WO2014057700A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2014057700A1
WO2014057700A1 PCT/JP2013/062691 JP2013062691W WO2014057700A1 WO 2014057700 A1 WO2014057700 A1 WO 2014057700A1 JP 2013062691 W JP2013062691 W JP 2013062691W WO 2014057700 A1 WO2014057700 A1 WO 2014057700A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
semiconductor device
layers
concentration impurity
Prior art date
Application number
PCT/JP2013/062691
Other languages
English (en)
French (fr)
Inventor
川上 剛史
則 陳
昭人 西井
史仁 増岡
中村 勝光
古川 彰彦
裕二 村上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112013004981.3T priority Critical patent/DE112013004981T5/de
Priority to JP2014540763A priority patent/JP5784242B2/ja
Priority to US14/430,746 priority patent/US9508792B2/en
Priority to CN201380052950.2A priority patent/CN104756258B/zh
Publication of WO2014057700A1 publication Critical patent/WO2014057700A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/765Making of isolation regions between components by field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66363Thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device suitable as a power electronics semiconductor device having a breakdown voltage of a kilovolt unit or more and a manufacturing method thereof.
  • Semiconductor devices used in power electronics include diodes, metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor). Field Effect Transistor (abbreviation: MOSFET) and insulated gate bipolar transistor (Insulated BipolarTransistor; abbreviation: IGBT). These semiconductor devices are provided with a termination structure for maintaining pressure resistance.
  • MOSFET metal-oxide-semiconductor field-effect transistors
  • IGBT insulated gate bipolar transistor
  • a semiconductor device (hereinafter sometimes referred to as “vertical device”) that allows current to flow perpendicularly to the surface on one side in the thickness direction of the semiconductor substrate (hereinafter sometimes referred to as “substrate surface”), it functions as an active element.
  • a termination structure is provided so as to surround a region to be performed (hereinafter sometimes referred to as an “active region”).
  • the function of the termination structure is to maintain a high voltage generated on the substrate surface between the active region and the end of the semiconductor device. High breakdown voltage of a semiconductor device is realized for the first time by providing a termination structure.
  • the breakdown voltage of the semiconductor device includes a reverse breakdown voltage of the diode and an off breakdown voltage of the transistor. In either case, it is defined as the upper limit voltage that can interrupt the current, i.e., no current flows.
  • a depletion layer spreads inside the semiconductor substrate.
  • a high voltage can be maintained by this depletion layer.
  • avalanche breakdown occurs at the electric field concentration portion inside the semiconductor substrate. As a result, the depletion layer is broken and a short-circuit current flows.
  • PIN diode PN junction diode
  • the depletion layer is almost low-concentration N-type when turned off. Spread to the semiconductor substrate. A high voltage is maintained by this depletion layer. The breakdown voltage is limited by the electric field concentration at the end of the high concentration P-type injection layer, specifically, at the outer edge.
  • the depletion layer extends to both the low-concentration N-type semiconductor substrate and the low-concentration P-type injection layer.
  • the electric field at the end of the high-concentration P-type injection layer is relaxed and the breakdown voltage is increased.
  • This low-concentration P-type injection layer is called a RESURF (Reduced Surface Field) abbreviated as RESURF layer or a JTE (Junction Termination Extension) layer.
  • RESURF Reduced Surface Field
  • JTE Joint Termination Extension
  • a depletion layer also spreads in the RESURF layer.
  • the RESURF layer is almost completely depleted to the outermost surface at a desired voltage.
  • the condition is defined by the injection amount of the RESURF layer, for example, the dose amount or the injection surface density.
  • the optimum implantation amount of the entire RESURF layer does not depend on the impurity concentration of the semiconductor substrate and is determined by the semiconductor material constituting the semiconductor substrate.
  • the optimum implant dose is about 1 ⁇ 10 12 cm ⁇ 2 .
  • the optimum implant dose is about 1 ⁇ 10 13 cm ⁇ 2 .
  • These optimum implantation amount values are values when the activation rate of the implanted impurities is 100%. These optimum dose values are called RESURF conditions.
  • the RESURF structure has the following problems.
  • the electric field is concentrated on the outer edge portion of the RESURF layer in order to obtain a high pressure resistance.
  • the high breakdown voltage is limited by the avalanche breakdown at the outer edge of the RESURF layer. In other words, there is a limit to increasing the breakdown voltage by the RESURF structure.
  • This problem can be avoided, for example, by gradually decreasing the amount of injection of the RESURF layer toward the outside of the semiconductor substrate (see, for example, Non-Patent Document 1 and Patent Document 1).
  • a structure in which the injection amount of the RESURF layer is gradually reduced in this way the electric field concentration points are dispersed in countless places, and the maximum electric field inside the semiconductor is greatly reduced.
  • Such a structure of the RESURF layer is called a VLD (VariationariLateral Doping) structure.
  • the outer edge portion of the high concentration P-type injection layer, the boundary portion of the RESURF layer having different injection amounts, and the outermost edge portion of the RESURF layer The electric field concentrates on. Therefore, the effect of electric field relaxation by the RESURF structure disclosed in Patent Document 2 or Patent Document 3 is inferior to the case of using the VLD structure RESURF layer disclosed in Non-Patent Document 1 or Patent Document 1.
  • the maximum electric field inside the semiconductor substrate is reduced because the electric field concentration points are dispersed as compared with the RESURF layer having a single injection amount as a whole.
  • JP-A-61-84830 Japanese Patent No. 3997551 JP 2000-516767
  • the conventional RESURF structure disclosed in Non-Patent Document 1 and Patent Documents 1 to 3 is a structure in which the injection amount of the RESURF layer decreases toward the outer peripheral edge of the semiconductor substrate. It is effective for pressure resistance.
  • the conventional RESURF structure has a problem that a margin of an injection amount (hereinafter, sometimes referred to as an “optimal injection amount”) at which a high breakdown voltage is obtained is narrow. If the margin of the optimum injection amount is narrow, it is easily affected by variations in the manufacturing process, and the injection amount in the manufactured product tends to deviate from the optimum injection amount.
  • ⁇ Products with an injection volume outside the optimal injection volume have the following problems. If the injection amount is smaller than the optimum injection amount, the RESURF layer is completely depleted before reaching the desired voltage, and a significant electric field concentration occurs at the outer edge of the active region, resulting in avalanche breakdown. In addition, if the implantation amount is larger than the optimum implantation amount, the region inside the RESURF layer, that is, the region near the active region is not depleted to the outermost surface, and the region that holds the high voltage generated on the substrate surface becomes narrow, and the withstand voltage Decreases. Therefore, a product whose injection amount deviates from the optimal injection amount becomes a defective product.
  • the margin of the optimum injection amount is narrow, it is easily affected by variations in the manufacturing process, and the injection amount is likely to deviate from the optimum injection amount, so that the yield is lowered, that is, the yield rate is easily lowered.
  • An object of the present invention is to provide a semiconductor device that is not easily affected by variations in manufacturing processes and can be manufactured with a relatively high yield, and a manufacturing method thereof.
  • a semiconductor device includes a first conductive type semiconductor substrate and a second conductive type active region formed in a surface portion on one side in the thickness direction of the semiconductor substrate and separated from an outer peripheral edge of the semiconductor substrate. And an electric field relaxation layer formed in an annular shape so as to surround the active region from the outer peripheral edge of the active region toward the outer peripheral edge of the semiconductor substrate in the surface portion on one side in the thickness direction of the semiconductor substrate And the electric field relaxation layer is formed so as to surround the active region at a distance from each other, and includes a plurality of high concentration impurity layers containing impurities of a second conductivity type, and each of the high concentration impurity layers.
  • the innermost high-concentration impurity layer formed is in contact with or partially overlapping the active region, and the low-concentration impurity layer surrounding the innermost high-concentration impurity layer is the innermost high-concentration impurity layer.
  • the semiconductor substrate is characterized by becoming larger toward the outer peripheral edge of the semiconductor substrate.
  • the method for manufacturing a semiconductor device includes a first conductivity type semiconductor substrate and a second conductivity type formed on a surface portion on one side in the thickness direction of the semiconductor substrate and spaced from the outer peripheral edge of the semiconductor substrate. And an electric field relaxation layer formed in an annular shape so as to surround the active region from the outer peripheral edge portion of the active region toward the outer peripheral edge portion of the semiconductor substrate.
  • An implantation mask in which a plurality of openings surrounding a portion corresponding to the region where the active region is formed are formed on the surface portion on one side in the thickness direction of the semiconductor substrate at intervals in the radial direction.
  • the innermost high-concentration impurity layer formed on the innermost side in the radial direction of the electric field relaxation layer among the high-concentration impurity layers is in contact with the active region or partially overlapped with the innermost high-concentration layer.
  • the low-concentration impurity layer surrounding the concentration impurity layer surrounds the other high-concentration impurity layers formed outside the innermost high-concentration impurity layer in the radial direction. Wherein characterized in that it is at least one connected with the formation of the low concentration impurity layer.
  • the active region of the second conductivity type is formed in the surface portion on one side in the thickness direction of the semiconductor substrate of the first conductivity type, spaced from the outer peripheral edge of the semiconductor substrate.
  • An annular electric field relaxation layer is formed from the outer periphery of the active region toward the outer periphery of the semiconductor substrate so as to surround the active region.
  • the electric field relaxation layer includes a plurality of high-concentration impurity layers formed so as to surround the active region with a space therebetween, and a plurality of low-concentration impurity layers formed so as to surround each high-concentration impurity layer. .
  • the low concentration impurity layer has a lower concentration of the second conductivity type impurity than the high concentration impurity layer.
  • the innermost high-concentration impurity layer formed on the innermost side in the radial direction of the electric field relaxation layer is in contact with the active region or formed so as to partially overlap.
  • the low-concentration impurity layer surrounding the innermost high-concentration impurity layer is connected to at least one of the low-concentration impurity layers surrounding other high-concentration impurity layers formed on the outer side in the radial direction than the innermost high-concentration impurity layer. It is formed.
  • the interval between the high-concentration impurity layers increases from the active region toward the outer peripheral edge of the semiconductor substrate.
  • the margin of the implantation amount of the second conductivity type impurity capable of realizing a semiconductor device having a relatively high breakdown voltage can be made relatively wide. .
  • an implantation mask is formed on the surface portion on one side in the thickness direction of the semiconductor substrate in the mask formation step.
  • a plurality of openings that surround a portion corresponding to a region where the active region is formed are formed at intervals in the radial direction.
  • the second conductivity type impurity is ion-implanted into the semiconductor substrate in the ion implantation step, thereby forming a high concentration impurity layer.
  • the semiconductor substrate into which the second conductivity type impurity is ion-implanted is subjected to a heat treatment in a heat treatment process to form a low concentration impurity layer surrounding the high concentration impurity layer.
  • an electric field relaxation layer including a high concentration impurity layer and a low concentration impurity layer is formed in an annular shape so as to surround the active region from the outer peripheral edge portion of the active region toward the outer peripheral edge portion of the semiconductor substrate.
  • the innermost high-concentration impurity layer which is formed on the innermost side in the radial direction of the electric field relaxation layer among the high-concentration impurity layers, is in contact with the active region or partially overlapped.
  • the low-concentration impurity layer surrounding the innermost high-concentration impurity layer is connected to at least one of the low-concentration impurity layers surrounding other high-concentration impurity layers formed on the outer side in the radial direction than the innermost high-concentration impurity layer. It is formed. With such an electric field relaxation layer, a semiconductor device having a relatively high breakdown voltage can be realized.
  • the implantation mask is formed so that the distance between the openings in the radial direction increases from the portion corresponding to the region where the active region is formed toward the portion corresponding to the outer peripheral edge of the semiconductor substrate.
  • the low concentration impurity layer is formed by performing heat treatment after ion implantation for forming the high concentration impurity layer, it is not necessary to perform ion implantation to form the low concentration impurity layer. In addition, it is not necessary to perform a long-time heat treatment after ion implantation in order to realize a relatively high breakdown voltage. Therefore, an electric field relaxation layer that can realize a relatively high breakdown voltage as described above can be easily formed.
  • FIG. 1 is a plan view showing a configuration of a semiconductor device 1 according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along a section line II-II in FIG. It is sectional drawing which expands and shows the part of the electric field relaxation layer 13 of the semiconductor device 1 in the 1st Embodiment of this invention. It is sectional drawing which shows the state which is ion-implanting using resist mask RM1. It is sectional drawing which shows the state in the stage where formation of the electric field relaxation layer 13 was complete
  • FIG. 1 is a plan view showing the configuration of the semiconductor device 1 according to the first embodiment of the present invention.
  • a configuration of a PIN diode which is a configuration when the semiconductor device 1 is applied to a vertical diode, is shown.
  • FIG. 2 is a cross-sectional view taken along section line II-II in FIG.
  • the semiconductor device 1 includes a semiconductor substrate 11, an active region 12, an electric field relaxation layer 13, a stopper layer 14, an anode electrode 15, a cathode layer 16, and a cathode electrode 17. Is provided.
  • the semiconductor substrate 11, the stopper layer 14, and the cathode layer 16 have N-type conductivity.
  • the active region 12 and the electric field relaxation layer 13 have P-type conductivity.
  • the N type corresponds to the first conductivity type
  • the P type corresponds to the second conductivity type.
  • the semiconductor substrate 11 is an N-type semiconductor substrate.
  • the semiconductor substrate 11 contains N-type impurities at a relatively low concentration.
  • the N-type impurity having a relatively low concentration may be described as “N ⁇ ”.
  • FIG. 1 corresponds to a plan view of the semiconductor device 1 viewed from one side in the thickness direction of the semiconductor substrate 11.
  • the semiconductor substrate 11 has a rectangular shape, specifically, a square shape when viewed from one side in the thickness direction.
  • the active region 12 is formed in the surface portion on one side in the thickness direction of the semiconductor substrate 11 and separated from the outer peripheral edge portion of the semiconductor substrate 11. Specifically, the active region 12 is formed at the center of the surface portion on one side in the thickness direction of the semiconductor substrate 11.
  • the active region 12 is formed in a substantially square shape when viewed from one side in the thickness direction of the semiconductor substrate 11, specifically, a square shape constituted by arcuate curves having four corners of 90 °.
  • the active region 12 is composed of a P-type impurity layer containing P-type impurities at a relatively high concentration.
  • the electric field relaxation layer 13 is formed in the surface portion on one side in the thickness direction of the semiconductor substrate 11 from the outer peripheral edge portion of the active region 12 toward the outer peripheral edge portion of the semiconductor substrate 11.
  • the electric field relaxation layer 13 is formed in an annular shape so as to surround the active region 12 when viewed from one side in the thickness direction of the semiconductor substrate 11.
  • the radial direction of the electric field relaxation layer 13 may be simply referred to as “radial direction”
  • the circumferential direction of the electric field relaxation layer 13 may be simply referred to as “circumferential direction”.
  • the electric field relaxation layer 13 includes a plurality of P-type impurity layers 21, 22, 23, 24, and 25.
  • the plurality of P-type impurity layers 21, 22, 23, 24, 25 are each formed in an annular shape when viewed from one side in the thickness direction of the semiconductor substrate 11, and are arranged side by side in the radial direction.
  • Each P-type impurity layer 21, 22, 23, 24, 25 is configured by a substantially square ring, specifically, a curve with 90 ° arc shapes at four corners when viewed from one side in the thickness direction of the semiconductor substrate 11. It is formed in a square ring shape.
  • the stopper layer 14 is formed on the outer peripheral edge portion of the semiconductor substrate 11 in the surface portion on one side in the thickness direction of the semiconductor substrate 11 and separated from the electric field relaxation layer 13.
  • the stopper layer 14 is composed of an N-type impurity layer containing N-type impurities at a relatively high concentration.
  • the structure from the electric field relaxation layer 13 to the stopper layer 14 outside the active region 12 in the radial direction is a termination structure.
  • the termination structure includes the electric field relaxation layer 13 and the stopper layer 14.
  • the anode electrode 15 is provided on the surface portion on one side in the thickness direction of the active region 12.
  • the anode electrode 15 is formed on a part of the surface portion on one side in the thickness direction of the active region 12, specifically, at the central portion.
  • the anode electrode 15 has a substantially square shape smaller than the active region 12 when viewed from one side in the thickness direction of the semiconductor substrate 11, specifically, a square shape in which the four corners are 90 ° arc-shaped curves. .
  • the cathode layer 16 is in the surface portion of the semiconductor substrate 11 opposite to the side where the active region 12 is formed, that is, in the surface portion on the other side in the thickness direction of the semiconductor substrate 11 (hereinafter sometimes referred to as “substrate back surface”). It is formed.
  • the cathode layer 16 is formed over the entire back surface of the substrate.
  • the cathode layer 16 is composed of an N-type impurity layer containing N-type impurities at a relatively high concentration.
  • the cathode electrode 17 is provided on the surface portion on the other side in the thickness direction of the cathode layer 16.
  • the cathode electrode 17 is provided over the entire surface portion on the other side in the thickness direction of the cathode layer 16.
  • a bias voltage is applied between the anode electrode 15 in contact with the active region 12 and the cathode electrode 17 on the back surface of the substrate.
  • the diode 1 functions as a PN junction diode.
  • FIG. 3 is an enlarged cross-sectional view showing a portion of the electric field relaxation layer 13 of the semiconductor device 1 according to the first embodiment of the present invention.
  • an active region 12 containing a P-type impurity at a relatively high concentration is present in the surface portion on one side in the thickness direction of the semiconductor substrate 11 containing an N-type impurity at a relatively low concentration (N ⁇ ). Is formed.
  • the active region 12 is composed of a P base layer that is a semiconductor layer containing a P-type impurity. In the following description, the active region 12 may be referred to as “P base layer 12”.
  • a plurality of P-type impurity layers 21, 22, 23, 24, and 25 are formed so as to surround the P base layer 12 when viewed from one side in the thickness direction of the semiconductor substrate 11.
  • the plurality of P-type impurity layers 21, 22, 23, 24, 25 constitute the electric field relaxation layer 13.
  • a stopper layer 14 containing an N-type impurity at a relatively high concentration is formed on the outer peripheral edge of the semiconductor substrate 11 at a distance from the electric field relaxation layer 13.
  • the electric field relaxation layer 13 includes five P-type impurity layers 21, 22, 23, 24, and 25, specifically, a first P-type impurity layer 21 and a second P-type impurity layer 22. , A third P-type impurity layer 23, a fourth P-type impurity layer 24, and a fifth P-type impurity layer 25 are provided.
  • Each P-type impurity layer 21, 22, 23, 24, 25 includes a plurality of P-type impurity layers having different P-type impurity concentrations, specifically, two types of P-type impurity layers.
  • P-type impurity layers Of the two types of P-type impurity layers, one is a P-type implantation layer 21a, 22a, 23a, 24a, 25a containing a P-type impurity at a relatively low concentration, and the other is a P-type implantation layer.
  • P-type diffusion layers 21b, 22b, 23b, 24b, and 25b containing P-type impurities at a lower concentration than 21a, 22a, 23a, 24a, and 25a.
  • the P-type injection layers 21a, 22a, 23a, 24a, and 25a are more P than the P-type diffusion layers 21b, 22b, 23b, 24b, and 25b in comparison with the P-type diffusion layers 21b, 22b, 23b, 24b, and 25b.
  • the concentration of type impurities is high. Therefore, in the present embodiment, the P-type implantation layers 21a, 22a, 23a, 24a, and 25a correspond to high-concentration impurity layers, and the P-type diffusion layers 21b, 22b, 23b, 24b, and 25b are low-concentration impurity layers. It corresponds to.
  • the plurality of P-type injection layers that is, the first to fifth P-type injection layers 21a to 25a are formed so as to surround the active region 12 as viewed from one side in the thickness direction of the semiconductor substrate 11 with a space therebetween. Is done.
  • Each P-type injection layer 21a, 22a, 23a, 24a, 25a is surrounded by a corresponding P-type diffusion layer 21b, 22b, 23b, 24b, 25b.
  • the P-type implanted layer and the P-type diffusion layer surrounding it cannot be defined because the concentration of the P-type impurity continuously changes, but here it is easy to understand. Think separately to do. Specifically, a region formed by ion implantation of impurities is called an “implanted layer”, and a region formed by diffusing impurities by heat treatment after ion implantation is called a “diffusion layer”.
  • the first P-type impurity layer 21 includes a first P-type implantation layer 21a and a first P-type diffusion layer 21b surrounding the first P-type implantation layer 21a.
  • the second P-type impurity layer 22 includes a second P-type implantation layer 22a and a second P-type diffusion layer 22b surrounding the second P-type implantation layer 22a.
  • the third P-type impurity layer 23 includes a third P-type implantation layer 23a and a third P-type diffusion layer 23b surrounding the third P-type implantation layer 23a.
  • the fourth P-type impurity layer 24 includes a fourth P-type implantation layer 24a and a fourth P-type diffusion layer 24b surrounding the fourth P-type implantation layer 24a.
  • the fifth P-type impurity layer 25 includes a fifth P-type implantation layer 25a and a fifth P-type diffusion layer 25b surrounding the fifth P-type implantation layer 25a.
  • the first P-type injection layer 21a formed on the innermost side in the radial direction of the electric field relaxation layer 13 is in contact with the P base layer 12 constituting the active region or a part thereof. Overlapping is formed.
  • the first P-type injection layer 21 a is formed in contact with the P base layer 12.
  • the first P-type implantation layer 21a corresponds to the innermost high concentration impurity layer.
  • the P base layer 12 is formed from the substrate surface to a position deeper than the electric field relaxation layer 13. Similar to the P-type impurity layers 21, 22, 23, 24, and 25 constituting the electric field relaxation layer 13, the P base layer 12 actually corresponds to a portion corresponding to the P-type injection layer and a P-type diffusion layer. However, in order to facilitate understanding, it is treated here as being composed of a single layer.
  • the first P-type injection layer 21a is formed in contact with the P base layer 12 or partially overlapping.
  • a first P-type injection layer 21 a is formed on the outside of the P base layer 12 in contact with the P base layer 12 in the radial direction.
  • a second P-type injection layer 22a is formed outside the first P-type injection layer 21a with a space from the first P-type injection layer 21a.
  • a third P-type injection layer 23a is formed at a distance from the second P-type injection layer 22a.
  • a fourth P-type injection layer 24a is formed at a distance from the third P-type injection layer 23a.
  • a fifth P-type injection layer 25a is formed outside the fourth P-type injection layer 24a at a distance from the fourth P-type injection layer 24a.
  • the first to fifth P-type injection layers 21a, 22a, 23a, 24a, and 25a are surrounded by the corresponding first to fifth P-type diffusion layers 21b, 22b, 23b, 24b, and 25b, respectively.
  • the electric field relaxation layer 13 includes first to fifth P-type injection layers 21a, 22a, 23a, 24a, and 25a and first to fifth P-type diffusion layers 21b, 22b, 23b, 24b, and 25b. Composed.
  • the fifth P-type diffusion layer 25b surrounding the fifth P-type injection layer 25a formed on the outermost side in the radial direction of the electric field relaxation layer 13 is formed in the radial direction.
  • the P-type diffusion layer surrounding the other P-type injection layer formed on the inner side of the fifth P-type injection layer 25a is spaced from the P-type diffusion layer. That is, at least the fifth P-type diffusion layer 25b is formed at a distance from the fourth P-type diffusion layer 24b surrounding the fourth P-type injection layer 24a on the inner side.
  • the fifth P-type implantation layer 25a corresponds to the outermost high concentration impurity layer.
  • the length in the radial direction of the first P-type injection layer 21a (hereinafter referred to as “width”) is w1
  • the width of the second P-type injection layer 22a is w2
  • the third P-type injection layer is formed.
  • the width of 23a is w3
  • the width of the fourth P-type injection layer 24a is w4
  • the width of the fifth P-type injection layer 25a is w5.
  • a region between adjacent P-type injection layers in the radial direction is referred to as an “interlayer region”.
  • a region between the first P-type injection layer 21a and the second P-type injection layer 22a is referred to as a “second interlayer region”, which is the length dimension in the radial direction of the second interlayer region.
  • the width is s2.
  • a region between the second P-type injection layer 22a and the third P-type injection layer 23a is referred to as a “third interlayer region”, and the width of the third interlayer region is s3.
  • a region between the third P-type injection layer 23a and the fourth P-type injection layer 24a is referred to as a “fourth interlayer region”, and the width of the fourth interlayer region is s4.
  • a region between the fourth P-type implantation layer 24a and the fifth P-type implantation layer 25a is referred to as a “fifth interlayer region”, and the width of the fifth interlayer region is s5.
  • each P-type injection layer 22a, 23a, 24a, 25a and the inner interlayer region are collectively referred to as “set”.
  • the second P-type injection layer 22a and the inner second interlayer region are collectively referred to as a “second set”.
  • the third P-type injection layer 23a and the inner third interlayer region are collectively referred to as a “third set”.
  • the fourth P-type injection layer 24a and the fourth interlayer region inside thereof are collectively referred to as a “fourth set”.
  • the fifth P-type implantation layer 25a and the inner fifth interlayer region are collectively referred to as a “fifth set”.
  • set width The width that is the length dimension of the set in the radial direction is called “set width” and is represented by L. Specifically, the width of the second set is called “second set width”, the width of the third set is called “third set width”, and the width of the fourth set is called “fourth set width”. The width of the fifth set is referred to as “fifth set width”.
  • the set width L is the sum of the width w of the P-type injection layer constituting the set and the width s of the inner interlayer region.
  • the distance between adjacent P-type implantation layers in the radial direction that is, the widths s2, s3, s4, and s5 of the interlayer region is from the inner side to the outer side in the radial direction, that is, from the active region 12 to the outer peripheral edge of the semiconductor substrate 11. It gets bigger as you go to the club. That is, s2 ⁇ s3 ⁇ s4 ⁇ s5.
  • the intervals s2, s3, s4, and s5 between the P-type injection layers adjacent in the radial direction are linearly set from the inner side to the outer side in the radial direction.
  • the widths w2, w3, w4, and w5 of the P-type injection layers 22a, 23a, 24a, and 25a other than the first P-type injection layer 21a are linearly and specifically specified as going from the inner side to the outer side in the radial direction. Decreases in an arithmetic progression.
  • the width w1 of the first P-type injection layer 21a is an independent parameter.
  • the width w1 of the first P-type injection layer 21a may be approximately the same as the set width, for example.
  • the other end in the thickness direction of the P base layer 12 at the time of switching hereinafter referred to as “bottom end”.
  • each P-type diffusion layer 21b, 22b, 23b, 24b, 25b spreads to the extent that the first P-type diffusion layer 21b and the second P-type diffusion layer 22b are in contact with each other or overlap each other (hereinafter referred to as the P-type diffusion layers 21b, 22b, 23b, 24b, 25b). (Sometimes referred to as “diffusion length”).
  • the first P-type diffusion layer 21b and the second P-type diffusion layer 22b are formed in contact with each other.
  • the diffusion length of the P-type diffusion layer is too large, the effect of the present invention is diminished, and therefore the diffusion length of the P-type diffusion layer is appropriately selected.
  • the manufacturing method of the semiconductor device 1 of the present embodiment includes a step of forming the P base layer 12 (hereinafter sometimes referred to as “base layer forming step”) and a step of forming the electric field relaxation layer 13 (hereinafter referred to as “electric field relaxation layer”). Forming process ”).
  • the electric field relaxation layer forming step includes a mask forming step, an ion implantation step, and a heat treatment step.
  • FIG. 4 is a cross-sectional view showing a state where ion implantation is performed using the resist mask RM1.
  • FIG. 5 is a cross-sectional view showing a state in which the formation of the electric field relaxation layer 13 has been completed.
  • a relatively high concentration is formed on a portion of the surface portion on one side in the thickness direction of the semiconductor substrate 11 containing N-type impurities at a relatively low concentration (N ⁇ ).
  • a P base layer 12 containing P type impurities is formed.
  • a resist mask RM1 is formed on the surface portion on one side in the thickness direction of the semiconductor substrate 11.
  • the resist mask RM1 corresponds to an implantation mask that is a mask for ion implantation.
  • the resist mask RM1 has an opening corresponding to a region where the first to fifth P-type implantation layers 21a, 22a, 23a, 24a, and 25a are formed (hereinafter sometimes referred to as “formation region”). It is formed to have a pattern.
  • the resist mask RM1 is formed so that a plurality of openings surrounding a portion corresponding to a region where the P base layer 12 which is an active region is formed have a pattern formed at intervals in the radial direction. Is done.
  • the resist mask RM1 has a portion in which the distance between the openings in the radial direction corresponds to the outer peripheral edge portion of the semiconductor substrate 11 from the portion corresponding to the region where the P base layer 12 that is the active region is formed. It is formed to become larger as it goes to.
  • P-type impurities are ion-implanted into the semiconductor substrate 11 through the resist mask RM1.
  • acceptor ions for example, boron ions, which are ions of P-type impurities are implanted from above the resist mask RM1, that is, from one side in the thickness direction, with relatively low energy.
  • the first to fifth P-type injection layers 21a, 22a, 23a, 24a, and 25a are formed.
  • the semiconductor substrate 11 into which the acceptor ions have been implanted is heat treated to diffuse the implanted acceptor ions.
  • the first to fifth P-type diffusion layers 21b, 22b, 23b, 24b, and 25b are surrounded by the P-type injection layers 21a, 22a, 23a, 24a, and 25a. It is formed. Thereby, the electric field relaxation layer 13 is formed.
  • FIG. 5 shows the regions corresponding to the P-type implantation layers 21a, 22a, 23a, 24a, and 25a so as not to change before and after the heat treatment for easy understanding.
  • the surface acceptor concentration of each P-type implantation layer 21a, 22a, 23a, 24a, 25a is decreased by heat treatment, and the acceptor concentration at the implantation depth is increased.
  • the “implantation depth” corresponds to the maximum depth at which acceptor ions reach by ion implantation.
  • the boundary between the P-type implantation layer and the P-type diffusion layer cannot be defined because the acceptor concentration, which is the concentration of the P-type impurity, continuously changes.
  • a region implanted by impurity ion implantation is referred to as an “implanted layer”, and a region where impurities are diffused by heat treatment after ion implantation is referred to as a “diffusion layer”.
  • the electric field relaxation layer 13 is formed after the P base layer 12 is formed, but this order may be reversed. Further, the heat treatment for diffusing the acceptor ions may be common to the P base layer 12 and the electric field relaxation layer 13.
  • resist mask RM1 is used as a mask for ion implantation.
  • the mask for ion implantation is not limited to this.
  • an oxide film formed of an oxide film is used. It may be a mask.
  • FIG. 6 is a graph showing a planar distribution of acceptor ion implantation amounts in the semiconductor device 1 according to the first embodiment of the present invention.
  • the vertical axis indicates the amount of acceptor ions that are impurities in the electric field relaxation layer 13
  • the horizontal axis indicates the distance in the horizontal direction of the semiconductor substrate 11.
  • the horizontal direction of the semiconductor substrate 11 refers to a direction parallel to the surface on one side of the thickness direction of the semiconductor substrate 11 and is parallel to the radial direction.
  • the amount of acceptor ions, which are impurities implanted in the region where the electric field relaxation layer 13 is formed is expressed as in the graph shown in FIG.
  • acceptor ions are implanted in regions corresponding to the first to fifth P-type implantation layers 21 a, 22 a, 23 a, 24 a, 25 a with a lower implantation amount than the P base layer 12. Has been.
  • each set is a set of a region in which acceptor ions are implanted and a region adjacent to the inside of the region in which acceptor ions are not implanted.
  • This step-like injection amount distribution is the same as the injection amount distribution of the RESURF layer disclosed in Patent Document 2 and Patent Document 3.
  • the injection amount distribution of the RESURF layer having the VLD structure disclosed in Non-Patent Document 1 and Patent Document 1 is obtained.
  • the region into which the acceptor ions are implanted corresponds to the second to fifth P-type implanted layers 22a, 23a, 24a, and 25a.
  • a region that is not implanted corresponds to a region between adjacent P-type implanted layers 21a, 22a, 23a, 24a, and 25a, that is, second to fifth interlayer regions.
  • the second to fifth P-type injection layers 22a, 23a, 24a, and 25a that are injection regions and the second to fifth layers that are non-injection regions adjacent to the inside thereof.
  • the widths L2 to L5 of the second to fifth sets composed of the regions are constant.
  • the P-type injection layers 21a to 25a and the P-type diffusion layers 21b to 25b have the widths s2 to s2 of the interlayer regions between the adjacent P-type injection layers 21a, 22a, 23a, 24a, and 25a.
  • the sum of s5 and the widths w2 to w5 of the P-type implantation layers 22a, 23a, 24a, and 25a that are in contact with the interlayer region on the outer side in the radial direction is formed to have a predetermined value.
  • the widths w2 to w5 of the second to fifth P-type implantation layers 22a, 23a, 24a, and 25a, which are implantation regions, are gradually decreased linearly toward the outside in the radial direction
  • the width of the interlayer region that is the implantation region, that is, the intervals s2 to s5 between the adjacent P-type implantation layers 21a, 22a, 23a, 24a, and 25a are gradually increased linearly toward the outside in the radial direction.
  • the average value of the injection amount of each of the second to fifth sets gradually decreases with linearity with respect to the horizontal distance as it goes outward in the radial direction.
  • Such a configuration of the electric field relaxation layer 13 is highly balanced, even when the number of sets is relatively small, easily achieving high voltage resistance, robustness against variations in manufacturing processes, and robustness against the operating environment of the semiconductor device. It is a good configuration.
  • robustness refers to the property of internally preventing changes due to external factors.
  • the widths L2 to L5 of the set are made constant, and the widths w2 to w5 of the P-type injection layers 22a to 25a constituting the set are gradually decreased toward the outer side in the radial direction.
  • the RESURF as disclosed in the non-patent document 1 and the patent documents 1 to 3 is simulated. Forming a layer.
  • the number of sets is set to four for ease of understanding. However, the larger the number of sets, the resurf layer formed in a pseudo manner, and Non-Patent Document 1 and Patent Documents 1 to 3 is preferable because the deviation from the RESURF layer disclosed in FIG.
  • the P-type diffusion layers 21b to 25b are formed by performing an appropriate heat treatment to reduce the concentration gradient in the PN junction, thereby relaxing the electric field concentration.
  • FIG. 7 is a graph showing a simulation result regarding the set number dependency of the breakdown voltage in the semiconductor device 1 according to the first embodiment of the present invention.
  • FIG. 8 is a graph showing a simulation result regarding the set number dependency of the electric field in the semiconductor device 1 according to the first embodiment of the present invention.
  • the vertical axis represents the breakdown voltage (V) at 300 K
  • the horizontal axis represents the number of sets included in the electric field relaxation layer 13.
  • the vertical axis represents the maximum electric field inside the semiconductor device 1 when a voltage of 4500 V is applied (hereinafter sometimes referred to as “semiconductor internal maximum electric field”) (V / cm), and the horizontal axis represents the electric field.
  • semiconductor internal maximum electric field V / cm
  • the number of sets included in the relaxation layer 13 is shown.
  • FIG. 7 shows a simulation result of breakdown voltage when the width of the electric field relaxation layer 13 in the radial direction is constant and the number of sets included in the electric field relaxation layer 13 is changed.
  • the width of the electric field relaxation layer 13 in the radial direction is made constant, the number of sets included in the electric field relaxation layer 13 is changed, and a voltage of 4500 V is applied between the anode electrode 15 and the cathode electrode 17 of the semiconductor device 1.
  • the simulation result of the semiconductor internal maximum electric field at the time of applying is shown.
  • the simulation results shown in FIGS. 7 and 8 indicate that the implantation amount of the P-type impurity in each of the P-type implantation layers 21a, 22a, 23a, 24a, and 25a constituting the electric field relaxation layer 13 is 1.8 ⁇ 10 12 cm ⁇ 2. , 2.5 ⁇ 10 12 cm ⁇ 2 , 3.5 ⁇ 10 12 cm ⁇ 2, and simulation results on the condition that heat treatment is performed so that the PN junction depth of the electric field relaxation layer 13 is 6 ⁇ m. .
  • the case where the injection amount of each of the P-type injection layers 21a to 25a of the electric field relaxation layer 13 is 1.8 ⁇ 10 12 cm ⁇ 2 is indicated by the broken line indicated by the symbol “ ⁇ ” and the reference symbol “35”.
  • the injection amount of each of the P-type injection layers 21a to 25a of the electric field relaxation layer 13 is 2.5 ⁇ 10 12 cm ⁇ 2
  • a case where the injection amount of each of the P-type injection layers 21a to 25a of the electric field relaxation layer 13 is 3.5 ⁇ 10 12 cm ⁇ 2 is indicated by a symbol “ ⁇ ” and a reference symbol “37”.
  • the innermost set injection ratio and the outermost set injection ratio in the radial direction are: It is fixed.
  • the breakdown voltage greatly exceeds the target value of room temperature of 5200 V at an appropriate injection amount.
  • the semiconductor internal maximum electric field at 4500 V can be lowered to 0.2 MV / cm, that is, 2.0 ⁇ 10 5 V / cm.
  • “room temperature” is set to 25 ° C.
  • the required number of sets increases as the target pressure resistance increases.
  • the innermost set injection ratio does not substantially depend on the breakdown voltage, but the outermost set injection ratio needs to be lowered as the target breakdown voltage increases.
  • FIG. 9 is a graph showing a simulation result regarding the injection amount dependency of the breakdown voltage in the semiconductor device 1 according to the first embodiment of the present invention.
  • the vertical axis indicates the breakdown voltage (V) at 300 K
  • the horizontal axis indicates the injection amount (cm ⁇ 2 ) in each of the P-type injection layers 21 a to 25 a of the electric field relaxation layer 13.
  • FIG. 9 shows the dependency of the breakdown voltage on the injection amount when the heat treatment time is used as a parameter.
  • the number of sets is 35.
  • the heat treatment time is expressed by the PN junction depth of the electric field relaxation layer 13 formed by the heat treatment for the heat treatment time.
  • the case where the PN junction depth of the electric field relaxation layer 13 is 2 ⁇ m is indicated by the symbol “ ⁇ ” and the alternate long and short dash line indicated by the reference numeral “41”, and the PN junction depth of the electric field relaxation layer 13 is 4 ⁇ m. Is indicated by a broken line indicated by a symbol “ ⁇ ” and a reference symbol “42”, and a case where the PN junction depth of the electric field relaxation layer 13 is 6 ⁇ m is indicated by a symbol “ ⁇ ” and a reference symbol “43”.
  • the case where the PN junction depth of the electric field relaxation layer 13 is 8 ⁇ m is indicated by the symbol “ ⁇ ” and the two-dot chain line indicated by the reference symbol “44”.
  • the breakdown voltage does not reach the target value of 5200V. This is because a relatively strong electric field concentration occurs at the outer peripheral edges of the P-type injection layers 21a to 25a.
  • the heat treatment time is excessively long, that is, the PN junction depth of the electric field relaxation layer 13 is excessively large.
  • the breakdown voltage at an optimum implantation amount of 1.5 ⁇ 10 12 cm ⁇ 2 to 2.5 ⁇ 10 12 cm ⁇ 2 is high.
  • the margin of the implantation amount for obtaining a high breakdown voltage of 5200 V, which is the target value is narrowed. This is because if the heat treatment time is excessively long, thermal diffusion proceeds too much, and the distribution of discrete acceptor ions, which is a feature of the present invention, becomes ambiguous, and is disclosed in Non-Patent Document 1 and Patent Document 1. This is because it approaches a RESURF layer having a VLD structure.
  • the optimum heat treatment is such that the PN junction depth is 6 ⁇ m, as indicated by reference numeral “43”.
  • the range of the implantation amount with which a high breakdown voltage can be obtained is 1.5 ⁇ 10 12 cm ⁇ 2 to 3.5 ⁇ 10 12 cm ⁇ 2 in terms of areal density.
  • the range of the implantation amount corresponds to 1.5 to 3.5 times the resurf condition determined by the semiconductor material constituting the semiconductor substrate 11.
  • the resurf condition is an optimum value of the injection amount of the resurf structure obtained in advance for each semiconductor material constituting the semiconductor substrate 11.
  • the sum of the surface density of the P-type impurities in the diffusion layers 21b to 25b is preferably 1.5 times or more and 3.5 times or less of the resurf condition obtained in advance for each semiconductor material constituting the semiconductor substrate 11.
  • the number of P-type injection layers 21a to 25a included in the electric field relaxation layer 13, that is, the number of sets is increased. High voltage resistance is obtained unless the electric field concentration is dispersed by the number of P-type injection layers 21a to 25a and appropriate thermal diffusion is performed to reduce the electric field concentration at the ends of the P-type injection layers 21a to 25a. I can't.
  • innermost P-type injection layer interval the width of the innermost interlayer region (hereinafter sometimes referred to as “innermost P-type injection layer interval”) s2. If the innermost P-type injection layer interval s2 is too small, electric field concentration does not occur at the bottom end portion of the P-type injection layer 21a connected to the P base layer 12, and the number of P-type injection layers is reduced by one. Will be in the same state. On the other hand, if the innermost P-type injection layer interval s2 is too large, the capacitive coupling between the P-type injection layer 21a connected to the P base layer 12 and the P-type injection layer 22a on the outer side is too small. Electric field concentration at the bottom end of the P-type injection layer 21a connected to the base layer 12 is not sufficiently relaxed. That is, there is an optimum value for the innermost P-type injection layer interval s2.
  • the optimum value of the innermost P-type injection layer interval s2 is about the same as the thermal diffusion length. Therefore, in order to realize the optimum value of the innermost P-type injection layer interval s2, at least the innermost first P-type diffusion layer 21b and the outermost second P-type diffusion layer 22b are provided. It is necessary to make contact with each other, or to make a part of the innermost first P-type diffusion layer 21b and a part of the second P-type diffusion layer 22b on the outermost side overlap each other.
  • the first P-type diffusion layer 21b surrounding the first P-type injection layer 21a which is the innermost high-concentration impurity layer is at least the first P-type injection layer in the radial direction of the electric field relaxation layer 13. It is necessary to be formed so as to be connected to the second P-type diffusion layer 22b surrounding the second P-type injection layer 22a formed on the outer side of 21a.
  • the first P-type diffusion layer 21b includes, in addition to the second P-type diffusion layer 22b, P-type diffusion layers 23b to 25b formed on the outer side in the radial direction from the second P-type diffusion layer 22b. It may be formed to be connected to at least one or a plurality of P-type diffusion layers 23b, 24b excluding the outermost P-type diffusion layer 25b.
  • the electric field relaxation layer 13 approaches the RESURF layer having the conventional VLD structure, so that the margin of the implantation amount for obtaining a high breakdown voltage is narrowed.
  • a wide margin for the implantation amount which is the effect of the semiconductor device 1, cannot be obtained.
  • at least the fifth P-type diffusion layer 25b located on the outermost side is formed at a distance from the fourth P-type diffusion layer 24b on the inner side. It is necessary to make it.
  • One or a plurality of P-type diffusion layers 23b, 24b excluding the P-type diffusion layer 22b on the outer side of the P-type diffusion layer are also formed on the inner side of the P-type diffusion layers 23b, 24b in the radial direction. It may be formed spaced from layers 22b and 23b.
  • the number of P-type diffusion layers connected from the innermost side and the number of P-type diffusion layers from the outermost side to what number are formed. It is necessary to design appropriately whether it forms at intervals.
  • FIG. 10 is a graph showing the planar distribution of the surface acceptor concentration of the semiconductor device 1 according to the first embodiment of the present invention.
  • the vertical axis represents the surface acceptor concentration (cm ⁇ 3 ), and the horizontal axis represents the horizontal distance.
  • the number of sets included in the electric field relaxation layer 13 is 35
  • the PN junction depth of the electric field relaxation layer 13 is 6 ⁇ m
  • the injection amount of each P-type injection layer 21a to 25a of the electric field relaxation layer 13 is as follows.
  • the surface acceptor concentration distribution in the case of 2.5 ⁇ 10 12 cm ⁇ 2 is shown.
  • the electric field relaxation layer 13 is spaced from each other in the portion near the active region 12.
  • the plurality of P-type implantation layers 21a and 22a formed by the above are connected by the P-type diffusion layers 21b and 22b, but it can be seen that the distribution of discrete acceptor ions, which is a feature of the present invention, is sufficiently maintained.
  • FIG. 11 is a graph showing a simulation result of the electric field distribution in the semiconductor device 1 according to the first embodiment of the present invention.
  • the vertical axis represents electric field strength (V / cm), and the horizontal axis represents horizontal distance.
  • FIG. 11 shows the electric field distribution on the substrate surface P0 and the vicinity of the PN junction depth P1 when a voltage of 4500 V is applied to the semiconductor device 1 including the electric field relaxation layer 13 having the acceptor ion distribution shown in FIG.
  • the electric field concentration occurs at the substrate surface P0 or near the PN junction depth P1, but the maximum electric fields in the P-type injection layers 21a to 25a are all about 0.2 MV / cm, that is, 2. It is about 0 ⁇ 10 5 V / cm, and it can be seen that the particles are distributed almost uniformly.
  • FIG. 12 and FIG. 13 are graphs showing simulation results relating to the implantation amount margin in the semiconductor device 1 according to the first embodiment of the present invention.
  • the vertical axis represents the withstand voltage (V) at 300 K
  • the horizontal axis represents the implantation amount error (cm ⁇ 2 ).
  • the “injection amount error” refers to a difference from the injection amount with which the maximum breakdown voltage can be obtained.
  • the vertical axis represents the withstand voltage (V) at 300K
  • the horizontal axis represents the ratio (%) of the injection amount error.
  • the “ratio of injection amount error” refers to the ratio of the absolute value of the injection amount error to the injection amount at which the maximum withstand voltage is obtained.
  • the case where the injection amount is larger than the injection amount at which the maximum breakdown voltage is obtained is indicated by positive (+), and the case where the injection amount is smaller than the injection amount at which the maximum breakdown voltage is obtained is indicated by negative ( ⁇ ). .
  • the simulation result for the semiconductor device of the present embodiment is indicated by the symbol “ ⁇ ” and the solid line indicated by the reference symbol “51”, and the simulation result for the conventional semiconductor device is denoted by the symbol “ ⁇ ”. This is indicated by a broken line indicated by reference numeral “52”.
  • the simulation result for the semiconductor device of the present embodiment is indicated by the symbol “ ⁇ ” and the solid line indicated by the reference symbol “55”, and the simulation result for the conventional semiconductor device is indicated by the symbol “ ⁇ ”. This is indicated by a broken line indicated by reference numeral “56”.
  • the semiconductor device 1 has a semiconductor device 1 having a VLD structure RESURF layer of the conventional technique with an implantation amount of 3.0 ⁇ 10 12 cm ⁇ 2 at which the maximum breakdown voltage can be obtained.
  • an injection amount of 1.4 ⁇ 10 12 cm ⁇ 2 which is an injection amount in the innermost RESURF layer in the radial direction, is used as an injection amount that can obtain the maximum breakdown voltage.
  • the semiconductor device 1 of the present embodiment is strong against manufacturing variations caused by the above-described lower limit of control of the ion implanter.
  • the margin of the injection amount is wider in the semiconductor device 1 of the present embodiment. This is because the depletion layer on the substrate surface spreads.
  • FIG. 14 is an image showing a simulation result regarding the depletion layer distribution on the substrate surface in the conventional semiconductor device.
  • FIG. 15 is an image showing a simulation result regarding the depletion layer distribution on the substrate surface in the semiconductor device 1 according to the first embodiment of the present invention.
  • 14 and 15 show the spread of the depletion layer on the substrate surface when a voltage of 4500 V is applied between the anode electrode 15 and the cathode electrode 17 of the semiconductor device 1.
  • the white portion indicated by reference numeral “60” indicates a depletion layer.
  • the depletion layer 60 maintains a high voltage applied to the substrate surface.
  • the optimum implantation amount in the semiconductor device 1 of the present embodiment is set to 2.5 ⁇ 10 12 cm ⁇ 2, and the optimum implantation amount in the semiconductor device having the VLD structure RESURF layer according to the prior art is the VLD structure.
  • the injection amount of the innermost RESURF layer is 1.4 ⁇ 10 12 cm ⁇ 2 .
  • FIG. 14 (b) and 15 (b) show the simulation results in the case of the optimal injection amount.
  • FIG. 14A and FIG. 15A show the simulation results when the injection amount is smaller than the optimum injection amount and the ratio of the injection amount error is 33.3%.
  • FIG. 14C and FIG. 15C show simulation results when the injection amount is larger than the optimal injection amount and the ratio of the injection amount error is 33.3%.
  • the depletion layer extends to the outermost surface in the region where the diffusion layer and the impurity are not implanted, and the implantation is performed.
  • This situation does not change greatly even if the amount varies.
  • the injection layer is not completely depleted even if the injection amount is slightly smaller than the optimum injection amount, and the diffusion layer can be fully depleted even if the injection amount is slightly larger than the optimum injection amount. It is. That is, the semiconductor device 1 of the present embodiment overcomes the drawbacks of the conventional semiconductor device.
  • the semiconductor device 1 of the present embodiment achieves an effect that has not been conventionally known by having such a feature of how the depletion layer spreads.
  • the maximum electric field inside the semiconductor substrate is slightly higher than that of a semiconductor device including a RESURF layer having a VLD structure as a conventional technique.
  • the semiconductor device 1 of the present embodiment can obtain a higher breakdown voltage under the optimum conditions than the semiconductor device including the RESURF layer having the VLD structure as the prior art.
  • a leakage current path specifically, a flow path where holes generated by impact ionization reach the P base layer (active region) 12. It can be divided by a depletion layer.
  • the present invention also has an effect of reducing the electric field outside the semiconductor device.
  • the effect of reducing the external electric field of the semiconductor device is prominent when the injection amount is set larger than the optimum injection amount.
  • a particularly important electric field outside the semiconductor device is the electric field on the surface of the passivation film.
  • a passivation film is formed on the termination structure, that is, on the electric field relaxation layer 13 and the stopper layer 14 constituting the termination structure. As the electric field on the surface of the passivation film increases, creeping discharge is more likely to occur in the atmosphere.
  • the white portion indicated by reference numeral “60” represents a depletion layer, but it can also be said that the electric field leaks to the outside.
  • the electric field on the surface of the passivation film tends to be biased outward.
  • the present invention since the portions where the electric field leaks to the outside are dispersed, the electric field on the surface of the passivation film is not easily biased. Further, since the surface electric field of the present invention has a spike-like sharp peak as shown in FIG. 11, it is desirable to make the thickness of the passivation film several ⁇ m or more to blunt the peak of the electric field.
  • FIG. 16 is a graph showing a simulation result regarding the maximum electric field on the surface of the passivation film.
  • the vertical axis represents the maximum electric field on the surface of the passivation film when a voltage of 4500 V is applied between the anode electrode 15 and the cathode electrode 17 of the semiconductor device 1 (hereinafter sometimes referred to as “passivation film surface electric field”).
  • the horizontal axis represents the ratio (%) of the injection amount error.
  • the value of the passivation film surface electric field increases as it goes upward in the drawing.
  • FIG. 16 the vertical axis represents the maximum electric field on the surface of the passivation film when a voltage of 4500 V is applied between the anode electrode 15 and the cathode electrode 17 of the semiconductor device 1 (hereinafter sometimes referred to as “passivation film surface electric field”).
  • the horizontal axis represents the ratio (%) of the injection amount error.
  • the value of the passivation film surface electric field increases as it goes upward in the drawing.
  • the passivation film surface electric field is insensitive to the injection amount error as compared with the semiconductor device of the prior art. It can be seen that the semiconductor device 1 of the present embodiment is significantly advantageous over the semiconductor device of the prior art particularly in a region where the ratio of the implantation amount error is relatively large, that is, a region where the implantation amount is relatively large.
  • the semiconductor device of this embodiment and the semiconductor device having a VLD structure RESURF layer which is a semiconductor device of the prior art, are completely different in how the depletion layer spreads when the voltage is increased from zero voltage.
  • FIGS. 17 to 19 are images showing simulation results on the depletion layer distribution in the cross section of the substrate in the conventional semiconductor device.
  • 20 to 22 are images showing simulation results on the depletion layer distribution in the substrate cross section in the semiconductor device 1 according to the first embodiment of the present invention.
  • FIG. 17 to 22 show the spread of the depletion layer in the cross section of the substrate when a voltage of 100 V, 4500 V, or 5200 V is applied between the anode electrode 15 and the cathode electrode 17 of the semiconductor device.
  • FIG. 17A, FIG. 18A, FIG. 19A, FIG. 20A, FIG. 21A, and FIG. 22A show the results when a voltage of 100 V is applied.
  • FIG. 17B, FIG. 18B, FIG. 19B, FIG. 20B, FIG. 21B, and FIG. 22B show results when a voltage of 4500 V is applied.
  • 18 (c), 19 (c), 20 (c), 21 (c) and 22 (c) show the results when a voltage of 5200 V is applied.
  • FIGS. 18 and 21 show the simulation results in the case of the optimum injection amount.
  • the images shown in FIGS. 17 and 20 show the simulation results when the injection amount is smaller than the optimal injection amount and the ratio of the injection amount error is 33.3%.
  • the images shown in FIGS. 19 and 22 show the simulation results when the injection amount is larger than the optimal injection amount and the ratio of the injection amount error is 33.3%.
  • a white portion indicated by reference numeral “60” indicates a depletion layer.
  • the depletion layer 60 holds the voltage applied to the semiconductor device.
  • FIGS. 17 to 22 show simulation results in a state where the withstand voltage is increased by setting the temperature of the atmosphere in which the semiconductor device is installed to 125 ° C.
  • the depletion layer 60 on the outermost surface of the substrate spreads from the outermost side of the electric field relaxation layer to the inner side.
  • the depletion layer 60 on the outermost surface of the substrate is located on the outermost surface of the substrate at a position where the P-type diffusion layers are not connected to each other, that is, outside the P base layer.
  • the N-type region starts to spread from the first appearance, and spreads discretely around that portion.
  • FIGS. 20A to 20C As shown in FIGS. 20A to 20C, FIGS. 21A to 21C, and FIGS. 22A to 22C.
  • all the diffusion layers are depleted to almost the top surface of the substrate.
  • the electric field leaking to the outside can be greatly reduced compared to the conventional technology even at a voltage lower than the rated voltage.
  • FIG. 23 is a graph showing a simulation result regarding the maximum electric field on the surface of the passivation film.
  • the vertical axis represents the passivation film surface electric field
  • the horizontal axis represents the voltage (V) applied between the anode electrode and the cathode electrode of the semiconductor device.
  • the vertical axis in FIG. 23 increases the value of the passivation film surface electric field as it goes upward in the drawing.
  • the case of the optimal injection amount is indicated by a thick solid line denoted by reference numeral “205”, the injection amount is smaller than the optimal injection amount, and the ratio of the injection amount error is
  • the case of 33.3% is indicated by a thick one-dot chain line indicated by reference numeral “204”, and the injection amount is larger than the optimum injection amount and the ratio of the injection amount error is 33.3%. It is indicated by a thick two-dot chain line indicated by “206”.
  • FIG. 23 in the conventional semiconductor device, the case of the optimum implantation amount is indicated by a thin solid line denoted by reference numeral “202”.
  • the implantation amount is smaller than the optimum implantation amount, and the ratio of the implantation amount error is 33.
  • the case of .3% is indicated by a thin broken line indicated by reference numeral “201”, and the case where the injection amount is larger than the optimal injection amount and the ratio of the injection amount error is 33.3% is indicated by reference symbol “203”. It is indicated by a thin two-dot chain line indicated by.
  • FIG. 23 also shows simulation results in a state where the withstand voltage is increased by setting the temperature of the atmosphere in which the semiconductor device is installed to 125 ° C., as in FIGS.
  • the maximum electric field on the surface of the passivation film when a voltage half the rated voltage of 4500 V, that is, a voltage of 2250 V is applied as compared with the semiconductor device of the prior art. It can be seen that it can be halved. This is a great advantage because the semiconductor device for power electronics is usually used with a power supply voltage about half of the rated voltage.
  • the P-type active region 12 is formed in the surface portion on one side in the thickness direction of the semiconductor substrate 11 so as to be separated from the outer peripheral edge portion of the semiconductor substrate 11.
  • An annular electric field relaxation layer 13 is formed from the outer peripheral edge of the active region 12 toward the outer peripheral edge of the semiconductor substrate 11 so as to surround the active region 12.
  • the electric field relaxation layer 13 includes a plurality of P-type injection layers 21a to 25a formed so as to surround the active region 12 with a space therebetween, and a plurality of P-type injection layers 21a to 25a.
  • the P-type diffusion layers 21b to 25b have lower P-type impurity concentrations than the P-type implantation layers 21a to 25a.
  • the first P-type injection layer 21a formed on the innermost side in the radial direction of the electric field relaxation layer 13 is in contact with the active region 12 or is partially overlapped.
  • the distance between the P-type injection layers 21a to 25a, that is, the width s of the interlayer region increases from the active region 12 toward the outer peripheral edge of the semiconductor substrate 11.
  • the first P-type diffusion layer 21b surrounding the first P-type injection layer 21a is at least one of the P-type diffusion layers 22b to 25b surrounding the other P-type injection layers 22a to 25a outside the first P-type injection layer 21a. Specifically, it is formed in connection with the second P-type diffusion layer 22b.
  • the semiconductor device 1 of the present embodiment when forming the P-type injection layers 21a to 25a and the P-type diffusion layers 21b to 25b, the semiconductor device 1 having a relatively high breakdown voltage can be realized.
  • the margin of the implantation amount of the type impurity can be made relatively wide. As a result, it is possible to realize the semiconductor device 1 that is less affected by variations in the manufacturing process and can be manufactured with a relatively high yield.
  • the resist mask RM1 is formed on the surface portion on one side in the thickness direction of the semiconductor substrate 11 in the mask forming step.
  • the resist mask RM1 is formed so that a plurality of openings surrounding a portion corresponding to the region where the active region 12 is formed have a pattern formed at intervals in the radial direction.
  • P-type impurities are ion-implanted into the semiconductor substrate 11 through the resist mask RM1, and P-type implantation layers 21a to 25a are formed.
  • the semiconductor substrate 11 into which the P-type impurities are ion-implanted is subjected to a heat treatment in a heat treatment process to form P-type diffusion layers 21b to 25b surrounding the P-type implantation layers 21a to 25a.
  • the electric field relaxation layer 13 including the P-type injection layers 21a to 25a and the P-type diffusion layers 21b to 25b moves the active region 12 from the outer peripheral edge of the active region 12 toward the outer peripheral edge of the semiconductor substrate 11. It is formed in an annular shape so as to surround it.
  • the first P-type implantation layer 21a formed on the innermost side in the radial direction of the electric field relaxation layer 13 is the active region. It is in contact with the P base layer 12 which is Further, the first P-type diffusion layer 21b, which is a low-concentration impurity layer surrounding the first P-type implantation layer 21a, is formed on the other outer side in the radial direction than the first P-type implantation layer 21a.
  • It is formed so as to be connected to at least one of the low-concentration impurity layers surrounding the second to fifth P-type implantation layers 22a to 25a which are concentration impurity layers, that is, the second to fifth P-type diffusion layers 22b to 25b.
  • Such a field relaxation layer 13 can realize the semiconductor device 1 having a relatively high breakdown voltage.
  • the resist is formed such that the distance between the openings in the radial direction increases from the portion corresponding to the region where the active region 12 is formed toward the portion corresponding to the outer peripheral edge of the semiconductor substrate 11.
  • a mask RM1 is formed.
  • the P-type diffusion layers 21b to 25b are formed by performing a heat treatment after the ion implantation for forming the P-type implantation layers 21a to 25a. Therefore, the ion implantation is performed to form the P-type diffusion layers 21b to 25b. There is no need to do. In addition, it is not necessary to perform a long-time heat treatment after ion implantation in order to realize a relatively high breakdown voltage. Therefore, the electric field relaxation layer 13 capable of realizing a relatively high breakdown voltage as described above can be easily formed.
  • the fifth P-type injection layer 25a formed at the outermost side in the radial direction of the electric field relaxation layer 13 is surrounded.
  • the P-type diffusion layer 25b includes a fourth P-type diffusion layer 24b that surrounds a fourth P-type injection layer 24a formed on the inner side of the fifth P-type injection layer 25a in the radial direction. Formed at intervals.
  • the P-type injection layers 21a to 25a are in contact with the width s of the interlayer region between the adjacent P-type injection layers 21a to 25a and the interlayer region on the outside in the radial direction.
  • the sum L with the width w of the P-type injection layers 22a to 25a is formed to be a predetermined value.
  • the surface density of the P-type impurities of the P-type implantation layers 21a to 25a on the surface on one side in the thickness direction of the semiconductor substrate 11, and the P-type implantation layers 21a to 25a are arranged on the semiconductor substrate.
  • 11 is the optimum value of the surface density of the RESURF structure obtained in advance for each semiconductor material constituting the semiconductor substrate 11. It is 1.5 times or more and 3.5 times or less of the conditions.
  • the semiconductor device 1 having a high withstand voltage can be realized more reliably.
  • the interval between the P-type injection layers 21a to 25a that is, the width s of the interlayer region is expressed in an arithmetic progression as it goes from the active region 12 toward the outer peripheral edge of the semiconductor substrate 11. It is getting bigger.
  • FIG. 24 is a plan view and a cross-sectional view showing the configuration of the semiconductor device 2 according to the second embodiment of the present invention.
  • FIG. 24A is a plan view showing the configuration of the semiconductor device 2 according to the second embodiment of the present invention
  • FIG. 24B shows the configuration of the semiconductor device 2 according to the second embodiment of the present invention. It is sectional drawing which shows a structure.
  • the semiconductor device 2 of the present embodiment is applied to a PIN diode. Since the semiconductor device 2 of the present embodiment is similar in configuration to the semiconductor device 1 of the first embodiment, the same components are denoted by the same reference numerals, and common description is omitted.
  • FIG. 24 the portion of the electric field relaxation layer 70 is shown enlarged as in FIG.
  • a P base layer 12 which is an active region containing P-type impurities at a relatively high concentration is formed in the surface portion on one side in the thickness direction.
  • An electric field relaxation layer 70 composed of a plurality of P-type impurity layers 71, 72, 73, 74, 75 is formed so as to surround the P base layer 12.
  • the electric field relaxation layer 70 includes five P-type impurity layers 71, 72, 73, 74, and 75, specifically, a first P-type impurity layer 71, a second P-type impurity layer 72, and a third P-type impurity layer.
  • An impurity layer 73, a fourth P-type impurity layer 74, and a fifth P-type impurity layer 75 are provided.
  • Each P-type impurity layer 71, 72, 73, 74, 75 has a plurality of P-type impurity layers having different P-type impurity concentrations, specifically, three types of P-type impurity layers 71a to 75a, 71b to 75b, 71c. To 75c.
  • P-type impurity layers 71a-75a, 71b-75b, 71c-75c one is a P-type implanted layer 71a, 72a, 73a, 74a, 75a containing P-type impurities at a relatively high concentration. is there.
  • the other is shallow P-type diffusion layers 71b, 72b, 73b, 74b, and 75b that are formed from the substrate surface to a relatively shallow position and contain P-type impurities at a relatively low concentration.
  • the other is a deep P-type diffusion layer formed from the substrate surface to a position deeper than the shallow P-type diffusion layers 71b to 75b and containing P-type impurities at a lower concentration than the shallow P-type diffusion layers 71b to 75b.
  • the P-type injection layers 71a, 72a, 73a, 74a, and 75a correspond to local high concentration regions.
  • the shallow P-type diffusion layers 71b, 72b, 73b, 74b, and 75b correspond to high-concentration impurity layers.
  • the deep P-type diffusion layers 71c, 72c, 73c, 74c, and 75c correspond to low-concentration impurity layers.
  • Corresponding shallow P-type diffusion layers 71b, 72b, 73b, 74b, 75b are formed so as to surround each P-type injection layer 71a, 72a, 73a, 74a, 75a, and each shallow P-type diffusion layer 71b.
  • 72b, 73b, 74b, 75b, corresponding deep P-type diffusion layers 71c, 72c, 73c, 74c, 75c are formed.
  • the P-type implanted layers 71a to 75a, the shallow P-type diffusion layers 71b to 75b, and the deep P-type diffusion layers 71c to 75c actually define the boundaries because the concentration of the P-type impurity continuously changes. However, in this embodiment, it is considered separately for easy understanding.
  • the high concentration region formed by ion implantation of P-type impurities in the same ion implantation process as that of the P base layer 12 is referred to as “P-type implantation layers 71a to 75a”.
  • P-type implantation layers 71a to 75a the high concentration region formed by ion implantation of P-type impurities in the same ion implantation process as that of the P base layer 12
  • a region where the concentration of the P-type impurities is the same as that of the P-type implanted layer in the first embodiment is referred to as “shallow P-type”.
  • Diffusion layers 71b to 75b ", and the remaining regions having a lower concentration of P-type impurities than the shallow P-type diffusion layers 71b to 75b are referred to as" deep P-type diffusion layers 71c to 75c ".
  • the acceptor ions which are P-type impurities implanted into the P-type implanted layers 71a to 75a, spread concentrically by the heat treatment, so that the acceptor ion concentration on the surfaces of the P-type implanted layers 71a to 75a is higher than that of the P base layer 12. Low.
  • the first P-type impurity layer 71 includes a first P-type implantation layer 71a, a first shallow P-type diffusion layer 71b surrounding the first P-type implantation layer 71a, and a first shallow P-type impurity layer 71a. And a first deep P-type diffusion layer 71c surrounding the diffusion layer 71b.
  • the second P-type impurity layer 72 includes a second P-type implantation layer 72a, a second shallow P-type diffusion layer 72b surrounding the second P-type implantation layer 72a, and a second shallow P-type impurity layer 72a. And a second deep P-type diffusion layer 72c surrounding the diffusion layer 72b.
  • the third P-type impurity layer 73 includes a third P-type implantation layer 73a, a third shallow P-type diffusion layer 73b surrounding the third P-type implantation layer 73a, and a third shallow P-type impurity layer 73a. And a third deep P-type diffusion layer 73c surrounding the diffusion layer 73b.
  • the fourth P-type impurity layer 74 includes a fourth P-type implantation layer 74a, a fourth shallow P-type diffusion layer 74b surrounding the fourth P-type implantation layer 74a, and a fourth shallow P-type impurity layer. And a fourth deep P-type diffusion layer 74c surrounding the diffusion layer 74b.
  • the fifth P-type impurity layer 75 includes a fifth P-type implantation layer 75a, a fifth shallow P-type diffusion layer 75b surrounding the fifth P-type implantation layer 75a, and a fifth shallow P-type impurity layer. And a fifth deep P-type diffusion layer 75c surrounding the diffusion layer 75b.
  • the first shallow P-type diffusion layer 71b is formed on the outside of the P base layer 12 so as to be in contact with the P base layer 12 or to be partially overlapped.
  • a first shallow P-type diffusion layer 71 b is formed in contact with the P base layer 12 outside the P base layer 12 in the radial direction.
  • a second shallow P-type diffusion layer 72b is spaced from the first shallow P-type diffusion layer 71b. Is formed.
  • a third shallow P-type diffusion layer 73b is formed outside the second shallow P-type diffusion layer 72b at a distance from the second shallow P-type diffusion layer 72b.
  • a fourth shallow P-type diffusion layer 74b is formed outside the third shallow P-type diffusion layer 73b with a space from the third shallow P-type diffusion layer 73b.
  • a fifth shallow P-type diffusion layer 75b is formed on the outer side of the fourth shallow P-type diffusion layer 74b with a space from the fourth shallow P-type diffusion layer 74b.
  • Each of the P-type implantation layers 71a to 75a is formed in a dot shape, and a plurality of the P-type implantation layers 71a to 75a are periodically arranged in a staggered arrangement as viewed from one side in the thickness direction of the semiconductor substrate 11, and each shallow P-type diffusion layer 71b is formed.
  • a P-type injection layer group is formed in .about.75b.
  • the P-type injection layers 71a to 75a are collectively referred to as “P-type injection layer groups 71a to 75a”, and the P-type injection layers constituting the P-type injection layer groups 71a to 75a are referred to as “dots”. There is.
  • the electric field relaxation layer 70 includes P-type injection layer groups 71a to 75a, shallow P-type diffusion layers 71b to 75b, and deep P-type diffusion layers 71c to 75c.
  • a larger interval is formed than the dot interval.
  • dot rows arranged at positions facing each other in adjacent P-type injection layer groups, for example, the outermost dot row of the first P-side injection layer group 71a and the second P-type injection layer group 72a.
  • Each dot is arranged at a staggered position while maintaining a staggered relationship with the innermost dot row.
  • the width of the shallow P-type diffusion layers 71b to 75b and the distance between the shallow P-type diffusion layers 71b to 75b in the electric field relaxation layer 70 are the same as those in the electric field relaxation layer 13 of the first embodiment. It follows the same rules as the width of the P-type injection layers 21a, 22a, 23a, 24a, and 25a and the interval between the P-type injection layers.
  • the widths of the shallow P-type diffusion layers 71b, 72b, 73b, 74b, and 75b periodically vary along the circumferential direction.
  • the widest portion and the narrowest portion are used. Is the width of the shallow P-type diffusion layers 71b, 72b, 73b, 74b, 75b.
  • the widths w1 to w5 of the P-type injection layers 21a to 25a in the first embodiment described above can be set to arbitrary values
  • the widths of the shallow P-type diffusion layers 71b to 75b in the present embodiment are P Only discrete values determined by the number of dot rows in the mold injection layer groups 71a to 75a can be obtained. Therefore, in practice, the number of dot rows in the P-type injection layer groups 71a to 75a is decreased stepwise as it goes outward in the radial direction. That is, there may be a plurality of sets having the same number of dot rows in the radial direction that determine the widths of the shallow P-type diffusion layers 71b to 75b.
  • the deep P-type diffusion layers 71c to 75c have such an extent that the first deep P-type diffusion layer 71c and the second deep P-type diffusion layer 72c are in contact with each other or overlap each other.
  • the P-type diffusion layers 21b to 25b in the first embodiment if the depth of the deep P-type diffusion layers 71c to 75c is too large, the effect of the present invention is diminished.
  • the width of 75c is appropriately selected.
  • the P-type injection layers constituting the P-type injection layer groups 71a to 75a are assumed to have a dot shape.
  • the injection amount of the P base layer 12 is not relatively high, for example, Si.
  • the P-type injection layers constituting the P-type injection layer groups 71a to 75a may be formed in a thin stripe shape.
  • each of the P-type injection layer groups 71a to 75a is composed of one or more thin stripe-shaped P-type injection layers.
  • the stripe-shaped P-type implantation layer is cut off and the openings are arranged like a grid. It doesn't matter.
  • the manufacturing method of the semiconductor device 2 of the present embodiment includes a step of forming the electric field relaxation layer 70.
  • a process of forming the electric field relaxation layer 70 will be described.
  • FIG. 25 is a diagram showing a state where ion implantation is performed using the resist mask RM2.
  • FIG. 25A is a plan view showing the configuration of the resist mask RM2 as viewed from one side in the thickness direction
  • FIG. 25B is a cross-sectional view showing a state where ion implantation is performed using the resist mask RM2.
  • FIG. 26 is a plan view and a cross-sectional view showing a state at a stage where the formation of the electric field relaxation layer 70 is completed.
  • FIG. 26A is a plan view showing a state where the formation of the electric field relaxation layer 70 has been completed as viewed from one side in the thickness direction
  • FIG. 26B is a stage where the formation of the electric field relaxation layer 70 has been completed. It is sectional drawing which shows this state.
  • a resist mask RM2 is formed on the surface portion on one side in the thickness direction of the semiconductor substrate 11 containing N-type impurities at a relatively low concentration (N ⁇ ).
  • the resist mask RM2 is completely opened at a portion corresponding to the formation region of the P base layer 12, and corresponds to the formation region of each P type implantation layer constituting the P type implantation layer group 71a, 72a, 73a, 74a, 75a. It has a pattern in which the portion becomes an opening.
  • P-type impurity ions which are acceptor ions
  • ion implantation of P-type impurity ions is performed with a relatively low energy from above the resist mask RM2, that is, from one side in the thickness direction.
  • the acceptor ions are implanted in an amount corresponding to the implantation amount of the P base layer 12 that is the active region.
  • the P base layer 12 and the electric field relaxation layer 70 constituting the active region are formed simultaneously.
  • electric field relaxation layer 70 shallow P type diffusion layers 71b to 75b are formed so as to surround each P type injection layer constituting P type injection layer groups 71a to 75a.
  • deep P-type diffusion layers 71c to 75c are formed so as to surround shallow P-type diffusion layers 71b to 75b.
  • the distinction between the injection layer and the diffusion layer in the P base layer 12 is not considered.
  • the P base layer 12 and the electric field relaxation layer 70 are formed at the same time. Therefore, compared with the first embodiment, the number of photomasks for photoengraving and the manufacturing process can be reduced. Can do.
  • the density of dots that is, the aperture ratio of the implantation mask is gradually changed between the P base layer 12 and the first P-type implantation layer group 71a, and the P base layer
  • the change in the PN junction depth at the boundary between 12 and the first P-type impurity layer 71 can be moderated.
  • the resist mask RM2 is used as the ion implantation mask here, but an oxide film mask may be used.
  • FIG. 27 the effect when the semiconductor device 2 of the second embodiment of the present invention is applied to a vertical PIN diode of Si having a withstand voltage of 4500 V class will be described with reference to FIGS. 27 and 28.
  • FIG. 27 the effect when the semiconductor device 2 of the second embodiment of the present invention is applied to a vertical PIN diode of Si having a withstand voltage of 4500 V class will be described with reference to FIGS. 27 and 28.
  • FIG. 27 is a graph showing a simulation result regarding the injection amount dependency of the breakdown voltage in the semiconductor device 2 according to the second embodiment of the present invention.
  • FIG. 28 is a graph showing a simulation result regarding the margin of the implantation amount in the semiconductor device 2 according to the second embodiment of the present invention.
  • the vertical axis represents the breakdown voltage (V) at 300 K
  • the horizontal axis represents the implantation amount (cm ⁇ 2 ) of the P base layer 12.
  • the vertical axis indicates the withstand voltage (V) at 300K
  • the horizontal axis indicates the ratio (%) of the injection amount error.
  • the number of sets included in the electric field relaxation layer 70 is 35, and a dot-shaped opening formed in a portion corresponding to the dot of the implantation mask (hereinafter sometimes referred to as “dot opening”).
  • dot opening a dot-shaped opening formed in a portion corresponding to the dot of the implantation mask.
  • the shape of the unit cell in a staggered arrangement of dots is 2 ⁇ m in the radial direction and 5 ⁇ m in the circumferential direction.
  • FIG. 27 shows the injection amount dependency of the withstand voltage when the heat treatment time is used as a parameter.
  • the heat treatment time is expressed by the PN junction depth of the electric field relaxation layer 70 formed by the heat treatment for that heat treatment time.
  • the case where the PN junction depth of the electric field relaxation layer 70 is 4 ⁇ m is indicated by the symbol “ ⁇ ” and the alternate long and short dash line indicated by the reference numeral “81”, and the PN junction depth of the electric field relaxation layer 70 is 6 ⁇ m. Is indicated by the solid line indicated by the symbol “ ⁇ ” and the reference symbol “82”, and the case where the PN junction depth of the electric field relaxation layer 70 is 8 ⁇ m is indicated by the symbol “ ⁇ ” and the reference symbol “83”.
  • a case where the PN junction depth of the electric field relaxation layer 70 is 12 ⁇ m is indicated by a symbol “ ⁇ ” and a two-dot chain line indicated by a reference symbol “84”.
  • the optimum heat treatment is such that the PN junction depth of the electric field relaxation layer 70 is 6 ⁇ m. If the heat treatment is weaker than this, that is, if the PN junction is shallow, the breakdown voltage will be low. On the other hand, if the heat treatment is too strong, that is, the PN junction is too deep, although the breakdown voltage at the optimum implantation amount is high, the margin of the implantation amount that can obtain a high breakdown voltage becomes narrow.
  • the PN junction depth is 6 ⁇ m
  • a depression exists in the dependency of the withstand voltage on the injection amount because the width of the shallow P-type diffusion layers 71b to 75b is the number of dot rows of the P-type injection layer groups 71a to 75a. This is because only discrete values determined by can be obtained.
  • FIG. 28 shows a margin of the implantation amount in the semiconductor device including the RESURF layer of the VLD structure of the second embodiment, the first embodiment, and the prior art of the present invention.
  • the vertical axis represents the withstand voltage
  • the horizontal axis represents the ratio of the injection amount error, that is, the ratio of the absolute value of the injection amount error to the injection amount at which the maximum withstand voltage is obtained.
  • the simulation result for the semiconductor device 1 of the first embodiment is indicated by the solid line indicated by the symbol “ ⁇ ” and the reference symbol “85”, and the simulation result for the semiconductor device of the second embodiment is shown.
  • a simulation result for the conventional semiconductor device is indicated by symbol “ ⁇ ” and a broken line indicated by reference symbol “87”.
  • the margin of the implantation amount can be expanded about twice as compared with the first embodiment.
  • the horizontal axis of FIG. 28 shows the area of the dot opening (hereinafter sometimes referred to as “dot opening area”) for the semiconductor device of the second embodiment and the semiconductor device having the RESURF layer of the conventional VLD structure. It can be read as the error ratio.
  • the error ratio When the size of the dot opening is sub- ⁇ m, the error of the dot opening area is likely to increase due to variations in the manufacturing process, particularly the photoengraving process.
  • the second embodiment provides a wider implantation amount margin than the first embodiment is that the relatively high-concentration P-type implantation layers 71a to 75a are replaced with the relatively low-concentration shallow P-type. This is because the electric field concentration occurring at the bottoms of the P-type injection layers 71a to 75a is alleviated by surrounding the diffusion layers 71b to 75b. Further, the electric field concentration generated at the bottom of the shallow P-type diffusion layers 71b to 75b is alleviated by the lower-density deep P-type diffusion layers 71c to 75c. Therefore, in the second embodiment, it is possible to realize a wider margin for the implantation amount than in the first embodiment.
  • the semiconductor device 2 of the second embodiment there are relatively high-concentration P-type injection layers 71a to 75a, and shallow P-type diffusion layers 71b to 75b and deep P-type diffusion layers. Since 71c to 75c have periodic waviness in the circumferential direction, the following is obtained.
  • the maximum electric field inside the semiconductor is increased by about 20% compared to the semiconductor device 1 of the first embodiment.
  • the maximum breakdown voltage is about 3 to 4% lower than the semiconductor device 1 of the first embodiment, specifically about 200V.
  • the semiconductor device 2 of the second embodiment has the same characteristics as the semiconductor device 1 of the first embodiment.
  • the shallow P-type diffusion layers 71b to 75b have the relatively high concentration P-type injection layer groups 71a to 75a on the surface portion on one side in the thickness direction.
  • the P-type injection layers constituting the P-type injection layer groups 71a to 75a are periodically arranged in the radial direction or the circumferential direction, or along the radial direction and the circumferential direction.
  • a relatively high concentration P-type implantation layer is formed in the radial direction or the circumferential direction, or the radial direction on the surface portion on one side in the thickness direction of the shallow P-type diffusion layers 71b to 75b.
  • P-type injection layer groups 71a to 75a that are periodically arranged along the circumferential direction are formed.
  • the shallow P-type diffusion layers 71b to 75b have a P-type impurity containing P-type impurities at a concentration substantially equal to that of the P base layer 12 that is the active region on one surface in the thickness direction. It has injection layer groups 71a to 75a. Thereby, as described later, a part of the manufacturing process can be omitted.
  • a portion corresponding to the region where the P base layer 12 which is an active region is formed is opened, and a portion corresponding to the electric field relaxation layer 70 is formed.
  • the implantation mask RM2 is formed so that the opening has a periodic pattern along the radial direction or the circumferential direction, or along the radial direction and the circumferential direction.
  • the P base layer 12 and the electric field relaxation layer 70 which are active regions can be formed simultaneously. Therefore, the number of manufacturing processes can be reduced.
  • FIG. 29 is a cross-sectional view showing the configuration of the semiconductor device 3 according to the third embodiment of the present invention. Since the semiconductor device 3 of the present embodiment is similar in configuration to the semiconductor device 1 of the first embodiment, the same reference numerals are given to the same configurations, and common descriptions are omitted. In FIG. 29, the portion of the electric field relaxation layer 90 is shown enlarged as in FIG.
  • a P base layer 12 which is an active region containing P-type impurities at a relatively high concentration is formed in the surface portion on one side in the thickness direction.
  • An electric field relaxation layer 90 composed of a plurality of P-type impurity layers 91, 92, 93, 94, 95 is formed so as to surround this P base layer 12.
  • the electric field relaxation layer 90 includes five P-type impurity layers, specifically, a first P-type impurity layer 91, a second P-type impurity layer 92, a third P-type impurity layer 93, and a fourth P-type impurity layer.
  • An impurity layer 94 and a fifth P-type impurity layer 95 are provided.
  • Each of the P-type impurity layers 91 to 95 includes a plurality of P-type impurity layers having different P-type impurity concentrations, specifically, two types of P-type impurity layers 91a to 95a and 91b to 95b.
  • two types of P-type impurity layers 91a to 95a and 91b to 95b one is a P-type implanted layer 91a to 95a containing a P-type impurity at a relatively low concentration.
  • the other is P-type diffusion layers 91b to 95b containing P-type impurities at a lower concentration than P-type implantation layers 91a to 95a.
  • the P-type implantation layers 91a to 95a have higher P-type impurity concentrations than the P-type diffusion layers 91b to 95b in comparison with the P-type diffusion layers 91b to 95b. Therefore, in this embodiment, P-type implantation layers 91a to 95a correspond to high-concentration impurity layers, and P-type diffusion layers 91b to 95b correspond to low-concentration impurity layers.
  • the P-type implantation layers 91a to 95a and the P-type diffusion layers 91b to 95b cannot define a boundary because the concentration of the P-type impurity continuously changes.
  • a region formed by implanting P-type impurities by ion implantation is referred to as a “P-type implanted layer”, and a region formed by diffusing P-type impurities by heat treatment after ion implantation is designated as “P-type diffusion”.
  • P-type implanted layer a region formed by implanting P-type impurities by ion implantation
  • P-type diffusion a region formed by diffusing P-type impurities by heat treatment after ion implantation
  • the first P-type injection layer 91a is in contact with or partially overlaps the outside of the P base layer 12.
  • the first P-type injection layer 91a is formed in contact with the outside of the P base layer 12 in the radial direction.
  • the second P-type injection layer 92a is formed outside the first P-type injection layer 91a with a gap.
  • a third P-type injection layer 93a is formed outside the second P-type injection layer 92a with a gap therebetween.
  • a fourth P-type injection layer 94a is formed outside the third P-type injection layer 93a with a gap therebetween.
  • a fifth P-type injection layer 95a is formed outside the fourth P-type injection layer 94a with a gap therebetween.
  • Each P-type injection layer 91a to 95a is surrounded by a corresponding P-type diffusion layer 91b to 95b.
  • the electric field relaxation layer 90 includes P-type injection layers 91a to 95a and P-type diffusion layers 91b to 95b.
  • the widths w of the first to fifth P-type injection layers 91a to 95a in the electric field relaxation layer 90 are set to w11, w12, w13, w14, and w15, respectively.
  • the widths s of the second to fifth interlayer regions, which are regions between adjacent P-type injection layers 91a to 95a, are s12, s13, s14, and s15, respectively.
  • the P-type injection layers 92a to 95a which are the implanted regions, and the radial direction thereof are used.
  • a set with an inter-layer region which is an unimplanted region adjacent to the inside is called a set.
  • the set width is represented by “u”.
  • the set widths u2, u3, u4, and u5 are expressed as u (2), u (3), u (4), and u (5), respectively.
  • the conditions of the first P-type injection layer 91a and the first to fifth P-type diffusion layers 91b, 92b, 93b, 94b, and 95b are respectively the P-type injection layer 21a and the P-type diffusion of the first embodiment. Similar to the layers 21b, 22b, 23b, 24b, 25b.
  • the recurrence formula generalized between u (k ⁇ 1) and u (k) shown by the following formula (4) is applied to the electric field relaxation layer 90 having an arbitrary set number of 2 or more. Can do.
  • the widths w11 to w15 of the P-type injection layers 91a to 95a are constant except for the one adjacent to the P base layer 12, that is, the first P-type injection layer 91a.
  • FIG. 30 and 31 are graphs showing simulation results when the semiconductor device 3 according to the third embodiment of the present invention is applied to a vertical PIN diode of Si having a withstand voltage of 4500 V class.
  • the vertical axis represents the average injection amount (cm ⁇ 2 ) of each set, and the horizontal axis represents the horizontal distance.
  • the vertical axis represents the withstand voltage (V) at 300 K, and the horizontal axis represents the implantation amount (cm ⁇ 2 ).
  • the simulation results for the semiconductor device 1 of the first embodiment described above are indicated by the symbol “ ⁇ ” and the broken line indicated by the reference symbol “101”, and for the semiconductor device 3 of the third embodiment.
  • the simulation result is indicated by a symbol “ ⁇ ” and a solid line indicated by reference numeral “102”.
  • an electric field relaxation layer 90 in which the average injection amount of each set gradually decreases with respect to the horizontal distance as shown in FIG. 30 can be obtained.
  • FIG. 31 is a comparison of the injection amount dependency of the withstand voltage between the third embodiment and the first embodiment.
  • the number of sets in the third embodiment is almost the same as that in the first embodiment.
  • the maximum value of the withstand voltage is reduced by about 2 to 3%, specifically about 150 V, compared with the first embodiment, but a high withstand voltage is obtained.
  • the margins for the injected doses are equivalent.
  • the electric field relaxation layer 90 includes the three or more P-type injection layers 91a to 95a.
  • the widths w12 to w15 of the P-type injection layers other than the first P-type injection layer 91a, that is, the second to fifth P-type injection layers 92a to 95a are equal.
  • the distances s13 to s15 between the second to fifth P-type injection layers 92a to 95a provide the distance s12 between the first and second P-type injection layers 91a and 92a, thereby solving the quadratic equation solution.
  • the recursion formula to be given specifically, the formula (4) is used.
  • the second to fifth P-type injection layers The positions 92a to 95a can be determined. That is, the positions of the second to fifth P-type injection layers 92a to 95a are represented by a recurrence formula that gives a solution of a quadratic equation based on the distance from the first P-type injection layer 91a.
  • the margin of the implantation amount can be further widened by appropriately selecting the method for forming the electric field relaxation layer 90.
  • FIG. 32 is a plan view and a cross-sectional view showing the configuration of the semiconductor device 4 according to the fourth embodiment of the present invention.
  • FIG. 32A is a plan view showing the configuration of the semiconductor device 4 according to the fourth embodiment of the present invention
  • FIG. 32B shows the configuration of the semiconductor device 4 according to the fourth embodiment of the present invention. It is sectional drawing which shows a structure.
  • the semiconductor device 4 of the present embodiment is applied to a PIN diode. Since the semiconductor device 4 of the present embodiment is similar in configuration to the semiconductor device 1 of the first embodiment, the same components are denoted by the same reference numerals, and common description is omitted.
  • the electric field relaxation layer 110 is shown in an enlarged manner.
  • a P base which is an active region containing a relatively high concentration of P-type impurities in the surface portion on one side in the thickness direction of the semiconductor substrate 11 containing an N-type impurity at a relatively low concentration (N ⁇ ).
  • Layer 12 is formed.
  • an electric field relaxation layer 110 composed of a plurality of P-type injection layers 111 to 115 is formed so as to surround the P base layer 12.
  • the electric field relaxation layer 110 includes five P-type impurity layers, specifically, a first P-type impurity layer 111, a second P-type impurity layer 112, a third P-type impurity layer 113, and a fourth P-type impurity layer.
  • An impurity layer 114 and a fifth P-type impurity layer 115 are provided.
  • Each of the P-type impurity layers 111 to 115 has three types of P-type impurity layers having different P-type impurity concentrations.
  • the three types of P-type impurity layers are a relatively high concentration P-type implantation layer 111a to 115a, a relatively low concentration shallow P-type diffusion layer 111b to 115b, and a lower concentration deep P-type diffusion layer 111c to 115c.
  • the P-type implantation layers 111a to 115a which are high-concentration regions implanted and formed in the same ion implantation process as the P base layer 12, are formed by being diffused by heat treatment.
  • the shallow P-type diffusion layers 111b to 115b which are regions having the same concentration as the P-type injection layers 21a to 25a of the shape, are formed by being diffused by heat treatment and are lower than the shallow P-type diffusion layers 111b to 115b.
  • Consideration is divided into the deep P-type diffusion layers 111c to 115c which are regions of concentration.
  • the acceptor ions implanted into the P-type implantation layers 111a to 115a spread concentrically by the heat treatment, the surface concentration of the P-type implantation layers 111a to 115a is lower than that of the P base layer 12.
  • the first shallow P-type diffusion layer 111b is in contact with or partially overlaps the outside of the P base layer 12 in the radial direction.
  • the first shallow P-type diffusion layer 111b is formed in contact with the outside of the P base layer 12 in the radial direction.
  • the second shallow P-type diffusion layer 112b is formed outside the first shallow P-type diffusion layer 111b with an interval.
  • a third shallow P-type diffusion layer 113b is formed outside the second shallow P-type diffusion layer 112b with a gap therebetween.
  • fourth shallow P-type diffusion layers 114b are formed at intervals.
  • fifth shallow P-type diffusion layers 115b are formed at intervals.
  • P-type implantation layers 111a to 115a correspond to local high-concentration regions
  • shallow P-type diffusion layers 111b to 115b correspond to high-concentration impurity layers
  • deep P-type diffusion layers 111c to 115c correspond to low-concentration impurity layers. It corresponds to.
  • Each of the P-type implantation layers 111a to 115a is formed in a dot shape, and a plurality of the P-type implantation layers 111a to 115a are periodically arranged in the circumferential direction when viewed from one side in the thickness direction of the semiconductor substrate 11, and each shallow P-type diffusion layer 111b to A P-type injection layer group is formed in 115b.
  • the P-type injection layers 111a to 115a are collectively referred to as “P-type injection layer groups 111a to 115a”, and the P-type injection layers constituting the P-type injection layer groups 111a to 115a are referred to as “dots”. There is.
  • the first P-type injection layer group 111a is composed of dot-shaped P-type injection layers that are periodically arranged in a staggered arrangement in the plane direction.
  • the first shallow P-type diffusion layer 111b surrounds each P-type injection layer constituting the first P-type injection layer group 111a and is surrounded by the first deep P-type diffusion layer 111c.
  • Each of the second to fifth P-type injection layer groups 112a to 115a is composed of a single row of dot-shaped P-type injection layers arranged periodically in the circumferential direction in the plane direction.
  • the second to fifth shallow P-type diffusion layers 112b to 115b surround the P-type injection layers constituting the corresponding P-type injection layer groups 112a to 115a, and the corresponding deep P-type diffusion layers 112c to 115c. being surrounded.
  • the electric field relaxation layer 110 includes first to fifth P-type injection layer groups 111a to 115a, first to fifth shallow P-type diffusion layers 111b to 115b, and first to fifth deep P-type diffusion layers. 111c to 115c.
  • An interval larger than the dot interval is formed between adjacent P-type injection layer groups 111a to 115a.
  • dot rows arranged at positions facing each other in adjacent P-type injection layer groups 111a to 115a for example, the outermost dot row of the first P-side injection layer group 111a and the second P-type injection layer
  • the dots arranged in the layer group 112a are arranged in staggered positions while maintaining a staggered relationship.
  • the width of the shallow P-type diffusion layers 111b to 115b and the distance between the shallow P-type diffusion layers 111b to 115b in the electric field relaxation layer 110 are the same as those in the electric field relaxation layer 90 of the third embodiment.
  • the same rules are used as the widths of the P-type injection layers 91a to 95a and the intervals between the P-type injection layers 91a to 95a.
  • the width of the shallow P-type diffusion layers 111b to 115b actually varies periodically along the circumferential direction.
  • the average value of the widest portion and the narrowest portion is expressed as follows: The width of the shallow P-type diffusion layers 111b to 115b is used.
  • the second to fourth shallow P-type diffusion layers 112b to 115b are second to fifth P-type implantations each composed of one row of dot-shaped P-type implantation layers. Since they are derived from the layer groups 112a to 115a, they all have the same width.
  • each shallow P-type diffusion layer 71b to 75b can only take a discrete value determined by the number of dot rows of the corresponding P-type injection layer group 71a to 75a.
  • the widths of the second to fifth shallow P-type diffusion layers 112a to 115a are removed except for the first shallow P-type diffusion layer 111a in contact with the outside of the P base layer 12. Is a constant value determined by a P-type injection layer group composed of a single row of dot-shaped P-type injection layers, so that there is no problem as in the second embodiment.
  • FIG. 33 is a graph showing a simulation result when the semiconductor device 4 according to the fourth embodiment of the present invention is applied to a vertical PIN diode of Si having a withstand voltage of 4500 V class.
  • FIG. 33 compares the injection amount dependency of the breakdown voltage between the fourth embodiment and the second embodiment.
  • the vertical axis represents the breakdown voltage (V) at 300 K
  • the horizontal axis represents the implantation amount (cm ⁇ 2 ) of the P base layer 12.
  • the simulation result for the semiconductor device 2 of the second embodiment is indicated by the symbol “ ⁇ ” and the broken line indicated by the reference numeral “121”, and the simulation result for the semiconductor device 4 of the fourth embodiment. Is indicated by a symbol “ ⁇ ” and a solid line indicated by reference numeral “122”.
  • the shape of the dot opening of the implantation mask is 1 ⁇ m square
  • the period of the dot opening in the circumferential direction is 5 ⁇ m
  • the number of sets is 46.
  • the shape of the dot opening is 0.5 ⁇ m square
  • the number of sets is 35. In either case, the heat treatment is performed under such a condition that the PN junction depth is 6 ⁇ m.
  • the semiconductor device 4 of the fourth embodiment there is no problem that the widths of the second to fifth shallow P-type diffusion layers 112b to 115b are discrete. There is no depression dependent on the implantation amount of the withstand voltage seen in the semiconductor device 2 of the embodiment.
  • the semiconductor device 4 of the fourth embodiment has a breakdown voltage equivalent to that of the semiconductor device 2 of the second embodiment, and has a wide margin of the implantation amount for obtaining a high breakdown voltage.
  • Which of the semiconductor device 2 of the second embodiment and the semiconductor device 4 of the fourth embodiment is advantageous depends on the implantation amount of the P base layer 12 and the area of the dot opening that can be formed. In the example shown in FIG. 33, when the number of acceptor ions implanted from one dot opening is less than 1.25 ⁇ 10 6 , the semiconductor device 2 of the second embodiment has higher breakdown voltage. When the number of acceptor ions is larger than 2 ⁇ 10 6 , the semiconductor device 4 of the fourth embodiment has a higher breakdown voltage.
  • the semiconductor device 2 of the second embodiment is advantageous, and the number of acceptor ions implanted from one dot opening. Is relatively large, the semiconductor device 4 of the fourth embodiment is more advantageous.
  • FIG. 34 is a plan view and a cross-sectional view showing the configuration of the semiconductor device 5 in a modification of the fourth embodiment of the present invention.
  • FIG. 34 (a) is a plan view showing the configuration of the semiconductor device 5 in a modification of the fourth embodiment of the present invention
  • FIG. 34 (b) is a modification of the fourth embodiment of the present invention. It is sectional drawing which shows the structure of the semiconductor device 5 in an example. Also in the present modification, as in the first embodiment, a configuration in the case where the semiconductor device 5 of the present modification is applied to a PIN diode will be described.
  • the semiconductor device 5 of the present modification is similar in configuration to the semiconductor device 1 of the first embodiment, the same configuration is denoted by the same reference numeral, and common description is omitted.
  • the electric field relaxation layer 130 is shown in an enlarged manner.
  • the dot-shaped P-type injection layers constituting the P-type injection layer groups 111a to 115a in FIG. 32 are connected in the circumferential direction to form a narrow stripe shape. That is, the first P-type injection layer group 111a configured by the dot-shaped P-type injection layer in the fourth embodiment is the first P configured by the stripe-shaped P-type injection layer in the present modification. This corresponds to the mold injection layer group 131a. Similarly, the second to fifth P-type injection layer groups 112a, 113a, 114a, and 115a formed of the dot-shaped P-type injection layers in the fourth embodiment are respectively formed in the stripe shape in this modification. This corresponds to the second to fifth P-type injection layers 132a, 133a, 134a, and 135a.
  • the first P-type injection layer group 131a, the second to fifth P-type injection layers 132a to 135a, the first to fifth shallow P-type diffusion layers 131b to 135b, and the first to fifth The deep P-type diffusion layers 131c to 135c constitute an electric field relaxation layer 130.
  • dot injection is not performed, there is no variation in the circumferential direction in the impurity concentration of the electric field relaxation layer 130 and the widths of the P-type diffusion layers 131b to 135b and 131c to 135c.
  • FIG. 35 is a graph showing a simulation result when the semiconductor device 5 according to the modification of the fourth embodiment of the present invention is applied to a vertical PIN diode of Si having a withstand voltage of 4500 V class.
  • the vertical axis represents the breakdown voltage (V) at 300 K
  • the horizontal axis represents the implantation amount (cm ⁇ 2 ) of the P base layer 12.
  • FIG. 35 shows the injection amount dependency of the breakdown voltage when the shape of the P-type injection layer is a 1 ⁇ m square dot shape, a 1 ⁇ m width stripe shape, or a 0.2 ⁇ m width stripe shape.
  • the simulation results when the P-type injection layer has a 1 ⁇ m square dot shape are indicated by the symbol “ ⁇ ” and the broken line indicated by the reference symbol “141”.
  • a simulation result in the case where the P-type injection layer has a stripe shape with a width of 1 ⁇ m is indicated by a two-dot chain line indicated by a symbol “ ⁇ ” and a reference symbol “142”.
  • a simulation result in the case where the P-type injection layer has a stripe shape with a width of 0.2 ⁇ m is indicated by a symbol “ ⁇ ” and a solid line indicated by a reference symbol “143”.
  • the dot-shaped P-type injection layers are arranged at a period of 5 ⁇ m in the circumferential direction.
  • the number of sets is 46, and the heat treatment is performed under such a condition that the PN junction depth is 6 ⁇ m.
  • stripe opening a stripe-shaped opening
  • FIG. 35 shows that the optimum injection amount can be lowered when the width of the stripe opening is widened, and the optimum injection amount can be raised when the width of the stripe opening is narrowed. That is, the width of the stripe opening may be adjusted according to the implantation amount of the P base layer 12.
  • the width of the stripe opening when the width of the stripe opening is increased, the width of the stripe opening needs to be sufficiently smaller than the diffusion length. Further, when the optimum width of the stripe opening is smaller than the resolution of the implantation mask, it is necessary to reduce the number of acceptor ions to be implanted by making a dot opening as shown in FIG.
  • the dependency of the breakdown voltage on the injection amount when the P-type injection layers 131a to 135a are 0.2 ⁇ m wide stripes is the breakdown voltage when the P-type injection layers 131a to 135a are 1 ⁇ m square dots.
  • Close to injection dose dependency This is because the number of acceptor ions implanted is the same in a 1 ⁇ m square dot opening with a circumferential period of 5 ⁇ m and a 0.2 ⁇ m wide stripe opening with a circumferential length of 5 ⁇ m.
  • the breakdown voltage of the semiconductor device is slightly lower than when an implantation mask having a 1 ⁇ m square dot opening is used. high.
  • the P-type injection layers 71a to 75a in the second embodiment can be easily formed if an opening pattern having a width of 0.2 ⁇ m including a 0.2 ⁇ m square dot shape can be formed. Should pay.
  • the injection amount of the P base layer 12 and It is determined by the shape of the opening that can be formed and the lower limit of the opening width, for example, the lower limit depending on the resolution of the implantation mask.
  • the widths of the P-type injection layers 71a to 75a, 111a to 115a, and 131a to 135a in the radial direction are on the one side in the thickness direction of the semiconductor substrate 11. It is preferable that the depth is set to one fifth (1/5) or less of the depth of the deep P-type diffusion layers 71c to 75c, 111c to 115c, and 131c to 135c with respect to the surface. Thereby, the margin of the implantation amount that can obtain a high breakdown voltage can be further expanded.
  • a portion corresponding to a region where the P base layer 12 which is an active region is formed is opened, and the width of the opening in the radial direction is set to a heat treatment.
  • the depth P of the deep P-type diffusion layers 71c to 75c, 111c to 115c, and 131c to 135c to be formed in the process is less than 1/5 (1/5) of the depth with respect to the surface on one side in the thickness direction of the semiconductor substrate 11.
  • An implantation mask may be formed so that Thereby, the number of manufacturing processes can be reduced.
  • the acceptor ions are diffused by heat treatment to form the electric field relaxation layers 13 and 90.
  • the electric field relaxation layer should be formed without using thermal diffusion. Can do.
  • FIG. 36 is a cross-sectional view showing a state where ion implantation is performed using the resist mask RM3.
  • FIG. 37 is a cross-sectional view showing a state in which the resist mask RM4 is formed by isotropically etching the resist mask RM3.
  • 38 to 40 are cross-sectional views showing a state in which ion implantation is performed using the resist mask RM4.
  • a relatively thick resist mask RM3 having a pattern in which portions corresponding to the formation regions of the first to fifth P-type implantation layers 21a, 22a, 23a, 24a, and 25a are openings is formed.
  • acceptor ions which are P-type impurity ions, are implanted from above the resist mask RM3 with relatively low energy.
  • the resist is isotropically etched with an oxygen asher or the like, and the portion covered with the resist mask RM3 is retracted.
  • the resist mask RM3 is etched to become a resist mask RM4.
  • a portion of the resist mask corresponding to the portion between the first P-type implantation layer 21a and the second P-type implantation layer 22a is removed by etching.
  • the energy is changed from a relatively low energy to a relatively high energy from above the resist mask RM4, that is, from one side in the thickness direction.
  • the ion implantation of acceptor ions is performed once.
  • the length of the arrow incident from above the resist mask RM4 reflects the magnitude of the ion implantation energy.
  • FIG. 38 shows a case where ion implantation is performed with relatively low energy
  • FIG. 39 shows a case where ion implantation is performed with relatively high energy.
  • the second ion implantation step for example, after ion implantation with relatively low energy as shown in FIG. 38, ion implantation with relatively high energy as shown in FIG. 39 is performed.
  • the first to fifth P-type diffusion layers 21b to 25b corresponding to portions up to the same depth as the first to fifth P-type implantation layers 21a to 25a by ion implantation with relatively low energy.
  • To fifth P-type injection layers 21c to 25c are formed.
  • the second ion implantation step is not limited to the above procedure, and after performing ion implantation with relatively high energy, ion implantation with relatively low energy may be performed.
  • the sum of the implantation amount in the first ion implantation step and the implantation amount in the second ion implantation step is set to be 1.5 to 3.5 times the resurf condition determined by the semiconductor material.
  • P-type diffusion layers 21b, 22b, 23b, 24b, and 25b surrounding the P-type injection layers 21a, 22a, 23a, 24a, and 25a are formed.
  • the electric field relaxation layer of the present invention can be formed even with a semiconductor having a very short thermal diffusion length such as SiC.
  • acceptor ions are implanted only with relatively high energy to protect only the bottom surfaces of the P-type implanted layers 21a, 22a, 23a, 24a, and 25a.
  • Such buried P-type injection layers 21d, 22d, 23d, 24d, and 25d may be formed. In this way, a part of the manufacturing process can be omitted.
  • the buried P-type injection layers 21d, 22d, 23d, 24d, and 25d have the maximum acceptor concentration near the bottom surfaces of the P-type injection layers 21a, 22a, 23a, 24a, and 25a. That is, the buried P-type implantation layers 21d to 25d are located at the same position as the bottom surface of the P-type implantation layers 21a to 25a from the surface on one side in the thickness direction of the semiconductor substrate 11, and the concentration of the P-type impurity is maximum. Become. With such a configuration, a semiconductor device having a relatively high breakdown voltage can be realized even if a part of the manufacturing process is omitted as described above.
  • the buried P-type implantation layer corresponds to a low concentration impurity layer.
  • the etching process and the second ion implantation process are provided between the ion implantation process and the heat treatment process.
  • the P-type impurity is ion-implanted with an implantation energy higher than that when the P-type impurity is ion-implanted in the first ion implantation step.
  • a semiconductor device having a relatively high breakdown voltage can be realized even when a wide gap semiconductor having a relatively short diffusion length, such as silicon carbide (SiC), is used.
  • the semiconductor device in which the conductivity type of the semiconductor substrate and each impurity layer is specified as P type or N type has been described, but these conductivity types are all reversed. Even if it exists, the same effect is acquired.
  • the implantation amount and the number of acceptor ions shown above are values based on the premise that the activation rate is 100% and does not disappear in the manufacturing process after ion implantation. Therefore, when the activation rate is low, when acceptor ions are sucked out by thermal oxidation, or when the surface is scraped by etching, the implantation is finally performed based on the number of activated acceptor ions existing in the semiconductor substrate. The amount should be adjusted.
  • an interface charge at the interface between the semiconductor and the insulating film such as an oxide film, and in some cases, at the interface between the semiconductor and the passivation film such as a polyimide film. Even when this fixed charge cannot be ignored with respect to the injection amount, the injection amount should be adjusted.
  • the P base layer 12 is illustrated as being deeper than the electric field relaxation layers 13, 70, 90, 110, and 130. , 70, 90, 110, 130 may be shallower.
  • the acceptor ions are implanted with relatively low energy. However, if the acceptor ions are completely blocked by the implantation mask, the implantation energy may be high. . When implantation is performed with relatively high energy, the P-type diffusion layer spreads on the top, bottom, left and right of the P-type implantation layer.
  • the acceptor ions of the electric field relaxation layers 13 and 90 are not implanted into the active region that becomes the P base layer 12, but the opening of the implantation mask is used as the active region.
  • the acceptor ions of the electric field relaxation layers 13 and 90 may be implanted into the active region.
  • FIG. 41 is a cross-sectional view showing another example of a semiconductor device.
  • the active region is composed of a first P-type implantation layer 151a which is a P-type impurity layer containing a P-type impurity. That is, the active region is constituted by a part of the first P-type injection layer 151 a that constitutes the electric field relaxation layer 150. In other words, the P-type impurity layer constituting the active region is formed integrally with the first P-type implantation layer 151 a constituting the electric field relaxation layer 150.
  • the concentration profile of the P-type impurity in the thickness direction of the P-type impurity layer constituting the active region is the portion where the high-concentration impurity layer constituting the electric field relaxation layer 150 is located, that is, in the first P-type implantation layer 151a.
  • the concentration profile of the P-type impurity in the thickness direction of the portion constituting the electric field relaxation layer 150 is the same.
  • the semiconductor device 6 having a relatively high breakdown voltage can be realized by omitting a part of the active region forming step.
  • the injection amount of the electric field relaxation layer 150 is 1.5 times or more of the RESURF condition, even if the P base layer is omitted, the P-type impurity layer is not completely depleted under normal use conditions. No punch-through to the anode electrode 15 occurs. Further, in such a configuration, in order to reduce the contact resistance with the anode electrode 15, a P-type impurity containing a P-type impurity at a relatively shallow concentration and a relatively shallow concentration at a place where the anode electrode 15 is contacted separately. A layer may be formed.
  • the device to which the present invention is applied is a PIN diode.
  • the present invention is not limited to a transistor such as a MOSFET, IGBT, BJT (Bipolar Junction Transistor), or a thyristor. The same effect can be obtained even when applied as a termination structure of the device.
  • the Schottky barrier 155 that exists at the interface between the anode electrode 15 that is a Schottky electrode and the semiconductor substrate 11 is used. May be used as an active region and a Schottky barrier diode.
  • FIG. 42 is a cross-sectional view illustrating another example of a semiconductor device.
  • the active region is a region that forms a Schottky junction with the anode electrode 15 that is a Schottky electrode in the surface portion on one side in the thickness direction of the semiconductor substrate 11, that is, a shot that is a Schottky region.
  • a key barrier 155 may be included.
  • the Schottky barrier 155 and the Schottky electrode 15 constitute a semiconductor device 7 that is a Schottky barrier diode. As a result, a Schottky barrier diode having a relatively high breakdown voltage can be realized as the semiconductor device 7.
  • the Schottky barrier 155 existing at the interface between the Schottky electrode 15 and the semiconductor substrate 11 is used as an active region, ions are implanted into a part of the active region simultaneously with the electric field relaxation layer, and the semiconductor device 7 is formed.
  • JBS Joint Barrier Schottky
  • MPS Merged PIN Schottky
  • the withstand voltage class is set to 4500 V as the rated voltage, but the present invention can be applied to any withstand voltage class.
  • the material of the semiconductor substrate 11 is not limited to silicon, and may be a wide band gap semiconductor having a relatively wide band gap.
  • the wide band gap semiconductor for example, silicon carbide (SiC), gallium nitride (GaN) based material, or diamond may be used.
  • the optimum injection amount of the electric field relaxation layer is mainly determined by the dielectric constant of the semiconductor material used and the dielectric breakdown electric field.
  • the optimum width of the electric field relaxation layer is mainly determined by the breakdown electric field of the semiconductor material and the required withstand voltage.
  • the electric field inside the semiconductor can be effectively reduced. Can be made smaller than before.
  • the switching element and the diode element constituted by the wide band gap semiconductor have a high withstand voltage and a high allowable current density, so that the size can be reduced as compared with silicon.
  • the heat sink fins of the heat sink can be downsized and cooled by air cooling instead of water cooling, and the semiconductor device module can be further downsized.
  • Impurities used for implantation are activated by substituting atoms of a semiconductor material, such as boron (B), nitrogen (N), aluminum (Al), phosphorus (P), arsenic (As), and indium (In). Any thing can be used. However, when the electric field relaxation layer is formed by thermal diffusion, it is desirable that the diffusion length is relatively large and the diffusion controllability is high.
  • the width of the termination structure when the present invention is applied will be specifically described.
  • the width of the electric field relaxation layers 13, 70, 90, 110, 130, 150 in the radial direction can be made smaller than twice the thickness of the semiconductor substrate 11.
  • the “thickness of the semiconductor substrate” refers to a semiconductor substrate itself made of a semiconductor material, for example, a semiconductor substrate containing a relatively low concentration N-type impurity, as the semiconductor substrate 11 as in the present embodiment. When used, it refers to the thickness of the semiconductor substrate itself.
  • the semiconductor substrate 11 a substrate constituted by a support substrate and an epitaxial film of a semiconductor material formed on the support substrate, for example, an epitaxial film containing a relatively low concentration N-type impurity may be used. In this case, the thickness of the epitaxial film is referred to as “the thickness of the semiconductor substrate”.
  • the portion defining the “thickness of the semiconductor substrate” may be referred to as a “drift layer”. That is, when the semiconductor substrate itself is used as the semiconductor substrate 11, the semiconductor substrate 11 itself is referred to as a “drift layer”. When a substrate composed of a support substrate and an epitaxial film of a semiconductor material formed on the support substrate is used as the semiconductor substrate 11, the epitaxial film is referred to as a “drift layer”.
  • the lower limit of the width of the electric field relaxation layers 13, 70, 90, 110, 130, 150 depends on the impurity concentration of the drift layer, that is, the semiconductor substrate or the epitaxial film, the minimum temperature at which the operation of the semiconductor device is guaranteed, and the manufacturing variation. Is about 1.5 times the thickness of the drift layer, which is the “thickness of the semiconductor substrate”.
  • the thickness (unit: ⁇ m) of the drift layer needs to be about 0.1 times the rated voltage (unit: V). That is, in the case of Si, according to the present invention, the width (unit: ⁇ m) of the electric field relaxation layer can be set to about 0.15 to 0.2 times the rated voltage (unit: V).
  • FIG. 43 is a graph showing the relationship between the rated voltage and the width of the electric field relaxation layer.
  • the vertical axis represents the width of the electric field relaxation layer
  • the horizontal axis represents the rated voltage (V).
  • V the rated voltage
  • FIG. 43 when the semiconductor device 1 according to the first embodiment of the present invention is applied to a Si vertical PIN diode of each rated voltage, an electric field that can obtain a withstand voltage that is 1.2 times the rated voltage at room temperature. The width of the relaxation layer is shown.
  • the width of the electric field relaxation layer is 1.5 times the thickness of the drift layer (hereinafter referred to as “drift layer thickness”) is indicated by a broken line denoted by reference numeral “161”.
  • a case where the thickness is 2.0 times the drift layer thickness is indicated by a two-dot chain line denoted by reference numeral “162”.
  • the width of the electric field relaxation layer is between 1.5 times and 2 times the drift layer thickness.
  • the electric field relaxation layer can have the same width as that of the first embodiment.
  • the width of the electric field relaxation layers 13, 70, 90, 110, 130, and 150 is not more than twice the drift layer thickness, which is the thickness of the semiconductor substrate 11, more specifically, 1 In the range of 5 to 2 times, a relatively high breakdown voltage can be realized as shown in FIG. Since the width of the electric field relaxation layers 13, 70, 90, 110, 130, 150 is not more than twice the thickness of the drift layer, an increase in the size of the semiconductor device can be avoided. That is, a relatively high breakdown voltage can be realized without increasing the size of the semiconductor device.
  • the breakdown voltage increases, it is necessary to increase the drift layer thickness and lower the impurity concentration of the drift layer.
  • the impurity concentration of the drift layer is lowered, the depletion layer easily extends to the drift layer. Therefore, in order to prevent the phenomenon that the depletion layer reaches the stopper layer 14 and the leakage current increases remarkably, that is, the reach through to the stopper layer 14, the electric field relaxation layers 13, 70, 90, 110, 130, 150 are stopped from the stopper layer 14. It is desirable to increase the separation distance up to in proportion to the rated voltage. For example, if the distance from the electric field relaxation layers 13, 70, 90, 110, 130, 150 to the stopper layer 14 is made the same as the drift layer thickness, the reach through to the stopper layer 14 can be sufficiently prevented.
  • the separation distance from the electric field relaxation layers 13, 70, 90, 110, 130, 150 to the stopper layer 14 does not greatly affect the breakdown voltage except for the concern about reach-through, so it is desirable to make it as short as possible.
  • FIG. 44 is a cross-sectional view showing another example of the semiconductor device of the present invention.
  • a field plate 172 having the same potential as the stopper layer 14 is formed using the same wiring layer as the anode electrode 175.
  • the front end of the field plate 172 faces the semiconductor substrate 11 with the insulating film 171 interposed therebetween.
  • the field plate 172 is provided as a metal wiring layer having the same potential as the surface on the other side in the thickness direction of the semiconductor substrate 11 on the outer side in the radial direction from the electric field relaxation layer 13, and the field plate 172 which is the metal wiring layer and the semiconductor
  • the insulating film 171 is interposing as an insulating layer between the surface portion on one side in the thickness direction of the substrate 11, the separation distance from the electric field relaxation layer 13 to the stopper layer 14 can be shortened. For example, even if the separation distance from the electric field relaxation layer 13 to the stopper layer 14 is half the thickness of the semiconductor substrate 11 that is the drift layer thickness, the reach through to the stopper layer 14 can be sufficiently prevented.
  • the proportionality coefficient for obtaining an appropriate value as the separation distance from the electric field relaxation layer 13 to the stopper layer 14 is smaller than that in the case where the field plate 172 is not provided.

Abstract

 活性領域(12)の外周縁部から半導体基板(11)の外周縁部に向けて、活性領域(12)を囲繞するように電界緩和層(13)を形成する。電界緩和層(13)は、複数のP型不純物層(21~25)を備える。各P型不純物層(21~25)は、P型注入層(21a~25a)と、P型注入層(21a~25a)を囲繞するように形成され、P型注入層(21a~25a)よりもP型不純物の濃度が低いP型拡散層(21b~25b)とを備える。第1のP型注入層(21a)は、活性領域(12)に接するか、または一部分が重なって形成される。各P型拡散層(21b~25b)は、第1のP型拡散層(21b)と第2のP型拡散層(22b)とが接するか、またはオーバーラップする程度の広がりを有するように形成される。P型注入層(21a~25a)同士の間隔(s2~s5)は、活性領域(12)から半導体基板(11)の外周縁部に向かうに従って大きくなる。

Description

半導体装置およびその製造方法
 本発明は、半導体装置およびその製造方法に関し、より詳細には、キロボルト単位以上の耐圧を有するパワーエレクトロニクス用半導体装置として好適な半導体装置およびその製造方法に関する。
 パワーエレクトロニクスに用いられる半導体装置(以下「パワー半導体デバイス」という場合がある)、特に耐圧が100ボルト以上の半導体装置としては、ダイオード、金属-酸化膜-半導体電界効果型トランジスタ(Metal-Oxide-Semiconductor Field Effect Transistor;略称:MOSFET)、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor;略称:IGBT)が挙げられる。これらの半導体装置には、耐圧性を保持するための終端構造が設けられる。
 たとえば、半導体基板の厚み方向一方側の表面(以下「基板表面」という場合がある)に対して垂直に電流を流す半導体装置(以下「縦型デバイス」という場合がある)では、能動素子として機能する領域(以下「活性領域」という場合がある)を取り囲むように終端構造が設けられる。
 終端構造の機能は、活性領域と半導体装置の端部との間の基板表面に発生する高電圧を保持することである。半導体装置の高耐圧性は、終端構造を設けることによって、初めて実現される。
 半導体装置の耐圧としては、ダイオードの逆方向耐圧、およびトランジスタのオフ耐圧がある。いずれの場合も、電流を遮断できる、すなわち電流を流さない上限の電圧として定義される。
 半導体装置が電流を遮断している状態では、半導体基板の内部には空乏層が広がっている。この空乏層によって、高電圧を保持することができる。耐圧を超えて電圧を印加すると、半導体基板の内部の電界集中部でアバランシェ降伏が生じる。これによって、空乏層が破れ、短絡電流が流れる。
 たとえば、低濃度N型半導体基板と高濃度P型注入層とによって構成されるPN接合ダイオード(以下「PINダイオード」という場合がある)の場合、オフ時において、空乏層は、ほとんど低濃度N型半導体基板に広がっている。この空乏層によって高電圧が保持される。耐圧は、高濃度P型注入層の端部、具体的には外縁部における電界集中によって制限される。
 そこで、高濃度P型注入層の端部に隣接して、低濃度P型注入層を形成すると、空乏層が低濃度N型半導体基板と低濃度P型注入層との両方に広がる。これによって、高濃度P型注入層の端部の電界が緩和され、耐圧が高められる。
 この低濃度P型注入層は、リサーフ(Reduced Surface Field;略称:RESURF)層、または、JTE(Junction Termination Extension)層と呼称される。また、このような終端構造は、リサーフ構造と呼称される。
 リサーフ構造では、リサーフ層にも空乏層が広がる。高耐圧性を得るためには、所望の電圧でリサーフ層が最表面までほぼ完全に空乏化することが望ましい。その条件は、リサーフ層の注入量、たとえばドーズ量または注入面密度で規定される。
 リサーフ層全体の注入量が単一である場合、最適な注入量は、半導体基板の不純物濃度に依存せず、半導体基板を構成する半導体材料で決まる。たとえば、シリコン(Si)では、最適な注入量は、約1×1012cm-2である。ポリタイプ4Hの炭化珪素(SiC)では、最適な注入量は、約1×1013cm-2である。これらの最適な注入量の値は、注入された不純物の活性化率が100%である場合の値である。これらの最適な注入量の値は、リサーフ条件と呼ばれる。
 リサーフ構造には以下の問題がある。リサーフ構造では、高耐圧性を得るために、リサーフ層の外縁部にも電界が集中してしまう。その結果、高耐圧化は、リサーフ層の外縁部でのアバランシェ降伏によって制限される。すなわち、リサーフ構造による高耐圧化には限界がある。
 この問題は、たとえば、リサーフ層の注入量を、半導体基板の外側に向かうに従って漸減させることによって回避される(たとえば、非特許文献1および特許文献1参照)。このようにリサーフ層の注入量が漸減する構造にすることによって、電界集中点が無数の箇所に分散され、半導体内部の最大電界が大幅に低減される。このようなリサーフ層の構造は、VLD(Variation of Lateral Doping)構造と呼称される。
 また、半導体基板の外側に向かうに従って段階的にリサーフ層の注入量を下げたリサーフ構造がある(たとえば、特許文献2および特許文献3参照)。このリサーフ構造を用いることによって、非特許文献1または特許文献1に開示されるVLD構造のリサーフ層を用いる場合に近い効果を得ることができる。
 具体的に述べると、特許文献2または特許文献3に開示されるリサーフ構造の場合、高濃度P型注入層の外縁部、異なる注入量を有するリサーフ層の境界部、およびリサーフ層の最外縁部に電界が集中する。したがって、特許文献2または特許文献3に開示されるリサーフ構造による電界緩和の効果は、非特許文献1または特許文献1に開示されるVLD構造のリサーフ層を用いる場合に比べて劣る。しかし、特許文献2または特許文献3に開示されるリサーフ構造は、全体が単一の注入量のリサーフ層に比べると、電界集中点が分散される分、半導体基板の内部の最大電界は低減される。
特開昭61-84830号公報 特許第3997551号公報 特表2000-516767号公報
 以上に述べたように、非特許文献1および特許文献1~3に開示される従来技術のリサーフ構造は、リサーフ層の注入量が半導体基板の外周端部に向かうに従って減少する構造であり、高耐圧化に有効である。
 しかし、従来技術のリサーフ構造には、高耐圧が得られる注入量(以下「最適注入量」という場合がある)のマージンが狭いという問題がある。最適注入量のマージンが狭いと、製造プロセスのばらつきの影響を受けやすく、製造された製品における注入量が最適注入量を外れやすい。
 注入量が最適注入量を外れた製品には、以下の問題がある。注入量が最適注入量よりも小さいと、所望の電圧に達する前にリサーフ層が完全に空乏化してしまい、活性領域の外縁部で著しい電界集中が生じ、アバランシェ降伏が生じる。また、注入量が最適注入量よりも大きいと、リサーフ層の内側、すなわち活性領域寄りの領域が、最表面まで空乏化せず、基板表面に発生する高電圧を保持する領域が狭くなり、耐圧が低下する。したがって、注入量が最適注入量を外れた製品は、不良品となってしまう。
 このように最適注入量のマージンが狭いと、製造プロセスのばらつきの影響を受けやすく、注入量が最適注入量を外れやすいので、歩留まりの低下、すなわち良品率の低下を招きやすい。
 本発明の目的は、製造プロセスのばらつきによる影響を受けにくく、比較的高い歩留まりで製造することができる半導体装置およびその製造方法を提供することである。
 本発明の半導体装置は、第1導電型の半導体基板と、前記半導体基板の厚み方向一方側の表面部内に、前記半導体基板の外周縁部から離隔して形成される第2導電型の活性領域と、前記半導体基板の厚み方向一方側の表面部内に、前記活性領域の外周縁部から前記半導体基板の外周縁部に向けて、前記活性領域を囲繞するように環状に形成される電界緩和層とを備え、前記電界緩和層は、互いに間隔をあけて、前記活性領域を囲繞するように形成され、第2導電型の不純物を含有する複数の高濃度不純物層と、各前記高濃度不純物層を囲繞するように形成され、前記高濃度不純物層よりも低い濃度で前記第2導電型の不純物を含有する複数の低濃度不純物層とを備え、前記高濃度不純物層のうち、前記電界緩和層の径方向において最も内側に形成される最内側高濃度不純物層は、前記活性領域に接するか、または一部分が重なって形成され、前記最内側高濃度不純物層を囲繞する前記低濃度不純物層は、前記最内側高濃度不純物層よりも前記径方向の外側に形成される他の前記高濃度不純物層を囲繞する前記低濃度不純物層の少なくとも1つと繋がって形成され、前記高濃度不純物層同士の間隔は、前記活性領域から前記半導体基板の外周縁部に向かうに従って大きくなることを特徴とする。
 本発明の半導体装置の製造方法は、第1導電型の半導体基板と、前記半導体基板の厚み方向一方側の表面部に、前記半導体基板の外周縁部から離隔して形成される第2導電型の活性領域と、前記活性領域の外周縁部から前記半導体基板の外周縁部に向けて、前記活性領域を囲繞するように環状に形成される電界緩和層とを備える半導体装置の製造方法であって、前記半導体基板の厚み方向一方側の表面部上に、前記活性領域が形成される領域に対応する部分を囲繞する複数の開口部が、径方向に互いに間隔をあけて形成された注入マスクを形成するマスク形成工程と、前記注入マスクを介して、前記半導体基板に前記第2導電型の不純物をイオン注入することによって、高濃度不純物層を形成するイオン注入工程と、前記第2導電型の不純物がイオン注入された前記半導体基板を熱処理することによって、前記高濃度不純物層を囲繞する低濃度不純物層を形成する熱処理工程とを備え、前記マスク形成工程では、前記径方向における前記開口部同士の間隔が、前記活性領域が形成される領域に対応する部分から前記半導体基板の外周縁部に対応する部分に向かうに従って大きくなるように、前記注入マスクを形成し、前記熱処理工程を終えた時点で、前記高濃度不純物層のうち、前記電界緩和層の径方向において最も内側に形成される最内側高濃度不純物層は、前記活性領域に接するか、または一部分が重なって形成され、前記最内側高濃度不純物層を囲繞する前記低濃度不純物層は、前記最内側高濃度不純物層よりも前記径方向の外側に形成される他の前記高濃度不純物層を囲繞する前記低濃度不純物層の少なくとも1つと繋がって形成されることを特徴とする。
 本発明の半導体装置によれば、第1導電型の半導体基板の厚み方向一方側の表面部内に、半導体基板の外周縁部から離隔して、第2導電型の活性領域が形成される。この活性領域の外周縁部から半導体基板の外周縁部に向けて、活性領域を囲繞するように環状の電界緩和層が形成される。電界緩和層は、互いに間隔をあけて活性領域を囲繞するように形成される複数の高濃度不純物層と、各高濃度不純物層を囲繞するように形成される複数の低濃度不純物層とを備える。低濃度不純物層は、高濃度不純物層よりも第2導電型の不純物の濃度が低い。電界緩和層の径方向において最も内側に形成される最内側高濃度不純物層は、活性領域に接するか、または一部分が重なって形成される。最内側高濃度不純物層を囲繞する低濃度不純物層は、最内側高濃度不純物層よりも径方向の外側に形成される他の高濃度不純物層を囲繞する低濃度不純物層の少なくとも1つと繋がって形成される。高濃度不純物層同士の間隔は、活性領域から半導体基板の外周縁部に向かうに従って大きくなる。
 この構成によって、高濃度不純物層および低濃度不純物層を形成するときに、比較的高い耐圧を有する半導体装置を実現可能な第2導電型の不純物の注入量のマージンを比較的広くすることができる。これによって、製造プロセスのばらつきによる影響を受けにくく、比較的高い歩留まりで製造することができる半導体装置を実現することができる。
 本発明の半導体装置の製造方法によれば、マスク形成工程において、半導体基板の厚み方向一方側の表面部上に、注入マスクが形成される。注入マスクには、活性領域が形成される領域に対応する部分を囲繞する複数の開口部が、径方向に互いに間隔をあけて形成される。この注入マスクを介して、イオン注入工程において、半導体基板に第2導電型の不純物がイオン注入され、高濃度不純物層が形成される。この第2導電型の不純物がイオン注入された半導体基板が、熱処理工程で熱処理されて、高濃度不純物層を囲繞する低濃度不純物層が形成される。これによって、高濃度不純物層と低濃度不純物層とを備える電界緩和層が、活性領域の外周縁部から半導体基板の外周縁部に向けて、活性領域を囲繞するように環状に形成される。熱処理工程を終えた時点で、高濃度不純物層のうち、電界緩和層の径方向において最も内側に形成される最内側高濃度不純物層は、活性領域に接するか、または一部分が重なって形成される。最内側高濃度不純物層を囲繞する低濃度不純物層は、最内側高濃度不純物層よりも径方向の外側に形成される他の高濃度不純物層を囲繞する低濃度不純物層の少なくとも1つと繋がって形成される。このような電界緩和層によって、比較的高い耐圧を有する半導体装置を実現することができる。
 マスク形成工程では、径方向における開口部同士の間隔が、活性領域が形成される領域に対応する部分から半導体基板の外周縁部に対応する部分に向かうに従って大きくなるように、注入マスクが形成される。これによって、比較的高い耐圧を有する半導体装置を実現可能な第2導電型の不純物の注入量のマージンを比較的広くすることができる。したがって、製造プロセスのばらつきによる影響を抑え、比較的高い耐圧を有する半導体装置を、比較的高い歩留まりで製造することができる。
 また、低濃度不純物層は、高濃度不純物層を形成するためのイオン注入後に熱処理を行うことによって形成されるので、低濃度不純物層を形成するためにイオン注入を行う必要がない。また、比較的高い耐圧を実現するために、イオン注入後に長時間の熱処理を行う必要がない。したがって、前述のように比較的高い耐圧を実現することができる電界緩和層を、容易に形成することができる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の第1の実施の形態の半導体装置1の構成を示す平面図である。 図1の切断面線II-IIから見た断面図である。 本発明の第1の実施の形態における半導体装置1の電界緩和層13の部分を拡大して示す断面図である。 レジストマスクRM1を用いてイオン注入を行っている状態を示す断面図である。 電界緩和層13の形成が終了した段階の状態を示す断面図である。 本発明の第1の実施の形態の半導体装置1におけるアクセプタイオン注入量の平面方向分布を示すグラフである。 本発明の第1の実施の形態の半導体装置1における耐圧のセット数依存性に関するシミュレーション結果を示すグラフである。 本発明の第1の実施の形態の半導体装置1における電界のセット数依存性に関するシミュレーション結果を示すグラフである。 本発明の第1の実施の形態の半導体装置1における耐圧の注入量依存性に関するシミュレーション結果を示すグラフである。 本発明の第1の実施の形態における半導体装置1の表面アクセプタ濃度の平面方向分布を示すグラフである。 本発明の第1の実施の形態の半導体装置1における電界分布のシミュレーション結果を示すグラフである。 本発明の第1の実施の形態の半導体装置1における注入量のマージンに関するシミュレーション結果を示すグラフである。 本発明の第1の実施の形態の半導体装置1における注入量のマージンに関するシミュレーション結果を示すグラフである。 従来技術の半導体装置における基板表面の空乏層分布に関するシミュレーション結果を示す画像である。 本発明の第1の実施の形態の半導体装置1における基板表面の空乏層分布に関するシミュレーション結果を示す画像である。 パッシベーション膜表面の最大電界に関するシミュレーション結果を示すグラフである。 従来技術の半導体装置における基板断面の空乏層分布に関するシミュレーション結果を示す画像である。 従来技術の半導体装置における基板断面の空乏層分布に関するシミュレーション結果を示す画像である。 従来技術の半導体装置における基板断面の空乏層分布に関するシミュレーション結果を示す画像である。 本発明の第1の実施の形態の半導体装置1における基板断面の空乏層分布に関するシミュレーション結果を示す画像である。 本発明の第1の実施の形態の半導体装置1における基板断面の空乏層分布に関するシミュレーション結果を示す画像である。 本発明の第1の実施の形態の半導体装置1における基板断面の空乏層分布に関するシミュレーション結果を示す画像である。 パッシベーション膜表面の最大電界に関するシミュレーション結果を示すグラフである。 本発明の第2の実施の形態における半導体装置2の構成を示す平面図および断面図である。 レジストマスクRM2を用いてイオン注入を行っている状態を示す図である。 電界緩和層70の形成が終了した段階の状態を示す平面図および断面図である。 本発明の第2の実施の形態の半導体装置2における耐圧の注入量依存性に関するシミュレーション結果を示すグラフである。 本発明の第2の実施の形態の半導体装置2における注入量のマージンに関するシミュレーション結果を示すグラフである。 本発明の第3の実施の形態における半導体装置3の構成を示す断面図である。 本発明の第3の実施の形態の半導体装置3を、耐圧4500VクラスのSiの縦型PINダイオードに適用したときのシミュレーション結果を示すグラフである。 本発明の第3の実施の形態の半導体装置3を、耐圧4500VクラスのSiの縦型PINダイオードに適用したときのシミュレーション結果を示すグラフである。 本発明の第4の実施の形態における半導体装置4の構成を示す平面図および断面図である。 本発明の第4の実施の形態の半導体装置4を、耐圧4500VクラスのSiの縦型PINダイオードに適用したときのシミュレーション結果を示すグラフである。 本発明の第4の実施の形態の変形例における半導体装置5の構成を示す平面図および断面図である。 本発明の第4の実施の形態の変形例における半導体装置5を、耐圧4500VクラスのSiの縦型PINダイオードに適用したときのシミュレーション結果を示すグラフである。 レジストマスクRM3を用いてイオン注入を行っている状態を示す断面図である。 レジストマスクRM3を等方的にエッチングして、レジストマスクRM4を形成した状態を示す断面図である。 レジストマスクRM4を用いてイオン注入を行っている状態を示す断面図である。 レジストマスクRM4を用いてイオン注入を行っている状態を示す断面図である。 レジストマスクRM4を用いてイオン注入を行っている状態を示す断面図である。 半導体装置の他の例を示す断面図である。 半導体装置の他の例を示す断面図である。 定格電圧と電界緩和層の幅との関係を示すグラフである。 本発明の半導体装置の他の例を示す断面図である。
 <第1の実施の形態>
 図1は、本発明の第1の実施の形態の半導体装置1の構成を示す平面図である。本実施の形態では、半導体装置1を縦型のダイオードに適用した場合の構成であるPINダイオードの構成を示している。図2は、図1の切断面線II-IIから見た断面図である。
 半導体装置1は、図1および図2に示すように、半導体基板11と、活性領域12と、電界緩和層13と、ストッパ層14と、アノード電極15と、カソード層16と、カソード電極17とを備える。半導体基板11、ストッパ層14およびカソード層16は、N型の導電性を有する。活性領域12および電界緩和層13は、P型の導電性を有する。N型は第1導電型に相当し、P型は第2導電型に相当する。
 半導体基板11は、N型の半導体基板である。半導体基板11は、比較的低い濃度でN型不純物を含有する。以下の説明では、N型不純物が比較的低い濃度であることを「N-」と記載する場合がある。図1は、半導体装置1を半導体基板11の厚み方向一方側から見た平面図に相当する。半導体基板11は、厚み方向一方側から見て、矩形状、具体的には正方形状である。
 活性領域12は、半導体基板11の厚み方向一方側の表面部内に、半導体基板11の外周縁部から離隔して形成される。具体的には、活性領域12は、半導体基板11の厚み方向一方側の表面部の中央部に形成される。活性領域12は、半導体基板11の厚み方向一方側から見て、略正方形状、具体的には四隅部が90°の円弧形の曲線で構成される正方形状に形成される。活性領域12は、比較的高い濃度でP型不純物を含有するP型不純物層で構成される。
 電界緩和層13は、半導体基板11の厚み方向一方側の表面部内に、活性領域12の外周縁部から半導体基板11の外周縁部に向けて形成される。電界緩和層13は、半導体基板11の厚み方向一方側から見て、活性領域12を囲繞するように環状に形成される。以下の説明では、電界緩和層13の径方向を、単に「径方向」といい、電界緩和層13の周方向を、単に「周方向」という場合がある。
 電界緩和層13は、複数のP型不純物層21,22,23,24,25を備える。複数のP型不純物層21,22,23,24,25は、それぞれ、半導体基板11の厚み方向一方側から見て環状に形成され、径方向に並んで配置される。各P型不純物層21,22,23,24,25は、半導体基板11の厚み方向一方側から見て、略正方形の環状、具体的には四隅部が90°円弧形の曲線で構成される正方形の環状に形成される。
 ストッパ層14は、半導体基板11の厚み方向一方側の表面部内のうち、半導体基板11の外周縁部に、電界緩和層13から離隔して形成される。ストッパ層14は、比較的高い濃度でN型不純物を含有するN型不純物層で構成される。
 径方向において活性領域12の外側の、電界緩和層13からストッパ層14までの構造が、終端構造となる。換言すれば、終端構造は、電界緩和層13とストッパ層14とを含む。
 アノード電極15は、活性領域12の厚み方向一方側の表面部上に設けられる。アノード電極15は、活性領域12の厚み方向一方側の表面部の一部分、具体的には中央部に形成される。アノード電極15は、半導体基板11の厚み方向一方側から見て、活性領域12よりも小さい略正方形状、具体的には、四隅部が90°円弧形の曲線で構成される正方形状である。
 カソード層16は、活性領域12が形成される側とは反対側の半導体基板11の表面部内、すなわち半導体基板11の厚み方向他方側の表面部(以下「基板裏面」という場合がある)内に形成される。カソード層16は、基板裏面全体にわたって形成される。カソード層16は、比較的高い濃度でN型不純物を含有するN型不純物層で構成される。
 カソード電極17は、カソード層16の厚み方向他方側の表面部上に設けられる。カソード電極17は、カソード層16の厚み方向他方側の表面部全体にわたって設けられる。
 以上のような構成の半導体装置1において、活性領域12と接触するアノード電極15と、基板裏面のカソード電極17との間にバイアス電圧が印加される。これによって、ダイオード1は、PN接合ダイオードとして機能する。
 本実施の形態では、電界緩和層13の構成を中心に説明する。図3は、本発明の第1の実施の形態における半導体装置1の電界緩和層13の部分を拡大して示す断面図である。
 図3に示すように、比較的低い濃度(N-)でN型不純物を含有する半導体基板11の厚み方向一方側の表面部内に、比較的高い濃度でP型不純物を含有する活性領域12が形成されている。活性領域12は、P型不純物を含有する半導体層であるPベース層で構成される。以下の説明では、活性領域12を、「Pベース層12」という場合がある。
 半導体基板11の厚み方向一方側から見て、Pベース層12を囲繞するように、複数のP型不純物層21,22,23,24,25が形成されている。これら複数のP型不純物層21,22,23,24,25によって、電界緩和層13が構成されている。
 径方向において、電界緩和層13から間隔をあけて、半導体基板11の外周縁部には、比較的高い濃度でN型不純物を含有するストッパ層14が形成されている。
 電界緩和層13は、本実施の形態では、5つのP型不純物層21,22,23,24,25、具体的には、第1のP型不純物層21、第2のP型不純物層22、第3のP型不純物層23、第4のP型不純物層24および第5のP型不純物層25を備える。
 各P型不純物層21,22,23,24,25は、P型不純物の濃度が異なる複数のP型不純物層、具体的には2種類のP型不純物層を含んで構成される。2種類のP型不純物層のうち、1つは、比較的低い濃度でP型不純物を含有するP型注入層21a,22a,23a,24a,25aであり、もう1つは、P型注入層21a,22a,23a,24a,25aよりも低い濃度でP型不純物を含有するP型拡散層21b,22b,23b,24b,25bである。
 P型注入層21a,22a,23a,24a,25aは、P型拡散層21b,22b,23b,24b,25bとの比較においては、P型拡散層21b,22b,23b,24b,25bよりもP型不純物の濃度が高くなっている。したがって、本実施の形態では、P型注入層21a,22a,23a,24a,25aは、高濃度不純物層に相当し、P型拡散層21b,22b,23b,24b,25bは、低濃度不純物層に相当する。
 複数のP型注入層、すなわち第1~第5のP型注入層21a~25aは、互いに間隔をあけて、半導体基板11の厚み方向一方側から見て、活性領域12を囲繞するように形成される。
 各P型注入層21a,22a,23a,24a,25aは、それに対応するP型拡散層21b,22b,23b,24b,25bに囲繞されている。P型注入層と、それを囲繞するP型拡散層とは、実際には、P型不純物の濃度が連続的に変化するので、境界を定義することができないが、ここでは、理解を容易にするために分けて考える。具体的には、不純物のイオン注入によって形成される領域を「注入層」といい、イオン注入後の熱処理によって不純物が拡散されて形成される領域を「拡散層」という。
 第1のP型不純物層21は、第1のP型注入層21aと、第1のP型注入層21aを囲繞する第1のP型拡散層21bとを含む。第2のP型不純物層22は、第2のP型注入層22aと、第2のP型注入層22aを囲繞する第2のP型拡散層22bとを含む。第3のP型不純物層23は、第3のP型注入層23aと、第3のP型注入層23aを囲繞する第3のP型拡散層23bとを含む。第4のP型不純物層24は、第4のP型注入層24aと、第4のP型注入層24aを囲繞する第4のP型拡散層24bとを含む。第5のP型不純物層25は、第5のP型注入層25aと、第5のP型注入層25aを囲繞する第5のP型拡散層25bとを含む。
 P型注入層21a~25aのうち、電界緩和層13の径方向において最も内側に形成される第1のP型注入層21aは、活性領域を構成するPベース層12に接するか、または一部分が重なって形成される。本実施の形態では、第1のP型注入層21aは、Pベース層12に接して形成される。第1のP型注入層21aは、最内側高濃度不純物層に相当する。
 Pベース層12は、基板表面から、電界緩和層13よりも深い位置まで形成されている。電界緩和層13を構成する各P型不純物層21,22,23,24,25と同様に、Pベース層12も、実際には、P型注入層に相当する部分とP型拡散層に相当する部分とを含んで構成されるが、理解を容易にするために、ここでは、単一の層で構成されるものとして取扱う。
 径方向において、Pベース層12の外側には、第1のP型注入層21aが、Pベース層12に接するか、または一部分が重なって形成される。本実施の形態では、図3に示すように、径方向において、Pベース層12の外側には、第1のP型注入層21aが、Pベース層12に接して形成されている。また図3に示すように、第1のP型注入層21aの外側には、第2のP型注入層22aが、第1のP型注入層21aから間隔をあけて形成されている。第2のP型注入層22aの外側には、第3のP型注入層23aが、第2のP型注入層22aから間隔をあけて形成されている。第3のP型注入層23aの外側には、第4のP型注入層24aが、第3のP型注入層23aから間隔をあけて形成されている。第4のP型注入層24aの外側には、第5のP型注入層25aが、第4のP型注入層24aから間隔をあけて形成されている。
 第1~第5のP型注入層21a,22a,23a,24a,25aは、それぞれ、対応する第1~第5のP型拡散層21b,22b,23b,24b,25bに囲繞されている。電界緩和層13は、第1~第5のP型注入層21a,22a,23a,24a,25aと、第1~第5のP型拡散層21b,22b,23b,24b,25bとを含んで構成される。
 P型注入層21a~25aのうち、少なくとも、電界緩和層13の径方向において最も外側に形成される第5のP型注入層25aを囲繞する第5のP型拡散層25bは、径方向において、第5のP型注入層25aよりも1つ内側に形成される他のP型注入層を囲繞するP型拡散層から、間隔をあけて形成される。すなわち、少なくとも第5のP型拡散層25bは、その1つ内側の第4のP型注入層24aを囲繞する第4のP型拡散層24bから、間隔をあけて形成される。第5のP型注入層25aは、最外側高濃度不純物層に相当する。
 ここで、第1のP型注入層21aの径方向における長さ寸法(以下「幅」という)をw1とし、第2のP型注入層22aの幅をw2とし、第3のP型注入層23aの幅をw3とし、第4のP型注入層24aの幅をw4とし、第5のP型注入層25aの幅をw5とする。
 また、径方向において隣合うP型注入層同士の間の領域を「層間領域」という。具体的には、第1のP型注入層21aと第2のP型注入層22aとの間の領域を「第2層間領域」といい、第2層間領域の径方向における長さ寸法である幅をs2とする。第2のP型注入層22aと第3のP型注入層23aとの間の領域を「第3層間領域」といい、第3層間領域の幅をs3とする。第3のP型注入層23aと第4のP型注入層24aとの間の領域を「第4層間領域」といい、第4層間領域の幅をs4とする。第4のP型注入層24aと第5のP型注入層25aとの間の領域を「第5層間領域」といい、第5層間領域の幅をs5とする。
 また、第1のP型注入層21aを除いて、各P型注入層22a,23a,24a,25aと、その内側の層間領域とを合わせて、「セット」という。具体的には、第2のP型注入層22aと、その内側の第2層間領域とを合わせて、「第2セット」という。第3のP型注入層23aと、その内側の第3層間領域とを合わせて、「第3セット」という。第4のP型注入層24aと、その内側の第4層間領域とを合わせて、「第4セット」という。第5のP型注入層25aと、その内側の第5層間領域とを合わせて、「第5セット」という。
 セットの径方向における長さ寸法である幅を「セット幅」といい、Lで表す。具体的には、第2セットの幅を「第2セット幅」といい、第3セットの幅を「第3セット幅」といい、第4セットの幅を「第4セット幅」といい、第5セットの幅を「第5セット幅」という。
 セット幅Lは、セットを構成するP型注入層の幅wと、その内側の層間領域の幅sとの和となる。換言すれば、セット幅Lは、セットを構成する層間領域の幅sと、その層間領域に径方向の外側で接するP型注入層の幅wとの和となる。したがって、第2セット幅をL2とし、第3セット幅をL3とし、第4セット幅をL4とし、第5セット幅をL5とすると、L2=w2+s2、L3=w3+s3、L4=w4+s4、L5=w5+s5となる。本実施の形態では、すべてのセット幅L2~L5は等しく、L2=L3=L4=L5である。
 また、径方向において隣合うP型注入層同士の間隔、すなわち層間領域の幅s2,s3,s4,s5は、径方向の内側から外側に向かうに従って、すなわち活性領域12から半導体基板11の外周縁部に向かうに従って、大きくなっている。つまり、s2<s3<s4<s5となっている。本実施の形態では、前述のようにL2=L3=L4=L5であるので、w2>w3>w4>w5となっている。
 このように本実施の形態では、径方向において隣合うP型注入層同士の間隔s2,s3,s4,s5は、径方向の内側から外側に向かうに従って線形的に、具体的には等差数列的に増加する。第1のP型注入層21aを除くその他のP型注入層22a,23a,24a,25aの幅w2,w3,w4,w5は、径方向の内側から外側に向かうに従って線形的に、具体的には等差数列的に減少する。
 第1のP型注入層21aの幅w1は、独立したパラメータである。第1のP型注入層21aの幅w1は、たとえば、セット幅と同程度であればよい。Pベース層12の深さと第1のP型拡散層21bの深さとの差が比較的大きい場合には、スイッチング時のPベース層12の厚み方向他方側の端部(以下「底端部」という場合がある)における電界集中を緩和するために、第1のP型注入層21aの幅w1を比較的大きくする方が好ましい。
 また、各P型拡散層21b,22b,23b,24b,25bは、第1のP型拡散層21bと第2のP型拡散層22bとが、接するか、またはオーバーラップする程度の広がり(以下「拡散長」という場合がある)を有するように形成される。本実施の形態では、第1のP型拡散層21bと第2のP型拡散層22bとは接して形成される。後述するように、P型拡散層の拡散長が大きすぎると、本発明の効果が薄れてしまうので、P型拡散層の拡散長は、適宜に選ばれる。
 次に、本発明の第1の実施の形態の半導体装置1の製造方法について説明する。本実施の形態の半導体装置1の製造方法は、Pベース層12を形成する工程(以下「ベース層形成工程」という場合がある)と、電界緩和層13を形成する工程(以下「電界緩和層形成工程」という場合がある)とを含む。電界緩和層形成工程は、マスク形成工程と、イオン注入工程と、熱処理工程とを含む。図4は、レジストマスクRM1を用いてイオン注入を行っている状態を示す断面図である。図5は、電界緩和層13の形成が終了した段階の状態を示す断面図である。
 図4に示すように、まず、ベース層形成工程において、比較的低い濃度(N-)でN型不純物を含有する半導体基板11の厚み方向一方側の表面部の一部分に、比較的高い濃度でP型不純物を含有するPベース層12を形成する。
 その後、マスク形成工程において、半導体基板11の厚み方向一方側の表面部上に、レジストマスクRM1を形成する。レジストマスクRM1は、イオン注入用のマスクである注入マスクに相当する。レジストマスクRM1は、第1~第5のP型注入層21a,22a,23a,24a,25aが形成される領域(以下「形成領域」という場合がある)に対応する部分が開口部となったパターンを有するように形成される。すなわち、レジストマスクRM1は、活性領域であるPベース層12が形成される領域に対応する部分を囲繞する複数の開口部が、径方向に互いに間隔をあけて形成されたパターンを有するように形成される。
 本実施の形態では、レジストマスクRM1は、径方向における開口部同士の間隔が、活性領域であるPベース層12が形成される領域に対応する部分から半導体基板11の外周縁部に対応する部分に向かうに従って大きくなるように形成される。
 そして、イオン注入工程において、レジストマスクRM1を介して、半導体基板11にP型不純物をイオン注入する。具体的には、レジストマスクRM1の上方、すなわち厚み方向一方側から、比較的低いエネルギーで、P型不純物のイオンであるアクセプタイオン、たとえば、ホウ素イオンの注入を行う。これによって、第1~第5のP型注入層21a,22a,23a,24a,25aが形成される。
 次に、レジストマスクRM1を除去した後、熱処理工程において、アクセプタイオンが注入された半導体基板11を熱処理することによって、注入されたアクセプタイオンを拡散する。その結果、図5に示すように、各P型注入層21a,22a,23a,24a,25aを囲繞するように、第1~第5のP型拡散層21b,22b,23b,24b,25bが形成される。これによって、電界緩和層13が形成される。
 図5では、理解を容易にするために、各P型注入層21a,22a,23a,24a,25aに対応する領域を、熱処理の前後で変化しないように示している。しかし、実際には、熱処理によって、各P型注入層21a,22a,23a,24a,25aの表面アクセプタ濃度は減少し、注入深さにおけるアクセプタ濃度は増加する。「注入深さ」は、イオン注入によってアクセプタイオンが到達する最大深さに相当する。
 また、前述のように、P型注入層とP型拡散層とは、実際には、P型不純物の濃度であるアクセプタ濃度が連続的に変化するので、境界を定義することができないが、ここでは、理解を容易にするために、不純物のイオン注入によって注入される領域を「注入層」とし、イオン注入後の熱処理によって不純物が拡散される領域を「拡散層」として、分けて考える。
 また、本実施の形態では、Pベース層12を形成した後に電界緩和層13を形成しているが、この順番は逆になってもよい。また、アクセプタイオンを拡散するための熱処理は、Pベース層12と電界緩和層13とで共通にしてもよい。
 また、本実施の形態では、イオン注入用のマスクとして、レジストマスクRM1を用いているが、イオン注入用のマスクは、これに限定されるものではなく、たとえば、酸化膜で構成される酸化膜マスクであってもよい。
 図6は、本発明の第1の実施の形態の半導体装置1におけるアクセプタイオン注入量の平面方向分布を示すグラフである。図6において、縦軸は、電界緩和層13における不純物であるアクセプタイオンの注入量を示し、横軸は、半導体基板11の水平方向の距離を示す。半導体基板11の水平方向とは、半導体基板11の厚み方向一方側の表面に平行な方向をいい、径方向に平行な方向となっている。図4に示す工程において、電界緩和層13が形成される領域に注入される不純物であるアクセプタイオンの注入量は、図6に示すグラフのように表される。
 図6において実線で示すように、第1~第5のP型注入層21a,22a,23a,24a,25aに対応する領域には、アクセプタイオンが、Pベース層12よりも低い注入量で注入されている。
 ここで、第1のP型注入層21aを除いて、アクセプタイオンが注入された領域と、その内側に隣接する領域であって、アクセプタイオンが注入されない領域との組であるセットについて、それぞれ注入量の平均値を算出すると、図6において破線で示すような階段状の注入量分布となる。
 この階段状の注入量分布は、特許文献2および特許文献3に開示されるリサーフ層の注入量分布と同様である。セットの数をさらに増やすと、非特許文献1および特許文献1に開示されるVLD構造のリサーフ層の注入量分布と同様になる。
 アクセプタイオンが注入された領域(以下「注入領域」という場合がある)は、第2~第5のP型注入層22a,23a,24a,25aに相当し、これらの内側に隣接するアクセプタイオンが注入されない領域(以下「非注入領域」という場合がある)は、隣接するP型注入層21a,22a,23a,24a,25a同士の間の領域、すなわち第2~第5層間領域に相当する。
 本実施の形態の電界緩和層13では、注入領域である第2~第5のP型注入層22a,23a,24a,25aと、その内側に隣接する非注入領域である第2~第5層間領域とからなる第2~第5セットの幅L2~L5を一定としている。
 すなわち、本実施の形態では、P型注入層21a~25aおよびP型拡散層21b~25bは、隣合うP型注入層21a,22a,23a,24a,25a同士の間の層間領域の幅s2~s5と、その層間領域に径方向の外側で接するP型注入層22a,23a,24a,25aの幅w2~w5との和が、それぞれ、予め定める値になるように形成される。
 また、本実施の形態では、注入領域である第2~第5のP型注入層22a,23a,24a,25aの幅w2~w5を、径方向の外側に向かうに従って線形的に漸減させ、非注入領域である層間領域の幅、すなわち隣合うP型注入層21a,22a,23a,24a,25a同士の間隔s2~s5を、径方向の外側に向かうに従って線形的に漸増させている。これによって、第2セット~第5セットのそれぞれの注入量の平均値は、径方向の外側に向かうに従って、水平方向距離に対しても線形性を持って漸減する。
 このような電界緩和層13の構成は、セットの数が比較的少ない場合でも、高耐圧性、製造プロセスのばらつきに対するロバスト性、および半導体装置の動作環境に対するロバスト性を得やすい、非常にバランスの良い構成である。ここで、ロバスト性とは、外的要因による変化を内部で阻止する性質をいう。
 以上のように、本実施の形態では、セットの幅L2~L5を一定にするとともに、セットを構成するP型注入層22a~25aの幅w2~w5を、径方向の外側に向かうに従って漸減させ、隣合うP型注入層21a~25a同士の間隔s2~s5を、径方向の外側に向かうに従って漸増させることによって、擬似的に非特許文献1および特許文献1~3に開示されるようなリサーフ層を形成している。本実施の形態では、理解を容易にするために、セットの数を4個としたが、セットの数が多い方が、擬似的に形成するリサーフ層と、非特許文献1および特許文献1~3に開示されるリサーフ層との乖離が少なくなるので好ましい。
 また、P型注入層21a~25aを離散的、すなわちデジタル的に形成すると、P型注入層21a~25aのPN接合における濃度勾配が大きくなるので、各P型注入層21a~25aの外周縁部で電界集中が発生する。そこで、本実施の形態では、適当な熱処理を行ってP型拡散層21b~25bを形成し、PN接合における濃度勾配を小さくして、電界集中を緩和している。
 この熱処理の後も、離散的なアクセプタイオンの分布は、ほぼ保持される。離散的なアクセプタイオンの分布が保持されることによって、高耐圧が得られる注入量のマージンが広くなる。したがって、非特許文献1、特許文献3に示されるような非常に長時間にわたる強い熱処理は不要である。これらについては、後述する。
 次に、本発明の第1の実施の形態の半導体装置1を、4500Vクラスの耐圧を有するSiの縦型PINダイオードに適用した場合の効果について、図7~図15に示すシミュレーション結果を用いて説明する。
 まず、初めに、電界緩和層13に含まれるセット数について述べる。図7は、本発明の第1の実施の形態の半導体装置1における耐圧のセット数依存性に関するシミュレーション結果を示すグラフである。図8は、本発明の第1の実施の形態の半導体装置1における電界のセット数依存性に関するシミュレーション結果を示すグラフである。図7において、縦軸は、300Kにおける耐圧(V)を示し、横軸は、電界緩和層13に含まれるセット数を示す。図8において、縦軸は、4500Vの電圧を印加した場合の半導体装置1の内部の最大電界(以下「半導体内部最大電界」という場合がある)(V/cm)を示し、横軸は、電界緩和層13に含まれるセット数を示す。
 図7では、電界緩和層13の径方向における幅を一定にして、電界緩和層13に含まれるセット数を変化させた場合の耐圧のシミュレーション結果を示している。図8では、電界緩和層13の径方向における幅を一定にして、電界緩和層13に含まれるセット数を変化させて、半導体装置1のアノード電極15とカソード電極17との間に4500Vの電圧を印加した場合の半導体内部最大電界のシミュレーション結果を示している。
 図7および図8に示すシミュレーション結果は、電界緩和層13を構成する各P型注入層21a,22a,23a,24a,25aにおけるP型不純物の注入量を、1.8×1012cm-2、2.5×1012cm-2、3.5×1012cm-2とし、電界緩和層13のPN接合深さが6μmとなるように熱処理することを条件としてシミュレーションを行った結果である。
 図7では、電界緩和層13の各P型注入層21a~25aの注入量が1.8×1012cm-2である場合を、記号「△」と参照符号「31」で示される破線とで示し、電界緩和層13の各P型注入層21a~25aの注入量が2.5×1012cm-2である場合を、記号「◇」と参照符号「32」で示される実線とで示し、電界緩和層13の各P型注入層21a~25aの注入量が3.5×1012cm-2である場合を、記号「□」と参照符号「33」で示される二点鎖線とで示す。
 図8では、電界緩和層13の各P型注入層21a~25aの注入量が1.8×1012cm-2である場合を、記号「△」と参照符号「35」で示される破線とで示し、電界緩和層13の各P型注入層21a~25aの注入量が2.5×1012cm-2である場合を、記号「◇」と参照符号「36」で示される実線とで示し、電界緩和層13の各P型注入層21a~25aの注入量が3.5×1012cm-2である場合を、記号「□」と参照符号「37」とで示す。
 ここで、1つのセットにおけるセット幅Lに対する注入領域の幅wの比を、「セット注入比」と呼称すると、径方向において、最も内側のセット注入比と、最も外側のセット注入比とは、固定されている。
 図7および図8から判るように、セット数が少ないほど、耐圧は低くなる。しかし、セット数を35個まで増やすと、適切な注入量において耐圧は、室温の目標値である5200Vを大きく超える。また、4500Vにおける半導体内部最大電界を0.2MV/cm、すなわち2.0×10V/cmまで下げることができる。本実施の形態では、「室温」を25℃とする。
 目的とする耐圧が高くなるのに従って、必要なセット数は増加する。また、最も内側のセット注入比は、耐圧にほぼ依存しないが、最も外側のセット注入比は、目的とする耐圧が高くなるのに従って、下げる必要がある。
 次に、熱処理時間について述べる。図9は、本発明の第1の実施の形態の半導体装置1における耐圧の注入量依存性に関するシミュレーション結果を示すグラフである。図9において、縦軸は、300Kにおける耐圧(V)を示し、横軸は、電界緩和層13の各P型注入層21a~25aにおける注入量(cm-2)を示す。図9では、熱処理時間をパラメータとしたときの、耐圧の注入量依存性を示している。ここで、セット数は35個である。
 また図9では、熱処理時間を、その熱処理時間の熱処理で形成される電界緩和層13のPN接合深さで表現している。図9では、電界緩和層13のPN接合深さが2μmである場合を、記号「◇」と参照符号「41」で示される一点鎖線とで示し、電界緩和層13のPN接合深さが4μmである場合を、記号「□」と参照符号「42」で示される破線で示し、電界緩和層13のPN接合深さが6μmである場合を、記号「△」と参照符号「43」で示される実線で示し、電界緩和層13のPN接合深さが8μmである場合を、記号「○」と参照符号「44」で示される二点鎖線とで示す。
 参照符号「41」で示される電界緩和層13のPN接合深さが2μmである場合、および参照符号「42」で示される電界緩和層13のPN接合深さが4μmである場合のように、熱処理時間が短い、すなわち電界緩和層13のPN接合深さが小さいと、耐圧が、目標値である5200Vに達しない。これは、各P型注入層21a~25aの外周縁部で、比較的強い電界集中が生じるためである。
 また、参照符号「44」で示される電界緩和層13のPN接合深さが8μmである場合のように、熱処理時間が過度に長い、すなわち電界緩和層13のPN接合深さが過度に大きいと、1.5×1012cm-2~2.5×1012cm-2という最適注入量における耐圧は高い。しかし、目標値である5200Vという高耐圧が得られる注入量のマージンが狭くなる。これは、熱処理時間が過度に長くなると、熱拡散が進みすぎてしまい、本発明の特徴である離散的なアクセプタイオンの分布が曖昧になり、非特許文献1および特許文献1に開示されるようなVLD構造のリサーフ層に近づくからである。
 つまり、高耐圧性と注入量のマージンとの両方を確保するためには、最適な熱処理が存在するということである。図9に示す例の場合、最適な熱処理とは、参照符号「43」で示されるように、PN接合深さが6μmとなる程度のものである。このとき、高耐圧が得られる注入量の範囲は、面密度で、1.5×1012cm-2~3.5×1012cm-2である。この注入量の範囲は、半導体基板11を構成する半導体材料で決まるリサーフ条件の1.5倍~3.5倍に相当する。リサーフ条件は、半導体基板11を構成する半導体材料毎に予め求められるリサーフ構造の注入量の最適値である。
 したがって、半導体基板11の厚み方向一方側の表面における各P型注入層21a~25aのP型不純物の面密度と、そのP型注入層21a~25aを半導体基板11の厚み方向において囲繞するP型拡散層21b~25bのP型不純物の面密度との和は、半導体基板11を構成する半導体材料毎に予め求められるリサーフ条件の1.5倍以上3.5倍以下であることが好ましい。
 繰り返しになるが、図7~図9から判るように、本実施の形態の半導体装置1では、電界緩和層13に含まれるP型注入層21a~25aの本数、すなわちセット数を多くして、電界集中をP型注入層21a~25aの本数だけ分散するとともに、適切な熱拡散をして、各P型注入層21a~25aの端部における電界集中を緩和しなければ、高耐圧性を得ることができない。
 ここで、最も内側に位置する層間領域の幅(以下「最内側P型注入層間隔」という場合がある)s2に着目する。最内側P型注入層間隔s2が小さすぎると、Pベース層12に接続されるP型注入層21aの底端部において電界集中が発生せず、P型注入層の本数が1本少なくなるのと同じ状態になってしまう。その反面、最内側P型注入層間隔s2が大きすぎると、Pベース層12に接続されるP型注入層21aとその1つ外側のP型注入層22aとの容量結合が小さすぎて、Pベース層12に接続されるP型注入層21aの底端部における電界集中が十分に緩和されなくなる。つまり、最内側P型注入層間隔s2には最適値が存在する。
 本実施の形態の半導体装置1では、最内側P型注入層間隔s2の最適値は、熱拡散長と同程度である。したがって、最内側P型注入層間隔s2の最適値を実現するためには、少なくとも、最も内側の第1のP型拡散層21bと、その1つ外側の第2のP型拡散層22bとが接するようにするか、または、最も内側の第1のP型拡散層21bの一部分と、その1つ外側の第2のP型拡散層22bの一部分とが重なるようにすることが必要である。
 換言すれば、最内側高濃度不純物層である第1のP型注入層21aを囲繞する第1のP型拡散層21bは、少なくとも、電界緩和層13の径方向において第1のP型注入層21aよりも1つ外側に形成される第2のP型注入層22aを囲繞する第2のP型拡散層22bと繋がって形成されるようにすることが必要である。第1のP型拡散層21bは、第2のP型拡散層22bに加えて、第2のP型拡散層22bよりも径方向の外側に形成されるP型拡散層23b~25bのうち、少なくとも、最も外側のP型拡散層25bを除く1つまたは複数のP型拡散層23b,24bと繋がって形成されてもよい。
 また、前述のように、熱拡散が過度に進むと、電界緩和層13が、従来技術であるVLD構造のリサーフ層に近づくので、高耐圧が得られる注入量のマージンが狭まり、本実施の形態の半導体装置1の効果である広い注入量のマージンが得られない。広い注入量のマージンを得るためには、少なくとも、最も外側に位置する第5のP型拡散層25bが、その1つ内側の第4のP型拡散層24bから間隔をあけて形成されるようにすることが必要である。
 第5のP型拡散層25bだけでなく、第5のP型拡散層25bよりも径方向の内側に形成されるP型拡散層22b~24bのうち、少なくとも、最も内側のP型拡散層21bの1つ外側のP型拡散層22bを除く1つまたは複数のP型拡散層23b,24bも、径方向において、そのP型拡散層23b,24bよりも1つ内側に形成されるP型拡散層22b,23bから間隔をあけて形成されてもよい。
 高い耐圧と広い注入量のマージンとをより確実に得るためには、P型拡散層を最も内側から何個目まで繋げて形成するか、および、P型拡散層を最も外側から何個目まで間隔をあけて形成するかを適切に設計することが必要である。
 図10は、本発明の第1の実施の形態における半導体装置1の表面アクセプタ濃度の平面方向分布を示すグラフである。図10において、縦軸は、表面アクセプタ濃度(cm-3)を示し、横軸は、水平方向距離を示す。図10では、電界緩和層13に含まれるセット数が35個であり、電界緩和層13のPN接合深さが6μmであり、電界緩和層13の各P型注入層21a~25aの注入量が2.5×1012cm-2である場合の表面アクセプタ濃度分布を示している。
 図10から明らかなように、前述のように電界緩和層13のPN接合深さが6μmとなるような熱処理であれば、電界緩和層13は、活性領域12寄りの部分では、互いに間隔をあけて形成される複数のP型注入層21a,22aがP型拡散層21b,22bで接続されるが、本発明の特徴である離散的なアクセプタイオンの分布は十分に保持されることが判る。
 図11は、本発明の第1の実施の形態の半導体装置1における電界分布のシミュレーション結果を示すグラフである。図11において、縦軸は、電界強度(V/cm)を示し、横軸は、水平方向距離を示す。図11では、図10に示すアクセプタイオン分布を有する電界緩和層13を備える半導体装置1に4500Vの電圧を印加した場合の基板表面P0およびPN接合深さ付近P1の電界分布を示している。本実施の形態では、電界集中は、基板表面P0またはPN接合深さ付近P1に発生するが、各P型注入層21a~25aでの最大電界は、全て0.2MV/cm程度、すなわち2.0×10V/cm程度であり、ほぼ均等に分散されていることが判る。
 以下では、本実施の形態の半導体装置1を、従来技術であるVLD構造のリサーフ層を備える半導体装置と比較する。図12および図13は、本発明の第1の実施の形態の半導体装置1における注入量のマージンに関するシミュレーション結果を示すグラフである。
 図12において、縦軸は、300Kにおける耐圧(V)を示し、横軸は、注入量誤差(cm-2)を示す。ここで、「注入量誤差」とは、最大耐圧が得られる注入量との差をいう。図13において、縦軸は、300Kにおける耐圧(V)を示し、横軸は、注入量誤差の比率(%)を示す。ここで、「注入量誤差の比率」とは、最大耐圧が得られる注入量に対する、注入量誤差の絶対値の割合をいう。図12および図13では、注入量が、最大耐圧が得られる注入量よりも大きい場合を正(+)で示し、最大耐圧が得られる注入量よりも小さい場合を負(-)で示している。
 図12では、本実施の形態の半導体装置に対するシミュレーション結果を、記号「□」と参照符号「51」で示される実線とで示し、従来技術の半導体装置に対するシミュレーション結果を、記号「△」と参照符号「52」で示される破線とで示す。図13では、本実施の形態の半導体装置に対するシミュレーション結果を、記号「□」と参照符号「55」で示される実線とで示し、従来技術の半導体装置に対するシミュレーション結果を、記号「△」と参照符号「56」で示される破線とで示す。
 図12および図13に示す例では、本実施の形態の半導体装置1において最大耐圧が得られる注入量を3.0×1012cm-2とし、従来技術であるVLD構造のリサーフ層を備える半導体装置については、径方向の最も内側のリサーフ層における注入量である1.4×1012cm-2を、最大耐圧が得られる注入量として用いている。
 1×1012cm-2レベルの注入量は、イオン注入機の制御下限に近いので、製造ばらつきが発生しやすい。また、Siと酸化膜との界面には、1011cm-2オーダの界面電荷も発生する。したがって、注入量誤差を絶対値で見ることも重要である。図12に示すように、本実施の形態では、従来技術に比べて、絶対値で見ると、注入量のマージンは3倍以上ある。このことから、本実施の形態の半導体装置1は、前述のイオン注入機の制御下限に起因する製造ばらつきに対して強いといえる。
 また、図13に示す注入量誤差の比率で見ても、注入量のマージンは、本実施の形態の半導体装置1の方が広い。この理由は、基板表面の空乏層の広がり方にある。
 図14は、従来技術の半導体装置における基板表面の空乏層分布に関するシミュレーション結果を示す画像である。図15は、本発明の第1の実施の形態の半導体装置1における基板表面の空乏層分布に関するシミュレーション結果を示す画像である。図14および図15では、半導体装置1のアノード電極15とカソード電極17との間に4500Vの電圧を印加した場合の基板表面の空乏層の広がりを示している。図14および図15において、参照符号「60」で示す白い部分は空乏層を示している。この空乏層60によって、基板表面に印加される高電圧が保持される。
 ここでは、本実施の形態の半導体装置1における最適注入量を2.5×1012cm-2とし、従来技術であるVLD構造のリサーフ層を備える半導体装置における最適注入量としては、VLD構造の最も内側のリサーフ層の注入量である1.4×1012cm-2を用いている。
 図14(b)および図15(b)では、最適注入量の場合のシミュレーション結果を示す。図14(a)および図15(a)では、注入量が最適注入量よりも小さく、その注入量誤差の比率が33.3%である場合のシミュレーション結果を示す。図14(c)および図15(c)では、注入量が最適注入量よりも大きく、その注入量誤差の比率が33.3%である場合のシミュレーション結果を示す。
 従来技術であるVLD構造のリサーフ層を備える半導体装置の場合、図14(a)に示すように、注入量が最適注入量よりも小さいと、所望の電圧に達する前にリサーフ層が完全に空乏化してしまい、活性領域12の外周縁部で著しい電界集中が生じ、アバランシェ降伏が生じる。また、図14(c)に示すように、注入量が最適注入量よりも大きいと、活性領域12側のリサーフ層が最表面まで空乏化せず、基板表面に発生する高電圧を保持する領域が狭くなるので、耐圧が低下する。
 これに対し、本実施の形態の半導体装置1では、図15(a)~図15(c)に示すように、拡散層および不純物が注入されていない領域において最表面まで空乏層が広がり、注入量が変動しても、この状況は大きく変わらない。これは、注入量が最適注入量よりも少し小さくても注入層が完全に空乏化することはないし、注入量が最適注入量よりも少し大きくても拡散層は十分に完全に空乏化できるからである。つまり、本実施の形態の半導体装置1は、従来技術の半導体装置における欠点を克服している。
 このような空乏層の広がり方の特徴を有することによって、本実施の形態の半導体装置1は、従来知られていなかった効果を達成している。具体的に述べると、同一の印加電圧で比べた場合、本実施の形態の半導体装置1では、半導体基板内部の最大電界が、従来技術であるVLD構造のリサーフ層を備える半導体装置よりも少し高くなる。それにも関わらず、図12および図13に示したように、本実施の形態の半導体装置1では、最適条件において、従来技術であるVLD構造のリサーフ層を備える半導体装置よりも高い耐圧が得られる。この一因として、本実施の形態の半導体装置1では、リーク電流の経路、具体的には、インパクトイオン化によって生じた正孔(ホール)がPベース層(活性領域)12に至る流れの経路が、空乏層によって分断されることが挙げられる。
 以上の説明においては、半導体基板の表面および内部に着目したが、本発明は、半導体装置の外部の電界を低減する効果もある。この半導体装置の外部の電界を低減する効果は、注入量を最適注入量よりも大きく設定した場合に顕著に現れる。半導体装置の外部の電界で特に重要なものは、パッシベーション膜の表面の電界である。終端構造の上、すなわち終端構造を構成する電界緩和層13およびストッパ層14上には、パッシベーション膜が形成される。パッシベーション膜の表面の電界が大きくなるほど、大気中で沿面放電が発生しやすくなる。
 前述の図14および図15において、参照符号「60」で示される白い部分は、空乏層を表しているが、電界が外部に漏れる箇所であるともいえる。つまり、従来技術では、活性領域寄りのリサーフ層表面から外部に電界が漏れないので、パッシベーション膜表面の電界が外側に偏りやすい。
 これに対し、本発明では、電界が外部に漏れる箇所が分散している分、パッシベーション膜表面の電界も偏りが生じにくい。また、本発明の表面電界は、図11に示すように、スパイク状の鋭いピークを有するので、パッシベーション膜の厚みを数μm以上にして、電界のピークを鈍らせることが望ましい。
 図16は、パッシベーション膜表面の最大電界に関するシミュレーション結果を示すグラフである。図16において、縦軸は、半導体装置1のアノード電極15とカソード電極17との間に4500Vの電圧を印加した場合のパッシベーション膜表面の最大電界(以下「パッシベーション膜表面電界」という場合がある)を示し、横軸は、注入量誤差の比率(%)を示す。図16の縦軸は、紙面の上側に向かうに従って、パッシベーション膜表面電界の値が大きくなる。図16では、本実施の形態の半導体装置の場合を、記号「□」と参照符号「61」で示される実線とで示し、従来技術の半導体装置の場合を、記号「△」と参照符号「62」で示される破線とで示す。
 図16から、本実施の形態の半導体装置1では、従来技術の半導体装置に比べて、パッシベーション膜表面電界が注入量誤差に対して鈍感であることが判る。本実施の形態の半導体装置1は、特に注入量誤差の比率が比較的大きい領域、すなわち注入量が比較的大きい領域において、従来技術の半導体装置に対して大幅に有利であることが判る。
 さらに、本実施の形態の半導体装置と、従来技術の半導体装置であるVLD構造のリサーフ層を備える半導体装置とでは、ゼロ電圧から電圧を上昇させたときの空乏層の広がり方も全く異なる。
 図17~図19は、従来技術の半導体装置における基板断面の空乏層分布に関するシミュレーション結果を示す画像である。図20~図22は、本発明の第1の実施の形態の半導体装置1における基板断面の空乏層分布に関するシミュレーション結果を示す画像である。
 図17~図22では、半導体装置のアノード電極15とカソード電極17との間に100V、4500V、または5200Vの電圧を印加した場合の基板断面の空乏層の広がりを示している。図17(a)、図18(a)、図19(a)、図20(a)、図21(a)および図22(a)は、100Vの電圧を印加した場合の結果を示す。図17(b)、図18(b)、図19(b)、図20(b)、図21(b)および図22(b)は、4500Vの電圧を印加した場合の結果を示す。図18(c)、図19(c)、図20(c)、図21(c)および図22(c)は、5200Vの電圧を印加した場合の結果を示す。
 また、図18および図21に示す画像では、最適注入量の場合のシミュレーション結果を示す。図17および図20に示す画像では、注入量が最適注入量よりも小さく、その注入量誤差の比率が33.3%である場合のシミュレーション結果を示す。図19および図22に示す画像では、注入量が最適注入量よりも大きく、その注入量誤差の比率が33.3%である場合のシミュレーション結果を示す。
 図17~図22において、参照符号「60」で示す白い部分は空乏層を示している。この空乏層60によって、半導体装置に印加される電圧が保持される。図17~図22では、半導体装置が設置される雰囲気の温度を125℃にして耐圧を高めている状態におけるシミュレーション結果を示している。
 従来技術では、図17~図19に示すように、基板最表面の空乏層60は、電界緩和層の最外部から内側に広がる。それに対し、本発明では、図20~図22に示すように、基板最表面の空乏層60は、P型拡散層同士が接続しなくなった箇所、すなわちPベース層よりも外側で基板最表面にN型領域が初めて現れる箇所から広がりはじめ、その箇所を中心にして離散的に広がる。
 そして、本実施の形態の半導体装置1では、図20(a)~図20(c)、図21(a)~図21(c)、図22(a)~図22(c)に示すように、電圧が比較的低い段階で、全ての拡散層が、ほぼ基板最表面まで空乏化する。その結果、本実施の形態の半導体装置1では、定格電圧よりも低い電圧においても、外部に漏れる電界を、従来技術に比べて大幅に低減することができる。
 図23は、パッシベーション膜表面の最大電界に関するシミュレーション結果を示すグラフである。図23において、縦軸は、パッシベーション膜表面電界を示し、横軸は、半導体装置のアノード電極とカソード電極との間に印加される電圧(V)を示す。図23の縦軸は、紙面の上側に向かうに従って、パッシベーション膜表面電界の値が大きくなる。
 図23では、本実施の形態の半導体装置1において、最適注入量の場合を参照符号「205」で示される太い実線で示し、注入量が最適注入量よりも小さく、その注入量誤差の比率が33.3%である場合を参照符号「204」で示される太い1点鎖線で示し、注入量が最適注入量よりも大きく、その注入量誤差の比率が33.3%である場合を参照符号「206」で示される太い2点鎖線で示す。
 また、図23では、従来技術の半導体装置において、最適注入量の場合を参照符号「202」で示される細い実線で示し、注入量が最適注入量よりも小さく、その注入量誤差の比率が33.3%である場合を参照符号「201」で示される細い破線で示し、注入量が最適注入量よりも大きく、その注入量誤差の比率が33.3%である場合を参照符号「203」で示される細い2点鎖線で示す。図23においても、図17~図22と同様に、半導体装置が設置される雰囲気の温度を125℃にして耐圧を高めている状態におけるシミュレーション結果を示している。
 図23から、本実施の形態の半導体装置1では、従来技術の半導体装置に比べて、定格電圧である4500Vの半分の電圧、すなわち2250Vの電圧が印加されたときのパッシベーション膜表面の最大電界を半減できることが判る。通常、パワーエレクトロニクス用半導体装置は、定格電圧の半分程度の電源電圧で使用されるので、これは大きな利点となる。
 以上のように本実施の形態の半導体装置1は、半導体基板11の厚み方向一方側の表面部内に、半導体基板11の外周縁部から離隔して、P型の活性領域12が形成される。この活性領域12の外周縁部から半導体基板11の外周縁部に向けて、活性領域12を囲繞するように環状の電界緩和層13が形成される。
 電界緩和層13は、互いに間隔をあけて活性領域12を囲繞するように形成される複数のP型注入層21a~25aと、各P型注入層21a~25aを囲繞するように形成される複数のP型拡散層21b~25bとを備える。P型拡散層21b~25bは、P型注入層21a~25aよりもP型不純物の濃度が低い。
 電界緩和層13の径方向において最も内側に形成される第1のP型注入層21aは、活性領域12に接するか、または一部分が重なって形成される。P型注入層21a~25a同士の間隔、すなわち層間領域の幅sは、活性領域12から半導体基板11の外周縁部に向かうに従って大きくなる。
 また、第1のP型注入層21aを囲繞する第1のP型拡散層21bは、その外側の他のP型注入層22a~25aを囲繞するP型拡散層22b~25bの少なくとも1つ、具体的には第2のP型拡散層22bと繋がって形成される。
 以上の構成によって、本実施の形態の半導体装置1では、P型注入層21a~25aおよびP型拡散層21b~25bを形成するときに、比較的高い耐圧を有する半導体装置1を実現可能なP型不純物の注入量のマージンを比較的広くすることができる。これによって、製造プロセスのばらつきによる影響を受けにくく、比較的高い歩留まりで製造することができる半導体装置1を実現することができる。
 また本実施の形態の半導体装置の製造方法では、マスク形成工程において、半導体基板11の厚み方向一方側の表面部上に、レジストマスクRM1が形成される。レジストマスクRM1は、活性領域12が形成される領域に対応する部分を囲繞する複数の開口部が、径方向に互いに間隔をあけて形成されるパターンを有するように形成される。
 このレジストマスクRM1を介して、イオン注入工程において、半導体基板11にP型不純物がイオン注入され、P型注入層21a~25aが形成される。このP型不純物がイオン注入された半導体基板11が、熱処理工程で熱処理されて、P型注入層21a~25aを囲繞するP型拡散層21b~25bが形成される。
 これによって、P型注入層21a~25aとP型拡散層21b~25bとを備える電界緩和層13が、活性領域12の外周縁部から半導体基板11の外周縁部に向けて、活性領域12を囲繞するように環状に形成される。
 熱処理工程を終えた時点で、高濃度不純物層であるP型注入層21a~25aのうち、電界緩和層13の径方向において最も内側に形成される第1のP型注入層21aは、活性領域であるPベース層12に接するか、または一部分が重なって形成される。また、第1のP型注入層21aを囲繞する低濃度不純物層である第1のP型拡散層21bは、第1のP型注入層21aよりも径方向の外側に形成される他の高濃度不純物層である第2~第5のP型注入層22a~25aを囲繞する低濃度不純物層、すなわち第2~第5のP型拡散層22b~25bの少なくとも1つと繋がって形成される。
 このような電界緩和層13によって、比較的高い耐圧を有する半導体装置1を実現することができる。
 また、マスク形成工程では、径方向における開口部同士の間隔が、活性領域12が形成される領域に対応する部分から半導体基板11の外周縁部に対応する部分に向かうに従って大きくなるように、レジストマスクRM1が形成される。これによって、比較的高い耐圧を有する半導体装置1を実現可能なP型不純物の注入量のマージンを比較的広くすることができる。したがって、製造プロセスのばらつきによる影響を抑え、比較的高い耐圧を有する半導体装置1を、比較的高い歩留まりで製造することができる。
 また、P型拡散層21b~25bは、P型注入層21a~25aを形成するためのイオン注入後に熱処理を行うことによって形成されるので、P型拡散層21b~25bを形成するためにイオン注入を行う必要がない。また、比較的高い耐圧を実現するために、イオン注入後に長時間の熱処理を行う必要がない。したがって、前述のように比較的高い耐圧を実現することができる電界緩和層13を、容易に形成することができる。
 また本実施の形態の半導体装置1では、P型注入層21a~25aのうち、少なくとも、電界緩和層13の径方向において最も外側に形成される第5のP型注入層25aを囲繞する第5のP型拡散層25bは、前記径方向において第5のP型注入層25aよりも1つ内側に形成される第4のP型注入層24aを囲繞する第4のP型拡散層24bから、間隔をあけて形成される。このような構成になるようにイオン注入および熱処理を行うことによって、高耐圧性と注入量の比較的広いマージンとを実現することができる。
 また本実施の形態の半導体装置1では、P型注入層21a~25aは、隣合うP型注入層21a~25a同士の間の層間領域の幅sと、その層間領域に径方向の外側で接するP型注入層22a~25aの幅wとの和Lが、予め定める値になるように形成される。このような構成にすることによって、高耐圧性、製造プロセスのばらつきに対するロバスト性、および半導体装置の動作環境に対するロバスト性のいずれにも優れる半導体装置1を実現することができる。
 また本実施の形態の半導体装置1では、半導体基板11の厚み方向一方側の表面における各P型注入層21a~25aのP型不純物の面密度と、そのP型注入層21a~25aを半導体基板11の厚み方向において囲繞するP型拡散層21b~25bのP型不純物の面密度との和は、半導体基板11を構成する半導体材料毎に予め求められるリサーフ構造の面密度の最適値であるリサーフ条件の1.5倍以上3.5倍以下である。これによって、P型注入層21a~25aの厚み方向一方側の表面部におけるP型不純物の面密度が最適値の1.5倍未満である場合、または3.5倍を超える場合に比べて、より確実に高耐圧性の半導体装置1を実現することができる。
 また本実施の形態の半導体装置1では、P型注入層21a~25a同士の間隔、すなわち層間領域の幅sは、活性領域12から半導体基板11の外周縁部に向かうに従って、等差数列的に大きくなっている。このような構成にすることによって、高耐圧性、製造プロセスのばらつきに対するロバスト性、および半導体装置の動作環境に対するロバスト性のいずれにも優れる半導体装置1を実現することができる。
 <第2の実施の形態>
 図24は、本発明の第2の実施の形態における半導体装置2の構成を示す平面図および断面図である。図24(a)は、本発明の第2の実施の形態における半導体装置2の構成を示す平面図であり、図24(b)は、本発明の第2の実施の形態における半導体装置2の構成を示す断面図である。
 本実施の形態においても、第1の実施の形態と同様に、本実施の形態の半導体装置2をPINダイオードに適用した場合の構成について説明する。本実施の形態の半導体装置2は、第1の実施の形態の半導体装置1と構成が類似しているので、同一の構成については同一の参照符号を付して、共通する説明を省略する。図24では、前述の図3と同様に、電界緩和層70の部分を拡大して示している。
 図24に示すように、本実施の形態の半導体装置2では、第1の実施の形態の半導体装置1と同様に、比較的低い濃度(N-)でN型不純物を含有する半導体基板11の厚み方向一方側の表面部内に、比較的高い濃度でP型不純物を含有する活性領域であるPベース層12が形成される。このPベース層12を囲繞するように、複数のP型不純物層71,72,73,74,75で構成される電界緩和層70が形成される。
 電界緩和層70は、5つのP型不純物層71,72,73,74,75、具体的には、第1のP型不純物層71、第2のP型不純物層72、第3のP型不純物層73、第4のP型不純物層74および第5のP型不純物層75を備える。
 各P型不純物層71,72,73,74,75は、P型不純物の濃度が異なる複数のP型不純物層、具体的には3種類のP型不純物層71a~75a,71b~75b,71c~75cを含んで構成される。
 3種類のP型不純物層71a~75a,71b~75b,71c~75cのうち、1つは、比較的高い濃度でP型不純物を含有するP型注入層71a,72a,73a,74a,75aである。もう1つは、基板表面から比較的浅い位置まで形成され、比較的低い濃度でP型不純物を含有する浅部P型拡散層71b,72b,73b,74b,75bである。もう1つは、基板表面から浅部P型拡散層71b~75bよりも深い位置まで形成され、浅部P型拡散層71b~75bよりも低い濃度でP型不純物を含有する深部P型拡散層71c,72c,73c,74c,75cである。
 P型注入層71a,72a,73a,74a,75aは、局所高濃度領域に相当する。浅部P型拡散層71b,72b,73b,74b,75bは、高濃度不純物層に相当する。深部P型拡散層71c,72c,73c,74c,75cは、低濃度不純物層に相当する。
 各P型注入層71a,72a,73a,74a,75aを囲繞するように、対応する浅部P型拡散層71b,72b,73b,74b,75bが形成され、さらに各浅部P型拡散層71b,72b,73b,74b,75bを囲繞するように、対応する深部P型拡散層71c,72c,73c,74c,75cが形成される。
 P型注入層71a~75aと浅部P型拡散層71b~75bと深部P型拡散層71c~75cとは、実際には、P型不純物の濃度が連続的に変化するので、境界を定義することができないが、本実施の形態では、理解を容易にするために分けて考える。
 具体的には、Pベース層12と同一のイオン注入工程でP型不純物がイオン注入されて形成される高濃度領域を、「P型注入層71a~75a」という。イオン注入後の熱処理によってP型不純物が拡散されて形成される領域のうち、P型不純物の濃度が第1の実施の形態におけるP型注入層と同程度である領域を、「浅部P型拡散層71b~75b」といい、残りの領域であって、浅部P型拡散層71b~75bよりもP型不純物が低濃度の領域を、「深部P型拡散層71c~75c」という。P型注入層71a~75aに注入されたP型不純物であるアクセプタイオンは、熱処理によって同心球状に広がるので、P型注入層71a~75aの表面におけるアクセプタイオンの濃度は、Pベース層12よりも低い。
 第1のP型不純物層71は、第1のP型注入層71aと、第1のP型注入層71aを囲繞する第1の浅部P型拡散層71bと、第1の浅部P型拡散層71bを囲繞する第1の深部P型拡散層71cとを含む。
 第2のP型不純物層72は、第2のP型注入層72aと、第2のP型注入層72aを囲繞する第2の浅部P型拡散層72bと、第2の浅部P型拡散層72bを囲繞する第2の深部P型拡散層72cとを含む。
 第3のP型不純物層73は、第3のP型注入層73aと、第3のP型注入層73aを囲繞する第3の浅部P型拡散層73bと、第3の浅部P型拡散層73bを囲繞する第3の深部P型拡散層73cとを含む。
 第4のP型不純物層74は、第4のP型注入層74aと、第4のP型注入層74aを囲繞する第4の浅部P型拡散層74bと、第4の浅部P型拡散層74bを囲繞する第4の深部P型拡散層74cとを含む。
 第5のP型不純物層75は、第5のP型注入層75aと、第5のP型注入層75aを囲繞する第5の浅部P型拡散層75bと、第5の浅部P型拡散層75bを囲繞する第5の深部P型拡散層75cとを含む。
 Pベース層12の外側には、第1の浅部P型拡散層71bが、Pベース層12に接するか、または一部分が重なって形成される。本実施の形態では、図24に示すように、径方向において、Pベース層12の外側には、第1の浅部P型拡散層71bが、Pベース層12に接して形成されている。また図24に示すように、第1の浅部P型拡散層71bの外側には、第2の浅部P型拡散層72bが、第1の浅部P型拡散層71bから間隔をあけて形成されている。第2の浅部P型拡散層72bの外側には、第3の浅部P型拡散層73bが、第2の浅部P型拡散層72bから間隔をあけて形成されている。第3の浅部P型拡散層73bの外側には、第4の浅部P型拡散層74bが、第3の浅部P型拡散層73bから間隔をあけて形成されている。第4の浅部P型拡散層74bの外側には、第5の浅部P型拡散層75bが、第4の浅部P型拡散層74bから間隔をあけて形成されている。
 各P型注入層71a~75aは、ドット形状に形成され、複数個が、半導体基板11の厚み方向一方側から見て千鳥配置状に周期的に配置されて、各浅部P型拡散層71b~75b内にP型注入層群を形成している。以下の説明では、P型注入層71a~75aをまとめて「P型注入層群71a~75a」といい、P型注入層群71a~75aを構成する各P型注入層を「ドット」という場合がある。
 電界緩和層70は、P型注入層群71a~75aと、浅部P型拡散層71b~75bと、深部P型拡散層71c~75cとを含んで構成される。
 隣合うP型注入層群71a,72a,73a,74a,75a同士の間には、ドット間隔に比べて、大きい間隔が形成される。径方向において、隣合うP型注入層群の互いに向かい合う位置に配置されるドット列、たとえば、第1のP側注入層群71aの最も外側のドット列と、第2のP型注入層群72aの最も内側のドット列とは、千鳥配置の関係を維持して、各ドットが互い違いの位置に配置される。このようにすることによって、浅部P型拡散層71b~75b同士の間隔を、周方向に沿ってほぼ一定に保つことができるので、周方向における局所的な電界集中を防止することができる。
 ここで、電界緩和層70における、浅部P型拡散層71b~75bの幅、および浅部P型拡散層71b~75b同士の間隔は、それぞれ、第1の実施の形態の電界緩和層13におけるP型注入層21a,22a,23a,24a,25aの幅、およびP型注入層同士の間隔と同じ規則に則る。浅部P型拡散層71b,72b,73b,74b,75bの幅は、実際には、周方向に沿って周期的に変動するが、ここでは、最も幅の広い部分と、最も幅の狭い部分との平均値を、浅部P型拡散層71b,72b,73b,74b,75bの幅とする。
 前述の第1の実施の形態におけるP型注入層21a~25aの幅w1~w5は、任意の値を設定できるが、本実施の形態における浅部P型拡散層71b~75bの幅は、P型注入層群71a~75aのドット列数で決まる離散的な値しか取れない。したがって、実際には、P型注入層群71a~75aのドット列数を径方向の外側に向かうに従って段階的に減少させることになる。つまり、浅部P型拡散層71b~75bの幅を決定する径方向におけるドット列数が同じセットが、複数存在することもある。
 また、深部P型拡散層71c~75cは、第1の深部P型拡散層71cと第2の深部P型拡散層72cとが、接するか、またはオーバーラップする程度の広がりを有する。第1の実施の形態におけるP型拡散層21b~25bと同様に、深部P型拡散層71c~75cの広がりが大きすぎると、本発明の効果が薄れてしまうので、深部P型拡散層71c~75cの幅は、適宜に選択される。
 本実施の形態では、P型注入層群71a~75aを構成するP型注入層をドット形状であるとしているが、Pベース層12の注入量が、比較的高くないとき、たとえばSiであれば、1×1013cm-2程度のときは、P型注入層群71a~75aを構成するP型注入層を細いストライプ形状にしてもよい。その場合、各P型注入層群71a~75aは、1本以上の細いストライプ状のP型注入層によって構成される。また、Pベース層12の注入量がもう少し高く、ストライプ形状では、注入されるアクセプタイオンが少し多いということであれば、ストライプ形状のP型注入層を寸断して開口を碁盤目のように配置しても構わない。
 次に、本発明の第2の実施の形態の半導体装置2の製造方法について説明する。本実施の形態の半導体装置2の製造方法は、電界緩和層70を形成する工程を含む。電界緩和層70を形成する工程について説明する。
 図25は、レジストマスクRM2を用いてイオン注入を行っている状態を示す図である。図25(a)は、レジストマスクRM2の構成を厚み方向一方側から見て示す平面図であり、図25(b)は、レジストマスクRM2を用いてイオン注入を行っている状態を示す断面図である。図26は、電界緩和層70の形成が終了した段階の状態を示す平面図および断面図である。図26(a)は、電界緩和層70の形成が終了した段階の状態を厚み方向一方側から見て示す平面図であり、図26(b)は、電界緩和層70の形成が終了した段階の状態を示す断面図である。
 図25に示すように、比較的低い濃度(N-)でN型不純物を含有する半導体基板11の厚み方向一方側の表面部に、レジストマスクRM2を形成する。レジストマスクRM2は、Pベース層12の形成領域に対応する部分が完全に開口され、P型注入層群71a,72a,73a,74a,75aを構成する各P型注入層の形成領域に対応する部分が開口部となったパターンを有する。
 そして、レジストマスクRM2の上方、すなわち厚み方向一方側から、比較的低いエネルギーで、アクセプタイオンであるP型不純物イオンのイオン注入を行う。このとき、アクセプタイオンは、活性領域であるPベース層12の注入量に相当する量が注入される。
 次に、レジストマスクRM2を除去した後、熱処理を行い、注入したアクセプタイオンを拡散する。その結果、図26に示すように、活性領域を構成するPベース層12と電界緩和層70とが同時に形成される。電界緩和層70においては、P型注入層群71a~75aを構成する各P型注入層を囲繞するように、浅部P型拡散層71b~75bが形成される。また、浅部P型拡散層71b~75bを囲繞するように、深部P型拡散層71c~75cが形成される。ここでは、Pベース層12における注入層と拡散層との区別は考えない。
 このように本実施の形態では、Pベース層12と電界緩和層70とを同時に形成するので、第1の実施の形態に比べて、写真製版用フォトマスクの枚数と製造工程とを削減することができる。
 また、このような形成方法を用いることによって、Pベース層12と第1のP型注入層群71aとの間で、ドットの密度、すなわち注入マスクの開口率を徐々に変化させ、Pベース層12と第1のP型不純物層71との境界におけるPN接合深さの変化を緩やかにすることができる。この方法を用いると、Pベース層12と深部P型拡散層71cとの深さの差が大きい場合でも、浅部P型拡散層71bの幅を広げる必要はない。
 また、ここでは簡単のために、イオン注入用のマスクとしてレジストマスクRM2を用いたが、酸化膜マスクであってもよい。
 次に、本発明の第2の実施の形態の半導体装置2を、耐圧4500VクラスのSiの縦型PINダイオードに適用した場合の効果について、図27および図28を用いて説明する。
 図27は、本発明の第2の実施の形態の半導体装置2における耐圧の注入量依存性に関するシミュレーション結果を示すグラフである。図28は、本発明の第2の実施の形態の半導体装置2における注入量のマージンに関するシミュレーション結果を示すグラフである。図27において、縦軸は、300Kにおける耐圧(V)を示し、横軸は、Pベース層12の注入量(cm-2)を示す。図28において、縦軸は、300Kにおける耐圧(V)を示し、横軸は、注入量誤差の比率(%)を示す。
 図27および図28に示す例では、電界緩和層70に含まれるセット数は35個であり、注入マスクのドットに対応する部分に形成されるドット形状の開口(以下「ドット開口」という場合がある)の形状は0.5μm角であり、ドットの千鳥配置の単位胞の寸法は径方向が2μmであり、周方向が5μmである。
 図27では、熱処理時間をパラメータとしたときの耐圧の注入量依存性を示している。図27では、図9と同様に、熱処理時間を、その熱処理時間の熱処理で形成される電界緩和層70のPN接合深さで表現している。図27では、電界緩和層70のPN接合深さが4μmである場合を、記号「◇」と参照符号「81」で示される一点鎖線とで示し、電界緩和層70のPN接合深さが6μmである場合を、記号「□」と参照符号「82」で示される実線で示し、電界緩和層70のPN接合深さが8μmである場合を、記号「△」と参照符号「83」で示される破線で示し、電界緩和層70のPN接合深さが12μmである場合を、記号「○」と参照符号「84」で示される二点鎖線とで示す。
 この例でも、第1の実施の形態と同様に、最適な熱処理は、電界緩和層70のPN接合深さが6μmとなる程度である。これよりも熱処理が弱い、すなわちPN接合が浅いと耐圧が低くなる。また、熱処理が強すぎる、すなわちPN接合が深すぎると、最適注入量における耐圧は高いものの、高耐圧が得られる注入量のマージンが狭くなる。
 これは、熱処理が弱いと、P型注入層群71a~75aおよび浅部P型拡散層71b~75bの底部における電界集中が強まるからである。また、熱処理を強くしすぎると、熱拡散が進みすぎてしまい、本発明の特徴である離散的なアクセプタイオンの分布が曖昧になり、非特許文献1および特許文献1に開示されるようなVLD構造のリサーフ層に近づくからである。また、PN接合深さが6μmである場合の耐圧の注入量依存性に窪みが存在するのは、浅部P型拡散層71b~75bの幅がP型注入層群71a~75aのドット列数で決まる離散的な値しか取れないことに起因する。
 図28では、本発明の第2の実施の形態、第1の実施の形態、および従来技術のVLD構造のリサーフ層を備える半導体装置における注入量のマージンを示している。図28において、縦軸は、耐圧を示し、横軸は、注入量誤差の比率、すなわち最大耐圧が得られる注入量に対する、注入量誤差の絶対値の割合としている。
 図28では、第1の実施の形態の半導体装置1に対するシミュレーション結果を、記号「□」と参照符号「85」で示される実線とで示し、第2の実施の形態の半導体装置に対するシミュレーション結果を、記号「◇」と参照符号「86」で示される二点鎖線とで示し、従来技術の半導体装置に対するシミュレーション結果を、記号「△」と参照符号「87」で示される破線とで示す。図28から明らかなように、本発明の第2の実施の形態では、第1の実施の形態に比べて、注入量のマージンを約2倍に広げることができる。
 図28の横軸は、第2の実施の形態の半導体装置と従来技術のVLD構造のリサーフ層を備える半導体装置とに関しては、ドット開口の面積(以下「ドット開口面積」という場合がある)の誤差の比率と読み替えることができる。ドット開口の寸法がサブμmになると、製造工程、特に写真製版工程のばらつきによるドット開口面積の誤差が大きくなりやすい。第2の実施の形態を用いれば、従来技術のVLD構造に対して、2倍以上のドット開口面積のマージンを得ることができる。
 第2の実施の形態によって、第1の実施の形態よりも広い注入量のマージンが得られる理由は、比較的高濃度のP型注入層71a~75aを、比較的低濃度の浅部P型拡散層71b~75bが囲繞することによって、P型注入層71a~75aの底部で生じる電界集中が緩和されるからである。また、浅部P型拡散層71b~75bの底部で生じる電界集中は、より低濃度の深部P型拡散層71c~75cによって緩和される。したがって、第2の実施の形態では、第1の実施の形態よりも広い注入量のマージンを実現することができる。
 電気的特性については、第2の実施の形態の半導体装置2では、比較的高濃度のP型注入層71a~75aが存在し、また浅部P型拡散層71b~75bおよび深部P型拡散層71c~75cが周方向に周期的なうねりを有するので、以下のようになる。半導体内部最大電界は、第1の実施の形態の半導体装置1よりも2割程度増加する。最大耐圧は、第1の実施の形態の半導体装置1よりも3~4%程度、具体的には200V程度低下する。
 半導体装置の外部に漏れる電界については、第2の実施の形態の半導体装置2は、第1の実施の形態の半導体装置1と同じ特徴を有している。
 以上のように本実施の形態によれば、浅部P型拡散層71b~75bは、その厚み方向一方側の表面部に、比較的高濃度のP型注入層群71a~75aを有する。P型注入層群71a~75aを構成するP型注入層はそれぞれ、径方向もしくは周方向、または径方向および周方向に沿って周期的に配置される。
 このように本実施の形態では、浅部P型拡散層71b~75bの厚み方向一方側の表面部に、それぞれ、比較的高濃度のP型注入層が径方向もしくは周方向、または径方向および周方向に沿って周期的に配置されるP型注入層群71a~75aが形成される。このような構成にすることによって、浅部P型拡散層71b~75bの厚み方向一方側の表面部におけるP型不純物の濃度分布を、電界緩和層70の径方向もしくは周方向、または径方向および周方向に沿って周期的に変化するようにすることができる。これによって、高耐圧が得られる注入量のマージンをさらに広げることができる。
 また、本実施の形態では、浅部P型拡散層71b~75bは、その厚み方向一方側の表面部に、活性領域であるPベース層12と略等しい濃度でP型不純物を含有するP型注入層群71a~75aを有する。これによって、後述するように、製造工程を一部省略することができる。
 また、本実施の形態の半導体装置の製造方法では、マスク形成工程において、活性領域であるPベース層12が形成される領域に対応する部分が開口され、また電界緩和層70に対応する部分の開口部が径方向もしくは周方向、または径方向および周方向に沿って周期的なパターンとなるように注入マスクRM2を形成する。
 この注入マスクRM2を介してイオン注入を行い、さらに熱処理を行うことによって、活性領域であるPベース層12と電界緩和層70とを同時に形成することができる。したがって、製造工程の数を削減することができる。
 <第3の実施の形態>
 図29は、本発明の第3の実施の形態における半導体装置3の構成を示す断面図である。本実施の形態の半導体装置3は、第1の実施の形態の半導体装置1と構成が類似しているので、同一の構成については同一の参照符号を付して、共通する説明を省略する。図29では、前述の図3と同様に、電界緩和層90の部分を拡大して示している。
 図29に示すように、本実施の形態の半導体装置3では、第1の実施の形態の半導体装置1と同様に、比較的低い濃度(N-)のN型不純物を含有する半導体基板11の厚み方向一方側の表面部内に、比較的高い濃度でP型不純物を含有する活性領域であるPベース層12が形成される。このPベース層12を囲繞するように、複数のP型不純物層91,92,93,94,95で構成される電界緩和層90が形成される。
 電界緩和層90は、5つのP型不純物層、具体的には、第1のP型不純物層91、第2のP型不純物層92、第3のP型不純物層93、第4のP型不純物層94および第5のP型不純物層95を備える。
 各P型不純物層91~95は、P型不純物の濃度が異なる複数のP型不純物層、具体的には2種類のP型不純物層91a~95a,91b~95bを含んで構成される。2種類のP型不純物層91a~95a,91b~95bのうち、1つは、比較的低い濃度でP型不純物を含有するP型注入層91a~95aである。もう1つは、P型注入層91a~95aよりも低い濃度でP型不純物を含有するP型拡散層91b~95bである。
 P型注入層91a~95aは、P型拡散層91b~95bとの比較においては、P型拡散層91b~95bよりもP型不純物の濃度が高くなっている。したがって、本実施の形態では、P型注入層91a~95aが高濃度不純物層に相当し、P型拡散層91b~95bが低濃度不純物層に相当する。
 P型注入層91a~95aとP型拡散層91b~95bとは、実際には、P型不純物の濃度が連続的に変化するので、境界を定義することができないが、本実施の形態では、理解を容易にするために分けて考える。具体的には、イオン注入によってP型不純物が注入されて形成される領域を「P型注入層」とし、イオン注入後の熱処理によってP型不純物が拡散されて形成される領域を「P型拡散層」として、分けて考える。
 径方向において、Pベース層12の外側には、第1のP型注入層91aが接するか、または一部分が重なって形成される。本実施の形態では、図29に示すように、径方向において、Pベース層12の外側には、第1のP型注入層91aが接して形成される。また図29に示すように、第1のP型注入層91aの外側には、第2のP型注入層92aが間隔をあけて形成される。第2のP型注入層92aの外側には、第3のP型注入層93aが間隔をあけて形成される。第3のP型注入層93aの外側には、第4のP型注入層94aが間隔をあけて形成される。第4のP型注入層94aの外側には、第5のP型注入層95aが間隔をあけて形成される。
 各P型注入層91a~95aは、対応するP型拡散層91b~95bに囲繞されている。電界緩和層90は、P型注入層91a~95aと、P型拡散層91b~95bとを含んで構成される。
 ここで、電界緩和層90における、第1~第5のP型注入層91a~95aの幅wを、それぞれ、w11,w12,w13,w14,w15とする。また、隣合うP型注入層91a~95a同士の間の領域である第2~第5層間領域の幅sを、それぞれ、s12,s13,s14、s15とする。
 本実施の形態では、第2~第4のP型注入層92a,93a,94a,95aの幅w12~w15は等しく、w0を一定値とすると、w0=w12=w13=w14=w15である。また、第2~第5層間領域の幅s12~s15は、径方向の外側に向かうに従って徐々に広くなっている。つまり、s12<s13<s14<s15となっている。
 本実施の形態においても、前述の第1の実施の形態と同様に、第1のP型注入層91aを除いて、注入された領域であるP型注入層92a~95aと、その径方向の内側に隣接する注入されない領域である層間領域との組をセットと呼称する。本実施の形態では、セット幅を「u」で表す。
 各セットのセット幅uに対応する長さを、それぞれ、u2,u3,u4,u5とし、u2=s12+w12=s12+w0、u3=s13+w13=s13+w0、u4=s14+w14=s14+w0、u5=s15+w15=s15+w0と定義する。w0、s12を既知であるとすると、u2も既知となる。
 次に、セット幅u3,u4,u5の求め方を示す。以下では、誤解を避けるために、セット幅u2,u3,u4,u5をそれぞれu(2),u(3),u(4),u(5)のように表記する。A=注入量(cm-2)×w1(μm)、B=電界緩和層90で擬似したいVLD構造のリサーフ層の注入量の傾き(cm-2・μm-1)と定義すると、u(3)、u(4)、u(5)は、以下の式(1)~式(3)に示す漸化式によって決まる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000003
 第1のP型注入層91aおよび第1~第5のP型拡散層91b,92b,93b,94b,95bの条件は、それぞれ、第1の実施の形態のP型注入層21aおよびP型拡散層21b,22b,23b,24b,25bと同様である。
 以下の式(4)で示される、u(k-1)とu(k)との間で一般化した漸化式は、2以上の任意のセット数を有する電界緩和層90に適用することができる。
Figure JPOXMLDOC01-appb-M000004
 このような方法で寸法を決めることによって、P型注入層91a~95aの幅w11~w15が、Pベース層12に隣接するもの、すなわち第1のP型注入層91aを除いて一定である場合でも、径方向の外側に向かって注入量が線形的に漸減するVLD構造のリサーフ層を擬似的に形成することができる。
 図30および図31は、本発明の第3の実施の形態の半導体装置3を、耐圧4500VクラスのSiの縦型PINダイオードに適用したときのシミュレーション結果を示すグラフである。図30において、縦軸は、各セットの平均注入量(cm-2)を示し、横軸は、水平方向距離を示す。図31において、縦軸は、300Kにおける耐圧(V)を示し、横軸は、注入量(cm-2)を示す。図31では、前述の第1の実施の形態の半導体装置1に対するシミュレーション結果を、記号「△」と参照符号「101」で示される破線とで示し、第3の実施の形態の半導体装置3に対するシミュレーション結果を、記号「□」と参照符号「102」で示される実線とで示す。
 上記の漸化式で各セット幅を決めることによって、図30に示すように各セットの平均注入量が水平方向距離に対して漸減する電界緩和層90を得ることができる。
 図31は、耐圧の注入量依存性を第3の実施の形態と第1の実施の形態とで比較したものである。ここで、第3の実施の形態のセット数は、第1の実施の形態とほぼ同数である。図31から判るように、第3の実施の形態では、第1の実施の形態と比べて、耐圧の最大値が2~3%程度、具体的には150V程度低下するが、高耐圧が得られる注入量のマージンは同等である。
 以上のように本実施の形態によれば、電界緩和層90は、3つ以上のP型注入層91a~95aを備える。これらP型注入層91a~95aのうち、第1のP型注入層91aを除く他のP型注入層、すなわち第2~第5のP型注入層92a~95aの幅w12~w15は等しい。
 また第2~第5のP型注入層92a~95a同士の間隔s13~s15は、第1および第2のP型注入層91a,92a同士の間隔s12を与えることによって、二次方程式の解を与える漸化式、具体的には前記式(4)から求められる。言い換えれば、第1のP型注入層91aからの距離に基づいて、前記式(4)に類する二次方程式の解を与える漸化式を用いることで、第2~第5のP型注入層92a~95aの位置を決めることができる。すなわち、第2~第5のP型注入層92a~95aの位置は、第1のP型注入層91aからの距離に基づいて、二次方程式の解を与える漸化式によって表される。
 このような構成にすることによって、第2~第5のP型注入層92a~95aの幅w12~w15が等しい場合でも、第1の実施の形態に近い効果を得ることができる。また、このような構成において、電界緩和層90の形成方法を適宜に選択することによって、注入量のマージンをさらに広げることができる。
 <第4の実施の形態>
 図32は、本発明の第4の実施の形態における半導体装置4の構成を示す平面図および断面図である。図32(a)は、本発明の第4の実施の形態における半導体装置4の構成を示す平面図であり、図32(b)は、本発明の第4の実施の形態における半導体装置4の構成を示す断面図である。
 本実施の形態においても、第1の実施の形態と同様に、本実施の形態の半導体装置4をPINダイオードに適用した場合の構成について説明する。本実施の形態の半導体装置4は、第1の実施の形態の半導体装置1と構成が類似しているので、同一の構成については同一の参照符号を付して、共通する説明を省略する。図32では、電界緩和層110の部分を拡大して示している。
 図32に示すように、比較的低濃度(N-)のN型不純物を含む半導体基板11の厚み方向一方側の表面部内に、比較的高濃度のP型不純物を含む活性領域であるPベース層12が形成される。さらに、Pベース層12を囲繞するように、複数のP型注入層111~115で構成される電界緩和層110が形成される。
 電界緩和層110は、5つのP型不純物層、具体的には、第1のP型不純物層111、第2のP型不純物層112、第3のP型不純物層113、第4のP型不純物層114および第5のP型不純物層115を備える。
 各P型不純物層111~115は、P型不純物の濃度が異なる3種類のP型不純物層を有する。3種類のP型不純物層は、比較的高濃度のP型注入層111a~115aと、比較的低濃度の浅部P型拡散層111b~115bと、さらに低濃度の深部P型拡散層111c~115cである。
 注入層と拡散層とは、実際には、不純物の濃度が連続的に変化するので、境界を定義することができないが、本実施の形態では、理解を容易にするために分けて考える。具体的には、Pベース層12と同じイオン注入工程で注入されて形成される高濃度領域であるP型注入層111a~115aと、熱処理によって拡散されて形成されるが、第1の実施の形態のP型注入層21a~25aと同程度の濃度を有する領域である浅部P型拡散層111b~115bと、熱処理によって拡散されて形成され、浅部P型拡散層111b~115bよりも低濃度の領域である深部P型拡散層111c~115cとに分けて考える。ただし、P型注入層111a~115aに注入されたアクセプタイオンは、熱処理によって同心球状に広がるので、P型注入層111a~115aの表面濃度はPベース層12よりも低い。
 径方向において、Pベース層12の外側には、第1の浅部P型拡散層111bが接するか、または一部分が重なって形成される。本実施の形態では、図32に示すように、径方向において、Pベース層12の外側には、第1の浅部P型拡散層111bが接して形成される。また図32に示すように、第1の浅部P型拡散層111bの外側には、第2の浅部P型拡散層112bが間隔をあけて形成される。第2の浅部P型拡散層112bの外側には、第3の浅部P型拡散層113bが間隔をあけて形成される。第3の浅部P型拡散層113bの外側には、第4の浅部P型拡散層114bが間隔をあけて形成される。第4の浅部P型拡散層114bの外側には、第5の浅部P型拡散層115bが間隔をあけて形成される。
 P型注入層111a~115aは、局所高濃度領域に相当し、浅部P型拡散層111b~115bは、高濃度不純物層に相当し、深部P型拡散層111c~115cは、低濃度不純物層に相当する。
 各P型注入層111a~115aは、ドット形状に形成され、複数個が、半導体基板11の厚み方向一方側から見て周方向に周期的に配置されて、各浅部P型拡散層111b~115b内にP型注入層群を形成している。以下の説明では、P型注入層111a~115aをまとめて「P型注入層群111a~115a」といい、P型注入層群111a~115aを構成する各P型注入層を「ドット」という場合がある。
 本実施の形態では、第1のP型注入層群111aは、平面方向に千鳥配置状に周期的に配置されたドット形状のP型注入層で構成される。第1の浅部P型拡散層111bは、第1のP型注入層群111aを構成する各P型注入層を囲み、かつ、第1の深部P型拡散層111cに囲まれる。
 第2~第5のP型注入層群112a~115aは、それぞれ、平面方向に周方向に周期的に配置された1列のドット形状のP型注入層で構成される。第2~第5の浅部P型拡散層112b~115bは、対応するP型注入層群112a~115aを構成するP型注入層を囲み、かつ、対応する深部P型拡散層112c~115cに囲まれている。
 電界緩和層110は、第1~第5のP型注入層群111a~115aと、第1~第5の浅部P型拡散層111b~115bと、第1~第5の深部P型拡散層111c~115cとを含んで構成される。
 隣合うP型注入層群111a~115a同士の間には、ドット間隔に比べて大きい間隔が形成される。径方向において、隣合うP型注入層群111a~115aの互いに向かい合う位置に配置されるドット列、たとえば、第1のP側注入層群111aの最も外側のドット列と、第2のP型注入層群112aを構成するドット列とは、千鳥配置の関係を維持して、各ドットが互い違いの位置に配置される。このようにすることによって、浅部P型拡散層111b~115b同士の間隔を周方向に沿ってほぼ一定に保つことができるので、周方向における局所的な電界集中を防止することができる。
 ここで、電界緩和層110における、浅部P型拡散層111b~115bの幅、および浅部P型拡散層111b~115b同士の間隔は、それぞれ、第3の実施の形態の電界緩和層90におけるP型注入層91a~95aの幅、およびP型注入層91a~95a同士の間隔と同じ規則に則る。浅部P型拡散層111b~115bの幅は、実際には、周方向に沿って周期的に変動するが、ここでは、最も幅の広い部分と、最も幅の狭い部分との平均値を、浅部P型拡散層111b~115bの幅とする。
 第4の実施の形態では、第2~第4の浅部P型拡散層112b~115bは、それぞれ、1列のドット形状のP型注入層で構成される第2~第5のP型注入層群112a~115aに由来するので、全て同じ幅になる。
 前述の第2の実施の形態では、各浅部P型拡散層71b~75bの幅は、対応するP型注入層群71a~75aのドット列の数で決まる離散的な値しか取れない。これに対し、第4の実施の形態では、Pベース層12の外側に接する第1の浅部P型拡散層111aを除き、第2~第5の浅部P型拡散層112a~115aの幅は、1列のドット形状のP型注入層で構成されるP型注入層群によって決まる一定の値になるので、第2の実施の形態のような問題は存在しない。また、第4の実施の形態では、ドット開口面積が大きい場合でも高耐圧を実現しやすい。
 図33は、本発明の第4の実施の形態の半導体装置4を、耐圧4500VクラスのSiの縦型PINダイオードに適用したときのシミュレーション結果を示すグラフである。図33は、耐圧の注入量依存性を第4の実施の形態と第2の実施の形態とで比較したものである。図33において、縦軸は、300Kにおける耐圧(V)を示し、横軸は、Pベース層12の注入量(cm-2)を示す。
 図33では、第2の実施の形態の半導体装置2に対するシミュレーション結果を、記号「△」と参照符号「121」で示される破線とで示し、第4の実施の形態の半導体装置4に対するシミュレーション結果を、記号「□」と参照符号「122」で示される実線とで示す。
 ここで、第4の実施の形態の半導体装置4を形成するときの注入マスクのドット開口の形状は1μm角であり、ドット開口の周方向の周期は5μmであり、セット数は46個である。第2の実施の形態の半導体装置2を形成するときのドット開口の形状は0.5μm角であり、セット数は35個である。いずれの場合も、熱処理は、PN接合深さが6μmとなる程度の条件である。
 図33から判るように、第4の実施の形態の半導体装置4では、第2~第5の浅部P型拡散層112b~115bの幅が離散的になるという問題が存在しないので、第2の実施の形態の半導体装置2に見られる耐圧の注入量依存性の窪みがない。また、第4の実施の形態の半導体装置4は、第2の実施の形態の半導体装置2と同等の耐圧が得られる上に、高耐圧が得られる注入量のマージンが広い。
 第2の実施の形態の半導体装置2と第4の実施の形態の半導体装置4とのどちらが有利であるのかについては、Pベース層12の注入量および形成できるドット開口の面積によって変わる。図33に示す例では、1つのドット開口から注入されるアクセプタイオン数が1.25×10個よりも少ない場合は、第2の実施の形態の半導体装置2の方が、耐圧が高い。アクセプタイオン数が2×10個よりも多い場合は、第4の実施の形態の半導体装置4の方が、耐圧が高い。
 このように、1つのドット開口から注入されるアクセプタイオン数が比較的少ない場合は、第2の実施の形態の半導体装置2の方が有利であり、1つのドット開口から注入されるアクセプタイオン数が比較的多い場合は、第4の実施の形態の半導体装置4の方が有利である。
 ただし、注入された不純物の活性化率が低い場合、熱酸化によってアクセプタイオンが吸い出される場合、またはエッチングによって表面が削られる場合などでは、最終的に半導体基板11に存在する活性化したアクセプタイオン数で考えるべきである。これは、本発明の全てにおいて当てはまることである。
 <第4の実施の形態の変形例>
 図34は、本発明の第4の実施の形態の変形例における半導体装置5の構成を示す平面図および断面図である。図34(a)は、本発明の第4の実施の形態の変形例における半導体装置5の構成を示す平面図であり、図34(b)は、本発明の第4の実施の形態の変形例における半導体装置5の構成を示す断面図である。本変形例においても、第1の実施の形態と同様に、本変形例の半導体装置5をPINダイオードに適用した場合の構成について説明する。本変形例の半導体装置5は、第1の実施の形態の半導体装置1と構成が類似しているので、同一の構成については同一の参照符号を付して、共通する説明を省略する。図34では、電界緩和層130の部分を拡大して示している。
 本変形例では、図32の各P型注入層群111a~115aを構成するドット形状のP型注入層を周方向に繋げ、幅の細いストライプ形状にしたものである。つまり、第4の実施の形態におけるドット形状のP型注入層で構成される第1のP型注入層群111aが、本変形例におけるストライプ形状のP型注入層で構成される第1のP型注入層群131aに対応する。同様に、第4の実施の形態におけるドット形状のP型注入層で構成される第2~第5のP型注入層群112a、113a,114a,115aが、それぞれ、本変形例におけるストライプ形状の第2~第5のP型注入層132a,133a,134a,135aに対応する。
 そして、第1のP型注入層群131aと、第2~第5のP型注入層132a~135aと、第1~第5の浅部P型拡散層131b~135bと、第1~第5の深部P型拡散層131c~135cとによって電界緩和層130が構成される。本実施の形態では、ドット注入ではないので、電界緩和層130の不純物濃度、およびP型拡散層131b~135b,131c~135cの幅には、周方向の変動は存在しない。
 図35は、本発明の第4の実施の形態の変形例における半導体装置5を、耐圧4500VクラスのSiの縦型PINダイオードに適用したときのシミュレーション結果を示すグラフである。図35において、縦軸は、300Kにおける耐圧(V)を示し、横軸は、Pベース層12の注入量(cm-2)を示す。図35では、P型注入層の形状を1μm角のドット形状、1μm幅のストライプ形状、または0.2μm幅のストライプ形状としたときの耐圧の注入量依存性を示している。
 図35では、P型注入層を1μm角のドット形状とした場合のシミュレーション結果を、記号「○」と参照符号「141」で示される破線とで示す。P型注入層を1μm幅のストライプ形状とした場合のシミュレーション結果を、記号「◇」および参照符号「142」で示される2点鎖線とで示す。P型注入層を0.2μm幅のストライプ形状とした場合のシミュレーション結果を、記号「□」と参照符号「143」で示される実線とで示す。
 図35に示す例において、P型注入層を1μm角のドット形状とした場合、ドット形状の各P型注入層は、周方向に5μm周期で配置されているものとする。また、いずれの場合も、セット数は46個であり、熱処理はPN接合深さが6μmとなる程度の条件である。
 図35から判るように、ストライプ形状のP型注入層131a~135aを形成する場合、換言すれば、ストライプ形状の開口(以下「ストライプ開口」という場合がある)が形成される注入マスクを用いて半導体装置を製造する場合でも、1×1014cm-2以上の注入量で良好な耐圧を得ることが可能である。また図35から、ストライプ開口の幅を広げた場合は、最適注入量を下げることができ、またストライプ開口の幅を狭めた場合は、最適注入量を上げることができることが判る。つまり、Pベース層12の注入量に合わせて、ストライプ開口の幅を調整すればよい。ただし、ストライプ開口の幅を広げる場合、ストライプ開口の幅が拡散長よりも十分小さい必要がある。また、最適なストライプ開口の幅が注入マスクの解像度よりも小さい場合、図32に示すようなドット開口にして、注入されるアクセプタイオン数を減らす必要がある。
 図35において、P型注入層131a~135aを0.2μm幅のストライプ形状とした場合の耐圧の注入量依存性は、P型注入層131a~135aを1μm角のドット形状とした場合の耐圧の注入量依存性と近い。これは、周方向周期5μmの1μm角のドット開口と、周方向長さ5μmの0.2μm幅のストライプ開口とで、注入されるアクセプタイオン数が同じであるからである。ただし、0.2μm幅のストライプ開口の場合、電界緩和層の濃度の周方向の変動が存在しないので、1μm角のドット開口が形成された注入マスクを用いる場合よりも、半導体装置の耐圧は少し高い。
 ここで、0.2μm角のドット形状も含め、0.2μm幅の開口パターンを形成できるのであれば、第2の実施の形態におけるP型注入層71a~75aも形成しやすくなることに注意を払うべきである。第2の実施の形態におけるP型注入層71a~75aと、第4の実施の形態の変形例におけるP型注入層131a~135aとのどちらが有利かについては、Pベース層12の注入量、ならびに形成できる開口の形状、および開口幅の下限、たとえば注入マスクの解像度による下限などから決まるものである。
 第2の実施の形態、第4の実施の形態およびその変形例において、径方向におけるP型注入層71a~75a,111a~115a,131a~135aの幅は、半導体基板11の厚み方向一方側の表面を基準とした深部P型拡散層71c~75c,111c~115c,131c~135cの深さの5分の1(1/5)以下にすることが好ましい。これによって、高耐圧が得られる注入量のマージンをさらに広げることができる。
 このような構成の半導体装置を製造する場合には、マスク形成工程において、活性領域であるPベース層12が形成される領域に対応する部分が開口され、径方向における開口部の幅が、熱処理工程で形成するべき深部P型拡散層71c~75c,111c~115c,131c~135cの半導体基板11の厚み方向一方側の表面を基準とした深さの5分の1(1/5)以下になるように注入マスクを形成すればよい。これによって、製造工程の数を削減することができる。
 <第5の実施の形態>
 前述の第1および第3の実施の形態では、熱処理によってアクセプタイオンを拡散させて、電界緩和層13,90を形成しているが、電界緩和層は、熱拡散を用いなくても形成することができる。
 図36~図40を用いて、熱拡散を用いないで、電界緩和層13を形成する工程について説明する。図36は、レジストマスクRM3を用いてイオン注入を行っている状態を示す断面図である。図37は、レジストマスクRM3を等方的にエッチングして、レジストマスクRM4を形成した状態を示す断面図である。図38~図40は、レジストマスクRM4を用いてイオン注入を行っている状態を示す断面図である。
 図36に示すように、比較的低濃度(N-)のN型不純物を含む半導体基板11の表面部内に、比較的高濃度のP型不純物を含むPベース層12を形成した後、この基板表面上に、第1~第5のP型注入層21a,22a,23a,24a,25aの形成領域に対応する部分が開口部となったパターンを有する比較的厚いレジストマスクRM3形成する。
 そして、第1のイオン注入工程において、レジストマスクRM3の上方から、比較的低いエネルギーで、P型不純物イオンであるアクセプタイオンのイオン注入を行う。
 次に、図37で示すように、酸素アッシャーなどでレジストのみを等方的にエッチングし、レジストマスクRM3で覆う部分を後退させる。レジストマスクRM3は、エッチングされ、レジストマスクRM4になる。ここでは、レジストマスクRM3のうち、第1のP型注入層21aと第2のP型注入層22aとの間に対応する部分のレジストマスクは、エッチングによって消失させている。
 次に、図38および図39に示すように、第2のイオン注入工程において、レジストマスクRM4の上方、すなわち厚み方向一方側から、比較的低いエネルギーから比較的高いエネルギーまでエネルギーを変えて、複数回のアクセプタイオンのイオン注入を行う。
 図38および図39では、レジストマスクRM4の上方から入射する矢印の長さが、イオン注入のエネルギーの大きさを反映している。図38は、比較的低いエネルギーでイオン注入を行った場合を示し、図39は、比較的高いエネルギーでイオン注入を行った場合を示す。
 第2のイオン注入工程では、たとえば、図38に示すような比較的低いエネルギーでのイオン注入を行った後、図39に示すような比較的高いエネルギーでのイオン注入を行う。比較的低いエネルギーでのイオン注入によって、第1~第5のP型拡散層21b~25bのうち、第1~第5のP型注入層21a~25aと同じ深さまでの部分に相当する第1~第5のP型注入層21c~25cが形成される。第2のイオン注入工程では、以上の手順に限定されず、比較的高いエネルギーでのイオン注入を行った後、比較的低いエネルギーでのイオン注入を行うようにしてもよい。
 ここで、第1のイオン注入工程の注入量と第2のイオン注入工程の注入量との和が、半導体材料で決まるリサーフ条件の1.5倍以上3.5倍以下になるようにする。このようにすることによって、図39に示すように、P型注入層21a,22a,23a,24a,25aを囲繞するP型拡散層21b,22b,23b,24b,25bが形成される。
 このような製造工程を用いれば、SiCのような熱拡散長の非常に短い半導体でも、本発明の電界緩和層を形成することができる。
 また、図40に示すように、第2のイオン注入工程において、比較的高いエネルギーでのみアクセプタイオンのイオン注入を行い、P型注入層21a,22a,23a,24a,25aの底面のみを保護するような、埋め込みP型注入層21d,22d,23d,24d,25dを形成してもよい。このようにすれば、製造工程の一部を省略することができる。
 このとき、埋め込みP型注入層21d,22d,23d,24d,25dは、P型注入層21a,22a,23a,24a,25aの底面近傍に最大アクセプタ濃度を有する。すなわち、埋め込みP型注入層21d~25dは、半導体基板11の厚み方向一方側の表面からの位置が、P型注入層21a~25aの底面と略等しい位置で、P型不純物の濃度が最大となる。このような構成にすることによって、前述のように製造工程の一部を省略しても、比較的高い耐圧を有する半導体装置を実現することができる。ここで、埋め込みP型注入層は、低濃度不純物層に相当する。
 以上のように本実施の形態では、イオン注入工程と熱処理工程との間にエッチング工程と第2のイオン注入工程とを備える。第2のイオン注入工程では、第1のイオン注入工程でP型不純物をイオン注入するときの注入エネルギーよりも高い注入エネルギーで、P型不純物がイオン注入される。これによって、炭化珪素(SiC)のように、拡散長の比較的短いワイドギャップ半導体を用いる場合でも、比較的高い耐圧を有する半導体装置を実現することができる。
 以上に説明した第1~第5の実施の形態においては、半導体基板および各不純物層の導電型を、P型あるいはN型に特定した半導体装置について説明したが、これらの導電型が全て逆であっても、同様の効果が得られる。
 また、以上で示した注入量およびアクセプタイオン数は、活性化率が100%であり、かつ、イオン注入後の製造工程で消失しないことを前提にした値である。したがって、活性化率が低い場合、熱酸化によってアクセプタイオンが吸い出される場合、またはエッチングによって表面が削られる場合などでは、最終的に半導体基板に存在する活性化したアクセプタイオン数に基づいて、注入量を調節すべきである。
 また、半導体と、酸化膜などの絶縁膜との界面、場合によっては、半導体と、ポリイミド膜などのパッシベーション膜との界面には、固定電荷、たとえば界面電荷が存在する。この固定電荷が注入量に対して無視できない場合も注入量を調節すべきである。
 また、第1~第5の実施の形態においては、Pベース層12が電界緩和層13,70,90,110,130よりも深いものとして図示したが、Pベース層12は、電界緩和層13,70,90,110,130よりも浅くてもよい。
 また、第1~第4の実施の形態においては、アクセプタイオンを比較的低エネルギーで注入すると述べたが、アクセプタイオンが注入マスクによって完全に阻止されるのであれば、注入エネルギーは高くてもよい。比較的高いエネルギーで注入する場合、P型注入層の上下左右にP型拡散層が広がることになる。
 また、第1、第3および第5の実施の形態においては、電界緩和層13,90のアクセプタイオンを、Pベース層12となる活性領域に注入しなかったが、注入マスクの開口を活性領域にまで広げて、電界緩和層13,90のアクセプタイオンを活性領域に注入してもよい。
 たとえば、図41に示すPINダイオード6のように、Pベース層12の形成領域に注入マスクの開口を広げて電界緩和層150のアクセプタイオンを注入し、Pベース層12を省略してもよい。図41は、半導体装置の他の例を示す断面図である。
 図41に示す半導体装置6では、活性領域は、P型不純物を含有するP型不純物層である第1のP型注入層151aで構成される。つまり、活性領域は、電界緩和層150を構成する第1のP型注入層151aの一部で構成される。換言すれば、活性領域を構成するP型不純物層は、電界緩和層150を構成する第1のP型注入層151aと一体的に形成される。
 したがって、活性領域を構成するP型不純物層の厚み方向におけるP型不純物の濃度プロファイルは、電界緩和層150を構成する高濃度不純物層が位置する箇所、すなわち第1のP型注入層151aのうちで電界緩和層150を構成する部分の厚み方向におけるP型不純物の濃度プロファイルと同一である。
 このような構成にすることによって、活性領域の形成工程を一部省略して、比較的高い耐圧を有する半導体装置6を実現することができる。
 ここで、電界緩和層150の注入量は、リサーフ条件の1.5倍以上であるので、Pベース層を省略しても、通常の使用条件ではP型不純物層は完全には空乏化せず、アノード電極15へのパンチスルーは発生しない。また、このような構成において、アノード電極15との接触抵抗を下げるために、別途、アノード電極15とコンタクトを取る箇所に、比較的浅く、比較的高い濃度でP型不純物を含有するP型不純物層を形成してもよい。
 また、第1~第5の実施の形態においては、本発明を適用するデバイスをPINダイオードとしたが、本発明は、MOSFET、IGBT、BJT(Bipolar Junction Transistor)などのトランジスタ、またはサイリスタといった、種々のデバイスの終端構造として適用しても、同様の効果が得られる。
 また、第1、第3および第5の実施の形態においては、図42に示す半導体装置7のように、ショットキー電極であるアノード電極15と半導体基板11との界面に存在するショットキーバリア155を活性領域とし、ショットキーバリアダイオードとしてもよい。図42は、半導体装置の他の例を示す断面図である。
 図42に示すように、活性領域は、半導体基板11の厚み方向一方側の表面部のうちで、ショットキー電極であるアノード電極15とショットキー接合を形成する領域、すなわちショットキー領域であるショットキーバリア155で構成されてもよい。このショットキーバリア155とショットキー電極15とによって、ショットキーバリアダイオードである半導体装置7が構成される。これによって、半導体装置7として、比較的高い耐圧を有するショットキーバリアダイオードを実現することができる。
 前述のようにショットキー電極15と半導体基板11との界面に存在するショットキーバリア155を活性領域とする場合、電界緩和層と同時に活性領域の一部にもイオン注入を行い、半導体装置7を、JBS(Junction Barrier Schottky)ダイオード、MPS(Merged PIN Schottky)ダイオードとしてもよい。
 また、第1~第5の実施の形態においては、耐圧クラスを定格電圧で4500Vとしたが、本発明は、どのような耐圧クラスに対しても適用できる。
 また、半導体基板11の材料は、シリコンに限定されず、比較的広いバンドギャップを有するワイドバンドギャップ半導体であってもよい。ワイドバンドギャップ半導体としては、たとえば、炭化珪素(SiC)、窒化ガリウム(GaN)系材料、またはダイヤモンドを使用してもよい。
 最適な電界緩和層の注入量は、主に使用する半導体材料の誘電率と絶縁破壊電界とによって決まる。一方、最適な電界緩和層の幅は、主に半導体材料の絶縁破壊電界と必要とされる耐圧とによって決まるが、本発明によれば、半導体内部の電界を効果的に低減できるので、終端構造の幅を従来よりも小さくすることができる。
 また、ワイドバンドギャップ半導体によって構成されるスイッチング素子およびダイオード素子は、高耐圧性を有し、許容電流密度も高いので、シリコンに比べて小型化が可能である。これら小型化されたスイッチング素子およびダイオード素子を用いることによって、これらの素子を組み込んだ半導体装置モジュールの小型化が可能となる。
 また、耐熱性も高いので、ヒートシンクの放熱フィンの小型化、および水冷ではなく空冷による冷却も可能となり、半導体装置モジュールの一層の小型化が可能となる。
 また、注入に用いる不純物は、ホウ素(B)、窒素(N)、アルミニウム(Al)、リン(P)、ヒ素(As)、インジウム(In)など、半導体材料の原子と置換して活性化するものであれば、どのようなものであってもよい。ただし、熱拡散によって電界緩和層を形成する場合は、拡散長が比較的大きく、かつ、拡散の制御性の高いものが望ましい。
 最後に、本発明を適用したときの終端構造の幅について、具体的に説明する。本発明によれば、径方向における電界緩和層13,70,90,110,130,150の幅を、半導体基板11の厚みの2倍よりも小さくすることができる。
 ここで、「半導体基板の厚み」とは、本実施の形態のように、半導体基板11として、半導体材料で構成される半導体基板そのもの、たとえば、比較的低濃度のN型不純物を含む半導体基板が用いられる場合には、半導体基板そのものの厚みをいう。半導体基板11としては、支持基板と、支持基板上に形成された、半導体材料のエピタキシャル膜、たとえば比較的低濃度のN型不純物を含むエピタキシャル膜とで構成される基板が用いられてもよい。この場合には、エピタキシャル膜の厚みを「半導体基板の厚み」という。
 以下では、「半導体基板の厚み」を規定する部分を「ドリフト層」という場合がある。すなわち、半導体基板11として、半導体基板そのものが用いられる場合には、半導体基板11そのものを「ドリフト層」という。半導体基板11として、支持基板と支持基板上に形成された半導体材料のエピタキシャル膜とで構成される基板が用いられる場合には、エピタキシャル膜を「ドリフト層」という。
 電界緩和層13,70,90,110,130,150の幅の下限は、ドリフト層、すなわち半導体基板またはエピタキシャル膜の不純物濃度、半導体装置の動作が保証される最低温度、および製造ばらつきに依存するが、「半導体基板の厚み」であるドリフト層の厚みの1.5倍程度である。
 たとえば、Siの場合、ドリフト層の厚み(単位:μm)は定格電圧(単位:V)の0.1倍程度必要である。つまり、Siの場合、本発明によれば、電界緩和層の幅(単位:μm)を定格電圧(単位:V)のおよそ0.15倍~0.2倍にすることができる。
 図43は、定格電圧と電界緩和層の幅との関係を示すグラフである。図43において、縦軸は、電界緩和層の幅を示し、横軸は、定格電圧(V)を示す。図43では、本発明の第1の実施の形態の半導体装置1を、各定格電圧のSiの縦型PINダイオードに適用したときに、室温において定格電圧の1.2倍の耐圧が得られる電界緩和層の幅を示している。
 図43では、電界緩和層の幅をドリフト層の厚み(以下「ドリフト層厚」という)の1.5倍とした場合を参照符号「161」で示される破線で示し、電界緩和層の幅をドリフト層厚の2.0倍とした場合を参照符号「162」で示される二点鎖線で示す。図43において、電界緩和層の幅はドリフト層厚の1.5倍~2倍の間にある。なお、本発明の他の実施の形態でも電界緩和層の幅を第1の実施の形態と同程度にすることが可能である。
 以上のように本発明では、電界緩和層13,70,90,110,130,150の幅が、半導体基板11の厚みであるドリフト層厚の2倍以下、より詳細にはドリフト層厚の1.5倍以上2倍以下の範囲において、図43に示すように比較的高い耐圧を実現することができる。電界緩和層13,70,90,110,130,150の幅がドリフト層厚の2倍以下であることによって、半導体装置の大型化を回避することができる。すなわち、半導体装置を大型化させることなく、比較的高い耐圧を実現することができる。
 また、耐圧が高くなるほど、ドリフト層厚を増やすとともに、ドリフト層の不純物濃度を下げる必要がある。ドリフト層の不純物濃度を下げると、ドリフト層に空乏層が伸びやすくなる。したがって、空乏層がストッパ層14に到達し、リーク電流が著しく増加する現象、すなわちストッパ層14へのリーチスルーを防ぐために、電界緩和層13,70,90,110,130,150からストッパ層14までの離間距離を定格電圧に比例して広げることが望ましい。たとえば、電界緩和層13,70,90,110,130,150からストッパ層14までの離間距離をドリフト層厚と同じにすれば、ストッパ層14へのリーチスルーは十分に防ぐことができる。
 しかし、電界緩和層13,70,90,110,130,150からストッパ層14までの離間距離は、リーチスルーに対する懸念を除けば、耐圧に大きく影響しないので、できるだけ短くすることが望まれる。
 そこで、ストッパ層14へのリーチスルーを積極的に抑制するために、図44に示すように、ストッパ層14と同電位、つまり、カソード電極17と同電位のフィールドプレート172を設けてもよい。図44は、本発明の半導体装置の他の例を示す断面図である。図44に示す半導体装置8では、ストッパ層14と同電位のフィールドプレート172が、アノード電極175と同じ配線層を用いて形成されている。フィールドプレート172の先端は、絶縁膜171を介して半導体基板11に対向している。
 このように電界緩和層13よりも径方向の外側に、半導体基板11の厚み方向他方側の表面と同電位を有する金属配線層としてフィールドプレート172を設け、金属配線層であるフィールドプレート172と半導体基板11の厚み方向一方側の表面部との間に絶縁層として絶縁膜171を介在させることによって、電界緩和層13からストッパ層14までの離間距離を縮めることができる。たとえば、電界緩和層13からストッパ層14までの離間距離を、ドリフト層厚である半導体基板11の厚みの半分にしても、ストッパ層14へのリーチスルーを十分に防ぐことができる。
 この場合においても、電界緩和層13からフィールドプレート172の端部までの離間距離、および、電界緩和層13からストッパ層14までの離間距離を定格電圧に比例して広げることが望ましい。ただし、電界緩和層13からストッパ層14までの離間距離として適当な値を求めるための比例係数は、フィールドプレート172を設けない場合に比べて、小さくなる。
 本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせることが可能である。また、各実施の形態の任意の構成要素を適宜、変更または省略することが可能である。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1,2,3,4,5,6,7,8 半導体装置、11 半導体基板、12 活性領域(Pベース層)、13,70,90,110,130,150 電界緩和層、14 ストッパ層、15,175 アノード電極、16 カソード層、17 カソード電極、21~25,71~75,91~95,111~115,131~135,151 P型不純物層、21a~25a,21c~25c,21d~25d,71a~75a,91a~95a,111a~115a,131a~135a,151a P型注入層、21b~25b,71b~75b,71c~75c,91b~95b,111b~115b,111c~115c,131b~135b,131c~135c,151b P型拡散層、171 絶縁膜、172 フィールドプレート。

Claims (19)

  1.  第1導電型の半導体基板(11)と、
     前記半導体基板(11)の厚み方向一方側の表面部内に、前記半導体基板(11)の外周縁部から離隔して形成される第2導電型の活性領域(12)と、
     前記半導体基板(11)の厚み方向一方側の表面部内に、前記活性領域(12)の外周縁部から前記半導体基板(11)の外周縁部に向けて、前記活性領域(12)を囲繞するように環状に形成される電界緩和層(13,70,90,110,130,150)とを備え、
     前記電界緩和層(13,70,90,110,130,150)は、
      互いに間隔をあけて、前記活性領域(12)を囲繞するように形成され、第2導電型の不純物を含有する複数の高濃度不純物層(21a,22a,23a,24a,25a)と、
      各前記高濃度不純物層(21a,22a,23a,24a,25a)を囲繞するように形成され、前記高濃度不純物層(21a,22a,23a,24a,25a)よりも低い濃度で前記第2導電型の不純物を含有する複数の低濃度不純物層(21b,22b,23b,24b,25b)とを備え、
     前記高濃度不純物層(21a,22a,23a,24a,25a)のうち、前記電界緩和層(13,70,90,110,130,150)の径方向において最も内側に形成される最内側高濃度不純物層(21a)は、前記活性領域(12)に接するか、または一部分が重なって形成され、
     前記最内側高濃度不純物層(21a)を囲繞する前記低濃度不純物層(21b)は、前記最内側高濃度不純物層(21a)よりも前記径方向の外側に形成される他の前記高濃度不純物層(22a,23a,24a,25a)を囲繞する前記低濃度不純物層(22b,23b,24b,25b)の少なくとも1つと繋がって形成され、
     前記高濃度不純物層(21a,22a,23a,24a,25a)同士の間隔(s2,s3,s4,s5)は、前記活性領域(12)から前記半導体基板(11)の外周縁部に向かうに従って大きくなることを特徴とする半導体装置。
  2.  前記高濃度不純物層(21a,22a,23a,24a,25a)のうち、少なくとも、前記電界緩和層(13)の径方向において最も外側に形成される最外側高濃度不純物層(25a)を囲繞する前記低濃度不純物層(25b)は、前記径方向において前記最外側高濃度不純物層(25a)よりも1つ内側に形成される前記高濃度不純物層(24a)を囲繞する前記低濃度不純物層(24b)から間隔をあけて形成されることを特徴とする請求項1に記載の半導体装置。
  3.  前記高濃度不純物層(21a,22a,23a,24a,25a)は、隣合う前記高濃度不純物層(21a,22a,23a,24a,25a)同士の間の層間領域の幅と、その層間領域に前記径方向の外側で接する前記高濃度不純物層(22a,23a,24a,25a)の幅との和が、予め定める値になるように形成されることを特徴とする請求項1または2に記載の半導体装置。
  4.  前記高濃度不純物層(21a,22a,23a,24a,25a)同士の間隔は、前記活性領域(12)から前記半導体基板(11)の外周縁部に向かうに従って、等差数列的に大きくなることを特徴とする請求項1または2に記載の半導体装置。
  5.  前記電界緩和層(90)は、前記最内側高濃度不純物層(91a)を含む3つ以上の前記高濃度不純物層(91a,92a,93a,94a,95a)を備え、
     前記高濃度不純物層(91a,92a,93a,94a,95a)のうち、前記最内側高濃度不純物層(91a)を除く他の高濃度不純物層(92a,93a,94a,95a)の幅(w12,w13,w14,w15)は等しく、
     前記最内側高濃度不純物層(91a)を除く他の高濃度不純物層(92a,93a,94a,95a)の位置は、前記最内側高濃度不純物層(91a)からの距離に基づいて、二次方程式の解を与える漸化式によって表されることを特徴とする請求項1または2に記載の半導体装置。
  6.  前記半導体基板(11)の厚み方向一方側の表面における各前記高濃度不純物層(21a,22a,23a,24a,25a)の前記第2導電型の不純物の面密度と、その高濃度不純物層(21a,22a,23a,24a,25a)を前記半導体基板(11)の厚み方向において囲繞する前記低濃度不純物層(21b,22b,23b,24b,25b)の前記第2導電型の不純物の面密度との和は、前記半導体基板(11)を構成する半導体材料毎に予め求められるリサーフ構造の前記第2導電型の不純物の面密度の最適値であるリサーフ条件の1.5倍以上3.5倍以下であることを特徴とする請求項1または2に記載の半導体装置。
  7.  前記低濃度不純物層(21d,22d,23d,24d,25d)は、前記半導体基板(11)の厚み方向一方側の表面からの位置が、前記高濃度不純物層(21a,22a,23a,24a,25a)の底面と略等しい位置で、前記第2導電型の不純物の濃度が最大となることを特徴とする請求項1または2に記載の半導体装置。
  8.  前記活性領域(12)は、前記第2導電型の不純物を含有する第2導電型不純物層(151a)で構成され、
     前記第2導電型不純物層(151a)の厚み方向における前記第2導電型の不純物の濃度プロファイルは、前記高濃度不純物層(151a)が位置する箇所の厚み方向における前記第2導電型の不純物の濃度プロファイルと同一であることを特徴とする請求項1または2に記載の半導体装置。
  9.  前記高濃度不純物層(71b,72b,73b,74b,75b)は、その厚み方向一方側の表面部における前記第2導電型の不純物の濃度分布が、前記電界緩和層(70)の径方向もしくは周方向、または径方向および周方向に沿って、周期的に変化することを特徴とする請求項1または2に記載の半導体装置。
  10.  前記高濃度不純物層(71b,72b,73b,74b,75b)は、その厚み方向一方側の表面部に、前記活性領域(12)と略等しい濃度で前記第2導電型の不純物を含有する局所高濃度領域(71a,72a,73a,74a,75a)を有することを特徴とする請求項1または2に記載の半導体装置。
  11.  前記径方向における前記局所高濃度領域(71a~75a,111a~115a,131a~135a)の幅は、前記半導体基板(11)の厚み方向一方側の表面を基準とした前記低濃度不純物層(71c~75c,111c~115c,131c~135c)の深さの5分の1(1/5)以下であることを特徴とする請求項10に記載の半導体装置。
  12.  前記径方向における前記電界緩和層(13,70,90,110,130,150)の幅は、前記半導体基板(11)の厚みの2倍以下であることを特徴とする請求項1または2に記載の半導体装置。
  13.  前記電界緩和層(13)よりも前記径方向の外側に設けられ、前記半導体基板(11)の厚み方向他方側の表面と同電位を有する金属配線層(172)と、
     前記金属配線層(172)と前記半導体基板(11)の厚み方向一方側の表面部との間に介在される絶縁層(171)とを備えることを特徴とする請求項1または2に記載の半導体装置。
  14.  前記半導体基板(11)の厚み方向一方側の表面部に設けられるショットキー電極(15)を備え、
     前記活性領域(12)は、前記半導体基板(11)の厚み方向一方側の表面部のうちで、前記ショットキー電極(15)とショットキー接合を形成するショットキー領域(155)で構成され、
     前記ショットキー電極(15)と前記ショットキー領域(155)とは、ショットキーバリアダイオードを構成することを特徴とする請求項1または2に記載の半導体装置。
  15.  前記半導体基板(11)は、比較的広いバンドギャップを有するワイドバンドギャップ半導体から成ることを特徴とする請求項1または2に記載の半導体装置。
  16.  第1導電型の半導体基板(11)と、前記半導体基板(11)の厚み方向一方側の表面部に、前記半導体基板(11)の外周縁部から離隔して形成される第2導電型の活性領域(12)と、前記活性領域(12)の外周縁部から前記半導体基板(11)の外周縁部に向けて、前記活性領域(12)を囲繞するように環状に形成される電界緩和層(13,70,90,110,130,150)とを備える半導体装置の製造方法であって、
     前記半導体基板(11)の厚み方向一方側の表面部上に、前記活性領域(12)が形成される領域に対応する部分を囲繞する複数の開口部が、径方向に互いに間隔をあけて形成された注入マスク(RM1,RM2,RM3)を形成するマスク形成工程と、
     前記注入マスク(RM1,RM2,RM3)を介して、前記半導体基板(11)に前記第2導電型の不純物をイオン注入することによって、高濃度不純物層(21a,22a,23a,24a,25a)を形成するイオン注入工程と、
     前記第2導電型の不純物がイオン注入された前記半導体基板(11)を熱処理することによって、前記高濃度不純物層(21a,22a,23a,24a,25a)を囲繞する低濃度不純物層(21b,22b,23b,24b,25b)を形成する熱処理工程とを備え、
     前記マスク形成工程では、前記径方向における前記開口部同士の間隔が、前記活性領域(12)が形成される領域に対応する部分から前記半導体基板(11)の外周縁部に対応する部分に向かうに従って大きくなるように、前記注入マスク(RM1,RM2,RM3)を形成し、
     前記熱処理工程を終えた時点で、前記高濃度不純物層(21a,22a,23a,24a,25a)のうち、前記電界緩和層(13,70,90,110,130,150)の径方向において最も内側に形成される最内側高濃度不純物層(21a)は、前記活性領域(12)に接するか、または一部分が重なって形成され、
     前記最内側高濃度不純物層(21a)を囲繞する前記低濃度不純物層(21b)は、前記最内側高濃度不純物層(21a)よりも前記径方向の外側に形成される他の前記高濃度不純物層(22a,23a,24a,25a)を囲繞する前記低濃度不純物層(22b,23b,24b,25b)の少なくとも1つと繋がって形成されることを特徴とする半導体装置の製造方法。
  17.  前記マスク形成工程では、
     前記活性領域(12)が形成される領域に対応する部分が開口され、前記開口部が前記径方向もしくは周方向、または前記径方向および周方向に沿って周期的なパターンとなるように前記注入マスク(RM2)を形成することを特徴とする請求項16に記載の半導体装置の製造方法。
  18.  前記マスク形成工程では、
     前記活性領域(12)が形成される領域に対応する部分が開口され、前記径方向における前記開口部の幅が、前記熱処理工程で形成するべき前記低濃度不純物層(71c~75c,111c~115c,131c~135c)の前記半導体基板(11)の厚み方向一方側の表面を基準とした深さの5分の1(1/5)以下になるように前記注入マスクを形成することを特徴とする請求項16または17に記載の半導体装置の製造方法。
  19.  前記イオン注入工程と前記熱処理工程との間に、
      前記注入マスク(RM3)を選択的に等方的にエッチングするエッチング工程と、
      エッチングされた前記注入マスク(RM4)を介して、前記半導体基板(11)に前記第2導電型の不純物をイオン注入する第2のイオン注入工程とを備え、
     前記第2のイオン注入工程では、前記イオン注入工程で前記第2導電型の不純物をイオン注入するときの注入エネルギーよりも高い注入エネルギーで、前記第2導電型の不純物をイオン注入することを特徴とする請求項16または17に記載の半導体装置の製造方法。
PCT/JP2013/062691 2012-10-11 2013-05-01 半導体装置およびその製造方法 WO2014057700A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112013004981.3T DE112013004981T5 (de) 2012-10-11 2013-05-01 Halbleiterbauteil und Verfahren zu dessen Herstellung
JP2014540763A JP5784242B2 (ja) 2012-10-11 2013-05-01 半導体装置およびその製造方法
US14/430,746 US9508792B2 (en) 2012-10-11 2013-05-01 Semiconductor device including an electric field buffer layer and method for manufacturing same
CN201380052950.2A CN104756258B (zh) 2012-10-11 2013-05-01 半导体器件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012225784 2012-10-11
JP2012-225784 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014057700A1 true WO2014057700A1 (ja) 2014-04-17

Family

ID=50477178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062691 WO2014057700A1 (ja) 2012-10-11 2013-05-01 半導体装置およびその製造方法

Country Status (5)

Country Link
US (1) US9508792B2 (ja)
JP (1) JP5784242B2 (ja)
CN (1) CN104756258B (ja)
DE (1) DE112013004981T5 (ja)
WO (1) WO2014057700A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025300A (ja) * 2014-07-24 2016-02-08 株式会社日立製作所 高耐圧半導体装置
WO2016071969A1 (ja) * 2014-11-05 2016-05-12 新電元工業株式会社 半導体素子
WO2016194216A1 (ja) * 2015-06-05 2016-12-08 株式会社日立製作所 半導体装置およびその製造方法、並びにパワーモジュール
JP2018010988A (ja) * 2016-07-14 2018-01-18 トヨタ自動車株式会社 半導体装置とその製造方法
JP2020068244A (ja) * 2018-10-23 2020-04-30 三菱電機株式会社 半導体装置、および、半導体装置の製造方法
WO2023243189A1 (ja) * 2022-06-17 2023-12-21 株式会社日立パワーデバイス 半導体装置の製造方法および半導体装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826399A (zh) * 2016-05-25 2016-08-03 上海安微电子有限公司 一种多混合结构的软快恢复二极管及其制备方法
US10002920B1 (en) * 2016-12-14 2018-06-19 General Electric Company System and method for edge termination of super-junction (SJ) devices
TWI609487B (zh) 2016-12-30 2017-12-21 新唐科技股份有限公司 半導體裝置
TWI609486B (zh) * 2016-12-30 2017-12-21 新唐科技股份有限公司 高壓半導體裝置
DE112018002359T5 (de) * 2017-05-08 2020-01-23 Rohm Co., Ltd. Halbleiterbauteil
CN107359117B (zh) * 2017-07-13 2020-03-27 深圳市金誉半导体有限公司 高压快恢复pin二极管及其制造方法
JP2019054170A (ja) 2017-09-15 2019-04-04 株式会社東芝 半導体装置
TWI634658B (zh) 2017-12-29 2018-09-01 新唐科技股份有限公司 半導體裝置
JPWO2020031971A1 (ja) * 2018-08-07 2021-08-10 ローム株式会社 SiC半導体装置
FR3091622B1 (fr) * 2019-01-09 2021-09-17 Soitec Silicon On Insulator Structure semi-conductrice optoélectronique comprenant une couche d’injection de type p à base d’InGaN
CN110212023B (zh) * 2019-05-29 2020-10-09 西安电子科技大学 一种能够减小反向漏电流的结型势垒肖特基二极管
CN113299732A (zh) * 2020-02-24 2021-08-24 珠海格力电器股份有限公司 半导体器件、芯片、设备和制造方法
TWI743818B (zh) 2020-06-02 2021-10-21 台灣半導體股份有限公司 具有多保護環結構之蕭特基二極體
CN112382653B (zh) * 2020-07-13 2024-02-23 电子科技大学 横向变掺杂终端结构及设计方法和制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231965A (ja) * 2001-02-01 2002-08-16 Hitachi Ltd 半導体装置
JP2002270857A (ja) * 2001-03-07 2002-09-20 Toshiba Corp 半導体装置および電力変換装置
JP2006156637A (ja) * 2004-11-29 2006-06-15 Shindengen Electric Mfg Co Ltd ダイオードおよびブリッジダイオード
JP2007096006A (ja) * 2005-09-29 2007-04-12 Nippon Inter Electronics Corp ガードリングの製造方法および半導体装置
JP2008277353A (ja) * 2007-04-25 2008-11-13 Matsushita Electric Ind Co Ltd 半導体装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2131603B (en) * 1982-12-03 1985-12-18 Philips Electronic Associated Semiconductor devices
DE3581348D1 (de) 1984-09-28 1991-02-21 Siemens Ag Verfahren zum herstellen eines pn-uebergangs mit hoher durchbruchsspannung.
JPH01270346A (ja) 1988-04-22 1989-10-27 Fuji Electric Co Ltd 半導体装置
JPH07249737A (ja) 1994-03-11 1995-09-26 Mitsubishi Electric Corp プレーナ型半導体装置およびその製造方法
JP3997551B2 (ja) 1995-12-08 2007-10-24 株式会社日立製作所 プレーナ型半導体装置
US6002159A (en) 1996-07-16 1999-12-14 Abb Research Ltd. SiC semiconductor device comprising a pn junction with a voltage absorbing edge
JP3708057B2 (ja) 2001-07-17 2005-10-19 株式会社東芝 高耐圧半導体装置
JP2003197898A (ja) 2001-12-25 2003-07-11 Shindengen Electric Mfg Co Ltd プレーナ型半導体装置
JP2003347547A (ja) * 2002-05-27 2003-12-05 Mitsubishi Electric Corp 電力用半導体装置及びその製造方法
US6841825B2 (en) * 2002-06-05 2005-01-11 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device
JP2007324428A (ja) * 2006-06-02 2007-12-13 Toyota Motor Corp 半導体装置
JP4600936B2 (ja) * 2007-06-20 2010-12-22 三菱電機株式会社 半導体装置およびその製造方法
JP5601849B2 (ja) 2010-02-09 2014-10-08 三菱電機株式会社 炭化珪素半導体装置の製造方法
WO2012049872A1 (ja) * 2010-10-15 2012-04-19 三菱電機株式会社 半導体装置およびその製造方法
US9536942B2 (en) 2012-03-15 2017-01-03 Mitsubishi Electric Corporation Semiconductor device having a plurality of electric field relaxation layers and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231965A (ja) * 2001-02-01 2002-08-16 Hitachi Ltd 半導体装置
JP2002270857A (ja) * 2001-03-07 2002-09-20 Toshiba Corp 半導体装置および電力変換装置
JP2006156637A (ja) * 2004-11-29 2006-06-15 Shindengen Electric Mfg Co Ltd ダイオードおよびブリッジダイオード
JP2007096006A (ja) * 2005-09-29 2007-04-12 Nippon Inter Electronics Corp ガードリングの製造方法および半導体装置
JP2008277353A (ja) * 2007-04-25 2008-11-13 Matsushita Electric Ind Co Ltd 半導体装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025300A (ja) * 2014-07-24 2016-02-08 株式会社日立製作所 高耐圧半導体装置
WO2016071969A1 (ja) * 2014-11-05 2016-05-12 新電元工業株式会社 半導体素子
US9947806B2 (en) 2014-11-05 2018-04-17 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device
WO2016194216A1 (ja) * 2015-06-05 2016-12-08 株式会社日立製作所 半導体装置およびその製造方法、並びにパワーモジュール
JPWO2016194216A1 (ja) * 2015-06-05 2018-04-05 株式会社日立製作所 半導体装置およびその製造方法、並びにパワーモジュール
JP2018010988A (ja) * 2016-07-14 2018-01-18 トヨタ自動車株式会社 半導体装置とその製造方法
JP2020068244A (ja) * 2018-10-23 2020-04-30 三菱電機株式会社 半導体装置、および、半導体装置の製造方法
CN111092114A (zh) * 2018-10-23 2020-05-01 三菱电机株式会社 半导体装置及半导体装置的制造方法
JP7061948B2 (ja) 2018-10-23 2022-05-02 三菱電機株式会社 半導体装置、および、半導体装置の製造方法
CN111092114B (zh) * 2018-10-23 2023-08-25 三菱电机株式会社 半导体装置及半导体装置的制造方法
WO2023243189A1 (ja) * 2022-06-17 2023-12-21 株式会社日立パワーデバイス 半導体装置の製造方法および半導体装置

Also Published As

Publication number Publication date
US20150221721A1 (en) 2015-08-06
US9508792B2 (en) 2016-11-29
CN104756258B (zh) 2017-07-18
JPWO2014057700A1 (ja) 2016-09-05
DE112013004981T5 (de) 2015-08-13
JP5784242B2 (ja) 2015-09-24
CN104756258A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5784242B2 (ja) 半導体装置およびその製造方法
US8716717B2 (en) Semiconductor device and method for manufacturing the same
US10115834B2 (en) Method for manufacturing an edge termination for a silicon carbide power semiconductor device
KR101184270B1 (ko) 탄화 규소 반도체장치의 제조방법
US9536942B2 (en) Semiconductor device having a plurality of electric field relaxation layers and method for manufacturing same
US9219113B2 (en) Semiconductor device having breakdown voltage enhancement structure
JP5472451B2 (ja) 半導体装置の製造方法および半導体装置
TWI553861B (zh) High withstand voltage semiconductor device
US20150255535A1 (en) Semiconductor device and method for manufacturing same
US8847278B2 (en) Semiconductor device comprising a breakdown withstanding section
US20220037462A1 (en) Semiconductor device
JP5789928B2 (ja) Mos型半導体装置およびその製造方法
WO2014045480A1 (ja) 半導体装置及び半導体装置の製造方法
JP6995221B2 (ja) 炭化珪素半導体装置およびその製造方法
US10861932B2 (en) Semiconductor device and method of manufacturing semiconductor device
WO2022107854A1 (ja) 炭化珪素半導体装置
JP2018133493A (ja) 半導体装置
JP6112141B2 (ja) Mos型半導体装置およびmos型半導体装置の製造方法
US20230299131A1 (en) Superjunction semiconductor device
US20230187489A1 (en) Silicon carbide semiconductor device
US20230387193A1 (en) Silicon carbide semiconductor device
US20240079492A1 (en) Semiconductor device
JP2022175975A (ja) 炭化珪素半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540763

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14430746

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013004981

Country of ref document: DE

Ref document number: 1120130049813

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845558

Country of ref document: EP

Kind code of ref document: A1