WO2014047801A1 - 一种sapo-34分子筛及其合成方法 - Google Patents

一种sapo-34分子筛及其合成方法 Download PDF

Info

Publication number
WO2014047801A1
WO2014047801A1 PCT/CN2012/081995 CN2012081995W WO2014047801A1 WO 2014047801 A1 WO2014047801 A1 WO 2014047801A1 CN 2012081995 W CN2012081995 W CN 2012081995W WO 2014047801 A1 WO2014047801 A1 WO 2014047801A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
sapo
silicon
mixture
dipa
Prior art date
Application number
PCT/CN2012/081995
Other languages
English (en)
French (fr)
Inventor
樊栋
田鹏
刘中民
苏雄
张莹
杨越
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MYPI2015700780A priority Critical patent/MY171426A/en
Priority to BR112015006461-2A priority patent/BR112015006461B1/pt
Priority to EP12885586.3A priority patent/EP2902362B1/en
Priority to DK12885586.3T priority patent/DK2902362T3/en
Priority to JP2015533392A priority patent/JP6006879B2/ja
Priority to AU2012391394A priority patent/AU2012391394B2/en
Priority to US14/428,830 priority patent/US9695057B2/en
Priority to IN2095DEN2015 priority patent/IN2015DN02095A/en
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to KR1020157010562A priority patent/KR101652209B1/ko
Priority to EA201590589A priority patent/EA026545B1/ru
Priority to PCT/CN2012/081995 priority patent/WO2014047801A1/zh
Priority to SG11201501834YA priority patent/SG11201501834YA/en
Publication of WO2014047801A1 publication Critical patent/WO2014047801A1/zh
Priority to ZA2015/01936A priority patent/ZA201501936B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/76Dehydrogenation
    • B01J2231/763Dehydrogenation of -CH-XH (X= O, NH/N, S) to -C=X or -CX triple bond species

Definitions

  • the invention belongs to the field of SAPO molecular sieves, and particularly relates to a SAPO-34 molecular sieve using diisopropylamine as a template and a hydrothermal synthesis method of the SAPO-34 molecular sieve. Background technique
  • SAPO-34 is a chabazite-type (CHA) molecular sieve with an eight-membered ring ellipsoidal cage and a three-dimensional cross-cell structure formed by a double six-membered ring stacked in an ABC manner.
  • the pore size is 0.38 ⁇ 0.38 nm, and the cage size is 1.0 ⁇ 0.67 nm.
  • SAPO-34 belongs to small pore molecular sieve. Its spatially symmetric group is R3m and belongs to the trigonal system (Phys. Chem., 1990, 94: 2730).
  • SAPO-34 is composed of four elements of Si, Al, P and O, and its composition can be varied within a certain range, generally n(Si) ⁇ n(P) ⁇ n(;Al).
  • SAPO-34 molecular sieves are generally hydrothermally synthesized using water as a solvent in a closed autoclave.
  • the synthetic components include an aluminum source, a silicon source, a phosphorus source, a structure directing agent, and deionized water.
  • silicon source with silica sol, active silica and orthosilicate, aluminum source with activated alumina, pseudoboehmite and alkoxy aluminum.
  • the ideal source of silicon and aluminum is silica sol and pseudo-thin water.
  • Aluminite; Phosphorus source generally uses 85% phosphoric acid.
  • the choice of structure-directing agent will have some influence on the microstructure, element composition and morphology of the synthetic molecular sieve, and then affect its catalytic performance.
  • Chinese patents ZL93112015 and ZL94110059 have separately disclosed diethylamine as a template or triple B.
  • the method of synthesizing SAPO-34 by using an amine and a diethylamine double template agent further reduces the synthesis cost.
  • Chinese patent CN1131845C discloses a method for synthesizing SAPO-34 molecular sieves with a multi-template agent containing diisopropylamine.
  • the maximum amount of single silicon dispersion allowed to exist is different, see J. Phys. Chem., 1994, 98, 9614).
  • the change in silicon coordination environment causes a large change in acid concentration and acid strength.
  • the acid strength has the following order: Si(lAl) > Si(2Al) > Si(3Al) > Si(4Al).
  • the anhydrous chemical composition of the molecular sieve can be expressed as: mDIPA. (Si x Al y P z )0 2 .
  • DIPA diisopropylamine, which is distributed in the molecular sieve cage and the channel;
  • the surface of the molecular sieve crystal is slightly rich in silicon, the ratio of silicon content on the outer surface (Si/ ⁇ +Al+P) to the bulk silicon content of the crystal is 1.48 1.01.
  • the molecular sieve X-ray diffraction analysis had the diffraction peaks shown in Table 2.
  • the surface of the crystal sieve crystal is slightly rich in silicon, and the ratio of the outer surface silicon content (Si/(Si+Al+P) molar ratio) to the bulk bulk silicon content of the crystal is 1.48 ⁇ 1.01, preferably 1.42 ⁇ 1.02, more preferably 1.36 ⁇ : 1.03, more preferably 1.33 ⁇ 1.03.
  • the increase in the amount of silicon from the core to the shell in the SAPO-34 molecular sieve crystal may be uniform or non-uniform.
  • the technical problem to be solved by the invention is to directly synthesize pure phase SAPO-34 molecular sieve under hydrothermal conditions by using diisopropylamine as a structure directing agent and using a phosphorus source, a silicon source and an aluminum source used in conventional molecular sieve synthesis as raw materials, and
  • the surface of the synthesized molecular sieve crystal is slightly rich in silicon, and the ratio of the outer surface silicon content (Si/(Si+Al+P) molar ratio) to the bulk bulk silicon content of the crystal is 1.48 ⁇ 1.01.
  • the inventors have found through experiments that by adding a small amount of a surfactant to the synthesis system, the surface silicon-rich degree of the synthesized SAPO-34 molecular sieve can be effectively reduced.
  • the present invention provides a hydrothermal synthesis process for the SAPO-34 molecular sieve.
  • the method for synthesizing the above SAPO-34 molecular sieve reported by the present invention is characterized in that the preparation process is as follows:
  • Si0 2 /Al 2 0 3 0.05 -1 .5;
  • step b) the gel mixture after the step a) is charged into the synthesis kettle, sealed, heated to 150 ⁇ 220 ° C and crystallized under autogenous pressure for 0.5 ⁇ 72h;
  • the solid product is centrifuged, washed with deionized water to neutrality, and dried to obtain SAPO-34 molecular sieve.
  • the structure directing agent DIPA is diisopropylamine
  • the surfactant BM is an alkyl ammonium halide.
  • the silicon source used in the step a) is a mixture of silicon sol, active silica, orthosilicate, metakaolin or a mixture of any of the following; aluminum source is aluminum salt, activated alumina, alkoxy a mixture of one or any of aluminum, metakaolin; the phosphorus source is one or a mixture of any of orthophosphoric acid, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, organic phosphide or phosphorus oxide.
  • the surfactant BM is an alkyl ammonium halide; preferably dodecyltrimethylammonium chloride, tetradecyltrimethylammonium chloride, cetyltrimethylammonium chloride, octadecyl Trimethylammonium chloride, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, cetyltrimethylammonium bromide, octadecyltrimethylammonium bromide Any one or a mixture of any of several.
  • the preferred range of the molar ratio of H 2 0/A1 2 0 3 in the initial gel mixture in the step a) is
  • a further preferred range of 26-120 is 31-100.
  • the preferred range of the molar ratio of SDA/A1 2 ⁇ 3 in the initial gel mixture in the step a) is
  • the step a) the molar ratio of CGP/A1 2 0 3 in the initial gel mixture preferably ranges from 0.001 to 0.03.
  • the crystallization is preferably carried out in the step b): the crystallization temperature is 170 to 210 ° C, and the crystallization time is 1 to 60 h; further preferred conditions are: the crystallization temperature is 180 to 210 ° C, and the crystallization time is 1 to 24 h. Further preferred conditions are: a crystallization temperature of 190 to 210 ° C, and a crystallization time of 1 to 12 h.
  • step b) The crystallization process in step b) can be carried out either statically or dynamically.
  • the synthesized SAPO-34 molecular sieve can be used as a catalyst for acid-catalyzed reaction after being calcined in air at 400 to 700 °C.
  • the synthesized SAPO-34 molecular sieve can be used as a catalyst for the conversion of an olefin to an olefin reaction after being calcined in air at 400 to 700 °C.
  • the present invention also relates to a catalyst for acid-catalyzed reaction which is obtained by calcining the above-mentioned SAPO-34 molecular sieve or SAPO-34 molecular sieve synthesized according to the above method in 400 to 70 CTC air.
  • the invention further relates to a catalyst for the conversion of an oxygen-containing compound to an olefin, which is obtained by calcining the above-mentioned SAPO-34 molecular sieve or the SAPO-34 molecular sieve synthesized according to the above method in air at 400 to 70 CTC.
  • the beneficial effects that can be produced by the present invention include:
  • the prepared SAPO-34 molecular sieve exhibits excellent catalytic performance in MTO catalytic reaction and ethanol dehydration reaction.
  • Example 1 is a scanning electron micrograph of a sample of Example 1.
  • DIPA Diisopropylamine
  • DTAB dodecyltrimethylammonium bromide
  • TTAB tetradecyltrimethylammonium bromide
  • Is CTAB cetyltrimethylammonium bromide
  • OTAB dodecyltrimethylammonium bromide
  • DTAC dodecyltrimethylammonium chloride
  • TTAC tetradecyltrimethylammonium chloride
  • Alkyltrimethylammonium chloride abbreviated as CTAC
  • OTAC octadecyltrimethylammonium chloride
  • XRF PANalytical X'Pert PRO X-ray diffractometer
  • Example 1
  • the synthesis kettle was heated to 200 Q C for 24 h. After the completion of the crystallization, the solid product was centrifuged, washed, and dried in air at 100 ° C to obtain 27.6 g of the original powder.
  • the sample was subjected to XRD analysis, and the results showed that the synthesized product had the characteristics of SAPO-34 structure, and the XRD data are shown in Table 2.
  • the scanning electron microscope results of the sample are shown in Figure 1.
  • the surface and bulk elemental compositions of the molecular sieve products were analyzed by XPS and XRF.
  • the ratio of the outer surface silicon content to the bulk silicon content is shown in Table 1.
  • Example 1 The bulk element of the sample is
  • the CHN elemental analysis of the original powder sample of Example 1 showed that the CN molar ratio was 6.01.
  • the CHN elemental analysis result was normalized to the inorganic element composition determined by XRF, and the anhydrous chemical composition of the molecular sieve raw powder was 0.08 DIPA. (Si 8 Al.. 49 P.. 4 .) O 2
  • the synthesized samples were analyzed by XRD.
  • the data results were close to those of Table 2, that is, the peak positions and shapes were the same.
  • the peak relative peak intensity fluctuated within ⁇ 10% according to the synthesis conditions, indicating that the synthesized product has the characteristics of SAPO-34 structure.
  • the surface and bulk elemental compositions of the molecular sieve products were analyzed by XPS and XRF.
  • the ratio of the outer surface silicon content to the bulk silicon content is shown in Table 1.
  • the CHN elemental analysis of the original powder samples of Examples 2-17 showed that the C/molar ratio fluctuated at 6.0 ⁇ 0.05.
  • the CHN elemental analysis results were normalized to the inorganic element composition determined by XRF, and the anhydrous chemical composition of the molecular sieve raw powder was
  • 0.04DIPA. (Si .. 3 .Al .. 45 P .. 25) O 2, 0.06DIPA. (Si .. 25 Al .. 4 .P .. 35) O 2, 0.20DIPA Sio.o9Alo.47Po. 44)0 2 , 0.10DIPA.(Si 0 . 15 Al 0 . 45 P 0 . 40 )O 2 , 0.03DIPA-(Si 0 . 10 Al 0 . 48 P 0 . 42 )O 2 , 0.05DIPA-(Si 0 . 13 Al 0 . 45 P 0 .
  • the CHN elemental analysis of the original powder sample of Example 18 showed a CN molar ratio of 5.95.
  • the CHN elemental analysis result was normalized to the inorganic element composition obtained by XRF measurement, and the anhydrous chemical composition of the molecular sieve raw powder was 0.08 DIPA. (Si.. 8 Al.. 49 P.. 43 )O 2 .
  • the CHN elemental analysis of the original powder sample of Example 18 showed a C/N molar ratio of 5.99.
  • the CHN elemental analysis result was normalized to the inorganic element composition determined by XRF, and the anhydrous chemical composition of the molecular sieve raw powder was 0.09 DIPA. (Si..s s Al.. 5 .P.. 42 )O 2 .
  • Example 21 3 g of the synthetic sample of Example 1-19 was placed in a plastic beaker, and 3 ml of a 40% hydrofluoric acid solution was added to dissolve the molecular sieve skeleton in an ice water bath, and then 15 ml of carbon tetrachloride was added to dissolve the organic matter therein. The organic matter was analyzed by GC-MS to show that the organic matter contained therein was diisopropylamine.
  • Example 1 The synthetic sample of Example 1 was taken, cured with an epoxy resin, and then polished on a polishing machine. Using a line scan mode of SEM-EDX, a crystal face close to the crystal core was selected for the core to the shell. Composition analysis. As a result, the Si/Al atomic ratio of the crystal core region was about 0.14, and the Si/Al atomic ratio near the surface region was about 0.17.
  • Example 11 The synthesized sample of Example 11 (SEM showed a rhombohedral morphology, grain size of 1 -5 ⁇ m), the epoxy resin was cured, and then polished on a polishing machine, using a line scan mode of SEM-EDX to select a crystal core close to the core. The crystal face is analyzed from the core to the shell. The results show that the Si/Al atomic ratio in the core region of the crystal is about 0.16, and the Si/Al atomic ratio near the surface region is about 0.22. Comparative Example 1 (no surfactant added)
  • Example 1 The specific proportion of ingredients, the batching process and the crystallization conditions were the same as in Example 1. No CTAB was added to the synthetic gel.
  • the XRD analysis of the synthesized samples showed that the XRD results of the synthesized products were close to those of Table 2, that is, the peak positions and shapes were the same, and the relative peak intensities of the peaks fluctuated within ⁇ 10%, indicating that the synthesized products have the characteristics of SAPO-34 structure.
  • the relative crystallinity of the sample was 90% as compared with the sample of Example 1 (the crystallinity of the sample of Example 1 was defined as 100%).
  • Relative crystallinity (Ii +1 2 + Is l OO W + 1 2 ' +1 3 ') , 1 2 and 1 3 are the strongest three diffraction peak heights in the XRD spectrum of the sample of Comparative Example 1, 1 1 2 ' and 1 3 ' are the strongest three diffraction peak heights in the XRD spectrum of the sample of Example 1. )
  • XPS and XRF were used to analyze the surface and bulk elemental composition of the molecular sieve product.
  • the outer surface silicon content and bulk silicon content ratio Si outer /Si body phase 2.2.
  • Example 23 The sample obtained in Example 1 was calcined at 600 ° C for 4 hours, and then tableted and crushed to 20 to 40 mesh. A 5.0 g sample was weighed and added to a kettle reactor containing 30 ml of ethanol to carry out an ethanol dehydration reaction. The reaction temperature was set at 150 ° C, and the reaction was carried out under stirring. The reaction results showed that the conversion of ethanol was 90%, and the selectivity of diethyl ether in the product was 90%.
  • Example 23 The reaction results showed that the conversion of ethanol was 90%, and the selectivity of diethyl ether in the product was 90%.
  • Example 1 The sample obtained in Example 1 was calcined at 600 ° C for 4 hours, and then tableted and crushed to 20 to 40 mesh.
  • the l.Og sample was weighed into a fixed bed reactor for MTO reaction evaluation. The reaction was carried out by activating nitrogen gas at 550 ° C for 1 hour and then cooling to 450 ° C. Methanol is carried by nitrogen, nitrogen flow rate is 40ml/mm, methanol weight space velocity is 2.0h - reaction product consists of Q-HT). The results are shown in Table 3. Table 3 sample methanol conversion to olefin' hydrocarbon reaction results
  • Comparative Example 1 The sample obtained in Comparative Example 1 was calcined at 600 ° C for 4 hours, and then tableted and crushed to 20 to 40 mesh. The l.Og sample was weighed into a fixed bed reactor for MTO reaction evaluation. The reaction was carried out by a nitrogen gas activation at 55 CTC for 1 hour, followed by cooling to 45 CTC. Methanol o

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

提供一种SAPO-34分子筛及其合成方法,该分子筛无水化学组成为:mDIPA·(SixAlyPz)O2,其中,DIPA为二异丙胺,分布于分子筛笼及孔道中;m为每摩尔(SixAlyPz)O2中二异丙胺的摩尔数,m=0.03-0.25;x、y、z分别表示Si、Al、P的摩尔分数,其范围分别是x=0.01-0.30,y=0.40-0.60,z=0.25-0.49,且x+y+z=1。该SAPO-34分子筛可应用在酸催化反应和含氧化合物转化制低碳烯烃反应中。

Description

一种 SAPO-34分子筛及其合成方法 技术领域
本发明属于 SAPO分子筛领域,具体涉及一种以二异丙胺为模板剂的 SAPO-34分子筛以及该 SAPO-34分子筛的水热合成方法。 背景技术
自从 1982年, 美国联碳公司申请的专利 US 4310440中, 成功的合成 出一系列的磷酸铝分子筛及其衍生物以来,磷酸铝分子筛及其杂原子取代 衍生物一直是材料界和催化领域的研究热点之一。 其中, 具有 CHA拓扑 结构的硅磷铝分子筛 SAPO-34, 由于其适宜的孔道结构和酸性质,在甲醇 制烯烃(MTO)反应中呈现出优异的催化性能(Applied Catalysis, 1988, 40: 316
SAPO-34是菱沸石型 (CHA)分子筛, 具有由双六元环按照 ABC方 式堆积而成的八元环椭球形笼和三维交叉孔道结构,孔径为 0.38x0.38nm, 笼大小 1.0x0.67nm, 属于小孔分子筛。 其空间对称群为 R3m, 属三方晶 系 ( Phys. Chem., 1990, 94: 2730)。 SAPO-34由 Si、 Al、 P和 O四种元素 构成, 其组成可在一定范围内变化, 一般 n(Si)<n(P)<n(;Al)。
SAPO-34分子筛一般采用水热合成法, 以水为溶剂,在密闭高压釜内 进行。 合成组分包括铝源、 硅源、 磷源、 结构导向剂和去离子水。 可选作 硅源的有硅溶胶、活性二氧化硅和正硅酸酯, 铝源有活性氧化铝、拟薄水 铝石和烷氧基铝, 理想的硅源与铝源是硅溶胶和拟薄水铝石; 磷源一般采 用 85%的磷酸。结构导向剂的选择对于合成分子筛的微结构、元素组成和 形貌会产生一定影响, 并进而影响其催化性能。 美国专利 US 4310440 和 US 4440871中报道了多种 SAPO分子筛的制备, 其公布的合成 SAPO-34 的模板剂四乙基氢氧化铵、异丙胺、 以及四乙基氢氧化铵及二正丙胺的混 合物。中国专利 ZL93112230公开了以三乙胺为模板剂合成 SAPO-34的方 法, 该模板剂价格低廉, 可以降低 SAPO-34的合成成本。 此后, 中国专 利 ZL93112015和 ZL94110059又分别公开了以二乙胺为模板剂或以三乙 胺和二乙胺双模板剂合成 SAPO-34的方法, 进一步降低了合成成本。 中国专利 CN1131845C 公布了一种含二异丙胺的多模板剂合成 SAPO-34分子筛的方法。国际专利 WO 03/040037A1中报道了一种利用固 体前驱体通过干法合成 SAPO分子筛的方法,其结构导向剂范围涵盖了二 异丙胺, 但是其产品模糊的表述为包含 SAPO-34分子筛的一系列 SAPO 分子筛。 值得注意的是, 以上文献报道中模板剂范围虽然都包括二异丙 胺, 但在实施例中都未这样做。
通常 SAPO分子筛中随着硅含量的增加,硅的配位环境也会从最初简 单 Si(4Al)过渡为多种硅环境共存 Si CnAl) (n=0-4) (不同的 SAPO分子筛 其骨架中允许存在的最大单硅分散量不同, 见 J. Phys. Chem. , 1994, 98, 9614)。 硅配位环境变化导致其酸浓度和酸强度发生较大的变化, 酸强度 具有如下顺序 Si(lAl) >Si(2Al)> Si(3Al)> Si(4Al)。 另一方面, 随着 SAPO 分子筛骨架中硅岛的出现, 每个硅原子对应产生的酸中心量降低(Si(4Al) 时为 1, 多种硅环境时小于 1 ), 也就是说, 酸密度降低。 可以设想, 作为 酸催化剂的 SAPO分子筛,如果分子筛晶粒内硅的分布不均匀,其酸性质 也将是不均匀的, 那么必然对分子筛的催化性能产生重要的影响。分子筛 晶粒如果表面富硅,则说明靠近晶粒外壳区域的硅配位环境比内部要相对 复杂。 Weckhuysen 等曾经报道甲醇制烯烃反应 (MT J)中, 反应首先在 SAPO-34晶粒的近外表面区域进行,随着反应的进行,较大的积碳物质逐 渐形成并堵塞孔道, 使得晶粒内部的产物扩散难度增加 ( Chemistry - A European Journal, 2008, 14, 11320-11327; J. Catal., 2009, 264, 77-87)。 这 同时也说明分子筛晶粒外表面的酸性环境对催化反应尤其重要。寻找一种 有效控制分子筛表面富硅程度的方法具有重要的意义。
发明内容
本发明的目的在于提供一种以二异丙胺为模板剂的 SAPO-34分子筛。 该分子筛无水化学组成可表示为: mDIPA. (SixAlyPz)02。其中, DIPA为二 异丙胺, 分布于分子筛笼及孔道中; m 为每摩尔 (SlxAlyPz)02中二异丙胺 模板剂的摩尔数, m=0.03〜0.25 ; x、 y、 z分别表示 Si、 Al、 P的摩尔分 数, 其范围分别是 x=0.01~0.30, y=0.40~0.60, z=0.25~0.49, 且 x+y+z=l, 该分子筛晶体表面轻微富硅, 外表面硅含量 (Si/^+Al+P)摩尔比)与晶体 的体相硅含量之比在 1 .48 1.01。
该分子筛 X射线衍射分析具有表 2所示的衍射峰。 该分子筛晶体表面 轻微富硅, 外表面硅含量 (Si/(Si+Al+P)摩尔比)与晶体的体相硅含量之比 在 1 .48〜1.01, 优选 1.42〜1.02, 更优选 1.36〜: 1 .03, 更优选 1 .33〜1.03。硅在 SAPO-34分子筛晶体中从核到壳含量递增可以是均匀的,也可以是不均匀 的。
本发明的又一目的在于提供一种上述 SAPO-34分子筛的合成方法。 本发明的又一目的在于提供一种通过上述方法合成 SAPO-34分子筛及 由其制备的酸催化反应催化剂或含氧化合物转化制烯烃反应催化剂。
本发明所要解决的技术问题是直接以二异丙胺为结构导向剂,以常规 分子筛合成所采用的磷源、 硅源和铝源为原料, 在水热条件下合成纯相 SAPO-34 分子筛, 且所合成的分子筛晶体表面轻微富硅, 外表面硅含量 ( Si/(Si+Al+P)摩尔比)与晶体的体相硅含量之比在 1 .48〜1.01。本发明人通 过实验发现, 通过向合成体系中添加少量的表面活性剂, 可有效降低合成 的 SAPO-34分子筛的表面富硅程度。
本发明提供该 SAPO-34分子筛的水热合成方法。
本发明报道的上述 SAPO-34 分子筛的合成方法, 该方法的特点在于 制备过程如下:
a) 将硅源、 铝源、 磷源、 表面活性剂 BM、 去离子水和结构导向剂 DIPA混合, 形成具有如下摩尔配比的初始凝胶混合物-
Si02/Al203 =0.05 - 1 .5;
Ρ2Ο5/Α12Ο3 = 0.5 ~ 1 .5;
H20/A1203 = 16 - 150;
Figure imgf000004_0001
ΒΜ/ Α1203 = 0.001-0.05;
b) 将步骤 a ) 处理后的凝胶混合物装入合成釜, 密闭, 升温到 150〜220 °C在自生压力下晶化 0.5〜72h;
c) 待晶化完全后, 固体产物经离心分离, 用去离子水洗涤至中性, 干燥后即得到 SAPO-34分子筛。 其中, 所述结构导向剂 DIPA为二异丙胺; 所述表面活性剂 BM为烷 基卤化铵。
所述步骤 a) 中所用的硅源为硅溶胶、 活性二氧化硅、 正硅酸酯、 偏 高岭土中的一种或任意几种的混合物; 铝源为铝盐、活性氧化铝、烷氧基 铝、 偏高岭土中的一种或任意几种的混合物; 磷源为正磷酸、 磷酸氢铵、 磷酸二氢铵、 有机磷化物或磷氧化物中的一种或任意几种的混合物。
所述表面活性剂 BM为烷基卤化铵;优选十二烷基三甲基氯化铵、十 四烷基三甲基氯化铵、 十六烷基三甲基氯化铵、 十八烷基三甲基氯化铵、 十二烷基三甲基溴化铵、十四烷基三甲基溴化铵、十六烷基三甲基溴化铵、 十八烷基三甲基溴化铵中的任意一种或任意几种的混合物。
所述步骤 a ) 初始凝胶混合物中 H20/A1203的摩尔比优选范围为
26-120, 进一步的优选范围为 31-100。
所述步骤 a ) 初始凝胶混合物中 SDA/A123的摩尔比优选范围为
3.0-5.0。
所述步骤 a) 初始凝胶混合物中 CGP/A1203的摩尔比优选范围为 0.001-0.03。
步骤 b)中的晶化优选条件为:晶化温度 170~210°C,晶化时间 1 ~ 60h; 进一步的优选条件为: 晶化温度为 180~210°C, 晶化时间为 l ~ 24h; 再进 一步的优选条件为: 晶化温度为 190〜210°C, 晶化时间为 l ~ 12h。
步骤 b)中的晶化过程可以在静态进行, 也可以在动态进行。
合成的 SAPO-34分子筛经 400 ~ 700°C空气中焙烧后, 可用做酸催化 反应的催化剂。
合成的 SAPO-34分子筛经 400 ~ 700°C空气中焙烧后, 可用做含氧化 合物转化制'烯烃反应的催化剂。
本发明还涉及一种酸催化反应的催化剂, 它是通过上述的 SAPO-34 分子筛或根据上述方法合成的 SAPO-34分子筛经 400 ~ 70CTC空气中焙烧 得到。
本发明还涉及一种含氧化合物转化制烯烃反应的催化剂,它是通过上 述的 SAPO-34分子筛或根据上述方法合成的 SAPO-34分子筛经 400 〜 70CTC空气中焙烧得到。 本发明能产生的有益效果包括:
( 1 ) 获得一种以二异丙胺为模板剂的 SAPO-34分子筛,且具有晶粒表 面轻微富硅的特点, 外表面硅含量 (摩尔比 Si/(Si+Al+P))与晶体 的体相硅含量之比在 1.48 1 .01
(2 ) 制备的 SAPO-34分子筛在 MTO催化反应和乙醇脱水反应中表现 出优良的催化性能。
附图说明
图 1为实施例 1样品的扫描电镜照片 具体实施方式
下面通过实施例详述本发明, 但本发明并不局限于这些实施例。
实施例中, 下列物质采用英文縮写简称:
二异丙胺, 简称为 DIPA; 十二烷基三甲基溴化铵, 简称为 DTAB ; 十四烷基三甲基溴化铵, 简称为 TTAB ; 十六烷基三甲基溴化铵, 简称为 CTAB; 十八烷基三甲基溴化铵, 简称为 OTAB ; 十二烷基三甲基氯化铵, 简称为 DTAC ; 十四烷基三甲基氯化铵, 简称为 TTAC ; 十六烷基三甲基 氯化铵, 简称为 CTAC; 十八烷基三甲基氯化铵, 简称为 OTAC
实施例中体相元素组成测定采用体相元素组成采用 PANalytical X'Pert PRO X-ray diffractometer (XRF)测定, Cu靶, Κα辐射源(λ=0.15418 电压 40 KV, 电流 100 mA
实施例中表面元素组成测定采用 X 射线光电子能谱仪 Thermo ESCALAB 250X1进行测定(以单色化 ΑΙΚα为激发源),以样品表面 A1203 的 A12p=74.7eV为内标来校正样品表面的荷电。 实施例 1
配料用量和晶化条件见表 1。具体配料过程如下, 将 14.06g拟薄水铝 石(A1203质量百分含量 72.5% )和 90g去离子水混合搅匀, 然后将 23.0g 磷酸 (H3P04质量百分含量 85%) 滴加进入, 搅拌均匀, 然后加入 6.4g 硅溶胶( Si〇2质量百分含量 30% )和 1.09g十六烷基三甲基溴化铵( CTAB ), 最后将 30.4g二异丙胺 (简称 DIPA, 质量百分含量 99%) 加入该混合物 后,将凝胶转移到不锈钢反应釜中。合成体系各组分的摩尔配比为 3.0DIPA: 0.30SIO2: 1 A12O3: 1 P2O5:0.03CTAB : 50H2O
将合成釜升温到 200QC动态下晶化 24h。 晶化结束后, 将固体产物离 心, 洗涤, 在 100 °C空气中烘干后, 得原粉 27.6g。 样品做 XRD分析, 结 果表明合成产物具有 SAPO-34结构的特征, XRD数据见表 2。 样品的扫 描电镜结果见图 1
采用 XPS和 XRF分析分子筛产品的表面和体相元素组成, 外表面硅 含量和体相硅含量比值列于表 1。 实施例 1 样品的体相元素为
Figure imgf000007_0001
对实施例 1原粉样品进行 CHN元素分析, 显示 C N摩尔比为 6.01 将 CHN元素分析结果与 XRF测定得到的无机元素组成归一化,得到分子 筛原粉的无水化学组成为 0.08DIPA.(Si。.。8Al。.49P。.4。)O2
对原粉样品进行 13C MAS NMR分析,只发现属于 DIPA的碳共振峰, 而没有观察到属于 CTAB的特征碳共振峰。 这些结果说明 CTAB没有进 入到最终的合成产品中。
表 1 分子筛合成配料及晶化条件表 *
Figure imgf000007_0002
0.3mol 氯化铝 正磷酸 正硅酸 12mol DTAC0.003 200°C 24h 1.25 0.1 mol 0.12mol 乙酯 mol
0.08mol
0.033mo 拟薄水 正磷酸 硅溶胶 3.1mol OTAC 200°C 24h 1.33 1 铝石 0.1 0.09mol 0.03mol 0.004mol
mol
O.OSmol 偏高岭 正磷酸 硅溶胶 lOmol TTAC 200°C 24h 1.36 土 0.1 0.15mol 0.05mol 0.002mol
mol
0.26mol 拟薄水 磷酸氢 硅溶胶 6.6mol OTAC 220°C 0.5h 1.03 铝石 0.1 胺 0.06mol O.OOlmol
mol O. l Omol
0.2mol 拟薄水 磷酸氢 偏高岭 5.2mol CTAC 200°C 24h 1.12 铝石 0.1 二胺 土 0.0009mol
mol O. l Omol 0.06mol
0.2mol 硫酸 S 磷酸氢 硅溶胶 8.8mol DTAC 200°C 18h 1.18
0.1 mol 二胺 0.07mol 0.002mol
0.15mol
0.3mol 拟薄水 磷酸氢 硅溶胶 6.5mol CTAB 180°C 24h 1.27 铝石 0.1 二胺 0.12mol 0.002mol
mol 0.12mol
0.4mol 拟薄水 磷酸酐 偏高岭 12mol DTAB 210°C lh 1.22 铝石 0.1 0.13mol 土 0.003mol
mol 0.03mol
0.3 Stool 拟薄水 正磷酸 硅溶胶 4.5mol OTAB 190°C 12h 1.45 铝石 0.1 O. l Omol 0.03mol 0.004mol
mol
0.3 Stool 硝酸铝 正磷酸 正硅酸 6.5mol TTAB 150°C 72h 1.40
0.1 mol O. l Omol 甲酯 0.003mol
0.03mol
0.30mol 拟薄水 硅溶胶 6.5mol CTAB 210°C 5h 1.33 铝石 0.1 磷 0.03mol 0.003mol
mol O. l Omol
0.35mol 拟薄水 硅溶胶 6.5mol DTAB 170°C 60h 1.12 铝石 0.1 磷 0.03mol 0.003mol
mol O. l Omol 8S I £92809 οε
160 ιιοςς ι ςεζ96ς 6Z
"■I 6£\£9 l 8Z
Figure imgf000009_0001
S68LPS 9Z
ιο ι 6£869Ί ςζ
Figure imgf000009_0002
ίΥί 8058ΑΊ saris iZ
£88081 zz
Figure imgf000009_0003
6LZ 8W6'I oz
νς 61
8ΐ ε 6ZLZZ 9 96£ 81
L9Z 6S 9£ L\
££■9 910197 91
51
LP\ 6Z P\
Z\
6οτ Z\
\Li ^£Z£ Π
■SI 01
Figure imgf000009_0004
I860 £Z 8
609 "066·£ L
S PS 9
Figure imgf000009_0005
6^8651 P
π ει 91 9 88£ΐ ΐ £
Z661 689169 L L'Zl z
001 Λ9Ζ6Ζ6 11196 I
Figure imgf000009_0006
畓 crax
Figure imgf000009_0007
^ ¾ z挲
Figure imgf000009_0008
S66T80/Z10ZN3/X3d I08^o/ OZ OAV 实施例 2-17
具体配料比例和晶化条件见表 1, 具体配料过程同实施例 1。
合成样品做 XRD分析,数据结果与表 2接近, 即峰位置和形状相同, 依合成条件的变化峰相对峰强度在 ±10%范围内波动, 表明合成产物具有 SAPO-34结构的特征。
采用 XPS和 XRF分析分子筛产品的表面和体相元素组成, 外表面硅 含量和体相硅含量比值列于表 1。
对实施例 2-17 原粉样品进行 CHN元素分析, 显示 C/ 摩尔比在 6.0±0.05波动。将 CHN元素分析结果与 XRF测定得到的无机元素组成归 一化,得到分子筛原粉的无水化学组成依次为
Figure imgf000010_0001
0.04DIPA.(Si。.3。Al。.45P。.25)O2, 0.06DIPA.(Si。.25Al。.4。P。.35)O2, 0.20DIPA Sio.o9Alo.47Po.44)02, 0.10DIPA.(Si0.15Al0.45P0.40)O2, 0.03DIPA-(Si0.10Al0.48P0.42)O2, 0.05DIPA-(Si0.13Al0.45P0.42)O2, 0.07DIPA Sio.ioAlo.49Po.4i) 2, 0.07DIPA-(Si0.15Al 50P0.35)〇2, 0.08DIPA Sio.o7Alo.6oPo.33) 2, 0.08DIPA-(Si 0SAl0.49P0.43)O2, 0.12DIPA-(Si 09Al0.49P 42)O2, 0.09DIPA-(Si 09Al0.47P0.44)O2, 0.10DIPA Sio.ioAlo.5oPo.4o) 2 o
对实施例 2-17原粉样品进行 13C MAS NM 分析, 只发现属于 DIPA 的碳共振峰, 而没有观察到属于所加入的表面活性剂 BM 的特征碳共振 峰。 这些结果说明所加入的表面活性剂 BM没有进入到最终的合成产品 中。 实施例 18
具体配料比例和晶化条件见表 1, 具体配料过程同实施例 1。 只将表 面活性剂 BM换成 CTAB与 OTAB的混合, 另外, 合成过程在静态进行。 合成样品做 XRD分析, 结果表明合成产物 XRD结果与表 2接近, 即峰 位置和形状相同, 各峰相对峰强度在 ±10%范围内波动, 表明合成产物具 有 SAPO-34结构的特征。
采用 XPS和 XRF分析分子筛产品的表面和体相元素组成, 外表面硅 含量和体相硅含量比值列于表 1。
对实施例 18原粉样品进行 CHN元素分析, 显示 C N摩尔比为 5.95。 将 CHN元素分析结果与 XRF测定得到的无机元素组成归一化,得到分子 筛原粉的无水化学组成为 0.08DIPA.(Si。.。8Al。.49P。.43)O2
对原粉样品进行 13C MAS NMR分析,只发现属于 DIPA的碳共振峰, 而没有观察到属于 CTAB和 OTAB的特征碳共振峰。这些结果说明 CTAB 和 OTAB没有进入到最终的合成产品中。 实施例 19
具体配料比例和晶化条件见表 1, 具体配料过程同实施例 1。 只将表 面活性剂换成 CTAB与 CTAC和 DTAB的混合,另外合成过程在静态进行。 合成样品做 X D分析, 结果表明合成产物 XRD结果与表 2接近, 即峰 位置和形状相同, 各峰相对峰强度在 ±10%范围内波动, 表明合成产物具 有 SAPO-34结构的特征。
对实施例 18原粉样品进行 CHN元素分析, 显示 C/N摩尔比为 5.99。 将 CHN元素分析结果与 XRF测定得到的无机元素组成归一化,得到分子 筛原粉的无水化学组成为 0.09DIPA.(Si。.。sAl。.5。P。.42)O2
对原粉样品进行 13C MAS NMR分析, 只发现属于 DIPA的碳共振峰, 而 没有观察到属于 CTAB, CTAC和 DTAB的特征碳共振峰。 这些结果说明 CTAB, CTAC和 DTAB没有进入到最终的合成产品中。 实施例 20
分别取实施例 1-19的合成样品 3g, 放入塑料烧杯中, 于冰水浴条件 下加入 3ml 40%的氢氟酸溶液溶解分子筛骨架, 然后加入 15ml四氯化碳 溶解其中的有机物。 将有机物用 GC-MS分析组成显示其中所含的有机物 均为二异丙胺。 实施例 21
取实施例 1的合成样品, 采用环氧树脂固化, 然后在抛光机上抛光, 利用 SEM-EDX的线扫描模式,选取接近晶体核心的晶面进行从核向壳的 组成分析。 结果显示, 晶体内核区域的 Si/Al原子比约为 0.14, 靠近表面 区域的 Si/Al原子比约为 0.17。
取实施例 11的合成样品(SEM显示为菱方体形貌,晶粒大小 1 -5μιη), 环氧树脂固化, 然后在抛光机上抛光, 利用 SEM-EDX的线扫描模式, 选 取接近晶体核心的晶面进行从核向壳的组成分析。结果显示, 晶体内核区 域的 Si/Al原子比约为 0.16, 靠近表面区域的 Si/Al原子比约为 0.22。 对比例 1 (无表面活性剂添加)
具体配料比例、 配料过程和晶化条件同实施例 1, 合成凝胶中不再添 加 CTAB。 合成样品做 XRD分析, 结果表明合成产物 XRD结果与表 2 接近, 即峰位置和形状相同, 各峰相对峰强度在 ±10%范围内波动, 表明 合成产物具有 SAPO-34结构的特征。 样品的相对结晶度与实施例 1样品 相比为 90% (实施例 1样品结晶度定义为 100%)。
相对结晶度 =(Ii +12 + Is l OO W + 12' +13') 、 12禾口 13为对比例 1样 品 XRD谱图中最强的三个衍射峰高 , 1 、 12 ' 和 13 ' 为实施例 1 样品 XRD谱图中最强的三个衍射峰高。 )
采用 XPS和 XRF分析分子筛产品的表面和体相元素组成, 外表面硅 含量和体相硅含量比值 Si 外麵 /Si 体相 =2.2。
实施例 22
将实施例 1得到的样品于 600°C下通入空气焙烧 4小时, 然后压片、 破碎至 20〜40目。 称取 5.0g样品加入装有 30ml乙醇的釜式反应器, 进行乙醇脱水反应。 反应温度设定在 150 °C, 反应在搅拌状态下进行。 反应结果显示, 乙醇转化率可达 90% , 产物中乙醚选择性为 90%。 实施例 23
将实施例 1得到的样品于 600°C下通入空气焙烧 4小时,然后压片、 破碎至 20〜40目。 称取 l .Og样品装入固定床反应器, 进行 MTO反应 评价。 在 550 °C下通氮气活化 1小时, 然后降温至 450 °C进行反应。 甲醇 由氮气携带, 氮气流速为 40ml/mm, 甲醇重量空速 2.0h— 反应产物由 Q-HT) 。 结果示于表 3。 表 3样品的甲醇转化制烯'烃反应结果
寿命 选择性(质量%) *
样品
(mill) CH4 C2H C2H6 C3H6 C3H8 C4+ C5+ C2H4+C3H0 实施
206 1.2 51.0 0.64 37.2 0.64 7.3 1.2 88.2 例 1
* 100%甲醇转化率时最高 (乙烯 +丙烯)选择性 对比例 00
2
O
将对比例 1得到的样品于 600°C下通入空气焙烧 4小时, 然后压片、 破碎至 20〜40目。 称取 l .Og样品装入固定床反应器, 进行 MTO反应 评价。 在 55CTC下通氮气活化 1小时, 然后降温至 45CTC进行反应。 甲醇 o
由氮气携带, 氮气流速为 40ml/mm, 甲醇重量空速 2.0h— 反应产物由在 线气相色谱进行分析 (Varian3800, FID检测器, 毛细管柱 PoraPLOT Q-HT) 。 结果示于表 4。 表 4样品的甲醇转化制烯 '烃反应结果
寿命 选择性(质量%) *
样品
(min) CH4 C2H C2H6 C3H6 C3H8 C4+ c5 + C2H +C3H6 实施
106 1.37 41.14 0.50 3.97 80.6 例 1
* 100%甲醇转化率时最高 (乙烯+丙烯)选择性

Claims

权 利 要 求
1. 一种 SAPO-34分子筛, 其特征在于, 该分子筛无水化学组成表示为- mDIPA- (SixAlyPz)02
其中, DIPA为二异丙胺, 分布于分子筛笼及孔道中; m为每摩尔
(SixAlyPz)02中二异丙胺模板剂的摩尔数, m=0.03〜0.25 ;
x、 y、 z分别表示 Si、 Al、 P的摩尔分数, 其范围分别是 x=0.01~0.30, y=0.40〜0.60, z=0.25~0.49, 且 x+y+z=l。
2. 根据权利要求 1所述的 SAPO-34分子筛, 其特征在于, X射线衍射 图谱在以下位置具有衍射峰:
No. 2Θ
1 9.5177
2 12.7987
3 14. 1388
4 15.9829
5 18. 1242
6 20.5413
7 22.278
8 23.0981
9 25.3853
10 25.7835
11 27.5448
12 28.5382
13 29.5454
14 30.4947
15 31.3812
16 34.3501
17 36.4789
18 39.6546
19 43.4168
20 47.4822
21 49. 1405
22 50.4542
23 51. 1735
24 53.0514
25 53.9912
26 54.7895
27 55.7846
28 56.4017
29 59.6235
30 60.8263 。
3. 根据权利要求 1所述的 SAPO-34分子筛, 其特征在于, 分子筛晶体表 面轻微富硅,外表面硅含量(Si/(Si+Al+P)摩尔比:)与晶体的体相硅含量 之比在 1 .48~1.01。
4. 根据权利要求 1所述的 SAPO-34分子筛, 其特征在于, 分子筛晶粒外 表面硅含量与晶体的体相硅含量之比在 1.42~1 .02, 优选为 1.36~1.03, 更优选为 1.33~1.03。
5. 根据权利要求 1所述的 SAPO-34分子筛, 其特征在于,硅在 SAPO-34 分子筛晶体中从核到壳含量递增是均匀的。
6. 根据权利要求 1所述的 SAPO-34分子筛, 其特征在于,硅在 SAPO-34 分子筛晶体中从核到壳含量递增是不均匀的。
7. 一种权利要求 1所述 SAPO-34分子筛的合成方法, 其特征在于, 合成 步骤如下:
a) 将硅源、 铝源、 磷源、 表面活性剂 BM、 去离子水和结构导向剂 DIPA 混合, 形成具有如下摩尔配比的初始凝胶混合物:
Si02/Al203 =0.05 - 1.5;
P205/A1203 = 0.5 - 1.5;
H20/A1203 = 16 - 150;
DIPA/Al2O3 = 2.0〜5.9;
BMJ A1203 = 0.001-0.05;
b) 将步骤 a)处理后的凝胶混合物装入合成釜,密闭,升温到 150~22(TC 在自生压力下晶化 0.5~72小时;
c )待晶化完全后,固体产物经分离、洗搽、干燥后即得到所述 SAPO-34 分子筛;
其中, 所述结构导向剂 DIPA为二异丙胺; 所述表面活性剂 BM为烷 基卤化铵。
8. 按照权利要求 7所述的方法, 其特征在于, 所述步骤 a)中的硅源为硅 溶胶、 活性二氧化硅、 正硅酸酯、 偏高岭土中的一种或任意几种的混 合物; 铝源为铝盐、 活性氧化铝、 烷氧基铝、 偏高岭土中的一种或任 意几种的混合物; 磷源为正磷酸、 磷酸氢铵、 磷酸二氢铵、 有机磷化 物或磷氧化物中的一种或任意几种的混合物。
9. 按照权利要求 7所述的方法, 其特征在于, 所述步骤 a) 初始凝胶混合 物中的表面活性剂 BM为十二烷基三甲基氯化铵、 十四烷基三甲基氯 化铵、 十六烷基三甲基氯化铵、 十八烷基三甲基氯化铵、 十二烷基三 甲基溴化铵、 十四烷基三甲基溴化铵、 十六烷基三甲基溴化铵、 十八 烷基三甲基溴化铵中的任意一种或任意几种的混合物。
10.按照权利要求 7所述的方法, 其特征在于, 所述步骤 a) 初始凝胶混合 物中 H20/A1203的摩尔比为 26-120, 优选为 31-100。
11.按照权利要求 7所述的方法, 其特征在于, 所述步骤 a) 初始凝胶混合 物中 DIPA/A1203的摩尔比为 3.0-5.0。
12.按照权利要求 7所述的方法, 其特征在于, 所述步骤 a) 初始凝胶混合 物中 BM/A123的摩尔比为 0.001-0.03。
13.按照权利要求 3所述的方法, 其特征在于, 所述步骤 b)中的晶化温度 为 180〜210°C, 优选为 190〜210°C, 晶化时间为 1〜24小时, 优选为 1 ~ 12小时。
14.按照权利要求 7所述的方法, 其特征在于, 所述步骤 b) 中的晶化过 程在静态进行。
15.按照权利要求 7所述的方法, 其特征在于, 所述步骤 b)中的晶化过程 在动态进行。
16.—种酸催化反应的催化剂, 其特征在于, 根据权利要求 1-6任一项所 述的 SAPO-34 分子筛或根据权利要求 7-14 所述任一方法合成的 SAPO-34分子筛经 400〜 700°C空气中焙烧得到。
17.—种含氧化合物转化制烯烃反应的催化剂, 其特征在于, 根据权利要 求 1-6任一项所述的 SAPO-34分子筛或根据权利要求 7-14所述任一方 法合成的 SAPO-34分子筛经 400 ~ 700°C空气中焙烧得到。
PCT/CN2012/081995 2012-09-26 2012-09-26 一种sapo-34分子筛及其合成方法 WO2014047801A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US14/428,830 US9695057B2 (en) 2012-09-26 2012-09-26 SAPO-34 molecular sieve and method for preparing the same
EP12885586.3A EP2902362B1 (en) 2012-09-26 2012-09-26 Sapo-34 molecular sieve and synthesis method thereof
DK12885586.3T DK2902362T3 (en) 2012-09-26 2012-09-26 SAPO-34 MOLECULE AND SYNTHESIS PROCEDURES
JP2015533392A JP6006879B2 (ja) 2012-09-26 2012-09-26 Sapo−34分子篩及びその合成方法
AU2012391394A AU2012391394B2 (en) 2012-09-26 2012-09-26 SAPO-34 molecular sieve and synthesis method thereof
MYPI2015700780A MY171426A (en) 2012-09-26 2012-09-26 Sapo-34 molecular sieve and sythesis method thereof
IN2095DEN2015 IN2015DN02095A (zh) 2012-09-26 2012-09-26
BR112015006461-2A BR112015006461B1 (pt) 2012-09-26 2012-09-26 Peneira molecular sapo-34, método para preparar a mesma, catalisador para reação catalisada por ácido e catalisador para uma reação de oxigenado a olefinas
KR1020157010562A KR101652209B1 (ko) 2012-09-26 2012-09-26 Sapo-34 분자체 및 그 합성 방법
EA201590589A EA026545B1 (ru) 2012-09-26 2012-09-26 Молекулярное сито sapo-34 и способ его получения
PCT/CN2012/081995 WO2014047801A1 (zh) 2012-09-26 2012-09-26 一种sapo-34分子筛及其合成方法
SG11201501834YA SG11201501834YA (en) 2012-09-26 2012-09-26 Sapo-34 molecular sieve and synthesis method thereof
ZA2015/01936A ZA201501936B (en) 2012-09-26 2015-03-20 Sapo-34 molecular sieve and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/081995 WO2014047801A1 (zh) 2012-09-26 2012-09-26 一种sapo-34分子筛及其合成方法

Publications (1)

Publication Number Publication Date
WO2014047801A1 true WO2014047801A1 (zh) 2014-04-03

Family

ID=50386791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081995 WO2014047801A1 (zh) 2012-09-26 2012-09-26 一种sapo-34分子筛及其合成方法

Country Status (12)

Country Link
US (1) US9695057B2 (zh)
EP (1) EP2902362B1 (zh)
JP (1) JP6006879B2 (zh)
KR (1) KR101652209B1 (zh)
AU (1) AU2012391394B2 (zh)
BR (1) BR112015006461B1 (zh)
DK (1) DK2902362T3 (zh)
EA (1) EA026545B1 (zh)
IN (1) IN2015DN02095A (zh)
SG (1) SG11201501834YA (zh)
WO (1) WO2014047801A1 (zh)
ZA (1) ZA201501936B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014047802A1 (zh) * 2012-09-26 2014-04-03 中国科学院大连化学物理研究所 一种sapo-34分子筛及其合成方法
IN2015DN02095A (zh) * 2012-09-26 2015-08-14 Dalian Chemical Physics Inst
WO2017074558A1 (en) 2015-10-30 2017-05-04 Dow Global Technologies Llc Process to convert synthesis gas to olefins over a bifunctional chromium oxide/zinc oxide-sapo-34 catalyst
JP2019518694A (ja) * 2016-04-28 2019-07-04 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Sta−20、新規なモレキュラーシーブ骨格タイプ、調製及び使用方法
CN106732764B (zh) * 2016-11-30 2019-05-14 中国石油大学(华东) 一种低硅铝比sapo-34分子筛及其制备方法和应用
CN106513036B (zh) * 2016-12-01 2019-05-14 中国石油大学(华东) 一种低硅sapo-34分子筛及其制备方法和应用
AR110362A1 (es) 2016-12-22 2019-03-20 Dow Global Technologies Llc Proceso para convertir gas de síntesis en olefinas usando un catalizador bifuncional de óxido de cromozinc - sapo-34
AR111149A1 (es) 2017-02-06 2019-06-12 Dow Global Technologies Llc Procesos para mejorar la actividad de los catalizadores híbridos
KR102197599B1 (ko) * 2018-10-11 2020-12-31 포항공과대학교 산학협력단 실리코알루미노포스페이트 분자체, 및 그 제조 방법, 이를 이용한 이산화탄소의 선택적 분리방법
KR102224614B1 (ko) * 2018-12-31 2021-03-05 포항공과대학교 산학협력단 무기 금속 성분을 포함하는 cha형 sapo 및 그 제조 방법
CN114433221B (zh) * 2020-10-20 2024-01-30 中国石油化工股份有限公司 一种改性的金属氧化物-分子筛复合物及其制法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310440A (en) 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
WO2003040037A1 (en) 2001-11-07 2003-05-15 Norsk Hydro Asa Method of synthesising crystalline microporous metalloaluminophosphate from a solid body
CN1131845C (zh) 1999-12-15 2003-12-24 中国科学院大连化学物理研究所 一种多模板剂合成磷酸硅铝分子筛的方法
CN101993093A (zh) * 2009-08-25 2011-03-30 中国科学院大连化学物理研究所 一种具有rho骨架结构的sapo分子筛及其制备方法
CN102530987A (zh) * 2010-12-29 2012-07-04 中国科学院大连化学物理研究所 Sapo分子筛的溶剂热合成方法及由其制备的催化剂

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1087292A (zh) 1992-11-24 1994-06-01 中国科学院大连化学物理研究所 一种以三乙胺为模板剂的合成硅磷铝分子筛及其制备
CN1037334C (zh) * 1992-12-19 1998-02-11 中国科学院大连化学物理研究所 一种以三乙胺为模板剂的合成硅磷铝分子筛及其制备
TWI281879B (en) 2002-05-24 2007-06-01 Mitsubishi Gas Chemical Co Crystalline silicoaluminophosphate salt molecular sieve having octaoxygen-membered ring pore, process for producing the same and process for producing methylamine with the molecular sieve as catalyst
JP4596116B2 (ja) * 2002-05-24 2010-12-08 三菱瓦斯化学株式会社 8酸素員環細孔を持つ結晶質シリコアルミノリン酸塩モレキュラーシーブ及びその製造方法、並びにそれを触媒とするメチルアミン類の製造方法
JP2006089300A (ja) * 2004-09-21 2006-04-06 Nippon Gas Gosei Kk Sapo−34の製造方法、および、プロパンを主成分とする液化石油ガスの製造方法
CN1314587C (zh) * 2005-04-14 2007-05-09 南京工业大学 一种sapo-34分子筛的制备方法
EP2161243A1 (en) * 2008-08-29 2010-03-10 Total Petrochemicals Research Feluy Method for preparing metalloaluminophosphate (MeAPO) molecular sieves
TW201036957A (en) * 2009-02-20 2010-10-16 Astrazeneca Ab Novel salt 628
CN102336413B (zh) * 2010-11-29 2013-04-17 中国科学院大连化学物理研究所 一种低硅sapo-34分子筛的合成方法
WO2014047802A1 (zh) * 2012-09-26 2014-04-03 中国科学院大连化学物理研究所 一种sapo-34分子筛及其合成方法
IN2015DN02095A (zh) * 2012-09-26 2015-08-14 Dalian Chemical Physics Inst
US9376419B2 (en) * 2012-10-15 2016-06-28 Apotex Inc. Solid forms of nilotinib hydrochloride

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310440A (en) 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
CN1131845C (zh) 1999-12-15 2003-12-24 中国科学院大连化学物理研究所 一种多模板剂合成磷酸硅铝分子筛的方法
WO2003040037A1 (en) 2001-11-07 2003-05-15 Norsk Hydro Asa Method of synthesising crystalline microporous metalloaluminophosphate from a solid body
CN101993093A (zh) * 2009-08-25 2011-03-30 中国科学院大连化学物理研究所 一种具有rho骨架结构的sapo分子筛及其制备方法
CN102530987A (zh) * 2010-12-29 2012-07-04 中国科学院大连化学物理研究所 Sapo分子筛的溶剂热合成方法及由其制备的催化剂

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
APPLIED CATALYSIS, vol. 40, 1988, pages 316
CATAL., vol. 264, 2009, pages 77 - 87
CHEMISTRY - A EUROPEAN JOURNAL, vol. 14, 2008, pages 11320 - 11327
J PHYS. CHEM., vol. 98, 1994, pages 9614
J. PHYS. CHEM., vol. 94, 1990, pages 2730

Also Published As

Publication number Publication date
EA201590589A1 (ru) 2015-07-30
US20150232345A1 (en) 2015-08-20
ZA201501936B (en) 2016-10-26
AU2012391394A1 (en) 2015-04-02
KR20150059786A (ko) 2015-06-02
BR112015006461A2 (pt) 2019-10-01
EA026545B1 (ru) 2017-04-28
EP2902362B1 (en) 2017-06-21
JP2015533765A (ja) 2015-11-26
SG11201501834YA (en) 2015-05-28
IN2015DN02095A (zh) 2015-08-14
EP2902362A4 (en) 2016-04-27
KR101652209B1 (ko) 2016-08-29
EP2902362A1 (en) 2015-08-05
JP6006879B2 (ja) 2016-10-12
AU2012391394B2 (en) 2016-03-03
BR112015006461B1 (pt) 2021-03-30
DK2902362T3 (en) 2017-08-07
US9695057B2 (en) 2017-07-04

Similar Documents

Publication Publication Date Title
WO2014047801A1 (zh) 一种sapo-34分子筛及其合成方法
WO2008022532A1 (fr) Procédé destiné à synthétiser rapidement un tamis moléculaire de silicoaluminophosphate sapo-34
WO2008019586A1 (fr) Procédé de synthèse sur site d&#39;un catalyseur à microsphère utilisé pour convertir un composé oxygène en oléfine
WO2014047802A1 (zh) 一种sapo-34分子筛及其合成方法
Okamoto et al. MFI-type zeolite with a core–shell structure with minimal defects synthesized by crystal overgrowth of aluminum-free MFI-type zeolite on aluminum-containing zeolite and its catalytic performance
CN108993585B (zh) 一种含多级孔euo分子筛的双功能催化剂及其制备方法
CN110357121A (zh) 一种小晶粒纳米多级孔ssz-13分子筛的制备方法
CN112794338B (zh) Zsm-5分子筛及其制备方法和应用
CN102482176A (zh) 使用uzm-35来进行芳烃烷基化的方法
CN108928830B (zh) 分子筛scm-17、其合成方法及其用途
CN107758690A (zh) 提高壳层覆盖度的微波合成mfi/mfi核壳分子筛的方法
CN103663483A (zh) 一种sapo-34分子筛的合成方法及由其制备的催化剂
CN109796027A (zh) Sapo-34分子筛聚集体及其制备方法和甲醇制烯烃的方法
JP5987957B2 (ja) プロピレン製造用触媒の製造方法
WO2019155607A1 (ja) 軽質オレフィンの製造方法
WO2014089738A1 (zh) 一种以n-甲基二乙醇胺为模板剂的sapo-34分子筛及其合成方法
CN106824261B (zh) Ni-SSZ-13催化剂、制备方法及其用途
CN108946757B (zh) 分子筛scm-13、其合成方法及其用途
CN111099613B (zh) 分子筛、其合成方法及其用途
CN107673370B (zh) 纳米sapo-34分子筛的合成方法、sapo-34分子筛催化剂及其应用
KR20100083929A (ko) 메조-마이크로 세공을 가지는 나노 세공체 제조방법과 메조-마이크로 세공을 가지는 나노 세공체 촉매
CN113966251A (zh) Iwr骨架结构类型的硅铝酸盐沸石材料的直接合成及其在催化中的用途
CN105600801B (zh) 一种中微孔sapo‑34分子筛的合成方法
CN101514017B (zh) Zsm-5/丝光沸石/mcm-49三相共生分子筛及其合成方法
WO2014089736A1 (zh) 一种以二异丙醇胺为模板剂的sapo-34分子筛及其合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885586

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14428830

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015533392

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201501755

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2012391394

Country of ref document: AU

Date of ref document: 20120926

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201590589

Country of ref document: EA

REEP Request for entry into the european phase

Ref document number: 2012885586

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012885586

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157010562

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015006461

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015006461

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150324