  • the free-run inertia traveling may be selected.
  • the free-run inertia traveling is selected in a place where the necessity of the brake negative pressure is relatively small, so that the inertia traveling with good fuel efficiency can be performed.

Abstract

 車両の惰性走行において車両の燃費向上とブレーキの必要時におけるブレーキ負圧の確保とを両立させることができる車両の走行制御装置を提供する。 フリーラン惰性走行から通常走行を復帰する車速判定値Vaは、ニュートラル惰性走行から前記通常走行を復帰する車速判定値Vbよりも小さく設定されている。このため、車速Vが車速判定値Vaより大きくブレーキ負圧の必要性が大きくなるところでは、エンジン12を回転させる前記ニュートラル惰性走行が行われるので、ブレーキの必要時にはエンジン12が回転しブレーキ負圧が確保される。また、車速Vが車速判定値Va以下でありブレーキ負圧の必要性が小さいところでは、エンジン12を停止する前記フリーラン惰性走行が実施できるので、燃費の良い惰性走行を行うことができる。

Description

車両の走行制御装置
 本発明は車両の走行制御装置に係り、特に、エンジンブレーキ走行よりもエンジンブレーキ力を低下させた状態で走行する惰性走行が可能な車両において、その惰性走行時における車両の燃費と運転性との向上を両立させる技術に関するものである。
 エンジンと駆動輪との間の動力伝達を連結したままそのエンジンの被駆動回転によりエンジンブレーキを効かせて走行する通常走行(エンジンブレーキ走行)に対して、走行距離を延ばして車両の燃費を改善するために、その通常走行よりもエンジンブレーキ力を低下させて走行する惰性走行が考えられている。特許文献1に記載の装置はその一例であり、車両の走行中にアクセルペダルの戻し操作が判定されると、エンジンと駆動輪との間の動力伝達経路に設けられたクラッチを解放させて惰性走行が開始され、車両の燃費が改善されるようになっている。なお、特許文献1で実行される惰性走行は、クラッチの解放と共に、エンジンを回転停止させた状態で行われる惰性走行か、或いはエンジンを回転させたままの状態で行われる惰性走行かの区別がない。
特開2002-227885号公報
 ところで、上記車両の惰性走行としては、走行中にエンジンを停止させて前記エンジンブレーキ力を前記通常走行に比べて低減して走行する第1の惰性走行と、走行中にエンジンを回転させたまま前記エンジンブレーキ力を前記通常走行に比べて低減して走行する第2の惰性走行とが考えられ、前記第1の惰性走行ではエンジンが停止させられるので燃費の点で有利である。
 しかしながら、上記のような車両には、エンジンの回転により吸気管に発生する負圧を利用して制動装置のブレーキ力を増幅するブレーキブースタが備えられている。このため、例えばブレーキが必要となる場面において前記第1の惰性走行では、エンジンが停止しているので前記ブレーキブースタに用いられる負圧をすなわちブレーキ負圧を確保することが出来なくなる。また、これに対して、前記第2の惰性走行では、エンジンが回転しているので前記ブレーキ負圧を確保することができるが、ブレーキが必要となる場面以外ではエンジンをかけたままとなっているので車両の燃費が悪化してしまうという問題があった。なお、前記ブレーキブースタが負圧タンクを備えている場合は、エンジンが停止したからといって直ちにブレーキ力の増幅機能がなくなるわけではないが、ブレーキ操作毎に負圧が消費されてその増幅機能が低下する。
 本発明は以上の事情を背景として為されたもので、その目的とするところは、車両の惰性走行において車両の燃費向上とブレーキの必要時におけるブレーキ負圧の確保とを両立させることができる車両の走行制御装置を提供することにある。
 かかる目的を達成するために、本発明の要旨とするところは、(a) エンジンと、そのエンジンの回転により発生するブレーキ負圧を利用してブレーキ力を増幅するブレーキブースタとを備え、(b) 前記エンジンと駆動輪とを連結して走行する通常走行と、走行中に前記エンジンを停止させエンジンブレーキ力を前記通常走行に比べて低減して走行する第1の惰性走行と、走行中に前記エンジンを回転させたままエンジンブレーキ力を前記通常走行に比べて低減して走行する第2の惰性走行と、を行い、前記第1または前記第2の惰性走行中にブレーキ負圧の必要性を判断する手段を有し、前記第1の惰性走行と前記第2の惰性走行とから前記通常走行に復帰する条件の少なくとも1つに前記ブレーキ負圧の必要性が含まれている車両の走行制御装置であって、(c) 前記第1の惰性走行から復帰する前記ブレーキ負圧の必要性の上限値は、前記第2の惰性走行から復帰する前記ブレーキ負圧の必要性の上限値よりも小さく設定されている。
 このように構成された車両の走行制御装置によれば、前記第1の惰性走行から復帰する前記ブレーキ負圧の必要性の上限値は、前記第2の惰性走行から復帰する前記ブレーキ負圧の必要性の上限値よりも小さく設定されている。このため、前記ブレーキ負圧の必要性が比較的大きくなるところでは、前記エンジンを回転させる前記第2の惰性走行が行われるので、ブレーキの必要時には前記エンジンが回転し前記ブレーキ負圧が確保される。また、前記ブレーキ負圧の必要性が比較的小さいところでは、前記エンジンを停止する前記第1の惰性走行が実施できるので、燃費の良い惰性走行を行うことができる。これにより、車両の惰性走行において車両の燃費向上とブレーキ必要時におけるブレーキ負圧の確保とを両立させることができる。
 ここで、好適には、(a) 前記ブレーキ負圧の必要性を判断する手段は、先行車両との距離が近い場合にそのブレーキ負圧の必要性が大きいと判断し、(b) または、車両が走行している路面の下り勾配が大きい場合にそのブレーキ負圧の必要性が大きいと判断し、(c) または、車両が走行している際の車速が大きい場合にそのブレーキ負圧の必要性が大きいと判断する。このため、前記ブレーキ負圧の必要性を判断する手段によって、惰性走行時における運転者の今後のブレーキ入力頻度を前記先行車両との距離、路面の下り勾配、または車速により予測することができ、制動時のブレーキ入力の安定性を好適に確保することができる。
 また、好適には、(a) 前記第1の惰性走行は、走行中に前記エンジンと前記駆動輪とを切り離し前記エンジンを停止して惰性走行するフリーラン惰性走行であり、(b) 前記第2の惰性走行は、走行中に前記エンジンと前記駆動輪とを切り離し前記エンジンを自立運転して惰性走行するニュートラル惰性走行である。このため、前記フリーラン惰性走行および前記ニュートラル惰性走行では、前記エンジンと前記駆動輪とが切り離されるので、前記エンジンブレーキ力が殆ど作用しなくなり惰性走行による走行距離が好適に長くなる。
 また、好適には、(a) 前記第1の惰性走行は、走行中に前記エンジンと前記駆動輪とを切り離し前記エンジンを停止して惰性走行するフリーラン惰性走行であり、(b) 前記第2の惰性走行は、前記エンジンと前記駆動輪とを連結したまま前記エンジンに対する燃料供給を停止するとともに、そのエンジンの複数の気筒の中の一部の気筒のピストンおよび吸排気弁の少なくとも一方の動作を停止させる気筒休止惰性走行であるので、前記フリーラン惰性走行および前記気筒休止惰性走行は、いずれも前記通常走行に比較して前記エンジンブレーキ力が低減するので惰性走行による走行距離が好適に長くなる。
 また、好適には、前記ブレーキ負圧の必要性とは、所定のブレーキ操作時のブレーキブースタの増幅作用を充足するために要求される負圧の大きさであり、その負圧の大きさの上限値に基づいて惰性走行から前記通常走行に復帰する。
 また、好適には、(a) 前記第1の惰性走行中において、前記ブレーキ負圧の必要性が前記第1の惰性走行から復帰する前記ブレーキ負圧の必要性の上限値より大きくなると、その第1の惰性走行から前記通常走行を復帰し、(b) 前記第2の惰性走行中において、前記ブレーキ負圧の必要性が前記第2の惰性走行から復帰する前記ブレーキ負圧の必要性の上限値より大きくなると、その第2の惰性走行から前記通常走行を復帰するので、車両の惰性走行においてブレーキ必要時に前記ブレーキ負圧を好適に確保することができる。
 また、好適には、(a) 前記第1の惰性走行中において、前記ブレーキ負圧の必要性が前記第1の惰性走行から復帰する前記ブレーキ負圧の必要性の上限値より大きくなると、その第1の惰性走行から前記第2の惰性走行を復帰し、(b) 前記第2の惰性走行中において、前記ブレーキ負圧の必要性が前記第2の惰性走行から復帰する前記ブレーキ負圧の必要性の上限値より大きくなると、その第2の惰性走行から前記通常走行を復帰する。このため、例えば前記ブレーキ負圧の必要性が前記第1の惰性走行から復帰する前記ブレーキ負圧の必要性の上限値より大きくなるとその第1の惰性走行から前記通常走行を復帰するものに比較して、前記ブレーキ負圧の必要性が前記第1の惰性走行から復帰する前記ブレーキ負圧の必要性の上限値と前記第2の惰性走行から復帰する前記ブレーキ負圧の必要性の上限値との間において、前記エンジンブレーキ力が前記通常走行に比べて低減するので、車両の惰性走行時における車両の燃費が好適に向上する。
 また、好適には、本発明は、駆動力源として少なくともエンジンを備えている車両に適用され得、たとえば、エンジンの動力が自動変速機を介して駆動輪に伝達される車両に好適に適用されるが、エンジンの他に電動モータやモータジェネレータを駆動力源として備えているハイブリッド車両などにも適用され得る。エンジンは、燃料の燃焼で動力を発生する内燃機関などである。
 また、好適には、エンジンと駆動輪との間には、それ等の間の動力伝達経路を接続および遮断するクラッチ装置が配設され、エンジンを駆動輪から切り離すことができるように構成される。このクラッチ装置としては、上記動力伝達経路に直列に設けられた油圧式摩擦係合装置たとえば油圧式クラッチが好適に用いられるが、電気的に反力を制御して動力伝達を接続遮断することもできるなど、種々の形式のクラッチを採用できる。複数のクラッチやブレーキを備えていて複数段に変速可能な自動変速機内の前進クラッチを利用することもできる。また、上記動力伝達経路を接続および遮断するクラッチ装置としては、たとえば上記動力伝達経路に介挿されたその動力伝達経路に接続された一対の回転要素を有する遊星歯車装置と、その遊星歯車装置の回転要素のうちの動力伝達経路に接続されていない他の回転要素の回転を阻止する油圧式ブレーキとから構成されたものであってもよい。自動変速機がベルト式無段変速機である場合には、それに設けられた前後進切換機構の前進用摩擦係合装置および後進用摩擦係合装置が、クラッチ装置として用いられる。また、自動変速機が平行軸式常時噛合型変速機である場合には、それに設けられた同期機構のスリーブおよびそれを駆動するアクチュエータが、クラッチ装置に相当する。
 また、好適には、前記フリーラン惰性走行およびニュートラル惰性走行の開始条件は、たとえば、エンジンから駆動輪までの動力伝達経路がクラッチにより接続され、自動変速機の変速段が所定の高速側変速段以上の前進段に設定され、車速Vが所定車速V1以上の比較的高速の定常走行状態において、アクセルペダルが元位置またはそれに近い位置に戻し操作されることである。
 また、好適には、前記フリーラン惰性走行およびニュートラル惰性走行の中止は、エンジンブレーキ走行あるいは他の走行モードへ切り換えるために前記比較的高速の定常走行状態の判定条件の少なくとも一つが外れたときおよび/またはブレーキ操作が行われたときにも実行される。
 また、好適には、上記フリーラン惰性走行の非開始条件或いは中止条件には、エンジン水温が所定温度以下であるため暖気が要求される場合、油圧式摩擦係合装置などの油圧制御機器に油圧の供給が必要とされる場合、或いはエンジンに設けられたオルタネータによりバッテリの発電が必要とされる場合が、独立条件として設定されてよい。エンジンを回転させるニュートラル惰性走行やエンジンブレーキ走行などへ優先的に切り換えて、暖気、バッテリ充電を行うためである。
本発明が好適に適用される車両用駆動装置の骨子図に、電子制御装置の制御機能の要部を併せて示した概略構成図である。 図1の車両用駆動装置によって実行される惰性走行のうち、本発明に関連する3つの惰性走行を説明する図である。 図1の電子制御装置の惰性走行切換制御において車速に関連して惰性走行から復帰されるそれら惰性走行すなわちニュートラル惰性走行とフリーラン惰性走行との関係を説明する図である。 図1の電子制御装置によって実行される惰性走行からの復帰判定に関する制御作動を説明するフローチャートである。 図4の制御作動に対応するタイムチャートであり、フリーラン惰性走行中に車速がそのフリーラン惰性走行から復帰する車速判定値より大きくなることによりそのフリーラン惰性走行から通常走行へ復帰する場合を示すものである。 図4の制御作動に対応するタイムチャートであり、ニュートラル惰性走行中に車速がそのニュートラル惰性走行から復帰する車速判定値より大きくなることによりそのニュートラル惰性走行から通常走行へ復帰する場合を示すものである。 本発明の他の実施例を示す車両用駆動装置の電子制御装置を示す図であり、図1に対応する図である。 図7の電子制御装置に設けられた車間距離判定部において、先行車両との車間距離を示す図である。 図7の電子制御装置によって実行される惰性走行からの復帰判定に関する制御作動を説明するフローチャートである。 図9の制御作動に対応するタイムチャートであり、フリーラン惰性走行中に車間距離がそのフリーラン惰性走行から復帰する車間距離判定値以下となることによりそのフリーラン惰性走行から通常走行へ復帰する場合を示すものである。 図9の制御作動に対応するタイムチャートであり、ニュートラル惰性走行中に車間距離がそのニュートラル惰性走行から復帰する車間距離判定値以下となることによりそのニュートラル惰性走行から通常走行へ復帰する場合を示すものである。 本発明の他の実施例を示す車両用駆動装置の電子制御装置を示す図であり、図1および図7に対応する図である。 図12の電子制御装置に設けられた下り勾配判定部において、路面の下り勾配を示す図である。 図12の電子制御装置によって実行される惰性走行からの復帰判定に関する制御作動を説明するフローチャートである。 図14の制御作動に対応するタイムチャートであり、フリーラン惰性走行中に下り勾配がそのフリーラン惰性走行から復帰する勾配判定値以上となることによりそのフリーラン惰性走行から通常走行へ復帰する場合を示すものである。 図14の制御作動に対応するタイムチャートであり、ニュートラル惰性走行中に下り勾配がそのニュートラル惰性走行から復帰する勾配判定値以上となることによりそのニュートラル惰性走行から通常走行へ復帰する場合を示すものである。
 以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
 図1は、本発明が好適に適用される車両用駆動装置10に、その走行制御装置に対応する電子制御装置50の制御機能の要部を併せて示した概略構成図である。車両用駆動装置10は、燃料の燃焼で動力を発生するガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン12を駆動力源として備えており、そのエンジン12の出力は自動変速機16から差動歯車装置18を介して左右の駆動輪20に伝達される。エンジン12と自動変速機16との間には、ダンパ装置やトルクコンバータ等の動力伝達装置が設けられ得るが、駆動力源として機能するモータジェネレータをも配設することもできる。
 エンジン12は、電子スロットル弁や燃料噴射装置などのエンジン12の出力制御に必要な種々の機器や気筒休止装置等を有するエンジン制御装置30を備えている。電子スロットル弁は吸入空気量を制御するもので、燃料噴射装置は燃料の供給量を制御するものであり、基本的には運転者の出力要求量に対応するアクセルペダル70の操作量すなわちアクセル開度θacc に応じて制御される。燃料噴射装置は、車両走行中であってもアクセル開度θacc が0のアクセルOFF時等に燃料供給を停止(フューエルカットF/C)することができる。気筒休止装置は、例えば8気筒等の複数の気筒の一部または全部の吸排気弁を、クラッチ機構等によりクランク軸から機械的に切り離して停止させることができるもので、例えば給排気弁が何れも閉弁状態又は開弁状態となるように停止させる。これにより、上記フューエルカット状態でエンジン12が被駆動回転させられる際のポンピングロスが低減され、エンジンブレーキ力が低下して惰性走行の走行距離を延ばすことができる。なお、吸排気弁を停止させる代わりにピストンをクランク軸から切り離して停止させるようにしても良い。
 自動変速機16は、たとえば、複数の油圧式摩擦係合装置(クラッチやブレーキ)の係合解放状態によって変速比eが異なる複数のギヤ段が成立させられる遊星歯車式等の有段の自動変速機で、油圧制御装置32に設けられた電磁式の油圧制御弁や切換弁等によって変速制御が行われる。クラッチ(クラッチ装置)C1は自動変速機16の入力クラッチとして機能するものであり、同じく油圧制御装置32によって係合解放制御される。このクラッチC1は、エンジン12と駆動輪20との間の動力伝達経路を接続したり遮断したりする断接クラッチに相当する。上記自動変速機16として、平行軸式常時噛合型有段変速機や、前後進切換用歯車機構付のベルト式等の無段変速機を用いることもできる。平行軸式常時噛合型有段変速機の場合は、その同期噛合装置の噛み合いをアクチュエータを用いて解放させることで動力伝達経路が解放され、無段変速機の場合は、その前後進切換用歯車機構に備えられた前進用および後進用摩擦係合装置を解放させることで動力伝達経路が解放される。
 駆動輪20にはホイールブレーキ34が備えられており、運転者によって足踏み操作されるブレーキペダル40のブレーキ操作力(踏力)Brkに応じて制動力が発生させられる。ブレーキ操作力Brkはブレーキ要求量に相当し、本実施例ではそのブレーキ操作力Brkに応じて機械的にブレーキブースタ42を介してブレーキマスターシリンダ44からブレーキ油圧が発生させられ、そのブレーキ油圧によって制動力が発生させられる。ブレーキブースタ42は、エンジン12の回転により発生するブレーキ負圧(負圧)を利用してブレーキ操作力Brkを増幅するもので、ブレーキマスターシリンダ44から出力されるブレーキ油圧が増幅され、大きな制動力が得られるようになる。
 以上のように構成された車両用駆動装置10は、電子制御装置50を備えている。電子制御装置50は、CPU、ROM、RAM、及び入出力インターフェースなどを有する所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行う。電子制御装置50には、ブレーキ操作量センサ66からブレーキ操作力Brk(kPa)を表す信号が供給されるとともに、アクセル操作量センサ68からアクセルペダル70の操作量であるアクセル開度θacc(%)を表す信号が供給される。また、エンジン回転速度センサ72からエンジン12の回転速度NE(rpm)を表す信号が供給され、車速センサ74から車速V(km/h)を表す信号が供給される。この他、各種の制御に必要な種々の情報が供給されるようになっている。
 上記電子制御装置50は、運転者の加速意思に対応するアクセル開度θaccおよびブレーキ操作量などに沿ったエンジン12の出力制御および回転停止制御や、予め記憶されている変速線図から運転者の加速意思に対応するアクセル開度θaccに基づく要求出力に基づいて或いはアクセル開度θaccおよび車速Vに基づいて自動変速機16の変速段を制御する変速制御などを、実行する。自動変速機16は、アクセル開度θaccが零である惰性走行状態では、専ら車速V等に応じて所定のギヤ段が成立させられ、クラッチC1は係合状態に保持される。このエンジンブレーキ走行では、エンジン12は車速Vおよび変速比eに応じて定まる所定の回転速度で被駆動回転させられ、その回転速度に応じた大きさのエンジンブレーキ力が発生させられる。また、エンジン12が所定の回転速度で被駆動回転させられるため、そのエンジン回転により発生するブレーキ負圧を利用したブレーキブースタ42によるブレーキ操作力Brkの増幅作用が適切に得られて、ブレーキ操作による制動力のコントロール性能が十分に得られる。
 電子制御装置50は、その他に、通常走行部52と、フリーラン惰性走行部54と、ニュートラル惰性走行部56と、惰性走行判定部60と、車速判定部62を有する惰性走行切換制御部64等とを備えている。上記通常走行部52は、クラッチC1を係合させることによってエンジン12と駆動輪20との間の動力伝達経路を連結させて走行する通常走行を実行する。なお、通常走行部52では、アクセルOFF時において、図2に示すようにエンジン12の被駆動回転によるポンピングロスやフリクショントルクなどによってエンジンブレーキが発生するエンジンブレーキ走行を実行する。なお、上記エンジンブレーキ走行において、エンジン12は、燃料供給を停止したフューエルカットF/C状態でも良いが、本実施例では後述するニュートラル惰性走行と同様に最小量の燃料が供給されるアイドリング状態に制御される。
 フリーラン惰性走行部54は、アクセルペダル70の戻し操作時にフューエルカットF/Cを行って惰性走行中にエンジン12の回転を停止させた状態でクラッチC1を解放させることでフリーラン惰性走行(第1の惰性走行)を実行する。この場合には、エンジンブレーキ力が上記エンジンブレーキ走行よりも小さくなり、クラッチC1が解放されることからエンジンブレーキ力は略0になるため、走行抵抗が小さくなって惰性走行による走行距離が長くなり、燃費を向上させることができる。また、ニュートラル惰性走行部56は、アクセルペダル70の戻し操作時にフューエルカットF/Cを行わないで惰性走行中にエンジン12を回転維持させた状態でクラッチC1を解放させることでニュートラル惰性走行(第2の惰性走行)を実行する。この場合も、エンジンブレーキ力が上記エンジンブレーキ走行よりも小さくなり、クラッチC1が解放されることからエンジンブレーキ力は略0になるため、走行抵抗が小さくなって惰性走行による走行距離が長くなり、燃費を向上させることができるが、エンジン12のアクセルOFF時の回転速度を維持するための燃料が必要である。このニュートラル惰性走行時すなわちアクセルペダル70の戻し時のエンジン12の回転速度NEは、暖気後ではたとえば700rpm程度のアイドル回転速度であるが、暖気中や充電中などではたとえば1200rpm程度の回転速度である。
 惰性走行判定部60は、例えばエンジン12から駆動輪20までの動力伝達経路がクラッチC1により接続され、且つ自動変速機16の変速段が所定の高速側変速段以上の前進段に設定され、且つ車速V(km/h)が所定以上の比較的高速の定常走行状態において、アクセルペダル70が元位置またはそれに近い位置に戻し操作されたことという惰性走行開始条件が成立したと判定し、例えば図2に示すエンジン12の状態およびクラッチC1の状態によって、上記惰性走行の種類が前記フリーラン惰性走行であるかそれとも前記ニュートラル惰性走行であるのかを判定、すなわち上記惰性走行の種類が前記フリーラン惰性走行であるか否かを判定する。
 車速判定部62は、車速センサ74により検出された車速Vが予め設定された車速判定値Vaより大きいか否か、および車速センサ74により検出された車速Vが予め設定された車速判定値Vbより大きいか否かを判定する。なお、上記車速判定値Vaは、前記フリーラン惰性走行中においてそのフリーラン惰性走行から前記通常走行へ復帰する例えば実験等によって予め設定された車速Vの上限値であり、上記車速判定値Vbは、前記ニュートラル惰性走行中においてそのニュートラル惰性走行から前記通常走行へ復帰する例えば実験等によって予め設定された車速Vの上限値であり、車速判定値Vaは車速判定値Vbよりも小さく且つそれら車速判定値Va、Vbは0(km/h)より大きく(0<Va<Vb)設定されている。なお、前記予め設定された車速Vの上限値である車速判定値Va、Vbは、所定のブレーキ操作時のブレーキブースタ42の増幅作用を充足するために要求される負圧の大きさの上限値すなわち前記ブレーキ負圧の必要性の上限値に対応するものであり、例えば車速判定値Va、Vbが大きくなるに連れて、前記所定のブレーキ操作時のブレーキブースタ42の増幅作用を充足するために要求される負圧の大きさの上限値すなわち前記ブレーキ負圧の必要性の上限値が大きくなるようになっている。
 また、本実施例において、車速Vは、運転者の今後のブレーキ入力またはそのブレーキ入力の頻度を予測するものすなわち前記ブレーキ負圧の必要性である所定のブレーキ操作時のブレーキブースタ42の増幅作用を充足するために要求される負圧の大きさを示すものであり、車速Vが大きい場合に運転者の今後のブレーキ入力の可能性が高まって前記ブレーキ負圧の必要性が大きくなる。そして、上記車速判定値Va、Vbは前記ブレーキ負圧の必要性を判定する判定値であり、例えばフリーラン惰性走行時において、車速Vが車速判定値Va以下であれば運転者が今後のブレーキ入力を行う可能性が低く前記ブレーキ負圧の必要性が低いものであり、車速Vが車速判定値Vaより大きければ運転者が今後のブレーキ入力を行う可能性が高く前記ブレーキ負圧の必要性が高いものである。つまり、上記車速判定部62は、前記フリーラン惰性走行または前記ニュートラル惰性走行中において前記ブレーキ負圧の必要性を判断する手段である。
 惰性走行切換制御部64は、アクセルペダル70の戻し操作たとえばアクセルOFF操作を含む惰性走行開始条件が成立した場合に、予め定められた関係から車両走行状態に基づいて、フリーラン惰性走行およびニュートラル惰性走行の2種類の走行モードのいずれかへ選択的に切り換える。また、その惰性走行終了条件が成立した場合にはそれまでの惰性走行を終了させる。また、惰性走行切換制御部64は、前記惰性走行開始条件が不成立の場合に、上記エンジンブレーキ走行(通常走行)を実施する。
 また、惰性走行切換制御部64は、惰性走行判定部60でフリーラン惰性走行が実施されていると判定され、且つ、車速判定部62で車速Vが車速判定値Vaより大きいすなわち前記ブレーキ負圧の必要性が比較的大きいと判定されると、エンジン12を再始動しクラッチC1を係合して、前記フリーラン惰性走行から前記通常走行へ復帰する。なお、惰性走行判定部60でフリーラン惰性走行が実施されていると判定され、且つ、車速判定部62で車速Vが車速判定値Va以下すなわち前記ブレーキ負圧の必要性が比較的小さいと判定されると、前記フリーラン惰性走行を継続して実行する。
 また、惰性走行切換制御部64は、惰性走行判定部60で前記ニュートラル惰性走行が実施されていると判定され、且つ、車速判定部62で車速Vが車速判定値Vbより大きいと判定されると、クラッチC1を係合して前記ニュートラル惰性走行から前記通常走行へ復帰する。なお、惰性走行判定部60で前記ニュートラル惰性走行が実施されていると判定され、且つ、車速判定部62で車速Vが車速判定値Vb以下であると判定されると、前記ニュートラル惰性走行を継続して実行する。
 なお、車速Vに関する前記フリーラン惰性走行および前記ニュートラル惰性走行からの復帰条件は、図3に示すように前記フリーラン惰性走行から復帰する前記ブレーキ負圧の必要性の上限値すなわち車速Vの車速判定値(上限値)Vaが、前記ニュートラル惰性走行から復帰する前記ブレーキ負圧の必要性の上限値すなわち車速Vの車速判定値(上限値)Vbよりも小さく(Va<Vb)設定されており、例えば、図4の(a)のように前記フリーラン惰性走行から復帰する前記ブレーキ負圧の必要性の下限値すなわち車速Vの下限値(例えば0)と前記ニュートラル惰性走行から復帰する前記ブレーキ負圧の必要性の下限値すなわち車速Vの下限値(例えば0)とが同じ値に設定されたり、或いは図4の(b)のように前記フリーラン惰性走行から復帰する車速Vの上限値Vaが前記ニュートラル惰性走行から復帰する車速Vの下限値Vaと同じ値に設定されたりすることができる。
 惰性走行切換制御部64は、たとえば惰性走行判定部60で上述した前記比較的高速の定常走行状態の判定条件の少なくとも一つが外れたとき、および/またはブレーキ操作が行われたときに、エンジンブレーキ走行あるいは他の走行モードへ切り換えるために前記フリーラン惰性走行およびニュートラル惰性走行の中止を実行する。
 図4は、電子制御装置50の制御作動の要部、すなわち、惰性走行切換制御部64によって前記フリーラン惰性走行または前記ニュートラル惰性走行からの復帰判定を車速判定部62の判定に基づいて行い、それら惰性走行から例えば前記通常走行へ復帰させる制御作動を説明するフローチャートである。なお、図5は、図4の電子制御装置50の制御作動の要部に対応するタイムチャートであり、フリーラン惰性走行中に車速Vが車速判定値Vaより大きくなることによりそのフリーラン惰性走行から前記通常走行へ復帰する場合を示すものである。また、図6は、図4の電子制御装置50の制御作動の要部に対応するタイムチャートであり、ニュートラル惰性走行中に車速Vが車速判定値Vbより大きくなることによりそのニュートラル惰性走行から前記通常走行へ復帰する場合を示すものである。
 図4において、惰性走行判定部60に対応するステップS1(以下、ステップを省略する)では、前記惰性走行開始条件が成立しているか否かすなわち惰性走行(前記フリーラン惰性走行または前記ニュートラル惰性走行)が実施中であるか否かが判定される。このS1の判定が否定される場合には繰り返しS1が実行されるが、例えば、図5のt1時点および図6のt1時点に示すように前記比較的高速の定常走行状態においてアクセルペダル70の踏み込みがOFFとなり惰性走行が開始される場合には、S1の判定が肯定されて惰性走行判定部60に対応するS2が実行される。
 S2では、実施中である惰性走行が前記フリーラン惰性走行であるかそれとも前記ニュートラル惰性走行であるかが判定される。そして、S2で例えば図5のt2からt3までの間のようにクラッチC1がOFF且つエンジン12の回転が停止しているフリーラン惰性走行が実施されていると判定されると、車速判定部62に対応するS3が実行される。また、S2で例えば図6のt2からt3までの間のようにクラッチC1がOFF且つエンジン12がアイドル状態であるニュートラル惰性走行が実施されていると判定されると、車速判定部62に対応するS4が実行される。
 S3では、車速Vが車速判定値Vaより大きいか否かすなわち今後運転者によるブレーキ入力の可能性が高く前記ブレーキ負圧の必要性が比較的大きいか否かが判定される。このS3の判定が否定される場合には繰り返しS3が実行されるが、例えば、図5のt3時点において車速Vが車速判定値Vaより大きくなりS3の判定が肯定される場合には、惰性走行切換制御部64に対応するS5が実行される。そして、S5では、図5のt3時点に示すように燃料噴射が開始されてその後クラッチC1が係合されることによって前記フリーラン惰性走行から前記通常走行へ復帰される。
 S4では、車速Vが車速判定値Vbより大きいか否かが判定される。このS4の判定が否定される場合には繰り返しS4が実行されるが、例えば、図6のt4時点において車速Vが車速判定値Vbより大きくなりS4の判定が肯定される場合には、惰性走行切換制御部64に対応するS6が実行される。そして、S6では、図6のt4時点に示すようにクラッチC1が係合されて前記ニュートラル惰性走行から前記通常走行へ復帰される。
 なお、本実施例の電子制御装置50の制御作動とは異なり例えば燃費だけを重視して前記フリーラン惰性走行を一律に実行すると、前記ブレーキ負圧が必要となる走行時にはブレーキ力が不足する可能性があり例えばその不足分を前記ブレーキ負圧以外のブレーキ力を発生させる電子制御式ブレーキ(ECB等)或いはブレーキブースタ42の負圧源となる負圧ポンプを別に設けることにより補う必要性があるためコスト高に繋がる。しかし、本実施例の電子制御装置50の制御作動のように、車速判定部62によって車速Vが車速判定値Vaよりか大きいか否かすなわち前記ブレーキ負圧の必要性が大きいか否かによって、前記フリーラン惰性走行を継続させたりそのフリーラン惰性走行から前記通常走行へ復帰させることによって、ECB装置や負圧ポンプが不要となるかその使用を抑制できるため小型化が可能となるため、コスト高を抑制することができる。
 上述のように、本実施例の車両用駆動装置10に備えられた電子制御装置50によれば、前記フリーラン惰性走行から前記通常走行を復帰する車速Vの車速判定値Vaは、前記ニュートラル惰性走行から前記通常走行を復帰する車速Vの車速判定値Vbよりも小さく設定されている。このため、車速判定部62を有する惰性走行切換制御部64によって、車速Vが車速判定値Vaより大きく前記ブレーキ負圧の必要性が比較的大きくなるところでは、エンジン12を回転させる前記ニュートラル惰性走行が行われるので、ブレーキの必要時にはエンジン12が回転し前記ブレーキ負圧が確保される。また、車速Vが車速判定値Va以下であり前記ブレーキ負圧の必要性が比較的小さいところでは、エンジン12を停止する前記フリーラン惰性走行が実施できるので、燃費の良い惰性走行を行うことができる。これにより、車両の惰性走行において車両の燃費向上とブレーキ必要時におけるブレーキ負圧の確保とを両立させることができる。
 また、本実施例の車両用駆動装置10に備えられた電子制御装置50によれば、車速判定部62は、車両が走行している際の車速Vが車速判定値Vaより大きい場合に前記ブレーキ負圧の必要性が大きいと判断する。このため、車速判定部62によって、惰性走行時における運転者の今後のブレーキ入力或いはそのブレーキ入力の頻度を車速Vにより予測することができ、制動時のブレーキ入力の安定性を好適に確保することができる。
 また、本実施例の車両用駆動装置10に備えられた電子制御装置50によれば、前記フリーラン惰性走行は、走行中にエンジン12と駆動輪20との間の動力伝達経路を切り離しエンジン12を停止して惰性走行し、前記ニュートラル惰性走行は、走行中にエンジン12と駆動輪20との間の動力伝達経路を切り離しエンジン12を自立運転して惰性走行する。このため、前記フリーラン惰性走行および前記ニュートラル惰性走行では、エンジン12と駆動輪20との間の動力伝達経路が切り離されるので、エンジンブレーキ力が殆ど無くなり惰性走行による走行距離が好適に長くなる。
 また、本実施例の車両用駆動装置10に備えられた電子制御装置50によれば、前記フリーラン惰性走行中において、車速Vがそのフリーラン惰性走行から復帰する車速判定値Vaより大きくなると、そのフリーラン惰性走行から前記通常走行を復帰し、前記ニュートラル惰性走行中において、車速Vがそのニュートラル惰性走行から復帰する車速判定値Vbより大きくなると、そのニュートラル惰性走行から前記通常走行を復帰するので、車両の惰性走行においてブレーキ必要時に前記ブレーキ負圧を好適に確保することができる。
 続いて、本発明の他の実施例を図面に基づいて詳細に説明する。以下の説明において、実施例相互に共通する部分については同一の符号を付してその説明を省略する。
 本実施例の車両用駆動装置10の電子制御装置(走行制御装置)76は、図7に示すように、前述の実施例1の電子制御装置50に比べてその電子制御装置50設けられた車速判定部62が車間距離判定部78にかえられている点で相違しており、その他は実施例1の電子制御装置50と略同様である。また、車両用駆動装置10には、図7および図8に示すように、車両80の前部に設けられた前方レーダ82によって、先行車両84との車間距離(距離)Dを表す信号等が電子制御装置76に供給されている。
 車間距離判定部78は、前方レーダ82により検出された車間距離Dが、予め設定された車間距離判定値Dα以下であるか否か、および前方レーダ82により検出された車間距離Dが、予め設定された車間距離判定値Dβ以下であるか否かを判定する。なお、上記車間距離判定値Dαは、前記フリーラン惰性走行中においてそのフリーラン惰性走行から前記通常走行へ復帰する例えば実験等によって予め設定された車間距離Dの下限値であり、上記車間距離判定値Dβは、前記ニュートラル惰性走行中においてそのニュートラル惰性走行から前記通常走行へ復帰する例えば実験等によって予め設定された車間距離Dの下限値であり、車間距離判定値Dβは車間距離判定値Dαよりも小さく設定されている。なお、前記予め設定された車間距離Dの下限値である車間距離判定値Dα、Dβは、所定のブレーキ操作時のブレーキブースタ42の増幅作用を充足するために要求される負圧の大きさの上限値すなわち前記ブレーキ負圧の必要性の上限値に対応するものであり、例えば車間距離判定値Dα、Dβが小さくなるに連れて、前記所定のブレーキ操作時のブレーキブースタ42の増幅作用を充足するために要求される負圧の大きさの上限値すなわち前記ブレーキ負圧の必要性の上限値が大きくなるようになっている。
 また、本実施例において、車間距離Dは、先行車両84と衝突しないように運転者の今後のブレーキ入力またはそのブレーキ入力の頻度を予測するものすなわち前記ブレーキ負圧の必要性である所定のブレーキ操作時のブレーキブースタ42の増幅作用を充足するために要求される負圧の大きさを示すものであり、車間距離Dが近い場合に運転者の今後のブレーキ入力の可能性が高まって前記ブレーキ負圧の必要性が大きくなる。そして、上記車間距離判定値Dα、Dβは前記ブレーキ負圧の必要性を判定する判定値であり、例えばフリーラン惰性走行時において、車間距離Dが車間距離判定値Dαより大きければ運転者が今後ブレーキ入力を行う可能性が低く前記ブレーキ負圧の必要性が低いものであり、車間距離Dが車間距離判定値Dα以下であれば運転者が今後ブレーキ入力を行う可能性が高く前記ブレーキ負圧の必要性が高いものである。つまり、上記車間距離判定部78は、前記フリーラン惰性走行または前記ニュートラル惰性走行中において前記ブレーキ負圧の必要性を判断する手段である。
 車間距離判定部78を有する惰性走行切換制御部64は、惰性走行判定部60でフリーラン惰性走行が実施されていると判定され、且つ、車間距離判定部78で車間距離Dが車間距離判定値Dα以下であると判定すなわち前記ブレーキ負圧の必要性が比較的大きいと判定されると、エンジン12を再始動しクラッチC1を係合して前記フリーラン惰性走行から前記通常走行を復帰する。なお、惰性走行判定部60でフリーラン惰性走行が実施されていると判定され、且つ、車間距離判定部78で車間距離Dが車間距離判定値Dαより大きいとすなわち前記ブレーキ負圧の必要性が比較的小さいと判定されると、前記フリーラン惰性走行を継続して実行する。
 また、車間距離判定部78を有する惰性走行切換制御部64は、惰性走行判定部60で前記ニュートラル惰性走行が実施されていると判定され、且つ、車間距離判定部78で車間距離Dが車間距離判定値Dβ以下であると判定されると、クラッチC1を係合して前記ニュートラル惰性走行から前記通常走行を復帰する。なお、惰性走行判定部60で前記ニュートラル惰性走行が実施されていると判定され、且つ、車間距離判定部78で車間距離Dが車間距離判定値Dβより大きいと判定されると、前記ニュートラル惰性走行を継続して実行する。
 図9は、電子制御装置76の制御作動の要部、すなわち、惰性走行切換制御部64によって前記フリーラン惰性走行または前記ニュートラル惰性走行からの復帰判定を車間距離判定部78の判定に基づいて行い、それら惰性走行から前記通常走行を復帰させる制御作動を説明するフローチャートである。なお、図10は、図9の電子制御装置76の制御作動の要部に対応するタイムチャートであり、フリーラン惰性走行中に車間距離Dが車間距離判定値Dα以下となることによりそのフリーラン惰性走行から前記通常走行を復帰する場合を示すものである。また、図11は、図9の電子制御装置76の制御作動の要部に対応するタイムチャートであり、ニュートラル惰性走行中に車間距離Dが車間距離判定値Dβ以下となることによりそのニュートラル惰性走行から前記通常走行を復帰する場合を示すものである。
 図9において、惰性走行判定部60に対応するS11では、前記惰性走行開始条件が成立しているか否かすなわち惰性走行(前記フリーラン惰性走行または前記ニュートラル惰性走行)が実施中であるか否かが判定される。このS11の判定が否定される場合には繰り返しS11が実行されるが、例えば、前記比較的高速の定常走行状態においてアクセルペダル70の踏み込みがOFFとなり惰性走行が開始される場合には、S11の判定が肯定されて惰性走行判定部60に対応するS12が実行される。
 S12では、実施中である惰性走行が前記フリーラン惰性走行であるか否かが判定される。そして、S12で例えば図10のt1からt2までの間のようにクラッチC1がOFF且つ燃料噴射がOFFされているフリーラン惰性走行が実施されていると判定されると、そのS12の判定が肯定されて車間距離判定部78に対応するS13が実行される。また、S12で例えば図11のt3からt4までの間のようにクラッチC1がOFF且つエンジン12がアイドル状態であるニュートラル惰性走行が実施されていると判定されると、そのS12の判定が否定されて車間距離判定部78に対応するS14が実行される。
 S13では、車間距離Dが車間距離判定値Dα以下であるか否かすなわち今後運転者によるブレーキ入力の可能性が高く前記ブレーキ負圧の必要性が比較的大きいか否かが判定される。このS13の判定が否定される場合には繰り返しS13が実行されるが、例えば、図10のt2時点において車間距離Dが車間距離判定値Dα以下となりS13の判定が肯定される場合には、惰性走行切換制御部64に対応するS15が実行される。そして、S15では、図10のt2時以降に示すように燃料噴射が開始されてエンジン12が再始動されその後クラッチC1がONされることによって前記フリーラン惰性走行から前記通常走行が復帰される。
 S14では、車間距離Dが車間距離判定値Dβ以下であるか否かが判定される。このS14の判定が否定される場合には、繰り返しS14が実行されるが、例えば、図11のt4時点において車間距離Dが車間距離判定値Dβ以下となりS14の判定が肯定される場合には、惰性走行切換制御部64に対応するS16が実行される。そして、S16では、図11のt4時に示すようにクラッチC1がONされて前記ニュートラル惰性走行から前記通常走行が復帰される。
 上述のように、本実施例の車両用駆動装置10に備えられた電子制御装置76によれば、車間距離判定部78は、先行車両84との車間距離Dが車間距離判定値Dα以下の場合に前記ブレーキ負圧の必要性が比較的大きいと判断する。このため、車間距離判定部78によって、惰性走行時における運転者の今後のブレーキ入力或いはそのブレーキ入力の頻度を先行車両84との車間距離Dにより予測することができ、制動時のブレーキ入力の安定性を好適に確保することができる。
 本実施例の車両用駆動装置10の電子制御装置(走行制御装置)86は、図12に示すように、前述の実施例1の電子制御装置50に比べてその電子制御装置50設けられた車速判定部62が下り勾配判定部88にかえられている点で相違しており、その他は実施例1の電子制御装置50と略同様である。また、電子制御装置86には、例えば前後加速度を検出する路面勾配センサ90から路面Rの下り勾配(勾配)Φ(角度)を表す信号が供給されている。なお、上記下り勾配Φは、下り勾配では図13に示すように正の値となり、上り勾配では負の値となる。
 下り勾配判定部88は、路面勾配センサ90により検出された下り勾配Φが、予め設定された勾配判定値α以上であるか否か、および路面勾配センサ90により検出された下り勾配Φが、予め設定された勾配判定値β以上であるか否かを判定する。なお、上記勾配判定値αは、前記フリーラン惰性走行中においてそのフリーラン惰性走行から前記通常走行へ復帰する例えば実験等によって予め設定された下り勾配Φの上限値であり、上記勾配判定値βは、前記ニュートラル惰性走行中においてそのニュートラル惰性走行から前記通常走行へ復帰する例えば実験等によって予め設定された下り勾配Φの上限値であり、勾配判定値αは勾配判定値βよりも小さく設定されている。なお、前記予め設定された下り勾配Φの上限値である勾配判定値α、βは、所定のブレーキ操作時のブレーキブースタ42の増幅作用を充足するために要求される負圧の大きさの上限値すなわち前記ブレーキ負圧の必要性の上限値に対応するものであり、例えば勾配判定値α、βが大きくなるに連れて、前記所定のブレーキ操作時のブレーキブースタ42の増幅作用を充足するために要求される負圧の大きさの上限値すなわち前記ブレーキ負圧の必要性の上限値が大きくなるようになっている。
 また、本実施例において、下り勾配Φは、運転者の今後のブレーキ入力またはそのブレーキ入力の頻度を予測するものすなわち前記ブレーキ負圧の必要性である所定のブレーキ操作時のブレーキブースタ42の増幅作用を充足するために要求される負圧の大きさを示すものであり、下り勾配Φが大きい場合に運転者の今後のブレーキ入力の可能性が高まって前記ブレーキ負圧の必要性が大きくなる。そして、上記勾配判定値α、βは前記ブレーキ負圧の必要性を判定する判定値であり、例えばフリーラン惰性走行時において、下り勾配Φが勾配判定値αより小さければ運転者が今後ブレーキ入力を行う可能性が低く前記ブレーキ負圧の必要性が比較的低いものであり、下り勾配Φが勾配判定値α以上であれば運転者が今後ブレーキ入力を行う可能性が高く前記ブレーキ負圧の必要性が比較的高いものである。つまり、上記下り勾配判定部88は、前記フリーラン惰性走行または前記ニュートラル惰性走行中において前記ブレーキ負圧の必要性を判断する手段である。
 下り勾配判定部88を有する惰性走行切換制御部64は、惰性走行判定部60でフリーラン惰性走行が実施されていると判定され、且つ、下り勾配判定部88で下り勾配Φが勾配判定値α以上であるとすなわち前記ブレーキ負圧の必要性が比較的大きいと判定されると、エンジン12を再始動しクラッチC1を係合して前記フリーラン惰性走行から前記通常走行を復帰する。なお、惰性走行判定部60でフリーラン惰性走行が実施されていると判定され、且つ、下り勾配判定部88で下り勾配Φが勾配判定値αより小さいとすなわち前記ブレーキ負圧の必要性が比較的小さいと判定されると、前記フリーラン惰性走行を継続して実行する。
 また、下り勾配判定部88を有する惰性走行切換制御部64は、惰性走行判定部60で前記ニュートラル惰性走行が実施されていると判定され、且つ、下り勾配判定部88で下り勾配Φが勾配判定値β以上であると判定されると、クラッチC1を係合して前記ニュートラル惰性走行から前記通常走行を復帰する。なお、惰性走行判定部60で前記ニュートラル惰性走行が実施されていると判定され、且つ、下り勾配判定部88で下り勾配Φが勾配判定値βより小さいと判定されると、前記ニュートラル惰性走行を継続して実行する。
 図14は、電子制御装置86の制御作動の要部、すなわち、惰性走行切換制御部64によって前記フリーラン惰性走行または前記ニュートラル惰性走行からの復帰判定を下り勾配判定部88の判定に基づいて行い、それら惰性走行から前記通常走行を復帰させる制御作動を説明するフローチャートである。なお、図15は、図14の電子制御装置86の制御作動の要部に対応するタイムチャートであり、フリーラン惰性走行中に下り勾配Φが勾配判定値α以上となることによりそのフリーラン惰性走行から前記通常走行を復帰する場合を示すものである。また、図16は、図14の電子制御装置86の制御作動の要部に対応するタイムチャートであり、ニュートラル惰性走行中に下り勾配Φが勾配判定値β以上となることによりそのニュートラル惰性走行から前記通常走行を復帰する場合を示すものである。
 図14において、惰性走行判定部60に対応するS21では、前記惰性走行開始条件が成立しているか否かすなわち惰性走行(前記フリーラン惰性走行または前記ニュートラル惰性走行)が実施中であるか否かが判定される。このS21の判定が否定される場合には繰り返しS21が実行されるが、例えば、前記比較的高速の定常走行状態においてアクセルペダル70の踏み込みがOFFとなり惰性走行が開始される場合には、S21の判定が肯定されて惰性走行判定部60に対応するS22が実行される。
 S22では、実施中である惰性走行が前記フリーラン惰性走行であるか否かが判定される。そして、S22で例えば図15のt1からt2までの間のようにクラッチC1がOFF且つ燃料噴射がOFFされているフリーラン惰性走行が実施されていると判定されると、そのS22の判定が肯定されて下り勾配判定部88に対応するS23が実行される。また、S22で例えば図16のt3からt4までの間のようにクラッチC1がOFF且つエンジン12がアイドル状態であるニュートラル惰性走行が実施されていると判定されると、そのS22の判定が否定されて下り勾配判定部88に対応するS24が実行される。
 S23では、下り勾配Φが勾配判定値α以上であるか否かすなわち今後運転者によるブレーキ入力の可能性が高く前記ブレーキ負圧の必要性が比較的大きいか否かが判定される。このS23の判定が否定される場合には繰り返しS23が実行されるが、例えば、図15のt2時点において下り勾配Φが勾配判定値α以上となりすなわち前記ブレーキ負圧の必要性が比較的大きくなりS23の判定が肯定される場合には、惰性走行切換制御部64に対応するS25が実行される。そして、S25では、図15のt2時以降に示すように燃料噴射が開始されてエンジン12が再始動されその後クラッチC1が係合されることによって前記フリーラン惰性走行から前記通常走行が復帰される。
 S24では、下り勾配Φが勾配判定値β以上であるか否かが判定される。このS24の判定が否定される場合には繰り返しS24が実行されるが、例えば、図16のt4時点において下り勾配Φが勾配判定値β以上となりS24の判定が肯定される場合には、惰性走行切換制御部64に対応するS26が実行される。そして、S26では、図16のt4時に示すようにクラッチC1が係合されて前記ニュートラル惰性走行から前記通常走行が復帰される。
 上述のように、本実施例の車両用駆動装置10に備えられた電子制御装置86によれば、下り勾配判定部88は、車両が走行している路面Rの下り勾配Φが勾配判定値α以上である場合に前記ブレーキ負圧の必要性が比較的大きいと判断する。このため、下り勾配判定部88によって、惰性走行時における運転者の今後のブレーキ入力或いはそのブレーキ入力の頻度を路面Rの下り勾配Φにより予測することができ、制動時のブレーキ入力の安定性を好適に確保することができる。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
 本実施例において、エンジン12を回転させたままエンジンブレーキ力を通常走行に比べて低減して走行する第2の惰性走行として前記ニュートラル惰性走行が用いられたが、例えば、エンジン12と駆動輪20とを連結したままエンジン12に対する燃料供給を停止するとともに、前記気筒休止装置によってエンジン12の複数の気筒の中の一部の気筒のピストンおよび吸排気弁の少なくとも一方の動作を停止させる気筒休止惰性走行を用いても良い。これにより、上記フューエルカット状態でエンジン12が被駆動回転させられる際のポンピングロスが低減されて前記通常走行に比較してエンジンブレーキ力が低減するので惰性走行による走行距離が長くなる。
 また、本実施例において、前記ブレーキ負圧の必要性は、実施例1では車速Vで示し、実施例2では車間距離Dで示し、実施例3では下り勾配Φで示したが、前記ブレーキ負圧の必要性は、所定のブレーキ操作時におけるブレーキブースタ42の増幅作用を充足するために要求される負圧の大きさとして示しても良い。例えば、車速Vが高くなること、車間距離Dが近くなること、或いは下り勾配Φが大きくなること等により所定のブレーキ操作時におけるブレーキブースタ42の増幅作用を充足するために要求される負圧の大きさが大きくなる。
 また、本実施例において、下り勾配Φは、前後加速度を検出するGセンサ等の路面勾配センサ90から求められたが、下り勾配Φの情報入手手段は路面勾配センサ90に限られるものではない。例えば、予め記憶された平坦路におけるエンジン12の駆動力又はスロットル弁開度と車速との関係から実際のエンジン12の駆動力又はスロットル弁開度および車速に基づいて、或いは予め記憶された地図情報等から実際の地点に基づいて下り勾配Φが求められても良い。
 また、本実施例において、車速判定値Va、Vb、車間距離判定値Dα、Dβ、勾配判定値α、βは、予め定められた一定の値であったが、それら車速判定値Va、Vb、車間距離判定値Dα、Dβ、勾配判定値α、βは、例えばバッテリーの残量やエンジン水温、油圧の必要性などの車両状態の関数とし、それらを考慮して判定値が可変設定されるようにしても良い。これ等の可変設定は、車速判定値Va、Vb、車間距離判定値Dα、Dβ、勾配判定値α、βを連続的に変化させるものでも、2段階を含めて段階的に変化させるものでも良く、予めデータマップや演算式等によって定められる。上記関数は、たとえば、バッテリーの残量やエンジン水温の低下、油圧の必要性の増加に応じて、車速判定値Va、Vb、勾配判定値α、βが小さくなるように設定される。また、バッテリーの残量やエンジン水温の低下、油圧の必要性の増加に応じて、車間判定値Dα、Dβが大きくなるように設定される。
 また、本実施例において、前記フリーラン惰性走行中において、車速Vが車速判定値Vaより大きいと、或いは車間距離Dが車間距離判定値Dα以下であると、或いは下り勾配Φが勾配判定値α以上であると判定されると、そのフリーラン惰性走行から前記通常走行へ復帰していたが、例えば、前記フリーラン惰性走行中において、車速Vが車速判定値Vaより大きいと、或いは車間距離Dが車間距離判定値Dα以下であると、或いは下り勾配Φが勾配判定値α以上であると判定されると、そのフリーラン惰性走行から前記ニュートラル惰性走行へ復帰しても良い。これによって、例えば本実施例に比較して、車速Vが車速判定値Vaより大きく車速判定値Vb以下の範囲内、或いは車間距離Dが車間距離判定値Dβより大きく車間距離判定値Dα以下の範囲内、或いは下り勾配Φが勾配判定値α以上で勾配判定値βより小さい範囲内において、前記ニュートラル惰性走行が実施されてエンジン12と駆動輪20との間の動力伝達経路が切り離されるので、車両の惰性走行における車両の燃費が好適に向上する。
 また、本実施例の電子制御装置50、76、86において、車速Vが車速判定値Va以下(Va≦V)の時、或いは車間距離Dが車間距離判定値Dαより小さい(D<Dα)時、或いは下り勾配Φが勾配判定値αより小さい(Φ<α)時には、前記ニュートラル惰性走行および前記フリーラン惰性走行のいずれも実行可能であったが、例えば車速Vが車速判定値Va以下の時、或いは車間距離Dが車間距離判定値Dαより小さい時、或いは下り勾配Φが勾配判定値αより小さい時には、前記フリーラン惰性走行を選択するように制御しても良い。これによって、前記ブレーキ負圧の必要性が比較的小さい場所で、前記フリーラン惰性走行が選択されるので、燃費の良い惰性走行を行うことができる。
 なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
12:エンジン
20:駆動輪
42:ブレーキブースタ
50、76、86:電子制御装置(走行制御装置)
52:通常走行部
54:フリーラン惰性走行部
56:ニュートラル惰性走行部
62:車速判定部
64:惰性走行切換制御部
78:車間距離判定部
84:先行車両
88:下り勾配判定部
D:車間距離(距離)
R:路面
V:車速
Φ:下り勾配
Va、Vb:車速判定値(上限値)
Dα、Dβ:車間距離判定値(上限値)
α、β:勾配判定値(上限値) 

Claims (5)

  1.  エンジンと、該エンジンの回転により発生するブレーキ負圧を利用してブレーキ力を増幅するブレーキブースタとを備え、前記エンジンと駆動輪とを連結して走行する通常走行と、走行中に前記エンジンを停止させエンジンブレーキ力を前記通常走行に比べて低減して走行する第1の惰性走行と、走行中に前記エンジンを回転させたままエンジンブレーキ力を前記通常走行に比べて低減して走行する第2の惰性走行と、を行い、前記第1または前記第2の惰性走行中にブレーキ負圧の必要性を判断する手段を有し、前記第1の惰性走行と前記第2の惰性走行とから前記通常走行に復帰する条件の少なくとも1つに前記ブレーキ負圧の必要性が含まれている車両の走行制御装置であって、
     前記第1の惰性走行から復帰する前記ブレーキ負圧の必要性の上限値は、前記第2の惰性走行から復帰する前記ブレーキ負圧の必要性の上限値よりも小さく設定されていることを特徴とする車両の走行制御装置。
  2.  前記ブレーキ負圧の必要性を判断する手段は、
     先行車両との距離が近い場合に該ブレーキ負圧の必要性が大きいと判断し、
     または、車両が走行している路面の下り勾配が大きい場合に該ブレーキ負圧の必要性が大きいと判断し、
     または、車両が走行している際の車速が大きい場合に該ブレーキ負圧の必要性が大きいと判断することを特徴とする請求項1の車両の走行制御装置。
  3.  前記第1の惰性走行は、走行中に前記エンジンと前記駆動輪とを切り離し前記エンジンを停止して惰性走行するフリーラン惰性走行であり、
     前記第2の惰性走行は、走行中に前記エンジンと前記駆動輪とを切り離し前記エンジンを自立運転して惰性走行するニュートラル惰性走行である請求項1または2の車両の走行制御装置。
  4.  前記第1の惰性走行は、走行中に前記エンジンと前記駆動輪とを切り離し前記エンジンを停止して惰性走行するフリーラン惰性走行であり、
     前記第2の惰性走行は、前記エンジンと前記駆動輪とを連結したまま前記エンジンに対する燃料供給を停止するとともに、該エンジンの複数の気筒の中の一部の気筒のピストンおよび吸排気弁の少なくとも一方の動作を停止させる気筒休止惰性走行である請求項1または2の車両の走行制御装置。
  5.  前記ブレーキ負圧の必要性とは、所定のブレーキ操作時の前記ブレーキブースタの増幅作用を充足するために要求される負圧の大きさである請求項1乃至4のいずれか1の車両の走行制御装置。
PCT/JP2012/078227 2012-10-31 2012-10-31 車両の走行制御装置 WO2014068719A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/439,060 US9598084B2 (en) 2012-10-31 2012-10-31 Vehicle travel controller
CN201280076790.0A CN104755727B (zh) 2012-10-31 2012-10-31 车辆的行驶控制装置
PCT/JP2012/078227 WO2014068719A1 (ja) 2012-10-31 2012-10-31 車両の走行制御装置
DE112012007072.0T DE112012007072B4 (de) 2012-10-31 2012-10-31 Fahrzeugfahrsteuergerät
JP2014544134A JP5962767B2 (ja) 2012-10-31 2012-10-31 車両の走行制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078227 WO2014068719A1 (ja) 2012-10-31 2012-10-31 車両の走行制御装置

Publications (1)

Publication Number Publication Date
WO2014068719A1 true WO2014068719A1 (ja) 2014-05-08

Family

ID=50626686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078227 WO2014068719A1 (ja) 2012-10-31 2012-10-31 車両の走行制御装置

Country Status (5)

Country Link
US (1) US9598084B2 (ja)
JP (1) JP5962767B2 (ja)
CN (1) CN104755727B (ja)
DE (1) DE112012007072B4 (ja)
WO (1) WO2014068719A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016007071A1 (en) * 2014-07-07 2016-01-14 Scania Cv Ab Control of an combustion engine in a vehicle
JP2016114209A (ja) * 2014-12-17 2016-06-23 株式会社デンソー 車両制御装置および車両制御プログラム
DE102016110709A1 (de) 2015-06-18 2016-12-22 Fuji Jukogyo Kabushiki Kaisha Fahrzeugsteuerungsvorrichtung
JP2017020386A (ja) * 2015-07-08 2017-01-26 トヨタ自動車株式会社 車両の制御装置
JPWO2016021005A1 (ja) * 2014-08-06 2017-05-25 日産自動車株式会社 車両の制御装置および車両の制御方法
WO2017149948A1 (ja) * 2016-02-29 2017-09-08 日立オートモティブシステムズ株式会社 車両用制御装置
JP2017223154A (ja) * 2016-06-15 2017-12-21 マツダ株式会社 車両の制御装置
US10119488B2 (en) 2014-07-07 2018-11-06 Scania Cv Ab Control of an internal combustion engine in a vehicle
US10495013B2 (en) 2014-07-07 2019-12-03 Scania Cv Ab Control of preparatory measures in a vehicle

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5935886B2 (ja) 2012-06-20 2016-06-15 トヨタ自動車株式会社 車両の制御装置
EP2884129B1 (en) * 2012-08-08 2019-09-25 Toyota Jidosha Kabushiki Kaisha Travel control device for vehicles
JP5915496B2 (ja) * 2012-10-19 2016-05-11 トヨタ自動車株式会社 車両の走行制御装置
JP5741551B2 (ja) 2012-10-24 2015-07-01 トヨタ自動車株式会社 車両の走行制御装置
CN104768818B (zh) * 2012-10-31 2017-04-05 丰田自动车株式会社 车辆的行驶控制装置
JP5900641B2 (ja) * 2012-10-31 2016-04-06 トヨタ自動車株式会社 車両の走行制御装置
DE112012007067B4 (de) * 2012-10-31 2018-06-28 Toyota Jidosha Kabushiki Kaisha Fahrzeugfahrt-Steuerungsvorrichtung
JP6003999B2 (ja) 2012-10-31 2016-10-05 トヨタ自動車株式会社 車両の走行制御装置
WO2014068716A1 (ja) * 2012-10-31 2014-05-08 トヨタ自動車株式会社 車両の走行制御装置
EP2915713B1 (en) 2012-10-31 2019-12-18 Toyota Jidosha Kabushiki Kaisha Vehicle travel control device
WO2014181387A1 (ja) 2013-05-07 2014-11-13 トヨタ自動車株式会社 車両の変速制御装置
JP6437891B2 (ja) * 2015-07-03 2018-12-12 日立オートモティブシステムズ株式会社 自動車の制御装置
JP6498321B2 (ja) * 2016-01-25 2019-04-17 日産自動車株式会社 車両のセーリングストップ制御方法及び制御装置
US9850965B2 (en) * 2016-05-03 2017-12-26 Ford Global Technologies, Llc Method for operating an automatic start/stop system in a vehicle utilizing a fluid launch clutch
US10107390B2 (en) 2016-09-07 2018-10-23 Ford Global Technologies, Llc Torque converter clutch engagement pressure
US10106149B2 (en) 2016-11-02 2018-10-23 Ford Global Technologies, Llc Torque converter clutch engagement pressure control for regenerative braking
US10267412B2 (en) 2016-11-11 2019-04-23 Ford Global Technologies, Llc Upshift control for regenerative braking
DE102016223279A1 (de) * 2016-11-24 2018-05-24 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Kraftfahrzeugs und Kraftfahrzeug
JP2019031153A (ja) * 2017-08-07 2019-02-28 いすゞ自動車株式会社 走行制御装置、車両および走行制御方法
CN111148677B (zh) 2017-10-12 2023-03-24 日产自动车株式会社 自动驾驶车辆的控制方法及控制装置
EP3702228B1 (en) * 2017-10-26 2022-04-20 Nissan Motor Co., Ltd. Control method and control device for autonomous vehicle
JP6922799B2 (ja) * 2018-03-15 2021-08-18 トヨタ自動車株式会社 車両の制御装置
WO2020062229A1 (zh) * 2018-09-30 2020-04-02 深圳市大疆创新科技有限公司 一种车辆控制方法、装置、车辆及存储介质
JP2021006709A (ja) * 2019-06-28 2021-01-21 ヤマハ発動機株式会社 鞍乗型車両
JP7352453B2 (ja) * 2019-11-26 2023-09-28 株式会社Subaru 車両の制御装置および車両
US11597374B2 (en) 2020-09-10 2023-03-07 Ford Global Technologies, Llc Methods and system for arbitrating fuel cut out for a hybrid vehicle
US11725598B2 (en) * 2021-04-23 2023-08-15 Bombardier Recreational Products Inc. Method for controlling engine braking in a vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579364A (ja) * 1991-03-06 1993-03-30 Aisin Seiki Co Ltd 可変気筒制御装置
JP2011173475A (ja) * 2010-02-23 2011-09-08 Toyota Motor Corp 車両制御システム
WO2011135725A1 (ja) * 2010-04-30 2011-11-03 トヨタ自動車株式会社 車両制御システム
JP2012077647A (ja) * 2010-09-30 2012-04-19 Toyota Motor Corp 車両制御装置
JP2012101636A (ja) * 2010-11-09 2012-05-31 Toyota Motor Corp 車両用走行制御装置
JP2012121417A (ja) * 2010-12-07 2012-06-28 Toyota Motor Corp 車両用空調制御装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0168492B1 (ko) * 1994-06-06 1998-12-15 나까무라 히로까즈 차량용 제동 장치
EP0838613B1 (en) 1996-10-25 2002-08-14 Aisin Aw Co., Ltd. Infinitely variable transmission
JP3376892B2 (ja) 1996-10-25 2003-02-10 アイシン・エィ・ダブリュ株式会社 無段変速機
WO2001014194A1 (de) * 1999-08-24 2001-03-01 Continental Teves Ag & Co. Ohg Verfahren zur regelung einer bremsanlage für kraftfahrzeuge
EP1320472B1 (de) 2000-09-27 2006-08-09 Siemens Aktiengesellschaft Antriebsstrangsteuerung für ein kraftfahrzeug mit mindestens zwei antriebsaggregaten und einem getriebe
JP4080697B2 (ja) * 2001-01-19 2008-04-23 本田技研工業株式会社 車両のエンジン自動停止・始動制御装置
JP3475179B2 (ja) 2001-02-06 2003-12-08 日野自動車株式会社 クラッチ制御装置
JP4552365B2 (ja) * 2001-06-27 2010-09-29 株式会社デンソー エンジン自動停止再始動装置
JP2005226701A (ja) 2004-02-12 2005-08-25 Nissan Diesel Motor Co Ltd 車両の制御装置
JP2007126092A (ja) 2005-11-07 2007-05-24 Nissan Motor Co Ltd ハイブリッド車両のコースティング走行時制動力制御装置
JP5177162B2 (ja) 2010-03-30 2013-04-03 アイシン・エィ・ダブリュ株式会社 自動変速機の制御装置
JP5477137B2 (ja) * 2010-04-15 2014-04-23 株式会社デンソー エンジン自動停止再始動制御装置
DE102010031036A1 (de) 2010-07-07 2012-01-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Kupplungssteuerung im Segelbetrieb eines Kraftfahrzeugs
JP5039819B2 (ja) * 2010-09-01 2012-10-03 ジヤトコ株式会社 コーストストップ車両及びコーストストップ方法
JP5526005B2 (ja) * 2010-11-25 2014-06-18 ジヤトコ株式会社 コーストストップ車両及びコーストストップ車両の制御方法
JP5846218B2 (ja) 2011-12-20 2016-01-20 トヨタ自動車株式会社 車両の制御装置
JP5935886B2 (ja) 2012-06-20 2016-06-15 トヨタ自動車株式会社 車両の制御装置
EP2884129B1 (en) 2012-08-08 2019-09-25 Toyota Jidosha Kabushiki Kaisha Travel control device for vehicles
JP5741551B2 (ja) 2012-10-24 2015-07-01 トヨタ自動車株式会社 車両の走行制御装置
JP5704148B2 (ja) * 2012-10-26 2015-04-22 トヨタ自動車株式会社 車両の走行制御装置
EP2915713B1 (en) 2012-10-31 2019-12-18 Toyota Jidosha Kabushiki Kaisha Vehicle travel control device
JP6003999B2 (ja) 2012-10-31 2016-10-05 トヨタ自動車株式会社 車両の走行制御装置
WO2014181387A1 (ja) 2013-05-07 2014-11-13 トヨタ自動車株式会社 車両の変速制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579364A (ja) * 1991-03-06 1993-03-30 Aisin Seiki Co Ltd 可変気筒制御装置
JP2011173475A (ja) * 2010-02-23 2011-09-08 Toyota Motor Corp 車両制御システム
WO2011135725A1 (ja) * 2010-04-30 2011-11-03 トヨタ自動車株式会社 車両制御システム
JP2012077647A (ja) * 2010-09-30 2012-04-19 Toyota Motor Corp 車両制御装置
JP2012101636A (ja) * 2010-11-09 2012-05-31 Toyota Motor Corp 車両用走行制御装置
JP2012121417A (ja) * 2010-12-07 2012-06-28 Toyota Motor Corp 車両用空調制御装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119488B2 (en) 2014-07-07 2018-11-06 Scania Cv Ab Control of an internal combustion engine in a vehicle
WO2016007071A1 (en) * 2014-07-07 2016-01-14 Scania Cv Ab Control of an combustion engine in a vehicle
US10507840B2 (en) 2014-07-07 2019-12-17 Scania Cv Ab Control of an combustion engine in a vehicle
US10495013B2 (en) 2014-07-07 2019-12-03 Scania Cv Ab Control of preparatory measures in a vehicle
JPWO2016021005A1 (ja) * 2014-08-06 2017-05-25 日産自動車株式会社 車両の制御装置および車両の制御方法
EP3179125A4 (en) * 2014-08-06 2017-10-25 Nissan Motor Co., Ltd Vehicle control device, and vehicle control method
US10173683B2 (en) 2014-08-06 2019-01-08 Nissan Motor Co., Ltd. Vehicle control device and vehicle control method
JP2016114209A (ja) * 2014-12-17 2016-06-23 株式会社デンソー 車両制御装置および車両制御プログラム
DE102016110709A1 (de) 2015-06-18 2016-12-22 Fuji Jukogyo Kabushiki Kaisha Fahrzeugsteuerungsvorrichtung
US9834193B2 (en) 2015-06-18 2017-12-05 Subaru Corporation Vehicle control apparatus
JP2017020386A (ja) * 2015-07-08 2017-01-26 トヨタ自動車株式会社 車両の制御装置
JPWO2017149948A1 (ja) * 2016-02-29 2018-11-01 日立オートモティブシステムズ株式会社 車両用制御装置
WO2017149948A1 (ja) * 2016-02-29 2017-09-08 日立オートモティブシステムズ株式会社 車両用制御装置
US10556591B2 (en) 2016-02-29 2020-02-11 Hitachi Automotive Systems, Ltd. Vehicle control device
JP2017223154A (ja) * 2016-06-15 2017-12-21 マツダ株式会社 車両の制御装置

Also Published As

Publication number Publication date
US20150291171A1 (en) 2015-10-15
US9598084B2 (en) 2017-03-21
DE112012007072T5 (de) 2015-08-13
JP5962767B2 (ja) 2016-08-03
CN104755727B (zh) 2017-10-13
JPWO2014068719A1 (ja) 2016-09-08
DE112012007072B4 (de) 2021-07-15
CN104755727A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5962767B2 (ja) 車両の走行制御装置
JP5915496B2 (ja) 車両の走行制御装置
JP5724985B2 (ja) 車両の走行制御装置
JP5900640B2 (ja) 車両の走行制御装置
JP5741551B2 (ja) 車両の走行制御装置
JP6003999B2 (ja) 車両の走行制御装置
JP5900641B2 (ja) 車両の走行制御装置
JP5704148B2 (ja) 車両の走行制御装置
JP5949919B2 (ja) 車両の制御装置
JP6367517B2 (ja) 車両の走行制御装置
JP5900642B2 (ja) 車両の走行制御装置
WO2014068720A1 (ja) 車両の走行制御装置
WO2014068726A1 (ja) 車両の走行制御装置
JP2011179597A (ja) 車両駆動システムの制御装置
JP2014091398A (ja) 車両の走行制御装置
JP6367516B2 (ja) 車両の走行制御装置
JP5949936B2 (ja) 車両の走行制御装置
JP2014091338A (ja) 車両の走行制御装置
WO2015019789A1 (ja) フライホイール回生システム及びその制御方法
JP2017171295A (ja) 車両の走行制御装置
JP2014092103A (ja) 車両の走行制御装置
JP2017193334A (ja) 車両の走行制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544134

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14439060

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120070720

Country of ref document: DE

Ref document number: 112012007072

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887357

Country of ref document: EP

Kind code of ref document: A1