WO2014054688A1 - 永久磁石埋込型電動機 - Google Patents

永久磁石埋込型電動機 Download PDF

Info

Publication number
WO2014054688A1
WO2014054688A1 PCT/JP2013/076816 JP2013076816W WO2014054688A1 WO 2014054688 A1 WO2014054688 A1 WO 2014054688A1 JP 2013076816 W JP2013076816 W JP 2013076816W WO 2014054688 A1 WO2014054688 A1 WO 2014054688A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
permanent magnet
rotor
pair
tongue
Prior art date
Application number
PCT/JP2013/076816
Other languages
English (en)
French (fr)
Inventor
直弘 桶谷
昌弘 仁吾
馬場 和彦
浩二 矢部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1505538.7A priority Critical patent/GB2520657B/en
Priority to KR1020157011091A priority patent/KR101699190B1/ko
Priority to US14/431,077 priority patent/US9762098B2/en
Priority to CN201380051974.6A priority patent/CN104704714B/zh
Priority to JP2014539781A priority patent/JP5976122B2/ja
Priority to DE112013004896.5T priority patent/DE112013004896T5/de
Priority to CN201320713764.6U priority patent/CN203589986U/zh
Publication of WO2014054688A1 publication Critical patent/WO2014054688A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures

Definitions

  • the present invention relates to a permanent magnet embedded type electric motor.
  • magnet insertion holes corresponding to the number of poles are provided in the axial direction in advance in a rotor core formed by laminating and fixing a plurality of electromagnetic steel plates punched into a predetermined shape. Permanent magnets are inserted into the corresponding magnet insertion holes during assembly.
  • the magnet during operation of the motor is subject to a change in attractive force between the teeth tip and acceleration / deceleration, the magnet tries to move left and right in the circumferential direction in the magnet insertion hole. If the magnet moves greatly in the magnet insertion hole, it will cause vibration and noise, and it will also cause wear, cracking and chipping of the magnet. In many cases, a step or a protrusion is provided.
  • Patent Document 1 discloses a method for fixing a permanent magnet.
  • protrusions are provided near the left and right ends of the magnet insertion hole, a permanent magnet is disposed between the pair of protrusions, and the elastic force of the pair of protrusions acts on the permanent magnet by the pair of protrusions.
  • the permanent magnet was fixed so as to sandwich the permanent magnet.
  • the present invention provides a permanent magnet embedded electric motor that can reduce the movement of a magnet and reduce the risk of noise, magnet wear, cracking, and chipping without relying on steps or protrusions near the left and right ends of the magnet insertion hole.
  • the purpose is to provide.
  • the present invention provides an embedded permanent magnet electric motor including a rotor that is rotatably provided and a stator that is provided to face the rotor, and the rotor includes a rotor iron core.
  • a shaft that supports the rotor core, a plurality of permanent magnets embedded in the rotor core, and a pair of magnet fixing members provided in the rotor core, wherein a plurality of magnets are inserted into the rotor core Holes are provided, corresponding one of the permanent magnets is inserted into the corresponding one of the magnet insertion holes, and a plurality of pairs of tongues are provided on one surface of each of the magnet fixing members.
  • each of the magnet fixing members the corresponding pair of tongues are inserted into the corresponding one of the magnet insertion holes, whereby each of the permanent magnets is rotated in the direction of the rotation axis.
  • the opposite end faces in the circumferential direction of the rotor are sandwiched by the corresponding pair of tongues, and the distance between the pair of tongues corresponds to the corresponding position at a position away from the root position.
  • a distance Dmin that is narrower than the width L in the rotor circumferential direction of the permanent magnet is included, and the distance Da between the tip positions of the pair of tongue-shaped portions is the same as that of the corresponding permanent magnet.
  • the permanent magnet In a state before being sandwiched, the permanent magnet is wider than the width L in the rotor circumferential direction. In a state where the permanent magnet is inserted between the pair of tongues until the permanent magnet abuts against the magnet fixing member, between the base positions of the pair of tongues and the permanent magnet A gap may be formed.
  • the permanent magnet and the magnet fixing member are assembled to the rotor iron core, a part of the tongue-shaped portion comes into contact with a hole forming surface that forms the magnet insertion hole in the rotor iron core, and the other in the tongue-shaped portion. A part of may be in contact with the permanent magnet.
  • the tongue-like portion contacts the permanent magnet without contacting the hole forming surface forming the magnet insertion hole in the rotor core. You may do it.
  • the plurality of tongue portions or the entire magnet fixing members may be formed by resin molding.
  • the movement of the magnet can be reduced without depending on the steps or protrusions near the left and right ends of the magnet insertion hole, and the risk of noise, magnet wear, cracking and chipping can be reduced. it can.
  • FIG. 3 is a cross-sectional view taken along the line ZZ in FIG. 2. It is a cross-sectional view of a rotor.
  • FIG. 5 is a cross-sectional view taken along line YY in FIG. 4. In FIG. 3, it is a figure which shows the state in which the magnet was inserted between a pair of tongue-shaped parts until it contact
  • FIG. 4 it is a figure which expands and shows the vicinity of a tongue-shaped part. It is a figure which shows the modification example of FIG.
  • FIG. 10 is a diagram similar to FIG. 9 regarding the second embodiment. It is a figure of Embodiment 3 related to Embodiment 3. It is a figure explaining material picking in the case of forming a tongue-like part from sheet metal processing and bending.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a permanent magnet embedded electric motor according to Embodiment 1.
  • the permanent magnet embedded electric motor according to the present embodiment includes a rotor 1, a stator 2, a frame 3, and a bracket 4.
  • the rotor 1 includes a rotor iron core 5, a shaft 6, a plurality of rare earth magnets (permanent magnets) 7, and a pair of upper and lower magnet fixing members 8.
  • the rotor core 5 is formed, for example, by laminating and fixing a plurality of electromagnetic steel plates punched into a predetermined shape.
  • the shape of the rotor core 5 is, for example, a substantially annular shape when viewed in the direction of the rotation axis.
  • the rotor iron core 5 has a plurality of magnet insertion holes 9 provided in the portion near the outer periphery of the rotor core 5 by the number of poles and arranged in the circumferential direction at substantially equal intervals, for example.
  • Each magnet insertion hole 9 extends in the direction of the rotation axis, and opens on both end surfaces of the rotor core 5 in the direction of the rotation axis.
  • a rare earth magnet 7 is inserted into each magnet insertion hole 9.
  • magnet fixing members 8 are attached to both end surfaces in the rotation axis direction of the rotor core 5.
  • the pair of magnet fixing members 8 at least partially cover the openings of the plurality of magnet insertion holes 9 on both end faces of the rotor core 5 and prevent the rare earth magnet 7 from moving greatly in the magnet insertion holes 9. ing.
  • the means for attaching the magnet fixing member 8 to the end surface of the rotor core 5 is not shown, for example, welding, bonding, fastening using a bolt or rivet with a through hole, press fitting with an inlay portion, and the like are mentioned. be able to.
  • the shaft 6 is fitted in the shaft fitting hole provided in the center of the rotor core 5.
  • the shaft 6 extends along the rotational axis direction of the rotor core 5, and one end side thereof is rotatably supported by the frame 3 via the bearing 10 and the other end side thereof is supported by the bracket 4 via the bearing 11.
  • a wave washer 12 for applying a preload is disposed on the bearing surface of the bearing 10.
  • the shaft 6 has a circular cross section, for example, and in this case, the shaft fitting hole is also formed in a circular shape.
  • the stator 2 includes a stator iron core 13 and a winding 14.
  • the stator core 13 is formed, for example, by laminating and fixing a plurality of electromagnetic steel plates punched into a predetermined shape.
  • the shape of the stator core 13 is, for example, a substantially annular shape when viewed in the direction of the rotation axis.
  • the stator iron core 13 is formed with a plurality of teeth (not shown) positioned at substantially equal intervals in the circumferential direction, for example, at a portion closer to the inner circumference.
  • a winding 14 is wound around these teeth via an insulator (not shown).
  • the stator 2 is fixed to the inside of the frame 3 by a method such as shrink fitting, and is installed so as to face the rotor 1 with a predetermined gap 30 therebetween.
  • the frame 3 supports one end side of the rotor 1 via the bearing 10 and accommodates the stator 2.
  • the frame 3 has, for example, a substantially cylindrical shape, and one end in the axial direction is opened to form a bowl shape, and the other end is provided with a bottom.
  • the bracket 4 supports the other end side of the rotor 1 via the bearing 11.
  • the bracket 4 has, for example, a substantially cylindrical shape when viewed in the direction of the rotation axis. One end in the direction of the rotation axis is opened to form a bowl shape, and the other end has a hole for projecting the output end of the shaft 6. Is provided.
  • the bracket 4 and the frame 3 are connected to each other by fastening means (not shown) such as a screw with the hook-shaped portions formed on each of the bracket 4 and the frame 3 in contact with each other.
  • the other end of the rotor 1 supported by the bearing 11 in the bracket 4 is a load side that bears input and output of torque to and from the motor.
  • FIG. 1 is a plan view of the magnet fixing member alone before being assembled to the rotor
  • FIG. 3 is a sectional view taken along the line ZZ in FIG. 2
  • FIG. 4 is a transverse sectional view of the rotor
  • FIG. It is sectional drawing regarding a Y line.
  • a cross section (part) of the rare earth magnet is illustrated near the tongue-like portion for easy understanding of the dimensional relationship.
  • Each magnet fixing member 8 has a circular plate shape and has an outer diameter that is the same as or slightly smaller than the outer periphery of the rotor 1, for example.
  • a shaft insertion hole 15 is formed at the center of each magnet fixing member 8.
  • a plurality of pairs of tongues 16a and 16b made of a nonmagnetic material extending toward the magnet insertion hole 9 are provided on one surface of each magnet fixing member 8 during assembly.
  • the plurality of pairs of tongue-shaped portions 16a and 16b rise from one surface of the corresponding magnet fixing member 8 substantially perpendicularly (substantially in the direction of the rotation axis) to the one surface.
  • the pair of tongues 16a and 16b correspond to one pole.
  • each of the tongue portions 16a and 16b is formed to have a rectangular cross section when viewed in a cross section in which the rotation axis of the rotor is a perpendicular line.
  • each of the pair of tongues 16a and 16b abuts on both end surfaces of the corresponding rare earth magnet 7 in the circumferential direction of the rotor, and the pair of tongues 16a and 16b causes the corresponding rare earth magnet 7 to move. It is formed so as to obtain a state of being sandwiched in the rotor circumferential direction.
  • the distance between the pair of tongues 16a and 16b in each pair is as follows.
  • the base position 41 with respect to the plate surface has the same or wider distance as the left-right width L of the rare earth magnet 7 (the width that is the distance between both end faces in the rotor circumferential direction), and rises away from the base position 41 in a direction away from the plate surface.
  • the gripping position 43 has an interval Dmin slightly narrower than the left-right width L of the rare earth magnet 7 before the rare earth magnet 7 is sandwiched. That is, the pair of tongue portions 16a and 16b includes a position where the distance between them is Dmin ⁇ L.
  • FIG. 6 is a view showing a state where the magnet is inserted between the pair of tongues until it hits the magnet fixing member in FIG.
  • Each of the corners 41a on the magnet side of the base position 41 in the pair of tongues 16a and 16b is formed in an R shape. Further, as described above, the distance between the pair of tongue portions 16 a and 16 b is narrowed from the pair of root positions 41 toward the pair of gripping positions 43. Therefore, as shown in FIG. 6, in a state where the rare earth magnet 7 is inserted between the pair of tongue portions 16 a and 16 b until the end face of the rare earth magnet 7 abuts against the magnet fixing member 8, A gap 47 is formed between each of the root positions 41 of the shape portions 16 a and 16 b and the rare earth magnet 7.
  • FIG. 7 is a contour diagram showing a demagnetization region when a step 117 is provided in the vicinity of the left and right ends of the magnet insertion hole 109 of the rotor core 105 as a comparative example, and FIG. 8 relates to the first embodiment. It is a contour figure which shows the demagnetization area
  • the magnetization direction of the rare earth magnet is the thickness direction of the magnet (the direction from one long side to the other long side in the cross-sectional view).
  • 7 and 8 show the results of electromagnetic field analysis in which conditions other than the shape of the magnet insertion hole are set to be the same, and the darker the black, the greater the demagnetization factor at that portion.
  • FIG. 8 in which no step is provided near the left and right ends of the magnet insertion hole 9 is provided with a step 117 near the left and right ends of the magnet insertion hole 109. It can be seen that the left and right end portions of the rare earth magnet 7 are more difficult to demagnetize.
  • the magnetic flux generated by the current flowing in the winding 14 flows in the circumferential direction around the outer peripheral surface of the rotor core, but is selectively used when the distance between the edges of the magnet insertion holes is short when crossing the air portion (flux barrier) 18 between the poles. A lot flows.
  • the relationship between the portions indicated by reference numerals G1 and G2 shown in the figure is G1 ⁇ G2 depending on the presence or absence of the step 117.
  • the step 117 When the step 117 is provided, the end portion of the rare earth magnet 7 is magnetized in the magnetization direction ( The magnetic flux traversing against the magnet thickness direction) increases, and demagnetization is likely to occur.
  • the permanent magnet is a rare earth magnet, but the same effect can be obtained with other types of magnets.
  • a ferrite magnet it is different from a rare earth magnet only in that it tends to cause irreversible demagnetization when exposed to a strong demagnetizing field at a low temperature. If the present invention is applied, the same effect can be obtained in the case of a ferrite magnet. Obtainable.
  • FIG. 9 is an enlarged view showing the vicinity of the tongue-like portion in FIG.
  • the rare earth magnet 7 and the magnet fixing member 8 are assembled to the rotor core 5
  • a part of each pair of tongues 16 a, 16 b comes into contact with the hole forming surface that forms the magnet insertion hole 9 in the rotor core 5.
  • the other parts of the tongue-like portions 16 a and 16 b abut against the rare earth magnet 7.
  • one surface of the tongue-like portions 16 a and 16 b having a rectangular cross section as described above has a hole forming surface 5 a that forms the radially outer side of the magnet insertion hole 9 in the rotor core 5.
  • FIG. 10 shows a modification example of FIG.
  • one surface of the tongue portions 16 a ′ and 16 b ′ is in contact with the hole forming surface 5 b that forms the radially inner side of the magnet insertion hole 9 in the rotor iron core 5, and the tongue portions 16 a ′ and 16 b.
  • the relative position of the magnet fixing member 8 with respect to the edge of the magnet insertion hole 9 is determined, so that the relative positioning of the rare earth magnet 7 with respect to the magnet insertion hole 9 can be easily performed.
  • the relative position in the rotor circumferential direction with respect to the magnet insertion hole 9 and the rare earth magnet 7 is extremely important. For example, when the rare earth magnet 7 is shifted to the right side in the magnet insertion hole 9, the right end portion of the rare earth magnet 7 and the right end edge of the magnet insertion hole 9 approach each other, so that the demagnetization resistance is reduced. There is.
  • the pair of tongue-shaped portions are positioned in the rare earth magnet, and further, the tongue-shaped portions are positioned in the hole forming surface of the rotor core. Can be easily positioned at the center of the slab, and the problem that the demagnetization resistance on one side as described above is reduced can be avoided.
  • the rare earth magnet 7, the magnet insertion hole 9, the air portion 18 described later, and the pair of tongue-like portions 16a and 16b have a magnetic pole center line as viewed in FIGS. The line is symmetrical with respect to the reference.
  • the non-magnetic material of the magnet fixing member that is separate from the rotor core from both sides in the rotation axis direction of the rotor core. Since the permanent magnet is held down by the tongue-shaped part of the magnet, the movement of the magnet can be reduced without relying on steps or protrusions near the left and right ends of the magnet insertion hole, and noise and magnets caused by the large movement of the magnet The risk of wear, cracking and chipping can be reduced. That is, it is possible to reduce the risk of noise and magnet wear, cracking, and chipping while making it difficult to demagnetize the left and right ends of the permanent magnet.
  • FIG. 11 is a diagram of the same mode as FIG. 9 regarding the second embodiment.
  • the second embodiment is the same as the first embodiment except for the parts described below.
  • each pair of tongues 56 a and 56 b are holes that form the magnet insertion holes 9. It is in contact with the rare earth magnet 7 without being in contact with the forming surface.
  • the magnet fixing member is inserted from both end faces in the rotation axis direction to grip the two side faces in the width direction of the rare earth magnet.
  • the distance between the tongue-shaped portion and the edge of the magnet insertion hole is sufficiently secured, and the tongue-shaped portion is not caught, so that the assembly is easy and the productivity is excellent.
  • the magnet fixing member is made of a material that can conduct electricity, such as a steel plate
  • the laminated steel plates are electrically connected to each other when the tongue of the magnet fixing member abuts the edge of the magnet insertion hole.
  • the tongue-shaped portion is secured a sufficient distance from the edge of the magnet insertion hole, so that such a problem can be prevented in advance.
  • FIG. 12 is a view of the same mode as FIG.
  • the third embodiment is the same as the first or second embodiment except for the parts described below.
  • a pair of tongue-like portions 216a and 216b provided in each magnet fixing member 8 has a root position 41 and a gripping position 43 having the same intervals as those of the tongue-like portions 16a and 16b.
  • the tip positions 245 of the tongues 216a and 216b have a distance Da wider than the left-right width L of the rare earth magnet 7. That is, the distance Da between the tip positions 245 of the tongue portions 216a and 216b and the left and right width L of the rare earth magnet 7 are set so as to satisfy the relationship of Da> L.
  • the following advantages are obtained in addition to the advantages in the first or second embodiment described above. That is, when the rare earth magnet 7 enters between the pair of tongue portions 216a and 216b, the rare earth magnet 7 is smoothly arranged between the pair of tongue portions 216a and 216b due to the interval set at the tip position 245 described above. Is done. For this reason, the rare earth magnet 7 and the magnet fixing member 8 can be easily assembled.
  • the corners inside the tips of the tongue portions 216a and 216b are used as a method of expanding the tip portions of the tongue portions 216a and 216b. There are also modes such as a chamfered shape or an R shape.
  • Embodiment 4 FIG. Next, a fourth embodiment of the present invention will be described.
  • the fourth embodiment is characterized in that a plurality of tongue-like portions or the entire magnet fixing members are formed by resin molding.
  • description will be made on the assumption that the feature of the fourth embodiment is applied to the structure of the first embodiment.
  • the fourth embodiment is not limited to this, and the second or third embodiment is not limited thereto. In this configuration, resin molding can be applied.
  • Permanent magnet embedded motors are made of a non-magnetic material called end plates on both axial ends of the rotor core in order to prevent the rare earth magnets from coming off in the axial direction and to prevent scattering of the fragments when cracks or chips occur. It can be assumed that a metal plate is installed to close the opening of the magnet insertion hole. Therefore, as the magnet fixing member 8 in the first to third embodiments, a method of forming the tongue portions 16a and 16b by processing the end plate of such a metal plate may be considered. The following circumstances arise: FIG. 13 is a diagram for explaining material removal when the tongue-like portion is formed by sheet metal processing and bending processing.
  • the tongue 16b for pressing the right end surface of the rare earth magnet 7 of a certain pole is in the vicinity of the pole, the tongue 16a for pressing the left end surface of the rare earth magnet 7 of the next pole and the material Get in touch.
  • the tongue 16b needs to be formed by bending the material 19 on the left side.
  • the left and right end portions of the rare earth magnet 7 can be gripped, but a part of the axial end surface of the rare earth magnet 7 is exposed. Therefore, if the rare earth magnet 7 is cracked or chipped due to some cause or accident, the role of preventing the scattering of the fragments is slightly reduced.
  • the above-mentioned problem is solved without incurring manufacturing costs by forming the tongue portions 16a, 16b or the entire magnet fixing member 8 by resin molding.
  • the pair of magnet fixing members 8 can almost completely cover the openings of the plurality of magnet insertion holes 9 on both end surfaces of the rotor core 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 永久磁石埋込型電動機のロータ1は、複数の磁石挿入穴を有するロータ鉄心5と、シャフト6と、複数の希土類磁石7と、一対の磁石固定部材8とを含み、磁石固定部材の一面には、複数対の舌状部16a、16bが設けられており、舌状部は磁石挿入穴に挿入されており、希土類磁石は、回転軸方向でいう両側それぞれにおいて、対応する一対の舌状部により、ロータ周方向でいう両端面を挟まれ、舌状部の間隔には、付け根位置から離れた位置において、希土類磁石のロータ周方向の幅よりも狭い間隔が含まれている。

Description

永久磁石埋込型電動機
 本発明は、永久磁石埋込型電動機に関するものである。
 一般的な永久磁石埋込型電動機では、所定の形状に打ち抜かれた複数の電磁鋼板を積層固着してなるロータ鉄心に、あらかじめ極数分の磁石挿入穴を軸方向に設けておき、ロータの組立時に永久磁石を対応する磁石挿入穴に挿入している。
 電動機の運転時の磁石にはティース先端との間の吸引力の変化や加減速による力が作用するため、磁石は磁石挿入穴の中で周方向の左右に動こうとする。磁石が磁石挿入穴の中で大きく動くと振動や騒音の原因となり、また磁石の摩耗・割れ・欠けの原因となるため、磁石挿入穴の左右の端付近には、磁石の移動に対する左右のストッパとして、段差または突起を設けているものが多い。
 一例を示すと、特許文献1には、永久磁石の固定方法が開示されている。この方法では、磁石挿入穴の左右の端付近に突起を設け、これら一対の突起の間に永久磁石を配置し、一対の突起の弾性力が永久磁石に作用するような態様で一対の突起によって永久磁石を挟むようにして永久磁石の固定を行っていた。
 しかしながら、磁石挿入穴に段差または突起を設けた場合、その部分では穴の縁同士の距離が短くなり、周辺に比べて磁石を横断する磁束が通りやすくなる。そのため、ステータの巻線電流による磁界に曝された時に磁石挿入穴の段差または突起の近傍で磁石が減磁しやすいという問題があった。
特開2011-259610号公報
 本発明は、磁石挿入穴の左右の端付近の段差または突起に頼ることなく磁石の動きを低減し騒音や磁石の摩耗・割れ・欠けのリスクを減らすことができる、永久磁石埋込型電動機を提供することを目的とする。
 上述した目的を達成するため、本発明は、回転可能に設けられたロータと、前記ロータと対向して設けられたステータとを備える永久磁石埋込型電動機であって、前記ロータは、ロータ鉄心と、前記ロータ鉄心を支持するシャフトと、前記ロータ鉄心に埋め込まれた複数の永久磁石と、前記ロータ鉄心に設けられた一対の磁石固定部材とを含み、前記ロータ鉄心には、複数の磁石挿入穴が設けられており、対応する一つの前記永久磁石が、対応する一つの前記磁石挿入穴に挿入されており、前記磁石固定部材それぞれの一面には、複数対の舌状部が設けられており、それぞれの前記磁石固定部材において、対応する一対の前記舌状部は、対応する一つの前記磁石挿入穴に挿入されており、それにより、前記永久磁石それぞれは、回転軸方向でいう両側それぞれにおいて、対応する一対の前記舌状部により、ロータ周方向でいう両端面を挟まれており、前記一対の舌状部の間隔には、付け根位置から離れた位置において、対応する前記永久磁石を挟む前の状態で、当該永久磁石におけるロータ周方向の幅Lよりも狭い間隔Dminが含まれており、前記一対の舌状部の先端位置の間隔Daは、対応する前記永久磁石を挟む前の状態で、前記永久磁石におけるロータ周方向の幅Lよりも広い。
 前記永久磁石が前記磁石固定部材に突き当たるまで、該永久磁石が前記一対の舌状部の間に差し込まれた状態では、該一対の舌状部の付け根位置のそれぞれと前記永久磁石との間に、隙間が形成されるようにしてもよい。
 前記永久磁石及び前記磁石固定部材を前記ロータ鉄心に組み付けたとき、前記舌状部における一部は、前記ロータ鉄心において前記磁石挿入穴を形成する穴形成面と当接し、前記舌状部における他の一部は、前記永久磁石と当接するようにしてもよい。あるいは、前記永久磁石及び前記磁石固定部材を前記ロータ鉄心に組み付けたとき、前記舌状部は、前記ロータ鉄心において前記磁石挿入穴を形成する穴形成面と当接することなく前記永久磁石と当接するようにしてもよい。
 前記複数の舌状部、又は、それぞれの前記磁石固定部材全体が、樹脂成型によって形成されていてもよい。
 本発明の永久磁石埋込型電動機によれば、磁石挿入穴の左右の端付近の段差または突起に頼ることなく磁石の動きを低減し騒音や磁石の摩耗・割れ・欠けのリスクを減らすことができる。
本発明の実施の形態1に係る永久磁石埋込型電動機の概略構成を示す縦断面図である。 ロータに組み付ける前の磁石固定部材単体に関する平面図である。 図2のZ-Z線に関する断面図である。 ロータの横断面図である。 図4のY-Y線に関する断面図である。 図3において、磁石固定部材に突き当たるまで磁石が一対の舌状部の間に差し込まれた状態を示す図である。 比較例として、ロータ鉄心の磁石挿入穴の左右の端付近に段差を設けた場合の減磁領域を示すコンター図である。 本実施の形態1に関し、磁石挿入穴の左右の端付近に段差を設けない場合の減磁領域を示すコンター図である。 図4において、舌状部の近傍を拡大して示す図である。 図9の改変例を示す図である。 実施の形態2に関する、図9と同態様の図である。 実施の形態3に関する、図3と同態様の図である。 舌状部を板金加工と折り曲げ加工から形成する場合の材料取りを説明する図である。
 以下、本発明に係る永久磁石埋込型電動機の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。
 実施の形態1.
 図1は、実施の形態1に係る永久磁石埋込型電動機の概略構成を示す縦断面図である。本実施の形態に係る永久磁石埋込型電動機は、ロータ1と、ステータ2と、フレーム3と、ブラケット4とを備えている。
 ロータ1は、ロータ鉄心5と、シャフト6と、複数の希土類磁石(永久磁石)7と、上下一対の磁石固定部材8とを含んでいる。ロータ鉄心5は、例えば所定の形状に打ち抜かれた複数の電磁鋼板を積層固着して形成される。ロータ鉄心5の形状は、回転軸方向でみて例えば略円環形状である。ロータ鉄心5は、その外周寄りの部分に、極数分設けられ、周方向に例えば略等間隔で配置された複数の磁石挿入穴9を有している。各磁石挿入穴9は、それぞれ回転軸方向に延び、ロータ鉄心5における回転軸方向でいう両端面に開口している。各磁石挿入穴9には、希土類磁石7が挿入されている。
 また、ロータ鉄心5における回転軸方向でいう両端面には、磁石固定部材8が取り付けられている。それら一対の磁石固定部材8は、ロータ鉄心5の両端面における複数の磁石挿入穴9の開口を少なくとも部分的に覆っていると共に、希土類磁石7が磁石挿入穴9の中で大きく動かないようにしている。ロータ鉄心5の端面に対する磁石固定部材8の取り付け手段は図示していないが、例えば、溶接、接着、貫通穴を設けてのボルトやリベットを用いた締結、インロー部を設けての圧入などを挙げることができる。
 ロータ鉄心5の中央に設けられたシャフト嵌合穴には、シャフト6が嵌合されている。シャフト6は、ロータ鉄心5における回転軸方向に沿って延びており、その一端側がベアリング10を介してフレーム3に、他端側がベアリング11を介してブラケット4に、回転自在に支持される。ベアリング10の座面には、予圧をかけるためのウェーブワッシャ12が配置されている。シャフト6は、例えば横断面円形であり、その場合、シャフト嵌合穴もこれに応じて円形に形成されている。
 ステータ2は、ステータ鉄心13と、巻線14とを含んでいる。ステータ鉄心13は、例えば所定の形状に打ち抜かれた複数の電磁鋼板を積層固着して形成される。ステータ鉄心13の形状は、回転軸方向でみて例えば略円環形状である。ステータ鉄心13には、その内周寄りの部分に、周方向に例えば略等間隔で位置する複数のティース(図示しない)が形成されている。これらのティースには、インシュレータ(図示しない)を介して巻線14が巻装される。ステータ2は、例えば焼嵌めなどの方法でフレーム3の内側に固定され、所定の空隙30を隔ててロータ1と対向するように設置される。
 フレーム3は、ベアリング10を介してロータ1の一端側を支持し、ステータ2を収容する。フレーム3は、例えば略円筒形状であり、その軸方向の一端は開口して鍔状を成し、他端には底が設けられている。
 ブラケット4は、ベアリング11を介してロータ1の他端側を支持する。ブラケット4は、回転軸方向でみて例えば略円筒形状であり、その回転軸方向でいう一端は、開口して鍔状を成し、他端にはシャフト6の出力端を突出させるための穴が設けられている。ブラケット4とフレーム3とは、それぞれに形成されている鍔状部分を当接させてねじ等の締結手段(図示しない)で連結されている。なお、特に限定する意図ではないが、本実施の形態1では、ブラケット4内のベアリング11で支持されたロータ1の上記他端が、電動機に対するトルクの入出力を担う負荷側となっている。
 以下、ロータ1が6極つまり希土類磁石7が6個の場合を例にロータ1の詳細について説明する。図2は、ロータに組み付ける前の磁石固定部材単体に関する平面図、図3は、図2のZ-Z線に関する断面図、図4は、ロータの横断面図、図5は図4のY-Y線に関する断面図である。なお、図3では、寸法関係の説明を分かり易くするため、希土類磁石の断面(一部分)を、舌状部の近くに図示している。
 各磁石固定部材8は、円形プレート状であって、例えばロータ1の外周と同じかそれよりも僅かに小さい程度の外径を有する。また、各磁石固定部材8の中心部には、シャフト挿通穴15が形成されている。磁石固定部材8のそれぞれの一面には、組み立て時、磁石挿入穴9に向けて延びる非磁性材料からなる複数対の舌状部16a、16bが設けられている。換言すると、複数対の舌状部16a、16bは、対応する磁石固定部材8の一面から、当該一面にほぼ垂直(ほぼ回転軸方向)に立ち上がっている。一対の舌状部16a、16bが、1つの極に対応している。よって、前述したように図示例では、極数が6つであるので、六対(合計12個)の舌状部が設けられている。また、一例であるが、舌状部16a、16bはそれぞれ、ロータの回転軸を垂線とする断面においてみると、矩形となる断面を有するように形成されている。
 プレート面内における六対の舌状部16a、16bの位置は、一対の磁石固定部材8をロータ鉄心5の対応する端面に設置した時に、希土類磁石7のロータ周方向でいう両端面に当接するようにあらかじめ設定されている。より詳細には、一対の舌状部16a、16bそれぞれが、対応する希土類磁石7のロータ周方向でいう両端面と当接し、当該一対の舌状部16a、16bが当該対応する希土類磁石7をロータ周方向で挟む状態が得られるように、形成されている。
 さらに、それぞれの対における、一対の舌状部16a、16bの間隔(希土類磁石7を挟む前の単体状態の間隔)は次のとおりである。プレート面に対する付け根位置41は、希土類磁石7の左右幅(ロータ周方向でいう両端面の間隔である幅)Lと同じかもしくは広い間隔をもち、付け根位置41から、プレート面と離れる方向に立ち上がった把持位置43は、希土類磁石7を挟む前の状態において、希土類磁石7の左右幅Lよりわずかに狭い間隔Dminをもつ。すなわち、一対の舌状部16a、16bには、それらの間隔がDmin<Lとなる位置が含まれる。
 それぞれの対の舌状部16a、16bが、このような間隔で設けられることで、希土類磁石7及び磁石固定部材8をロータ鉄心5に組み付けると、各対の舌状部16a、16b同士の距離が希土類磁石7により拡大され、舌状部16a、16bには希土類磁石7を挟み込む方向に弾性復元力が生じる。この弾性復元力により希土類磁石7が磁石挿入穴9の中で把持され、希土類磁石7の大きな動きや急激な動きが抑制される。
 図6は、図3において、磁石固定部材に突き当たるまで磁石が一対の舌状部の間に差し込まれた状態を示す図である。一対の舌状部16a、16bにおける付け根位置41の磁石側の隅部41aのそれぞれは、R形状に形成されている。さらに、一対の舌状部16a、16bの間隔は、前述したように、一対の付け根位置41から一対の把持位置43に向けて狭くなっている。このため、図6に示されるように、希土類磁石7の端面が、磁石固定部材8に突き当たるまで、希土類磁石7が一対の舌状部16a、16bの間に差し込まれた状態では、一対の舌状部16a、16bの付け根位置41のそれぞれと希土類磁石7との間に、隙間47が形成されることとなる。このような構成により、一対の舌状部16a、16bが希土類磁石7を把持したときに、一対の舌状部16a、16bの付け根位置41に集中して応力が生じることが緩和され、舌状部16a、16bの付け根位置41の機械的な耐久性を向上させることができる。さらに、希土類磁石7の幅寸法や各対の舌状部16a、16b同士の間の距離のばらつきを吸収することができ、それにより、希土類磁石7の先端の角部と一対の舌状部16a、16bとの干渉を確実に回避できるので、磁石の先端の角部に面取加工の必要が無く、磁石製作に必要なコストを抑制することができる利点もある。
 希土類磁石は、高温下で強い反磁界に曝された時に不可逆の減磁を起こしやすいため、希土類磁石を用いた永久磁石埋込型電動機では、使用条件の中で一定以上の減磁が進行しないように設計される。図7は、比較例として、ロータ鉄心105の磁石挿入穴109の左右の端付近に段差117を設けた場合の減磁領域を示すコンター図であり、図8は、本実施の形態1に関し、磁石挿入穴の左右の端付近に段差を設けない場合の減磁領域を示すコンター図である。なお、希土類磁石の着磁方向は、磁石の厚み方向(横断面図でみて一方の長辺から他方の長辺に向けた方向)である。また、図7及び図8は、磁石挿入穴の形状以外の条件を同じに設定した電磁界解析による結果であり、黒色が濃いほどその部位での減磁率が大きいことを示す。
 図7及び図8の比較から分かるように、磁石挿入穴9の左右の端付近に段差を設けていない図8のほうが、磁石挿入穴109の左右の端付近に段差117を設けている図7よりも、希土類磁石7の左右端部が減磁しにくいことがわかる。巻線14に流れる電流による磁束はロータ鉄心の外周表面付近を周方向に流れるが、極間にある空気部(フラックスバリア)18を渡る時に磁石挿入穴の縁同士の距離が短いところに選択的に多く流れる。このため、段差117の有無により、図示の符号G1及びG2で示す部分の関係が、G1<G2となることで、段差117を設けた場合には、希土類磁石7の端部を着磁方向(磁石の厚み方向)に逆らって横断する磁束が多くなり、減磁しやすくなる。
 なお、本実施の形態では永久磁石を希土類磁石としたが、他の種類の磁石でも同様の効果が得られる。例えばフェライト磁石の場合は低温下で強い反磁界に曝された時に不可逆の減磁を起こしやすい点が希土類磁石と異なるだけであり、本発明を適用すればフェライト磁石の場合についても同様の効果を得ることができる。
 図9は、図4において、舌状部の近傍を拡大して示す図である。希土類磁石7及び磁石固定部材8をロータ鉄心5に組み付けると、各対の舌状部16a、16bにおける一部が、ロータ鉄心5において磁石挿入穴9を形成する穴形成面と当接し、各対の舌状部16a、16bにおける他の一部が、希土類磁石7と当接する。図9に示す例で具体的に説明すると、上記のように矩形断面を有する舌状部16a、16bの一面が、ロータ鉄心5において磁石挿入穴9の径方向外側を形成する穴形成面5aと当接し、舌状部16a、16bの他の一面が、希土類磁石7の左右方向の対応する端面と当接する。なお、図9の改変例を図10に示す。図10に示す具体例では、舌状部16a’、16b’の一面が、ロータ鉄心5において磁石挿入穴9の径方向内側を形成する穴形成面5bと当接し、舌状部16a’、16b’の他の一面が、希土類磁石7の左右方向の対応する端面と当接する。このように構成されていることにより、磁石挿入穴9の縁に対する磁石固定部材8の相対位置が決まるため、希土類磁石7の磁石挿入穴9との相対的な位置決めが容易に行える。特に、磁石挿入穴9と希土類磁石7とに関するロータ周方向の相対位置は、極めて重要である。例えば、希土類磁石7が磁石挿入穴9内で右側に寄っていると、希土類磁石7の右側端部と磁石挿入穴9の右端の縁とが接近するため、減磁耐力が低下してしまう問題がある。これに対し、本実施の形態では、希土類磁石を、一対の舌状部が位置決めし、さらに、それら舌状部を、ロータ鉄心の穴形成面が位置決めするので、希土類磁石7を磁石挿入穴9の中央に容易に位置決めすることができ、上記のような片側の減磁耐力が低下する問題を回避することができる。なお、本実施の形態では、一つの極に関し、希土類磁石7、磁石挿入穴9、後述する空気部18、一対の舌状部16a、16bは、図9及び図10においてみて、磁極中心線を基準に線対称に形成されている。
 以上のように構成された本実施の形態1に係る永久磁石埋込型電動機によれば、ロータ鉄心における回転軸方向でいう両側から、ロータ鉄心とは別体である磁石固定部材の非磁性材料の舌状部によって、永久磁石が押えられているので、磁石挿入穴の左右の端付近の段差または突起に頼ることなく磁石の動きを低減することができ磁石の大きな動きに起因した騒音や磁石の摩耗・割れ・欠けのリスクを減らすことができる。すなわち、永久磁石の左右端部を減磁しにくくしながらも騒音や磁石の摩耗・割れ・欠けのリスクは減らすことができる。さらに、本実施の形態1では、舌状部の弾性復元力を永久磁石に作用させた状態で当該永久磁石を保持するため、永久磁石と舌状部との間を定常的に密着した状態に維持することができ、それによっても、騒音や磁石の摩耗・割れ・欠けのリスクを減らすことができる。
 実施の形態2.
 次に、図11に基づいて、本発明の実施の形態2について説明する。図11は、実施の形態2に関する、図9と同態様の図である。なお、本実施の形態2は、以下に説明する部分を除いては、上記実施の形態1と同様であるものとする。図11に示されるように、本実施の形態では、希土類磁石7及び磁石固定部材8をロータ鉄心5に組み付けたとき、各対の舌状部56a、56bは、磁石挿入穴9を形成する穴形成面と当接することなく希土類磁石7と当接している。
 このような構成を有する本実施の形態2によれば、次のような利点が得られている。すなわち、本実施の形態2では、ロータの組立工程(磁石挿入穴に希土類磁石を挿入した後に、磁石固定部材を回転軸方向の両端面から挿入して希土類磁石の幅方向の2つの側面を把持する工程)において、舌状部と磁石挿入穴の縁との距離が十分に確保され、舌状部が引っ掛からないため組み立てやすく、生産性に優れる。さらに、磁石固定部材を、鋼板など電気を通しやすい材料で構成した場合は、磁石固定部材の舌状部が磁石挿入穴の縁に当接すると、積層固着された電磁鋼板同士が電気的につながって渦電流損が増加する問題が生じうるが、本実施の形態では、舌状部は磁石挿入穴の縁と十分な距離が確保されるので、このような問題を予め防ぐことができる。
 実施の形態3.
 次に、図12に基づいて、本発明の実施の形態3について説明する。図12は、実施の形態3に関する、図3と同態様の図である。なお、本実施の形態3は、以下に説明する部分を除いては、上記実施の形態1又は2と同様であるものとする。
 図12に示されるように、それぞれの磁石固定部材8に設けられた一対の舌状部216a、216bは、上記舌状部16a、16bの場合と同様な間隔を有する付け根位置41及び把持位置43(間隔Dmin)を有し、さらに、舌状部216a、216bの先端位置245は、希土類磁石7の左右幅Lよりも広い間隔Daを有している。すなわち、舌状部216a、216bの先端位置245の間隔Daと、希土類磁石7の左右幅Lとは、Da>Lの関係を満たすように設定されている。
 このような構成を有する本実施の形態3によれば、上述した実施の形態1又は2における利点に加えて、次のような利点も得られている。すなわち、希土類磁石7が一対の舌状部216a、216bの間に入る際、前述した先端位置245に設定された間隔により、希土類磁石7がスムーズに一対の舌状部216a、216bの間に配置される。このため、希土類磁石7と磁石固定部材8との組立が容易になる。なお、舌状部216a、216b同士の先端部を広げる手法としては、図12に示したようなテーパ状にする態様の他に、例えば、舌状部216a、216bの先端の内側の角部を面取り形状やR形状にするといった態様もある。
 実施の形態4.
 次に、本発明の実施の形態4について説明する。本実施の形態4は、複数の舌状部、又は、それぞれの磁石固定部材全体を、樹脂成型によって形成することを特徴とする。図示例では、上記実施の形態1の構造に、本実施の形態4の特徴を適用したものとして説明するが、本実施の形態4は、これには限定されず、上記実施の形態2又は3の構成において樹脂成型を適用して実施することもできる。
 永久磁石埋込型電動機では、希土類磁石の軸方向の抜け止めおよび割れ・欠けが生じた時の破片の飛散防止の目的で、ロータ鉄心の軸方向両端面に端板と呼ばれる非磁性材料からなる金属板を設置して磁石挿入穴の開口部を塞ぐことが想定できる。したがって、上記実施の形態1~3における磁石固定部材8として、そうした金属板の端板を板金加工して舌状部16a、16bを形成する手法も考えられるが、この場合は材料取りに起因した以下の事情が生じる。図13は、舌状部を板金加工と折り曲げ加工から形成する場合の材料取りを説明する図である。
 すなわち、ある極の希土類磁石7の右端面を押さえるための舌状部16bは極間の近傍にあるため、その隣の極の希土類磁石7の左端面を押さえるための舌状部16aと材料の取り合いになる。これを避けるためには、図13に示されるように、舌状部16bはその左側部分の材料19を曲げて形成する必要がある。その結果、希土類磁石7の左右端部は把持できるものの、希土類磁石7の軸方向端面の一部が露出してしまう。よって、万が一、何らかの要因・事故等で、希土類磁石7に割れ・欠けが生じた場合には、破片の飛散防止の役割が若干低下する。かかる問題を防止するため、本実施の形態4では、舌状部16a、16b、又は、磁石固定部材8全体を、樹脂成型によって形成することにより、製造コストをかけること無く上記の問題を解消することができ、一対の磁石固定部材8は、ロータ鉄心5の両端面における複数の磁石挿入穴9の開口をほぼ完全に覆うことができる。
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。
 1 ロータ、2 ステータ、5 ロータ鉄心、6 シャフト、7 希土類磁石(永久磁石)、8 磁石固定部材、9 磁石挿入穴、16a、16b,16a’、16b’,56a、56b,216a、216b 舌状部、41 付け根位置。

Claims (5)

  1.  回転可能に設けられたロータと、前記ロータと対向して設けられたステータとを備える永久磁石埋込型電動機であって、
     前記ロータは、ロータ鉄心と、前記ロータ鉄心を支持するシャフトと、前記ロータ鉄心に埋め込まれた複数の永久磁石と、前記ロータ鉄心の回転軸方向でいう両端面に設けられた一対の磁石固定部材とを含み、
     前記ロータ鉄心には、複数の磁石挿入穴が設けられており、
     対応する一つの前記永久磁石が、対応する一つの前記磁石挿入穴に挿入されており、
     前記磁石固定部材それぞれの一面には、複数対の舌状部が設けられており、
     それぞれの前記磁石固定部材において、対応する一対の前記舌状部は、対応する一つの前記磁石挿入穴に挿入されており、それにより、前記永久磁石それぞれは、回転軸方向でいう両側それぞれにおいて、対応する一対の前記舌状部により、ロータ周方向でいう両端面を挟まれており、
     前記一対の舌状部の間隔には、付け根位置から離れた位置において、対応する前記永久磁石を挟む前の状態で、当該永久磁石におけるロータ周方向の幅Lよりも狭い間隔Dminが含まれており、
     前記一対の舌状部の先端位置の間隔Daは、対応する前記永久磁石を挟む前の状態で、前記永久磁石におけるロータ周方向の幅Lよりも広い、
    永久磁石埋込型電動機。
  2.  前記永久磁石が前記磁石固定部材に突き当たるまで、該永久磁石が前記一対の舌状部の間に差し込まれた状態では、該一対の舌状部の付け根位置のそれぞれと前記永久磁石との間に、隙間が形成される、
    請求項1の永久磁石埋込型電動機。
  3.  前記永久磁石及び前記磁石固定部材を前記ロータ鉄心に組み付けたとき、前記舌状部における一部は、前記ロータ鉄心において前記磁石挿入穴を形成する穴形成面と当接し、前記舌状部における他の一部は、前記永久磁石と当接する、
    請求項1又は2の永久磁石埋込型電動機。
  4.  前記永久磁石及び前記磁石固定部材を前記ロータ鉄心に組み付けたとき、前記舌状部は、前記ロータ鉄心において前記磁石挿入穴を形成する穴形成面と当接することなく前記永久磁石と当接する、
    請求項1又は2の永久磁石埋込型電動機。
  5.  前記複数の舌状部、又は、それぞれの前記磁石固定部材全体が、樹脂成型によって形成されている、
    請求項1~4の何れか一項の永久磁石埋込型電動機。
PCT/JP2013/076816 2012-10-04 2013-10-02 永久磁石埋込型電動機 WO2014054688A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
GB1505538.7A GB2520657B (en) 2012-10-04 2013-10-02 Electric motor having embedded permanent magnets
KR1020157011091A KR101699190B1 (ko) 2012-10-04 2013-10-02 영구자석 매입형 전동기
US14/431,077 US9762098B2 (en) 2012-10-04 2013-10-02 Electric motor having embedded permanent magnets
CN201380051974.6A CN104704714B (zh) 2012-10-04 2013-10-02 永磁体埋入型电动机
JP2014539781A JP5976122B2 (ja) 2012-10-04 2013-10-02 永久磁石埋込型電動機
DE112013004896.5T DE112013004896T5 (de) 2012-10-04 2013-10-02 Elektrischer Motor aufweisend eingebettete Permanentmagneten
CN201320713764.6U CN203589986U (zh) 2012-10-04 2013-10-08 永磁体埋入型电动机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/075792 WO2014054150A1 (ja) 2012-10-04 2012-10-04 永久磁石埋込型電動機
JPPCT/JP2012/075792 2012-10-04

Publications (1)

Publication Number Publication Date
WO2014054688A1 true WO2014054688A1 (ja) 2014-04-10

Family

ID=50434509

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/075792 WO2014054150A1 (ja) 2012-10-04 2012-10-04 永久磁石埋込型電動機
PCT/JP2013/076816 WO2014054688A1 (ja) 2012-10-04 2013-10-02 永久磁石埋込型電動機

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075792 WO2014054150A1 (ja) 2012-10-04 2012-10-04 永久磁石埋込型電動機

Country Status (7)

Country Link
US (1) US9762098B2 (ja)
JP (1) JP5976122B2 (ja)
KR (1) KR101699190B1 (ja)
CN (2) CN104704714B (ja)
DE (1) DE112013004896T5 (ja)
GB (1) GB2520657B (ja)
WO (2) WO2014054150A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016005419A (ja) * 2014-06-19 2016-01-12 日立アプライアンス株式会社 永久磁石電動機
JP2017184375A (ja) * 2016-03-29 2017-10-05 トヨタ自動車株式会社 回転電機のロータ
WO2018180634A1 (ja) * 2017-03-31 2018-10-04 日本電産サーボ株式会社 モータ
WO2023286125A1 (ja) * 2021-07-12 2023-01-19 三菱電機株式会社 回転子、電動機、圧縮機及び冷凍サイクル装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068655A1 (ja) * 2012-10-30 2014-05-08 三菱電機株式会社 永久磁石埋込型電動機及びそれを備えた冷凍空調装置
GB201403555D0 (en) * 2014-02-28 2014-04-16 Of America Asrepresented By The Sec Dep Of Health And Human Interior permanent magnet motor and rotor structure therefore
WO2017105147A1 (ko) * 2015-12-18 2017-06-22 한온시스템 주식회사 영구자석 매립형 전동기를 위한 로터 및 그를 이용한 전동기
EP3288161B1 (de) * 2016-08-23 2023-04-26 maxon international ag Elektronisch kommutierter motor mit zwei verschiedenen rotorkernen
JP6597594B2 (ja) * 2016-12-27 2019-10-30 トヨタ自動車株式会社 回転子製造装置
US20190165626A1 (en) * 2017-06-05 2019-05-30 Top Co., Ltd. Rotor and rotary machine
US20190089212A1 (en) * 2017-09-15 2019-03-21 Ford Global Technologies, Llc Rotor with nonmagnetic insert
JP6924107B2 (ja) * 2017-09-19 2021-08-25 株式会社三井ハイテック 回転子鉄心の製造方法
JP6874630B2 (ja) * 2017-10-05 2021-05-19 トヨタ自動車株式会社 回転電機ロータ及びその製造方法
JP6922724B2 (ja) * 2017-12-26 2021-08-18 トヨタ自動車株式会社 ロータ
CN112438012A (zh) * 2018-07-27 2021-03-02 三菱电机株式会社 电动机、压缩机及空气调节机
JPWO2020208988A1 (ja) * 2019-04-11 2020-10-15
AU2020444066B2 (en) * 2020-04-20 2024-02-22 Mitsubishi Electric Corporation Rotor, motor, compressor, and air conditioner
JP7306336B2 (ja) * 2020-06-23 2023-07-11 トヨタ自動車株式会社 回転電機
DE102021200809A1 (de) 2021-01-29 2022-08-04 Volkswagen Aktiengesellschaft Eine Rotorlamelle, ein Rotorblechpaket, ein Rotor und ein Verfahren zum Fertigen eines Rotors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235189A (ja) * 2002-02-04 2003-08-22 Toyota Motor Corp 回転電機のロータの磁石保持構造
JP2010226882A (ja) * 2009-03-24 2010-10-07 Daikin Ind Ltd 回転子用端板、永久磁石支持部材及び回転子
JP2011147323A (ja) * 2010-01-18 2011-07-28 Toyota Motor Corp Ipmモータ用ロータとipmモータ
JP2012157090A (ja) * 2011-01-21 2012-08-16 Asmo Co Ltd 磁石埋込型ロータ、及びモータ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203537A (ja) * 1986-02-28 1987-09-08 Hitachi Ltd 電動機用回転子
JP2000166143A (ja) * 1998-11-24 2000-06-16 Kokusan Denki Co Ltd 回転電機用磁石回転子
KR20000039493A (ko) 1998-12-14 2000-07-05 구자홍 영구자석 매립형 브러시리스직류모터의 회전자
JP2002354727A (ja) * 2001-05-21 2002-12-06 Hitachi Ltd 永久磁石を埋設した回転子および回転電機
KR100575162B1 (ko) 2004-11-18 2006-04-28 삼성전자주식회사 브러시리스 직류모터
FI117581B (fi) * 2004-12-23 2006-11-30 Abb Oy Kestomagneettikoneen roottori
DE502005010177D1 (de) * 2005-07-29 2010-10-14 Siemens Ag Permanentmagnetrotor für eine bürstenlose elektrische Maschine
JP2007049805A (ja) * 2005-08-09 2007-02-22 Honda Motor Co Ltd 永久磁石式回転子
JP2007097293A (ja) 2005-09-28 2007-04-12 Toshiba Kyaria Kk 電動機の回転子
DE112007000129T5 (de) * 2006-01-10 2008-11-13 Mitsuba Corp., Kiryu Elektro-Drehmaschine
JP5306706B2 (ja) * 2008-05-23 2013-10-02 アスモ株式会社 磁石付ロータ
JP5402154B2 (ja) * 2009-03-30 2014-01-29 アイシン精機株式会社 電動機
JP5556400B2 (ja) 2010-06-09 2014-07-23 富士電機株式会社 回転子鉄心部材及び永久磁石固定方法
JP2010207089A (ja) 2010-06-21 2010-09-16 Mitsubishi Electric Corp 永久磁石埋込型モータの回転子
JP2010207090A (ja) 2010-06-21 2010-09-16 Mitsubishi Electric Corp 永久磁石埋込型モータの回転子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235189A (ja) * 2002-02-04 2003-08-22 Toyota Motor Corp 回転電機のロータの磁石保持構造
JP2010226882A (ja) * 2009-03-24 2010-10-07 Daikin Ind Ltd 回転子用端板、永久磁石支持部材及び回転子
JP2011147323A (ja) * 2010-01-18 2011-07-28 Toyota Motor Corp Ipmモータ用ロータとipmモータ
JP2012157090A (ja) * 2011-01-21 2012-08-16 Asmo Co Ltd 磁石埋込型ロータ、及びモータ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016005419A (ja) * 2014-06-19 2016-01-12 日立アプライアンス株式会社 永久磁石電動機
JP2017184375A (ja) * 2016-03-29 2017-10-05 トヨタ自動車株式会社 回転電機のロータ
WO2018180634A1 (ja) * 2017-03-31 2018-10-04 日本電産サーボ株式会社 モータ
WO2023286125A1 (ja) * 2021-07-12 2023-01-19 三菱電機株式会社 回転子、電動機、圧縮機及び冷凍サイクル装置

Also Published As

Publication number Publication date
CN203589986U (zh) 2014-05-07
JPWO2014054688A1 (ja) 2016-08-25
GB2520657B (en) 2020-05-20
CN104704714A (zh) 2015-06-10
CN104704714B (zh) 2018-02-09
GB2520657A (en) 2015-05-27
GB201505538D0 (en) 2015-05-13
JP5976122B2 (ja) 2016-08-23
WO2014054150A1 (ja) 2014-04-10
US9762098B2 (en) 2017-09-12
DE112013004896T5 (de) 2015-06-18
KR20150066550A (ko) 2015-06-16
US20150236558A1 (en) 2015-08-20
KR101699190B1 (ko) 2017-01-23

Similar Documents

Publication Publication Date Title
JP5976122B2 (ja) 永久磁石埋込型電動機
US10381890B2 (en) Axial-gap rotating electric machine
JP5141749B2 (ja) エンドプレートおよびこれを用いた回転電機のロータ
JP5382012B2 (ja) 回転電機用回転子、および、その製造方法
JP5387033B2 (ja) 分割型回転子及び電動機
CN109314413B (zh) 永磁铁式同步机及永磁铁式同步机的固定件的制造方法
JP4706397B2 (ja) 回転電機の回転子およびその製造方法
JP5722301B2 (ja) 埋込磁石型同期電動機の回転子および埋込磁石型同期電動機
US9472985B2 (en) Rotor yoke with circumferential recess portions and motor applying rotor yoke
JP2007151321A (ja) 回転電機のロータ
JP2011254677A (ja) モータのロータおよびその製造方法
US20170117765A1 (en) Permanent magnet rotor for synchronous electric motor
JP2007068318A (ja) 磁石埋込型モータ
JP2016005419A (ja) 永久磁石電動機
JP5126487B2 (ja) Ipmモータ及びその製造方法と電動パワーステアリング装置
US8698369B2 (en) Rotor of rotating electrical machine
JP4286642B2 (ja) 永久磁石式回転子
JP2000188837A (ja) 永久磁石ロータおよびその製造方法
JP4291211B2 (ja) 回転電機の回転子および回転電機
JP6112970B2 (ja) 永久磁石式回転電機
JP5360224B2 (ja) 電動機の回転子の製造方法
JPH05219668A (ja) 永久磁石式回転子
JP5653298B2 (ja) 永久磁石埋込型モータの回転子
JP5200333B2 (ja) 電動機の回転子製造方法および回転子
JP2015042122A (ja) ロータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539781

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431077

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1505538

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20131002

WWE Wipo information: entry into national phase

Ref document number: 1505538.7

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 112013004896

Country of ref document: DE

Ref document number: 1120130048965

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20157011091

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13843413

Country of ref document: EP

Kind code of ref document: A1