WO2018180634A1 - モータ - Google Patents

モータ Download PDF

Info

Publication number
WO2018180634A1
WO2018180634A1 PCT/JP2018/010576 JP2018010576W WO2018180634A1 WO 2018180634 A1 WO2018180634 A1 WO 2018180634A1 JP 2018010576 W JP2018010576 W JP 2018010576W WO 2018180634 A1 WO2018180634 A1 WO 2018180634A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
circumferential
rotor
hole
space
Prior art date
Application number
PCT/JP2018/010576
Other languages
English (en)
French (fr)
Inventor
隼人 富澤
桐原 武
Original Assignee
日本電産サーボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サーボ株式会社 filed Critical 日本電産サーボ株式会社
Priority to JP2019509304A priority Critical patent/JPWO2018180634A1/ja
Priority to CN201880022990.5A priority patent/CN110574258A/zh
Publication of WO2018180634A1 publication Critical patent/WO2018180634A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a motor.
  • IPM internal permanent magnet
  • the rotor of the IPM motor is a columnar rotor core that is fixed to the shaft, and is provided at a peripheral edge portion of the rotor core with an interval in the circumferential direction and penetrates in the axial direction. It has a plurality of magnet accommodation holes and a plurality of magnets inserted into each of the plurality of magnet accommodation holes.
  • the accommodation hole has a hole body that accommodates the magnet, and a space hole that extends in the circumferential direction from both circumferential sides of the hole body.
  • the magnet has such a size that a slight gap is generated in the radial direction with respect to the hole body while being inserted into the hole body.
  • the positioning of the magnet is performed by holding the magnet from both sides in the axial direction of the rotor core with a jig.
  • the positioned magnet is fixed to the rotor by hardening a fixing solution such as a varnish solution that has penetrated between the accommodation hole and the magnet.
  • the reference surface for positioning the magnet in the circumferential direction with respect to the magnet accommodation hole is unknown. For this reason, the relative position with respect to the magnet accommodation hole of each magnet inserted in the several magnet accommodation hole may vary in the circumferential direction. In this case, the rotational speed of the rotor may fluctuate when the rotor is driven.
  • An object of the present invention is to provide a motor having a rotor in which a magnet can be positioned in a circumferential direction with respect to a magnet accommodation hole.
  • An exemplary first invention of the present application includes a shaft disposed along a central axis extending in an axial direction, a rotor fixed to the shaft, a stator positioned on a radially outer side of the rotor, the rotor, and the rotor
  • a rotor that houses a stator, and the rotor has a columnar shape extending in the axial direction, and extends circumferentially around a through hole that extends in the axial direction and into which the shaft is inserted, and a radially inner peripheral edge of the rotor.
  • a plurality of magnet housing holes provided in the direction with intervals and penetrating in the axial direction, a plurality of magnets inserted into each of the plurality of magnet housing holes, and axial end portions on both axial sides of the rotor
  • a fixing portion that fixes the plurality of magnets to the rotor, and the magnet accommodation holes are more than circumferential end portions on both sides in the circumferential direction of the magnets inserted into the magnet accommodation holes.
  • a pair of space holes extending in the circumferential direction The fixing portion is opposed to an annular plate portion that covers the plurality of magnet housing holes provided in the circumferential direction on the peripheral portion of the rotor, and the axial end portion of the rotor of the plate portion. Projecting in the axial direction from the surface portion to the inside of the space hole and disposed in the space hole, and the magnet is press-fitted into the space hole and the magnet housing
  • the motor is in contact with the inner surface of the hole.
  • a motor having a rotor capable of positioning a magnet in a circumferential direction with respect to a magnet accommodation hole.
  • FIG. 6A is a partial side view of a rotor in which a protrusion of the fixing portion is inserted on one side in the circumferential direction of the magnet accommodation hole
  • FIG. 6B is a magnet accommodation hole adjacent in the circumferential direction. It is a partial side view of the rotor by which the protrusion part was inserted in the space hole part which opposes.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction is a direction (vertical direction in FIG. 1) parallel to the axial direction of the central axis J shown in FIG.
  • the X-axis direction is a direction parallel to the radial direction of the motor shown in FIG. 1, that is, a direction orthogonal to the paper surface of FIG.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction.
  • the positive side (+ Z side) in the Z-axis direction is described as “rear side”
  • the negative side ( ⁇ Z side) in the Z-axis direction is described as “front side”.
  • the rear side and the front side are names used for explanation only, and do not limit the actual positional relationship and direction.
  • a direction parallel to the central axis J (Z-axis direction) is simply described as “axial direction”
  • a radial direction centering on the central axis J is simply described as “radial direction”.
  • the circumferential direction around the axis J that is, the circumference of the central axis J ( ⁇ direction) is simply described as “circumferential direction”.
  • extending in the axial direction means not only extending in the axial direction (Z-axis direction) but also extending in a direction inclined by less than 45 ° with respect to the axial direction. Including. In the present specification, “extending in the radial direction” means 45 ° with respect to the radial direction in addition to the case of extending in the radial direction, that is, the direction perpendicular to the axial direction (Z-axis direction). Including the case of extending in a tilted direction within a range of less.
  • FIG. 1 is a cross-sectional view of a motor 1 according to the first embodiment.
  • the motor 1 of the present embodiment is positioned on a shaft 5 disposed along a central axis J extending in the axial direction, a rotor 10 fixed to the shaft 5, and a radially outer side of the rotor 10.
  • a housing 40 that accommodates the rotor 10 and the stator 30.
  • the motor 1 further includes a cover portion 50 at the rear side end portion of the housing 40.
  • the motor 1 is an inner rotor type motor.
  • each constituent member will be described in detail.
  • the housing 40 has a bottomed thin cylindrical shape, and includes a housing cylindrical portion 41, a housing bottom plate portion 43, and a flange portion 45.
  • the housing cylinder portion 41 has a cylindrical shape surrounding the stator 30 in the circumferential direction.
  • the housing cylinder part 41 is a cylindrical shape centering on the central axis J, for example.
  • the housing tube portion 41 has a housing inner peripheral surface 41 a that holds the stator 30.
  • the housing bottom plate portion 43 is connected to the front side ( ⁇ Z side) end portion of the housing cylinder portion 41.
  • the housing bottom plate portion 43 includes an annular portion 43 a that covers the front side of the stator 30, and a front-side bearing holding portion 43 b that is located on the radially inner side of the annular portion 43 a and holds the front-side bearing 55.
  • the annular portion 43a surrounds the front side of the stator 30 in an annular shape when viewed in the axial direction.
  • the annular portion 43a has a concave shape that opens in the rear side (+ Z side) and is recessed toward the front side in a cross-sectional view.
  • the front-side bearing holding portion 43b has a bottomed cylindrical shape that is connected to the inside in the radial direction of the annular portion 43a and protrudes to the front side.
  • the front-side bearing holding portion 43b holds the front-side bearing 55 on the radially inner side.
  • the flange portion 45 is connected to the rear end portion of the housing tube portion 41.
  • the flange portion 45 extends radially outward from the rear end portion of the housing tubular portion 41 and has an annular shape when viewed in the axial direction.
  • the cover portion 50 has a disk shape and is placed on and connected to the rear side surface 45 a of the flange portion 45.
  • the cover part 50 is fixed to the flange part 45 by fastening members such as bolts and nuts, for example.
  • the cover portion 50 has a rear-side bearing holding portion 50 a that holds the rear-side bearing 57 at the central portion in the radial direction.
  • the rear side bearing holding part 50a has a cylindrical through hole 50a1 penetrating in the axial direction.
  • a step portion 50a2 protruding radially inward is provided in an annular shape.
  • the front side end portion of the rear side bearing 57 contacts the stepped portion 50a2, and the rear side bearing 57 is positioned with respect to the cover portion 50 in the front side direction.
  • FIG. 2 is a perspective view of the rotor 10.
  • FIG. 3 is a side view of the rotor 10.
  • the rotor 10 has a columnar shape that extends in the axial direction, a through-hole 13 that extends in the axial direction and into which the shaft 5 is inserted, and a radially inner periphery of the rotor 10.
  • a plurality of magnet housing holes 15 that are provided at intervals in the circumferential direction and penetrate in the axial direction, a plurality of magnets 17 inserted into each of the plurality of magnet housing holes 15, and both axial sides of the rotor 10
  • a fixing portion 63 that fixes the plurality of magnets 17 to the rotor 10.
  • the rotor 10 has a rotor core 11, and the rotor core 11 is provided with a through hole 13, a plurality of magnet accommodation holes 15, a plurality of magnets 17, and a fixing portion 63.
  • the rotor core 11 has a cylindrical shape and is made of a ferromagnetic material.
  • the through-hole 13 extends along the central axis J of the rotor core 11 as shown in FIG.
  • the rotor core 11 is formed by laminating a number of circular electromagnetic steel plates 19 in the axial direction when viewed in the axial direction.
  • Each of the large number of electromagnetic steel sheets 19 is provided with a magnet accommodation hole portion 15 a that is a part of the magnet accommodation hole 15 and a through hole portion 13 a that is a part of the through hole 13.
  • the electromagnetic steel sheet 19 has a fixing hole portion 21a that becomes a part of the fixing hole 21 for fixing the electromagnetic steel sheets 19 stacked in the axial direction in the axial direction.
  • a plurality of the fixed hole portions 21a are arranged at predetermined positions in the circumferential direction at positions radially inward of the magnet housing hole portions 15a of the electromagnetic steel sheet 19.
  • a large number of through-hole portions 13 a communicate with each other in the axial direction to form the through-hole 13, and a large number of fixed hole portions 21 a communicate with each other in the axial direction to form the fixed hole 21.
  • the magnet 17 has a rectangular parallelepiped shape that is rectangular when viewed in the axial direction and extends in the axial direction. As shown in FIG. 4, the circumferential end 17 b of the magnet 17 has a flat planar portion 17 a. The axial length of the magnet 17 is shorter than the axial length of the magnet accommodation hole 15.
  • the magnet 17 is a sintered magnet containing, for example, neodymium.
  • the magnet 17 has an inner corner 17c radially inward of the circumferential end 17b of the magnet 17 and an outer corner 17d radially outward of the circumferential end 17b of the magnet 17.
  • the inner corner portion 17c and the outer corner portion 17d are convex shapes protruding in a right angle when viewed in the axial direction.
  • Magnets 17 arranged adjacent to each other in the circumferential direction are arranged with different polarities.
  • the magnet 17 may be plated on the surface, for example, nickel plating. The corrosion of the magnet can be suppressed by plating.
  • the magnet 17 may or may not be magnetized when inserted into the magnet housing hole 15.
  • the magnet housing hole 15 has a housing hole main body portion 15 b that extends in a rectangular shape in the circumferential direction at the peripheral portion on the radially inner side of the rotor 10.
  • the magnet accommodation hole 15 has a pair of space holes 15 c extending in the circumferential direction from the circumferential end portions 17 b on both sides in the circumferential direction of the magnet 17 inserted into the magnet accommodation hole 15. That is, the magnet housing hole 15 includes a housing hole main body portion 15b and a pair of space hole portions 15c extending in the circumferential direction from both sides in the circumferential direction of the housing hole main body portion 15b.
  • the radial width Wh of the accommodation hole main body 15b is larger than the radial width Wm of the magnet 17. For this reason, when the magnet 17 is inserted into the accommodation hole main body 15 b, a gap is provided between the inner surface of the accommodation hole main body 15 b in the radial direction and the magnet 17. Due to this gap, the magnet 17 can be easily inserted into the housing hole main body 15b. In FIG. 4, the description of the gap is omitted.
  • the inner surface 15 d of the space hole portion 15 c that is a part of the magnet housing hole 15 has an inner surface facing portion 15 d 1 that extends in the radial direction facing the circumferential end portion 17 b of the magnet 17, and an inner surface An inner surface inner portion 15d2 extending from the radially inner end of the facing portion 15d1 toward the inner corner portion 17c of the magnet 17, and an inner surface extending from the radially outer end of the inner surface facing portion 15d1 toward the outer corner portion 17d of the magnet 17 And an outer portion 15d3.
  • the space hole portion 15 c has a wedge shape in which the interval in the circumferential direction becomes narrower from the radially outer side toward the radially inner side when viewed in the axial direction. That is, the inner surface outer portion 15d3 is longer than the inner surface inner portion 15d2. Further, the inner surface facing portion 15d1 is on the side of the circumferential end 17b of the magnet 17 from the radially outer side to the radially inner side in the axial view with respect to the circumferential end 17b of the magnet 17 inserted into the magnet housing hole 15. Tilt in the direction of approaching. For this reason, the space hole 15c has a wedge shape when viewed in the axial direction.
  • the fixing portion 63 includes an annular plate portion 65 that covers a plurality of magnet housing holes 15 provided in the circumferential direction on the peripheral portion of the rotor 10, and an axial end of the rotor portion 10 of the plate portion 65. And a protruding portion 67 that protrudes from the surface portion 65a facing the portion and is disposed in the space hole portion 15c.
  • the fixing portion 63 is nonmagnetic and made of a resin material.
  • the fixing portion 63 is an integrally molded product.
  • fixed part 63 may shape
  • a plurality of protruding portions 67 are provided on the surface portion 65a of the plate portion 65 with a circumferential interval. As shown in FIG. 3, the protrusion 67 is press-fitted into at least one of the pair of space holes 15 c of the magnet accommodation hole 15 in which the magnet 17 is inserted. In the present embodiment, the protrusion 67 is press-fitted into each of the pair of space holes 15c. As shown in FIGS. 3 and 5, the protruding portion 67 has a pair of protruding portions 67 with an interval A in the circumferential direction of the plate portion 65. The pair of projecting portions 67 are arranged in the circumferential direction of the plate portion 65 with an interval B in the circumferential direction of the plate portion 65. The interval A is a distance between the pair of space holes 15 c of the magnet housing hole 15. The interval B is a circumferential distance between the magnet housing holes 16 arranged adjacent to each other in the circumferential direction of the rotor 10.
  • the projecting portion 67 has a wedge shape in which a cross-sectional shape in a direction perpendicular to the axial direction becomes narrower in the circumferential direction from the radially outer side toward the radially inner side.
  • the protrusion 67 has a circumferential inner surface 67a extending along the circumferential end 17b of the magnet 17 and an inner surface facing the circumferential end 17b of the magnet 17 out of the inner surface 15d of the space hole 15c.
  • a circumferential outer surface portion 67b extending along the facing portion 15d1, and a cross section in a direction orthogonal to the axial direction is trapezoidal. The protrusion 67 is press-fitted into the space hole 15c.
  • the circumferential inner surface 67 a of the protrusion 67 contacts the circumferential end 17 b of the magnet 17, and the circumferential outer surface 67 b of the protrusion 67 is It contacts the inner surface facing portion 15d1 of the space hole portion 15c.
  • the circumferential end 17 b of the magnet 17 comes into contact with the protruding portion 67 press-fitted into the wedge-shaped space hole 15 c, and the radial end of the magnet 17 faces the radially outer side of the magnet housing hole 15. It contacts the inner surface 15d.
  • the stator 30 is located on the radially outer side of the rotor 10.
  • the stator 30 surrounds the rotor 10 around the axis ( ⁇ direction), and rotates the rotor 10 around the central axis J.
  • the stator 30 includes a core back portion 30a, a teeth portion 30b, a coil 30c, and an insulator (bobbin) 30d.
  • the core back portion 30a has a cylindrical shape concentric with the shaft 5.
  • the teeth portion 30b extends from the inner side surface of the core back portion 30a toward the shaft 5.
  • the teeth part 30b is provided with two or more, and is arrange
  • the coil 30c is provided around the insulator (bobbin) 30d, and is formed by winding a conductive wire.
  • An insulator (bobbin) 30d is attached to each tooth portion 30b.
  • the shaft 5 extends along the central axis J and penetrates the rotor 10.
  • the rear side of the shaft 5 extends through a rear side bearing 57 provided in the cover portion 50.
  • the front side of the shaft 5 protrudes from the rotor 10 and is supported by a front side bearing 55 disposed in the front side bearing holding portion 43 b of the housing 40. Therefore, the shaft 5 is supported at both ends.
  • the magnet 17 is integrated with the protruding portion 67 press-fitted into the pair of space holes 15 c and fixed to the magnet housing hole 15. Therefore, the magnet 17 is positioned in the circumferential direction and the radial direction with respect to the magnet accommodation hole 15.
  • the fixing portion 63 includes an annular plate portion 65 that covers the plurality of magnet housing holes 15 provided in the circumferential direction on the peripheral portion of the rotor 10, and the rotor 10 of the plate portion 65.
  • a projecting portion 67 that projects in the axial direction from the surface portion 65a facing the end portion in the axial direction to the inside of the space hole portion 15c and is disposed in the space hole portion 15c.
  • the magnet 17 is in contact with the protrusion 67 and the inner surface 15 d of the magnet accommodation hole 15. For this reason, the magnet 17 can be positioned at least in the circumferential direction with respect to the magnet accommodation hole 15.
  • the protrusion 67 is press-fitted into at least one of the pair of space holes 15c of the magnet accommodation hole 15 in which the magnet 17 is inserted. For this reason, the magnet 17 can be pushed from the protrusion part 67 press-fitted into the space hole 15c, and the magnet 17 and the protrusion part 67 can be in a contacted state.
  • the protrusion 67 is press-fitted into the space hole 15c, so that the circumferential inner surface 67a of the protrusion 67 contacts the circumferential end 17b of the magnet 17, and the protrusion The circumferential outer surface portion 67b of the 67 contacts the inner surface facing portion 15d1 of the space hole portion 15c. For this reason, the magnet 17 is pushed at least in the circumferential direction of the magnet housing hole 15 via the protruding portion 67, contacts the protruding portion 67, and is positioned at least in the circumferential direction with respect to the magnet housing hole 15.
  • the shape of the space hole 15c is a wedge shape in which the circumferential interval becomes narrower from the radially outer side toward the radially inner side, and the protruding portion 67 is press-fitted into the space hole 15c.
  • the circumferential end 17b of the magnet 17 is pushed by the protrusion 67 to the space hole 15c side opposite to the space hole 15c into which the protrusion 67 is press-fitted and radially inward. Therefore, the magnet 17 is positioned in the circumferential direction and the radial direction with respect to the magnet accommodation hole 15 by contacting the protruding portion 67 and the radially inner surface 15 d of the magnet accommodation hole 15.
  • the protrusion 67 has a wedge shape in which the cross-sectional shape in the direction orthogonal to the axial direction becomes narrower in the circumferential direction from the radially outer side toward the radially inner side. For this reason, when the protrusion 67 is press-fitted into the wedge-shaped space hole 15c, the protrusion 67 pushes the magnet 17 inserted into the magnet housing hole 15 at least in the circumferential direction by the wedge action. Therefore, the magnet 17 is fixed in a state of being positioned in the circumferential direction and the radial direction with respect to the magnet accommodation hole 15.
  • the protruding portion 67 has a circumferential inner surface portion 67a and a circumferential outer surface portion 67b, and has a trapezoidal cross-sectional shape. For this reason, the protrusion part 67 is wedge-shaped. Therefore, when the protrusion 67 is press-fitted into the wedge-shaped space hole 15 c, the protrusion 67 is coupled with the wedge shape of the space hole 15 c, and the circumferential inner surface 67 a of the protrusion 67 is the circumferential end of the magnet 17. The part 17b is pushed at least in the circumferential direction. Therefore, the magnet 17 is more firmly fixed in a state where the magnet 17 is positioned in the circumferential direction and the radial direction with respect to the magnet accommodation hole 15.
  • the fixing portion 63 is nonmagnetic. For this reason, when the rotor 10 is driven, it is possible to prevent the occurrence of a magnetic short circuit (magnetic flux leakage) between the magnets 17 adjacent to each other in the circumferential direction due to the lines of magnetic force passing through the rotor 10 being guided to the fixed portion 63.
  • FIG. 6A is a partial side view of the rotor 10 in which the protruding portion 67 of the fixed portion 63 is inserted on one side in the circumferential direction of the magnet housing hole 15.
  • the protrusions 67 are arranged in both of the pair of space holes 15 c of the magnet accommodation hole 15.
  • the present invention is not limited to this structure.
  • the protrusions 67 are press-fitted into the space holes 15 c on the same circumferential direction side of the magnet accommodation holes 15 adjacent in the circumferential direction. (First modification).
  • the protrusion 67 is press-fitted on one side (left side) in the circumferential direction of the pair of space holes 15c of the magnet housing hole 15 is shown, but the protrusion 67 is a pair of space holes 15c. May be press-fitted into the other circumferential side (right side).
  • the protrusions 67 are press-fitted into the space holes 15 c on the same circumferential direction side of the magnet housing holes 15 adjacent in the circumferential direction, so that the plurality of magnets 17 have the same interval in the circumferential direction with respect to the rotor 10. Is positioned. Therefore, the plurality of magnets 17 can be evenly arranged in the circumferential direction of the rotor 10.
  • FIG. 6B is a partial side view of the rotor 10 in which the protrusions 67 are inserted into the space holes 15c facing each other in the circumferentially adjacent magnet housing holes 15.
  • the protrusions 67 are arranged in both of the pair of space holes 15 c of the magnet accommodation hole 15.
  • the present invention is not limited to this structure.
  • the protrusions 67 are press-fitted into the space holes 15 c on the different circumferential sides of the magnet housing holes 15 adjacent in the circumferential direction. (Second modification).
  • the projecting portion 67 is press-fitted into the space holes 15c on the different circumferential sides of the magnet housing holes 15 adjacent in the circumferential direction.
  • two magnets 17 adjacent in the circumferential direction form a pair, and the two magnets 17 serving as the pair have the same interval in the circumferential direction with respect to the two magnets 17 serving as the other pair. Arranged. Therefore, the two magnets 17 to be paired can be evenly arranged in the circumferential direction of the rotor 10.
  • the cross-sectional shape of the protruding portion 67 of the fixing portion 63 according to the first embodiment shown in FIG. 4 is a wedge shape and a trapezoidal shape.
  • the cross-sectional shape of the protrusion part 67 may be circular (third modified example).
  • the projecting portion 67 has a circular cross-sectional shape in a direction orthogonal to the axial direction. For this reason, when the protrusion is press-fitted into the wedge-shaped space hole 15c, the protrusion 67 pushes the magnet 17 inserted into the magnet accommodation hole 15 at least in the circumferential direction by the wedge action of the space hole 15c. Therefore, the magnet 17 is positioned in the circumferential direction and the radial direction with respect to the magnet accommodation hole 15. Moreover, the structure of the protrusion part 67 is simplified by making the cross-sectional shape of the protrusion part 67 circular.
  • the protruding portion 67 of the fixed portion 63 according to the first embodiment shown in FIG. 5 has the same cross-sectional shape and extends in the protruding direction.
  • the protrusion 67 may have a smaller cross section in the direction orthogonal to the protrusion direction as at least the front end in the protrusion direction advances toward the front end in the protrusion direction (fourth modification).
  • the protrusion 67 has a smaller cross section as at least the tip in the protruding direction advances toward the tip in the protruding direction. For this reason, when the protrusion 67 is press-fitted into the space hole 15c, the tip of the protrusion 67 can be easily inserted into the space hole 15c.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

モータは、シャフトと、シャフトに固定されるロータ10と、ロータ10の径方向外側に位置するステータと、ロータ及びステータを収容するハウジングとを有する。ロータ10は、シャフトが挿入される貫通孔13と、ロータ10の周縁部に周方向に間隔を有して軸方向に貫通する複数の磁石収容孔15と、複数の磁石収容孔15に挿入される複数の磁石17と、ロータ10の軸方向両側の軸方向端部に配置されて複数の磁石17をロータ10に固定する固定部と、を有する。磁石収容孔15は、磁石収容孔15内に挿入された磁石17の周方向端部17bよりも周方向に延びる一対の空間孔部15cを有する。固定部63は、複数の磁石収容孔15を覆う円環状の板部65と、板部65のロータ10の軸方向端部に対向する面部65aから空間孔部15cの内側へ軸方向に突出して空間孔部15cに配置される突出部67と、を有する。磁石17は、空間孔部15cに配置される突出部67と磁石収容孔15の内面15dに接触する。

Description

モータ
 本発明は、モータに関する。
 モータには、ロータの内側に磁石が埋め込まれたIPM(interior permanent magnet(埋込磁石))モータがある。このIPMモータは、磁石がロータの内部に配置されているので、磁石がロータから脱落する虞を防止することができる。
 IPMモータのロータは、特許文献1に記載されているように、円柱状でありシャフトに固定されるロータコアと、ロータコアの周縁部に周方向に間隔を有して設けられて軸方向に貫通する複数の磁石収容孔と、複数の磁石収容孔の夫々に挿入された複数の磁石と、を有する。
 収容孔部は、磁石が収容される孔部本体と、孔部本体の周方向両側から周方向へ延びる空間孔部と、を有する。磁石は、孔部本体に挿入された状態で、孔部本体に対して径方向に僅かな隙間が生じる大きさを有する。磁石の位置決めは、冶具によってロータコアの軸方向両側から磁石を挟むように保持して行われる。位置決めされた磁石は、収容孔部と磁石との間に浸透させたワニス溶液等の固定用溶液が硬化する事により、ロータに固定される。
特開2017-38462号公報
 特許文献1に記載されたIPMモータは、磁石を磁石収容孔に対して周方向に位置決めするための基準面が不明である。このため、複数の磁石収容孔に挿入された夫々の磁石の磁石収容孔に対する相対位置が周方向にばらつく場合がある。この場合には、ロータの駆動時に、ロータの回転速度が変動する虞が生じる。
 本発明の目的は、磁石が磁石収容孔に対して周方向に位置決め可能なロータを有したモータを提供することである。
 本願の例示的な第1発明は、軸方向に延びる中心軸に沿って配置されたシャフトと、前記シャフトに固定されるロータと、前記ロータの径方向外側に位置するステータと、前記ロータ及び前記ステータを収容するハウジングと、を有し、前記ロータは、軸方向に延びる円柱状であり、軸方向に延びて前記シャフトが挿入される貫通孔と、前記ロータの径方向内側の周縁部に周方向に間隔を有して設けられ、軸方向に貫通する複数の磁石収容孔と、複数の前記磁石収容孔の夫々に挿入される複数の磁石と、前記ロータの軸方向両側の軸方向端部に配置されて複数の前記磁石を前記ロータに固定する固定部と、を有し、前記磁石収容孔は、前記磁石収容孔内に挿入された前記磁石の周方向両側の周方向端部よりも周方向に延びる一対の空間孔部を有し、前記固定部は、前記ロータの前記周縁部に周方向に設けられた複数の前記磁石収容孔を覆う円環状の板部と、前記板部の前記ロータの前記軸方向端部に対向する面部から前記空間孔部の内側へ軸方向に突出して前記空間孔部に配置される突出部と、を有し、前記磁石は、前記空間孔部に圧入される前記突出部と前記磁石収容孔の内面に接触するモータである。
 本願の例示的な第1発明によれば、磁石を磁石収容孔に対して周方向に位置決め可能なロータを有したモータを提供することできる。
第1実施形態に係るモータの断面図である。 ロータの斜視図である。 ロータの側面図である。 図3のX矢視が示す磁石収容孔の部分拡大図である。 磁石をロータに固定する固定部の斜視図である。 固定部の変形例を示し、図6Aは、磁石収容孔の周方向一方側に固定部の突出部が挿入されたロータの部分側面図であり、図6Bは、周方向に隣接する磁石収容孔の対向する空間孔部に突出部が挿入されたロータの部分側面図である。
 以下、図面を参照しながら、本発明の実施形態に係るモータについて説明する。本実施形態では、電動工具用のコンプレッサに利用されるDCモータについて説明する。また、以下の図面においては、各構成をわかり易くするために、実際の構造と各構造における縮尺及び数等を異ならせる場合がある。
 また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、図1に示す中心軸Jの軸方向と平行な方向(図1の上下方向)とする。X軸方向は、図1に示すモータの半径方向と平行な方向、すなわち、図1紙面に直交する方向とする。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向とする。
 また、以下の説明においては、Z軸方向の正の側(+Z側)は「リア側」と記述され、Z軸方向の負の側(-Z側)は「フロント側」と記述される。なお、リア側及びフロント側は、単に説明のために用いられる名称であって、実際の位置関係及び方向を限定しない。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向)は単に「軸方向」と記述され、中心軸Jを中心とする径方向は単に「径方向」と記述され、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周り(θ方向)は単に「周方向」と記述される。
 なお、本明細書において、「軸方向に延びる」は、厳密に軸方向(Z軸方向)に延びる場合に加えて、軸方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。また、本明細書において、「径方向に延びる」は、厳密に径方向、すなわち、軸方向(Z軸方向)に対して垂直な方向に延びる場合に加えて、径方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。
[第1実施形態]
<全体構成>
 図1は、第1実施形態に係るモータ1の断面図である。本実施形態のモータ1は、図1に示すように、軸方向に延びる中心軸Jに沿って配置されたシャフト5と、シャフト5に固定されるロータ10と、ロータ10の径方向外側に位置するステータ30と、ロータ10及びステータ30を収容するハウジング40と、を有する。また、モータ1は、ハウジング40のリア側端部にカバー部50を、さらに有する。モータ1は、インナーロータ型のモータである。以下、構成部材毎に詳細に説明する。
<ハウジング40>
 ハウジング40は、有底の薄肉筒状であり、ハウジング筒部41と、ハウジング底板部43と、フランジ部45と、を有する。
(ハウジング筒部41)
 ハウジング筒部41は、ステータ30を周方向に囲む筒状である。本実施形態においてハウジング筒部41は、例えば、中心軸Jを中心とする円筒状である。ハウジング筒部41は、ステータ30を保持するハウジング内周面41aを有する。
(ハウジング底板部43)
 ハウジング底板部43は、ハウジング筒部41のフロント側(-Z側)の端部に繋がる。ハウジング底板部43は、ステータ30のフロント側を覆う円環部43aと、円環部43aの径方向内側に位置してフロント側ベアリング55を保持するフロント側ベアリング保持部43bとを有する。円環部43aは、軸方向視においてステータ30のフロント側を円環状に囲む。円環部43aは、断面視において、リア側(+Z側)が開口してフロント側に窪む凹状である。
 フロント側ベアリング保持部43bは、円環部43aの径方向内側に繋がってフロント側へ突出する有底円筒状である。フロント側ベアリング保持部43bは、径方向内側にフロント側ベアリング55を保持する。
(フランジ部45)
 フランジ部45は、ハウジング筒部41のリア側の端部に繋がる。フランジ部45は、ハウジング筒部41のリア側の端部から径方向外側に延びて軸方向視において円環状である。
<カバー部50>
 カバー部50は、円板状であり、フランジ部45のリア側の面45a上に載置されて接続される。カバー部50は、フランジ部45に対して、例えば、ボルト及びナット等の締結部材によって固定される。カバー部50の径方向中央部には、リア側ベアリング57を保持するリア側ベアリング保持部50aを有する。本実施形態では、リア側ベアリング保持部50aは、軸方向に貫通する円筒状の貫通孔50a1を有する。貫通孔50a1のフロント側には、径方向内側へ突出する段部50a2が環状に設けられる。段部50a2にリア側ベアリング57のフロント側端部が接触して、リア側ベアリング57のカバー部50に対するフロント側方向の位置決めがされる。
<ロータ10>
 図2は、ロータ10の斜視図である。図3はロータ10の側面図である。ロータ10は、図1、図2、図3に示すように、軸方向に延びる円柱状であり、軸方向に延びてシャフト5が挿入される貫通孔13と、ロータ10の径方向内側の周縁部に周方向に間隔を有して設けられ、軸方向に貫通する複数の磁石収容孔15と、複数の磁石収容孔15の夫々に挿入された複数の磁石17と、ロータ10の軸方向両側の軸方向端部に配置されて複数の磁石17をロータ10に固定する固定部63と、を有する。
 本実施形態では、ロータ10はロータコア11を有し、ロータコア11に、貫通孔13と、複数の磁石収容孔15と、複数の磁石17と、固定部63と、が設けられる。ロータコア11は、円柱状であり、強磁性材料製である。貫通孔13は、図3に示すように、ロータコア11の中心軸Jに沿って延びる。
(ロータコア11)
 ロータコア11は、図2及び図3に示すように、軸方向視において円形状の電磁鋼板19を軸方向に多数積層させてなる。多数の電磁鋼板19の夫々には、磁石収容孔15の一部となる磁石収容孔部15aと、貫通孔13の一部となる貫通孔部13a、とが設けられる。本実施形態では、電磁鋼板19は、軸方向に多数積層させた電磁鋼板19を軸方向に固定するための固定孔21の一部となる固定孔部21aを有する。固定孔部21aは、電磁鋼板19の磁石収容孔部15aよりも径方向内側の位置に周方向に所定間隔を有して複数配置される。多数の貫通孔部13aが軸方向に連通して貫通孔13となり、さらに多数の固定孔部21aが軸方向に連通して固定孔21となる。
(磁石17)
 磁石17は、図3に示すように、軸方向視において長方形状であって軸方向に延びる直方体状である。磁石17の周方向端部17bは、図4に示すように、平面状の平面部17aを有する。磁石17の軸方向長さは、磁石収容孔15の軸方向長さよりも短い。磁石17は、例えば、ネオジウムを含む焼結マグネットである。
 磁石17は、磁石17の周方向端部17bのうち径方向内側に内側隅部17cを有するとともに、磁石17の周方向端部17bのうち径方向外側に外側隅部17dを有する。本実施形態では、内側隅部17c及び外側隅部17dは、軸方向視において、直角状に突出した凸状である。周方向に隣接した配置される磁石17は、異極配置される。
 なお、磁石17は、表面にメッキ、例えばニッケルメッキを施してもよい。メッキにより、磁石の腐食を抑制することができる。また、磁石17は、磁石収容孔15への挿入時に、着磁されていても、されていなくてもよい。
(磁石収容孔15)
 磁石収容孔15は、図4に示すように、ロータ10の径方向内側の周縁部に周方向に長方形状に延びる収容孔本体部15bを有する。また、磁石収容孔15は、磁石収容孔15内に挿入された磁石17の周方向両側の周方向端部17bよりも周方向に延びる一対の空間孔部15cを有する。即ち、磁石収容孔15は、収容孔本体部15bと、収容孔本体部15bの周方向の両側から周方向へ延びる一対の空間孔部15cと、を有してなる。
 収容孔本体部15bの径方向幅Whは、磁石17の径方向幅Wmよりも大きい。このため、磁石17は、収容孔本体部15bに挿入されると、収容孔本体部15bの径方向内側の内面と磁石17との間に隙間が設けられる。この隙間によって、磁石17は、収容孔本体部15bに容易に挿入することができる。なお、図4では、隙間の記載は省略される。
 磁石収容孔15の一部である空間孔部15cの内面15dは、図4に示すように、磁石17の周方向端部17bに対向して径方向に沿って延びる内面対向部15d1と、内面対向部15d1の径方向内側端から磁石17の内側隅部17c側へ向かって延びる内面内側部15d2と、内面対向部15d1の径方向外側端から磁石17の外側隅部17d側へ向かって延びる内面外側部15d3と、を有する。
 本実施形態では、空間孔部15cは、図4に示すように、軸方向視において、径方向外側から径方向内側に向かって周方向の間隔が狭くなるくさび状である。即ち、内面外側部15d3は、内面内側部15d2よりも長い。また内面対向部15d1は、磁石収容孔15に挿入された磁石17の周方向端部17bに対して、軸方向視において径方向外側から径方向内側に向かって磁石17の周方向端部17b側に接近する方向に傾く。このため、空間孔部15cは、軸方向視においてくさび状である。
(固定部63)
 固定部63は、図5に示すように、ロータ10の周縁部に周方向に設けられた複数の磁石収容孔15を覆う円環状の板部65と、板部65のロータ10の軸方向端部に対向する面部65aから突出して空間孔部15cに配置される突出部67と、を有する。本実施形態では、固定部63は、非磁性且つ樹脂材料製である。固定部63は、一体成型品である。なお、固定部63は、板部65と、突出部67とを別個に成型されてもよい。
 突出部67は、板部65の面部65aに周方向に間隔を有して複数設けられる。突出部67は、図3に示すように、磁石17が挿入された磁石収容孔15の一対の空間孔部15cの少なくともいずれか一方に圧入される。本実施形態では、突出部67は、一対の空間孔部15cの夫々に圧入される。突出部67は、図3及び図5に示すように、板部65の周方向に間隔Aを有して一対の突出部67が配置される。また、一対の突出部67は、板部65の周方向に間隔Bを有して板部65の周方向に配置される。間隔Aは、磁石収容孔15の一対の空間孔部15c間の距離である。間隔Bは、ロータ10の周方向に隣接して配置された磁石収容孔16間の周方向の距離である。
 突出部67は、図4に示すように、軸方向に対して直交する方向の断面形状が、径方向外側から径方向内側に向かって周方向の間隔が狭くなるくさび状である。本実施形態では、突出部67は、磁石17の周方向端部17bに沿って延びる周方向内面部67aと、空間孔部15cの内面15dのうち磁石17の周方向端部17bに対向する内面対向部15d1に沿って延びる周方向外面部67bと、を有して、軸方向に対して直交する方向の断面が台形状である。突出部67は、空間孔部15cに圧入される。
 突出部67は、空間孔部15cに圧入されている事により、突出部67の周方向内面部67aが磁石17の周方向端部17bに接触し、且つ突出部67の周方向外面部67bが空間孔部15cの内面対向部15d1に接触する。磁石17は、磁石17の周方向端部17bがくさび状の空間孔部15cに圧入された突出部67に接触するとともに、磁石17の径方向端部が磁石収容孔15の径方向外側を向く内面15dに接触する。
<ステータ30>
 ステータ30は、図1に示すように、ロータ10の径方向外側に位置する。ステータ30は、ロータ10を軸周り(θ方向)に囲み、ロータ10を中心軸J周りに回転させる。ステータ30は、コアバック部30aと、ティース部30bと、コイル30cと、インシュレータ(ボビン)30dと、を有する。
 コアバック部30aの形状は、シャフト5と同心の円筒状である。ティース部30bは、コアバック部30aの内側面からシャフト5に向かって延びる。ティース部30bは、複数設けられ、コアバック部30aの内側面の周方向に均等な間隔で配置される。コイル30cは、インシュレータ(ボビン)30dの周囲に設けられ、導電線が巻回されてなる。インシュレータ(ボビン)30dは、各ティース部30bに装着される。
<シャフト5>
 シャフト5は、図1に示すように、中心軸Jに沿って延びてロータ10を貫通する。シャフト5のリア側は、カバー部50に設けられたリア側ベアリング57を貫通して延びる。シャフト5のフロント側は、ロータ10から突出してハウジング40のフロント側ベアリング保持部43b内に配置されたフロント側ベアリング55に支持される。よって、シャフト5は、両端支持される。
<本実施形態の作用>
(磁石収容孔15に対する磁石17の位置決め)
 磁石17の位置決めについて説明する。図4に示すように、断面が台形状の突出部67がくさび形状の一対の空間孔部15cの両側に圧入されると、突出部67の周方向内面部67aから磁石17の周方向端部17bに対して垂直方向の力が作用する。また、突出部67の周方向外面部67bから内面対向部15d1に対して垂直方向の力が作用する。したがって、磁石17は、一対の空間孔部15cに圧入された突出部67と一体化されて磁石収容孔15に固定される。よって、磁石17は、磁石収容孔15に対して周方向及び径方向に位置決めされる。
<本実施形態の効果>
(1)  固定部63は、図5に示すように、ロータ10の周縁部に周方向に設けられた複数の磁石収容孔15を覆う円環状の板部65と、板部65のロータ10の軸方向端部に対向する面部65aから空間孔部15cの内側へ軸方向に突出して空間孔部15cに配置される突出部67と、を有する。磁石17は、突出部67と磁石収容孔15の内面15dに接触する。このため、磁石17は、磁石収容孔15に対して少なくとも周方向に位置決めすることができる。
(2)本実施形態では、突出部67は、磁石17が挿入された磁石収容孔15の一対の空間孔部15cの少なくともいずれか一方に圧入される。このため、磁石17は、空間孔部15cに圧入された突出部67から押されて、磁石17と突出部67とが接触した状態にすることができる。
(3)本実施形態では、突出部67は、空間孔部15cに圧入されている事により、突出部67の周方向内面部67aが磁石17の周方向端部17bに接触し、且つ突出部67の周方向外面部67bが空間孔部15cの内面対向部15d1に接触する。このため、磁石17は、突出部67を介して磁石収容孔15の少なくとも周方向に押されて、突出部67と接触して、磁石収容孔15に対して少なくとも周方向に位置決めされる。
(4)本実施形態では、空間孔部15cの形状は、径方向外側から径方向内側に向かって周方向の間隔が狭くなるくさび状であり、突出部67は、空間孔部15cに圧入される。このため、磁石17の周方向端部17bは、突出部67によって、突出部67が圧入された空間孔部15cと反対側の空間孔部15c側及び径方向内側に押される。よって、磁石17は、突出部67と磁石収容孔15の径方向の内面15dに接触して、磁石収容孔15に対して周方向及び径方向に位置決めされる。
(5)本実施形態では、突出部67は、軸方向に対して直交する方向の断面形状が、径方向外側から径方向内側に向かって周方向の間隔が狭くなるくさび状である。このため、突出部67がくさび状の空間孔部15cに圧入されると、突出部67は、くさび作用により磁石収容孔15に挿入された磁石17を少なくとも周方向へ押す。したがって、磁石17は、磁石収容孔15に対して周方向及び径方向に位置決めされた状態で固定される。
(6)本実施形態では、突出部67は周方向内面部67aと周方向外面部67bとを有して、断面形状が台形状である。このため、突出部67はくさび状である。よって、突出部67がくさび状の空間孔部15cに圧入されると、突出部67は、空間孔部15cのくさび形状と相まって、突出部67の周方向内面部67aが磁石17の周方向端部17bを少なくとも周方向へ押す。したがって、磁石17は、磁石収容孔15に対して周方向及び径方向に位置決めされた状態でより強固に固定される。
(7)本実施形態では、固定部63は、非磁性である。このため、ロータ10の駆動時において、ロータ10内を通る磁力線が固定部63に導かれて周方向に隣接する磁石17間において磁気短絡(磁束漏れ)が生じる虞を防止することができる。
[第1実施形態の変形例]
(磁石収容孔15の一対の空間孔部15cに圧入される突出部67の位置に関する変形例1)
 図6Aは、磁石収容孔15の周方向一方側に固定部63の突出部67が挿入されたロータ10の部分側面図である。図3に示した第1実施形態に係る磁石収容孔15では、磁石収容孔15の一対の空間孔部15cの両方に突出部67が配置される。しかしながら、この構造に限定されるものではなく、例えば、図6Aに示すように、突出部67は、周方向に隣接する磁石収容孔15の夫々の同一周方向側の空間孔部15cに圧入されてもよい(第1変形例)。
 第1変形例では、磁石収容孔15の一対の空間孔部15cの周方向一方側(左側)に、突出部67が圧入された場合を示したが、突出部67は一対の空間孔部15cの周方向他方側(右側)に圧入されてもよい。突出部67が、周方向に隣接する磁石収容孔15の同一周方向側の空間孔部15cに圧入されることで、複数の磁石17は、ロータ10に対して周方向に同一間隔を有して位置決めされる。よって、ロータ10の周方向において、複数の磁石17を均等に配置することができる。
(磁石収容孔15の一対の空間孔部15cに圧入される突出部67の位置に関する変形例2)
 図6Bは、周方向に隣接する磁石収容孔15の対向する空間孔部15cに突出部67が挿入されたロータ10の部分側面図である。図3に示した第1実施形態に係る磁石収容孔15では、磁石収容孔15の一対の空間孔部15cの両方に突出部67が配置される。しかしながら、この構造に限定されるものではなく、例えば、図6Bに示すように、突出部67は、周方向に隣接する磁石収容孔15の夫々の異なる周方向側の空間孔部15cに圧入されてもよい(第2変形例)。
 第2変形例では、突出部67は、周方向に隣接する磁石収容孔15の夫々の異なる周方向側の空間孔部15cに圧入される。このため、複数の磁石17は、周方向に隣接する2つの磁石17が対となり、この対となる2つの磁石17が他の対となる2つの磁石17に対して周方向に同一間隔を有して配置される。よって、対となる2つの磁石17がロータ10の周方向に均等に配置されることができる。
(突出部67の断面形状を変えた変形例)
 図4に示した第1実施形態に係る固定部63の突出部67の断面形状は、くさび状で且つ台形状である。しかしながら、この構造に限定されるものではなく、例えば、突出部67の断面形状は、円形状でもよい(第3変形例)。
 第3変形例では、突出部67は、軸方向に対して直交する方向の断面形状が円形状である。このため、突出部をくさび状の空間孔部15cに圧入すると、空間孔部15cのくさび作用により、突出部67は、磁石収容孔15に挿入された磁石17を少なくとも周方向へ押す。したがって、磁石17は、磁石収容孔15に対して周方向及び径方向に位置決めされる。また、突出部67の断面形状を円形状にすることで、突出部67の構造が簡素化される。
(突出部67の軸方向の形状を変えた変形例)
 図5に示した第1実施形態に係る固定部63の突出部67は、同一の断面形状を有して突出方向に延びる。しかしながら、この構造に限定されるものではない。例えば、突出部67は、突出方向の少なくとも先端部が突出方向先端側に進むに従って突出方向に対して直交する方向の断面が小さくなってもよい(第4変形例)。
 第4変形例では、突出部67は、突出方向の少なくとも先端部が突出方向先端側に進むに従って断面が小さくなる。このため、突出部67を空間孔部15c内に圧入する際に、突出67部の先端部を空間孔部15c内に容易に挿入することができる。
 以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。
  1 モータ
  5 シャフト
 10 ロータ
 13 貫通孔
 15 磁石収容孔
 15c 空間孔部
 15d 内面
 17 磁石
 17b 周方向端部
 30 ステータ
 40 ハウジング
 63 固定部
 65 板部
 65a 面部
 67 突出部
 67a 周方向内面部
 67b 周方向外面部
  J 中心軸

Claims (13)

  1.  軸方向に延びる中心軸に沿って配置されたシャフトと、
     前記シャフトに固定されるロータと、
     前記ロータの径方向外側に位置するステータと、
     前記ロータ及び前記ステータを収容するハウジングと、
    を有し、
     前記ロータは、
      軸方向に延びる円柱状であり、
      軸方向に延びて前記シャフトが挿入される貫通孔と、
      前記ロータの径方向内側の周縁部に周方向に間隔を有して設けられ、軸方向に貫通する複数の磁石収容孔と、
      複数の前記磁石収容孔の夫々に挿入される複数の磁石と、
      前記ロータの軸方向両側の軸方向端部に配置されて複数の前記磁石を前記ロータに固定する固定部と、
    を有し、
     前記磁石収容孔は、
      前記磁石収容孔内に挿入された前記磁石の周方向両側の周方向端部よりも周方向に延びる一対の空間孔部を有し、
     前記固定部は、
      前記ロータの前記周縁部に周方向に設けられた複数の前記磁石収容孔を覆う円環状の板部と、
      前記板部の前記ロータの前記軸方向端部に対向する面部から前記空間孔部の内側へ突出して前記空間孔部に配置される突出部と、
    を有し、
     前記磁石は、前記空間孔部に配置される前記突出部と前記磁石収容孔の内面に接触するモータ。
  2.  前記突出部は、前記板部の前記面部に周方向に間隔を有して複数設けられ、
     前記突出部は、前記磁石が挿入された前記磁石収容孔の一対の前記空間孔部の少なくともいずれか一方に圧入される
    請求項1に記載のモータ。
  3.  前記突出部は、前記磁石が挿入された前記磁石収容孔の一対の前記空間孔部のいずれか一方に圧入され、
     前記突出部は、周方向に隣接する前記磁石収容孔の夫々の同一周方向側の前記空間孔部に圧入される
    請求項2に記載のモータ。
  4.  前記突出部は、前記磁石が挿入された前記磁石収容孔の一対の前記空間孔部のいずれか一方に圧入され、
     前記突出部は、周方向に隣接する前記磁石収容孔の夫々の異なる周方向側の前記空間孔部に圧入される
    請求項2に記載のモータ。
  5.  前記磁石は、軸方向視において長方形状であって軸方向に延びる直方体状であり、
     前記突出部は、
      軸方向に対して直交する方向の断面において、前記磁石の周方向端部に沿って延びる周方向内面部と、
      前記空間孔部の前記内面のうち前記磁石の前記周方向端部に対向する内面対向部に沿って延びる周方向外面部と、
    を有し、
     前記突出部は、前記空間孔部に圧入されている事により、前記突出部の前記周方向内面部が前記磁石の前記周方向端部に接触し、且つ前記突出部の前記周方向外面部が前記空間孔部の前記内面対向部に接触する
    請求項2に記載のモータ。
  6.  前記空間孔部の形状は、軸方向視において、径方向外側から径方向内側に向かって周方向の間隔が狭くなるくさび状であり、
     前記磁石は、前記磁石の前記周方向端部がくさび状の前記空間孔部に圧入された前記突出部に接触するとともに、前記記磁石の径方向端部が前記磁石収容孔の径方向外側を向く前記内面に接触する
    請求項5に記載のモータ。
  7.  前記突出部は、軸方向に対して直交する方向の断面形状が、径方向外側から径方向内側に向かって周方向の間隔が狭くなるくさび状である
    請求項6に記載のモータ。
  8.  前記突出部は、軸方向に対して直交する方向の断面形状が円形状である
    請求項6に記載のモータ。
  9.  前記磁石は、軸方向視において長方形状であって軸方向に延びる直方体状であり、
     前記突出部は、前記周方向内面部と、前記周方向外面部と、を有して、軸方向に対して直交する方向の断面が台形状である
    請求項6に記載のモータ。
  10.  前記固定部は、非磁性である
    請求項1に記載のモータ。
  11.  前記固定部は、樹脂材料製である
    請求項10に記載のモータ。
  12.  前記固定部の前記板部から突出する複数の前記突出部の突出方向の長さは、同一又は相違する
    請求項2に記載のモータ。
  13.  前記突出部は、突出方向の少なくとも先端部が突出方向先端側に進むに従って突出方向に対して直交する方向の断面が小さくなる
    請求項2に記載のモータ。

     
PCT/JP2018/010576 2017-03-31 2018-03-16 モータ WO2018180634A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019509304A JPWO2018180634A1 (ja) 2017-03-31 2018-03-16 モータ
CN201880022990.5A CN110574258A (zh) 2017-03-31 2018-03-16 马达

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762479492P 2017-03-31 2017-03-31
US62/479,492 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180634A1 true WO2018180634A1 (ja) 2018-10-04

Family

ID=63675542

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/010593 WO2018180636A1 (ja) 2017-03-31 2018-03-16 モータ
PCT/JP2018/010576 WO2018180634A1 (ja) 2017-03-31 2018-03-16 モータ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010593 WO2018180636A1 (ja) 2017-03-31 2018-03-16 モータ

Country Status (3)

Country Link
JP (2) JPWO2018180634A1 (ja)
CN (2) CN110521086A (ja)
WO (2) WO2018180636A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220181946A1 (en) * 2019-04-11 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Motor and electric device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129207A1 (ja) * 2018-12-20 2020-06-25 三菱電機株式会社 回転子、電動機、送風機、空気調和装置および回転子の製造方法
WO2023053285A1 (ja) 2021-09-29 2023-04-06 株式会社 東芝 回転電機の回転子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139449U (ja) * 1989-04-25 1990-11-21
JPH09308149A (ja) * 1996-05-08 1997-11-28 Yaskawa Electric Corp 内磁形モータとその永久磁石固定方法
JP2007181254A (ja) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp 永久磁石埋込型モータの回転子
JP2013099038A (ja) * 2011-10-28 2013-05-20 Mitsuba Corp 電動機用ロータおよびブラシレスモータ
WO2014054688A1 (ja) * 2012-10-04 2014-04-10 三菱電機株式会社 永久磁石埋込型電動機
JP2015216786A (ja) * 2014-05-12 2015-12-03 富士電機株式会社 永久磁石埋め込み式回転電機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652086B2 (ja) * 2010-09-29 2015-01-14 アイシン・エィ・ダブリュ株式会社 回転電機用のロータに用いるロータコアの製造方法
WO2013077109A1 (ja) * 2011-11-25 2013-05-30 日産自動車株式会社 電動機
JP2013126330A (ja) * 2011-12-15 2013-06-24 Toyota Boshoku Corp 回転電機のコア及びその組み付け方法
DE112013001644T8 (de) * 2012-03-23 2015-02-19 Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. Motor und diesen verwendender elektrischer Kompressor
JP6019876B2 (ja) * 2012-07-23 2016-11-02 株式会社ジェイテクト 回転電機
JP5851365B2 (ja) * 2012-08-31 2016-02-03 日立オートモティブシステムズ株式会社 回転電機
JP5935615B2 (ja) * 2012-09-14 2016-06-15 株式会社デンソー 回転電機のロータ
JP6210711B2 (ja) * 2013-04-23 2017-10-11 株式会社日立産機システム 永久磁石電動機
CN203387314U (zh) * 2013-07-30 2014-01-08 中山大洋电机制造有限公司 一种电机转子结构
EP3032709B1 (en) * 2013-08-05 2018-11-07 Mitsubishi Electric Corporation Permanent magnet embedded type rotating electric machine
CN105490412B (zh) * 2014-08-06 2019-07-09 德昌电机(深圳)有限公司 电机转子及应用其的无刷直流电机
US10047826B2 (en) * 2015-02-18 2018-08-14 Nidec Motor Corporation Motor having ring for axially retaining stator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139449U (ja) * 1989-04-25 1990-11-21
JPH09308149A (ja) * 1996-05-08 1997-11-28 Yaskawa Electric Corp 内磁形モータとその永久磁石固定方法
JP2007181254A (ja) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp 永久磁石埋込型モータの回転子
JP2013099038A (ja) * 2011-10-28 2013-05-20 Mitsuba Corp 電動機用ロータおよびブラシレスモータ
WO2014054688A1 (ja) * 2012-10-04 2014-04-10 三菱電機株式会社 永久磁石埋込型電動機
JP2015216786A (ja) * 2014-05-12 2015-12-03 富士電機株式会社 永久磁石埋め込み式回転電機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220181946A1 (en) * 2019-04-11 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Motor and electric device
US12015326B2 (en) * 2019-04-11 2024-06-18 Panasonic Intellectual Property Management Co., Ltd. Motor and electric device

Also Published As

Publication number Publication date
JPWO2018180636A1 (ja) 2020-02-06
WO2018180636A1 (ja) 2018-10-04
JPWO2018180634A1 (ja) 2020-02-06
CN110521086A (zh) 2019-11-29
CN110574258A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
US10284064B2 (en) Brushless direct current motor and rotor thread thereof having fixing pins
JP4709132B2 (ja) 永久磁石埋込型モータの回転子及び送風機用電動機及び圧縮機用電動機
US10312755B2 (en) Motor
US10177632B2 (en) Brushless motor
JPWO2018043026A1 (ja) 表面磁石型モータ
WO2018180634A1 (ja) モータ
JP2017169402A (ja) 電動機用ロータ、およびブラシレスモータ
US20200251964A1 (en) Motor and air blowing device
JP2023515761A (ja) モータ
JP2015002572A (ja) 回転電機用ロータの製造治具および回転電機用ロータの製造方法
CN110971053B (zh) 电动机
US10958139B2 (en) Sensor magnet assembly and motor
KR20210036210A (ko) 로터 및 이를 포함하는 모터
WO2015114794A1 (ja) アキシャルギャップ型回転電機
JP2007295638A (ja) 電動モータ
JP2007129892A (ja) モータ及びモータの製造方法
JP2022152554A (ja) モータ
CN111384802A (zh) 旋转电机的转子
JP6788958B2 (ja) モータ
US20230006488A1 (en) Rotating electrical machine
WO2021200050A1 (ja) モータ
CN110797998B (zh) 转子和马达
US20240097520A1 (en) Axial flux motor
JP7131123B2 (ja) ロータ、およびモータ
CN114825709A (zh) 马达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509304

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776499

Country of ref document: EP

Kind code of ref document: A1