WO2014030744A1 - 異方性導電フィルム及びその製造方法 - Google Patents

異方性導電フィルム及びその製造方法 Download PDF

Info

Publication number
WO2014030744A1
WO2014030744A1 PCT/JP2013/072571 JP2013072571W WO2014030744A1 WO 2014030744 A1 WO2014030744 A1 WO 2014030744A1 JP 2013072571 W JP2013072571 W JP 2013072571W WO 2014030744 A1 WO2014030744 A1 WO 2014030744A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection layer
insulating resin
layer
conductive particles
connection
Prior art date
Application number
PCT/JP2013/072571
Other languages
English (en)
French (fr)
Inventor
誠一郎 篠原
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020147035905A priority Critical patent/KR101716945B1/ko
Priority to KR1020217042801A priority patent/KR102551117B1/ko
Priority to CN201380044397.8A priority patent/CN104541411B/zh
Priority to KR1020197036321A priority patent/KR102345819B1/ko
Priority to KR1020177006454A priority patent/KR102056086B1/ko
Priority to US14/422,511 priority patent/US20150214176A1/en
Publication of WO2014030744A1 publication Critical patent/WO2014030744A1/ja
Priority to HK15105982.2A priority patent/HK1205366A1/xx
Priority to US16/694,212 priority patent/US11404391B2/en
Priority to US17/738,655 priority patent/US11784154B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • B32B37/025Transfer laminating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/30Fillers, e.g. particles, powders, beads, flakes, spheres, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the layer preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27005Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for aligning the layer connector, e.g. marks, spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29357Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0215Metallic fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24521Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface

Definitions

  • the present invention relates to an anisotropic conductive film and a method for producing the same.
  • Anisotropic conductive films are widely used for mounting electronic components such as IC chips.
  • Anisotropic conductive films are widely used for mounting electronic components such as IC chips.
  • an anisotropic conductive film in which conductive particles for anisotropic conductive connection are arranged in a single layer on an insulating adhesive layer has been proposed (Patent Document 1).
  • This anisotropic conductive film is prepared as follows. That is, first, the conductive particles are held in the opening of the transfer mold having the opening, and the adhesive film on which the transfer adhesive layer is formed is pressed from above, and the conductive particles are primarily transferred to the adhesive layer. Next, the polymer particles that constitute the anisotropic conductive film are pressed against the conductive particles attached to the adhesive layer, and the conductive particles are secondarily transferred to the surface of the polymer film by heating and pressing. Next, an anisotropic conductive film is formed by forming an adhesive layer on the conductive particle side surface of the polymer film to which the conductive particles are secondarily transferred so as to cover the conductive particles.
  • An object of the present invention is to solve the above-described problems of the prior art, and in an anisotropic conductive film in which conductive particles are arranged in a single layer, as created using a transfer mold having an opening, To achieve good connection reliability, good insulation, and good particle trapping efficiency.
  • the conductive resin is temporarily transferred to the adhesive film without temporarily transferring the conductive particles to the adhesive film.
  • the present invention has found that the above-mentioned object is achieved by sandwiching both surfaces of an insulating resin layer in which conductive particles are arranged in a single layer with an insulating resin layer functioning as an adhesive layer. Completed.
  • the present invention is an anisotropic conductive film having a three-layer structure in which the first connection layer is sandwiched between the second connection layer and the third connection layer mainly made of an insulating resin,
  • the first connection layer has a structure in which conductive particles are arranged in a single layer in the planar direction on the second connection layer side of the insulating resin layer, and the insulating resin layer thickness in the central region between adjacent conductive particles is Provided is an anisotropic conductive film that is thinner than the thickness of an insulating resin layer in the vicinity of conductive particles.
  • the present invention also provides a method for producing the above-mentioned anisotropic conductive film, which comprises the following steps (A) to (D).
  • ⁇ Process (A)> A step of disposing conductive particles in the opening of the transfer mold in which the opening is formed and causing the insulating resin layer formed on the release film to face the surface of the transfer mold in which the opening is formed.
  • the present invention also provides another method for producing the above anisotropic conductive film, which comprises the following steps (a) to (c).
  • ⁇ Process (a)> A step of disposing conductive particles in the opening of the transfer mold in which the opening is formed, and making the insulating resin layer on which the third connection layer is bonded in advance face the surface of the transfer mold in which the opening is formed.
  • Step (c)> Forming a second connection layer mainly made of an insulating resin on the conductive particle side surface of the first connection layer;
  • the present invention also provides a connection structure in which the first electronic component is anisotropically conductively connected to the second electronic component using the anisotropic conductive film described above.
  • the present invention also provides a connection method for anisotropically conductively connecting a first electronic component to a second electronic component using the above-described anisotropic conductive film, An anisotropic conductive film is temporarily attached to the second electronic component from the third connection layer side, and the first electronic component is mounted on the temporarily attached anisotropic conductive film from the first electronic component side.
  • a connection method for thermocompression bonding is provided.
  • the first connection layer is the second connection of the insulating resin layer. It has a structure in which conductive particles are arranged in a single layer in the plane direction on the layer side, and the insulating resin layer thickness at the center between adjacent conductive particles is thinner than the insulating resin layer thickness near the conductive particles It has a structure. For this reason, in the anisotropic conductive film in which the conductive particles are arranged in a single layer, it is possible to realize good connection reliability, good insulation, and good particle capturing efficiency.
  • FIG. 1A is a cross-sectional view of the anisotropic conductive film of the present invention.
  • FIG. 1B is a cross-sectional view of the anisotropic conductive film of the present invention.
  • FIG. 1C is a cross-sectional view of the anisotropic conductive film of the present invention.
  • FIG. 2A is an explanatory diagram of the production process (A) of the anisotropic conductive film of the present invention.
  • FIG. 2B is an explanatory diagram of the production process (A) of the anisotropic conductive film of the present invention.
  • FIG. 3A is an explanatory diagram of the production process (B) of the anisotropic conductive film of the present invention.
  • FIG. 1A is a cross-sectional view of the anisotropic conductive film of the present invention.
  • FIG. 1B is a cross-sectional view of the anisotropic conductive film of the present invention.
  • FIG. 1C is a cross-sectional view of the ani
  • FIG. 3B is an explanatory diagram of the production process (B) of the anisotropic conductive film of the present invention.
  • FIG. 3C is an explanatory diagram of the production process of the anisotropic conductive film of the present invention.
  • FIG. 4 is explanatory drawing of the manufacturing process (C) of the anisotropic conductive film of this invention.
  • FIG. 5 is an explanatory view of the production process (D) of the anisotropic conductive film of the present invention.
  • FIG. 6A is an explanatory diagram of the production process (a) of the anisotropic conductive film of the present invention.
  • Drawing 6B is an explanatory view of the manufacturing process (a) of the anisotropic conductive film of the present invention.
  • FIG. 7A is explanatory drawing of the manufacturing process (b) of the anisotropic conductive film of this invention.
  • FIG. 7B is explanatory drawing of the manufacturing process (b) of the anisotropic conductive film of this invention.
  • FIG. 7C is explanatory drawing of the manufacturing process (b) of the anisotropic conductive film of this invention.
  • FIG. 8 is an explanatory view of the production process (c) of the anisotropic conductive film of the present invention.
  • the anisotropic conductive film 100 of the present invention has a three-layer structure in which a first connection layer 1 is sandwiched between a second connection layer 2 and a third connection layer 3 mainly made of an insulating resin.
  • the first connection layer 1 has a structure in which conductive particles 4 are arranged in a single layer in the planar direction of the insulating resin layer 10 on the second connection layer 2 side.
  • the conductive particles 4 may be closely packed in the planar direction, but the conductive particles 4 are regularly arranged in the planar direction at regular intervals (for example, in a square lattice pattern). Is preferred.
  • the insulating resin layer thickness t 1 in the central region between the adjacent conductive particles 4 has a structure that is thinner than the insulating resin layer thickness t 2 in the vicinity of the conductive particles 4.
  • the conductive particles 4 that are not used because they do not exist between the terminals to be connected are shown in FIG.
  • the insulating resin layer between the conductive particles 4 is melted by heating and pressurization at the time of anisotropic conductive connection so that the conductive particles 4 can be coated to form the covering layer 1d. Occurrence can be suppressed.
  • the central region between the adjacent conductive particles 4 is a region within ⁇ L / 4 with the intermediate point P of the distance L between the adjacent conductive particles as the center, as shown in FIG. 1A.
  • the vicinity of the conductive particles means a position in the vicinity of a line segment in contact with the conductive particles 4 in the layer thickness direction of the first connection layer 1.
  • the insulating resin layer thickness t1 and the insulating resin layer thickness t2 further have the following relationship. This is because when t1 is too thin with respect to t2, the conductive particles 4 tend to flow and the particle trapping efficiency tends to decrease. When the thickness is too close to t2, it is difficult to obtain the effect of the present invention. Because there is a tendency to become.
  • the absolute thickness of the insulating resin layer thickness t1 is preferably 0.5 ⁇ m or more because there is a concern that it is difficult to form the first connection layer 1 if it is too thin.
  • the absolute thickness of the insulating resin layer thickness t2 if the insulating resin layer 10 is too thick, it is difficult to remove the insulating resin layer 10 from the connection region at the time of anisotropic conductive connection. Preferably it is 6 micrometers or less.
  • the space between the conductive particles 4 The insulating resin layer thickness may be substantially zero.
  • substantially 0 means a state in which insulating resin layers containing conductive particles exist independently. In such a case, the above formula cannot be applied. Therefore, in order to achieve good connection reliability, good insulation, and good particle trapping efficiency, insulation with a perpendicular passing through the center of the conductive particle 4 is not possible. It can be preferably performed by controlling the shortest distances L 1 , L 2 , L 3 , L 4 .
  • the resin amount of the first connection layer 1 is relatively increased, the productivity is improved, and the flow of the conductive particles 4 can be suppressed.
  • the resin amount of the first connection layer 1 is relatively reduced, and the interparticle distance can be easily controlled. In other words, the accuracy of alignment of the conductive particles can be improved.
  • the preferred distances L 1 , L 2 , L 3 , L 4 ... are preferably greater than 0.5 times and less than 1.5 times, more preferably 0.6 to 1.2 times the particle diameter of the conductive particles 4. Range.
  • the conductive particles 4 may be buried in the first connection layer 1.
  • the degree of burying whether buried shallowly or deeply varies depending on the viscosity of the material at the time of forming the first connection layer 1 and the shape and size of the transfer-type opening in which the conductive particles are arranged. It can be controlled by the relationship between the base diameter of the opening and the opening diameter.
  • the base diameter is preferably 1.1 times or more and less than 2 times the conductive particle diameter
  • the opening diameter is preferably 1.3 times or more and less than 3 times the conductive particle diameter.
  • the electroconductive particle 4 ' may exist in the 2nd connection layer 2.
  • a known insulating resin layer can be appropriately employed.
  • a heat or photo radical polymerization type resin layer containing an acrylate compound and a heat or photo radical polymerization initiator or a layer obtained by heat or photo radical polymerization thereof, or an epoxy compound and a heat or photo cation or anion polymerization initiator
  • the first connection layer 1 can be formed by irradiating the photoradical polymerization type resin layer with ultraviolet rays and photoradical polymerization. In this case, when the photoradical polymerization resin layer is irradiated with ultraviolet rays from the conductive particle side before the second connection layer 2 is formed, photoradical polymerization is performed in the first connection layer 1 as shown in FIG. 1A.
  • the curing rate of the region 1X located between the particles 4 and the surface 3a of the third connection layer 3 can be made lower than the curing rate of the region 1Y located between the adjacent conductive particles. Therefore, the minimum melt viscosity of the region 1X having a low curing rate in the first connection layer can be made smaller than the minimum melt viscosity of the region 1Y having a high cure rate in the first connection layer.
  • the displacement of the conductive particles 4 can be prevented, the particle capturing efficiency can be improved, the pushability of the conductive particles 4 can be improved, the conduction resistance value can be lowered, and good conduction reliability can be realized.
  • the curing rate is a numerical value defined as a reduction ratio of functional groups (for example, vinyl groups) contributing to polymerization. Specifically, if the vinyl group content after curing is 20% before curing, the curing rate is 80%.
  • the abundance of vinyl groups can be measured by characteristic absorption analysis of vinyl groups in the infrared absorption spectrum.
  • the curing rate of the region 1X is preferably 40 to 80%, while the curing rate of the region 1Y is preferably 70 to 100%.
  • the minimum melt viscosity of the 1st connection layer 1 measured with the rheometer is higher than each minimum melt viscosity of the 2nd connection layer 2 and the 3rd connection layer 3.
  • the particle trapping efficiency tends to decrease and the probability of occurrence of a short circuit tends to increase, and if it is too high, the conduction reliability tends to decrease, so it is preferably 1 to 1000, more preferably 4 to 400.
  • the preferred minimum melt viscosity of each of the formers is that if the value is too low, the particle trapping efficiency tends to decrease, and if the value is too high, the conduction resistance value tends to increase. Therefore, the preferred minimum melt viscosity is preferably 100 to 100,000 mPa ⁇ s. 500 to 50000 mPa ⁇ s is preferable. Regarding the latter, if it is too low, the resin tends to protrude when it is reeled, and if it is too high, the conduction resistance value tends to increase. Therefore, it is preferably 0.1 to 10,000 mPa ⁇ s, more preferably 1 to 1000 mPa ⁇ s.
  • acrylate compound used for the insulating resin layer 10 constituting the first connection layer 1 a conventionally known radical polymerizable acrylate can be used.
  • monofunctional (meth) acrylate here, (meth) acrylate includes acrylate and methacrylate
  • bifunctional or more polyfunctional (meth) acrylate can be used.
  • Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) ) Acrylate, t-butyl (meth) acrylate, 2-methylbutyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, 2-methylhexyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, 2-butylhexyl (meth) acrylate, isooctyl (meth) acrylate, isopentyl (meth) acrylate, isononyl (meth) acrylate, isode
  • Bifunctional (meth) acrylates include bisphenol F-EO modified di (meth) acrylate, bisphenol A-EO modified di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, and tricyclodecanedi. Examples include methylol di (meth) acrylate and dicyclopentadiene (meth) acrylate.
  • Examples of the trifunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, trimethylolpropane PO-modified (meth) acrylate, and isocyanuric acid EO-modified tri (meth) acrylate.
  • tetrafunctional or higher functional (meth) acrylates examples include dipentaerythritol penta (meth) acrylate, pentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, and ditrimethylolpropane tetraacrylate.
  • polyfunctional urethane (meth) acrylates can also be used. Specific examples include M1100, M1200, M1210, M1600 (above, Toagosei Co., Ltd.), AH-600, AT-600 (above, Kyoeisha Chemical Co., Ltd.) and the like.
  • the content of the acrylate compound in the insulating resin layer 10 constituting the first connection layer 1 is too small, it tends to be difficult to make the minimum melt viscosity difference with the second connection layer 2, and if too large, the curing shrinkage is large. Therefore, the workability tends to be reduced, so the content is preferably 2 to 70% by mass, more preferably 10 to 50% by mass.
  • a radical photopolymerization initiator it can be used by appropriately selecting from known radical photopolymerization initiators.
  • an acetophenone photopolymerization initiator, a benzyl ketal photopolymerization initiator, a phosphorus photopolymerization initiator, and the like can be given.
  • 2-hydroxy-2-cyclohexylacetophenone IRGACURE 184, BASF Japan Ltd.
  • ⁇ -hydroxy- ⁇ , ⁇ ′-dimethylacetophenone Darocur
  • DAROCUR 1173, BASF Japan Ltd., 2,2-dimethoxy-2-phenylacetophenone (IRGACURE 651, BASF Japan Ltd.), 4- (2-hydroxyethoxy) phenyl (2-hydroxy-) 2-propyl) ketone (DAROCUR 2959, BASF Japan Ltd.), 2-hydroxy-1- ⁇ 4- [2-hydroxy-2-methyl-propionyl] -benzyl ⁇ phenyl ⁇ -2-methyl-propane -1-On (irugaki A (IRGACURE) 127, BASF Japan Ltd.) and the like.
  • benzyl ketal photoinitiators examples include benzophenone, fluorenone, dibenzosuberone, 4-aminobenzophenone, 4,4'-diaminobenzophenone, 4-hydroxybenzophenone, 4-chlorobenzophenone, 4,4'-dichlorobenzophenone, etc. It is done. Further, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (IRGACURE 369, BASF Japan Ltd.) can also be used.
  • bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (IRGACURE 819, BASF Japan Ltd.), (2,4,6-trimethylbenzoyl-diphenylphossine) Examples include fin oxide (DAROCURE TPO, BASF Japan Ltd.).
  • the amount of the radical photopolymerization initiator used is too small relative to 100 parts by mass of the acrylate compound, the photoradical polymerization tends not to proceed sufficiently.
  • the amount is preferably 0.1 to 25 parts by mass, more preferably 0.5 to 15 parts by mass.
  • thermal radical polymerization initiator examples include organic peroxides and azo compounds, but organic peroxides that do not generate nitrogen that causes bubbles can be preferably used.
  • organic peroxides include methyl ethyl ketone peroxide, cyclohexanone peroxide, methylcyclohexanone peroxide, acetylacetone peroxide, 1,1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (Tert-butylperoxy) cyclohexane, 1,1-bis (tert-hexylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (tert-hexylperoxy) cyclohexane, 1,1-bis ( tert-butylperoxy) cyclododecane, isobutyl peroxide, lauroyl peroxide, oxalic acid peroxide, 3,5,5-trimethylhexanoyl peroxide, benzoyl peroxide, octanoyl peroxide, stearoyl peroxide Id, di
  • azo compound examples include 1,1-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2-methyl-butyronitrile), 2,2′-azobisbutyronitrile, 2,2′- Azobis (2,4-dimethyl-valeronitrile), 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile), 2,2'-azobis (2-amidino-propane) hydrochloride, 2, 2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] hydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] hydrochloride, 2, 2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane], 2,2'-azobis [2-methyl-N- (1,1-bis (2-hydroxymethyl) -2 -Hydroxyethyl) Propionamide], 2,2'-azobis [2-methyl-N- (2-(
  • the amount of the thermal radical polymerization initiator used is preferably 2 to 60 parts by weight, more preferably 5 to 40 parts per 100 parts by weight of the acrylate compound. Part by mass.
  • the insulating resin layer 10 constituting the first connection layer 1 is made of a heat or photocation or anion polymerization type resin layer containing an epoxy compound and heat or a photocation or anion polymerization initiator, or heat or light of them. You may comprise from what carried out radical polymerization.
  • the epoxy compound include compounds or resins having two or more epoxy groups in the molecule. These may be liquid or solid. Specifically, bisphenol A, bisphenol F, bisphenol S, hexahydrobisphenol A, tetramethylbisphenol A, diallyl bisphenol A, hydroquinone, catechol, resorcin, cresol, tetrabromobisphenol A, trihydroxybiphenyl, benzophenone, bisresorcinol, Glycidyl ether obtained by reacting polychlorophenol and epichlorohydrin such as bisphenol hexafluoroacetone, tetramethylbisphenol A, tetramethylbisphenol F, tris (hydroxyphenyl) methane, bixylenol, phenol novolak, cresol novolak, or glycerin, Neopentyl glycol, ethylene glycol, propylene glycol, tylene glycol Polyglycidyl ethers obtained by reacting alipha
  • epoxy resins such as epoxidized polyolefin.
  • alicyclic epoxy compounds such as 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate can also be used.
  • thermal cationic polymerization initiator those known as thermal cationic polymerization initiators for epoxy compounds can be employed.
  • heat can generate an acid capable of cationically polymerizing a cationic polymerization type compound.
  • Iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, and the like can be used, and aromatic sulfonium salts exhibiting good potential with respect to temperature can be preferably used.
  • thermal cationic polymerization initiator examples include diphenyliodonium hexafluoroantimonate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroborate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, triphenyls.
  • Rufonium hexafluoroborate is exemplified. Specifically, ADEKA Corporation SP-150, SP-170, CP-66, CP-77; Nippon Soda Co., Ltd. CI-2855, CI-2939; Sanshin Chemical Industry Co., Ltd. Examples thereof include CYRACURE-UVI-6990 and UVI-6974 manufactured by Union Carbide.
  • the thermal cationic polymerization initiator If the amount of the thermal cationic polymerization initiator is too small, the thermal cationic polymerization tends not to proceed sufficiently, and if it is too large, there is a concern that it may cause a decrease in rigidity. Is 0.1 to 25 parts by mass, more preferably 0.5 to 15 parts by mass.
  • thermal anionic polymerization initiator those known as the thermal anionic polymerization initiator of the epoxy compound can be employed.
  • a base capable of anionic polymerization of the anionic polymerizable compound is generated by heat, and is publicly known.
  • Aliphatic amine compounds, aromatic amine compounds, secondary or tertiary amine compounds, imidazole compounds, polymercaptan compounds, boron trifluoride-amine complexes, dicyandiamide, organic acid hydrazides, etc. can be used.
  • An encapsulated imidazole compound showing good potential with respect to temperature can be preferably used. Specific examples include NovaCure HX3941HP manufactured by Asahi Kasei E-Materials Corporation.
  • the amount of the thermal anionic polymerization initiator is preferably 2 to 60 masses per 100 mass parts of the epoxy compound. Part, more preferably 5 to 40 parts by weight.
  • Photocationic polymerization initiator and photoanionic polymerization initiator A well-known thing can be used suitably as a photocationic polymerization initiator or photoanion polymerization initiator for epoxy compounds.
  • the electroconductive particle 4 which comprises the 1st connection layer 1 it can select and use suitably from what is used for the conventionally well-known anisotropic conductive film.
  • metal particles such as nickel, cobalt, silver, copper, gold, and palladium, metal-coated resin particles, and the like can be given. Two or more kinds can be used in combination.
  • the thickness is 10 ⁇ m, more preferably 2 to 6 ⁇ m.
  • the average particle diameter can be measured by a general particle size distribution measuring apparatus.
  • the amount of such conductive particles 4 in the first connection layer 1 is too small, the particle trapping efficiency is lowered and anisotropic conductive connection becomes difficult. Is 50 to 40,000, more preferably 200 to 20000 per square mm.
  • a film-forming resin such as a phenoxy resin, an epoxy resin, an unsaturated polyester resin, a saturated polyester resin, a urethane resin, a butadiene resin, a polyimide resin, a polyamide resin, or a polyolefin resin is used in combination as necessary. be able to.
  • the insulating resin layer 10 constituting the first connection layer 1 is obtained by photoradical polymerization of a photoradical polymerization resin layer composed of an acrylate compound and a photoradical polymerization initiator, It is preferable to contain an epoxy compound and a thermal cationic polymerization initiator. In this case, as will be described later, it is preferable that the second connection layer 2 and the third connection layer 3 are also a thermal cation polymerization type resin layer containing an epoxy compound and a thermal cation polymerization initiator. Thereby, delamination strength can be improved.
  • the conductive particles 4 bite into the second connection layer 2 (in other words, the conductive particles 4 are exposed on the surface of the first connection layer 1.
  • the average particle diameter of the conductive particles 4 is preferably 10 to 90%, more preferably 20%. ⁇ 80%.
  • the first connection layer 1 is formed by disposing the conductive particles 4 in the opening of the mold in which the opening is formed, and the first connection layer 1 formed on the release film on the surface of the mold in which the opening 21 is formed.
  • the insulating resin layer 10 to be opposed to each other and pressurizing while heating as necessary to such an extent that the insulating resin does not enter the corners of the bottom of the opening.
  • Each of the second connection layer 2 and the third connection layer 3 is mainly formed from an insulating resin.
  • the insulating resin it can be used by appropriately selecting from known insulating resins. It can be formed from the same material as the insulating resin layer 10 of the first connection layer 1.
  • the second connection layer 2 is located on the conductive particle 4 side of the first connection layer 1 and is usually a layer disposed on the terminal side that requires alignment with high positional accuracy, such as bumps of an IC chip.
  • the 3rd connection layer 3 is normally distribute
  • the layer thickness of the second connection layer 2 is too thin, there is a concern that poor conduction due to insufficient resin filling may occur, and if it is too thick, the resin may protrude during crimping, which may cause contamination of the crimping device. Is 5 to 20 ⁇ m, more preferably 8 to 15 ⁇ m. On the other hand, if the layer thickness of the third connection layer 3 is too thin, there is a concern that a sticking failure may occur when temporarily sticking to the second electronic component, and if it is too thick, the conduction resistance value tends to increase.
  • the thickness is 0.5 to 6 ⁇ m, more preferably 1 to 5 ⁇ m.
  • the conductive particles 4 are disposed in the opening 21 of the transfer mold 20 in which the opening 21 is formed, and a release film is formed on the surface of the transfer mold 20 in which the opening 21 is formed as shown in FIG. 2B.
  • the insulating resin layer 10 formed on 22 is made to oppose.
  • an opening is formed in a known opening forming method such as a photolithographic method in an inorganic material such as silicon, various ceramics, glass, stainless steel, or an inorganic material, or an organic material such as various resins. It is what.
  • a transfer mold 20 can take a plate shape, a roll shape, or the like.
  • the opening 21 of the transfer mold 20 accommodates the conductive particles 4 therein.
  • Examples of the shape of the opening 21 include a cylindrical shape, a polygonal column shape such as a quadrangular pyramid, and a pyramid shape such as a quadrangular pyramid.
  • the arrangement of the openings 21 is preferably a regular arrangement such as a lattice shape or a staggered shape.
  • the diameter and depth of the opening 21 of the transfer mold 20 can be measured with a laser microscope.
  • the method for accommodating the conductive particles 4 in the opening 21 of the transfer mold 20 is not particularly limited, and a known method can be adopted. For example, after spraying or applying a dried conductive particle powder or a dispersion in which this is dispersed in a solvent on the opening forming surface of the transfer mold 20, the surface of the opening forming surface is wiped using a brush or a blade. Good.
  • the ratio of the average particle diameter of the conductive particles 4 to the depth of the opening 21 is preferably 0.4 to from the balance between transferability improvement and conductive particle retention. 3.0, more preferably 0.5 to 1.5.
  • the ratio of the diameter of the opening 21 to the average particle diameter of the conductive particles 4 is a balance of the ease of accommodating the conductive particles, the ease of pushing in the insulating resin, and the like. Therefore, it is preferably 1.1 to 2.0, more preferably 1.3 to 1.8.
  • the base diameter is 1.1 to 2 times the conductive particle diameter, and the opening diameter is 1.3 to 3 times the conductive particle diameter. It is preferable that
  • the second connection layer 2 mainly made of an insulating resin is formed on the surface of the first connection layer 1 on the conductive particle 4 side.
  • the shape thereof is a wave shape or an uneven shape.
  • the conductive particles 4 can be fixed to the first connection layer 1, and the curing rate of the first connection layer 1 below the conductive particles 4 can be made relatively lower than its surroundings, and the anisotropy The pushability of the conductive particles at the time of conductive connection can be improved.
  • the conductive particles 4 are disposed in the opening 21 of the transfer mold 20 in which the opening 21 is formed.
  • the surface of the transfer mold 20 in which the opening 21 is formed is preliminarily placed on the surface.
  • the insulating resin layer 10 to which the three connection layers 3 are bonded is opposed.
  • Step (b)> pressure is applied to the insulating resin layer 10 from the third connection layer 3 side, and the insulating resin is pushed into the openings 21, so that the conductive particles 4 are formed on the surface of the insulating resin layer 10.
  • the conductive particles 4 are arranged in a single layer in the planar direction of the insulating resin layer 10, and the insulating resin layer thickness in the central region between the adjacent conductive particles 4 is as follows.
  • the first connection layer 1 that is thinner than the thickness of the insulating resin layer in the vicinity of the conductive particles is formed.
  • the insulating resin layer thickness may be practically 0 between the adjacent conductive particles 4 (see FIG. 1C).
  • Step (c)> the second connection layer 2 mainly made of an insulating resin is formed on the surface of the first connection layer 1 on the conductive particle 4 side. Thereby, the anisotropic conductive film 100 shown in FIG. 8 is obtained.
  • the conductive particles 4 can be fixed to the first connection layer 1, and the curing rate of the first connection layer 1 below the conductive particles 4 can be made relatively lower than its surroundings, and the anisotropy The pushability of the conductive particles at the time of conductive connection can be improved.
  • the conductive particles 4 are mainly included in the first connection layer 1.
  • the region of the first connection layer 1 that encloses the conductive particle has a convex shape on the second connection layer 2 side.
  • the width on the third connection layer side is wider than the width.
  • the shortest distance p in the horizontal direction between the end in the thickness direction of the conductive particles 4 (the lower end of the particles) and the second connection layer 2 on the wide side contributes to the stability of the conductive particles at the time of connection. That is, p has a role corresponding to the pedestal of the fixed portion.
  • p represents the length corresponding to the base of the mountain shape, that is, the length until the effect can be expected.
  • the shortest distance p in the horizontal direction from the end portion of the conductive particles in the thickness direction to the second connection layer 2 is preferably 0.5 to 1.5 times the diameter of the conductive particles, more preferably 0.55 to 1. It will be 25 times.
  • the anisotropic conductive film thus obtained connects the first electronic component such as an IC chip or IC module and the second electronic component such as a flexible substrate or a glass substrate by heat or light. In particular, it can be preferably applied.
  • the connection structure thus obtained is also part of the present invention.
  • an anisotropic conductive film is temporarily attached to the second electronic component such as a wiring board from the third connection layer side, and the first electronic such as an IC chip is attached to the temporarily attached anisotropic conductive film. It is preferable from the viewpoint of improving connection reliability that components are mounted and thermocompression bonded from the first electronic component side. Moreover, it can also connect using photocuring.
  • Examples 1 to 10 According to the composition described in Table 1 or Table 2, a mixed solution of acrylate, photo radical polymerization initiator and the like was prepared with ethyl acetate or toluene so that the solid content was 50% by mass. This mixed solution is applied to a polyethylene terephthalate film (PET film) having a thickness of 50 ⁇ m so as to have a dry thickness of 5 ⁇ m, and is dried in an oven at 80 ° C. for 5 minutes. A polymerization type insulating resin layer was formed.
  • PET film polyethylene terephthalate film
  • a transfer mold made of stainless steel in which cylindrical openings having a diameter of 5.5 ⁇ m and a depth of 4.5 ⁇ m are provided at a pitch of 9 ⁇ m in length and width is prepared, and conductive particles (Ni / Ni) having an average particle diameter of 4 ⁇ m are prepared in each opening.
  • Au plated resin particles, AUL704, Sekisui Chemical Co., Ltd. were accommodated one by one.
  • the insulating resin layer for the first connection layer is opposed to the opening forming surface of the transfer mold, and the conductive particles are applied to the insulating resin layer by pressing from the release film side under the condition of 0.5 MPa at 60 ° C. I pushed it in.
  • an insulating resin layer in which the insulating resin layer thickness in the central region between adjacent conductive particles is thinner than the insulating resin layer thickness in the vicinity of the conductive particles was formed.
  • a first connection layer having conductive particles fixed on the surface is formed. Formed.
  • thermosetting resin and a latent curing agent A liquid mixture of a thermosetting resin and a latent curing agent was prepared with ethyl acetate or toluene so that the solid content was 50% by mass. This mixed solution was applied to a PET film having a thickness of 50 ⁇ m so as to have a dry thickness of 12 ⁇ m, and dried in an oven at 80 ° C. for 5 minutes to form a second connection layer. A third connection layer having a dry thickness of 3 ⁇ m was formed by the same operation.
  • the second connection layer was laminated to the first connection layer thus obtained under the conditions of 60 ° C. and 0.5 MPa so that the conductive particles were inside, and then the third connection layer was formed on the opposite surface.
  • the anisotropic conductive film was obtained by laminating similarly.
  • anisotropic conductive films were prepared so that the thickness of the first connection layer between the conductive particles was substantially zero. Specifically, the insulating resin layer for the first connection layer is made to face, and after pressurizing from the release film side under the condition of 0.5 MPa at 60 ° C., it is re-pressurized under the condition of 1.0 MPa at 60 ° C. Except for this, an anisotropic conductive film was prepared under the same conditions as in Example 1.
  • Comparative Example 1 According to the formulation described in Table 1, a photo-radical polymerization type insulating resin layer, which is a precursor layer of the first connection layer, was formed in the same manner as in Example 1.
  • Au plated resin particles, AUL704, Sekisui Chemical Co., Ltd. were accommodated one by one.
  • the insulating resin layer for the first connection layer is opposed to the opening forming surface of the transfer mold, and the conductive particles are insulated by pressing from the release film side at a relatively weak condition of 0.1 MPa at 40 ° C. Was transferred to the surface of the conductive resin layer. The film on which the conductive particles were transferred was taken out, and the conductive particles were completely pushed into the insulating resin layer so that the surface of the resin layer was flat.
  • a flat first connection layer was formed by irradiating ultraviolet light having a wavelength of 365 nm and an integrated light amount of 4000 mL / cm 2 to the photo radical polymerization type insulating resin layer in which the conductive particles were embedded.
  • An anisotropic conductive film was obtained by laminating a 12 ⁇ m-thick second connection layer and a 3 ⁇ m-thick third connection layer prepared in the same manner as in Example 1 on the first connection layer.
  • Comparative Example 2 A conductive particle-containing resin having a thickness of 6 ⁇ m is obtained from a mixture in which the same conductive particles as used in Example 1 in the resin composition for the first connection layer shown in Table 1 are uniformly dispersed so as to have 20000 per square mm. A film was created. An anisotropic conductive film having a two-layer structure was prepared by sticking a 12 ⁇ m-thick second connection layer prepared in the same manner as in Example 1 to this film under the condition of 0.5 MPa at 60 ° C.
  • an IC chip (bump size 30 ⁇ 85 ⁇ m: bump height 15 ⁇ m, bump pitch 50 ⁇ m) of 0.5 ⁇ 1.8 ⁇ 20.0 mm is 0.5
  • the sample was mounted on a glass wiring board (1737F) manufactured by Corning having a size of ⁇ 50 ⁇ 30 mm under the conditions of 180 ° C., 80 MPa, and 5 seconds to obtain a connection structure sample body.
  • a glass wiring board (1737F) manufactured by Corning having a size of ⁇ 50 ⁇ 30 mm under the conditions of 180 ° C., 80 MPa, and 5 seconds to obtain a connection structure sample body.
  • an insulating resin layer was present around the conductive particles as shown in FIG. 1A.
  • connection structure sample was tested and evaluated for “minimum melt viscosity”, “particle capture efficiency”, “conduction reliability”, and “insulation” as described below.
  • the obtained results are shown in Table 1 or Table 2.
  • Minimum melt viscosity The minimum melt viscosity of each of the first connection layer and the second connection layer constituting the connection structure sample body was measured using a rotary rheometer (TA Instruments) at a heating rate of 10 ° C./min; Measurement was performed under the condition of a plate diameter of 8 mm.
  • Particle capture efficiency Particles that are actually trapped on the bumps of the connection structure sample body after heating / pressurization (after actual mounting) against the “theoretical particle amount existing on the bumps of the connection structure sample body before heating / pressurization”
  • the ratio of “amount” was determined according to the following formula. Practically, it is desirable that it is 50% or more.
  • connection structure sample was left in a high-temperature and high-humidity environment at 85 ° C. and 85% RH, and the conduction resistance value at the initial stage and after the elapse of 500 hours was measured. Practically, it is desirable that the resistance value is 10 ⁇ or less even after 500 hours.
  • the anisotropic conductive films of Examples 1 to 6 showed practically preferable results for the evaluation items of particle trapping efficiency, conduction reliability, and insulation.
  • the layers react with each other, and the pushability of the conductive particles slightly decreases. It can be seen that the conduction resistance value tends to increase.
  • the first connection layer is a cationic polymerization system
  • the heat resistance is improved as compared with the radical polymerization system, so that it is understood that the pushability of the conductive particles also slightly decreases and the conduction resistance value tends to increase. .
  • the anisotropic conductive film of Comparative Example 1 in the first connection layer, the insulating resin layer thickness in the central region between adjacent conductive particles is thinner than the insulating resin layer thickness in the vicinity of the conductive particles. As a result, the conduction reliability has greatly deteriorated.
  • the anisotropic conductive films of Examples 7 to 10 have an independence of the conductive particles because the thickness of the central portion between the conductive particles is zero, and the particle trapping efficiency, conduction reliability, For each of the evaluation items of insulating properties, practically preferable results were shown.
  • the first connection layer is the second connection of the insulating resin layer. It has a structure in which conductive particles are arranged in a single layer in the plane direction on the layer side, and the insulating resin layer thickness at the center between adjacent conductive particles is thinner than the insulating resin layer thickness near the conductive particles It has a structure. For this reason, in the anisotropic conductive film in which the conductive particles are arranged in a single layer, it is possible to realize good connection reliability, good insulation, and good particle capturing efficiency. Therefore, it is useful for anisotropic conductive connection of an electronic component such as an IC chip to a wiring board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

 異方性導電フィルムは、第1接続層が、主として絶縁性樹脂からなる第2接続層と第3接続層とに挟持された3層構造を有する。第1接続層は、絶縁性樹脂層の第2接続層側の平面方向に導電粒子が単層で配列された構造を有し、隣接する導電粒子間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている。

Description

異方性導電フィルム及びその製造方法
 本発明は、異方性導電フィルム及びその製造方法に関する。
 ICチップなどの電子部品の実装に異方性導電フィルムは広く使用されており、近年では、高実装密度への適用の観点から、接続信頼性や絶縁性の向上、粒子捕捉効率の向上、製造コストの低減等を目的に、異方性導電接続用の導電粒子を単層で絶縁性接着層に配列させた異方性導電フィルムが提案されている(特許文献1)。
 この異方性導電フィルムは、以下のように作成されている。即ち、まず、開口を有する転写型の当該開口に導電粒子を保持させ、その上から転写用の粘着層が形成された粘着フィルムを押し当て、粘着層に導電粒子を一次転写させる。次に、粘着層に付着した導電粒子に対し、異方性導電フィルムの構成要素となる高分子膜を押し当て、加熱加圧することにより導電粒子を高分子膜表面に二次転写させる。次に、導電粒子が二次転写された高分子膜の導電粒子側表面に、導電粒子を覆うように接着層を形成することにより異方性導電フィルムが作成されている。
特開2010-33793号公報
 しかしながら、開口を有する転写型を用いて作成した特許文献1の異方性導電フィルムの場合、一次転写並びに二次転写が順調に推移する限り、異方性導電フィルムの接続信頼性、絶縁性、粒子捕捉効率についてはある程度の向上が期待可能かもしれないが、一般的には、二次転写し易くするために、一次転写用の粘着フィルムとして比較的粘着力が低いものを使用し、しかも導電粒子と粘着フィルムとの接触面積を小さくしている。このため、一次転写操作乃至二次転写操作の際に、一次転写しない導電粒子の発生、一次転写した後に粘着フィルムからの導電粒子の剥落や粘着フィルム上での導電粒子の位置ズレ等が生じ、全体の作業効率が低下するということが懸念されている。
 他方、一次転写作業を更に高速且つ円滑に進行させるために、粘着フィルムの粘着力をある程度強くして導電粒子を粘着フィルムに安定的に保持しようとすると、高分子膜への二次転写が困難になり、それを避けるために高分子膜の膜性を強くすると、異方性導電フィルムの導通抵抗が増大し、導通信頼性も低下するという問題があった。このように、開口を有する転写型を用いて異方性導電フィルムを作成しようとしても、実際のところ、一次転写並びに二次転写が順調に推移するとは限らず、そのため、異方性導電フィルムに対しては、良好な接続信頼性、良好な絶縁性、及び良好な粒子捕捉効率を同時に実現することが依然として強く求められているのが現状である。
 本発明の目的は、以上の従来の技術の問題点を解決することであり、開口を有する転写型を用いて作成したような、導電粒子が単層で配列された異方性導電フィルムにおいて、良好な接続信頼性、良好な絶縁性、及び良好な粒子捕捉効率を実現することである。
 本発明者は、開口を有する転写型を用いて異方性導電フィルムを作成する際に、導電粒子を一旦粘着フィルムに一次転写させることなく、異方性導電フィルムを構成する絶縁性樹脂層に転写型から直接単層で配列するように転写させ、しかも、隣接する導電粒子間の中央の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなるように転写させ、更に、導電粒子が単層で配列しているその絶縁性樹脂層の両面を、接着層として機能する絶縁性の樹脂層で挟持することにより、上述の目的が達成されることを見出し、本発明を完成させた。
 即ち、本発明は、第1接続層が、主として絶縁性樹脂からなる第2接続層と第3接続層とに挟持された3層構造の異方性導電フィルムであって、
 第1接続層が、絶縁性樹脂層の第2接続層側の平面方向に導電粒子が単層で配列された構造を有し、隣接する導電粒子間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている異方性導電フィルムを提供する。
 また、本発明は、上述の異方性導電フィルムの製造方法であって、以下の工程(A)~(D)を有する製造方法を提供する。
<工程(A)>
 開口が形成された転写型の開口内に導電粒子を配置し、開口が形成された転写型の表面に、剥離フィルム上に形成された絶縁性樹脂層を対向させる工程。
<工程(B)>
 剥離フィルム側から絶縁性樹脂層に対して圧力をかけ、開口内に絶縁性樹脂を押し込んで絶縁性樹脂層の表面に導電粒子を転着させ、それにより、絶縁性樹脂層の平面方向に導電粒子が単層で配列された構造であって、隣接する導電粒子間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている第1接続層を形成する工程。
<工程(C)>
 第1接続層の導電粒子側表面に、主として絶縁性樹脂からなる第2接続層を形成する工程。
<工程(D)>
 第2接続層と反対側の第1接続層の表面に、主として絶縁性樹脂からなる第3接続層を形成する工程。
 また、本発明は、上述の異方性導電フィルムの別の製造方法であって、以下の工程(a)~(c)を有する製造方法を提供する。
<工程(a)>
 開口が形成された転写型の開口内に導電粒子を配置し、開口が形成された転写型の表面に、予め第3接続層が貼り合わされた絶縁性樹脂層を対向させる工程。
<工程(b)>
 剥離フィルム側から絶縁性樹脂層に対して圧力をかけ、開口内に絶縁性樹脂を押し込んで絶縁性樹脂層の表面に導電粒子を転着させ、それにより、絶縁性樹脂層の平面方向に導電粒子が単層で配列された構造であって、隣接する導電粒子間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている第1接続層を形成する工程。
<工程(c)>
 第1接続層の導電粒子側表面に、主として絶縁性樹脂からなる第2接続層を形成する工程。
 また、本発明は、上述の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続してなる接続構造体を提供する。
 また、本発明は、上述の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続する接続方法であって、
 第2電子部品に対し、異方性導電フィルムをその第3接続層側から仮貼りし、仮貼りされた異方性導電フィルムに対し、第1電子部品を搭載し、第1電子部品側から熱圧着する接続方法を提供する。
 第1接続層が絶縁性の第2接続層と第3接続層とに挟持された3層構造の本発明の異方性導電フィルムは、第1接続層が、絶縁性樹脂層の第2接続層側の平面方向に導電粒子が単層で配列された構造を有し、隣接する導電粒子間の中央の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている構造を有する。このため、導電粒子が単層で配列された異方性導電フィルムにおいて、良好な接続信頼性、良好な絶縁性、及び良好な粒子捕捉効率を実現できる。
図1Aは、本発明の異方性導電フィルムの断面図である。 図1Bは、本発明の異方性導電フィルムの断面図である。 図1Cは、本発明の異方性導電フィルムの断面図である。 図2Aは、本発明の異方性導電フィルムの製造工程(A)の説明図である。 図2Bは、本発明の異方性導電フィルムの製造工程(A)の説明図である。 図3Aは、本発明の異方性導電フィルムの製造工程(B)の説明図である。 図3Bは、本発明の異方性導電フィルムの製造工程(B)の説明図である。 図3Cは、本発明の異方性導電フィルムの製造工程の説明図である。 図4は、本発明の異方性導電フィルムの製造工程(C)の説明図である。 図5は、本発明の異方性導電フィルムの製造工程(D)の説明図である。 図6Aは、本発明の異方性導電フィルムの製造工程(a)の説明図である。 図6Bは、本発明の異方性導電フィルムの製造工程(a)の説明図である。 図7Aは、本発明の異方性導電フィルムの製造工程(b)の説明図である。 図7Bは、本発明の異方性導電フィルムの製造工程(b)の説明図である。 図7Cは、本発明の異方性導電フィルムの製造工程(b)の説明図である。 図8は、本発明の異方性導電フィルムの製造工程(c)の説明図である。
 以下、本発明の異方性導電フィルムを詳細に説明する。
<<異方性導電フィルム>>
 図1Aに示すように、本発明の異方性導電フィルム100は、第1接続層1が、主として絶縁性樹脂からなる第2接続層2と第3接続層3とに挟持された3層構造を有する。この第1接続層1は、絶縁性樹脂層10の第2接続層2側の平面方向に導電粒子4が単層で配列されている構造を有する。この場合、導電粒子4は、平面方向に最密充填されていてもよいが、導電粒子4が平面方向に一定の間隔をあけて規則的に(例えば、正方格子状に)配列されていることが好ましい。また、隣接する導電粒子4間の中央領域の絶縁性樹脂層厚t1が、導電粒子4の近傍の絶縁性樹脂層厚t2よりも薄くなっている構造を有する。絶縁性樹脂層厚t1が絶縁性樹脂層厚t2よりも薄くなっていると、異方性導電接続の際、接続すべき端子間に存在せずに利用されなかった導電粒子4は、図1Bに示すように、異方性導電接続の際の加熱加圧により導電粒子4間の絶縁性樹脂層が溶断して導電粒子4を被覆して被覆層1dを形成することができるため、ショートの発生を抑制することができる。
 ここで、隣接する導電粒子4間の中央領域とは、図1Aに示すように、隣接する導電粒子間距離Lの中間点Pを中心として±L/4以内の領域である。また、導電粒子近傍とは、第1接続層1の層厚方向で導電粒子4に接する線分付近の位置を意味する。
 なお、絶縁性樹脂層厚t1と絶縁性樹脂層厚t2とは、更に、以下の関係を有することが好ましい。これは、t1がt2に対し薄すぎると導電粒子4が流動し易くなって粒子捕捉効率が低下する傾向があり、また、t2の厚さに近づきすぎると、本発明の効果が得られに難くなる傾向があるからである。
Figure JPOXMLDOC01-appb-I000001
 また、絶縁性樹脂層厚t1の絶対厚としては、薄すぎると第1接続層1を形成し難くなることが懸念されるので、好ましくは0.5μm以上である。他方、絶縁性樹脂層厚t2の絶対厚としては、厚すぎると絶縁性樹脂層10が異方性導電接続の際に接続領域から排除され難くなって導通不良が生ずることが懸念されるので、好ましくは6μm以下である。
 なお、図1Cに示すように、導電粒子を含む樹脂層の厚みが平面方向で大きく変動し、その結果、当該樹脂層が分断されるように存在している場合には、導電粒子4間の絶縁性樹脂層厚が実質的に0となってもよい。実質的に0とは導電粒子を含む絶縁性樹脂層が個々に独立して存在している状態を意味する。このような場合には、上述の式の適用はできないので、良好な接続信頼性、良好な絶縁性、及び良好な粒子捕捉効率を実現するためには、導電粒子4の中心を通る垂線と絶縁性樹脂層厚が最も薄い位置との最短距離L、L2、L3、L・・を制御することで好ましく行うことができる。即ち、この最短距離L、L2、L3・・・が長くなると、第1接続層1の樹脂量が相対的に増大し、生産性が向上し、導電粒子4の流動を抑制できる。他方、この最短距離L、L2、L3、L・・・が短くなると、第1接続層1の樹脂量が相対的に減少し、粒子間距離を容易に制御することができる。換言すれば、導電粒子の位置合わせの精度を向上させることができる。好ましい距離L、L2、L3、L・・・は、導電粒子4の粒子径の好ましくは0.5倍より大きく1.5倍未満、より好ましくは0.6~1.2倍の範囲である。
 また、図1Cに示すように、導電粒子4が第1接続層1に埋没していてもよい。浅く埋没するか深く埋没するかという埋没の程度は、第1接続層1の形成時の材料の粘度や、導電粒子を配列した転写型の開口の形状、大きさ等によって変化するが、特に、開口の基底径と開口径との関係で制御することができる。例えば、基底径は導電粒子径の1.1倍以上2倍未満とし、開口径を導電粒子径の1.3倍以上3倍未満とすることが好ましい。
 なお、本発明の効果を損なわない範囲で、図1Cにおいて点線で示すように、導電粒子4′が第2接続層2に存在していてもよい。
<第1接続層>
 このような第1接続層1を構成する絶縁性樹脂層10としては、公知の絶縁性樹脂層を適宜採用することができる。例えば、アクリレート化合物と熱又は光ラジカル重合開始剤とを含む熱又は光ラジカル重合型樹脂層又はそれを熱又は光ラジカル重合させたもの、またはエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含む熱又は光カチオン若しくはアニオン重合型樹脂層又はそれを熱又は光カチオン重合若しくはアニオン重合させたものを採用することができる。
 中でも、第1接続層1を構成する絶縁性樹脂層10として、アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合型樹脂層を採用してもよいが、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合型樹脂層を採用することが好ましい。これにより、光ラジカル重合型樹脂層に紫外線を照射して光ラジカル重合させて第1接続層1を形成することができる。この場合、第2接続層2の形成前に、導電粒子側から光ラジカル重合型樹脂層に紫外線を照射して光ラジカル重合させると、図1Aに示すように、第1接続層1において、導電粒子4と第3接続層3の表面3aとの間に位置する領域1Xの硬化率を、互いに隣接する導電粒子間に位置する領域1Yの硬化率よりも低くすることができる。従って、第1接続層における硬化率の低い領域1Xの最低溶融粘度を第1接続層における硬化率の高い領域1Yの最低溶融粘度よりも小さくすることができ、異方性導電接続の際に、導電粒子4の位置ズレを防止し、粒子捕捉効率を向上させ、導電粒子4の押し込み性を向上させ、導通抵抗値を低下させ、良好な導通信頼性を実現することができる。
 ここで、硬化率は重合に寄与する官能基(例えばビニル基)の減少比率として定義される数値である。具体的には、硬化後のビニル基の存在量が硬化前の20%であれば、硬化率は80%となる。ビニル基の存在量の測定は、赤外吸収スペクトルのビニル基の特性吸収分析により行うことができる。
 このように定義される、領域1Xの硬化率は好ましくは40~80%であり、他方、領域1Yの硬化率は好ましくは70~100%である。
 また、レオメーターで測定した、第1接続層1の最低溶融粘度は、第2接続層2及び第3接続層3のそれぞれの最低溶融粘度よりも高いことが好ましい。具体的には[第1接続層1の最低溶融粘度(mPa・s)]/[第2接続層2又は第3接続層3の最低溶融粘度(mPa・s)]の数値が、低すぎると粒子捕捉効率が低下し、ショート発生の確率が上昇する傾向があり、高すぎると導通信頼性が低下する傾向があるので、好ましくは1~1000、より好ましくは4~400である。なお、それぞれの好ましい最低溶融粘度は、前者については、低すぎると粒子捕捉効率が低下する傾向があり、高すぎると導通抵抗値が大きくなる傾向があるので、好ましくは100~100000mPa・s、より好ましくは500~50000mPa・sである。後者については、低すぎるとリールにした際に樹脂のはみ出しが生ずる傾向があり、高すぎると導通抵抗値が高くなる傾向があるので、好ましくは0.1~10000mPa・s、より好ましくは1~1000mPa・sである。
<アクリレート化合物>
 第1接続層1を構成する絶縁性樹脂層10に使用するアクリレート化合物としては、従来公知のラジカル重合性アクリレートを使用することができる。例えば、単官能(メタ)アクリレート(ここで、(メタ)アクリレートにはアクリレートとメタクリレートとが包含される)、二官能以上の多官能(メタ)アクリレートを使用することができる。本発明においては、接着剤を熱硬化性とするために、アクリル系モノマーの少なくとも一部に多官能(メタ)アクリレートを使用することが好ましい。
 単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-メチルブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、2-メチルヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ブチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、n-ノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、モルホリン-4-イル(メタ)アクリレート等が挙げられる。二官能(メタ)アクリレートとしては、ビスフェノールF―EO変性ジ(メタ)アクリレート、ビスフェノールA-EO変性ジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート、ジシクロペンタジエン(メタ)アクリレート等が挙げられる。三官能(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンPO変性(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート等が挙げられる。四官能以上の(メタ)アクリレートとしては、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート等が挙げられる。その他に、多官能ウレタン(メタ)アクリレートも使用することができる。具体的には、M1100、M1200、M1210、M1600(以上、東亞合成(株))、AH-600、AT-600(以上、共栄社化学(株))等が挙げられる。
 第1接続層1を構成する絶縁性樹脂層10におけるアクリレート化合物の含有量は、少なすぎると第2接続層2との最低溶融粘度差をつけにくくなる傾向があり、多すぎると硬化収縮が大きくなって作業性が低下する傾向があるので、好ましくは2~70質量%、より好ましくは10~50質量%である。
<光ラジカル重合開始剤>
 光ラジカル重合開始剤としては、公知の光ラジカル重合開始剤の中から適宜選択して使用することができる。たとえは、アセトフェノン系光重合開始剤、ベンジルケタール系光重合開始剤、リン系光重合開始剤等が挙げられる。具体的には、アセトフェノン系光重合開始剤として、2-ヒドロキシ-2-シクロへキシルアセトフェノン(イルガキュア(IRGACURE)184、BASFジャパン(株))、α-ヒドロキシ-α,α′-ジメチルアセトフェノン(ダロキュア(DAROCUR)1173、BASFジャパン(株))、2,2-ジメトキシ-2-フェニルアセトフェノン(イルガキュア(IRGACURE)651、BASFジャパン(株))、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン(ダロキュア(DAROCUR)2959、BASFジャパン(株))、2-ヒドロキシ-1-{4-[2-ヒドロキシ-2-メチル-プロピオニル]-ベンジル}フェニル}-2-メチル-プロパン-1-オン(イルガキュア(IRGACURE)127、BASFジャパン(株))等が挙げられる。ベンジルケタール系光重合開始剤として、ベンゾフェノン、フルオレノン、ジベンゾスベロン、4-アミノベンゾフェノン、4,4′-ジアミノベンゾフェノン、4-ヒドロキシベンゾフェノン、4-クロロベンゾフェノン、4,4′-ジクロロベンゾフェノン等が挙げられる。また、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(イルガキュア(IRGACURE)369、BASFジャパン(株))も使用することができる。リン系光重合開始剤として、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(イルガキュア(IRGACURE)819、BASFジャパン(株))、(2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド(ダロキュア(DAROCURE)TPO、BASFジャパン(株))等が挙げられる。
 光ラジカル重合開始剤の使用量は、アクリレート化合物100質量部に対し、少なすぎると、光ラジカル重合が十分に進行しない傾向があり、多すぎると剛性低下の原因となることが懸念されるので、好ましくは0.1~25質量部、より好ましくは0.5~15質量部である。
<熱ラジカル重合開始剤>
 また、熱ラジカル重合開始剤としては、例えば、有機過酸化物やアゾ系化合物等が挙げられるが、気泡の原因となる窒素を発生しない有機過酸化物を好ましく使用することができる。
 有機過酸化物としては、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、アセチルアセトンパーオキサイド、1,1-ビス(tert-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン、1,1-ビス(tert-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロドデカン、イソブチルパーオキサイド、過酸化ラウロイル、琥珀酸パーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、過酸化ベンゾイル、オクタノイルパーオキサイド、ステアロイルパーオキサイド、ジイソプロピルパーオキシジカルボネート、ジノルマルプロピルパーオキシジカルボネート、ジ-2-エチルヘキシルパーオキシジカルボネート、ジ-2-エトキシエチルパーオキシジカルボネート、ジ-2-メトキシブチルパーオキシジカルボネート、ビス-(4-tert-ブチルシクロヘキシル)パーオキシジカルボネート、(α,α-ビス-ネオデカノイルパーオキシ)ジイソプロピルベンゼン、パーオキシネオデカン酸クミルエステル、パーオキシネオデカン酸オクチルエステル、パーオキシネオデカン酸ヘキシルエステル、パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ヘキシルエステル、パーオキシピバリン酸-tert-ブチルエステル、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、パーオキシ-2-エチルヘキサン酸-tert-ヘキシルエステル、パーオキシ-2-エチルヘキサン酸-tert-ブチルエステル、パーオキシ-2-エチルヘキサン酸-tert-ブチルエステル、パーオキシ-3-メチルプロピオン酸-tert-ブチルエステル、パーオキシラウリン酸-tert-ブチルエステル、tert-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、tert-ヘキシルパーオキシイソプロピルモノカルボネート、tert-ブチルパーオキシイソプロピルカルボネート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、過酢酸-tert-ブチルエステル、過安息香酸-tert-ヘキシルエステル、過安息香酸-tert-ブチルエステルなどが挙げられる。有機過酸物に還元剤を添加し、レドックス系重合開始剤として使用してもよい。
 アゾ系化合物としては、1,1-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2′-アゾビス(2-メチル-ブチロニトリル)、2,2′-アゾビスブチロニトリル、2,2′-アゾビス(2,4-ジメチル-バレロニトリル)、2,2′-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、2,2′-アゾビス(2-アミジノ-プロパン)塩酸塩、2,2′-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]塩酸塩、2,2′-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]塩酸塩、2,2′-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]、2,2′-アゾビス[2-メチル-N-(1,1-ビス(2-ヒドロキシメチル)-2-ヒドロキシエチル)プロピオンアミド]、2,2′-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2′-アゾビス(2-メチル-プロピオンアミド)二水塩、4,4′-アゾビス(4-シアノ-吉草酸)、2,2′-アゾビス(2-ヒドロキシメチルプロピオニトリル)、2,2′-アゾビス(2-メチルプロピオン酸)ジメチルエステル(ジメチル2,2′-アゾビス(2-メチルプロピオネート))、シアノ-2-プロピルアゾホルムアミドなどが挙げられる。
 熱ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、アクリレート化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
<エポキシ化合物>
 また、第1接続層1を構成する絶縁性樹脂層10を、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はそれらを熱又は光ラジカル重合させたものから構成してもよい。
 エポキシ化合物としては、分子内に2つ以上のエポキシ基を有する化合物もしくは樹脂が好ましく挙げられる。これらは液状であっても、固体状であってもよい。具体的には、ビスフェノールA、ビスフェノールF、ビスフェノールS、ヘキサヒドロビスフェノールA、テトラメチルビスフェノールA、ジアリルビスフェノールA、ハイドロキノン、カテコール、レゾルシン、クレゾール、テトラブロモビスフェノールA、トリヒドロキシビフェニル、ベンゾフェノン、ビスレゾルシノール、ビスフェノールヘキサフルオロアセトン、テトラメチルビスフェノールA、テトラメチルビスフェノールF、トリス(ヒドロキシフェニル)メタン、ビキシレノール、フェノールノボラック、クレゾールノボラックなどの多価フェノールとエピクロルヒドリンとを反応させて得られるグリシジルエーテル、またはグリセリン、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、チレングリコール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどの脂肪族多価アルコールとエピクロルヒドリンとを反応させて得られるポリグリシジルエーテル;p-オキシ安息香酸、β-オキシナフトエ酸のようなヒドロキシカルボン酸とエピクロルヒドリンとを反応させて得られるグリシジルエーテルエステル、あるいはフタル酸、メチルフタル酸、イソフタル酸、テレフタル酸、テトラハイドロフタル酸、ヘキサハイドロフタル酸、エンドメチレンテトラハイドロフタル酸、エンドメチレンヘキサハイドロフタル酸、トリメリット酸、重合脂肪酸のようなポリカルボン酸から得られるポリグリシジルエステル;アミノフェノール、アミノアルキルフェノールから得られるグリシジルアミノグリシジルエーテル;アミノ安息香酸から得られるグリシジルアミノグリシジルエステル;アニリン、トルイジン、トリブロムアニリン、キシリレンジアミン、ジアミノシクロヘキサン、ビスアミノメチルシクロヘキサン、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルスルホンなどから得られるグリシジルアミン;エポキシ化ポリオレフィン等の公知のエポキシ樹脂類が挙げられる。また、3、4-エポキシシクロヘキセニルメチル-3′,4′-エポキシシクロヘキセンカルボキシレート等の脂環式エポキシ化合物も使用することができる。
<熱カチオン重合開始剤>
 熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により、カチオン重合型化合物をカチオン重合させ得る酸を発生するものであり、公知のヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。熱カチオン系重合開始剤の好ましい例としては、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロボレート、トリフェニルスルフォニウムヘキサフルオロアンチモネート、トリフェニルスルフォニウムヘキサフルオロホスフェート、トリフェニルスルフォニウムヘキサフルオロボレートが挙げられる。具体的には、(株)ADEKA製SP-150、SP-170、CP-66、CP-77;日本曹達(株)製のCI-2855、CI-2639;三新化学工業(株)製のサンエイドSI-60、SI-80;ユニオンカーバイド社製のCYRACURE-UVI-6990、UVI-6974等が挙げられる。
 熱カチオン重合開始剤の配合量は、少なすぎると熱カチオン重合が十分に進行しない傾向があり、多すぎると剛性低下の原因となることが懸念されるので、エポキシ化合物100質量部に対し、好ましくは0.1~25質量部、より好ましくは0.5~15質量部である。
<熱アニオン重合開始剤>
 熱アニオン重合開始剤としては、エポキシ化合物の熱アニオン重合開始剤として公知のものを採用することができ、例えば、熱により、アニオン重合性化合物をアニオン重合させ得る塩基を発生するものであり、公知の脂肪族アミン系化合物、芳香族アミン系化合物、二級又は三級アミン系化合物、イミダゾール系化合物、ポリメルカプタン系化合物、三フッ化ホウ素-アミン錯体、ジシアンジアミド、有機酸ヒドラジッド等を用いることができ、温度に対して良好な潜在性を示すカプセル化イミダゾール系化合物を好ましく使用することができる。具体的には、旭化成イーマテリアルズ(株)製ノバキュアHX3941HP等が挙げられる。
 熱アニオン重合開始剤の配合量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
<光カチオン重合開始剤及び光アニオン重合開始剤>
 エポキシ化合物用の光カチオン重合開始剤又は光アニオン重合開始剤としては、公知のものを適宜使用することができる。
<導電粒子>
 第1接続層1を構成する導電粒子4としては、従来公知の異方性導電フィルムに用いられているものの中から適宜選択して使用することができる。例えばニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、金属被覆樹脂粒子などが挙げられる。2種以上を併用することもできる。
 導電粒子4の平均粒径としては、小さすぎると配線高さのばらつきに対応できず、導通抵抗が上昇する傾向があり、大きすぎるとショートの発生原因となる傾向があるので、好ましくは1~10μm、より好ましくは2~6μmである。平均粒径は、一般的な粒度分布測定装置により測定することができる。
 このような導電粒子4の第1接続層1中の存在量は、少なすぎると粒子捕捉効率が低下して異方性導電接続が難しくなり、多すぎるとショートの発生が懸念されるので、好ましくは1平方mm当たり50~40000個、より好ましくは200~20000個である。
<第1接続層におけるその他の成分>
 第1接続層1には、必要に応じて、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などの膜形成樹脂を併用することができる。
 第1接続層1を構成する絶縁性樹脂層10が、アクリレート化合物と光ラジカル重合開始剤からなる光ラジカル重合型樹脂層を光ラジカル重合させたものである場合、絶縁性樹脂層10に、更にエポキシ化合物と熱カチオン重合開始剤とを含有させることが好ましい。この場合、後述するように、第2接続層2並びに第3接続層3もエポキシ化合物と熱カチオン重合開始剤とを含有する熱カチオン重合型樹脂層とすることが好ましい。これにより、層間剥離強度を向上させることができる。
 第1接続層1においては、図1Aに示すように、導電粒子4は、第2接続層2に食い込んでいる(換言すれば、導電粒子4が第1接続層1の表面に露出している)ことが好ましい。導電粒子4がすべて第1接続層1に埋没していると、絶縁性樹脂層10の排除不足により導通抵抗が低下することが懸念されるからである。食い込みの程度は、小さすぎると粒子捕捉効率が低下する傾向があり、大きすぎると導通抵抗が上昇する傾向があるので、好ましくは導電粒子4の平均粒子径の10~90%、より好ましくは20~80%である。
 第1接続層1の形成は、開口が形成された型の開口内に導電粒子4を配置し、開口21が形成された型の表面に、剥離フィルム上に形成された第1接続層1となる絶縁性樹脂層10を対向させ、開口底部の隅にまで絶縁性樹脂が入り込まない程度に、必要に応じて加熱しながら加圧することにより行うことができる。
<第2接続層及び第3接続層>
 第2接続層2及び第3接続層3は、いずれも主として絶縁性樹脂から形成されるものである。絶縁性樹脂としては、公知の絶縁性樹脂の中から、適宜選択して使用することができる。第1接続層1の絶縁性樹脂層10と同様な材質から形成することができる。
 第2接続層2は、第1接続層1の導電粒子4側に位置するものであり、通常、ICチップのバンプ等の高い位置精度でアライメントが必要な端子側に配される層である。他方、第3接続層3は、通常、ガラス基板のベタ電極などの相対的に高いアライメント精度が要求されない端子側に配されるものである。
 第2接続層2の層厚は、薄すぎると樹脂充填不足による導通不良が生ずることが懸念され、厚すぎると圧着時に樹脂のはみ出しが生じ、圧着装置を汚染することが懸念されるので、好ましくは5~20μm、より好ましくは8~15μmである。他方、第3接続層3の層厚は、薄すぎると第2電子部品に仮貼りする際の貼付け不良が生ずることが懸念され、厚すぎると導通抵抗値が大きくなる傾向があるので、好ましくは0.5~6μm、より好ましくは1~5μmである。
<<異方性導電フィルムの製造方法>>
 次に、本発明の異方性導電フィルムの製造方法の一例を説明する。この製造方法は、以下の工程(A)~(D)を有する。以下工程毎に説明する。
<工程(A)>
 図2Aに示すように、開口21が形成された転写型20の開口21内に導電粒子4を配置し、図2Bに示すように、開口21が形成された転写型20の表面に、剥離フィルム22上に形成された絶縁性樹脂層10を対向させる。
 転写型20としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチールなどの金属等の無機材料や、各種樹脂等の有機材料などに対し、フォトリソグラフ法等の公知の開口形成方法によって開口を形成したものである。このような転写型20は、板状、ロール状等の形状をとることができる。
 転写型20の開口21は、その内部に導電粒子4を収容するものである。開口21の形状としては、円柱状、四角錐等の多角柱状、四角錐等の角錐状等を例示することができる。
 開口21の配列としては、格子状、千鳥状等の規則的な配列とすることが好ましい。
 なお、転写型20の開口21の径と深さは、レーザー顕微鏡で測定することができる。
 転写型20の開口21内に導電粒子4を収容する手法としては、特に限定されるものではなく、公知の手法を採用することができる。例えば、乾燥した導電粒子粉末またはこれを溶媒中に分散させた分散液を転写型20の開口形成面上に散布または塗布した後、ブラシやブレードなどを用いて開口形成面の表面をワイプすればよい。
 開口21の深さに対する導電粒子4の平均粒径の比(=導電粒子の平均粒径/開口の深さ)は、転写性向上と導電粒子保持性とのバランスから、好ましくは0.4~3.0、より好ましくは0.5~1.5である。
 また、開口21の径の導電粒子4の平均粒径に対する比(=開口の径/導電粒子の平均粒径)は、導電粒子の収容のしやすさ、絶縁性樹脂の押し込みやすさ等のバランスから、好ましくは1.1~2.0、より好ましくは1.3~1.8である。
 なお、開口21の径よりもその基底側が径が小さい場合には、基底径は導電粒子径の1.1倍以上2倍未満とし、開口径を導電粒子径の1.3倍以上3倍未満とすることが好ましい。
<工程(B)>
 次に、図3Aに示すように、剥離フィルム22側から絶縁性樹脂層10に対して圧力をかけ、開口21内に絶縁性樹脂を押し込んで絶縁性樹脂層10の表面に導電粒子4を埋め込むように転着させる。これにより、図3Bに示すような、絶縁性樹脂層10の平面方向に導電粒子4が単層で配列された構造であって、隣接する導電粒子4間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている第1接続層1を形成する。この場合、隣接する導電粒子4間で絶縁性樹脂層厚が実施的に0となってもよい(図1C参照)。実質的に0になると、接続後の個々の導電粒子の独立性が高まり、接続時に導電粒子が互いに連結することを防止し易くなる。
<工程(C)>
 次に、図4に示すように、第1接続層1の導電粒子4側表面に、主として絶縁性樹脂からなる第2接続層2を形成する。これにより、第1接続層と第2接続層の境界が起伏した状態、換言すればその形状が波型ないしは凹凸型となる。このように、フィルム内に存在する層に起伏のある形状を適用することで、接合時の主にバンプに対しての接触面積を増加させる確率を高めることができ、その結果、接着強度の向上が期待できる。
<工程(D)>
 次に、剥離フィルム22を取り除いたのち、第2接続層2と反対側の第1接続層1の表面に、主として絶縁性樹脂からなる第3接続層3を形成する。これにより、図5に示す異方性導電フィルム100が得られる。
 なお、工程(B)と工程(C)との間に、図3Cに示すように、第1接続層1に対し、導電粒子4側から紫外線UVを照射することが好ましい。これにより、導電粒子4を第1接続層1に固定化でき、しかも、導電粒子4の下方の第1接続層1の硬化率をその周囲に比べ相対的に低くすることができ、異方性導電接続の際の導電粒子の押し込み性を向上させることができる。
<<異方性導電フィルムの製造方法>>
 また、本発明の異方性導電フィルムの別の製造方法の例を説明する。この製造方法は、剥離フィルム22に代えて第3接続層3を使用する態様であり、以下の工程(a)~(c)を有する。以下工程毎に説明する。
<工程(a)>
 図6Aに示すように、開口21が形成された転写型20の開口21内に導電粒子4を配置し、図6Bに示すように、開口21が形成された転写型20の表面に、予め第3接続層3が貼り合わされた絶縁性樹脂層10を対向させる。
<工程(b)>
 次に、図7Aに示すように、第3接続層3側から絶縁性樹脂層10に対して圧力をかけ、開口21内に絶縁性樹脂を押し込んで絶縁性樹脂層10の表面に導電粒子4を転着させる。これにより、図7Bに示すような、絶縁性樹脂層10の平面方向に導電粒子4が単層で配列された構造であって、隣接する導電粒子4間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている第1接続層1を形成する。この場合、隣接する導電粒子4間で絶縁性樹脂層厚が実施的に0となってもよい(図1C参照)。実質的に0になると、接続後の個々の導電粒子の独立性が高まり、接続時に導電粒子が互いに連結することを防止し易くなる。
<工程(c)>
 次に、第1接続層1の導電粒子4側表面に、主として絶縁性樹脂からなる第2接続層2を形成する。これにより、図8に示す異方性導電フィルム100が得られる。
 なお、工程(b)と工程(c)との間に、図7Cに示すように、第1接続層1に対し、導電粒子4側から紫外線UVを照射することが好ましい。これにより、導電粒子4を第1接続層1に固定化でき、しかも、導電粒子4の下方の第1接続層1の硬化率をその周囲に比べ相対的に低くすることができ、異方性導電接続の際の導電粒子の押し込み性を向上させることができる。
 ところで、図8に示す異方性導電フィルムにおいては、導電粒子4は第1接続層1に主に包含されている。この場合、一つの導電粒子についてみたときに、それを包み込んでいる第1接続層1の領域は第2接続層2側に凸形状となっており、従って、その領域の第2接続層側の幅よりも、第3接続層側の幅が広くなっている。この幅の広い側における導電粒子4の厚み方向端部(粒子の下側端部)と第2接続層2までの水平方向の最短距離pが、接続時の導電粒子の安定性に寄与する。即ち、pは固定部分の台座に相当する役割を有する。換言すれば、導電粒子近傍の樹脂が山型になることは、これに包含されている粒子をその内部に留めさせ、孤立化させる。これは、押圧によって導電粒子が圧縮される際、その導電粒子を包み込んでいる第1接続層の裾野部分の存在によって平面方向への導電粒子の流動は相対的に抑制される確率が高まるからである。この効果は、既に説明したように、導電粒子間中央領域に第1接続層の厚みが存在しなくても、本質的には同様の効果を示す。これは、上記したように粒子流動の抑制はその近傍樹脂の形状で担うためであり、その端部が閉鎖的であるか、わずかに開放的であるかには、本質的な差異はないためである。このため、導電粒子間の連結を防止するという効果としては、結果として略同一の発現が期待できる。以上のことから、pは山型の裾野までに相当する長さ、つまり作用効果が期待できるまでの長さを表す。この場合、導電粒子の厚み方向端部と第2接続層2までの水平方向の最短距離pは、好ましくは導電粒子径の0.5~1.5倍、より好ましくは0.55~1.25倍となる。
<<異方性導電フィルムの用途>>
 このようにして得られた異方性導電フィルムは、ICチップ、ICモジュールなどの第1電子部品と、フレキシブル基板、ガラス基板などの第2電子部品とを熱又は光により異方性導電接続する際に好ましく適用することができる。このようにして得られる接続構造体も本発明の一部である。この場合、配線基板などの第2電子部品に対し、異方性導電フィルムをその第3接続層側から仮貼りし、仮貼りされた異方性導電フィルムに対し、ICチップなどの第1電子部品を搭載し、第1電子部品側から熱圧着することが、接続信頼性を高める点から好ましい。また、光硬化を利用して接続することもできる。
 以下、本発明を実施例により具体的に説明する。
  実施例1~10
 表1又は表2に記載された配合に従って、アクリレート及び光ラジカル重合開始剤等を酢酸エチル又はトルエンにて固形分が50質量%となるように混合液を調製した。この混合液を、厚さ50μmのポリエチレンテレフタレートフィルム(PETフィルム)に、乾燥厚が5μmとなるように塗布し、80℃のオーブン中で5分間乾燥することにより、第1接続層となる光ラジカル重合型の絶縁性樹脂層を形成した。
 次に、直径5.5μmで深さ4.5μmの円柱状の開口が縦横9μmピッチで設けられているステンレススチール製の転写型を用意し、各開口に平均粒径4μmの導電粒子(Ni/Auメッキ樹脂粒子、AUL704、積水化学工業(株))を一つずつ収容した。この転写型の開口形成面に対し、第1接続層用の絶縁性樹脂層を対向させ、剥離フィルム側から、60℃で0.5MPaという条件で加圧することにより導電粒子を絶縁性樹脂層に押し込んだ。これにより、隣接する導電粒子間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている絶縁性樹脂層を形成した。
 次に、この導電粒子側から光ラジカル重合型の絶縁性樹脂層に対し、波長365nm、積算光量4000mL/cmの紫外線を照射することにより、表面に導電粒子が固定された第1接続層を形成した。
 熱硬化性樹脂及び潜在性硬化剤等を酢酸エチル又はトルエンにて固形分が50質量%となるように混合液を調製した。この混合液を、厚さ50μmのPETフィルムに、乾燥厚が12μmとなるように塗布し、80℃のオーブン中で5分間乾燥することにより、第2接続層とを形成した。同様の操作により乾燥厚3μmの第3接続層を形成した。
 このようにして得られた第1接続層に、第2接続層を、導電粒子が内側となるように、60℃、0.5MPaという条件でラミネートし、続いて反対面に第3接続層を同様にラミネートすることにより異方性導電フィルムを得た。
 なお、実施例7~10については、導電粒子間の第1接続層の厚みが実質的に0となるように異方性導電フィルムを作成した。具体的には、第1接続層用の絶縁性樹脂層を対向させ、剥離フィルム側から、60℃で0.5MPaという条件で加圧した後、60℃で1.0MPaという条件で再加圧すること以外は、実施例1と同様の条件で異方性導電フィルムを作成した。
  比較例1
 表1に記載された配合に従って、実施例1と同様に第1接続層の前駆層である光ラジカル重合型の絶縁性樹脂層を形成した。
 次に、直径5.5μmで深さ4.5μmの円柱状の開口が縦横9μmピッチで設けられているステンレススチール製の転写型を用意し、各開口に平均粒径4μmの導電粒子(Ni/Auメッキ樹脂粒子、AUL704、積水化学工業(株))を一つずつ収容した。この転写型の開口形成面に対し、第1接続層用の絶縁性樹脂層を対向させ、剥離フィルム側から、40℃で0.1MPaという相対的に弱い条件で加圧することにより導電粒子を絶縁性樹脂層表面に転写した。導電粒子が転写されたこのフィルムを取り出し、導電粒子を絶縁性樹脂層中に、樹脂層の表面が平坦となるように完全に押し込んだ。
 次に、導電粒子が埋め込まれた光ラジカル重合型の絶縁性樹脂層に対し、波長365nm、積算光量4000mL/cmの紫外線を照射することにより平坦な第1接続層を形成した。
 この第1接続層に対し、実施例1と同様に作成した12μm厚の第2接続層と3μm厚の第3接続層とをラミネートすることにより異方性導電フィルムを得た。
  比較例2
 表1の第1接続層用の樹脂組成物に実施例1で使用したものと同じ導電粒子を1平方mm当たり20000個となるように均一に分散した混合物から、厚さ6μmの導電粒子含有樹脂フィルムを作成した。このフィルムに対し、実施例1と同様に作成した厚さ12μmの第2接続層を、60℃で0.5MPaという条件で貼り付けることにより2層構造の異方性導電フィルムを作成した。
<評価>
 得られた異方性導電フィルムにおける導電粒子間の平面方向均等配列について、平面均等配列が形成されている場合にはその適用があり(有)とし、それ以外を適用なし(無)とする。また、導電粒子近傍の絶縁性樹脂層厚について、導電粒子間の中間領域の絶縁性樹脂層厚(層厚0も含む)よりも大きい場合には、導電粒子近傍の絶縁性樹脂層厚の増大があり(有)とし、それ以外の場合をなし(無)とした。その結果を表1又は表2に示す。なお、異方性導電フィルムの構成層数も併せて示す。
 得られた異方性導電フィルムを用いて、0.5×1.8×20.0mmの大きさのICチップ(バンプサイズ30×85μm:バンプ高さ15μm、バンプピッチ50μm)を、0.5×50×30mmの大きさのコーニング社製のガラス配線基板(1737F)に180℃、80MPa、5秒という条件で実装して接続構造サンプル体を得た。この接続構造サンプル体の接続部の断面を電子顕微鏡で観察したところ、図1Aに示したように、導電粒子の周囲に絶縁性樹脂層が存在していることが確認できた。
 得られた接続構造サンプル体について、以下に説明するように、「最低溶融粘度」、「粒子捕捉効率」、「導通信頼性」及び「絶縁性」を試験評価した。得られた結果を表1又は表2に示す。
「最低溶融粘度」
 接続構造サンプル体を構成する第1接続層及び第2接続層のそれぞれの最低溶融粘度を、回転式レオメータ(TA Instruments社)を用い、昇温速度10℃/分;測定圧力5g一定;使用測定プレート直径8mmという条件で測定した。
「粒子捕捉効率」
 “加熱・加圧前の接続構造サンプル体のバンプ上に存在する理論粒子量”に対する“加熱・加圧後(実際の実装後)の接続構造サンプル体のバンプ上で実際に捕捉されている粒子量”の割合を以下の数式に従って求めた。実用上、50%以上であることが望ましい。
Figure JPOXMLDOC01-appb-I000002
「導通信頼性」
 接続構造サンプル体を、85℃、85%RHの高温高湿環境下に放置し、初期と500時間経過後の導通抵抗値を測定した。実用上、500時間経過後でも抵抗値10Ω以下であることが望ましい。
「絶縁性」
 7.5μmスペースの櫛歯TEGパターンのショート発生率を求めた。実用上、100ppm以下であることが望ましい。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1から分かるように、実施例1~6の異方性導電フィルムについては、粒子捕捉効率、導通信頼性、絶縁性の各評価項目についてはいずれも実用上好ましい結果を示した。なお、実施例1~4の結果から、第1、第2、第3接続層がいずれも同じ硬化系であると、それらの層同士が反応するので、導電粒子の押し込み性が若干低下して導通抵抗値が上昇する傾向があることがわかる。また、第1接続層がカチオン重合系であると、ラジカル重合系よりも耐熱性が改善されるので、やはり導電粒子の押し込み性が若干低下して導通抵抗値が上昇する傾向があることがわかる。
 それに対し、比較例1の異方性導電フィルムについては、第1接続層において、隣接する導電粒子間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっていないので、導通信頼性が大きく低下してしまった。従来の2層構造の比較例2の異方性導電フィルムについては、粒子捕捉効率が大きく低下し、絶縁性にも問題があった。
 また、表2からわかるように、実施例7~10の異方性導電フィルムは、導電粒子間中央部の厚みがゼロであるため導電粒子の独立性が高まり、粒子捕捉効率、導通信頼性、絶縁性の各評価項目についてはいずれも実用上好ましい結果を示した。
 第1接続層が絶縁性の第2接続層と第3接続層とに挟持された3層構造の本発明の異方性導電フィルムは、第1接続層が、絶縁性樹脂層の第2接続層側の平面方向に導電粒子が単層で配列された構造を有し、隣接する導電粒子間の中央の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている構造を有する。このため、導電粒子が単層で配列された異方性導電フィルムにおいて、良好な接続信頼性、良好な絶縁性、及び良好な粒子捕捉効率を実現できる。よって、ICチップなどの電子部品の配線基板への異方性導電接続に有用である。
1 第1接続層
1X 第1接続層における硬化率の低い領域
1Y 第1接続層における硬化率の高い領域
1d 被覆層
2 第2接続層
3 第3接続層
3a 第3接続層の表面
4 導電粒子
10 絶縁性樹脂層
20 転写型
21 開口
22 剥離フィルム
100 異方性導電フィルム
L 導電粒子間距離
P 導電粒子間距離の中間点
t1、t2 絶縁性樹脂層厚
 

Claims (13)

  1.  第1接続層が、主として絶縁性樹脂からなる第2接続層と第3接続層とに挟持された3層構造の異方性導電フィルムであって、
     第1接続層が、絶縁性樹脂層の第2接続層側の平面方向に導電粒子が単層で配列された構造を有し、隣接する導電粒子間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている異方性導電フィルム。
  2.  第1接続層が、アクリレート化合物と熱又は光ラジカル重合開始剤とを含む熱又は光ラジカル重合型樹脂層又はそれを熱又は光ラジカル重合させたもの、またはエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含む熱又は光カチオン若しくはアニオン重合型樹脂層又はそれを熱又は光カチオン重合若しくはアニオン重合させたものである請求項1記載の異方性導電フィルム。
  3.  導電粒子が、第2接続層に食い込んでいる請求項1又は2記載の異方性導電フィルム。
  4.  第1接続層において、導電粒子と第1接続層の第3接続層側表面との間に位置する領域の第1接続層の硬化率が、互いに隣接する導電粒子間に位置する領域の第1接続層の硬化率よりも低い請求項1~3のいずれかに記載の異方性導電フィルム。
  5.  第1接続層の最低溶融粘度が、第2接続層及び第3接続層のそれぞれの最低溶融粘度よりも高い請求項1~4のいずれかに記載の異方性導電フィルム。
  6.  第1接続層の最低溶融粘度の、第2接続層及び第3接続層のそれぞれの最低溶融粘度に対する比が1:4~400である請求項5記載の異方性導電フィルム。
  7.  導電粒子の厚み方向端部と第2接続層までの水平方向の最短距離が、粒子径の0.5~1.5倍である請求項1~6のいずれかに記載の異方性導電フィルム。
  8.  請求項1記載の異方性導電フィルムの製造方法であって、以下の工程(A)~(D):
    工程(A)
     開口が形成された転写型の開口内に導電粒子を配置し、開口が形成された転写型の表面に、剥離フィルム上に形成された絶縁性樹脂層を対向させる工程;
    工程(B)
     剥離フィルム側から絶縁性樹脂層に対して圧力をかけ、開口内に絶縁性樹脂を押し込んで絶縁性樹脂層の表面に導電粒子を転着させ、それにより、絶縁性樹脂層の平面方向に導電粒子が単層で配列された構造であって、隣接する導電粒子間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている第1接続層を形成する工程;
    工程(C)
     第1接続層の導電粒子側表面に、主として絶縁性樹脂からなる第2接続層を形成する工程; 及び
    工程(D)
     第2接続層と反対側の第1接続層の表面に、主として絶縁性樹脂からなる第3接続層を形成する工程
    を有する製造方法。
  9.  請求項1記載の異方性導電フィルムの製造方法であって、以下の工程(a)~(c):
    <工程(a)>
     開口が形成された転写型の開口内に導電粒子を配置し、開口が形成された転写型の表面に、予め第3接続層が貼り合わされた絶縁性樹脂層を対向させる工程;
    <工程(b)>
     剥離フィルム側から絶縁性樹脂層に対して圧力をかけ、開口内に絶縁性樹脂を押し込んで絶縁性樹脂層の表面に導電粒子を転着させ、それにより、絶縁性樹脂層の平面方向に導電粒子が単層で配列された構造であって、隣接する導電粒子間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている第1接続層を形成する工程;
    及び
    <工程(c)>
     第1接続層の導電粒子側表面に、主として絶縁性樹脂からなる第2接続層を形成する工程
    を有する製造方法。
  10.  工程(B)と工程(C)との間に、第1接続層に対し、導電粒子側から紫外線を照射する工程を更に有する請求項8記載の製造方法。
  11.  工程(b)と工程(c)との間に、第1接続層に対し、導電粒子側から紫外線を照射する工程を更に有する請求項9記載の製造方法。
  12.  請求項1~7のいずれかに記載の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続してなる接続構造体。
  13.  請求項1~7のいずれかに記載の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続する接続方法であって、
     第2電子部品に対し、異方性導電フィルムをその第3接続層側から仮貼りし、仮貼りされた異方性導電フィルムに対し、第1電子部品を搭載し、第1電子部品側から熱圧着する接続方法。
     
PCT/JP2013/072571 2012-08-24 2013-08-23 異方性導電フィルム及びその製造方法 WO2014030744A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020147035905A KR101716945B1 (ko) 2012-08-24 2013-08-23 이방성 도전 필름 및 그의 제조 방법
KR1020217042801A KR102551117B1 (ko) 2012-08-24 2013-08-23 이방성 도전 필름 및 그의 제조 방법
CN201380044397.8A CN104541411B (zh) 2012-08-24 2013-08-23 各向异性导电膜及其制造方法
KR1020197036321A KR102345819B1 (ko) 2012-08-24 2013-08-23 이방성 도전 필름 및 그의 제조 방법
KR1020177006454A KR102056086B1 (ko) 2012-08-24 2013-08-23 이방성 도전 필름 및 그의 제조 방법
US14/422,511 US20150214176A1 (en) 2012-08-24 2013-08-23 Anisotropic conductive film and method of producing the same
HK15105982.2A HK1205366A1 (en) 2012-08-24 2015-06-24 Anisotropic conductive film and manufacturing method therefor
US16/694,212 US11404391B2 (en) 2012-08-24 2019-11-25 Anisotropic conductive film and method of producing the same
US17/738,655 US11784154B2 (en) 2012-08-24 2022-05-06 Anisotropic conductive film and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012184833 2012-08-24
JP2012-184833 2012-08-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/422,511 A-371-Of-International US20150214176A1 (en) 2012-08-24 2013-08-23 Anisotropic conductive film and method of producing the same
US16/694,212 Continuation US11404391B2 (en) 2012-08-24 2019-11-25 Anisotropic conductive film and method of producing the same

Publications (1)

Publication Number Publication Date
WO2014030744A1 true WO2014030744A1 (ja) 2014-02-27

Family

ID=50150047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072571 WO2014030744A1 (ja) 2012-08-24 2013-08-23 異方性導電フィルム及びその製造方法

Country Status (7)

Country Link
US (3) US20150214176A1 (ja)
JP (5) JP6024620B2 (ja)
KR (4) KR102056086B1 (ja)
CN (3) CN109166649B (ja)
HK (1) HK1205366A1 (ja)
TW (6) TWI810551B (ja)
WO (1) WO2014030744A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114314A1 (ja) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 異方導電性フィルム
KR20170057363A (ko) * 2015-01-13 2017-05-24 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름, 그 제조 방법 및 접속 구조체
JP2017147224A (ja) * 2016-02-15 2017-08-24 デクセリアルズ株式会社 異方性導電フィルム、その製造方法及び接続構造体
CN107112253A (zh) * 2015-01-13 2017-08-29 迪睿合株式会社 凸点形成用膜、半导体装置及其制造方法以及连接构造体
WO2018101108A1 (ja) * 2016-12-01 2018-06-07 デクセリアルズ株式会社 異方性導電フィルム
CN115710367A (zh) * 2016-10-18 2023-02-24 迪睿合株式会社 含填料膜
TWI824740B (zh) * 2014-10-28 2023-12-01 日商迪睿合股份有限公司 異向性導電膜、連接構造體、及連接構造體之製造方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI810551B (zh) 2012-08-24 2023-08-01 日商迪睿合股份有限公司 中間產物膜、異向性導電膜、連接構造體、及連接構造體之製造方法
CN107267076B (zh) 2012-08-24 2021-06-29 迪睿合电子材料有限公司 各向异性导电膜的制造方法和各向异性导电膜
KR20240025047A (ko) * 2013-11-19 2024-02-26 데쿠세리아루즈 가부시키가이샤 이방 도전성 필름 및 접속 구조체
TWI722980B (zh) * 2014-02-04 2021-04-01 日商迪睿合股份有限公司 異向性導電膜及其製造方法
JP7052254B2 (ja) 2016-11-04 2022-04-12 デクセリアルズ株式会社 フィラー含有フィルム
KR102042400B1 (ko) 2015-05-27 2019-11-08 데쿠세리아루즈 가부시키가이샤 이방 도전성 필름 및 접속 구조체
JP2017191688A (ja) * 2016-04-12 2017-10-19 デクセリアルズ株式会社 電気特性の検査方法
JP6889020B2 (ja) * 2016-05-02 2021-06-18 デクセリアルズ株式会社 異方性導電フィルムの製造方法、及び異方性導電フィルム
WO2017191772A1 (ja) * 2016-05-05 2017-11-09 デクセリアルズ株式会社 フィラー配置フィルム
WO2018051799A1 (ja) 2016-09-13 2018-03-22 デクセリアルズ株式会社 フィラー含有フィルム
JP6187665B1 (ja) * 2016-10-18 2017-08-30 デクセリアルズ株式会社 異方性導電フィルム
US20200299474A1 (en) 2016-10-18 2020-09-24 Dexerials Corporation Filler-containing film
JP7035370B2 (ja) 2016-10-31 2022-03-15 デクセリアルズ株式会社 フィラー含有フィルム
KR102282081B1 (ko) * 2016-11-30 2021-07-27 데쿠세리아루즈 가부시키가이샤 도전 입자 배치 필름, 그 제조 방법, 검사 프로브 유닛, 도통 검사 방법
JP7039883B2 (ja) 2016-12-01 2022-03-23 デクセリアルズ株式会社 異方性導電フィルム
TWI763750B (zh) * 2016-12-01 2022-05-11 日商迪睿合股份有限公司 異向性導電膜
KR102519781B1 (ko) * 2016-12-01 2023-04-10 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름
KR20190132341A (ko) * 2017-03-30 2019-11-27 세키스이가가쿠 고교가부시키가이샤 도전성 입자, 도전 재료 및 접속 구조체
CN109273143A (zh) * 2017-07-18 2019-01-25 玮锋科技股份有限公司 异向性导电薄膜的制作方法
JP7066998B2 (ja) 2017-08-23 2022-05-16 デクセリアルズ株式会社 スペーサ含有テープ
JP7062389B2 (ja) * 2017-08-23 2022-05-06 デクセリアルズ株式会社 異方性導電フィルム
CN112313032A (zh) * 2018-06-26 2021-02-02 昭和电工材料株式会社 各向异性导电膜及其制造方法以及连接结构体的制造方法
KR102254467B1 (ko) * 2018-07-12 2021-05-21 에이치엔에스하이텍(주) 이방도전성 접착필름의 제조방법
CN108882552A (zh) * 2018-08-10 2018-11-23 武汉华星光电半导体显示技术有限公司 导电胶及电路板的邦定方法
US11240918B2 (en) * 2018-08-28 2022-02-01 Research And Business Foundation Sungkyunkwan University Method for flip-chip bonding using anisotropic adhesive polymer
KR102238223B1 (ko) * 2018-08-28 2021-04-09 성균관대학교산학협력단 비등방성 접착 고분자를 이용한 디웨팅 유도 플립-칩 본딩 방법
CN112017806A (zh) * 2019-05-29 2020-12-01 玮锋科技股份有限公司 导电膜制作方法
KR20230107273A (ko) * 2020-11-12 2023-07-14 가부시끼가이샤 레조낙 회로 접속용 접착제 필름 및 그 제조 방법, 및 접속 구조체 및 그 제조 방법
WO2022230638A1 (ja) 2021-04-26 2022-11-03 キヤノン株式会社 電子写真用部材とその製造方法、プロセスカートリッジ及び電子写真画像形成装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220669A (ja) * 2002-01-29 2003-08-05 Asahi Kasei Corp 異方性を有する導電性接着シートおよびその製造方法
JP2003286456A (ja) * 2002-03-28 2003-10-10 Asahi Kasei Corp 異方性を有する導電性接着シートおよびその製造方法
JP2003286457A (ja) * 2002-03-28 2003-10-10 Asahi Kasei Corp 異方導電性接着シートおよびその製造方法
JP2010033793A (ja) * 2008-07-28 2010-02-12 Tokai Rubber Ind Ltd 粒子転写膜の製造方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3786214B2 (ja) * 1994-05-10 2006-06-14 日立化成工業株式会社 異方導電性樹脂フィルム状成形物の製法
US6034331A (en) 1996-07-23 2000-03-07 Hitachi Chemical Company, Ltd. Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
US6671024B1 (en) 1997-02-27 2003-12-30 Seiko Epson Corporation Connecting structure, liquid crystal device, electronic equipment, and anisotropic conductive adhesive agent and a manufacturing method thereof
JP4289319B2 (ja) * 1997-03-31 2009-07-01 日立化成工業株式会社 回路接続材料並びに回路端子の接続構造及び接続方法
JP3678547B2 (ja) * 1997-07-24 2005-08-03 ソニーケミカル株式会社 多層異方導電性接着剤およびその製造方法
JP3491595B2 (ja) 2000-02-25 2004-01-26 ソニーケミカル株式会社 異方導電性接着フィルム
US20030178221A1 (en) 2002-03-21 2003-09-25 Chiu Cindy Chia-Wen Anisotropically conductive film
WO2005073985A1 (ja) 2004-01-30 2005-08-11 Sekisui Chemical Co., Ltd. 導電性微粒子及び異方性導電材料
JP2005235530A (ja) * 2004-02-18 2005-09-02 Hitachi Chem Co Ltd 回路接続材料
JP4385794B2 (ja) 2004-02-26 2009-12-16 ソニーケミカル&インフォメーションデバイス株式会社 異方性導電接続方法
KR100673778B1 (ko) 2005-08-19 2007-01-24 제일모직주식회사 저온 속경화형 이방성 도전 필름용 조성물, 그로부터제조된 이방성 도전 필름 및 그 제조방법
KR101240155B1 (ko) * 2006-04-27 2013-03-11 아사히 가세이 일렉트로닉스 가부시끼가이샤 도전 입자 배치 시트 및 이방성 도전 필름
JP4789738B2 (ja) 2006-07-28 2011-10-12 旭化成イーマテリアルズ株式会社 異方導電性フィルム
US7923488B2 (en) 2006-10-16 2011-04-12 Trillion Science, Inc. Epoxy compositions
JP5143449B2 (ja) * 2007-03-02 2013-02-13 株式会社ダイセル 熱又は活性エネルギー線硬化型接着剤
EP2001047A1 (en) 2007-06-07 2008-12-10 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device
WO2009037964A1 (ja) * 2007-09-20 2009-03-26 Sony Chemical & Information Device Corporation 異方性導電膜及びその製造方法、並びに、該異方性導電膜を用いた接合体
CN101897245B (zh) * 2007-12-17 2013-03-13 日立化成工业株式会社 电路连接材料及电路部件的连接结构
CN102090154B (zh) * 2008-07-11 2014-11-05 迪睿合电子材料有限公司 各向异性导电薄膜
JP5558140B2 (ja) 2009-06-10 2014-07-23 デクセリアルズ株式会社 絶縁性樹脂フィルム、並びにこれを用いた接合体及びその製造方法
JP4673933B2 (ja) 2009-08-26 2011-04-20 積水化学工業株式会社 異方性導電材料及び接続構造体
JP5400545B2 (ja) 2009-09-25 2014-01-29 積水化学工業株式会社 異方性導電材料、接続構造体の製造方法及び接続構造体
KR101666214B1 (ko) * 2009-11-05 2016-10-14 삼성디스플레이 주식회사 이방성 도전 필름, 이의 제조 방법 및 이를 포함하는 표시 장치
BR112012011692B1 (pt) * 2009-11-16 2020-11-17 Hitachi Chemical Company, Ltd material de conexão de circuito e estrutura de conexão para membro de circuito usando o mesmo
JP5565277B2 (ja) 2010-11-09 2014-08-06 デクセリアルズ株式会社 異方性導電フィルム
KR102089738B1 (ko) * 2012-08-01 2020-03-17 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름의 제조 방법, 이방성 도전 필름, 및 접속 구조체
CN107267076B (zh) * 2012-08-24 2021-06-29 迪睿合电子材料有限公司 各向异性导电膜的制造方法和各向异性导电膜
TWI810551B (zh) 2012-08-24 2023-08-01 日商迪睿合股份有限公司 中間產物膜、異向性導電膜、連接構造體、及連接構造體之製造方法
KR20140139902A (ko) 2013-05-28 2014-12-08 삼성디스플레이 주식회사 이방성 도전 필름 적층체, 이를 포함하는 표시 장치 및 표시 장치 제조 방법
JP2016201405A (ja) * 2015-04-08 2016-12-01 三菱電機株式会社 炭化珪素半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220669A (ja) * 2002-01-29 2003-08-05 Asahi Kasei Corp 異方性を有する導電性接着シートおよびその製造方法
JP2003286456A (ja) * 2002-03-28 2003-10-10 Asahi Kasei Corp 異方性を有する導電性接着シートおよびその製造方法
JP2003286457A (ja) * 2002-03-28 2003-10-10 Asahi Kasei Corp 異方導電性接着シートおよびその製造方法
JP2010033793A (ja) * 2008-07-28 2010-02-12 Tokai Rubber Ind Ltd 粒子転写膜の製造方法

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI824740B (zh) * 2014-10-28 2023-12-01 日商迪睿合股份有限公司 異向性導電膜、連接構造體、及連接構造體之製造方法
CN110265174A (zh) * 2015-01-13 2019-09-20 迪睿合株式会社 各向异性导电性膜
CN107112657B (zh) * 2015-01-13 2019-05-17 迪睿合株式会社 各向异性导电膜、其制造方法及连接构造体
US10575410B2 (en) 2015-01-13 2020-02-25 Dexerials Corporation Anisotropic conductive film, manufacturing method thereof, and connection structure
CN107112253A (zh) * 2015-01-13 2017-08-29 迪睿合株式会社 凸点形成用膜、半导体装置及其制造方法以及连接构造体
CN107112067A (zh) * 2015-01-13 2017-08-29 迪睿合株式会社 各向异性导电性膜
CN107112657A (zh) * 2015-01-13 2017-08-29 迪睿合株式会社 各向异性导电膜、其制造方法及连接构造体
US20180002575A1 (en) * 2015-01-13 2018-01-04 Dexerials Corporation Anisotropic conductive film
KR102028900B1 (ko) * 2015-01-13 2019-10-07 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름, 그 제조 방법 및 접속 구조체
KR20170057363A (ko) * 2015-01-13 2017-05-24 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름, 그 제조 방법 및 접속 구조체
JP2018200880A (ja) * 2015-01-13 2018-12-20 デクセリアルズ株式会社 異方導電性フィルム
CN107112067B (zh) * 2015-01-13 2019-04-16 迪睿合株式会社 各向异性导电性膜
TWI787601B (zh) * 2015-01-13 2022-12-21 日商迪睿合股份有限公司 異向導電性膜
JP2019087536A (ja) * 2015-01-13 2019-06-06 デクセリアルズ株式会社 異方導電性フィルム
WO2016114314A1 (ja) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 異方導電性フィルム
TWI835413B (zh) * 2015-01-13 2024-03-11 日商迪睿合股份有限公司 異向導電性膜
JP2016131152A (ja) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 異方導電性フィルム
TWI694128B (zh) * 2015-01-13 2020-05-21 日商迪睿合股份有限公司 異向導電性膜
US10943879B2 (en) 2015-01-13 2021-03-09 Dexerials Corporation Bump-forming film, semiconductor device and manufacturing method thereof, and connection structure
KR102542797B1 (ko) 2015-01-13 2023-06-14 데쿠세리아루즈 가부시키가이샤 이방 도전성 필름
CN107112253B (zh) * 2015-01-13 2021-04-20 迪睿合株式会社 凸点形成用膜、半导体装置及其制造方法以及连接构造体
KR20210088023A (ko) * 2015-01-13 2021-07-13 데쿠세리아루즈 가부시키가이샤 이방 도전성 필름
US11591499B2 (en) 2015-01-13 2023-02-28 Dexerials Corporation Anisotropic conductive film
CN110265174B (zh) * 2015-01-13 2022-06-28 迪睿合株式会社 各向异性导电性膜
CN108475558A (zh) * 2016-02-15 2018-08-31 迪睿合株式会社 各向异性导电膜、其制造方法和连接结构体
JP7114857B2 (ja) 2016-02-15 2022-08-09 デクセリアルズ株式会社 異方性導電フィルム、その製造方法及び接続構造体
CN108475558B (zh) * 2016-02-15 2021-11-09 迪睿合株式会社 各向异性导电膜、其制造方法和连接结构体
JP2017147224A (ja) * 2016-02-15 2017-08-24 デクセリアルズ株式会社 異方性導電フィルム、その製造方法及び接続構造体
CN115710367A (zh) * 2016-10-18 2023-02-24 迪睿合株式会社 含填料膜
US10957462B2 (en) 2016-12-01 2021-03-23 Dexerials Corporation Anisotropic conductive film
WO2018101108A1 (ja) * 2016-12-01 2018-06-07 デクセリアルズ株式会社 異方性導電フィルム

Also Published As

Publication number Publication date
CN104541411B (zh) 2018-07-27
KR102551117B1 (ko) 2023-07-05
US20200091105A1 (en) 2020-03-19
CN109166649A (zh) 2019-01-08
CN109334132A (zh) 2019-02-15
TWI655084B (zh) 2019-04-01
TWI728136B (zh) 2021-05-21
KR20220003131A (ko) 2022-01-07
US11404391B2 (en) 2022-08-02
KR102056086B1 (ko) 2019-12-16
KR20170029659A (ko) 2017-03-15
TWI810551B (zh) 2023-08-01
JP7024771B2 (ja) 2022-02-24
US20220262760A1 (en) 2022-08-18
CN104541411A (zh) 2015-04-22
KR20150048670A (ko) 2015-05-07
TW201736114A (zh) 2017-10-16
CN109334132B (zh) 2022-02-25
KR20190140089A (ko) 2019-12-18
JP6024620B2 (ja) 2016-11-16
KR101716945B1 (ko) 2017-03-15
TW201922488A (zh) 2019-06-16
TW202118628A (zh) 2021-05-16
TWI728334B (zh) 2021-05-21
JP2018160461A (ja) 2018-10-11
TW201736115A (zh) 2017-10-16
TW201431674A (zh) 2014-08-16
JP6372543B2 (ja) 2018-08-15
JP6840105B2 (ja) 2021-03-10
TWI810505B (zh) 2023-08-01
JP2017017040A (ja) 2017-01-19
CN109166649B (zh) 2021-04-13
JP7315865B2 (ja) 2023-07-27
TWI651192B (zh) 2019-02-21
JP2022044046A (ja) 2022-03-16
US11784154B2 (en) 2023-10-10
KR102345819B1 (ko) 2022-01-03
US20150214176A1 (en) 2015-07-30
JP2020024932A (ja) 2020-02-13
JP2014060150A (ja) 2014-04-03
HK1205366A1 (en) 2015-12-11
TW202132110A (zh) 2021-09-01

Similar Documents

Publication Publication Date Title
JP6372543B2 (ja) 異方性導電フィルム及びその製造方法
JP7170612B2 (ja) 異方性導電フィルムの製造方法及び異方性導電フィルム
JP6056700B2 (ja) 異方性導電フィルム及びその製造方法
WO2015016207A1 (ja) 異方性導電フィルム及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147035905

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14422511

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830268

Country of ref document: EP

Kind code of ref document: A1