WO2014030600A1 - ボリン酸誘導体の製造方法及び新規ボリン酸誘導体 - Google Patents

ボリン酸誘導体の製造方法及び新規ボリン酸誘導体 Download PDF

Info

Publication number
WO2014030600A1
WO2014030600A1 PCT/JP2013/072062 JP2013072062W WO2014030600A1 WO 2014030600 A1 WO2014030600 A1 WO 2014030600A1 JP 2013072062 W JP2013072062 W JP 2013072062W WO 2014030600 A1 WO2014030600 A1 WO 2014030600A1
Authority
WO
WIPO (PCT)
Prior art keywords
borinic acid
carbon atoms
formula
general formula
group
Prior art date
Application number
PCT/JP2013/072062
Other languages
English (en)
French (fr)
Inventor
村上 聡
崇之 鈴木
Original Assignee
マナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マナック株式会社 filed Critical マナック株式会社
Priority to JP2014512997A priority Critical patent/JP5602330B2/ja
Priority to CN201380035132.1A priority patent/CN104395326B/zh
Priority to KR1020147034772A priority patent/KR102082532B1/ko
Priority to EP13831052.9A priority patent/EP2886548A4/en
Priority to US14/410,993 priority patent/US20150105562A1/en
Publication of WO2014030600A1 publication Critical patent/WO2014030600A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids

Definitions

  • the present invention relates to a method for selectively producing a borinic acid derivative and a novel borinic acid derivative.
  • Borinic acid is known to be usable for the Suzuki coupling reaction in the same manner as boronic acid (see, for example, Patent Documents 1 to 3), and is an organic synthetic intermediate particularly useful in electrical and electronic materials and the pharmaceutical field. is there.
  • borinic acid As a method for producing borinic acid, a method in which an aromatic compound is lithiated and reacted with a trialkyl borate, for example, 2- (1,1-dimethylethyl) -5-phenyl-2H-tetrazole is converted to n-butyl. Lithiation with lithium, reaction with trimethyl borate, followed by hydrolysis reaction gives bis [2- [2- (1,1-dimethylethyl) -2H-tetrazol-5-yl] phenyl.
  • a method for synthesizing borinic acid is disclosed (for example, see Patent Document 2).
  • a method of reacting an aromatic Grignard reagent with a trialkyl borate for example, reacting 3,4-dichlorophenylmagnesium bromide with trimethyl borate and then treating with acid, bis (3,4-dichlorophenyl)
  • a method for synthesizing borinic acid is disclosed (for example, see Patent Document 3).
  • boronic acid is produced when 1.1 equivalents of trialkylborate is used with respect to the aromatic Grignard reagent, but when 0.7 equivalents of trialkylborate is used, borinic acid is produced in a high yield. It is stated that it is obtained.
  • the yield of borinic acid is as low as 45% to 57%, which is not industrially satisfactory.
  • the subject of this invention is providing the industrially available and simple manufacturing method which can obtain a borinic acid derivative selectively with a high yield with respect to this problem.
  • the present inventors can obtain borinic acid selectively and in a high yield by reacting tri-t-butyl borate with an organometallic compound. As a result, the present invention has been completed. That is, the present invention is as follows.
  • the present invention relates to the general formula (1): (In the formula, Ar is an aromatic hydrocarbon ring group or an aromatic heterocyclic group, M is Li or MgX, and X is a chlorine atom, bromine atom or iodine atom) Characterized by reacting the compound represented by the formula with tri-t-butyl borate and then hydrolyzing the reaction product, General formula (2): (Wherein Ar is as defined above) It is related with the manufacturing method of the borinic acid derivative shown by these.
  • Ar ′ represents the following formula: (Where m is 0 or 1 and A is —O—, —S— or —NR 1 —, but when m is 0, A is further —C (R 2 ) 2 —.
  • R 1 may be a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon ring group, and R 2 may be the same or different, and may be a hydrogen atom or a carbon atom.
  • R is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms, and n is 0 to 5; Is a single bond or a double bond, and thus the ring containing A may be saturated or unsaturated; and * indicates a bond to B (boron), provided that R and * substitutions Each position is not limited to a benzene ring) To a borinic acid derivative represented by
  • the production method of the present invention it is possible to easily produce a borinic acid derivative which is an organic synthetic intermediate particularly useful in the electric and electronic materials and pharmaceutical fields, selectively and in high yield. Therefore, the production method of the present invention is expected to be industrially applicable. Moreover, according to the production method of the present invention, a novel borinic acid derivative that has never been reported so far can be provided.
  • FIG. 1 is a molecular structure diagram (ORTEP diagram) of crystal structure analysis of single-crystal X-ray diffraction of bis (4-dibenzofuran) borinic acid obtained in Example 1.
  • FIG. 1 is a molecular structure diagram (ORTEP diagram) of crystal structure analysis of single-crystal X-ray diffraction of bis (4-dibenzofuran) borinic acid obtained in Example 1.
  • the present invention relates to a general formula (1): (In the formula, Ar is an aromatic hydrocarbon ring group or an aromatic heterocyclic group, M is Li or MgX, and X is a chlorine atom, bromine atom or iodine atom) By reacting the compound represented by the formula with tri-t-butyl borate and then hydrolyzing the reaction product, General formula (2): (Wherein Ar is as defined above) Is obtained.
  • the “aromatic hydrocarbon ring group” means a monocyclic or condensed polycyclic monovalent group having 6 to 20 carbon atoms and containing at least one aromatic ring. Naphthyl, tetrahydronaphthyl, anthryl, pyrenyl, indenyl, fluorenyl, acenaphthylenyl, phenanthryl or phenalenyl. In addition, these may be substituted with one or more arbitrary substituents that do not participate in the reaction.
  • substituents include alkyl having 1 to 6 carbon atoms, alkoxy having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, aryl having 6 to 20 carbon atoms, and heteroaryl having 2 to 20 carbon atoms. Is mentioned.
  • the “aromatic heterocyclic group” means a monocyclic or condensed polycyclic monovalent group having 2 to 20 carbon atoms and containing at least one aromatic heterocyclic ring.
  • furyl benzofuranyl, dibenzofuranyl, thienyl, benzothienyl, dibenzothienyl, pyrrolyl, indolyl, carbazolyl, imidazolyl, benzoimidazolyl, pyrazolyl, oxazolyl, benzoxazolyl, thiazolyl, benzothiazolyl, furazanyl, pyridyl, pyranyl, pyrazinyl, Examples include pyrimidinyl, pyridazinyl, triazinyl, azepinyl, quinolyl, indolizinyl, cinnolinyl, purinyl, carbonylyl, phenanthrolinyl and imidazopyrimi
  • substituents include alkyl having 1 to 6 carbon atoms, alkoxy having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, aryl having 6 to 20 carbon atoms, and heteroaryl having 2 to 20 carbon atoms. Is mentioned.
  • alkyl having 1 to 6 carbon atoms represents a monovalent group of a linear or branched aliphatic saturated hydrocarbon having 1 to 6 carbon atoms. Meaning, for example, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl and the like. Therefore, in the present invention, “alkoxy having 1 to 6 carbon atoms” means a group —OR a where R a is alkyl having 1 to 6 carbon atoms as defined above.
  • cycloalkyl having 3 to 6 carbon atoms means a monovalent group of a cyclic aliphatic saturated hydrocarbon having 3 to 6 carbon atoms, alone or in combination with other terms, , Cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • aryl having 6 to 20 carbon atoms has the same meaning as the above “aromatic hydrocarbon ring group”, and they can be used interchangeably.
  • heteroaryl having 2 to 20 carbon atoms is synonymous with the above “aromatic heterocyclic group”, and the two can be used interchangeably.
  • Ar in the general formula (1) is represented by the following formula: (Where m is 0 or 1 and A is —O—, —S— or —NR 1 —, but when m is 0, A is further —C (R 2 ) 2 —.
  • R 1 may be a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon ring group, and R 2 may be the same or different, and may be a hydrogen atom or a carbon atom.
  • R is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms, and n is 0 to 5; Is a single bond or a double bond, so the ring containing A may be saturated or unsaturated; and * is a bond to B (boron) provided that R and * substitutions
  • the position is not limited to a benzene ring.
  • Ar in the general formula (1) is represented by the following formula: (Wherein A is —O—, —S—, —NR 1 — or —C (R 2 ) 2 —, R 1 is a hydrogen atom or a methyl group, and R 2 is the same. Or may be different, and is a hydrogen atom or a methyl group, and * is as defined above), and is more preferably used.
  • the production method of the compound represented by the general formula (1) used in the production method of the present invention is not particularly limited, and can be synthesized by any known method.
  • the compound in which M in the general formula (1) is MgX is an organomagnesium halide generally referred to as a Grignard reagent.
  • a Grignard reagent an organomagnesium halide generally referred to as a Grignard reagent.
  • the corresponding halogenoaromatic It can be obtained by reacting a compound (Ar-X: Ar and X are as defined above) with magnesium (see, for example, the method described in JP-A-2002-047292).
  • the compound in which M in the general formula (1) is Li is, in accordance with a known lithiation reaction, specifically, a corresponding aromatic compound (Ar—H or Ar—X: where Ar and X are Can be obtained by allowing an alkyllithium reagent such as n-butyllithium to act (for example, see Patent Document 2). Alternatively, it can also be obtained by allowing lithium granules to act on the corresponding chloroaromatic compound (Ar—Cl, where Ar is as defined above) (see, for example, the method described in JP-A No. 2002-308883) ).
  • a compound in which M in the general formula (1) is Li is more preferably used.
  • the obtained compound of the general formula (1) When the obtained compound of the general formula (1) is used in the production method of the present invention, it may be isolated and used, or the prepared solution may be used as it is. It is desirable to use the prepared solution as it is from the viewpoint of stability.
  • Tri-t-butyl borate used in the production method of the present invention can be obtained from a supplier such as Sigma Aldrich Japan.
  • tri-t-butyl borate can be prepared according to a known method (for example, Journal of the Chemical Society, 78, 3613; 1956).
  • the amount of tri-t-butyl borate used in the production method of the present invention is not particularly limited, but is 0.1 mol to 2.0 mol with respect to 1 mol of the compound represented by the general formula (1). Is more preferably 0.3 mol to 1.05 mol, and further preferably 0.3 mol to 0.7 mol from the viewpoint of the reaction rate.
  • a solvent may be used.
  • the solvent to be used is not particularly limited as long as it is inert to the reaction, and is appropriately selected depending on the desired reaction temperature. You may use individually or in mixture of 2 or more types of solvents in arbitrary ratios.
  • the solvent include aromatic hydrocarbon solvents such as toluene and xylene; ether solvents such as tetrahydrofuran (THF), diethyl ether and dioxane; aliphatic carbonization such as n-hexane, n-heptane and cyclohexane.
  • Hydrogen solvent Aliphatic halogen solvents such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane can be used. Moreover, the solvent in preparation of the compound shown by General formula (1) can also be used. The amount of the solvent to be used is 0.5 to 20 times (weight basis), preferably 1 to 10 times the amount of 1 g of the compound of the general formula (1).
  • the reaction temperature of the compound represented by formula (1) and tri-t-butyl borate in the production method of the present invention is preferably in the range of ⁇ 80 to 80 ° C., and ⁇ 80 to 40 ° C. from the viewpoint of yield. More preferably, it is the range.
  • the reaction time of the compound represented by formula (1) and tri-t-butyl borate in the production method of the present invention is appropriately determined according to the conditions such as the amount and type of the starting material used, the presence or absence of a solvent, the type thereof, and the reaction temperature. Can be set. Usually, it is preferably 10 minutes to 24 hours, and more preferably 10 minutes to 6 hours from the viewpoint of workability.
  • the general formula (4) wherein Ar is as defined above, M ′ is Li + or Mg 2+ , p is 1 when M ′ is Li + , and p is 1 when M ′ is Mg 2+.
  • the diaryldi (t-butoxy) borate salt shown in FIG. The obtained reaction product (borate salt) is hydrolyzed by a general method to obtain the general formula (2): (Wherein Ar is as defined above)
  • the borinic acid derivative represented by can be easily obtained.
  • the borate salt after completion of the reaction to the borate salt, it can be hydrolyzed by a method of adding an aqueous solution of a mineral acid such as hydrochloric acid, sulfuric acid or phosphoric acid (see the method described in JP-A-2007-297297).
  • a mineral acid such as hydrochloric acid, sulfuric acid or phosphoric acid
  • the amount of acid used for the hydrolysis is preferably 0.1 to 100 times (by weight) with respect to 1 g of the compound of the general formula (1), and 0.2 to 4 from the viewpoint of work efficiency. A double amount is more preferable.
  • the temperature in the hydrolysis is preferably in the range of ⁇ 80 to 80 ° C., and more preferably in the range of ⁇ 80 to 40 ° C.
  • the borinic acid derivative represented by the general formula (2) obtained by the hydrolysis may be further separated and purified by a general method such as recrystallization, distillation, column chromatography or the like.
  • Ar ′ represents the following formula: (Where m is 0 or 1 and A is —O—, —S— or —NR 1 —, but when m is 0, A is further —C (R 2 ) 2 —.
  • R 1 may be a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon ring group, and R 2 may be the same or different, and may be a hydrogen atom or a carbon atom.
  • R is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms, and n is 0 to 5; Is a single bond or a double bond, so the ring containing A may be saturated or unsaturated; and * is a bond to B (boron) provided that R and * substitutions Each position is not limited to a benzene ring)
  • a novel borinic acid derivative represented by the formula:
  • Ar ′ has the following formula: (Wherein A is —O—, —S—, —NR 1 — or —C (R 2 ) 2 —, R 1 is a hydrogen atom or a methyl group, and R 2 is the same. Or a different group, which is a hydrogen atom or a methyl group, and * is a group represented by the same meaning as described above), and provides a novel borinic acid derivative represented by the general formula (3).
  • the compound represented by the general formula (3) is not particularly limited, but bis (benzofuran-2-yl) borinic acid, bis (benzothiophen-2-yl) borinic acid, bis (1-methylindol-2-yl) Borinic acid, bis (1-methylindol-3-yl) borinic acid, bis (1-methylindol-5-yl) borinic acid, bis (quinolin-4-yl) borinic acid, bis (quinolin-5-yl) Bicyclic compounds such as borinic acid, bis (quinolin-6-yl) borinic acid, bis (2-methylquinolin-6-yl) borinic acid; bis (dibenzofuran-2-yl) borinic acid, bis (dibenzofuran-4 -Yl) borinic acid, bis (dibenzothiophen-2-yl) borinic acid, bis (dibenzothiophen-4-yl) borinic
  • the novel borinic acid derivative represented by the general formula (3) is obtained by reacting a compound represented by the general formula (4) obtained by the reaction of the compound represented by the general formula (1) with trit-butyl borate, It can be obtained by hydrolysis by the method.
  • the reaction conditions, definitions and preferred embodiments are the same as those described above in ⁇ Method for producing borinic acid derivative>.
  • ⁇ Method for producing borate salt derivative> The present inventors have scrutinized the process for producing a borinic acid derivative of the present invention, and have also found that a borate salt that is a tetracoordinate art-type complex can be obtained as an intermediate.
  • tetracoordinate art-type complexes of boron compounds have attracted attention as new boron reagents in metal-catalyzed reactions (for example, Angew. Chem. Int. Ed. 2008, 47, 928-931), and novel borate salt derivatives Is expected as a new boron reagent.
  • the present invention relates to the general formula (1): (In the formula, Ar is an aromatic hydrocarbon ring group or an aromatic heterocyclic group, M is Li or MgX, and X is a chlorine atom, bromine atom or iodine atom) Is reacted with tri-t-butyl borate, General formula (4): Wherein Ar is as defined above, M ′ is Li + or Mg 2+ , p is 1 when M ′ is Li + , and p is 1 when M ′ is Mg 2+. 2) It is also possible to obtain a borate salt derivative represented by
  • the method for producing a borate salt of the present invention comprises reacting a compound represented by the formula (1) with tri-t-butyl borate and then hydrolyzing the resulting borate salt derivative represented by the general formula (4). Is what you get.
  • the reaction conditions, definitions and preferred embodiments are the same as those described in the above ⁇ Method for producing borinic acid derivative> except for the hydrolysis step.
  • the present invention also provides a compound represented by the general formula (5):
  • Ar ′ represents the following formula: (Where m is 0 or 1 and A is —O—, —S— or —NR 1 —, but when m is 0, A is further —C (R 2 ) 2 —.
  • R 1 may be a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon ring group, and R 2 may be the same or different, and may be a hydrogen atom or a carbon atom.
  • R is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms, and n is 0 to 5; Is a single bond or a double bond, so the ring containing A may be saturated or unsaturated; and * is a bond to B (boron) provided that R and * substitutions Each position is not limited on the benzene ring); and M ′ is Li + or Mg 2+ , and when M ′ is Li + , p ′ is 1 and M ′ is When Mg 2+ , p ′ is 2] It also provides a novel borate salt derivative represented by:
  • Ar ′ has the following formula: (Wherein A is —O—, —S—, —NR 1 — or —C (R 2 ) 2 —, R 1 is a hydrogen atom or a methyl group, and R 2 is the same. Or a different borate salt derivative represented by the general formula (5), which may be a hydrogen atom or a methyl group, and is a group represented by the same meaning as described above.
  • the present invention provides a novel borate salt derivative represented by the general formula (5), wherein M ′ is Li + .
  • the novel borate salt derivative represented by the general formula (5) can be obtained by reacting the compound represented by the general formula (1) with tri-t-butyl borate.
  • the reaction conditions, definitions and preferred embodiments are the same as those described above in ⁇ Method for producing borinic acid derivative>.
  • ⁇ NMR spectrum> A solution prepared by mixing a compound and heavy DMSO (containing DMSO-d 6 0.05% TMS manufactured by Cambrige Isotope Laboratories, Inc.) was prepared, and 1 H-NMR, NMR (JNM-AL400, manufactured by JEOL Ltd.) 11 B-NMR was measured. In the measurement of 1 H-NMR spectrum, tetramethylsilane was used as a standard substance, and in the measurement of 11 B-NMR spectrum, a tetrahydrofuran complex of boron trifluoride was used as a standard substance.
  • Example 1 Synthesis of bis (dibenzofuran-4-yl) borinic acid, 300 mL glass flask equipped with a stirrer, thermometer, U-tube, reflux condenser and dropping funnel, 80 mL of THF and dibenzofuran (Tokyo Chemical Industry ( 15 g (0.09 mol) was added, and dibenzofuran was dissolved while stirring at room temperature. After dissolution, the internal temperature was cooled to ⁇ 10 to 0 ° C., and 28.6 g (0.09 mol) of a 2.3 mol / L n-butyllithium cyclohexane solution was added dropwise and reacted at the same temperature for 1 hour.
  • THF THF
  • dibenzofuran Tokyo Chemical Industry
  • the borate salt was dissolved in 80 mL of THF, and hydrolysis was performed by adding 29.1 g (0.28 mol) of 35 wt% hydrochloric acid and 36 mL of water. Subsequently, the organic layer was separated by liquid separation. The obtained organic layer was washed with 10% by weight saline and the solvent was distilled off from the organic layer under reduced pressure. Then, 40 mL of isopropyl alcohol and 20 mL of water were added to the obtained solid residue, and the internal temperature was about 60 to 70. Heat washing at 1 ° C. was performed for 1 hour.
  • Example 1 A reaction solution was obtained in the same manner as in Example 1 except that boric acid tri-t-butyl ester was changed to the boric acid esters shown in Table 1.
  • Table 1 shows the purity after completion of the reaction.
  • the borate salt before hydrolysis was sampled, but since hydrolysis occurs due to the preparation of the sample for high performance liquid chromatography measurement, the purity after completion of the reaction in Table 1 is Means borinic acid / boronic acid after hydrolysis.
  • Example 2 Synthesis and synthesis of bis (dibenzothiophen-4-yl) borinic acid, thermometer, U-tube, reflux condenser and dropping funnel into a 300 mL glass flask under an argon atmosphere, 58 mL of THF and dibenzothiophene (Tokyo Kasei) 10 g (0.05 mol) (manufactured by Kogyo Co., Ltd.) was added, and dibenzothiophene was dissolved while stirring at room temperature.
  • Example 3 A 100 mL glass flask equipped with a bis (benzofuran-2-yl) borinic acid synthesis stirrer, thermometer, U-tube, reflux condenser and dropping funnel was added to 40 mL of THF and benzofuran (Tokyo Chemical Industry ( 4.4 g (0.04 mol)) was added. While stirring, the internal temperature was cooled to ⁇ 10 to 0 ° C., and 14.3 mL (0.04 mol) of a 2.6 mol / L n-butyllithium hexane solution was added dropwise and reacted at the same temperature for 1 hour. The reaction solution was sampled and confirmed by 1 H-NMR.
  • benzofuran Tokyo Chemical Industry
  • reaction solution was sampled and confirmed by 1 H-NMR. As a result, the reaction yield of 2-benzothienyl lithium was 98%. Further, at the same temperature, 4.3 g (0.02 mol) of tri-t-butyl borate (manufactured by Sigma-Aldrich Japan) was added dropwise and reacted for 1 hour. The crystals precipitated after completion of the reaction were collected by filtration to obtain 8.0 g of bis (benzothiophen-2-yl) di (t-butoxy) borate lithium salt.
  • Example 5 Synthesis of bis (1-methylindol-2-yl) di (t-butoxy) borate lithium salt Stirrer , thermometer, U-tube, reflux condenser, and dropping funnel Then, 40 mL of THF and 4.9 g (0.04 mol) of 1-methylindole (manufactured by Tokyo Chemical Industry Co., Ltd.) were added. While stirring, the internal temperature was cooled to ⁇ 10 to 0 ° C., and 14.3 mL (0.04 mol) of a 2.6 mol / L n-butyllithium hexane solution was added dropwise and reacted at the same temperature for 1 hour. The reaction solution was sampled and confirmed by 1 H-NMR.
  • Example 6 In a 100 mL glass flask equipped with a bis (1-naphthyl) borinic acid synthesis stirrer, thermometer, U-tube, reflux condenser and dropping funnel, 30 mL of THF and 1-bromonaphthalene (Manac Co., Ltd.) were added in an argon atmosphere. )) 5.0 g (0.02 mol) was added. While stirring, the internal temperature was cooled to ⁇ 10 to 0 ° C., and 9.3 mL (0.02 mol) of a 2.6 mol / L n-butyllithium hexane solution was added dropwise and reacted at the same temperature for 1 hour.
  • Example 7 To a 100 mL glass flask equipped with a diphenylborinic acid synthesis stirrer, thermometer, U-tube, reflux condenser and dropping funnel, 10 mL of THF was added under an argon atmosphere. While stirring, the internal temperature was cooled to ⁇ 10 to 0 ° C., and 5 mL (5.4 mmol) of a 1.08 mol / L phenyllithium diethyl ether / cyclohexane solution (manufactured by Kanto Chemical Co., Inc.) was added.
  • a 1.08 mol / L phenyllithium diethyl ether / cyclohexane solution manufactured by Kanto Chemical Co., Inc.
  • Example 8 In a 100 mL glass flask equipped with a bis (2-thienyl) borinic acid synthesis stirrer, thermometer, U-tube, reflux condenser and dropping funnel, 40 mL of THF and thiophene (Wako Pure Chemical Industries, Ltd.) under an argon atmosphere. 3.1 g (0.04 mol) was added. While stirring, the internal temperature was cooled to ⁇ 10 to 0 ° C., and 14.3 mL (0.04 mol) of a 2.6 mol / L n-butyllithium hexane solution was added dropwise and reacted at the same temperature for 1 hour. The reaction solution was sampled and confirmed by 1 H-NMR.
  • Example 9 A 100 mL glass flask equipped with a bis (4-methoxyphenyl) borinic acid synthesis stirrer, thermometer, U-tube, reflux condenser and dropping funnel was placed in an argon atmosphere under 20 mL of THF and 0.56 g of magnesium (0. 02 mol) was added and heated to an internal temperature of 50-60 ° C. After heating, a solution prepared by diluting 4.2 g (0.02 mol) of 4-bromoanisole with 3 mL of THF was slowly added dropwise and reacted at the same temperature for 1 hour.
  • reaction mixture was cooled to room temperature, and 0.5 g (0.002 mol) of tri-t-butyl borate (manufactured by Sigma-Aldrich Japan Co., Ltd.) was added dropwise and reacted at the same temperature for 24 hours.
  • 4.5 g of 35 wt% hydrochloric acid aqueous solution and 10 mL of water were added, and the organic layer was separated. The aqueous layer was extracted with 20 mL of methylene chloride and mixed with the previously separated organic layer.
  • the selectivity of borinic acid to boronic acid and the yield of borinic acid were remarkably improved by using tri-t-butyl borate as the trialkyl borate.
  • the knowledge that selectivity and a yield improve by the difference in the alkyl chain of a trialkyl borate is not known until now.
  • the production method of the present invention makes it possible to easily produce a borinic acid derivative selectively and in a high yield. Therefore, the production method of the present invention is expected to be industrially applicable.
  • the production method of the present invention can provide a novel borinic acid derivative that is an organic synthetic intermediate useful in electric and electronic materials and the pharmaceutical field, which can be used in the Suzuki coupling reaction.
  • the production method of the present invention it is also possible to produce a diaryldi (t-butoxy) borate salt.
  • tetracoordinate art-type complexes of boron compounds have attracted attention as new boron reagents in metal-catalyzed reactions including Suzuki coupling reactions. Therefore, the production method of the present invention is a simple production method of borate salt derivatives and It is also expected to be able to provide a new borate salt derivative.

Abstract

 本発明は、ボリン酸誘導体の製造方法及び新規なボリン酸誘導体に関する。本発明の製造方法によれば、一般式(1)(式中、Ar及びMは、明細書及び特許請求の範囲と同義である)で示される化合物とホウ酸トリt-ブチルを反応させ、次いで反応物を加水分解させることにより、一般式(2)で示されるボリン酸誘導体を選択的にかつ高収率で得ることができる。

Description

ボリン酸誘導体の製造方法及び新規ボリン酸誘導体
 本発明は、ボリン酸誘導体を選択的に製造する方法及び新規なボリン酸誘導体に関する。
 ボリン酸は、ボロン酸と同様に鈴木カップリング反応に使用可能であることが知られており(例えば、特許文献1~3参照)、特に電気電子材料及び医薬分野で有用な有機合成中間体である。
 ボリン酸を製造する方法としては、芳香族化合物をリチオ化し、ホウ酸トリアルキルと反応させる方法、例えば、2-(1,1-ジメチルエチル)-5-フェニル-2H-テトラゾールを、n-ブチルリチウムを用いてリチオ化し、これをホウ酸トリメチルと反応させ、次いで加水分解反応に付すことで、ビス[2-[2-(1,1-ジメチルエチル)-2H-テトラゾール-5-イル]フェニル]ボリン酸を合成する方法が開示されている(例えば、特許文献2参照)。
 また、芳香族グリニャール試薬をホウ酸トリアルキルと反応させる方法、例えば、3,4-ジクロロフェニルマグネシウムブロミドを、ホウ酸トリメチルと反応させ、次いで酸で処理することで、ビス(3,4-ジクロロフェニル)ボリン酸を合成する方法が開示されている(例えば、特許文献3参照)。この方法では、芳香族グリニャール試薬に対して1.1当量のホウ酸トリアルキルを用いるとボロン酸が生成されるが、0.7当量のホウ酸トリアルキルを用いると高収率でボリン酸が得られる旨が記載されている。
特表2011-515335号公報 特開平6-192240号公報 特表2009-526826号公報
 しかしながら、これら先行技術に開示された製造方法を用いても、ボリン酸の収率は45%~57%と低く、工業的に満足できるものではないという問題があった。本発明の課題は、かかる問題に対して、選択的にかつ高収率でボリン酸誘導体を得ることができる、工業的に利用可能で簡便な製造方法を提供することである。
 本発明者らは、上記の課題を解決すべく鋭意検討した結果、有機金属化合物に対してホウ酸トリt-ブチルを反応させることにより、選択的にかつ高収率でボリン酸が得られることを見出し、本発明を完成するに至った。すなわち、本発明は、以下の通りである。
 すなわち、本発明は、一般式(1):
Figure JPOXMLDOC01-appb-C000011
(式中、Arは、芳香族炭化水素環基又は芳香族ヘテロ環基であり、Mは、Li又はMgXであり、そしてXは、塩素原子、臭素原子又はヨウ素原子である)
で示される化合物と、ホウ酸トリt-ブチルを反応させ、次いで反応物を加水分解させることを特徴とする、
一般式(2):
Figure JPOXMLDOC01-appb-C000012
(式中、Arは、前記と同義である)
で示されるボリン酸誘導体の製造方法に関する。
 また、本発明は、一般式(3):
Figure JPOXMLDOC01-appb-C000013
[式中、Ar′は、下記式:
Figure JPOXMLDOC01-appb-C000014
(ここで、mは、0又は1であり、Aは、-O-、-S-又は-NR-であるが、mが0の場合、Aはさらに-C(R-であってもよく、Rは、水素原子、炭素数1~6のアルキル基又は芳香族炭化水素環基であり、Rは、同一であっても又は異なっていてもよく、水素原子又は炭素数1~6のアルキル基であり;
 Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数3~6のシクロアルキル基であり、nは、0~5であり;
Figure JPOXMLDOC01-appb-C000015
は、単結合又は二重結合であり、したがってAを含む環は、飽和又は不飽和であってよく;そして
 *は、B(ホウ素)への結合手を示すが、但し、R及び*の置換位置は、それぞれベンゼン環上に限定されない)で示される基である]
で示されるボリン酸誘導体に関する。
 本発明の製造方法によれば、特に電気電子材料及び医薬分野で有用な有機合成中間体であるボリン酸誘導体を、選択的にかつ高収率で、簡便に製造することが可能である。したがって本発明の製造方法は、工業的に利用可能であると期待される。また、本発明の製造方法によれば、これまでに全く報告されていない、新規ボリン酸誘導体を提供することができる。
実施例1で得られたビス(4-ジベンゾフラン)ボリン酸の1H-NMRスペクトルデータである。 実施例1で得られたビス(4-ジベンゾフラン)ボリン酸の単結晶X線回折による結晶構造解析の分子構造図(ORTEP図)である。
 以下に本発明の実施の形態について詳細に説明する。
<ボリン酸誘導体の製造方法>
 本発明は、一般式(1):
Figure JPOXMLDOC01-appb-C000016
(式中、Arは、芳香族炭化水素環基又は芳香族ヘテロ環基であり、Mは、Li又はMgXであり、そしてXは、塩素原子、臭素原子又はヨウ素原子である)
で示される化合物と、ホウ酸トリt-ブチルを反応させ、次いで反応物を加水分解させることにより、
一般式(2):
Figure JPOXMLDOC01-appb-C000017
(式中、Arは、前記と同義である)
で示されるボリン酸誘導体を得るものである。
 本発明において、「芳香族炭化水素環基」とは、少なくとも1個の芳香環を含む、炭素数6~20の単環式又は縮合多環式の1価の基を意味し、例えば、フェニル、ナフチル、テトラヒドロナフチル、アントリル、ピレニル、インデニル、フルオレニル、アセナフチレニル、フェナントリル又はフェナレニルなどが挙げられる。また、これらは、反応に関与しない、一以上の任意の置換基で置換されていてもよい。そのような置換基としては、炭素数1~6のアルキル、炭素数1~6のアルコキシ、炭素数3~6のシクロアルキル、炭素数6~20のアリール及び炭素数2~20のヘテロアリールなどが挙げられる。
 本発明において、「芳香族ヘテロ環基」とは、少なくとも1個の芳香族ヘテロ環を含む、炭素数2~20の単環式又は縮合多環式の1価の基を意味し、具体例としては、フリル、ベンゾフラニル、ジベンゾフラニル、チエニル、ベンゾチエニル、ジベンゾチエニル、ピロリル、インドリル、カルバゾリル、イミダゾリル、ベンゾイミダゾリル、ピラゾリル、オキサゾリル、ベンゾオキサゾリル、チアゾリル、ベンゾチアゾリル、フラザニル、ピリジル、ピラニル、ピラジニル、ピリミジニル、ピリダジニル、トリアジニル、アゼピニル、キノリル、インドリジニル、シンノリニル、プリニル、カルボニリル、フェナントロリニル及びイミダゾピリミジニルなどが挙げられる。また、これらは、反応に関与しない、一以上の任意の置換基で置換されていてもよい。そのような置換基としては、炭素数1~6のアルキル、炭素数1~6のアルコキシ、炭素数3~6のシクロアルキル、炭素数6~20のアリール及び炭素数2~20のヘテロアリールなどが挙げられる。
 本発明において「炭素数1~6のアルキル」は、単独でまたは他の用語との組み合わせにおいて、炭素数1~6の、直鎖状または分岐状の脂肪族飽和炭化水素の一価の基を意味し、例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、ペンチル、ヘキシルなどが挙げられる。したがって、本発明において「炭素数1~6のアルコキシ」は、基-ORであって、Rが、上記で定義したとおりの炭素数1~6のアルキルである基を意味する。
 本発明において「炭素数3~6のシクロアルキル」は、単独でまたは他の用語との組み合わせにおいて、炭素数3~6の、環状の脂肪族飽和炭化水素の一価の基を意味し、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどが挙げられる。
 また本発明において、「炭素数6~20のアリール」は、上記「芳香族炭化水素環基」と同義であり、両者は互換可能に使用することができる。同様に「炭素数2~20のヘテロアリール」は、上記「芳香族ヘテロ環基」と同義であり、両者は互換可能に使用することができる。
 本発明の製造方法は、一般式(1)におけるArが、下記式:
Figure JPOXMLDOC01-appb-C000018
(ここで、mは、0又は1であり、Aは、-O-、-S-又は-NR-であるが、mが0の場合、Aはさらに-C(R-であってもよく、Rは、水素原子、炭素数1~6のアルキル基又は芳香族炭化水素環基であり、Rは、同一であっても又は異なっていてもよく、水素原子又は炭素数1~6のアルキル基であり;
 Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数3~6のシクロアルキル基であり、nは、0~5であり;
Figure JPOXMLDOC01-appb-C000019
は、単結合又は二重結合であり、したがってAを含む環は、飽和又は不飽和であってよく;そして
 *は、B(ホウ素)への結合手であるが、但し、R及び*の置換位置は、それぞれベンゼン環上に限定されない)で示される基の場合、好適に用いられる。
 また、本発明の製造方法は、一般式(1)におけるArが、下記式:
Figure JPOXMLDOC01-appb-C000020
(式中、Aは、-O-、-S-、-NR-又は-C(R-であり、Rは、水素原子又はメチル基であり、Rは、同一であっても又は異なっていてもよく、水素原子又はメチル基であり、そして*は、前記と同義である)で示される基の場合、より好適に用いられる。
 本発明の製造方法で用いる、一般式(1)で示される化合物の製法は特に限定されず、公知のいずれかの方法により合成することができる。一般式(1)におけるMがMgXで示される化合物は、一般にグリニャール試薬と称される有機マグネシウムハロゲン化物であり、公知のグリニャール試薬と同様の調製法に従って、具体的には、対応するハロゲノ芳香族化合物(Ar-X:ここで、Ar及びXは、前記と同義である)にマグネシウムを作用させて得ることができる(例えば、特開2002-047292号公報記載の方法を参照)。また、一般式(1)におけるMがLiで示される化合物は、公知のリチオ化反応に従って、具体的には、対応する芳香族化合物(Ar-H又はAr-X:ここで、Ar及びXは、前記と同義である)にn-ブチルリチウムのようなアルキルリチウム試薬を作用させて得ることができる(例えば、特許文献2参照)。あるいは対応するクロロ芳香族化合物(Ar-Cl:ここで、Arは、前記と同義である)にリチウム顆粒を作用させて得ることもできる(例えば、特開2002-308883号公報記載の方法を参照)。一般式(1)におけるMがLiで示される化合物が、より好適に用いられる。
 得られた一般式(1)の化合物を本発明の製造方法に用いる場合は、単離して用いてもよく、調製後の溶液をそのまま用いてもよい。安定性の観点から調製後の溶液をそのまま用いることが望ましい。
 本発明の製造方法に用いるホウ酸トリt-ブチルは、シグマアルドリッチジャパン(株)などの供給業者から入手することができる。あるいは、ホウ酸トリt-ブチルは、公知の方法(例えば、Journal of the Chemical Society, 78, 3613; 1956)に従って調製することもできる。
 本発明の製造方法で用いるホウ酸トリt-ブチルの使用量は、特に限定されないが、一般式(1)で示される化合物1モルに対して、0.1モル~2.0モルであることが好ましく、0.3モル~1.05モルであることがより好ましく、反応率の観点から0.3モル~0.7モルであることがさらに好ましい。
 本発明の製造方法では、溶媒を使用してもよい。使用する溶媒は、反応に不活性な溶媒であれば特に限定されず、所望する反応温度に応じて適宣選択される。単独又は2種類以上の溶媒を任意の割合で混合して用いてもよい。溶媒としては、例えば、トルエン、キシレンのような芳香族炭化水素系溶媒;テトラヒドロフラン(THF)、ジエチルエーテル、ジオキサンのようなエーテル系溶媒;n-ヘキサン、n-ヘプタン、シクロヘキサンのような脂肪族炭化水素系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなどの脂肪族ハロゲン系溶媒が使用できる。また、一般式(1)で示される化合物の調製における溶媒を使用することもできる。溶媒の使用量は、一般式(1)の化合物1gに対して、0.5~20倍量(重量基準)、好ましくは1~10倍量である。
 本発明の製造方法における式(1)で示される化合物とホウ酸トリt-ブチルとの反応温度は、-80~80℃の範囲であることが好ましく、収率の観点から-80~40℃の範囲であることがより好ましい。
 本発明の製造方法における式(1)で示される化合物とホウ酸トリt-ブチルとの反応時間は、使用する出発物質の量や種類、溶媒の有無やその種類、反応温度などの条件によって適宜設定することができる。通常、10分~24時間であることが好ましく、作業性の観点から10分~6時間であることがより好ましい。
 前記反応により、一般式(4):
Figure JPOXMLDOC01-appb-C000021
(式中、Arは前記と同義であり、M′は、Li又はMg2+であり、M′がLiである場合、pは1であり、M′がMg2+である場合、pは2である)
で示されるジアリールジ(t-ブトキシ)ボレート塩が生成する。得られた反応物(ボレート塩)を、一般的な方法により加水分解することで、一般式(2):
Figure JPOXMLDOC01-appb-C000022
(式中、Arは、前記と同義である)
で示されるボリン酸誘導体を容易に得ることができる。具体的には、ボレート塩への反応終了後、塩酸、硫酸、燐酸などの鉱酸の水溶液を添加する方法(特開2007-297297号公報記載の方法を参照)により加水分解することができる。
 前記加水分解に用いる酸の使用量は、一般式(1)の化合物1gに対して、0.1~100倍量(重量基準)であることが好ましく、作業効率の観点から0.2~4倍量であることがより好ましい。
 前記加水分解における温度は、-80~80℃の範囲であることが好ましく、-80~40℃の範囲であることがより好ましい。
 前記加水分解により得られた一般式(2)で示されるボリン酸誘導体は、例えば、再結晶、蒸留、カラムクロマトグラフィー等による、一般的な方法によりさらに分離・精製してもよい。
<新規ボリン酸誘導体>
 本発明は、一般式(3):
Figure JPOXMLDOC01-appb-C000023
[式中、Ar′は、下記式:
Figure JPOXMLDOC01-appb-C000024
(ここで、mは、0又は1であり、Aは、-O-、-S-又は-NR-であるが、mが0の場合、Aはさらに-C(R-であってもよく、Rは、水素原子、炭素数1~6のアルキル基又は芳香族炭化水素環基であり、Rは、同一であっても又は異なっていてもよく、水素原子又は炭素数1~6のアルキル基であり;
 Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数3~6のシクロアルキル基であり、nは、0~5であり;
Figure JPOXMLDOC01-appb-C000025
は、単結合又は二重結合であり、したがってAを含む環は、飽和又は不飽和であってよく;そして
 *は、B(ホウ素)への結合手であるが、但し、R及び*の置換位置は、それぞれベンゼン環上に限定されない)で示される基である]
で示される新規ボリン酸誘導体を提供する。
 特に、Ar′が、下記式:
Figure JPOXMLDOC01-appb-C000026
(式中、Aは、-O-、-S-、-NR-又は-C(R-であり、Rは、水素原子又はメチル基であり、Rは、同一であっても又は異なっていてもよく、水素原子又はメチル基であり、そして*は、前記と同義である)で示される基である、一般式(3)で示される新規ボリン酸誘導体を提供する。
 一般式(3)で示される化合物は、特に限定されないが、ビス(ベンゾフラン-2-イル)ボリン酸、ビス(ベンゾチオフェン-2-イル)ボリン酸、ビス(1-メチルインドール-2-イル)ボリン酸、ビス(1-メチルインドール-3-イル)ボリン酸、ビス(1-メチルインドール-5-イル)ボリン酸、ビス(キノリン-4-イル)ボリン酸、ビス(キノリン-5-イル)ボリン酸、ビス(キノリン-6-イル)ボリン酸、ビス(2-メチルキノリン-6-イル)ボリン酸などの2環系化合物;ビス(ジベンゾフラン-2-イル)ボリン酸、ビス(ジベンゾフラン-4-イル)ボリン酸、ビス(ジベンゾチオフェン-2-イル)ボリン酸、ビス(ジベンゾチオフェン-4-イル)ボリン酸、ビス(9H-カルバゾール-1-イル)ボリン酸、ビス(9H-カルバゾール-3-イル)ボリン酸、ビス(9H-フルオレン-9-イル)ボリン酸、ビス(9,9-ジメチル-9H-フルオレン-2-イル)ボリン酸、ビス(9,9-ジエチル-9H-フルオレン-2-イル)ボリン酸、ビス(9,9-ジプロピル-9H-フルオレン-2-イル)ボリン酸、ビス(9,9-ジブチル-9H-フルオレン-2-イル)ボリン酸、ビス(9,9-ジペンチル-9H-フルオレン-2-イル)ボリン酸、ビス(9,9-ジヘキシル-9H-フルオレン-2-イル)ボリン酸などの3環系化合物が挙げられる。これらの化合物は、これまでに報告された例がなく、新規の化合物である。
 一般式(3)で示される新規ボリン酸誘導体は、一般式(1)で示される化合物とホウ酸トリt-ブチルの反応により得られた一般式(4)で示される化合物を、一般的な方法により加水分解することで得られる。その反応条件、定義及び好適な態様は、上述の<ボリン酸誘導体の製造方法>の記載に準じるものである。
<ボレート塩誘導体の製造方法>
 本発明者らは、本発明のボリン酸誘導体の製造方法を精査し、その中間体として、4配位アート型錯体であるボレート塩が得られることも見出した。ホウ素化合物の4配位アート型錯体は、近年、金属触媒反応における新たなホウ素試薬として注目されており(例えば、Angew. Chem. Int. Ed. 2008, 47, 928-931)、新規ボレート塩誘導体は、新たなホウ素試薬として期待される。したがって、本発明は、一般式(1):
Figure JPOXMLDOC01-appb-C000027
(式中、Arは、芳香族炭化水素環基又は芳香族ヘテロ環基であり、Mは、Li又はMgXであり、そしてXは、塩素原子、臭素原子又はヨウ素原子である)
で示される化合物と、ホウ酸トリt-ブチルを反応させて、
一般式(4):
Figure JPOXMLDOC01-appb-C000028
(式中、Arは前記と同義であり、M′は、Li又はMg2+であり、M′がLiである場合、pは1であり、M′がMg2+である場合、pは2である)
で示されるボレート塩誘導体を得るものでもある。
 本発明のボレート塩の製造方法は、式(1)で示される化合物とホウ酸トリt-ブチルを反応させたのち、加水分解せずに、生成した一般式(4)で示されるボレート塩誘導体を得るものである。その反応条件、定義及び好適な態様は、加水分解工程を除き、上述の<ボリン酸誘導体の製造方法>の記載に準じるものである。
<新規ボレート塩誘導体>
 また、本発明は、一般式(5):
Figure JPOXMLDOC01-appb-C000029
[式中、Ar′は、下記式:
Figure JPOXMLDOC01-appb-C000030
(ここで、mは、0又は1であり、Aは、-O-、-S-又は-NR-であるが、mが0の場合、Aはさらに-C(R-であってもよく、Rは、水素原子、炭素数1~6のアルキル基又は芳香族炭化水素環基であり、Rは、同一であっても又は異なっていてもよく、水素原子又は炭素数1~6のアルキル基であり;
 Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数3~6のシクロアルキル基であり、nは、0~5であり;
Figure JPOXMLDOC01-appb-C000031
は、単結合又は二重結合であり、したがってAを含む環は、飽和又は不飽和であってよく;そして
 *は、B(ホウ素)への結合手であるが、但し、R及び*の置換位置は、それぞれベンゼン環上に限定されない)で示される基であり;そして
 M′は、Li又はMg2+であり、M′がLiである場合、p′は1であり、M′がMg2+である場合、p′は2である]
で示される新規ボレート塩誘導体を提供するものでもある。
 特に、Ar′が、下記式:
Figure JPOXMLDOC01-appb-C000032
(式中、Aは、-O-、-S-、-NR-又は-C(R-であり、Rは、水素原子又はメチル基であり、Rは、同一であっても又は異なっていてもよく、水素原子又はメチル基であり、そして*は、前記と同義である)で示される基である、一般式(5)で示される新規ボレート塩誘導体を提供する。
 また特に、M′がLiである、一般式(5)で示される新規ボレート塩誘導体を提供する。
 一般式(5)で示される新規ボレート塩誘導体は、一般式(1)で示される化合物とホウ酸トリt-ブチルの反応により得られる。その反応条件、定義及び好適な態様は、上述の<ボリン酸誘導体の製造方法>の記載に準じるものである。
 以下に、本発明の様態を明らかにするために実施例を示すが、本発明はここに示す実施例の内容のみに限定されるわけではない。
 実施例で得られた化合物の純度、融点及びNMRスペクトルの測定方法は以下の通りである。
<純度>
高速液体クロマトグラフィーを用いて測定した。測定条件は以下の通りである。
 試料調製   : 試料1.0mgをアセトニトリル0.5mLに溶解
 検出器    : SPD-20A(株式会社島津製作所製)
 オーブン   : CTO-20A(株式会社島津製作所製)
 ポンプ    : LC-20AD(株式会社島津製作所製)
 カラム    : ODS-80TM(東ソー株式会社製)
 カラム温度  : 40℃
 溶離液A   : アセトニトリル:リン酸=1000:0.5
 溶離液B   : 水:リン酸=1000:0.5
 グラジエント : A40%(0~15min.)→A80%(20~35min.)
 流速     : 1.0mL/min
 波長     : 254nm
<融点>
 融点測定装置B-545(日本ビュッヒ株式会社製)を用いて、毎分5℃で50~280℃まで昇温することで測定した。
<NMRスペクトル>
 化合物と重DMSO(Cambrige Isotope Laboratories, Inc.製 DMSO-d6 0.05%TMS含有)とを混合した溶液を調整し、NMR(日本電子株式会社製、JNM-AL400)にて、1H-NMR、11B-NMRを測定した。なお、1H-NMRスペクトルの測定では、テトラメチルシランを標準物質とし、11B-NMRスペクトルの測定では、三フッ化ホウ素のテトラヒドロフラン錯体を標準物質とした。
<X線回折による結晶構造解析>
 単結晶X線回折装置(株式会社リガク製、VariMax Saturn CCD724 HG)を用いて測定した(X線源:Mo)
[実施例1]
ビス(ジベンゾフラン-4-イル)ボリン酸の合成
 攪拌装置、温度計、U字管、還流冷却器及び滴下漏斗を備えた300mLのガラス製フラスコに、アルゴン雰囲気下、THF80mL及びジベンゾフラン(東京化成工業(株)製)15g(0.09mol)を加え、室温下で攪拌しながら、ジベンゾフランを溶解させた。溶解後、内温-10~0℃まで冷却し、2.3mol/L n-ブチルリチウム シクロヘキサン溶液28.6g(0.09mol)を滴下し、同温度で、1時間反応させた。反応液をサンプリングし、1H-NMRにより確認したところ、4-ジベンゾフラニルリチウムの反応収率は90%であった。さらに、同温度で、ホウ酸トリt-ブチル(シグマアルドリッチジャパン(株)製)10.3g(0.05mol)を滴下し、1時間反応させた。反応終了後の純度を表1に示す。
 反応終了後に析出した結晶をろ取することで、ビス(ジベンゾフラン-4-イル)ジ(t-ブトキシ)ボレートリチウム塩21gを得た。外観:白色粉末;1H-NMR (ppm): δ1.10 (s, 18H), 7.07 (t, 2H, J=7.2 and 7.6Hz), 7.24 (t, 2H, J=7.6 and 7.2Hz), 7.34~7.38 (m, 2H), 7.56 (d, 2H, J=8.4Hz), 7.61(dd, 2H, J=0.8 and 6.8Hz), 7.64 (dd, 2H, J=1.6 and 7.6Hz), 7.95 (d, 2H, J=7.2Hz) ;11B-NMR (ppm): δ3.28 (s).
 前記ボレート塩をTHF80mLに溶解し、35重量%塩酸29.1g(0.28mol)、水36mLを加えて加水分解を行った。次いで、分液により有機層を分離した。得られた有機層を10重量%食塩水で洗浄し、有機層から減圧下で溶媒を留去した後、得られた固体残留物にイソプロピルアルコール40mL、水20mLを加え、内温約60~70℃で加熱洗浄を1時間行った。次いで、室温まで冷却させて濾過し、乾燥させて、純度99%のビス(4-ジベンゾフラン)ボリン酸12.4gを得た(ジベンゾフランからの収率76.8%、4-ジベンゾフラニルリチウムからの収率85.3%)。外観:白色粉末;m.p.:159~160℃;1H-NMR (ppm):δ 7.34 (t, 2H, J=7.6 and 7.2Hz), 7.35 (t, 2H, J=7.6 and 7.2Hz), 7.44 (t, 2H, J=7.6 and 7.8Hz), 7.54 (d, 2H, J=8.0Hz), 7.63 (dd, 2H, J=1.2 and 7.2Hz), 8.12 (d, 4H, J=6.8Hz), 8.27 (s, 1H) ;11B-NMR (ppm):δ 30.43 (s).
 得られたビス(4-ジベンゾフラン)ボリン酸の一部をTHF/ヘキサンより再結晶させ、単結晶を得、これを単結晶X線回折による結晶構造解析に付し、図2の分子構造図(ORTEP図)を得た。
[比較例1~6]
 ホウ酸トリt-ブチルエステルを表1に記載のホウ酸エステルに変更した以外は、実施例1と同様の操作を行い、反応液を得た。反応終了後の純度を表1に示す。なお、実施例1及び比較例1~6では、加水分解前のボレート塩をサンプリングしたが、高速液体クロマトグラフィー測定用試料の調製により加水分解が起こるため、表1における反応終了後の純度は、加水分解後のボリン酸/ボロン酸を意味する。
Figure JPOXMLDOC01-appb-T000033
[実施例2]
ビス(ジベンゾチオフェン-4-イル)ボリン酸の合成
 攪拌装置、温度計、U字管、還流冷却器及び滴下漏斗を備えた300mLのガラス製フラスコに、アルゴン雰囲気下、THF58mL及びジベンゾチオフェン(東京化成工業(株)製)10g(0.05mol)を加え、室温下で攪拌しながら、ジベンゾチオフェンを溶解させた。溶解後、内温-10~0℃まで冷却し、2.6mol/L n-ブチルリチウム ヘキサン溶液21mL(0.05mol)を滴下し、同温度で、1時間反応させた。反応液をサンプリングし、1H-NMRにより確認したところ、4-ジベンゾチエニルリチウムの反応収率は49%であった。さらに、同温度で、ホウ酸トリt-ブチル(シグマアルドリッチジャパン(株)製)10.3g(0.05mol)を滴下し、1時間反応させた。
 反応終了後に析出した結晶をろ取することで、ビス(ジベンゾチオフェン-4-イル)ジ(t-ブトキシ)ボレートリチウム塩7.1gを得た。外観:白色粉末;1H-NMR (ppm): δ1.11 (s, 18H), 7.16 (t, 2H, J=7.6 and 7.2Hz), 7.28~7.31 (m, 4H), 7.80~7.83 (m, 6H), 8.08~8.10 (m, 2H).
 前記ボレート塩を実施例1と同様の方法で加水分解、単離することにより、純度96%のビス(ジベンゾチオフェン-4-イル)ボリン酸4.5gを得た(ジベンゾチオフェンからの収率42.1%、4-ジベンゾチエニルリチウムからの収率86.5%)。外観:微黄白色粉末; 1H-NMR (ppm): δ7.38~7.42 (m, 6H), 7.76 (d, 2H, J=7.2Hz), 7.86~7.88 (m, 2H), 8.18 (d, 2H, J=8.0Hz), 8.24~8.26 (m, 2H);11B-NMR (ppm): δ20.67(s).
[実施例3]
ビス(ベンゾフラン-2-イル)ボリン酸の合成
 攪拌装置、温度計、U字管、還流冷却器及び滴下漏斗を備えた100mLのガラス製フラスコに、アルゴン雰囲気下、THF40mL及びベンゾフラン(東京化成工業(株)製)4.4g(0.04mol)を加えた。撹拌しながら内温-10~0℃まで冷却し、2.6mol/L n-ブチルリチウム ヘキサン溶液14.3mL(0.04mol)を滴下し、同温度で、1時間反応させた。反応液をサンプリングし、1H-NMRにより確認したところ、2-ベンゾフラニルリチウムの反応収率は94%であった。さらに、同温度で、ホウ酸トリt-ブチル(シグマアルドリッチジャパン(株)製)4.3g(0.02mol)を滴下し、1時間反応させた。
 反応終了後に析出した結晶をろ取することで、ビス(ベンゾフラン-2-イル)ジ(t-ブトキシ)ボレートリチウム塩6.9gを得た。外観:微黄白色粉末;1H-NMR (ppm): δ1.10 (s, 18H), 6.42 (s, 2H), 6.95~7.00 (m, 4H),7.29~7.31 (m, 2H), 7.34~7.36 (m, 2H).
 前記ボレート塩を実施例1と同様の方法で加水分解、単離することにより、純度99%のビス(ベンゾフラン-2-イル)ボリン酸4.2gを得た(ベンゾフランからの収率86.2%、2-ベンゾフラニルリチウムからの収率91.9%)。外観:微黄白色粉末;1H-NMR (ppm): δ 6.97 (s, 2H), 7.12~7.21 (m, 4H), 7.5 (d, 2H, J=7.2Hz), 7.56 (d, 2H, J=7.2Hz);11B-NMR (ppm): δ10.89(s).
[実施例4]
ビス(ベンゾチオフェン-2-イル)ボリン酸の合成
 攪拌装置、温度計、U字管、還流冷却器及び滴下漏斗を備えた100mLのガラス製フラスコに、アルゴン雰囲気下、THF40mL及びベンゾチオフェン(東京化成工業(株)製)5.0g(0.04mol)を加えた。撹拌しながら内温-10~0℃まで冷却し、2.6mol/L n-ブチルリチウム ヘキサン溶液14.3mL(0.04mol)を滴下し、同温度で、1時間反応させた。反応液をサンプリングし、1H-NMRにより確認したところ、2-ベンゾチエニルリチウムの反応収率は98%であった。さらに、同温度で、ホウ酸トリt-ブチル(シグマアルドリッチジャパン(株)製)4.3g(0.02mol)を滴下し、1時間反応させた。
 反応終了後に析出した結晶をろ取することで、ビス(ベンゾチオフェン-2-イル)ジ(t-ブトキシ)ボレートリチウム塩8.0gを得た。外観:白色粉末;1H-NMR (ppm): δ1.10 (s, 18H), 6.99~7.03 (m, 4H), 7.08~7.12 (m, 2H), 7.52 (d, 2H, J=8.4Hz), 7.68 (d, 2H, J=8.0Hz).
 前記ボレート塩を実施例1と同様の方法で加水分解、単離することにより、純度99%のビス(ベンゾチオフェン-2-イル)ボリン酸4.5gを得た(ベンゾチオフェンからの収率82.7%、2-ベンゾチエニルリチウムからの収率83.3%)。外観:黄白色粉末;1H-NMR (ppm): δ7.22~7.29 (m, 4H), 7.50 (s, 2H), 7.78 (d, 2H, J=8.0Hz), 7.87 (d, 2H, J=7.6Hz);11B-NMR (ppm): δ14.41(s).
[実施例5]
ビス(1-メチルインドール-2-イル)ジ(t-ブトキシ)ボレートリチウム塩の合成
 攪拌装置、温度計、U字管、還流冷却器及び滴下漏斗を備えた100mLのガラス製フラスコに、アルゴン雰囲気下、THF40mL及び1-メチルインドール(東京化成工業(株)製)4.9g(0.04mol)を加えた。撹拌しながら内温-10~0℃まで冷却し、2.6mol/L n-ブチルリチウム ヘキサン溶液14.3mL(0.04mol)を滴下し、同温度で、1時間反応させた。反応液をサンプリングし、1H-NMRにより確認したところ、1-メチル-2-インドリルリチウムの反応収率は76%であった。さらに、同温度で、ホウ酸トリt-ブチル(シグマアルドリッチジャパン(株)製)4.3g(0.02mol)を滴下し、1時間反応させた。
 反応終了後に析出した結晶をろ取することで、ビス(1-メチルインドール-2-イル)ジ(t-ブトキシ)ボレートリチウム塩2.4gを得た(1-メチルインドールからの収率29.6%、1-メチル-2-インドリルリチウムからの収率38.9%)。外観:黄白色粉末;1H-NMR (ppm): δ1.09 (s, 18H), 3.76 (s, 6H), 6.19 (s, 2H), 6.75~6.83 (m, 4H), 7.09 (d, 2H, J=8.0Hz), 7.27 (d, 2H, J=6.8Hz);11B-NMR (ppm): δ0.2(s).
[実施例6]
ビス(1-ナフチル)ボリン酸の合成
 攪拌装置、温度計、U字管、還流冷却器及び滴下漏斗を備えた100mLのガラス製フラスコに、アルゴン雰囲気下、THF30mL及び1-ブロモナフタレン(マナック(株)製)5.0g(0.02mol)を加えた。撹拌しながら内温-10~0℃まで冷却し、2.6mol/L n-ブチルリチウム ヘキサン溶液9.3mL(0.02mol)を滴下し、同温度で、1時間反応させた。さらに、同温度で、ホウ酸トリt-ブチル(シグマアルドリッチジャパン(株)製)2.7g(0.01mol)を滴下し、1時間反応させた。
 得られた反応液を実施例1と同様の方法で加水分解後、分液することで有機層を得た。得られた有機層をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘプタン;1/16)にて精製すると、純度99%のビス(1-ナフチル)ボリン酸2.7gを得た(1-ブロモナフタレンからの収率は、81%であった。)。外観:白色粉末;1H-NMR (ppm): δ7.42~7.51(m, 6H), 7.56(dd, 2H, J=1.2Hz、6.8Hz), 7.94~7.99 (m, 4H), 8.29 (d, 2H,J=8.4Hz), 10.9 (s, 1H);11B-NMR (ppm): δ47.0(s).
[実施例7]
ジフェニルボリン酸の合成
 攪拌装置、温度計、U字管、還流冷却器及び滴下漏斗を備えた100mLのガラス製フラスコに、アルゴン雰囲気下、THF10mLを加えた。撹拌しながら内温-10~0℃まで冷却し、1.08mol/L フェニルリチウム ジエチルエーテル・シクロヘキサン溶液5mL(5.4mmol)(関東化学(株)製)を加えた。さらに、同温度で、ホウ酸トリt-ブチル(シグマアルドリッチジャパン(株)製)0.6g(2.7mmol)を滴下し、1時間反応させた。
 得られた反応液を実施例1と同様の方法で加水分解後、分液することで有機層を得た。得られた有機層をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘプタン;1/10)にて精製すると、純度98%のジフェニルボリン酸0.46gを得た(フェニルリチウムからの収率93%)。外観:白色粉末;1H-NMR (ppm): δ7.40 (t, 4H, J=7.2 and 8.0Hz), 7.45~7.48 (m, 2H), 7.68 (d, 4H, J=8.0Hz), 9.95 (s, 1H;11B-NMR (ppm): δ20.28(s).
[実施例8]
ビス(2-チエニル)ボリン酸の合成
 攪拌装置、温度計、U字管、還流冷却器及び滴下漏斗を備えた100mLのガラス製フラスコに、アルゴン雰囲気下、THF40mL及びチオフェン(和光純薬工業(株)製)3.1g(0.04mol)を加えた。撹拌しながら内温-10~0℃まで冷却し、2.6mol/L n-ブチルリチウム ヘキサン溶液14.3mL(0.04mol)を滴下し、同温度で、1時間反応させた。反応液をサンプリングし、1H-NMRにより確認したところ、2-チエニルリチウムの反応収率は99%であった。さらに、同温度で、ホウ酸トリt-ブチル(シグマアルドリッチジャパン(株)製)4.3g(0.02mol)を滴下し、1時間反応させた。
 反応終了後に析出した結晶をろ取することで、ビス(2-チオフェン)ジ(t-ブトキシ)ボレートリチウム塩5.6gを得た。外観:白色粉末;1H-NMR (ppm): δ1.10 (s, 18H), 6.75 (d, 2H, J=2.8Hz), 6.79~6.81 (m, 2H), 7.05 (d, 2H, J=4.8Hz)
 前記ボレート塩を実施例1と同様の方法で加水分解、単離することにより、純度99%のビス(2-チオフェン)ボリン酸2.5gを得た(チオフェンからの収率70.5%、2-チエニルリチウムからの収率71.2%)。外観:白色粉末;1H-NMR (ppm): δ7.30~7.32(m,2H), 7.87(dd, 2H, J=0.8 and 3.6Hz), 7.96 (dd, 2H, J=0.8 and 4.8Hz), 9.90 (s, 1H);11B-NMR (ppm): δ35.90(s).
[実施例9]
ビス(4-メトキシフェニル)ボリン酸の合成
 撹拌装置、温度計、U字管、還流冷却器及び滴下漏斗を備えた100mLのガラス製フラスコに、アルゴン雰囲気下、THF20mL、マグネシウム0.56g(0.02mol)を加え、内温50~60℃まで加熱した。加熱後、4-ブロモアニソール4.2g(0.02mol)をTHF3mLで希釈した溶液をゆっくり滴下し、同温度で1時間反応させた。反応後、室温まで冷却し、ホウ酸トリt-ブチル0.5g(0.002mol)(シグマアルドリッチジャパン(株)製)を滴下し、同温度で24時間反応させた。反応後、35重量%塩酸水溶液4.5g、水10mLを加え、有機層を分離した。水層は、塩化メチレン20mLで抽出し、先に分離した有機層と混合した。
 得られた溶液を濃縮し、シリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘプタン;1/10)にて精製を行い、純度99%のビス(4-メトキシフェニル)ボリン酸0.26gを得た(ホウ酸トリt-ブチルからの収率は、50%であった)。外観:白色粉末;1H-NMR (ppm): δ3.80 (s, 6H), 6.84 (d, 4H, J=8.4Hz), 7.66 (d, 4H, J=8.8Hz), 9.57 (s, 1H); 11B-NMR(ppm): δ43.27(s).
 実施例の結果からも明らかなように、ホウ酸トリアルキルとして、ホウ酸トリt-ブチルを使用することにより、ボロン酸に対するボリン酸の選択性やボリン酸の収率が著しく向上した。ホウ酸トリアルキルのアルキル鎖の相違により選択性や収率が向上するという知見は、これまでに知られていない。このように本発明の製造方法により、ボリン酸誘導体を、選択的にかつ高収率で、簡便に製造することが可能となった。したがって本発明の製造方法は、工業的に利用可能であると期待される。また本発明の製造方法により、鈴木カップリング反応に使用可能な、電気電子材料及び医薬分野などで有用な有機合成中間体である新規なボリン酸誘導体を提供することができる。さらに、本発明の製造方法によれば、ジアリールジ(t-ブトキシ)ボレート塩を製造することも可能である。ホウ素化合物の4配位アート型錯体は、近年、鈴木カップリング反応を含む金属触媒反応における新たなホウ素試薬として注目されており、したがって本発明の製造方法は、ボレート塩誘導体の簡便な製造方法及び新規ボレート塩誘導体の提供を可能とするものとしても期待される。

Claims (7)

  1.  一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arは、芳香族炭化水素環基又は芳香族ヘテロ環基であり、Mは、Li又はMgXであり、そしてXは、塩素原子、臭素原子又はヨウ素原子である)
    で示される化合物と、ホウ酸トリt-ブチルを反応させ、次いで反応物を加水分解させることを特徴とする、
    一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Arは、前記と同義である)
    で示されるボリン酸誘導体の製造方法。
  2.  一般式(1)中のMがLiである、請求項1に記載の製造方法。
  3.  ホウ酸トリt-ブチルを、一般式(1)で示される化合物1モルに対して、0.1モル~2.0モルの範囲で使用することを特徴とする、請求項1又は2に記載の製造方法。
  4.  ホウ酸トリt-ブチルとの反応を、-80℃~80℃の範囲の温度で実施することを特徴とする、請求項1~3いずれか一項記載の製造方法。
  5.  一般式(2′):
    Figure JPOXMLDOC01-appb-C000003
    [式中、Ar′は、下記式:
    Figure JPOXMLDOC01-appb-C000004
    (ここで、mは、0又は1であり、Aは、-O-、-S-又は-NR-であるが、mが0の場合、Aはさらに-C(R-であってもよく、Rは、水素原子、炭素数1~6のアルキル基又は芳香族炭化水素環基であり、Rは、同一であっても又は異なっていてもよく、水素原子又は炭素数1~6のアルキル基であり;
     Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数3~6のシクロアルキル基であり、nは、0~5であり;
    Figure JPOXMLDOC01-appb-C000005
    は、単結合又は二重結合であり、したがってAを含む環は、飽和又は不飽和であってよく;そして
     *は、B(ホウ素)への結合手であるが、但し、R及び*の置換位置は、それぞれベンゼン環上に限定されない)で示される基である]
    で示されるボリン酸誘導体。
  6.  一般式(1):
    Figure JPOXMLDOC01-appb-C000006
    (式中、Arは、芳香族炭化水素環基又は芳香族ヘテロ環基であり、Mは、Li又はMgXであり、そしてXは、塩素原子、臭素原子又はヨウ素原子である)
    で示される化合物と、ホウ酸トリt-ブチルを反応させることを特徴とする、
    一般式(4):
    Figure JPOXMLDOC01-appb-C000007
    (式中、Arは、前記と同義であり、M′は、Li又はMg2+であり、M′がLiである場合、pは1であり、M′がMg2+である場合、pは2である)
    で示されるボレート塩の製造方法。
  7.  一般式(5):
    Figure JPOXMLDOC01-appb-C000008
    [式中、Ar′は、下記式:
    Figure JPOXMLDOC01-appb-C000009
    (ここで、mは、0又は1であり、Aは、-O-、-S-又は-NR-であるが、mが0の場合、Aはさらに-C(R-であってもよく、Rは、水素原子、炭素数1~6のアルキル基又は芳香族炭化水素環基であり、Rは、同一であっても又は異なっていてもよく、水素原子又は炭素数1~6のアルキル基であり;
     Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数3~6のシクロアルキル基であり、nは、0~5であり;
    Figure JPOXMLDOC01-appb-C000010
    は、単結合又は二重結合であり、したがってAを含む環は、飽和又は不飽和であってよく;そして
     *は、B(ホウ素)への結合手であるが、但し、R及び*の置換位置は、それぞれベンゼン環上に限定されない)で示される基であり;
     M′は、Li又はMg2+であり、M′がLiである場合、p′は1であり、M′がMg2+である場合、p′は2である]
    で示されるボレート塩。
     
PCT/JP2013/072062 2012-08-20 2013-08-19 ボリン酸誘導体の製造方法及び新規ボリン酸誘導体 WO2014030600A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014512997A JP5602330B2 (ja) 2012-08-20 2013-08-19 ボリン酸誘導体の製造方法及び新規ボリン酸誘導体
CN201380035132.1A CN104395326B (zh) 2012-08-20 2013-08-19 二取代硼酸衍生物的制造方法和新型二取代硼酸衍生物
KR1020147034772A KR102082532B1 (ko) 2012-08-20 2013-08-19 보린산 유도체의 제조 방법 및 신규 보린산 유도체
EP13831052.9A EP2886548A4 (en) 2012-08-20 2013-08-19 PROCESS FOR THE PREPARATION OF A BORINIC ACID DERIVATIVE AND NEW BORIC ACID DERIVATIVE
US14/410,993 US20150105562A1 (en) 2012-08-20 2013-08-19 Method for preparing borinic acid derivatives and novel borinic acid derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-181578 2012-08-20
JP2012181578 2012-08-20

Publications (1)

Publication Number Publication Date
WO2014030600A1 true WO2014030600A1 (ja) 2014-02-27

Family

ID=50149909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072062 WO2014030600A1 (ja) 2012-08-20 2013-08-19 ボリン酸誘導体の製造方法及び新規ボリン酸誘導体

Country Status (7)

Country Link
US (1) US20150105562A1 (ja)
EP (1) EP2886548A4 (ja)
JP (2) JP5602330B2 (ja)
KR (1) KR102082532B1 (ja)
CN (1) CN104395326B (ja)
TW (1) TWI576349B (ja)
WO (1) WO2014030600A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213374A (zh) * 2021-12-28 2022-03-22 棓诺(苏州)新材料有限公司 4-氨基氧芴的合成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192240A (ja) 1992-10-12 1994-07-12 Synthelabo Sa ベンゼンボリン酸の誘導体、その製造法および合成中間体としての使用
JP2002047292A (ja) 2000-07-27 2002-02-12 Hokko Chem Ind Co Ltd フェニルボロン酸類およびトリフェニルボロキシン類の製造方法
JP2002308883A (ja) 2001-03-02 2002-10-23 Clariant Gmbh ボロン酸およびボリン酸の製造法
JP2007297297A (ja) 2006-04-28 2007-11-15 Tosoh Finechem Corp 不純物の低減された2−シアノフェニルボロン酸又はそのエステル体、並びにその製造方法
JP2009526826A (ja) * 2006-06-01 2009-07-23 ビーエーエスエフ ソシエタス・ヨーロピア 置換ビフェニルの製造法
JP2011515335A (ja) 2008-02-25 2011-05-19 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト 置換ビフェニルアニリド類を調製する方法
CN102503855A (zh) * 2011-12-09 2012-06-20 华东理工大学 4-氰基联苯的合成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772751A (en) * 1986-08-29 1988-09-20 Aldrich-Boranes, Inc. Process for lithium mono- and diorganylborohydrides
JP2614812B2 (ja) * 1993-06-03 1997-05-28 北興化学工業株式会社 セサモールの製造法
AU2007336918A1 (en) * 2006-12-22 2008-07-03 Novartis Ag Indol-4-yl-pyrimidinyl-2-yl-amine derivatives and use thereof as cyclin dependant kinase inhibitors
US20090069374A1 (en) 2007-06-06 2009-03-12 Phil Skolnick Novel 1-Heteroaryl-3-Azabicyclo[3.1.0]Hexanes, Methods For Their Preparation And Their Use As Medicaments
MX2011002149A (es) * 2008-08-27 2011-04-05 Calcimedica Inc Compuestos que modulan el calcio intracelular.
KR101511072B1 (ko) * 2009-03-20 2015-04-10 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광소자
CN102834401B (zh) 2010-02-03 2016-08-24 无限药品股份有限公司 脂肪酸酰胺水解酶抑制剂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192240A (ja) 1992-10-12 1994-07-12 Synthelabo Sa ベンゼンボリン酸の誘導体、その製造法および合成中間体としての使用
JP2002047292A (ja) 2000-07-27 2002-02-12 Hokko Chem Ind Co Ltd フェニルボロン酸類およびトリフェニルボロキシン類の製造方法
JP2002308883A (ja) 2001-03-02 2002-10-23 Clariant Gmbh ボロン酸およびボリン酸の製造法
JP2007297297A (ja) 2006-04-28 2007-11-15 Tosoh Finechem Corp 不純物の低減された2−シアノフェニルボロン酸又はそのエステル体、並びにその製造方法
JP2009526826A (ja) * 2006-06-01 2009-07-23 ビーエーエスエフ ソシエタス・ヨーロピア 置換ビフェニルの製造法
JP2011515335A (ja) 2008-02-25 2011-05-19 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト 置換ビフェニルアニリド類を調製する方法
CN102503855A (zh) * 2011-12-09 2012-06-20 华东理工大学 4-氰基联苯的合成方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., vol. 47, 2008, pages 928 - 931
BENJAMIN A. HAAG ET AL.: "Practical One-Pot Preparation of Magnesium Di(hetero)aryl- and Magnesium Dialkenylboronates for Suzuki-Miyaura Cross-Coupling Reactions", ANGEWANDTE CHEMIE. INTERNATIONAL EDITION, vol. 50, no. 32, 2011, pages 7290 - 7294, XP055033126 *
HERBERT C. BROWN ET AL.: "Studies in Stereochemistry. XXII. The Preparation and Reactions of Trimesitylborane. Evidence for the Non-localized Nature of the Odd Electron in Triarylborane Radical Ions and Related Free Radicals", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 79, 1957, pages 2302 - 6, XP055179497 *
JOURNAL OF THE CHEMICAL SOCIETY, vol. 78, 1956, pages 3613
ROBERT L. LETSINGER ET AL.: "Organoboron compounds. V. The Preparation of an Unsymmetrical Diarylborinate", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 77, 1955, pages 2489 - 91, XP055179496 *
See also references of EP2886548A4 *

Also Published As

Publication number Publication date
EP2886548A1 (en) 2015-06-24
KR20150044849A (ko) 2015-04-27
JPWO2014030600A1 (ja) 2016-07-28
JP5602330B2 (ja) 2014-10-08
JP6140110B2 (ja) 2017-05-31
US20150105562A1 (en) 2015-04-16
TW201414742A (zh) 2014-04-16
CN104395326B (zh) 2017-04-05
TWI576349B (zh) 2017-04-01
JP2014237657A (ja) 2014-12-18
CN104395326A (zh) 2015-03-04
EP2886548A4 (en) 2016-01-20
KR102082532B1 (ko) 2020-02-27

Similar Documents

Publication Publication Date Title
CN103917522B (zh) N-(杂)芳基唑类的制造方法
Roemer et al. Syntheses and purification of the versatile synthons iodoferrocene and 1, 1′-diiodoferrocene
JP5969759B2 (ja) 有機ホウ素化合物及びその製造方法
JP5923823B2 (ja) アセンジカルコゲノフェン誘導体用中間体及びその合成方法
JP6140110B2 (ja) 新規ボリン酸誘導体
CN105085380A (zh) Nn配体、nn配体铁络合物、晶体、制备方法及应用
JP6991584B2 (ja) トリ-(アダマンチル)ホスフィンおよびその用途
CN115353529A (zh) 手性螺环化合物、其制备方法及其应用
CN111217847B (zh) 一种硫代硅烷配体及其制备方法和在芳基硼化催化反应中的应用
JP2010235453A (ja) 白金錯体の製造方法
JP2009227670A (ja) ヘテロアセン誘導体の製造方法及びテトラハロターフェニル誘導体
CN106366069B (zh) 一种n-杂芳基咔唑类化合物的制备方法
JP2009249355A (ja) フッ素化されたフルオレン誘導体およびその製造方法
JP4362683B2 (ja) 非対称ジヒドロフェナジン誘導体及びその製造方法
JP5076599B2 (ja) ターフェニレン誘導体の製造方法
JP6344063B2 (ja) ジチエノベンゾジチオフェン誘導体の製造方法
JP7279412B2 (ja) 芳香族化合物の製造方法
Chantson et al. Synthesis and structure of 4, 6-disubstituted dibenzothiophenes and their use in the preparation of binuclear platinum (II) complexes
Wang et al. Syntheses and structures of a class of bridged bis (amidinate) s and derivatives
JP5790129B2 (ja) 新規なナフタレン金属化合物及びその製造法
JP2015174853A (ja) 2−(4−メチル−2−フェニルピペラジン−1−イル)ピリジン−3−メタノールの製造方法
CN113999264A (zh) 一种卤代磷杂苊类化合物及其制备方法
TW202030194A (zh) 三衍生物之製造方法及有機銅化合物
JP2012232924A (ja) 新規なナフチルボロン酸化合物及びその製造法
KR101370803B1 (ko) 라세믹―비놀과 카이랄 붕소산 리간드 사이의 부분상거울상이성질체 현상을 이용한 (r)과 (s) 비놀의 분리법의 개발 및 분리된 비놀 화합물의 스즈키 반응을 통한 3,3''-위치에 치환체 도입을 통한 비놀 유도체의 개발

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014512997

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147034772

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013831052

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013831052

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14410993

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE