WO2014061211A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2014061211A1
WO2014061211A1 PCT/JP2013/005791 JP2013005791W WO2014061211A1 WO 2014061211 A1 WO2014061211 A1 WO 2014061211A1 JP 2013005791 W JP2013005791 W JP 2013005791W WO 2014061211 A1 WO2014061211 A1 WO 2014061211A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive pattern
pattern
circuit board
printed circuit
Prior art date
Application number
PCT/JP2013/005791
Other languages
English (en)
French (fr)
Inventor
秀世 仲村
真史 堀尾
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201380053621.XA priority Critical patent/CN104919589B/zh
Priority to EP13846815.2A priority patent/EP2908338A4/en
Priority to JP2014541919A priority patent/JP6075380B2/ja
Publication of WO2014061211A1 publication Critical patent/WO2014061211A1/ja
Priority to US14/685,747 priority patent/US10070528B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49833Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the chip support structure consisting of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0212Printed circuits or mounted components having integral heating means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3447Lead-in-hole components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09972Partitioned, e.g. portions of a PCB dedicated to different functions; Boundary lines therefore; Portions of a PCB being processed separately or differently

Definitions

  • the present invention relates to a semiconductor device equipped with a power semiconductor chip.
  • a power semiconductor module is used in an inverter device that constitutes a power converter.
  • a conventional semiconductor device shown in FIG. 15 has been proposed.
  • This conventional semiconductor device is given as an example of a 2 in 1 semiconductor module 100, for example.
  • an insulating substrate with a conductive pattern (ceramic insulating substrate) 102 is joined to a metal base plate 101 for heat dissipation by solder 103.
  • the insulating substrate 102 with a conductor pattern includes a ceramic substrate 102a, and includes a conductive pattern 102b bonded to the surface of the ceramic substrate 102a and a back conductive film 102c bonded to the back surface of the ceramic substrate 102a.
  • a semiconductor chip (semiconductor power chip) 104 is mounted via solder 105 on the conductor pattern 102b of the insulating substrate 102 with conductor pattern.
  • the metal base plate 101, the insulating substrate with conductor pattern 102, and the semiconductor chip 104 are arranged in a box-shaped resin case 106 with the lower end opened, and are fixed by injecting a resin sealing material into the resin case 106. ing.
  • Reference numeral 107 denotes a metal bar terminal as an external lead terminal soldered to the conductor pattern 102b, and 108 denotes a bonding wire for connecting the semiconductor chips 104 to each other and between the semiconductor chip 104 and the conductor pattern 102b.
  • a semiconductor chip is arranged on an insulating substrate with a conductor pattern, a large number of post electrodes fixed to the printed circuit board are fixed to the semiconductor chip or the conductive pattern, and a metal foil is formed on the front and back of the printed circuit board.
  • a semiconductor device having high reliability by ensuring heat dissipation, preventing deformation due to thermal expansion, etc., having high reliability, excellent operating characteristics, and high productivity (see, for example, Patent Document 1).
  • a power semiconductor module comprising a series connection circuit of a power semiconductor device (IGBT) and a diode (FWD) connected in reverse parallel thereto, an electrode bar connected to the first power supply potential output electrode or the like is added.
  • the electrode bar connected to the electrode and the like and the electrode bar connected to the second power supply potential output electrode and the like are each formed in a plate shape, and are placed close to each other with an insulator interposed therebetween.
  • a power semiconductor module in which the inductance value is substantially zero see, for example, Patent Document 2.
  • a rectangular annular wiring board is disposed on the bottom substrate so as to cover the upper edge of the bottom substrate, and a main collector electrode terminal and a main emitter electrode terminal are provided in an opening at the center of the wiring board.
  • a power semiconductor device in which a control emitter pad and a gate pad are electrically connected to a control emitter electrode and a gate electrode through wire wires of equal length through the resin case and projecting from the opening of the resin case. (For example, refer to Patent Document 3).
  • the semiconductor device unit further includes a semiconductor chip unit, a wiring board, and a bolting unit.
  • the semiconductor device unit and the bolting unit are fixed to each other by an elastic adhesive.
  • an insulating substrate having a copper plate and an insulating plate mounted with a power semiconductor chip, a printed circuit board with pins connected to the power semiconductor chip, a connection terminal connected to the copper plate, and a rectangular parallelepiped shape enclosing the insulating substrate and the printed circuit board with pins
  • the resin sealing material is provided at least, and the emitter-side connection terminal, the collector-side connection terminal, and the output terminal are arranged in a line along the side edge of the resin sealing material on both sides of the resin sealing material.
  • a power semiconductor module in which terminals for use are arranged in a line along one longitudinal edge (see, for example, Patent Document 5).
  • Patent Document 1 since a post electrode (pin) that is shorter than the bonding wire and has a large cross-sectional area is used, the inductance can be reduced, and the insulating substrate and the printed circuit board can be reduced. Since it can be a two-story wiring, it can be downsized. However, since the reduction of the wiring inductance between the printed circuit board and the insulating substrate is not taken into consideration, this is not sufficient to fully exhibit the capability of the high-speed switching element represented by SiC or the like. Further, as a means for forming a module at low cost, full molding using transfer molding or the like can be mentioned, but the shape disclosed in Patent Document 1 is not necessarily suitable for molding.
  • the main collector terminal and the main emitter terminal are disposed on the bottom substrate via the main collector substrate and the main emitter substrate, and the control emitter pad and the gate pad are It is connected to the IGBT element through a wire wiring, and is connected to a wiring board through a control emitter relay terminal and a gate relay terminal, and is electrically connected to a control emitter electrode and a gate electrode provided on the wiring board. Yes. For this reason, the connection structure of an external connection terminal becomes complicated, and there exists an unsolved subject that assembly property and productivity fall.
  • the collector terminal pin is connected to the second copper block of the insulating substrate by soldering, and the emitter terminal pin and the control terminal pin are connected to the printed circuit board.
  • the collector side connection terminal and the emitter side connection terminal are fixed to a first copper plate having a different insulating substrate, and the gate terminal and the emitter signal terminal are fixed to the printed circuit board. Therefore, there is an unsolved problem that the arrangement and connection of the external connection terminals cannot be easily performed, and the assembling property and the productivity are lowered. Therefore, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and aims to provide a semiconductor device that is small in size and can have low inductance corresponding to high-speed switching. Yes.
  • a plurality of conductive pattern members each having one or more power semiconductor chips mounted thereon, and a surface opposite to the conductive pattern member.
  • the conductive pattern member is formed of a narrow portion and a wide portion, and the narrow portion of at least one conductive pattern member and the printed board are connected by the pattern bar-shaped conductive connection member, and the conductive pattern member A current path is formed between the power semiconductor chips connected to the printed circuit board via the bar-shaped conductive connecting member for chips.
  • the sign of the rate of change of the current flowing through the conductive pattern member and the rate of change of the current flowing through the printed circuit board facing the conductive pattern member is positive and negative.
  • the wiring pattern of the printed circuit board is arranged so as to be.
  • the third aspect of the semiconductor device according to the present invention further includes a terminal connection pattern member that is formed outside the narrow portion and connects an external connection terminal.
  • the conductive pattern member is formed of a copper pattern having a thickness of 0.5 mm or more and 1.5 mm or less.
  • the terminal connection pattern member is formed of a copper pattern having a thickness of 0.5 mm or more capable of holding the external connection terminal.
  • the plurality of conductive pattern members are arranged on individual insulating substrates.
  • the plurality of conductive pattern members are arranged on the same insulating substrate.
  • the insulating substrate includes a heat transfer pattern member for heat dissipation formed on a side opposite to the surface on which the conductive pattern member is formed, and the heat transfer pattern for heat dissipation. The number of members is set equal to or less than the number of the conductive pattern members.
  • the printed circuit board has main circuit wiring patterns formed on both the front and back surfaces, and both main circuit wiring patterns have the same potential.
  • the semiconductor device includes a sealing member that encloses the conductive pattern member and the printed circuit board inside, and the external connection terminals protrude in the same direction from the sealing member. And it arranges and arranges in the longitudinal direction of a sealing member.
  • the power semiconductor chip includes a voltage-controlled semiconductor element having a gate electrode and a current detection auxiliary electrode, and is formed on the printed circuit board.
  • a wiring pattern connected to the gate electrode is formed on one surface of the printed circuit board, and a wiring pattern connected to the current detection auxiliary electrode is the other surface of the printed circuit board, and It is formed at a position facing the wiring pattern connected to the gate electrode.
  • the main circuit component includes a first semiconductor chip containing a semiconductor element and a second semiconductor chip containing a semiconductor rectifying element, and the semiconductor element built in the first semiconductor chip is A voltage-controlled semiconductor element having a gate electrode may be used, and the gate electrode may be arranged so as to be positioned on the end surface opposite to the end surface facing the second semiconductor chip.
  • a twelfth aspect of the semiconductor device is a wiring pattern in which the power semiconductor chip is composed of a voltage control type semiconductor element having a main electrode, and the printed circuit board is connected to the main electrode on both front and back surfaces. A member is formed, and both wiring pattern members have the same potential.
  • the power conductor element is constituted by a voltage control type semiconductor element having a gate electrode, and the power semiconductor chip has a plurality of the insulating substrates disposed on the gate electrode. It is arrange
  • a fourteenth aspect of the semiconductor device of the present invention a plurality of conductive pattern members each having one or more power semiconductor chips mounted thereon are connected to the power semiconductor chip on the surface facing the conductive pattern members.
  • a chip-like conductive connecting member for chips and a printed circuit board on which the bar-like conductive connecting member for pattern connecting to the conductive pattern member is arranged.
  • the wiring pattern of the printed circuit board is arranged so that the sign of the rate of change of the current flowing through the conductive pattern member and the rate of change of the current flowing through the printed circuit board facing the conductive pattern member are positive and negative. Yes.
  • the conductive pattern formed on the insulating substrate is formed by the narrow portion and the wide portion on which the semiconductor chip is mounted, and the rod-like conductive connecting member is provided between the narrow portion of the conductive pattern and the printed circuit board.
  • the rod-like conductive connecting member is provided between the narrow portion of the conductive pattern and the printed circuit board.
  • FIG. 1A and 1B are perspective views showing an embodiment of a semiconductor device according to the present invention, in which FIG. 1A is a perspective view seen from a plane side, and FIG. It is a top view of the insulated substrate which mounts a semiconductor chip.
  • FIG. 3 is a cross-sectional view of the semiconductor device of FIG. 1 taken along the line AA in FIG. It is a figure which shows the insulated substrate applicable to this invention, Comprising: (a) is a top view, (b) is a side view, (c) is a bottom view. It is a figure which shows the printed circuit board applicable to this invention, Comprising: (a) is a top view, (b) is a bottom view. It is a circuit diagram which shows the equivalent circuit of a semiconductor device.
  • FIG. 7 is a circuit diagram showing a current path when the transistor Q1a of FIG. 6 is inverted from an on state to an off state. It is a perspective view which shows the state which mounted the printed circuit board on the insulated substrate. It is a top view which shows the resin sealing metal mold
  • FIG. 1 is a perspective view showing a semiconductor device according to the present invention.
  • reference numeral 2 denotes a power semiconductor module as a semiconductor device.
  • the power semiconductor module 2 includes two sets of main circuits including a first semiconductor chip 12A and a second semiconductor chip 12B mounted on insulating substrates 11A and 11B, respectively.
  • the component parts 13A and 13B and the printed circuit board 16 that constitutes a common wiring circuit above the main circuit component parts 13A and 13B are provided.
  • the first semiconductor chip 12A has a built-in power MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) (or Insulated Gate Bipolar Transistor (IGBT)).
  • the second semiconductor chip 12B is configured to incorporate a free wheeling diode (FWD).
  • FWD free wheeling diode
  • two second semiconductor chips 12B are arranged on the center line in the longitudinal direction (left-right direction as viewed in the drawing) at a predetermined interval.
  • Two first semiconductor chips 12A are arranged at a predetermined distance on both outer sides of the semiconductor chip 12B.
  • two second semiconductor chips 12B and four first semiconductor chips 12A are arranged on the insulating substrate 11B with the second semiconductor chip 12B interposed therebetween.
  • the first semiconductor chip 12A includes a drain electrode 12Ad, a source electrode 12As, and a gate electrode 12Ag, and the gate electrode 12Ag is on the end side (outside of the insulating substrate) opposite to the second semiconductor chip 12B. It is arranged to be.
  • These semiconductor chips 12A and 12B are various power devices as described above, but may be formed on a silicon substrate, SiC, or formed on another substrate.
  • the insulating substrate 11A has, for example, a square substrate 13 mainly composed of ceramics such as alumina having good heat conductivity, and a conductive pattern member made of a copper plate having a thickness of 0.5 mm or more on the surface of the substrate 13.
  • the conductive pattern 14 is attached, and the heat transfer pattern 15 for heat dissipation having the same thickness is attached to the back surface.
  • the conductive pattern 14 has a chip mounting pattern 14 c whose planar shape is formed in a convex (T) shape.
  • the chip mounting pattern 14c includes a wide portion 14a having a width substantially equal to the width of the substrate 13 at the right end in the drawing, and a narrow portion 14b having a width narrower than the wide portion 14a connected to the left side of the wide portion 14a. Is provided.
  • the conductive pattern 14 has terminal connection patterns 14d and 14e that are independent from each other at a predetermined interval outside the narrow portion 14b of the chip mounting pattern 14c. The side edges of these terminal connection patterns 14d and 14e coincide with the side edges of the wide portion 14a of the chip mounting pattern 14c.
  • the first semiconductor chip 12 ⁇ / b> A and the second semiconductor chip 12 ⁇ / b> B are mounted on the wide portion 14 a of the chip mounting pattern 14 c via a bonding member such as solder.
  • Two fitting holes 14f are formed on the outer side in the width direction of one semiconductor chip 12A.
  • Conductive terminal pins 19 serving as main circuit external connection terminals are press-fitted into the fitting holes 14f.
  • fitting holes 14g are formed in the terminal connection patterns 14d and 14e, respectively.
  • a conductive terminal pin 20 to be a source terminal S2 as an external connection terminal is press-fitted into the fitting hole 14g.
  • the insulating substrate 11B has a substrate 13 mainly composed of ceramics, the conductive pattern 14 formed on the front and back, and the heat transfer pattern 15 for heat dissipation, similarly to the insulating substrate 11A.
  • the conductive pattern 14 has a chip mounting pattern 14j whose planar shape is formed in a convex (T) shape.
  • the chip mounting pattern 14j includes a wide portion 14h and a narrow portion 14i.
  • Two terminal connection patterns 14k, 14l and 14m, 14n which are independently formed at predetermined intervals, are formed outside the narrow portion 14i of the chip mounting pattern 14j.
  • the first semiconductor chip 12A and the second semiconductor chip 12B are mounted on the chip mounting pattern 14j via a bonding member such as solder, and the first semiconductor chip 12A.
  • Two fitting holes 14o are formed on the outer side in the width direction.
  • a conductive terminal pin 18 serving as a drain terminal as an external connection terminal is press-fitted into the fitting hole 14o.
  • a fitting hole 14p is formed in each of the terminal connection patterns 14k and 14m.
  • Conductive terminal pins 21a and 21b serving as source auxiliary terminals as external connection terminals are press-fitted into the fitting holes 14p.
  • a fitting hole 14q is formed in each of the terminal connection patterns 141 and 14n.
  • Conductive terminal pins 22a and 22b serving as gate terminals as external connection terminals are press-fitted into the fitting holes 14q.
  • the material of the conductive terminal pins 18, 20 and 19 is preferably copper (Cu) or aluminum (Al) based on excellent conductivity.
  • the conductive terminal pins 18, 20 and 19 are subjected to nickel (Ni) or tin-based surface treatment to improve the solder joint wettability, thereby improving the mounting efficiency. It is possible to increase.
  • the conductive pattern 14 of the insulating substrate 11B includes, for example, N-channel MOSFETs (hereinafter simply referred to as transistors) Q1a to Q1d that serve as the first semiconductor chip 12A constituting the upper arm. Then, an antiparallel connection circuit including FWDs (hereinafter referred to as diodes) Di1a and Di1b to be the second semiconductor chip 12B is formed. In the conductive pattern 14 of the insulating substrate 11A, an anti-parallel circuit including transistors Q2a to Q2d serving as the first semiconductor chip 12A constituting the lower arm and diodes Di2a and Di2b serving as the second semiconductor chip is formed. The two antiparallel circuits are connected in series.
  • the semiconductor chip (power device) disposed on one insulating substrate 11A, 11B may be configured equivalently to the anti-parallel circuit of the transistor and the diode shown in FIG. Each may be sufficient, and the same number may be sufficient as each other.
  • Two sets of anti-parallel circuits comprising a pair of transistors Q1a to Q1d, Q2a to Q2d and diodes Di1a, Di1b, Di2a, and Di2b are further formed of a printed circuit board 16 disposed on the upper surface and a cylindrical shape as a rod-shaped conductive connecting member. Are connected in series via post electrodes 17.
  • the arrangement of the two semiconductor chips 12A and 12B can be arranged in the left-right direction instead of the arrangement in the front-rear direction.
  • the drain electrodes 12Ad of the transistors Q1a to Q1d (or Q2a to Q2d) are formed on the lower surface of the first semiconductor chip 12A, and the power semiconductor module 2 is connected via the chip mounting pattern 14j (or 14c) of the conductive pattern 14. It is connected to a conductive terminal pin 18 as a connection terminal constituting the external input terminal (drain terminal D1) (or a conductive terminal pin 19 serving as a main circuit external connection terminal (source / drain terminal S1 / D2)).
  • the cathode electrode formed on the back surface of the second semiconductor chip 12B is also connected to the conductive terminal pin 18 (or conductive terminal pin 19) through the chip mounting pattern 14j (or 14c).
  • the source electrode 12As and the gate electrode 12Ag of the transistors Q1a to Q1d are formed on the front surface of the first semiconductor chip 12A, and the post electrodes 17 as rod-shaped conductive connection members for chips, respectively. It is connected to the printed circuit board 16 via.
  • the source electrode 12As and the gate electrode 12Ag of the transistors Q1a to Q1d (or Q2a to Q2d) are connected to a wiring pattern formed on the printed circuit board 16.
  • the wiring pattern connected to the gate electrode is connected to the printed circuit board 16.
  • a wiring pattern formed on one surface of the printed circuit board and connected to the source sense electrode (not shown) is formed on the other surface of the printed circuit board 16 at a position facing the wiring pattern connected to the gate electrode. ing.
  • the mutual inductance between the two wiring patterns can be reduced.
  • the control of the transistors Q1a to Q1d (or Q2a to Q2d) can be stabilized. In particular, it is effective in suppressing false firing due to the influence of wiring inductance.
  • an anode electrode is formed on the front surface of the second semiconductor chip 12B, and this anode electrode is connected to the printed circuit board 16 via a post electrode 17 as a chip-like conductive connecting member for chips.
  • These conductive terminal pins 18 to 20 are formed one by one at positions symmetrical to the center line in the width direction of the power semiconductor module 2 as shown in FIG.
  • the power semiconductor module 2 further has four conductive terminal pins 21a, 21b and 22a, 22b, two on each side, on the outer side in the longitudinal direction of the conductive terminal pins 18.
  • These conductive terminal pins 18 to 20 and 21a, 21b, 22a, 22b are arranged in two substantially linear lines along both side edges of the power semiconductor module 2.
  • the conductive terminal pins 21a and 21b are auxiliary source terminals, which are connected to the printed circuit board 16 and connected to sources that sense current flowing between the drains and sources of the transistors Q1a to Q1d and Q2a to Q2d and output sense signals.
  • Current detection terminals SS1 and SS2 are configured.
  • the remaining two conductive terminal pins 22a and 22b are connected to the printed circuit board 16 and supply gate control signals to the gate electrodes of the transistors Q1a to Q1d and Q2a to Q2d of the half bridge circuit. Is configured.
  • the heat radiation pattern 15 for heat radiation on the back surface side of the insulating substrates 11A and 11B is configured by attaching a copper plate in the same manner as the conductive pattern 14, and the lower surface of the heat radiation pattern 15 for heat radiation is the bottom surface and the surface of the power semiconductor module 2. It protrudes slightly from the bottom.
  • the printed circuit board 16 has a main circuit wiring pattern 16a which is convex and wide toward the right side which becomes the current path of the main circuit component 13A on the surface side, and the main circuit. Similarly, a wide main circuit wiring pattern 16b serving as a current path for the component 13B is formed.
  • gate wiring patterns 16c and 16d connected to the gate electrodes of the first semiconductor chips 12A of the main circuit components 13A and 13B through the post electrodes 17 are formed.
  • the gate wiring pattern 16c is composed of a coronal pattern 16e and a connection pattern 16h.
  • the coronal pattern 16e is formed so as to surround the narrow portion of the convex wiring pattern 16a while maintaining a predetermined distance.
  • the connection pattern 16h extends along the side edge of the printed circuit board 16 so as to connect the central portion of the coronal pattern 16e and the terminal connection pattern 16g.
  • the terminal connection pattern 16g is formed around an insertion hole 16f formed in the left end portion of the printed circuit board 16 for inserting the conductive terminal pin 22a.
  • the gate wiring pattern 16d is composed of a coronal pattern 16j and a connection pattern 16m.
  • the coronal pattern 16j is formed so as to surround the left end portion of the conductor pattern 16b.
  • the connection pattern 16m is formed in a substantially L shape so as to connect the center portion of the crown pattern 16j and the terminal connection pattern 16l.
  • the terminal connection pattern 16l is formed around an insertion hole 16k formed in the left end portion of the printed circuit board 16 for inserting the conductive terminal pin 22b.
  • the printed circuit board 16 has simple insertion holes 16o and 16p through which the conductive terminal pins 18 and 19 are inserted without contact, and through holes 16q through which the conductive terminal pins 20 are inserted without contact.
  • the through hole 16q is not in contact with the conductive terminal pin 20, but when further inductance reduction is required, the through hole 16q and the conductive terminal pin 20 are electrically connected by soldering or the like.
  • the wiring length can be shortened.
  • a wide current path for the main circuit component 13A is formed so as to overlap the main circuit wiring patterns 16a and 16b on the front surface side when viewed from above. Convex-shaped main circuit wiring patterns 16a and 16b are formed toward the right side. Also, on the back surface of the printed circuit board 16, source sense terminal wiring patterns 16r and 16s connected to the anode of the diode Di1a of the main circuit component 13A and the anode of the diode Di2b of the main circuit component 13B via the post electrode 17, respectively. Is formed.
  • These source sense terminal wiring patterns 16r and 16s are formed so as to substantially overlap with the front-side gate wiring patterns 16c and 16d when viewed from above, and around the insertion holes 16t and 16u for inserting the conductive terminal pins 21a and 21b. Are connected to the terminal connection patterns 16v and 16w on the left end of the printed circuit board 16 formed in the above.
  • the end portions of the main circuit wiring pattern 16b on the front and back sides of the printed circuit board 16 on the main circuit wiring pattern 16a side are a plurality of, for example, six post electrodes 17b serving as pattern bar-like conductive connection members, and the chip mounting pattern 14c of the insulating substrate 11A
  • the current path between the main circuit components 13A and 13B is formed by the post electrode 17b.
  • the main circuit wiring pattern 16a and the chip mounting pattern 14c are arranged by disposing the end portion provided with the post electrode 17b on the right side of the main circuit wiring pattern 16b in the left notch of the main circuit wiring pattern 16a.
  • the semiconductor device can be reduced in size while securing an area where the two overlap, which is desirable.
  • the main circuit wiring patterns 16a on the front and back sides of the printed circuit board 16 are set to the same potential, and the conductor patterns 16b on the front and back sides are also set to the same potential. Then, with the conductive terminal pins 18 to 20, 21a, 21b and 22a, 22b being press-fitted into the main circuit components 13A and 13B and held vertically, the main circuit components 13A and 13B and the printed circuit board 16 are connected. As shown in FIG. In this case, the conductive terminal pins 19, 18, 20, 21a, 21b, 22a, and 22b are inserted through the insertion holes 16o and 16p, 16q, 16t, 16u, 16f, and 16k formed in the printed circuit board 16, respectively.
  • the post electrode 17 which is a rod-shaped conductive connecting member for chip formed on the printed circuit board 16 is brought into contact with the first semiconductor chip 12A and the second semiconductor chip 12B via solder, and the conductive conductive member for pattern and The post electrode 17b is brought into contact with the conductor pattern 14a of the insulating substrate 11A through solder.
  • the post electrode 17 and the post electrode 17b of the printed circuit board 16 are electrically and mechanically joined to the first semiconductor chip 12A, the second semiconductor chip 12B, and the conductive pattern 14. .
  • the main circuit wiring pattern 16a of the printed circuit board 16 is electrically joined to the terminal connection patterns 14d and 14e of the insulating substrate 11A via the post electrode 17a as a pattern-shaped conductive conductive member.
  • the terminal connection patterns 16g and 16l of the printed circuit board 16 are electrically connected to the terminal connection patterns 14l and 14m of the insulating substrate 11A through the post electrodes 17a.
  • the terminal connection patterns 16v and 16w of the printed circuit board 16 are electrically joined to the terminal connection patterns 14k and 14m of the insulating substrate 11A through the post electrodes 17a in the same manner.
  • the fixed mold 30 for supporting the inside of the conductive terminal pins 18 to 20, 21a, 21b, 22a, 22b.
  • an epoxy resin material such as a thermosetting resin is injected from the left end side of the fixed mold 30, for example.
  • the resin flows in the resin flow direction indicated by the arrow in FIG. 9 and is molded.
  • the outer shape of the power semiconductor module 2 as a whole is formed as a rectangular parallelepiped molded product (sealing resin material) 24 having a rectangular shape in plan view as shown in FIG. .
  • the wall part 25A, 25B for insulation is formed in the molded object 24 at the both ends of the longitudinal direction.
  • These insulating wall portions 25A and 25B are formed on the inner side of the longitudinal end surface of the molded body 24 and have a relatively large-diameter semi-cylindrical protruding portion 25a protruding from the surface, and both end surfaces of the semi-cylindrical protruding portion 25a.
  • an attachment hole 27 centering on the central axis of the semi-cylindrical protrusion 25a is formed through the bottom surface of the molded body 24.
  • the inner diameters of the semi-cylindrical protrusions 25a of the insulating wall portions 25A and 25B are set to be larger than the heads of fixing tools such as mounting bolts and mounting screws inserted into the mounting holes 27, and are adjacent to each other.
  • the wall surface height is set such that a necessary creepage distance can be secured between the terminal pins 18, 22a, 22b and the head of the fixture.
  • the conductive terminal pins 18 to 20 are individually connected to the main terminal bar, and the conductive terminal pins 21a, 21b, 22a, 22b are connected to the wire wiring.
  • the U phase of the inverter circuit can be formed by connecting to the drive circuit via the printed wiring, and the U phase, the V phase, and the W phase can be formed by combining these three.
  • the other is off. On / off control is performed alternately.
  • the conductive terminal pin 18 that becomes the drain terminal D1 as shown by the solid line arrow in FIG. Is supplied to the drain electrodes 12Ad of the transistors Q1a to Q1d through the conductive pattern 14 of the main circuit component 13B.
  • the current output from the source electrode 12As of the transistors Q1a to Q1d passes through the main circuit wiring pattern 16b of the printed circuit board 16 through the post electrode 17, and is supplied to the conductive pattern 14 of the main circuit component 13A through the post electrode 17b.
  • the The current supplied to the conductive pattern 14 of the main circuit component 13A is output to the inductive load through the conductive terminal pin 19 as, for example, a U-phase output.
  • the transistors Q2a to Q2d of the main circuit component 13A are maintained in the OFF state, no output current is obtained at the source terminal S2, and the conductive terminal pin 20 maintains the current cutoff state.
  • the current input from the conductive terminal pin 20 (source terminal S2) is transmitted from the terminal connection patterns 14d and 14e in the conductive pattern 14 of the insulating substrate 11A to the post electrode 17a.
  • the current supplied to the main circuit wiring pattern 16a is supplied via the post electrode 17 from the anode 12Ba of the free wheel diode Di2a (semiconductor chip 12B) to the conductor pattern 14a in the conductive pattern 14 of the insulating substrate 11A through the cathode 12Bk.
  • the current supplied to the conductor pattern 14a is supplied to the inductive load through the conductive terminal pin 19 (output terminal S1D2). At this time, the current passing through the transistor Q1a decreases and the current passing through the freewheel diode Di2a increases, and these currents face the conductor patterns 14a and 14b of the insulating substrate 11A and the main circuit wiring pattern of the printed circuit board 16 respectively. 16a and finally output together with the conductive terminal pin 19 to the inductive load.
  • the mutual inductance M is offset. can do. Thereafter, after a predetermined dead time has elapsed, the transistors Q2a to Q2d are turned on, and the transistors Q1a to Q1d continue to be turned off.
  • the main circuit component 13A on which the first semiconductor chip 12A and the second semiconductor chip 12B are mounted and the first semiconductor chip 12A and the second semiconductor chip 12A on the other side are mounted.
  • the current path between the main circuit components 13B on which the second semiconductor chip 12B is mounted is printed through the post electrode 17 from the first semiconductor chip 12A and the second semiconductor chip 12B mounted on the conductor pattern 14 of the insulating substrate 11B.
  • the main circuit wiring pattern 16b formed on the substrate 16 is formed so as to reach the conductive pattern 14 (chip mounting pattern 14c) of the insulating substrate 11A via the plurality of post electrodes 17b at the end on the main circuit wiring pattern 16a side. Has been.
  • the conductive pattern 14 of the insulating substrate 11A and the printed circuit board 16 can be electrically connected by the post electrode 17b, the wiring distance can be shortened, the cross-sectional area of the current path can be increased, and the wiring inductance can be increased. Can be reduced.
  • the sign of the current change rate (di / dt) of the current flowing through the conductive pattern 14 of the main circuit component 13A and the main circuit wiring pattern 16a of the printed circuit board 16 is reversed so that one is positive and the other is negative.
  • the mutual inductance M between the conductive pattern 14 of the main circuit component 13A and the main circuit wiring pattern 16a of the printed circuit board 16 can be reduced, and a high-speed switching operation can be ensured.
  • conductive terminal pins 18 to 20, 21 a serving as external connection terminals are formed as copper patterns having a thickness of 0.5 mm or more and 1.5 mm or less as the thickness of the conductive pattern 14 formed on the insulating substrates 11A and 11B of the main circuit components 13A and 13B. 21b, 22a, and 22b are held by press-fitting. By setting the thickness of the conductive pattern 14 to 0.5 mm or more, the conductive terminal pins 18 to 20, 21a, 21b, 22a, and 22b are securely held in the fitting holes 14o, 14f, 14g, 14p, and 14q, respectively. The terminal pins 18 and the like can be easily attached.
  • the conductive terminal pin 18 to 20, 21a, 21b, 22a, 22b of the conductive pattern 14 is formed with a plating layer that dissolves by reflow treatment on the inner peripheral surface of the fitting hole. It is possible to more reliably hold 18 etc., and the reliability is improved accordingly.
  • the diameter of the conductive terminal pins 18 to 20, 21a, 21b, 22a, 22b is preferably in the range of 0.5 mm to 1.5 mm, for example, about 1.0 mm. If it is less than 0.5 mm, the inductance increases, and if it is more than 1.5 mm, it is difficult to solder the pin to another member.
  • the depth of the fitting holes 14o, 14f, 14g, 14p, and 14q is the upper limit of the thickness of the conductive pattern 14, and is preferably in the range of 0.5 to 1.5 times the diameter of the conductive terminal pin 18 and the like. is there. If it is this range, mounting
  • the thickness of the conductive pattern 14 is limited to 1.5 mm or less. This is because if the thickness of the conductive pattern 14 exceeds 1.5 mm, etching for forming the conductive pattern 14 by side etching cannot be performed satisfactorily, and it becomes difficult to form an accurate pattern shape. .
  • the thickness of the heat transfer pattern 15 for heat dissipation is less than 0.5 mm, it is not preferable in terms of cooling performance, and as described above, when the whole is sealed with the resin sealing material, the lower side of the substrate 13 The thickness of the resin sealing material that wraps around is reduced, and cracking is likely to occur in the resin sealing material.
  • the conductive pattern 14 formed on the insulating substrate 11A (or 11B) of the main circuit components 13A and 13B is widened, and the chip mounting pattern 14c (or 14j) is mounted to mount the first semiconductor chip 12A and the second semiconductor chip 12B.
  • the portion 14a (or 14h) and the narrow portion 14b (or 14i) are formed in a convex shape, and the terminal connection patterns 14d and 14e (or 14k, 14l) are formed independently on both sides sandwiching the narrow portion 14b (or 14i). 14m, 14n). For this reason, the board
  • substrate 13 can be reduced in size and the power semiconductor module 2 itself can also be reduced in size.
  • the insulating substrates 11A and 11B are individually provided by the main circuit components 13A and 13B, and the conductive pattern 14 and the heat dissipation heat transfer pattern 15 are formed on each insulating substrate 11A and 11B.
  • the temperature rise due to heat generated in the semiconductor chip 12A and the internal stress due to the difference in linear expansion coefficient can be suppressed, and the reliability of the power semiconductor module 2 can be further improved.
  • the number of conductive patterns 14 formed on both surfaces of the substrate 13 of the main circuit components 13A and 13B and the heat transfer pattern 15 for heat dissipation is made smaller than that of the conductive pattern 14, and the heat transfer pattern 15 for heat dissipation is formed on the substrate 13. It can arrange
  • the narrow portions 14b and 14i of the convex conductive pattern 14 contribute not only as a current path but also to heat transfer.
  • a copper pattern is overwhelmingly better in heat conduction than an insulator such as ceramics, so that heat is not only transmitted directly under the semiconductor chip, but also spreads to the narrow portions 14b and 14i to form a cooling surface. This is because it is transmitted to the heat radiation pattern 15 for heat radiation on the side and further spreads over the entire cooling surface.
  • the gate electrode of the first semiconductor chip 12A is formed on the side opposite to the second semiconductor chip 12B side in the main circuit components 13A and 13B, the path of the gate wiring patterns 16c and 16d is connected to the main circuit.
  • the wiring patterns 16a and 16b can be arranged without crossing, and the wiring layout can be easily performed.
  • the conductive terminal pins 18 to 20, 21a, 21b, 22a, 22b serving as external connection terminals are arranged in two substantially linear lines along the side edges in the longitudinal direction of the power semiconductor module 2, FIG.
  • a mold for molding can be constituted by one fixed mold 30 and two slide molds 31 and 32. Therefore, the mold can be easily manufactured, and the molding with a good yield can be performed without hindering the flow of the resin sealing material.
  • the insulating substrates 11A and 11B are provided for each of the main circuit components 13A and 13B.
  • the present invention is not limited to this, and members and sealing materials that constitute the insulating substrate.
  • the conductive pattern 14 for the main circuit components 13A and 13B is formed on a single substrate 13, as shown in FIGS. You may make it form the common heat-transfer pattern 15 for thermal radiation.
  • substrate 11A, 11B and 11 are not limited to the said structure, What is called an AMB (Active Metal Brazing) board
  • a DCB (Direct Copper Bonding) substrate in which the substrate and copper are directly bonded can be applied.
  • the ceramic substrate material alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), or the like can be used. Further, a resin substrate can be applied instead of the ceramic substrate. In short, any substrate can be used as long as it can ensure insulation.
  • the present invention is not limited to this, and post electrodes having an arbitrary shape such as a quadrangular column, a triangular column, a polygonal column, and an elliptical column can be applied. In short, any rod-shaped conductive connecting member that contributes to a reduction in inductance is acceptable. .
  • the terminals are mounted on the insulating substrate, but the present invention is not limited to this, and terminals that do not flow a large current such as gates and source auxiliary terminals do not need to be cooled. It may be attached directly to the printed board.
  • the insulating substrate 11 is arranged with two convex chip mounting patterns 41 and 42 so that the narrow portions 41a and 42a face each other.
  • the terminal connection patterns 43a and 43b may be independently formed on both outer sides of the narrow portion 41a.
  • the present invention is not limited to this, and as shown in FIG.
  • the narrow portions 51b and 51c may be formed on both sides of the portion 51a.
  • wide portions 52b and 52c may be formed on both sides of the narrow portion 52a at the center.
  • the present invention is not limited to this, and the IGBT may be built in the first semiconductor chip 12A.
  • Other voltage-controlled semiconductor elements may be incorporated.
  • a reverse conducting IGBT (RC-IGBT) with a built-in FWD may be used as the first semiconductor chip 12A.
  • the present invention is not limited to this.
  • the second semiconductor chip 12B can be omitted and only the first semiconductor chip 12A can be used.
  • the external connection terminals lead frames or other terminals can be applied instead of the conductive terminal pins 18 to 20, 21a, 21b, 22a, 22b.
  • the projecting direction of the terminal is not limited to the upper surface of the power semiconductor module 2 but may project from the side surface and bend upward.
  • the present invention can obtain a desired circuit configuration only by the combination of terminal connections of the semiconductor modules. Therefore, the present invention is not limited to the above-described inverter device for power conversion, and uses a power semiconductor module.
  • the present invention can be applied to other semiconductor devices such as power converters and switching ICs for high frequency applications.
  • SYMBOLS 1 Semiconductor device, 2 ... Power semiconductor module, 11A, 11B ... Insulating substrate, 12A ... 1st semiconductor chip, 12B ... 2nd semiconductor chip, 13A, 13B ... Main circuit component path, 14 ... Conductive pattern, 14a , 14h ... wide part, 14b, 14i ... narrow part, 14c, 14j ... chip mounting pattern, 14c, 14e, 14k, 14l, 14m, 14n ... terminal connection pattern, 15 ... heat transfer pattern for heat dissipation, 16 ... printed circuit board , 18 to 20, 21a, 21b, 22a, 22b ... conductive terminal pins, 24 ... molded body, 30 ... fixed mold, 31, 32 ... slide mold

Abstract

 小型でありながら、高速スイッチングに対応した低インダクタンスとすることができる半導体装置を提供する。一ないし複数のパワー半導体チップ(12A,12B)がそれぞれ実装された複数の導電パターン部材(14)と、該導電パターン部材との対向面に前記パワー半導体チップに接続するチップ用棒状導電接続部材(17)及び前記導電パターン部材に接続するパターン用棒状導電接続部材(17a,17b)を配置したプリント基板(16)とを備え、前記導電パターン部材(14)は幅狭部(14b)と幅広部(14a)とで形成され、少なくとも1つの導電パターン部材の幅狭部と前記プリント基板とを前記パターン用棒状導電接続部材(17b)で接続し、前記導電パターン部材と前記プリント基板に前記チップ用棒状導電接続部材を介して接続されている前記パワー半導体チップの間の電流路を形成している。

Description

半導体装置
 本発明は、パワー半導体チップを搭載した半導体装置に関する。
 例えば電力変換装置を構成するインバータ装置にはパワー半導体モジュールが使用されている。
 従来の半導体装置としては、例えば図15に示すものが提案されている。
 この従来の半導体装置は、例えば2in1の半導体モジュール100の例として挙げている。
 この半導体モジュール100は、放熱用の金属ベース板101上に導体パターン付絶縁基板(セラミックス絶縁基板)102がハンダ103で接合されている。導体パターン付絶縁基板102は、セラミックス基板102aを有し、このセラミックス基板102aの表面に貼り合わせた導体パターン102bと、セラミックス基板102aの裏面に貼り合わせた裏面導電膜102cとで構成されている。
 導体パターン付絶縁基板102の導体パターン102b上には半導体チップ(半導体パワーチップ)104がハンダ105を介してマウントされている。
 そして、金属ベース板101、導体パターン付絶縁基板102及び半導体チップ104が下端を開放した箱状の樹脂ケース106内に配置され、この樹脂ケース106内に樹脂封止材を注入することにより固定されている。なお、107は導体パターン102bにハンダ付けされた外部導出端子となる金属バー端子、108は半導体チップ104同士や半導体チップ104と導体パターン102bとの間を接続するボンディングワイヤである。
 他の従来例としては、導体パターン付絶縁基板上に半導体チップを配置し、半導体チップや導体パターンにプリント基板に固着した多数のポスト電極を固着し、プリント基板の表裏に金属箔形成して、放熱性を確保することにより、熱膨張等による変形を防止して高信頼性で、優れた動作特性を有し、且つ高い生産性を有する半導体装置が提案されている(例えば、特許文献1参照)。
 また、電力用半導体装置(IGBT)とこれに逆並列接続されたダイオード(FWD)の直列接続回路からなる電力用半導体モジュールに対して、第1の電源電位出力電極などに接続され電極バーと付加電極などに接続される電極バーと第2の電源電位出力電極などに接続される電極バーとをそれぞれ板状に形成し、絶縁物を挟み互いに近接させて配置することにより、電力用半導体モジュール内部のインダクタンス値をほぼゼロとした電力用半導体モジュールも提案されている(例えば、特許文献2参照)。
 さらに、底面基板の上部に、この底面基板の端縁部上方を覆うように矩形環状の配線基板を配設し、この配線基板の中央部の開口部に主コレクタ電極端子及び主エミッタ電極端子を通過させて樹脂ケースの開口部から突出させ、制御エミッタパッド及びゲートパッドは均等な長さのワイヤ配線を介して制御エミッタ電極およびゲート電極と電気的に接続した電力用半導体装置も提案されている(例えば、特許文献3参照)。
 さらにまた、半導体チップを封止した半導体装置用ユニット、配線基板およびボルト締めユニットを備え、少なくとも半導体装置用ユニットとボルト締めユニットとは弾性接着剤により固着され、半導体装置用ユニットは銅ブロック、導体パターン付絶縁基板、IGBTチップ、ダイオードチップ、コレクタ端子ピン、インプラントピンを固着したプリント基板、エミッタ端子ピン、制御端子ピン、コレクタ端子ピンおよびこれらを封止する樹脂ケースとから構成された半導体装置も提案されている(例えば、特許文献4)。
 また、パワー半導体チップを搭載した、銅板と絶縁板を有する絶縁基板、パワー半導体チップに接続したピン付プリント基板、銅板に接続した接続端子および絶縁基板とピン付プリント基板を内部に封入する直方体状の樹脂封止材を少なくとも備え、樹脂封止材の両側部にエミッタ側接続端子、コレクタ側接続端子、出力端子を樹脂封止材の側縁に沿って一列に配置し、ゲート端子及びエミッタ信号用端子を一方の長手方向端縁に沿って一列に配置したパワー半導体モジュールが提案されている(例えば、特許文献5参照)。
特開2009-64852号公報 特開2004-214452号公報 特開2010-118699号公報 特開2011-142124号公報 特開2012-119618号公報
 ところで、上記図12に記載した従来例にあっては、細いボンディングワイヤを引き回す必要性から、高速スイッチングに対応させるためにインダクタンスを低減させることが困難であり、外部接続端子を導体パターンにハンダ付けするので、外部接続端子の取付けを正確に行うことができないという未解決の課題がある。さらに、ボンディングワイヤとつなぐ配線を引き回すパターンを絶縁基板上に配置しなければならないので、小型化が困難であると共に、生産性および組立性も劣り、構造が複雑となり放熱性も低下する。
 また、特許文献1に記載された従来例にあっては、ボンディングワイヤより短く断面積の大きいポスト電極(ピン)を使用しているので、インダクタンス低減が可能であるし、絶縁基板とプリント基板の2階建て配線とすることができるので小型化も可能である。しかし、プリント基板及び絶縁基板間の配線インダクタンス低減までは考慮していないので、SiCなどに代表される高速スイッチング素子の能力を十分に発揮させるには、このままでは不十分である。また、安価にモジュールを形成する手段として、トランスファー成型などを用いたフルモールド化が挙げられるが、特許文献1に開示されている形状は、必ずしもモールド成型に適したものではない。
 さらに、特許文献2に記載された従来例にあっては、電流通路を重ねて配線インダクタンスをほぼゼロにすることができ、相互インダクタンスを大幅に低減できる有効な手段であるが、実際の半導体パッケージは、様々な形状要求があり、特に、プリント基板と接続するために、外部端子をピン形状にして上方に出す場合などでは、正極側及び負極側の電源配線をラミネート構造にできない部位が存在することは明白であるし、ラミネートしているところでも電流の方向が完全に正反対のところしか相互インダクタンスを“0”とすることはできないので、この手法だけに頼ることは難しい。さらに、小型の半導体チップは、1mm以下の幅のパッドを採用していることも多く、BUSバーをラミネート化しつつ複数のチップを機械的に接合することは困難である。小型チップの場合は、ワイヤーボンディングや特許文献1に記載されているポスト電極を採用せざるを得ない。特に、SiCなどは、周知のとおりウェハ欠陥密度の関係から、小型チップであることが多い。
 また、一般的に、モジュールサイズが小型になるほど、配線がほそくなり、ラミネートなどの工夫もしにくくなるため、インダクタンスが増加することが多い。
 さらにまた、特許文献3に記載された従来例にあっては、主コレクタ端子及び主エミッタ端子については底面基板に主コレクタ基板及び主エミッタ基板を介して配設し、制御エミッタパッド及びゲートパッドはIGBT素子にワイヤ配線を介して接続されていると共に、制御エミッタ中継端子及びゲート中継端子を介して配線基板に接続され、この配線基板に設けた制御エミッタ電極およびゲート電極に電気的に接続している。このため、外部接続端子の連結構造が複雑となり、組立性及び生産性が低下するという未解決の課題がある。
 また、特許文献4に記載された従来例にあっては、コレクタ端子ピンは絶縁基板の第2銅ブロックにハンダ付けで接続され、エミッタ端子ピン及び制御端子ピンはプリント基板に接続されており、外部接続端子の配置及び接続を容易に行うことができず、組立性及び生産性か低下するという未解決の課題がある。
 同様に、特許文献5に記載された従来例にあっては、コレクタ側接続端子及びエミッタ側接続端子が絶縁基板の異なる第1銅板に固着され、ゲート端子及びエミッタ信号用端子がプリント基板に固着されており、外部接続端子の配置及び接続を容易に行うことができず、組立性及び生産性が低下するという未解決の課題がある。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、小型でありながら、高速スイッチングに対応した低インダクタンスとすることができる半導体装置を提供することを目的としている。
 上記目的を達成するために、本発明に係る半導体装置の第1の態様は、一ないし複数のパワー半導体チップがそれぞれ実装された複数の導電パターン部材と、該導電パターン部材との対向面に前記パワー半導体チップに接続するチップ用棒状導電接続部材及び前記導電パターン部材に接続するパターン用棒状導電接続部材を配置したプリント基板とを備えている。そして、前記導電パターン部材は幅狭部と幅広部とで形成され、少なくとも1つの導電パターン部材の幅狭部と前記プリント基板とを前記パターン用棒状導電接続部材で接続し、前記導電パターン部材と前記プリント基板に前記チップ用棒状導電接続部材を介して接続されている前記パワー半導体チップの間の電流路を形成している。
 また、本発明に係る半導体装置の第2の態様は、前記導電パターン部材に流れる電流の変化率と当該導電パターン部材に対向する前記プリント基板に流れる電流の変化率との符号が正負逆符号となるように前記プリント基板の配線パターンを配置している。
 また、本発明に係る半導体装置の第3の態様は、前記幅狭部の外側に形成され、外部接続端子を接続する端子接続パターン部材をさらに有している。
 また、本発明に係る半導体装置の第4の態様は、前記導電パターン部材は、厚みが0.5mm以上1.5mm以下の銅パターンで構成されている。
 また、本発明に係る半導体装置の第5の態様は、前記端子接続パターン部材は、厚みが前記外部接続端子を保持可能な0.5mm以上の銅パターンで構成されている。
 また、本発明に係る半導体装置の第6の態様は、前記複数の導電パターン部材は個別の絶縁基板上に配置されている。
 また、本発明に係る半導体装置の第7の態様は、前記複数の導電パターン部材は同一絶縁基板上に配置されている。
 また、本発明に係る半導体装置の第8の態様は、前記絶縁基板は、前記導電パターン部材が形成された面とは反対側に放熱用伝熱パターン部材が形成され、当該放熱用伝熱パターン部材の数が前記導電パターン部材の数と同じ、または少なく設定されている。
 また、本発明に係る半導体装置の第9の態様は、前記プリント基板は、表裏両面に主回路配線パターンを形成し、両主回路配線パターンを同電位としている。
 また、本発明に係る半導体装置の第10の態様は、前記導電パターン部材と前記プリント基板とを内部に封入する封止部材を備え、前記の外部接続端子が前記封止部材から同一方向に突出し且つ封止部材の長手方向に整列配置されている。
 また、本発明に係る半導体装置の第11の態様は、前記パワー半導体チップがゲート電極と電流検出用の補助電極とを有する電圧制御形半導体素子で構成され、前記プリント基板に形成された配線パターンのうち、前記ゲート電極に接続される配線パターンが前記プリント基板の一方の面に形成され、前記電流検出用の補助電極に接続される配線パターンは、前記プリント基板の他方の面であって前記ゲート電極に接続される配線パターンと対向する位置に形成されている。
 なお、前記主回路構成部品が、半導体素子を内蔵する第1の半導体チップと半導体整流素子を内蔵した第2の半導体チップとを有して、前記第1の半導体チップに内蔵された半導体素子がゲート電極を有する電圧制御形半導体素子で構成され、該ゲート電極が前記第2の半導体チップと対向する端面とは反対側の端面側に位置するように配置した構成としてもよい。
 また、本発明に係る半導体装置の第12の態様は、前記パワー半導体チップが主電極を有する電圧制御形半導体素子で構成され、前記プリント基板は、表裏両面に前記主電極に接続される配線パターン部材を形成し、両配線パターン部材を同電位としている。
 また、本発明に係る半導体装置の第13の態様は、前記パワー導体素子がゲート電極を有する電圧制御形半導体素子で構成され、前記パワー半導体チップは前記ゲート電極が前記絶縁基板を複数配置した際の長手方向に沿う前記絶縁基板の外周側に位置するように配置されている。
 また、本発明に係る半導体装置の第14の態様は、一ないし複数のパワー半導体チップがそれぞれ実装された複数の導電パターン部材と、該導電パターン部材との対向面に前記パワー半導体チップに接続するチップ用棒状導電接続部材及び前記導電パターン部材に接続するパターン用棒状導電接続部材を配置したプリント基板とを備えている。そして、前記導電パターン部材に流れる電流の変化率と当該導電パターン部材に対向する前記プリント基板に流れる電流の変化率との符号が正負逆符号となるように前記プリント基板の配線パターンを配置している。
 本発明によれば、絶縁基板上に形成された導体パターンが幅狭部と半導体チップを搭載する幅広部とで形成され、この導電バターンの幅狭部とプリント基板との間を棒状導電接続部材で接続して複数の主回路構成部品間の電流路を形成している。このため、寸法を拡大することなくインダクタンスを低減し、樹脂成型し易い構成とすることができ、ひいては小型で、高速スイッチング素子に対応できる半導体装置を提供できる。
本発明に係る半導体装置の一実施形態を示す斜視図であって、(a)は平面側から見た斜視図、(b)は底面側から見た斜視図である。 半導体チップを搭載した絶縁基板の平面図である。 図1の半導体装置の図2のA-A線上を通る断面図である。 本発明に適用し得る絶縁基板を示す図であって、(a)は平面図、(b)は側面図、(c)は底面図である。 本発明に適用し得るプリント基板を示す図であって、(a)は平面図、(b)は底面図である。 半導体装置の等価回路を示す回路図である。 図6のトランジスタQ1aをオン状態からオフ状態に反転させたときの電流経路を示す回路図である。 絶縁基板上にプリント基板を載置した状態を示す斜視図である。 本発明に適用し得る樹脂封止金型を示す平面図である。 従来の樹脂封止金型を示す平面図である。 絶縁基板の第1の変形例を示す図であって、(a)は平面図、(b)は側面図、(c)は底面図である。 絶縁基板の第2の変形例を示す図であって、(a)は平面図、(b)は側面図、(c)は底面図である。 絶縁基板の第3の変形例を示す平面図である。 絶縁基板の第4の変形例を示す平面図である。 従来例を示す断面図である。
 以下、図面を参照してこの発明の実施の形態について説明する。
 図1は、本発明に係る半導体装置を示す斜視図である。
 図中、2は半導体装置としてのパワー半導体モジュールである。このパワー半導体モジュール2は、図2~図8で特に明らかなように、絶縁基板11A、11B上にそれぞれ実装される第1の半導体チップ12A及び第2の半導体チップ12Bを含む2組の主回路構成部品13A、13Bと、これら主回路構成部品13A、13Bの上方で共通の配線回路を構成するプリント基板16とを備えている。
 第1の半導体チップ12Aは、パワーMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)(または絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transistor,IGBT))を内蔵して構成されている。第2の半導体チップ12Bは、フリー・ホイーリング・ダイオード(Free Wheeling Diode,FWD)を内蔵して構成されている。
 そして、絶縁基板11A上に、図2に示すように、2個の第2の半導体チップ12Bが長手方向(図面に向かって左右方向)の中心線上に所定間隔保って配置され、これら第2の半導体チップ12Bの両外側に第1の半導体チップ12Aが2個ずつ所定距離を保って配置されている。絶縁基板11B上にも同様に2個の第2の半導体チップ12Bと、これら第2の半導体チップ12Bを挟んで4個の第1の半導体チップ12Aとが配置されている。
 ここで、第1の半導体チップ12Aは、ドレイン電極12Ad、ソース電極12As及びゲート電極12Agを有し、ゲート電極12Agが第2の半導体チップ12Bとは反対側の端部側(絶縁基板外側)となるように配置されている。
 これらの半導体チップ12A,12Bは、上記のような各種パワーデバイスであるが、シリコン基板上に形成したものでもよいし、SiC、他の基板上に形成したものでもよい。
 絶縁基板11Aは、伝熱性の良いアルミナ等のセラミックスを主成分とする例えば正方形状の基板13を有し、この基板13の表面には厚みが0.5mm以上の銅板で構成される導電パターン部材としての導電パターン14が貼り付けられており、裏面には同様の厚みを有する放熱用伝熱パターン15が貼り付けられている。
 導電パターン14は、図2及び図3に示すように、平面形状が凸(T)字形状に形成されたチップ搭載パターン14cを有する。チップ搭載パターン14cは、図面向かって右側の端部が基板13の幅と略等しい幅を有する幅広部14aと、この幅広部14aの左側に連接する幅広部14aより狭い幅の幅狭部14bとを備える。
 また、導電パターン14は、チップ搭載パターン14cの幅狭部14bの外側に所定間隔を保って独立した端子接続パターン14d及び14eを有する。これら端子接続パターン14d及び14eの側縁はチップ搭載パターン14cの幅広部14aの側縁と一致されている。
 ここで、チップ搭載パターン14cの幅広部14aには、図2に示すように、ハンダ等の接合部材を介して第1の半導体チップ12A及び第2の半導体チップ12Bが実装されていると共に、第1の半導体チップ12Aの幅方向外側に2つの嵌合孔14fが形成されている。嵌合孔14fには主回路用外部接続端子となる導電端子ピン19が圧入される。また、端子接続パターン14d及び14eには嵌合孔14gがそれぞれ形成されている。嵌合孔14gには外部接続端子としてのソース端子S2となる導電端子ピン20が圧入される。
 また、絶縁基板11Bも、絶縁基板11Aと同様にセラミックスを主成分とする基板13とその表裏に形成された導電パターン14及び放熱用伝熱パターン15とを有する。導電パターン14は、平面形状が凸(T)字形状に形成されたチップ搭載パターン14jを有する。チップ搭載パターン14jは、絶縁基板11Aと同様に、幅広部14h及び幅狭部14iとを備える。このチップ搭載パターン14jの幅狭部14iの外側に所定間隔を保って独立して形成されたそれぞれ2つの端子接続パターン14k,14l及び14m,14nが形成されている。
 そして、チップ搭載パターン14jには、図2に示すように、第1の半導体チップ12A及び第2の半導体チップ12Bがハンダ等の接合部材を介して実装されていると共に、第1の半導体チップ12Aの幅方向外側に2つの嵌合孔14oが形成されている。嵌合孔14oには外部接続端子としてのドレイン端子となる導電端子ピン18が圧入される。端子接続パターン14k及び14mには嵌合孔14pがそれぞれ形成されている。嵌合孔14pには外部接続端子としてのソース補助端子となる導電端子ピン21a,21bが圧入される。端子接続パターン14l及び14nには嵌合孔14qがそれぞれ形成されている。嵌合孔14qには外部接続端子としてのゲート端子となる導電端子ピン22a,22bが圧入される。
 ここで、導電端子ピン18、20及び19の材質は、導電性に優れた銅(Cu)、あるいはアルミニウム(Al)系のものであることが望ましい。しかし、はんだ接合の容易さを考慮するとき、導電端子ピン18、20及び19にはニッケル(Ni)あるいは錫系の表面処理を施して、はんだ接合の濡れ性を改善することによって、実装効率を高めることが可能である。
 図6に示す等価回路図から分かるように、絶縁基板11Bの導電パターン14には、上アームを構成する第1の半導体チップ12Aとなる例えばNチャネルのMOSFET(以下、単にトランジスタという)Q1a~Q1dおよび第2の半導体チップ12BとなるFWD(以下、ダイオードという)Di1a,Di1bを備える逆並列接続回路が形成される。絶縁基板11Aの導電パターン14には、下アームを構成する第1の半導体チップ12AとなるトランジスタQ2a~Q2dおよび第2の半導体チップとなるダイオードDi2a,Di2bを備える逆並列回路が形成される。2つの逆並列回路は直列に接続されている。
 ここで、一つの絶縁基板11A、11B上に配置される半導体チップ(パワーデバイス)は、図6に示すトランジスタとダイオードの逆並列回路を等価的に構成すればよいので、トランジスタとダイオードは、1つずつでもよいし、互いに同数の複数であってもよい。
 そして、一対のトランジスタQ1a~Q1d、Q2a~Q2dとダイオードDi1a,Di1b、Di2a,Di2bとからなる2組の逆並列回路は、さらに上面に配置されたプリント基板16と棒状導電接続部材としての円柱状のポスト電極17を介して直列に接続される。
 なお、図2のように2つの半導体チップ12A及び12Bの配置は前後方向に並べて配置する場合に代えて左右方向に並べて配置することもできる。
 そして、第1の半導体チップ12Aの下面にはトランジスタQ1a~Q1d(又はQ2a~Q2d)のドレイン電極12Adが形成され、導電パターン14のチップ搭載パターン14j(又は14c)を介してパワー半導体モジュール2の外部入力用端子(ドレイン端子D1)を構成する接続端子としての導電端子ピン18(又は主回路用外部接続端子(ソース兼ドレイン端子S1/D2)となる導電端子ピン19)に接続されている。第2の半導体チップ12Bの裏面に形成されたカソード電極も、チップ搭載パターン14j(又は14c)を介して導電端子ピン18(又は導電端子ピン19)に接続されている。
 また、第1の半導体チップ12Aのおもて面には、トランジスタQ1a~Q1d(又はQ2a~Q2d)のソース電極12As及びゲート電極12Agが形成され、それぞれチップ用棒状導電接続部材としてのポスト電極17を介してプリント基板16に接続されている。
 ここで、トランジスタQ1a~Q1d(又はQ2a~Q2d)のソース電極12As及びゲート電極12Agは、プリント基板16に形成された配線パターンに接続されるが、ゲート電極に接続される配線パターンはプリント基板16の一方の面に形成され、ソースセンス電極(図示せず)に接続される配線パターンは、プリント基板16の他方の面であって前記ゲート電極に接続される配線パターンと対向する位置に形成されている。
 このように、ゲート電極に接続される導体パターンとソースセンス電極に接続される配線パターンを配置することにより、両配線パターンの間の相互インダクタンスを低減することができる。相互インダクタンスを低減することにより、トランジスタQ1a~Q1d(又はQ2a~Q2d)の制御を安定させることができる。特に、配線インダクタンスの影響による誤点弧の抑制に有効である。
 また、第2の半導体チップ12Bのおもて面にはアノード電極が形成され、このアノード電極がチップ用棒状導電接続部材としてのポスト電極17を介してプリント基板16に接続されている。
 これらの導電端子ピン18~20は、図1に示すようにパワー半導体モジュール2の幅方向の中心線に対して対称の位置に1本ずつ形成されている。また、パワー半導体モジュール2は導電端子ピン18の長手方向外側に片側2本ずつ計4本の導電端子ピン21a,21b及び22a,22bをさらに有している。これらの導電端子ピン18~20及び21a,21b、22a,22bはパワー半導体モジュール2の両側縁に沿って略直線状に二列に配置されている。
 導電端子ピン21a,21bはソース補助端子であって、プリント基板16に接続されて、トランジスタQ1a~Q1d、Q2a~Q2dのドレイン―ソース間に流れる電流をセンシングするソースに接続されてセンス信号を出力する電流検出端子SS1、SS2を構成している。また、残りの2本の導電端子ピン22a,22bは、プリント基板16に接続されて、ハーフブリッジ回路のトランジスタQ1a~Q1d、Q2a~Q2dのゲート電極にゲート制御信号を供給するゲート端子G1、G2を構成している。
 また、絶縁基板11A、11Bの裏面側の放熱用伝熱パターン15は、導電パターン14と同様に銅板を貼り付けて構成され、放熱用伝熱パターン15の下面がパワー半導体モジュール2の底面と面一か底面より僅かに突出している。
 プリント基板16は、図5(a)及び(b)に示すように、表面側に主回路構成部品13Aの電流路となる右側に向かって凸形状で幅広の主回路配線パターン16aと、主回路構成部品13Bの電流路となる同様に幅広の主回路配線パターン16bとが形成されている。また、プリント基板16の表面には、主回路構成部品13A及び13Bの第1の半導体チップ12Aのゲート電極にポスト電極17を介して接続されるゲート用配線パターン16c及び16dが形成されている。
 ゲート用配線パターン16cは冠状パターン16eおよび接続パターン16hで構成されている。冠状パターン16eは凸形状の配線パターン16aの幅狭部を所定距離保って囲むように形成されている。接続パターン16hは、冠状パターン16eの中央部と端子接続パターン16gとの間を結ぶようにプリント基板16の側縁に沿って延長されている。端子接続パターン16gはプリント基板16の左端部に穿設された、導電端子ピン22aを挿通するための挿通孔16fの周囲に形成されている。
 ゲート用配線パターン16dは冠状パターン16jおよび接続パターン16mで構成されている。冠状パターン16jは導体パターン16bの左側端部を囲むように形成されている。接続パターン16mは、冠状パターン16jの中央部と端子接続パターン16lとの間を結ぶように略L字状に形成されている。端子接続パターン16lはプリント基板16の左端部に穿設された、導電端子ピン22bを挿通するための挿通孔16kの周囲に形成されている。
 プリント基板16には、導電端子ピン18及び19を非接触で挿通する単純挿通孔16o、及び16pや、導電端子ピン20を非接触で挿通するスルーホール16qが穿設されている。
 ここで、スルーホール16qは、導電端子ピン20に対して非接触としているが、更なるインダクタンス低減が必要な場合、スルーホール16qと導電端子ピン20とをはんだ付け等によって電気的に接続することにより、配線長さを短縮することができる。
 さらに、プリント基板16の裏面には、図5(b)に示すように、表面側の主回路配線パターン16a及び16bと平面から見て重なるように主回路構成部品13Aの電流路となる幅広の右側に向かって凸形状の主回路配線パターン16a及び16bが形成されている。また、プリント基板16の裏面には、主回路構成部品13AのダイオードDi1aのアノードと主回路構成部品13BのダイオードDi2bのアノードにポスト電極17を介して接続されるソースセンス端子用配線パターン16r及び16sが形成されている。これらソースセンス端子用配線パターン16r及び16sは表側のゲート用配線パターン16c及び16dと平面から見て概ね重なるように形成され、導電端子ピン21a及び21bを挿通するための挿通孔16t及び16uの周囲に形成された、プリント基板16の左端の端子接続パターン16v及び16wに接続されている。
 ここで、プリント基板16の表裏の主回路配線パターン16bの主回路配線パターン16a側の端部がパターン用棒状導電接続部材としての複数例えば6本のポスト電極17bによって絶縁基板11Aのチップ搭載パターン14cの幅狭部14bに電気的に接続され、ポスト電極17bによって主回路構成部品13A及び13B間の電流路を形成している。図に示すように、主回路配線パターン16aの左側の切り欠き部に主回路配線パターン16b右側のポスト電極17bが設けられた端部を配置することにより、主回路配線パターン16aとチップ搭載パターン14cが重なる面積を確保しながら半導体装置を小型にすることができ、望ましい。
 また、プリント基板16の表裏の主回路配線パターン16a同士が互いに同電位に設定され、同様に表裏の導体パターン16b同士も互いに同電位に設定されている。
 そして、上述した主回路構成部品13A及び13Bに導電端子ピン18~20、21a,21b及び22a,22bを圧入して垂直に保持した状態で、主回路構成部品13A及び13Bとプリント基板16とが、図8に示すように、接合されている。この場合、プリント基板16に穿設した挿通孔16o及び16p、16q、16t、16u、16f、16kに導電端子ピン19、18、20、21a、21b、22a、22bをそれぞれ挿通する。
 また、プリント基板16に形成されたチップ用棒状導電接続部材となるポスト電極17を第1の半導体チップ12A及び第2の半導体チップ12Bにハンダを介して当接させるとともに、パターン用導電接続部材となるポスト電極17bを絶縁基板11Aの導体パターン14aにハンダを介して当接させる。この状態でリフロー処理することにより、プリント基板16のポスト電極17とポスト電極17bとが第1の半導体チップ12A及び第2の半導体チップ12Bと導電パターン14とに電気的且つ機械的に接合される。
 これと同時に、プリント基板16の主回路配線パターン16aが絶縁基板11Aの端子接続パターン14d及び14eにパターン用棒状導電接続部材としてのポスト電極17aを介して電気的に接合される。また、プリント基板16の端子接続パターン16g及び16lが絶縁基板11Aの端子接続パターン14l及び14mに同様にポスト電極17aを介して電気的に接続される。さらに、プリント基板16の端子接続パターン16v及び16wが絶縁基板11Aの端子接続パターン14k及び14mに同様にポスト電極17aを介して電気的に接合される。
 このように主回路構成部品13A及び13Bとプリント基板16とを接合した後に、図9に示すように、導電端子ピン18~20、21a,21b、22a,22bの内側を支持する固定金型30に固定し、この固定金型30の前後端部にスライド金型31及び32を接触させた状態で、例えば固定金型30の左端側から例えば熱硬化性樹脂のエポキシ樹脂材料を注入することによって図9に矢印で示す樹脂流れ方向に樹脂が流れてモールド成型される。このとき、樹脂流れ方向に沿って各導電端子ピン18~20、21a,21b、22a,22bが配置されているので、樹脂流れを阻害することがなく、円滑なボイドの発生を防いで接着性を向上させることができる。
 このようにモールド成型することにより、パワー半導体モジュール2の外形は、全体として図1に示すように平面視で矩形形状をなす直方体状のモールド成型体(封止樹脂材)24として形成されている。
 そして、モールド成型体24には、その長手方向の両端部側に、図1に示すように、絶縁用壁部25A、25Bが形成されている。これら絶縁用壁部25A、25Bは、モールド成型体24の長手方向端面より内方側に形成されて表面から突出する比較的大径の半円筒突出部25aとこの半円筒突出部25aの両端面から接線方向にモールド成型体24の端面に延長する側壁部25bとからなるU字状突出部25cと、このU字状突出部25cの内周面に連接してモールド成型体24の約半分の厚みまで掘り込まれて端面側を開放した凹部26とで形成されている。
 これら絶縁用壁部25A、25Bを構成する凹部26の底部に、例えば半円筒突出部25aの中心軸を中心とする取付孔27がモールド成型体24の底面に貫通して形成されている。ここで、絶縁用壁部25A、25Bの半円筒突出部25aの内径は、取付孔27に挿通される取付ボルト、取付ねじ等の固定具の頭部より大きな径に設定され、且つ隣接する導電端子ピン18、22a,22bと固定具の頭部との間に必要とする沿面距離を十分確保可能な壁面高さに設定されている。
 そして、上記構成を有するパワー半導体モジュール2を所要数並列に配置した状態で、導電端子ピン18~20を個別に主端子バーに接続すると共に、導電端子ピン21a,21b、22a,22bをワイヤ配線やプリント配線を介して駆動回路に接続することにより、たとえばインバータ回路のU相を形成することができ、これらを3組合わせることによりU相、V相及びW相を形成することができる。
 このようにして、例えばインバータ装置を構成すると、パワー半導体モジュール2に内装された主回路構成部品13A及び13BのトランジスタQ1a~Q1d及びQ2a~Q2dは一方がオン状態であるときに他方がオフ状態となるように交互にオン・オフ制御される。
 このため、パワー半導体モジュール2では、トランジスタQ1a~Q1dがオン状態で、トランジスタQ2a~Q2dがオフ状態であるものとすると、図3において実線矢印で示すように、ドレイン端子D1となる導電端子ピン18から入力される大電流Iaが主回路構成部品13Bの導電パターン14を介してトランジスタQ1a~Q1dのドレイン電極12Adに供給される。
 トランジスタQ1a~Q1dのソース電極12Asから出力される電流はポスト電極17を介してプリント基板16の主回路配線パターン16bを通り、ポスト電極17bを介して主回路構成部品13Aの導電パターン14に供給される。
 この主回路構成部品13Aの導電パターン14に供給された電流は、導電端子ピン19を通じて例えばU相出力として誘導性負荷(inductive load)に出力される。
 このとき、主回路構成部品13AのトランジスタQ2a~Q2dはオフ状態を維持しているので、ソース端子S2には出力電流は得られず導電端子ピン20は電流遮断状態を維持する。
 以上の電流経路をトランジスタQ1a~Q1dを、トランジスタQ1aを代表として等価回路上で表すと、図7で実線図示のように、ドレイン端子D1(導電端子ピン18)から入力される電流が、トランジスタQ1aのドレインからソースを通って出力端子となるS1D2端子(導電端子ピン19)に出力される。
 この状態から主回路構成部品13BのトランジスタQ1a~Q1dがオフ状態に移行すると、図3及び図7の実線図示の電流Iaが減少するが、誘導性負荷の影響で出力端子となるS1D2端子(導電端子ピン19)の出力電流が継続することになる。この不足分が図7で点線図示のように、ソース端子S2(導電端子ピン20)から主回路構成部品13AのフリーホイールダイオードDi2aを及びDi2bを介して供給される。
 この電流経路を図3で表すと、点線図示のように、導電端子ピン20(ソース端子S2)から入力される電流は、絶縁基板11Aの導電パターン14における端子接続パターン14d及び14eからポスト電極17aを介しプリント基板16の主回路配線パターン16aに供給される。
 主回路配線パターン16aに供給された電流は、ポスト電極17を介してフリーホイールダイオードDi2a(半導体チップ12B)のアノード12Baからカソード12Bkを通って絶縁基板11Aの導電パターン14における導体パターン14aに供給される。
 この導体パターン14aに供給された電流は、導電端子ピン19(出力端子S1D2)を通じて誘導性負荷に供給される。
 このとき、トランジスタQ1aを通る電流は減少し、フリーホイールダイオードDi2aを通る電流は増加することになり、これら電流が互いに対向する絶縁基板11Aの導体パターン14a、14b及びプリント基板16の主回路配線パターン16aを通り、最終的に導電端子ピン19で一緒になって誘導性負荷に出力される。
 このため、主回路構成部品13Aの導体パターン14aでは実線図示の電流が減少して電流変化率di/dtが例えば負となり、プリント基板16の主回路配線パターン16aを通る点線図示の電流が増加して電流変化率di/dtが例えば正となる。このため、導電パターン14の自己インダクタンスL1とプリント基板16の主回路配線パターン16aの自己インダクタンスL2が直列に接続されることになり、両者の相互インダクタンスをMとすると、端子間電圧vは次式で表すことができる。
 v={L1(di/dt)+M(di/dt)}+{L2(di/dt)+M(di/dt)}
 したがって、主回路構成部品13Aの導体パターン14aの電流変化率di/dtが負であり、プリント基板16の主回路配線パターン16aの電流変化率di/dtが正であるので、相互インダクタンスMを相殺することができる。
 その後、所定のデッドタイムが経過した後に、トランジスタQ2a~Q2dがオン状態となり、トランジスタQ1a~Q1dはオフ状態を継続する。
 このように、本実施形態によると、前述したように、一方の第1の半導体チップ12A及び第2の半導体チップ12Bが実装された主回路構成部品13A及び他方の第1の半導体チップ12A及び第2の半導体チップ12Bが実装された主回路構成部品13B間の電流路が、絶縁基板11Bの導体パターン14に実装された第1の半導体チップ12A及び第2の半導体チップ12Bからポスト電極17を通じてプリント基板16に形成された主回路配線パターン16bを介して主回路配線パターン16a側の端部で複数のポスト電極17bを介して絶縁基板11Aの導電パターン14(チップ搭載パターン14c)に至るように形成されている。このため、ポスト電極17bによって絶縁基板11Aの導電パターン14とプリント基板16との電気的接続を行うことができ、配線距離を短くするとともに、電流路の断面積を大きくすることができ、配線インダクタンスを低減することができる。
 しかも、主回路構成部品13Aの導電パターン14とプリント基板16の主回路配線パターン16aとを流れる電流の電流変化率(di/dt)の符号が一方を正、他方を負とするように逆符号とすることにより、主回路構成部品13Aの導電パターン14とプリント基板16の主回路配線パターン16aの相互インダクタンスMを減少させることができ、高速なスイッチング動作を確保することができる。
 さらに、主回路構成部品13A及び13Bの絶縁基板11A及び11Bに形成する導電パターン14の厚みを0.5mm以上1.5mm以下の銅パターンとして外部接続端子となる導電端子ピン18~20、21a,21b、22a,22bを圧入によって保持するようにしている。導電パターン14の厚みを0.5mm以上とすることにより、導電端子ピン18~20、21a,21b、22a,22bがそれぞれ嵌合穴14o、14f、14g、14p、14qに確実に保持され、導電端子ピン18等の装着を容易に行うことができる。このとき、導電パターン14の導電端子ピン18~20、21a,21b、22a,22bを圧入する嵌合孔の内周面にリフロー処理によって溶解するメッキ層を形成しておくことにより、導電端子ピン18等の保持をさらに確実に行うことができ、この分信頼性も向上する。
 なお、導電端子ピン18~20、21a,21b、22a,22bの直径は好ましくは0.5mm以上1.5mm以下の範囲であり、例えば約1.0mmである。0.5mm未満だとインダクタンスが増え、1.5mmより大きいとピンと他の部材とのはんだ付けが難しくなる。また、嵌合穴14o、14f、14g、14p、14qの深さは、導電パターン14の厚みが上限であり、好ましくは導電端子ピン18等の直径の0.5~1.5倍の範囲である。この範囲であれば、導電パターン14に形成した嵌合穴14o等への導電端子ピン18等の装着作業が容易である。
 また、導電パターン14の厚みを1.5mm以下に制限している。この理由は、導電パターン14の厚みが1.5mmを超えて厚くなると、サイドエッチにより導電パターン14を形成するためのエッチングを良好に行うことができなくなり、正確なパターン形状の形成が困難となる。
 また、絶縁基板11A及び11Bの裏面側に形成した放熱用伝熱パターン15の厚みは、導電パターン14の厚みと等しくするのが、熱膨張による絶縁基板11A及び11Bの曲がりを防止する上で好ましく、この放熱用伝熱パターン15の厚みを0.5mmより薄くすると、冷却性能の点で好ましくなく、また前述したように、樹脂封止材で全体を封止したときに、基板13の下側に回り込む樹脂封止材の厚みが薄くなり、樹脂封止材に割れが生じ易くなって好ましくない。
 しかも、主回路構成部品13A及び13Bの絶縁基板11A(又は11B)に形成した導電パターン14を第1の半導体チップ12A及び第2の半導体チップ12Bを搭載するチップ搭載パターン14c(又は14j)を幅広部14a(又は14h)と幅狭部14b(又は14i)とで凸状に形成し、幅狭部14b(又は14i)を挟む両外側に独立して端子接続パターン14d及び14e(又は14k,14l、14m,14n)を形成している。このため、基板13を小型化することができ、この分パワー半導体モジュール2自体も小型化することができる。
 さらに、上記実施形態のように主回路構成部品13A及び13Bで絶縁基板11A及び11Bを個別に設け、各絶縁基板11A及び11Bに導電パターン14及び放熱用伝熱パターン15を形成するので、第1の半導体チップ12Aで生じる発熱による温度上昇と線膨張係数差による内部応力抑制することができ、パワー半導体モジュール2の信頼性をより向上させることができる。
 さらにまた、主回路構成部品13A及び13Bの基板13の両面に形成する導電パターン14と放熱用伝熱パターン15とのパターン数を導電パターン14より少なくして、放熱用伝熱パターン15を基板13の略全面に配置することができる。このため、放熱面積を増加させて放熱効果をより向上させることができる。この場合、凸状の導電パターン14の幅狭部14b及び14iは、電流の経路としてだけではなく、伝熱にも寄与する。これは、一般的にセラミックス等の絶縁物より銅パターンの方が、圧倒的に熱伝導が良いためで、熱は半導体チップ直下に伝わるだけでなく、幅狭部14b及び14iまで広がって冷却面側の放熱用伝熱パターン15に伝わり、さらに冷却面全体に広がるためである。
 また、主回路構成部品13A及び13Bで第1の半導体チップ12Aのゲート電極を第2の半導体チップ12B側とは反対側に形成しているので、ゲート用配線パターン16c及び16dの経路を主回路配線パターン16a及び16bを横切ることなく配置することが可能となり、配線レイアウトを容易に行うができる。
 さらに、外部接続端子となる導電端子ピン18~20、21a,21b、22a,22bがパワー半導体モジュール2の長手方向の側縁に沿って略直線状に2列に配列したので、図9で前述したように、モールド成型のための金型を1つの固定金型30と2つのスライド金型31及び32とで構成することができる。したがって、金型の製造が容易となると共に、樹脂封止材の流れを妨げることがなく、歩留りのよい良好なモールド成型を行うことができる。
 ちなみに、特許文献5に記載されているように、パワー半導体モジュールの長手方向の端面側にゲート端子、エミッタ補助端子を設ける場合には、モールド成型のための金型が図10に示すように、1つの固定金型30に対して3方からスライドする3つのスライド金型31、32及び33を設ける必要がある。このため、金型の製作コストが上昇すると共に、樹脂封止材の流れをスライド金型33が妨げることになり、樹脂流れ方向を阻害するようにゲート端子およびエミッタ補助端子が配置されるので、樹脂封止材が行き渡らない部分が生じたり、ボイドが発生したりするなど、歩留りが悪化する要因となる。
 なお、上記実施形態においては、主回路構成部品13A及び13B毎に絶縁基板11A及び11Bを設けた場合について説明したが、これに限定されるものではなく、絶縁基板を構成する部材と封止材の線膨張係数差が問題にならない場合などでは、図11(a)~(c)に示すように、一枚の基板13に主回路構成部品13A及び13B用の導電パターン14を形成すると共に、共通の放熱用伝熱パターン15を形成するようにしてもよい。
 また、上記実施形態においては絶縁基板11A,11B及び11は、上記構成に限定されるものではなく、セラミックスと銅をロウ付けし、エッチングによって銅をパターニングした所謂AMB(Active Metal Brazing)基板、セラミックス基板と銅とを直接接合したDCB(Direct Copper Bonding)基板を適用することができる。また、セラミックス基板材料としては、アルミナ(Al)、窒化アルミニウム(AlN)、窒化珪素(Si)等を適用することができる。さらに、セラミックス基板に代えて樹脂基板を適用することもできる。要は絶縁性を確保できる基板であればよい。
 また、上記実施形態においては、プリント基板16と絶縁基板11A,11Bの導電パターン14及び半導体チップ12A,12Bとの間を円柱状のポスト電極17,17a,17bで接続する場合について説明したが、これに限定されるものではなく、四角柱、三角柱、多角柱、楕円柱等の任意の形状のポスト電極を適用することができ、要はインダクタンスの減少に寄与する棒状導電接続部材であれば良い。
 また、上記実施形態においては、全ての端子を絶縁基板上に取り付けたが、これに限定されるものではなく、ゲートやソース補助端子など大電流が流れない端子は、冷却の必要が無いので、プリント板に直接取り付けても良い。この場合、絶縁基板11を図12(a)~(c)に示すように、2つの凸状のチップ搭載パターン41及び42を幅狭部41a及び42aが互いに対向するように配置し、両者の幅狭部41aを挟んで両外側に端子接続パターン43a及び43bを独立して形成するようにすればよい。この場合、上記実施形態に比べて、絶縁基板とプリント基板の2箇所に端子を立てることによる組み立て性の低下や、樹脂成型時にプリント基板に立つ端子が不安定になるなどの課題が出てくるものの、チップ搭載パターンの面積が増加し、冷却性能が向上するという効果がある。
 また、上記実施形態では、チップ搭載パターンとして幅狭部と幅広部とを一つずつ形成する場合について説明したが、これに限定されるものではなく、図13に示すように、中央部の幅広部51aを挟む両側に幅狭部51b及び51cを形成するようにしてもよい。さらには、図14に示すように、中央部の幅狭部52aを挟む両側に幅広部52b及び52cを形成するようにしてもよい。
 また、上記実施形態では、第1の半導体チップ12AにパワーMOSFETを内蔵する場合について説明したが、これに限定されるものではなく、第1の半導体チップ12AにIGBTを内蔵するようにしてもよく、他の電圧制御型半導体素子を内蔵するようにしてもよい。また、第1の半導体チップ12Aと第2の半導体チップ12Bの組合せに代えて、FWDを内蔵した逆導通IGBT(RC-IGBT)を第1の半導体チップ12Aとして用いてもよい。
 また、上記実施形態においては、絶縁基板11A及び11Bに第1の半導体チップ12A及び第2の半導体チップ12Bを複数配置する場合について説明したが、これに限定されるものではなく、トランジスタ内蔵ダイオードを使用できる場合や、動機整流方式を採用する場合などは、第2の半導体チップ12Bを省略して第1の半導体チップ12Aのみで構成することもできる。
 また、外部接続端子としては、導電端子ピン18~20、21a,21b、22a,22bに代えてリードフレームや他の端子を適用することができる。また、端子の突出方向としてはパワー半導体モジュール2の上面に限定されるものではなく、側面から突出させて上方に折り曲げるようにしてもよい。
 また、本発明は、半導体モジュールの端子接続の組み合わせだけで所望する回路構成が得られることから、本発明は上述した電力変換用インバータ装置に限定されるものではなく、パワー半導体モジュールを使用する他の電力変換装置や高周波用途のスイッチングIC等の他の半導体装置に本発明を適用することができる。
 1…半導体装置、2…パワー半導体モジュール、11A,11B…絶縁基板、12A…第1の半導体チップ、12B…第2の半導体チップ、13A,13B…主回路構成部品路、14…導電パターン、14a,14h…幅広部、14b,14i…幅狭部、14c,14j…チップ搭載パターン、14c,14e,14k,14l,14m,14n…端子接続パターン、15…放熱用伝熱パターン、16…プリント基板、18~20、21a,21b、22a,22b…導電端子ピン、24…モールド成型体、30…固定金型、31,32…スライド金型

Claims (15)

  1.  一ないし複数のパワー半導体チップがそれぞれ実装された複数の導電パターン部材と、
     前記パワー半導体チップに接続するチップ用棒状導電接続部材及び前記導電パターン部材に接続するパターン用棒状導電接続部材を配置したプリント基板とを備え、
     前記導電パターン部材は幅狭部と幅広部とで形成され、
     少なくとも1つの導電パターン部材の幅狭部と前記プリント基板とを前記パターン用棒状導電接続部材で接続し、
     前記導電パターン部材と前記プリント基板に前記チップ用棒状導電接続部材を介して接続されている前記パワー半導体チップとの間の電流路を形成した
     ことを特徴とする半導体装置。
  2.  前記導電パターン部材に流れる電流の変化率と当該導電パターン部材に対向する前記プリント基板に流れる電流の変化率との符号が正負逆符号となるように前記プリント基板の配線パターンを配置したことを特徴とする請求項1に記載の半導体装置。
  3.  前記幅狭部の外側に形成され、外部接続端子を接続する端子接続パターン部材をさらに有することを特徴とする請求項1又は2に記載の半導体装置。
  4.  前記導電パターン部材は、厚みが0.5mm以上1.5mm以下の銅パターンで構成されていることを特徴とする請求項1から3のいずれか1項記載の半導体装置。
  5.  前記端子接続パターン部材は、厚みが前記外部接続端子を保持可能な0.5mm以上の銅パターンで構成されていることを特徴とする請求項3記載の半導体装置。
  6.  前記複数の導電パターン部材は個別の絶縁基板上に配置されていることを特徴とする請求項1から5のいずれか1項に記載の半導体装置。
  7.  前記複数の導電パターン部材は同一絶縁基板上に配置されていることを特徴とする請求項1から5の何れか1項に記載の半導体装置。
  8.  前記絶縁基板は、前記導電パターン部材が形成された面とは反対側に放熱用伝熱パターン部材が形成され、当該放熱用伝熱パターン部材の数が前記導電パターン部材の数と同じ、または少なく設定されていることを特徴とする請求項1から7のいずれか1項に記載の半導体装置。
  9.  前記プリント基板は、表裏両面に主回路配線パターンを形成し、両主回路配線パターンを同電位としたことを特徴とする請求項1から8のいずれか1項に記載の半導体装置。
  10.  前記導電パターン部材と前記プリント基板とを内部に封入する封止部材を備え、前記の外部接続端子が前記封止部材から同一方向に突出し且つ封止部材の長手方向に整列配置されていることを特徴とする請求項1から9のいずれか1項に記載の半導体装置。
  11.  前記パワー半導体チップがゲート電極と電流検出用の補助電極とを有する電圧制御形半導体素子で構成され、
     前記プリント基板に形成された配線パターンのうち、前記ゲート電極に接続される配線パターンが前記プリント基板の一方の面に形成され、前記電流検出用の補助電極に接続される配線パターンは、前記プリント基板の他方の面であって前記ゲート電極に接続される配線パターンと対向する位置に形成されていることを特徴とする請求項1から10のいずれか1項に記載の半導体装置。
  12.  前記パワー半導体チップが主電極を有する電圧制御形半導体素子で構成され、
     前記プリント基板は、表裏両面に前記主電極に接続される配線パターンを形成し、両配線パターンを同電位としたことを特徴とする請求項1から8のいずれか1項に記載の半導体装置。
  13.  前記パワー半導体チップがゲート電極を有する電圧制御形半導体素子で構成され、
     前記パワー半導体チップは前記ゲート電極が前記絶縁基板を複数配置した際の長手方向に沿う前記絶縁基板の外周側に位置するように配置されていることを特徴とする請求項1から10のいずれか1項に記載の半導体装置。
  14.  一ないし複数のパワー半導体チップがそれぞれ実装された複数の導電パターン部材と、
     該導電パターン部材との対向面に前記パワー半導体チップに接続するチップ用棒状導電接続部材及び前記導電パターン部材に接続するパターン用棒状導電接続部材を配置したプリント基板とを備え、
     前記導電パターン部材に流れる電流の変化率と当該導電パターン部材に対向する前記プリント基板に流れる電流の変化率との符号が正負逆符号となるように前記プリント基板の配線パターンを配置したことを特徴とする半導体装置。
  15.  パワー半導体チップがそれぞれ実装された第1導電パターン部材及び第2導電パターン部材と、
     前記パワー半導体チップに接続するチップ用棒状導電接続部材及び前記第1導電パターン部材に接続するパターン用棒状導電接続部材が、前記第1導電パターン部材及び第2導電パターン部材との対向面に配置されたプリント基板とを備え、
     前記第1導電パターン部材は幅狭部と幅広部とで形成され、
     前記第1導電パターン部材の幅狭部と前記プリント基板とが前記パターン用棒状導電接続部材で接続され、
     前記第1導電パターン部材と前記プリント基板に前記チップ用棒状導電接続部材を介して接続されている前記第2導電パターン部材に実装された前記パワー半導体チップとの間に電流路が形成されている
     ことを特徴とする半導体装置。
PCT/JP2013/005791 2012-10-15 2013-09-27 半導体装置 WO2014061211A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380053621.XA CN104919589B (zh) 2012-10-15 2013-09-27 半导体装置
EP13846815.2A EP2908338A4 (en) 2012-10-15 2013-09-27 SEMICONDUCTOR COMPONENT
JP2014541919A JP6075380B2 (ja) 2012-10-15 2013-09-27 半導体装置
US14/685,747 US10070528B2 (en) 2012-10-15 2015-04-14 Semiconductor device wiring pattern and connections

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012228370 2012-10-15
JP2012-228370 2012-10-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/685,747 Continuation US10070528B2 (en) 2012-10-15 2015-04-14 Semiconductor device wiring pattern and connections

Publications (1)

Publication Number Publication Date
WO2014061211A1 true WO2014061211A1 (ja) 2014-04-24

Family

ID=50487791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005791 WO2014061211A1 (ja) 2012-10-15 2013-09-27 半導体装置

Country Status (5)

Country Link
US (1) US10070528B2 (ja)
EP (1) EP2908338A4 (ja)
JP (1) JP6075380B2 (ja)
CN (1) CN104919589B (ja)
WO (1) WO2014061211A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017105A (ja) * 2015-06-29 2017-01-19 株式会社デンソー 半導体装置
US9622351B2 (en) 2015-04-01 2017-04-11 Fuji Electric Co., Ltd. Semiconductor module
JP2017147295A (ja) * 2016-02-16 2017-08-24 富士電機株式会社 半導体モジュールの製造方法及び半導体モジュール
JP2018107226A (ja) * 2016-12-26 2018-07-05 新電元工業株式会社 電子装置及び電子装置の製造方法
US10187973B2 (en) 2014-04-14 2019-01-22 Fuji Electric Co., Ltd. Semiconductor device
WO2019171804A1 (ja) * 2018-03-07 2019-09-12 富士電機株式会社 半導体装置
US10529642B2 (en) 2017-11-16 2020-01-07 Fuji Electric Co., Ltd. Power semiconductor device
US10530354B2 (en) 2016-05-19 2020-01-07 Fuji Electric Co., Ltd. Insulated gate semiconductor device and method for manufacturing insulated gate semiconductor device
JP2020009834A (ja) * 2018-07-04 2020-01-16 富士電機株式会社 半導体装置
JP2020155557A (ja) * 2019-03-19 2020-09-24 富士電機株式会社 半導体ユニット、半導体モジュール及び半導体装置
JP2020161719A (ja) * 2019-03-27 2020-10-01 福島SiC応用技研株式会社 パワー基板とそれを備えた高電圧モジュール
US10903130B2 (en) 2016-10-20 2021-01-26 Fuji Electric Co., Ltd. Semiconductor apparatus and manufacturing method of semiconductor apparatus
US10923414B2 (en) 2018-03-16 2021-02-16 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US10966322B2 (en) 2018-02-14 2021-03-30 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
DE102020214734A1 (de) 2020-01-23 2021-07-29 Fuji Electric Co., Ltd. Halbleitervorrichtung
US11127714B2 (en) 2019-07-19 2021-09-21 Fuji Electric Co., Ltd. Printed board and semiconductor device
US11251163B2 (en) 2019-12-18 2022-02-15 Fuji Electric Co., Ltd. Semiconductor device having circuit board interposed between two conductor layers
WO2022075003A1 (ja) * 2020-10-06 2022-04-14 ローム株式会社 半導体装置
US11450623B2 (en) 2020-07-17 2022-09-20 Fuji Electric Co., Ltd. Semiconductor device
US11521925B2 (en) 2019-10-28 2022-12-06 Fuji Electric Co., Ltd. Semiconductor module
US11552021B2 (en) 2019-11-19 2023-01-10 Fuji Electric Co., Ltd. Semiconductor device, semiconductor manufacturing apparatus and method of manufacturing semiconductor device having printed circuit board and insulating board with complementary warps
US11605582B2 (en) 2020-09-08 2023-03-14 Fuji Electric Co., Ltd. Semiconductor device
US11658231B2 (en) 2019-12-17 2023-05-23 Fuji Electric Co., Ltd. Semiconductor device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185050A1 (ja) * 2013-05-16 2014-11-20 富士電機株式会社 半導体装置
JP6358129B2 (ja) * 2015-02-26 2018-07-18 株式会社デンソー 電力変換装置
JP6682824B2 (ja) * 2015-11-25 2020-04-15 富士電機株式会社 半導体装置
DE112015007166T5 (de) * 2015-12-04 2018-08-09 Mitsubishi Electric Corporation Leistungshalbleitervorrichtung
US10461062B2 (en) 2016-02-03 2019-10-29 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
CN108701687B (zh) * 2016-02-03 2021-07-09 新电元工业株式会社 半导体装置以及半导体装置的制造方法
JP6011736B1 (ja) * 2016-03-14 2016-10-19 富士電機株式会社 昇圧チョッパ回路
JP6011737B1 (ja) * 2016-03-14 2016-10-19 富士電機株式会社 降圧チョッパ回路
JP2018098369A (ja) * 2016-12-14 2018-06-21 株式会社オートネットワーク技術研究所 回路構成体
JP6936022B2 (ja) * 2017-03-07 2021-09-15 ローム株式会社 プリント配線基板及びこれを用いたスイッチング電源
JP7006024B2 (ja) * 2017-08-30 2022-01-24 富士電機株式会社 半導体装置及びその製造方法
DE112019000112T5 (de) * 2018-04-18 2020-05-14 Fuji Electric Co., Ltd. Halbleitervorrichtung
USD883241S1 (en) * 2018-06-04 2020-05-05 Semikron Elektronik Gmbh & Co. Kg Power module
JP7218126B2 (ja) * 2018-08-30 2023-02-06 キヤノン株式会社 配線板を備えるユニット、モジュールおよび機器
USD889423S1 (en) * 2018-12-03 2020-07-07 Semikron Elektronik Gmbh & Co. Kg Power module
EP3751605A1 (de) * 2019-06-11 2020-12-16 Siemens Aktiengesellschaft Elektronischer schaltkreis und verfahren zur herstellung eines elektronischen schaltkreises
TW202135173A (zh) * 2020-03-13 2021-09-16 力成科技股份有限公司 具局部外金屬層的半導體封裝結構及其製法
JP2022046369A (ja) * 2020-09-10 2022-03-23 富士電機株式会社 半導体装置および半導体装置の製造方法
DE212021000230U1 (de) 2020-10-05 2022-05-02 Rohm Co., Ltd. Halbleiterbauteil
KR20230172344A (ko) * 2022-06-15 2023-12-22 현대자동차주식회사 파워 모듈 및 이를 이용한 모터 구동 시스템
CN115588748B (zh) * 2022-12-07 2023-04-11 四川启睿克科技有限公司 一种电池与电路板的集成装置及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284524A (ja) * 2000-01-28 2001-10-12 Toshiba Corp 電力用半導体モジュール
JP2003230286A (ja) * 2002-01-30 2003-08-15 Toshiba Kyaria Kk 電力変換モジュール
JP2004214452A (ja) 2003-01-06 2004-07-29 Fuji Electric Device Technology Co Ltd 電力用半導体モジュールおよび外部電極との結線方法
JP2009064852A (ja) 2007-09-05 2009-03-26 Okutekku:Kk 半導体装置及び半導体装置の製造方法
JP2010118699A (ja) 2010-02-24 2010-05-27 Mitsubishi Electric Corp 電力用半導体装置
JP2010129867A (ja) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp 電力用半導体装置
JP2010165764A (ja) * 2009-01-14 2010-07-29 Fuji Electric Systems Co Ltd 半導体装置およびその製造方法
JP2011142124A (ja) 2010-01-05 2011-07-21 Fuji Electric Co Ltd 半導体装置
JP2012119618A (ja) 2010-12-03 2012-06-21 Fuji Electric Co Ltd パワー半導体モジュール
WO2012111397A1 (ja) * 2011-02-17 2012-08-23 富士電機株式会社 半導体装置の内部配線構造

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417532B2 (en) 2000-01-28 2002-07-09 Kabushiki Kaisha Toshiba Power semiconductor module for use in power conversion units with downsizing requirements
JP3723869B2 (ja) * 2001-03-30 2005-12-07 株式会社日立製作所 半導体装置
EP1376696B1 (en) * 2001-03-30 2012-01-25 Hitachi, Ltd. Semiconductor device
DE102005039278A1 (de) * 2005-08-19 2007-02-22 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitermodul mit Leitungselement
US8227908B2 (en) * 2008-07-07 2012-07-24 Infineon Technologies Ag Electronic device having contact elements with a specified cross section and manufacturing thereof
JP4576448B2 (ja) * 2008-07-18 2010-11-10 三菱電機株式会社 電力用半導体装置
DE102009045181B4 (de) * 2009-09-30 2020-07-09 Infineon Technologies Ag Leistungshalbleitermodul
JP2011228419A (ja) * 2010-04-19 2011-11-10 Renesas Electronics Corp 半導体集積回路装置および半導体集積回路装置の製造方法
KR101686553B1 (ko) * 2010-07-12 2016-12-14 삼성전자 주식회사 반도체 패키지 및 패키지 온 패키지
JP5691475B2 (ja) * 2010-12-15 2015-04-01 富士電機株式会社 半導体装置およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284524A (ja) * 2000-01-28 2001-10-12 Toshiba Corp 電力用半導体モジュール
JP2003230286A (ja) * 2002-01-30 2003-08-15 Toshiba Kyaria Kk 電力変換モジュール
JP2004214452A (ja) 2003-01-06 2004-07-29 Fuji Electric Device Technology Co Ltd 電力用半導体モジュールおよび外部電極との結線方法
JP2009064852A (ja) 2007-09-05 2009-03-26 Okutekku:Kk 半導体装置及び半導体装置の製造方法
JP2010129867A (ja) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp 電力用半導体装置
JP2010165764A (ja) * 2009-01-14 2010-07-29 Fuji Electric Systems Co Ltd 半導体装置およびその製造方法
JP2011142124A (ja) 2010-01-05 2011-07-21 Fuji Electric Co Ltd 半導体装置
JP2010118699A (ja) 2010-02-24 2010-05-27 Mitsubishi Electric Corp 電力用半導体装置
JP2012119618A (ja) 2010-12-03 2012-06-21 Fuji Electric Co Ltd パワー半導体モジュール
WO2012111397A1 (ja) * 2011-02-17 2012-08-23 富士電機株式会社 半導体装置の内部配線構造

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10187973B2 (en) 2014-04-14 2019-01-22 Fuji Electric Co., Ltd. Semiconductor device
US10398023B2 (en) 2014-04-14 2019-08-27 Fuji Electric Co., Ltd. Semiconductor device
US9622351B2 (en) 2015-04-01 2017-04-11 Fuji Electric Co., Ltd. Semiconductor module
JP2017017105A (ja) * 2015-06-29 2017-01-19 株式会社デンソー 半導体装置
JP2017147295A (ja) * 2016-02-16 2017-08-24 富士電機株式会社 半導体モジュールの製造方法及び半導体モジュール
US10530354B2 (en) 2016-05-19 2020-01-07 Fuji Electric Co., Ltd. Insulated gate semiconductor device and method for manufacturing insulated gate semiconductor device
US10903130B2 (en) 2016-10-20 2021-01-26 Fuji Electric Co., Ltd. Semiconductor apparatus and manufacturing method of semiconductor apparatus
JP2018107226A (ja) * 2016-12-26 2018-07-05 新電元工業株式会社 電子装置及び電子装置の製造方法
US10529642B2 (en) 2017-11-16 2020-01-07 Fuji Electric Co., Ltd. Power semiconductor device
US10966322B2 (en) 2018-02-14 2021-03-30 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
WO2019171804A1 (ja) * 2018-03-07 2019-09-12 富士電機株式会社 半導体装置
JPWO2019171804A1 (ja) * 2018-03-07 2020-10-01 富士電機株式会社 半導体装置
US11189608B2 (en) 2018-03-07 2021-11-30 Fuji Electric Co., Ltd. Semiconductor device
US10923414B2 (en) 2018-03-16 2021-02-16 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP7183594B2 (ja) 2018-07-04 2022-12-06 富士電機株式会社 半導体装置
JP2020009834A (ja) * 2018-07-04 2020-01-16 富士電機株式会社 半導体装置
US11101241B2 (en) 2018-07-04 2021-08-24 Fuji Electric Co., Ltd. Semiconductor device having terminals and semiconductor elements electrically connected to a respective side surface of the terminals
JP7215265B2 (ja) 2019-03-19 2023-01-31 富士電機株式会社 半導体ユニット、半導体モジュール及び半導体装置
JP2020155557A (ja) * 2019-03-19 2020-09-24 富士電機株式会社 半導体ユニット、半導体モジュール及び半導体装置
WO2020196699A1 (ja) * 2019-03-27 2020-10-01 福島SiC応用技研株式会社 パワー基板とそれを備えた高電圧モジュール
JP2020161719A (ja) * 2019-03-27 2020-10-01 福島SiC応用技研株式会社 パワー基板とそれを備えた高電圧モジュール
JP7170272B2 (ja) 2019-03-27 2022-11-14 ネクスファイ・テクノロジー株式会社 パワー基板とそれを備えた高電圧モジュール
US11127714B2 (en) 2019-07-19 2021-09-21 Fuji Electric Co., Ltd. Printed board and semiconductor device
US11521925B2 (en) 2019-10-28 2022-12-06 Fuji Electric Co., Ltd. Semiconductor module
US11552021B2 (en) 2019-11-19 2023-01-10 Fuji Electric Co., Ltd. Semiconductor device, semiconductor manufacturing apparatus and method of manufacturing semiconductor device having printed circuit board and insulating board with complementary warps
US11658231B2 (en) 2019-12-17 2023-05-23 Fuji Electric Co., Ltd. Semiconductor device
US11251163B2 (en) 2019-12-18 2022-02-15 Fuji Electric Co., Ltd. Semiconductor device having circuit board interposed between two conductor layers
DE102020214734A1 (de) 2020-01-23 2021-07-29 Fuji Electric Co., Ltd. Halbleitervorrichtung
US11191157B2 (en) 2020-01-23 2021-11-30 Fuji Electric Co., Ltd. Semiconductor device having buffer structure for external terminals
US11450623B2 (en) 2020-07-17 2022-09-20 Fuji Electric Co., Ltd. Semiconductor device
US11605582B2 (en) 2020-09-08 2023-03-14 Fuji Electric Co., Ltd. Semiconductor device
WO2022075003A1 (ja) * 2020-10-06 2022-04-14 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
JPWO2014061211A1 (ja) 2016-09-05
US10070528B2 (en) 2018-09-04
EP2908338A1 (en) 2015-08-19
US20150223339A1 (en) 2015-08-06
JP6075380B2 (ja) 2017-02-08
CN104919589A (zh) 2015-09-16
EP2908338A4 (en) 2016-07-13
CN104919589B (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
JP6075380B2 (ja) 半導体装置
JP6065995B2 (ja) 半導体装置及び半導体装置の製造方法
US9490200B2 (en) Semiconductor device
JP6202094B2 (ja) 半導体装置
US10854589B2 (en) Semiconductor device
JP5259016B2 (ja) パワー半導体モジュール
KR100566046B1 (ko) 파워 반도체장치
WO2013021647A1 (ja) 半導体モジュール、半導体モジュールを備えた半導体装置、および半導体モジュールの製造方法
JP5930070B2 (ja) 半導体装置
JP6168145B2 (ja) 半導体装置
JP2007234690A (ja) パワー半導体モジュール
JP2019207990A (ja) 半導体装置、冷却モジュール、電力変換装置及び電動車両
JP7183594B2 (ja) 半導体装置
US9478477B2 (en) Semiconductor device
JPWO2018087890A1 (ja) 半導体装置、インバータユニット及び自動車
JP2019186403A (ja) 半導体装置
CN111668165B (zh) 半导体模块和具备该半导体模块的半导体装置
JP7392308B2 (ja) 半導体装置
JP2019067950A (ja) 半導体装置の製造方法
JP7113936B1 (ja) 電力用半導体モジュール
WO2022137811A1 (ja) 半導体ユニット及び半導体装置
JP2019140364A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014541919

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013846815

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE