WO2014027651A1 - ポリエーテルポリアミド組成物 - Google Patents

ポリエーテルポリアミド組成物 Download PDF

Info

Publication number
WO2014027651A1
WO2014027651A1 PCT/JP2013/071839 JP2013071839W WO2014027651A1 WO 2014027651 A1 WO2014027651 A1 WO 2014027651A1 JP 2013071839 W JP2013071839 W JP 2013071839W WO 2014027651 A1 WO2014027651 A1 WO 2014027651A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyether polyamide
polyamide composition
polyether
compound
composition according
Prior art date
Application number
PCT/JP2013/071839
Other languages
English (en)
French (fr)
Inventor
佐藤 和哉
加藤 智則
三田寺 淳
まゆみ 武尾
伸幸 津中
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012179744A external-priority patent/JP5929622B2/ja
Priority claimed from JP2012179745A external-priority patent/JP5929623B2/ja
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201380042965.0A priority Critical patent/CN104583321B/zh
Priority to EP13879254.4A priority patent/EP2886608B1/en
Priority to US14/421,007 priority patent/US9512314B2/en
Priority to KR1020157003008A priority patent/KR20150044884A/ko
Publication of WO2014027651A1 publication Critical patent/WO2014027651A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/4105Methods of emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/005Methods for mixing in batches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/99Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/2805Mixing plastics, polymer material ingredients, monomers or oligomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • B29K2079/085Thermoplastic polyimides, e.g. polyesterimides, PEI, i.e. polyetherimides, or polyamideimides; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • the present invention relates to a polyether polyamide composition, and more particularly to a polyether polyamide composition suitable as a material for automobile parts, electrical parts, electronic parts and the like.
  • Polyamide resins are materials used for a wide range of applications such as fibers and engineering plastics, but are known to be easily hydrolyzed in acidic media.
  • a polyamide resin composition in which an aliphatic carbodiimide compound is blended with a polyamide resin is known (Patent Document 1). Although such a polyamide resin composition has the property of being excellent in hydrolysis resistance, flexibility and impact resistance may be insufficient.
  • thermoplastic resin composition excellent in mechanical properties such as barrier properties and strength, impact resistance and elongation
  • 70 mol% or more of diamine structural units are derived from metaxylylenediamine, and 70 mol of dicarboxylic acid structural units.
  • % Polyamide resin (a-1) derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and polyamide resin composition comprising nylon 11 and / or nylon 12 (a-2) ( A) and a thermoplastic resin composition containing a carbodiimide compound (B) having two or more carbodiimide groups in the molecule are known (Patent Document 2).
  • thermoplastic resin composition disclosed in Patent Document 2 is a blend of two types of polyamide resins having different refractive indexes, it may cause white turbidity regardless of the degree of crystallization, and is more than a certain level of transparency. For applications that require high performance, further improvement in transparency is desired.
  • the problem to be solved by the present invention is to provide a polyamide-based resin composition which has hydrolysis resistance and transparency and is excellent in mechanical properties such as flexibility and tensile elongation at break.
  • the present invention provides the following polyether polyamide composition and molded article.
  • the diamine structural unit is derived from the polyetherdiamine compound (a1-1) and xylylenediamine (a-2) represented by the following general formula (1), and the dicarboxylic acid structural unit has 4 to 20 carbon atoms.
  • the diamine structural unit is derived from the polyetherdiamine compound (a2-1) and xylylenediamine (a-2) represented by the following general formula (2), and the dicarboxylic acid structural unit has 4 to 20 carbon atoms. At least one molecular chain selected from a carbodiimide compound and a compound containing two or more epoxy groups in the molecule with respect to 100 parts by mass of the polyether polyamide (A2) derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid. A polyether polyamide composition containing 0.01 to 15 parts by mass of the extender (B).
  • the polyether polyamide composition of the present invention has hydrolysis resistance and transparency, and is excellent in mechanical properties such as flexibility and tensile elongation at break. Also, melt moldability, toughness and heat resistance are good.
  • the polyether polyamide composition of the present invention is derived from the polyetherdiamine compound (a1-1) and xylylenediamine (a-2) whose diamine structural units are represented by the following general formula (1):
  • the polyether polyamide (A1) derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having a dicarboxylic acid constitutional unit of 4 to 20 carbon atoms, the carbodiimide compound and two or more epoxy groups in the molecule
  • at least one molecular chain extender (B) selected from 0.01 to 15 parts by mass.
  • the polyether polyamide composition of the present invention includes a polyetherdiamine compound (a2-1) and a xylylenediamine (a-2) whose diamine structural unit is represented by the following general formula (2).
  • a polyether polyamide (A2) derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having a dicarboxylic acid constitutional unit of 4 to 20 carbon atoms and a carbodiimide compound and two or more epoxies in the molecule
  • the polyether polyamide (A1) is derived from the polyetherdiamine compound (a1-1) and xylylenediamine (a-2) whose diamine structural unit is represented by the above general formula (1), and whose dicarboxylic acid structural unit is carbon. It is derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acid of the number 4-20.
  • the polyether polyamide (A2) is derived from the polyetherdiamine compound (a2-1) and the xylylenediamine (a-2) whose diamine structural unit is represented by the above general formula (2), and is a dicarboxylic acid structural unit.
  • polyether polyamides (A1) and (A2) are derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 4 to 20 carbon atoms.
  • the diamine structural unit constituting the polyether polyamide (A1) is derived from the polyetherdiamine compound (a1-1) and xylylenediamine (a-2) represented by the general formula (1). Further, the diamine structural unit constituting the polyether polyamide (A2) is derived from the polyetherdiamine compound (a2-1) and xylylenediamine (a-2) represented by the general formula (2).
  • the diamine structural unit constituting the polyether polyamide (A1) includes a structural unit derived from the polyether diamine compound (a1-1) represented by the general formula (1).
  • (x1 + z1) is 1 to 30, preferably 2 to 25, more preferably 2 to 20, and still more preferably 2 to 15.
  • y1 is 1 to 50, preferably 1 to 40, more preferably 1 to 30, and still more preferably 1 to 20.
  • R 1 represents a propylene group.
  • the structure of the oxypropylene group represented by —OR 1 — may be any of —OCH 2 CH 2 CH 2 —, —OCH (CH 3 ) CH 2 —, and —OCH 2 CH (CH 3 ) —. .
  • the number average molecular weight of the polyetherdiamine compound (a1-1) is preferably 204 to 5000, more preferably 250 to 4000, still more preferably 300 to 3000, still more preferably 400 to 2000, and still more preferably 500 to 1800. It is. When the number average molecular weight of the polyetherdiamine compound is within the above range, a polymer exhibiting flexibility can be obtained.
  • the diamine structural unit constituting the polyether polyamide (A2) includes a structural unit derived from the polyether diamine compound (a2-1) represented by the general formula (2).
  • (x2 + z2) is 1 to 60, preferably 2 to 40, more preferably 2 to 30, and still more preferably 2 to 20.
  • y2 is 1 to 50, preferably 1 to 40, more preferably 1 to 30, and still more preferably 1 to 20.
  • R ⁇ 2 > in the said General formula (2) represents a propylene group.
  • the structure of the oxypropylene group represented by —OR 2 — may be any of —OCH 2 CH 2 CH 2 —, —OCH (CH 3 ) CH 2 —, and —OCH 2 CH (CH 3 ) —. .
  • the number average molecular weight of the polyetherdiamine compound (a2-1) is preferably 180 to 5700, more preferably 200 to 4000, still more preferably 300 to 3000, still more preferably 300 to 2000, and still more preferably 300 to 1500. It is. When the number average molecular weight of the polyetherdiamine compound is within the above range, a polymer that exhibits flexibility and moisture absorption / release properties can be obtained.
  • the diamine structural unit constituting the polyether polyamides (A1) and (A2) includes a structural unit derived from xylylenediamine (a-2).
  • the xylylenediamine (a-2) is preferably metaxylylenediamine, paraxylylenediamine or a mixture thereof, and is a metaxylylenediamine or a mixture of metaxylylenediamine and paraxylylenediamine. It is more preferable.
  • xylylenediamine (a-2) is derived from metaxylylenediamine, the resulting polyether polyamide has excellent flexibility, crystallinity, melt moldability, moldability, and toughness.
  • xylylenediamine (a-2) is derived from a mixture of metaxylylenediamine and paraxylylenediamine
  • the resulting polyether polyamide has flexibility, crystallinity, melt moldability, molding processability, and toughness. Excellent, high heat resistance and high elastic modulus.
  • the ratio of paraxylylenediamine to the total amount of metaxylylenediamine and paraxylylenediamine is preferably It is 90 mol% or less, more preferably 1 to 80 mol%, still more preferably 5 to 70 mol%. If the ratio of paraxylylenediamine is within the above range, the melting point of the polyether polyamide obtained is preferable because it is not close to the decomposition temperature of the polyether polyamide.
  • the proportion of the structural unit derived from xylylenediamine (a-2) in the diamine structural unit that is, the polyetherdiamine compound (a1-1) or (a2-1) constituting the diamine structural unit and the xylylenediamine (a)
  • the ratio of xylylenediamine (a-2) to the total amount of -2) is preferably 50 to 99.8 mol%, more preferably 50 to 99.5 mol%, still more preferably 50 to 99 mol%. is there.
  • the proportion of the structural unit derived from xylylenediamine (a-2) in the diamine structural unit is within the above range, the resulting polyether polyamide is excellent in melt moldability and further has mechanical properties such as strength and elastic modulus. Will be excellent.
  • the diamine structural units constituting the polyether polyamides (A1) and (A2) are the polyether diamine compound (a1-1) represented by the general formula (1) and the xylylenediamine (a-2). ), Or the polyetherdiamine compound (a2-1) and xylylenediamine (a-2) represented by the general formula (2), but other than the above as long as the effects of the present invention are not impaired.
  • a structural unit derived from a diamine compound may be included.
  • diamine compound that can constitute a diamine structural unit other than the polyether diamine compound (a1-1) and xylylenediamine (a-2), and the polyetherdiamine compound (a2-1) and xylylenediamine (a-2) are tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, dodecamethylenediamine, 2,2,4-trimethyl-hexamethylene Aliphatic diamines such as diamine and 2,4,4-trimethylhexamethylenediamine; 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,3-diaminocyclohexane, 1,4 -Zia Alicyclic diamines such as nocyclohexane, bis (4-
  • the dicarboxylic acid constituent units constituting the polyether polyamides (A1) and (A2) are derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 4 to 20 carbon atoms.
  • Examples of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,10-decanedicarboxylic acid, 1, Examples thereof include 11-undecanedicarboxylic acid and 1,12-dodecanedicarboxylic acid.
  • at least one selected from adipic acid and sebacic acid is preferably used from the viewpoint of crystallinity and high elasticity.
  • These dicarboxylic acids may be used alone or in combination of two or more.
  • the dicarboxylic acid constituent units constituting the polyether polyamides (A1) and (A2) are derived from the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms as described above.
  • a structural unit derived from other dicarboxylic acid may be included as long as it is not impaired.
  • dicarboxylic acids that can constitute dicarboxylic acid structural units other than ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 4 to 20 carbon atoms include aliphatic dicarboxylic acids such as oxalic acid and malonic acid; terephthalic acid, isophthalic acid, 2 Aromatic dicarboxylic acids such as 1,6-naphthalenedicarboxylic acid can be exemplified, but the invention is not limited thereto.
  • the heat resistance and molding processability of the polyether polyamides (A1) and (A2) are improved.
  • the molar ratio of ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms and isophthalic acid is 50/50 to 99/1 is preferable, and 70/30 to 95/5 is more preferable.
  • Polyether polyamides (A1) and (A2) are hardened highly crystalline polyamide blocks formed from xylylenediamine (a-2) and ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms.
  • the segment is excellent in melt moldability and moldability.
  • the obtained polyether polyamide is excellent in toughness, flexibility, crystallinity, heat resistance and the like.
  • the relative viscosity of the polyether polyamides (A1) and (A2) is preferably in the range of 1.1 to 3.0, more preferably 1.1 to 2, from the viewpoints of moldability and melt mixing with other resins. .9, more preferably 1.1 to 2.8.
  • the relative viscosity is measured by the method described in the examples.
  • the melting point of the polyether polyamide (A1) is preferably in the range of 170 to 270 ° C., more preferably in the range of 175 to 270 ° C., and still more preferably in the range of 180 to 270 ° C. from the viewpoint of heat resistance.
  • the melting point of the polyether polyamide (A2) is preferably in the range of 170 to 270 ° C., more preferably in the range of 175 to 270 ° C., still more preferably in the range of 180 to 270 ° C., and still more preferably from the viewpoint of heat resistance. It is in the range of 180 to 260 ° C. The melting point is measured by the method described in the examples.
  • the tensile elongation at break (measurement temperature 23 ° C., humidity 50% RH) of the polyether polyamide (A1) is preferably 50% or more, more preferably 100% or more, still more preferably 200% or more. More preferably, it is 250% or more, more preferably 300% or more. Further, the tensile elongation at break (measurement temperature: 23 ° C., humidity: 50% RH) of the polyether polyamide (A2) is preferably 100% or more, more preferably 200% or more, and further preferably 250%, from the viewpoint of flexibility. More preferably, it is 300% or more.
  • the tensile modulus (measurement temperature: 23 ° C., humidity: 50% RH) of the polyether polyamide (A1) is preferably 200 MPa or more, more preferably 300 MPa or more, still more preferably 400 MPa or more, from the viewpoint of flexibility and mechanical strength. Preferably it is 500 MPa or more, More preferably, it is 1000 MPa or more.
  • the tensile modulus (measuring temperature 23 ° C., humidity 50% RH) of the polyether polyamide (A2) is preferably 100 MPa or more, more preferably 200 MPa or more, and further preferably 300 MPa or more, from the viewpoint of flexibility and mechanical strength. More preferably, it is 400 MPa or more, more preferably 500 MPa or more.
  • Polyether polyamide (A1) and (A2) Manufacture of polyether polyamide (A1) and (A2) is not specifically limited, It can carry out by arbitrary methods and superposition
  • a diamine component a diamine such as polyether diamine compound (a1-1) and xylylenediamine (a-2), or a diamine such as polyether diamine compound (a2-1) and xylylenediamine (a-2)
  • a dicarboxylic acid component a dicarboxylic acid such as an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms
  • Polyether polyamides (A1) and (A2) can be produced by a method of polymerizing in a molten state while removing.
  • a diamine component (a diamine such as polyether diamine compound (a1-1) and xylylenediamine (a-2), or a diamine such as polyether diamine compound (a2-1) and xylylenediamine (a-2))
  • a diamine component can be directly added to the dicarboxylic acid component in a molten state (dicarboxylic acid such as ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms) and polycondensed under normal pressure to obtain polyether polyamide (A1) and (A2) can be manufactured.
  • the diamine component is continuously added to the dicarboxylic acid component, and the reaction system is heated up so that the reaction temperature does not fall below the melting point of the generated oligoamide and polyamide.
  • polycondensation proceeds.
  • a diamine component (a diamine such as a polyetherdiamine compound (a1-1) and xylylenediamine (a-2), or a diamine such as a polyetherdiamine compound (a2-1) and xylylenediamine (a-2)), and
  • the molar ratio (diamine component / dicarboxylic acid component) to dicarboxylic acid component (dicarboxylic acid such as ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms) is preferably in the range of 0.9 to 1.1. More preferably, it is in the range of 0.93 to 1.07, more preferably in the range of 0.95 to 1.05, and still more preferably in the range of 0.97 to 1.02. If the molar ratio is within the above range, high molecular weight tends to proceed.
  • the polymerization temperature is preferably 150 to 300 ° C, more preferably 160 to 280 ° C, still more preferably 170 to 270 ° C.
  • the polymerization temperature is within the above temperature range, the polymerization reaction proceeds rapidly.
  • the thermal decomposition of monomers, oligomers in the middle of polymerization, polymers, and the like hardly occurs, the resulting polyether polyamide has good properties.
  • the polymerization time is usually 1 to 5 hours after the diamine component starts dropping.
  • the molecular weights of the polyether polyamides (A1) and (A2) can be sufficiently increased, and coloring of the obtained polyether polyamide can be suppressed.
  • the polyether diamine compound (a1-1) or (a2-1) is previously charged in the reaction vessel together with the dicarboxylic acid component and heated.
  • a diamine component such as xylylenediamine (a-2) other than the polyether diamine compounds (a1-1) and (a2-1) is added to the obtained molten mixture [ Step (2)] may be performed.
  • diamine components other than the polyether diamine compounds (a1-1) and (a2-1) are continuously added to the dicarboxylic acid component, during which the reaction temperature The polycondensation proceeds while raising the temperature of the reaction system so that it does not fall below the melting point of the oligoamide and polyamide produced.
  • the polyether polyamide (A1) and (A2) may be referred to as “polyether polyamide (A)” in the description
  • the polyether diamine compounds (a1-1) and (a2-1) may be referred to as “polyether diamine compounds (a-1)”.
  • Step (1) is a step in which the polyetherdiamine compound (a-1) and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound are mixed and heated to form a molten mixture.
  • the obtained polyether polyamide can be made into a resin having less odor and coloration and further excellent tensile elongation at break. This is because the polyether diamine compound (a-1) and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound are uniformly melt-mixed through the step (1).
  • the polyetherdiamine compound (a-1) and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound ( This is presumed to be due to condensation and stabilization. That is, by passing through the step (1), the polyether diamine compound (a-1) is prevented from being deteriorated due to a heat history or the like in the synthesis process of the polyether polyamide, and is efficiently taken into the polyether polyamide. This is probably because decomposition products derived from the polyetherdiamine compound (a-1) are less likely to be produced.
  • the degree to which the polyetherdiamine compound (a-1) is stabilized in the reaction system can be evaluated by determining the incorporation rate.
  • the uptake rate also depends on the kind of ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound, and the polyether diamine compound (a-1) increases as the linear carbon number of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound increases. ) Is increased, but the incorporation rate is further increased through the step (1).
  • the incorporation rate of the polyetherdiamine compound (a-1) can be determined by the following method. (1) 0.2 g of the obtained polyether polyamide (A) is dissolved in 2 ml of hexafluoroisopropanol (HFIP). (2) The solution obtained in (1) is dropped into 100 ml of methanol, and reprecipitation is performed. (3) The reprecipitate obtained in (2) is filtered through a membrane filter having an opening of 10 ⁇ m. (4) The residue on the filter obtained in (3) is dissolved in heavy HFIP (manufactured by Sigma-Aldrich) and analyzed by 1 H-NMR (AV400M manufactured by Bruker BioSpin).
  • HFIP hexafluoroisopropanol
  • the copolymerization rate (a) of the residual polyetherdiamine compound (a-1) and xylylenediamine (a-2) is calculated.
  • the copolymerization rate is calculated from the ratio of the spectrum peak area derived from xylylenediamine (a-2) and the spectrum peak area derived from the polyetherdiamine compound (a-1).
  • the incorporation rate of the polyetherdiamine compound (a-1) is calculated from the following formula.
  • Uptake rate of polyetherdiamine compound (a-1) a / b ⁇ 100 (%) a: Copolymerization rate of the structural unit derived from the polyetherdiamine compound (a-1) in the residue on the filter calculated in (4) with respect to all diamine structural units b: Polyether calculated from the charged amount during polymerization Copolymerization ratio of structural unit derived from diamine compound (a-1) to all diamine structural units
  • step (1) a polyether diamine compound (a-1) and an ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound are previously charged in a reaction vessel, and the polyether diamine compound (a-1) in a molten state is charged. Are mixed with an ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound.
  • a molten ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound may be charged into a reaction vessel charged with a liquid or solid polyetherdiamine compound (a-1),
  • a liquid or solid polyetherdiamine compound (a-1) may be charged into a reaction vessel charged with a molten ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound,
  • a mixture obtained by previously mixing the molten polyetherdiamine compound (a-1) and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound may be charged into the reaction vessel.
  • the reaction vessel is filled with an inert gas. Full substitution is preferred. In the case of (i), it is preferable to substitute with an inert gas before melting. In the case of (ii) or (iii), the molten ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound is used. It is preferable to replace the inside of the reaction vessel with an inert gas before charging, and in the case of (iv) above, it is preferable to replace the inside of the reaction vessel with an inert gas before charging the above mixture.
  • the mixed mixture of the polyetherdiamine compound (a-1) in the molten state and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound is heated.
  • the heating temperature at the time of heating the above mixture is preferably equal to or higher than the melting point of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound, and ranges from the melting point to the melting point + 40 ° C. of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound. It is more preferable that the range is from the melting point of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound to the melting point + 30 ° C.
  • the heating temperature at the time when step (1) is completed is preferably from the melting point to the melting point + 50 ° C. of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound. If the temperature is equal to or higher than the melting point of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound, the mixed state of the polyetherdiamine compound (a-1) and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound becomes uniform, The effect of the present invention can be sufficiently exhibited. Further, if the temperature is the melting point of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound + 50 ° C.
  • the thermal decomposition of the polyetherdiamine compound (a-1) and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound will occur. There is no risk of progress.
  • the melting point of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound can be measured using differential scanning calorimetry (DSC) or the like.
  • the heating time in step (1) is usually about 15 to 120 minutes. By setting the heating time within the above range, the mixing state of the polyetherdiamine compound (a-1) and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound can be sufficiently uniform, and the thermal decomposition may proceed. Absent.
  • step (1) as described above, a molten mixture in which the molten polyetherdiamine compound (a-1) and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound are uniformly mixed is obtained.
  • step (1) 30 to 100 mol% of the amino groups in the total polyetherdiamine compound (a-1) charged with the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound are (poly) condensed. It is preferable that an oligomer or a polymer is formed. From this, the molten mixture obtained in the step (1) may further contain the molten oligomer and polymer.
  • the degree of (poly) condensation of the polyether diamine compound (a-1) and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound in the step (1) depends on the degree of polyether diamine compound (a-1) and ⁇ , A step of adding a diamine component other than the polyether diamine compound (a-1), depending on the combination with the ⁇ -linear aliphatic dicarboxylic acid compound, the mixing ratio, the temperature of the reaction vessel during mixing, and the mixing time. Before (2), 30 mol% or more of the amino groups in the total polyether diamine compound (a-1) charged is (poly) condensed with the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound.
  • the reaction rate of the amino group of this all polyether diamine compound can be calculated from the following formula.
  • step (1) when the polyetherdiamine compound (a-1) and the ⁇ , ⁇ -linear aliphatic carboxylic acid compound are charged into the reaction vessel, a phosphorus atom-containing compound and an alkali metal compound described later are added. Also good.
  • step (2) the molten mixture obtained in step (1) is added to a diamine component such as xylylenediamine (a-2) other than the polyetherdiamine compound (a-1) (hereinafter referred to as “xylylenediamine”). a-2) etc. ”, which may be abbreviated as“.
  • the temperature in the reaction vessel when adding xylylenediamine (a-2) or the like is preferably a temperature not lower than the melting point of the produced polyetheramide oligomer and a melting point + 30 ° C.
  • the temperature in the reaction vessel when adding xylylenediamine (a-2) or the like is such that the molten mixture of the polyetherdiamine compound (a-1) and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid compound and xylylenediamine If the temperature is higher than the melting point of the polyetheramide oligomer consisting of (a-2) etc. to the melting point + 30 ° C., there is no possibility of the reaction mixture solidifying in the reaction vessel, and the possibility of deterioration of the reaction mixture is reduced. preferable.
  • the addition method is not particularly limited, but it is preferable to continuously drop xylylenediamine (a-2) or the like while controlling the temperature in the reaction vessel within the above temperature range. It is more preferable to continuously raise the temperature in the reaction vessel as the amount of dripping increases, such as -2).
  • the temperature in the reaction vessel at the time when the addition of the total amount of the diamine component such as xylylenediamine (a-2) is completed is preferably from the melting point to the melting point + 30 ° C. of the polyether polyamide to be produced. If the temperature in the reaction vessel when the addition of xylylenediamine (a-2) and the like is completed is a temperature not lower than the melting point of the obtained polyetheramide (A) and a melting point + 30 ° C., the reaction is performed in the reaction vessel. This is preferable because there is no possibility of the mixture solidifying and the possibility of deterioration of the reaction mixture is reduced.
  • the melting point of the polyetheramide oligomer or polyether polyamide is such that a dicarboxylic acid compound such as polyetherdiamine compound (a-1) or xylylenediamine (a-2) is previously mixed at a predetermined molar ratio.
  • a dicarboxylic acid compound such as polyetherdiamine compound (a-1) or xylylenediamine (a-2) is previously mixed at a predetermined molar ratio.
  • the product obtained by melt-mixing for at least about 1 hour under heating conditions that melt the mixture under a nitrogen stream can be confirmed using DSC or the like.
  • the inside of the reaction vessel is preferably replaced with nitrogen.
  • the inside of the reaction vessel is preferably mixed with a stirring blade, and the inside of the reaction vessel is preferably in a uniform fluid state.
  • the addition rate of xylylenediamine (a-2), etc. is the heat of formation of the amidation reaction, the amount of heat consumed for distilling off the condensation product water, the amount of heat supplied from the heating medium through the reaction vessel wall to the reaction mixture, and the condensation formation
  • the reaction system is selected so as to be kept in a uniform molten state in consideration of the structure of the portion separating water and the raw material compound.
  • the time required for the addition of xylylenediamine (a-2) and the like varies depending on the scale of the reaction vessel, but is usually in the range of 0.5 to 5 hours, more preferably in the range of 1 to 3 hours. .
  • the condensed water produced as the reaction proceeds is distilled out of the reaction system.
  • the raw materials such as diamine compounds and dicarboxylic acid compounds that are scattered are separated from the condensed water and returned to the reaction vessel, but the amount can be controlled.
  • the temperature of the reflux tower can be controlled within the optimum range or packed. It can be controlled by controlling the tower packing, so-called Raschig ring, Lessing ring, saddle, etc. to an appropriate shape and filling amount.
  • a separator is suitable for separating the raw material and the condensed water, and the condensed water is preferably distilled through the whole condenser.
  • the pressure inside the reaction vessel in the above step (2) is preferably 0.1 to 0.6 MPa, and more preferably 0.15 to 0.5 MPa.
  • the pressure inside the reaction vessel is preferably 0.1 to 0.6 MPa, and more preferably 0.15 to 0.5 MPa.
  • the pressure in the reaction vessel is higher than 0.6 MPa, the boiling point of the condensed water increases, and there is a possibility that a high-temperature heating medium may be passed through the partial condenser. In addition, since more energy is required, it is not preferable.
  • an inert gas such as nitrogen may be used, or condensed water vapor generated during the reaction may be used.
  • Step (3) After completion of the step (2), the polycondensation reaction may be terminated, but the step (3) of continuing the polycondensation reaction for a certain time at normal pressure or negative pressure may be performed.
  • the pressure of the reaction system it is preferable to finally reduce the pressure of the reaction system to 0.08 MPa or less.
  • the depressurization rate is selected so that unreacted xylylenediamine (a-2) and the like are not distilled out of the system together with water during depressurization. Decreasing the pressure reduction rate is not preferable because it not only increases the time required for production but also requires time for pressure reduction, which may cause thermal deterioration of the resulting polyether polyamide (A).
  • the temperature of the reaction vessel in step (3) is preferably a temperature at which the obtained polyether polyamide (A) does not solidify, that is, a range of the melting point of the obtained polyether polyamide (A) to the melting point + 30 ° C. .
  • the melting point of the polyether polyamide here can be confirmed by using DSC or the like.
  • the polycondensation reaction time in step (3) is usually 120 minutes or less.
  • the method for removing the polyether polyamide (A) from the reaction vessel after completing the polycondensation reaction is not particularly limited, and a known method can be used. From the viewpoint of productivity and subsequent handling properties, the polyether polyamide is used. A method in which a strand of molten resin is cooled in a water bath while being drawn out as a strand through a strand die heated to a temperature of melting point to melting point + 50 ° C. of (A), and then cut into pellets by a pelletizer, or so-called hot cut An underwater cut or the like is preferable. At this time, the inside of the reaction vessel may be pressurized for the purpose of increasing the speed and stabilizing the discharge speed of the polyether polyamide (A) from the strand die. When pressurizing, it is preferable to use an inert gas in order to suppress the deterioration of the polyether polyamide (A).
  • the polyether polyamides (A1) and (A2) are preferably produced by a melt polycondensation (melt polymerization) method with a phosphorus atom-containing compound added.
  • a melt polycondensation method a method in which a diamine component is dropped into a dicarboxylic acid component melted at normal pressure and polymerized in a molten state while removing condensed water is preferable.
  • a phosphorus atom-containing compound can be added as long as the characteristics are not inhibited.
  • Phosphorus atom-containing compounds that can be added include dimethylphosphinic acid, phenylmethylphosphinic acid, hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, ethyl hypophosphite, phenylphosphonite.
  • Acid sodium phenylphosphonite, potassium phenylphosphonite, lithium phenylphosphonite, ethyl phenylphosphonite, phenylphosphonic acid, ethylphosphonic acid, sodium phenylphosphonate, potassium phenylphosphonate, lithium phenylphosphonate, phenyl Examples include diethyl phosphonate, sodium ethylphosphonate, potassium ethylphosphonate, phosphorous acid, sodium hydrogen phosphite, sodium phosphite, triethyl phosphite, triphenyl phosphite, pyrophosphorous acid, etc.
  • the phosphorus atom-containing compounds that can be used in the present invention are not limited to these compounds.
  • the amount of the phosphorus atom-containing compound added to the polycondensation system is preferably 1 to 1000 ppm in terms of phosphorus atom concentration in the polyether polyamides (A1) and (A2) from the viewpoint of good appearance and moldability. More preferably, it is 5 to 1000 ppm, and still more preferably 10 to 1000 ppm.
  • an alkali metal compound in combination with the phosphorus atom-containing compound in the polycondensation system of the polyether polyamides (A1) and (A2).
  • an alkali metal compound it is preferable to add an alkali metal compound in combination with the phosphorus atom-containing compound in the polycondensation system of the polyether polyamides (A1) and (A2).
  • a sufficient amount of the phosphorus atom-containing compound needs to be present, but in some cases it may lead to gelation of the polymer, so that the amidation reaction rate is adjusted.
  • the alkali metal compound an alkali metal hydroxide or an alkali metal acetate is preferable.
  • alkali metal compound examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium acetate, sodium acetate, potassium acetate, rubidium acetate, cesium acetate, and the like. However, it can be used without being limited to these compounds.
  • the value obtained by dividing the number of moles of the compound by the number of moles of the phosphorus atom-containing compound is preferably 0.5 to 1, more preferably 0.8. It is 55 to 0.95, more preferably 0.6 to 0.9.
  • the sulfur atom concentration of the polyether polyamides (A1) and (A2) is preferably 1 to 200 ppm, more preferably 10 to 150 ppm, and still more preferably 20 to 100 ppm.
  • YI value yellowness
  • the sulfur atom concentration of the polyether polyamides (A1) and (A2) is preferably 1 to 200 ppm, more preferably 10 to 150 ppm, and still more preferably 20 to 100 ppm.
  • the sulfur atom concentration is preferably 1 to 500 ppm, more preferably 1 to 200 ppm, still more preferably 10 to 150 ppm, and particularly preferably 20 to 100 ppm. .
  • an increase in the YI value can be suppressed when the polyether polyamide is polymerized and when the polyether polyamide composition of the present invention is melt-molded, and the YI value of the resulting molded product is lowered. be able to.
  • the sodium atom concentration is preferably 1 to 500 ppm, more preferably 10 to 300 ppm, and still more preferably 20 to 200 ppm.
  • the reactivity when synthesizing the polyether polyamide is good, it is easy to control to an appropriate molecular weight range, and furthermore, the amount of alkali metal compound to be blended for the purpose of adjusting the amidation reaction rate described above can be reduced. Can be reduced.
  • the viscosity increase can be suppressed when the polyether polyamide composition of the present invention is melt-molded, and the moldability is good and the generation of kogation can be suppressed during the molding process, the quality of the obtained molded product is It tends to improve.
  • Such sebacic acid is preferably derived from a plant. Since plant-derived sebacic acid contains sulfur compounds and sodium compounds as impurities, polyether polyamides having units derived from plant-derived sebacic acid as constituent units have a YI value without adding an antioxidant. And the YI value of the obtained molded product is low. Moreover, it is preferable to use plant-derived sebacic acid without excessive purification of impurities. Since it is not necessary to purify excessively, it is advantageous in terms of cost.
  • the purity of sebacic acid in the case of plant origin is preferably 99 to 100% by mass, more preferably 99.5 to 100% by mass, and still more preferably 99.6 to 100% by mass. Within this range, the quality of the resulting polyether polyamide will be good, and it will not affect the polymerization, which is preferable.
  • the other dicarboxylic acid (1,10-decamethylene dicarboxylic acid and the like) contained in sebacic acid is preferably 0 to 1% by mass, more preferably 0 to 0.7% by mass, and 0 to 0.6% by mass. Is more preferable. Within this range, the quality of the resulting polyether polyamide is good, and it is preferable because it does not affect the polymerization.
  • the monocarboxylic acid (octanoic acid, nonanoic acid, undecanoic acid, etc.) contained in sebacic acid is preferably 0 to 1% by mass, more preferably 0 to 0.5% by mass, and 0 to 0.4% by mass. Further preferred. Within this range, the quality of the resulting polyether polyamide will be good, and it will not affect the polymerization, which is preferable.
  • the hue of sebacic acid is preferably 100 or less, more preferably 75 or less, and still more preferably 50 or less. This range is preferable because the polyether polyamide obtained has a low YI value.
  • APHA can be measured by Standard Oils for the Analysis of Fats, Oils and Related Materials of the Japan Oil Chemistry Society (Japan Oil Chemist's Society).
  • the polyether polyamides (A1) and (A2) obtained by melt polycondensation are once taken out, pelletized, and dried before use.
  • solid phase polymerization may be performed.
  • a heating device used in drying or solid-phase polymerization a continuous heating drying device, a rotary drum type heating device called a tumble dryer, a conical dryer, a rotary dryer or the like, and a rotary blade inside a nauta mixer are used.
  • a conical heating apparatus provided with can be used suitably, a well-known method and apparatus can be used without being limited to these.
  • the molecular chain extender (B) used in the present invention is at least one selected from a carbodiimide compound and a compound containing two or more epoxy groups in the molecule.
  • a part or all of the molecular chain extender (B) is melted and kneaded so that the polyether polyamide (A1) or (A2) And a high-molecular weight polyether polyamide composition having high hydrolysis resistance.
  • the polyether diamine compound represented by the general formula (1) or (2) (although thermal degradation of a1-1) or (a2-1) may occur, a predetermined amount of the molecular chain extender (B) is blended with the polyether polyamide (A1) or (A2) and heated and melted.
  • a high-molecular weight polyether polyamide composition can be obtained by heating and melting in a short time.
  • the carbodiimide compound used as the molecular chain extender (B) in the present invention is a compound having one or more carbodiimide groups in the molecule.
  • Examples of the carbodiimide compound used in the present invention include aromatic and aliphatic carbodiimide compounds. In these, it is preferable to use an aliphatic carbodiimide compound from the point of the expression degree of the hydrolysis-resistant effect, the melt-kneading property at the time of extrusion, and the transparency of the film obtained, and two or more in a molecule
  • polycarbodiimide produced from 4,4′-dicyclohexylmethane diisocyanate examples include “Carbodilite LA-1” manufactured by Nisshinbo Holdings Inc.
  • Examples of the monocarbodiimide compound having one carbodiimide group in the carbodiimide compound include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, and di-t Examples include -butyl carbodiimide, di- ⁇ -naphthyl carbodiimide, and the like. Among these, dicyclohexyl carbodiimide and diisopropyl carbodiimide are preferable because they are particularly easily available industrially.
  • polycarbodiimide compound having two or more carbodiimide groups in the molecule contained in the carbodiimide compound those produced by various methods can be used. Basically, a conventional method for producing polycarbodiimide is used. Can be used. For example, there can be mentioned a method of synthesizing various organic diisocyanates by decarboxylation condensation reaction in the presence of a carbodiimidization catalyst at a temperature of about 70 ° C. or higher in an inert solvent or without using a solvent.
  • organic diisocyanate that is a raw material for synthesizing the polycarbodiimide compound
  • various organic diisocyanates such as aromatic diisocyanate and aliphatic diisocyanate, and mixtures thereof can be used.
  • organic diisocyanate examples include 1,5-naphthalene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, methylcyclohexane diisocyanate, tetramethylxylylene Range isocyanate, 2,6-diisopropylphenyl isocyanate, 1,3,5-triisopropylbenzene-2,4-di It can be exemplified isocyanate
  • aliphatic diisocyanates are preferred, and 4,4'-dicyclohexylmethane diisocyanate is more preferred from the viewpoint of melt kneading properties during extrusion of the resulting polycarbodiimide.
  • a terminal blocking agent such as monoisocyanate can be used.
  • the monoisocyanate include phenyl isocyanate, tolyl isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate, and naphthyl isocyanate.
  • a terminal blocker it is not limited to said monoisocyanate, What is necessary is just an active hydrogen compound which can react with isocyanate.
  • active hydrogen compounds among aliphatic and aromatic compounds, methanol having an —OH group, ethanol, phenol, cyclohexanol, N-methylethanolamine, polyethylene glycol monomethyl ether, polypropylene glycol monomethyl ether, Secondary amines such as diethylamine and dicyclohexylamine, primary amines such as butylamine and cyclohexylamine, carboxylic acids such as succinic acid, benzoic acid and dichlorohexanecarboxylic acid, thiols and epoxy groups such as ethyl mercaptan, allyl mercaptan and thiophenol And the like.
  • carbodiimidization catalyst examples include 1-phenyl-2-phospholene-1-oxide, 3-methyl-1-phenyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide, 3- Metal catalysts such as methyl-2-phospholene-1-oxide and phospholene oxides such as 3-phospholene isomers thereof, tetrabutyl titanate and the like can be used, and among these, from the viewpoint of reactivity, 3 -Methyl-1-phenyl-2-phospholene-1-oxide is preferred.
  • the number average molecular weight (Mn) of the carbodiimide compound used in the present invention is preferably in the range of 100 to 40,000, more preferably 100 to 30 from the viewpoint of dispersibility in the polyether polyamides (A1) and (A2). , 000.
  • Mn number average molecular weight
  • the compound containing two or more epoxy groups in the molecule (hereinafter also simply referred to as “epoxy group-containing compound”) used as the molecular chain extender (B) in the present invention contains two or more epoxy groups. If it is a compound, it will not restrict
  • the epoxy group-containing compound is a polymer, its weight average molecular weight is 2,000 to 1,000,000 from the viewpoint of excellent hydrolysis resistance, the composition is difficult to gel, and is easy to handle. It is preferably 3,000 to 500,000, more preferably 4,000 to 250,000.
  • the epoxy group-containing compound include an epoxy group-containing (meth) acrylic polymer, an epoxy group-containing polystyrene, an epoxidized vegetable oil, and a polyglycidyl ether.
  • the epoxy group-containing compound is preferably an epoxy group-containing (meth) acrylic polymer or polyglycidyl ether from the viewpoint that the hydrolysis resistance is excellent and the composition is difficult to gel.
  • an epoxy group-containing (meth) acrylic polymer is more preferable from the viewpoint of excellent durability and difficulty in gelling the composition.
  • the epoxy group-containing (meth) acrylic polymer is preferably solid at room temperature.
  • the epoxy group-containing (meth) acrylic polymer will be described below.
  • the epoxy group-containing (meth) acrylic polymer as the molecular chain extender (B) is not particularly limited as long as the main chain is a (meth) acrylic polymer and contains two or more epoxy groups in the molecule.
  • (meth) acryl means one or both of acrylic and methacrylic.
  • the (meth) acrylic polymer as the main chain may be either a homopolymer or a copolymer.
  • examples of the epoxy group-containing (meth) acrylic polymer include methyl methacrylate-glycidyl methacrylate copolymer, methyl methacrylate-styrene-glycidyl methacrylate copolymer, and the like.
  • Epoxy group-containing (meth) acrylic polymers are, among other things, superior in hydrolysis resistance, difficult to gel, and easy to handle. From the viewpoint of excellent handling properties, methyl methacrylate-glycidyl methacrylate copolymer, methyl methacrylate -Styrene-glycidyl methacrylate copolymer is preferred.
  • the weight average molecular weight of the epoxy group-containing (meth) acrylic polymer is preferably 3,000 to 300,000 from the viewpoint that it is superior in hydrolysis resistance, the composition is difficult to gel, and is easy to handle. More preferably, it is 4,000 to 250,000.
  • the polyglycidyl ether will be described below.
  • the polyglycidyl ether as the epoxy group-containing compound used in the present invention is not particularly limited as long as it is a compound having two or more glycidyloxy groups in the molecule.
  • polyglycidyl ether examples include polyglycidyl ether of glycerin / epichlorohydrin-0 to 1 mol adduct, polyglycidyl ether of ethylene glycol-epichlorohydrin-0 to 2 mol adduct, polyethylene glycol-diglycidyl ether, neopentyl glycol- Examples thereof include diglycidyl ether and trimethylolpropane-polyglycidyl ether.
  • the epoxy equivalent of the epoxy group-containing compound is preferably 170 to 3300 g / equivalent, and more preferably 200 to 2000 g / equivalent from the viewpoint that it is excellent in hydrolysis resistance and the composition is difficult to gel.
  • a commercial item can be used as an epoxy-group containing compound used for this invention.
  • Commercially available epoxy group-containing (meth) acrylic polymers include, for example, Joncryl ADR-4368 (acrylic polymer, powder, weight average molecular weight 6,800, epoxy equivalent 285 g / equivalent, manufactured by BASF), Marproof G -0150M (acrylic polymer, powder, weight average molecular weight 8,000 to 10,000, epoxy equivalent 310 g / equivalent, manufactured by NOF Corporation), Marproof G-2050M (acrylic polymer, powder, weight average molecular weight) 200,000 to 250,000, epoxy equivalent of 340 g / equivalent, manufactured by NOF Corporation).
  • Examples of commercially available products of epoxy group-containing polystyrene include Marproof G-1010S (styrene polymer, powder, weight average molecular weight 100,000, epoxy equivalent 1,700 g / equivalent, manufactured by NOF Corporation).
  • Examples of commercially available epoxidized vegetable oils include Newsizer 510R (manufactured by NOF Corporation), which is epoxidized soybean oil.
  • the molecular chain extender (B) can be used alone or in combination of two or more.
  • the blending amount of the molecular chain extender (B) is 0.01 to 15 parts by mass with respect to 100 parts by mass of the polyether polyamide (A) from the viewpoint that the hydrolysis resistance is excellent and the composition is difficult to gel. It is preferably 0.1 to 10 parts by mass, and more preferably 0.4 to 4 parts by mass. If the said compounding quantity is 0.01 mass part or more, the hydrolysis-proof improvement effect can fully be exhibited, and a polyether polyamide composition is manufactured by making a compounding quantity 15 mass parts or less. A sudden increase in viscosity can be avoided.
  • the polyether polyamide composition of the present invention includes a matting agent, an ultraviolet absorber, a nucleating agent, a plasticizer, a flame retardant, an antistatic agent, an anti-coloring agent, an anti-gelling agent, etc., as long as the properties are not inhibited.
  • An additive can be mix
  • thermoplastic resin such as a polyamide resin, a polyester resin, or a polyolefin resin can be blended as necessary within a range that the characteristics are not inhibited.
  • Polyamide resins include polycaproamide (nylon 6), polyundecanamide (nylon 11), polydodecanamide (nylon 12), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66) , Polyhexamethylene azelamide (nylon 69), polyhexamethylene sebamide (nylon 610), polyundecamethylene adipamide (nylon 116), polyhexamethylene dodecamide (nylon 612), polyhexamethylene terephthalamide (Nylon 6T (T represents a terephthalic acid component unit; the same applies hereinafter)), polyhexamethylene isophthalamide (Nylon 6I (I represents an isophthalic acid component unit; the same applies hereinafter)), polyhexamethylene terephthalate Isophthalami (Nylon 6TI), polyheptamethylene terephthalamide (nylon 9T), polymetaxylylene adipamide (nylon MXD6 (MX
  • Polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polyethylene-2,6-naphthalene dicarboxylate resin, polyethylene-2,6 -Naphthalene dicarboxylate-terephthalate copolymer resin, polyethylene-terephthalate-4,4'-biphenyldicarboxylate copolymer resin, poly-1,3-propylene-terephthalate resin, polybutylene terephthalate resin, polybutylene-2,6- Naphthalene dicarboxylate resin.
  • polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polybutylene terephthalate resin, and polyethylene-2,6-naphthalene dicarboxylate resin.
  • polystyrene resin examples include polyethylene such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), medium density polyethylene (MDPE), and high density polyethylene (HDPE);
  • polyethylene such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), medium density polyethylene (MDPE), and high density polyethylene (HDPE);
  • polypropylene such as a polymer, a random or block copolymer of propylene and ethylene or ⁇ -olefin, and a mixture of two or more thereof.
  • Most of polyethylene is a copolymer of ethylene and ⁇ -olefin.
  • the polyolefin resin includes a modified polyolefin resin modified with a carboxyl group-containing monomer such as a small amount of acrylic acid, maleic acid, methacrylic acid, maleic anhydride, fumaric acid, and itaconic acid.
  • the modification is usually performed by copolymerization or graft modification.
  • the toughness is obtained by a molding method such as injection molding, extrusion molding, blow molding, and the like.
  • a molded article having excellent flexibility and tensile elongation at break can be obtained.
  • polyether polyamide composition means a polyether polyamide composition containing polyether polyamide (A1) and a polyether polyamide composition containing polyether polyamide (A2) unless otherwise specified. Means.
  • the relative viscosity of the polyether polyamide composition of the present invention is preferably in the range of 1.1 to 3.5, more preferably 1.1 to 3.3, from the viewpoints of moldability and melt mixing with other resins. More preferably, it is in the range of 1.1 to 3.0.
  • the relative viscosity is measured by the method described in the examples.
  • the melting point of the polyether polyamide composition is preferably in the range of 170 to 270 ° C., more preferably in the range of 175 to 270 ° C., and still more preferably in the range of 180 to 270 ° C. from the viewpoint of heat resistance.
  • the melting point is measured by the method described in the examples.
  • the number average molecular weight (Mn) of the polyether polyamide composition is preferably in the range of 8,000 to 200,000, more preferably 9,000 to 150,000, from the viewpoints of moldability and melt mixing with other resins.
  • the range is more preferably in the range of 10,000 to 100,000.
  • the said number average molecular weight (Mn) is measured by the method as described in an Example.
  • the Haze value of the polyether polyamide composition is preferably 50% or less, more preferably 30% or less, and even more preferably 10% or less when a film having a thickness of 100 ⁇ m is used from the viewpoint of transparency and appearance.
  • the YI value of the polyether polyamide composition is preferably 10 or less, more preferably 5 or less, when a film having a thickness of 100 ⁇ m is used from the viewpoint of transparency and appearance.
  • the Haze value and YI value are measured by a method according to JIS K7105, specifically by the method described in Examples.
  • the tensile elongation at break (measuring temperature 23 ° C., humidity 50% RH) of the polyether polyamide composition is preferably 100% or more, more preferably 200% or more, still more preferably 250% or more, from the viewpoint of flexibility. More preferably, it is 300% or more.
  • the tensile elongation at break is specifically measured by the method described in the examples.
  • the tensile modulus of elasticity (measurement temperature: 23 ° C., humidity: 50% RH) of the polyether polyamide composition is preferably used from the viewpoint of flexibility and mechanical strength.
  • it is preferably 50 MPa or more, more preferably 100 MPa or more, still more preferably 200 MPa or more, still more preferably 300 MPa or more, and even more preferably 500 MPa or more. is there.
  • the tensile modulus is specifically measured by the method described in the examples.
  • the polyether polyamide composition of the present invention is a polyether polyamide composition containing the polyether polyamide (A1)
  • the tensile elongation at break after 600 hours of hydrolysis resistance test calculated by the following formula is: Preferably it is 65% or more, More preferably, it is 68% or more, More preferably, it is 70% or more, More preferably, it is 73% or more.
  • a polyether polyamide composition containing polyether polyamide (A2) it is preferably 50% or more, more preferably 60% or more, still more preferably 65% or more, and still more preferably 68% or more.
  • Tensile rupture elongation retention after 600 hours of hydrolysis resistance test (%) [Elongation of tensile rupture of film after 600 hours of hydrolysis resistance test (%) / 72 hours in distilled water at 100 ° C. Tensile elongation at break (%) of film after adjustment] ⁇ 100
  • the tensile elongation at break of the film after conditioning for 72 hours in distilled water at 100 ° C. and the tensile elongation at break after 600 hours of the hydrolysis resistance test of the film were measured by the methods described in the examples. Is done.
  • the polyether polyamide composition of the present invention comprises 0.01 to 15 parts by mass of the molecular chain extender (B) and, if necessary, other components with respect to 100 parts by mass of the polyether polyamide (A1) or (A2). It is preferable to produce by blending and melt-kneading.
  • the method of blending the molecular chain extender (B) is not particularly limited, and a method of adding the molecular chain extender (B) or the like to the polyether polyamide (A1) or (A2) in a molten state in the reaction tank, Examples thereof include a method of dry blending the molecular chain extender (B) or the like with the ether polyamide (A1) or (A2), and melt-kneading with an extruder.
  • the method for melt-kneading the polyether polyamide composition of the present invention include a method for melt-kneading using various commonly used extruders such as a single-screw or twin-screw extruder, among these, A method using a twin screw extruder is preferred from the viewpoint of productivity, versatility and the like.
  • the melt kneading temperature is preferably set in a temperature range from the melting point of the polyether polyamide (A1) or (A2) to 80 ° C. higher than the melting point, and 10 to 10 It is more preferable to set the temperature range higher by 60 ° C.
  • melt-kneading temperature By setting the melt-kneading temperature to be higher than the melting point of the polyether polyamide (A1) or (A2), solidification of the (A1) or (A2) component can be suppressed, and the temperature is 80 ° C. or higher than the melting point. Thus, thermal degradation of the component (A1) or (A2) can be suppressed.
  • the residence time in the melt-kneading is preferably adjusted in the range of 1 to 10 minutes, more preferably in the range of 2 to 7 minutes.
  • the screw of the twin-screw extruder preferably has at least one reverse screw element portion and / or a kneading disc portion, and it is preferable to perform melt-kneading while partially retaining the polyether polyamide composition in the portion.
  • the melt-kneaded polyether polyamide composition may be directly extruded and formed into a molded product such as a film, or may be formed into various molded products by once performing pelletization and then performing extrusion molding or injection molding again.
  • the molded article of the present invention contains the polyether polyamide composition, and is obtained by molding the polyether polyamide composition of the present invention into various forms by a conventionally known molding method.
  • the molding method include injection molding, blow molding, extrusion molding, compression molding, vacuum molding, press molding, direct blow molding, rotational molding, sandwich molding, and two-color molding.
  • the molded article containing the polyether polyamide composition of the present invention has mechanical properties such as flexibility and tensile elongation at break in addition to excellent hydrolysis resistance and transparency, such as automobile parts, electrical parts, electronic parts, etc. It is suitable as.
  • a molded article comprising a polyether polyamide composition a hose, a tube or a metal coating material is preferable.
  • Haze and YI were measured according to JIS K7105.
  • the produced film having a thickness of about 100 ⁇ m was cut into 50 mm ⁇ 50 mm to obtain a test piece.
  • a haze value measuring device manufactured by Nippon Denshoku Industries Co., Ltd., model: COH-300A was used.
  • Tensile test (tensile modulus, tensile breaking elongation and tensile breaking elongation retention) (Measurement of tensile modulus and elongation at break) The tensile modulus and tensile elongation at break were measured according to JIS K7161. The produced film having a thickness of about 100 ⁇ m was cut into 10 mm ⁇ 100 mm to obtain a test piece.
  • a tensile test was conducted under the conditions of a measurement temperature of 23 ° C., a humidity of 50% RH, a distance between chucks of 50 mm, and a tensile speed of 50 mm / min. Rate and tensile elongation at break were determined.
  • the apparatus uses a tensile tester (manufactured by Toyo Seiki Seisakusho Co., Ltd., Strograph), the test piece width is 10 mm, the distance between chucks is 50 mm, the tensile speed is 50 mm / min, the measurement temperature is 23 ° C., and the measurement is performed. The humidity was measured as 50% RH.
  • the tensile break elongation retention rate (%) is calculated from the following formula using the ratio of the tensile break elongation rate of the film after condition adjustment and the start of hydrolysis resistance test as the tensile break elongation rate of the film after a predetermined time. did. The higher the tensile elongation at break, the better the hydrolysis resistance.
  • Sulfur Atom Concentration Sebacic acid used in each example was tableted with a press and subjected to fluorescent X-ray analysis (XRF).
  • XRF fluorescent X-ray analysis
  • a fluorescent X-ray analyzer (trade name: ZSX Primus, manufactured by Rigaku Corporation) was used, and an Rh tube (4 kw) was used as the tube.
  • Rh tube (4 kw) was used as the tube.
  • a polypropylene film was used as the analysis window film, and an EZ scan was performed in an irradiation area of 30 mm ⁇ under a vacuum atmosphere.
  • Example 1-1 A reaction vessel having a volume of about 3 L equipped with a stirrer, a nitrogen gas inlet, and a condensed water outlet is charged with 505.6 g of sebacic acid, 0.499 g of sodium hypophosphite monohydrate, and 0.348 g of sodium acetate. The interior was sufficiently purged with nitrogen, and then melted at 170 ° C. while supplying nitrogen gas at 20 ml / min. The polymerization temperature at the end of the addition of the diamine component was set to 240 ° C., and gradually increased to the temperature, and then 306.4 g of metaxylylenediamine (MXDA) (Mitsubishi Gas Chemical Co., Ltd.) and polyether were added thereto.
  • MXDA metaxylylenediamine
  • a mixture of 250.0 g of diamine (trade name: XTJ-542, manufactured by HUNTSMAN, USA) was dropped, and polymerization was carried out for about 2 hours after the start of dropping of the diamine component to obtain a polyether polyamide (A1).
  • ⁇ r 1.29
  • [COOH] 10.8 ⁇ eq / g
  • [NH 2 ] 38.4 ⁇ eq / g
  • Mn 14368
  • Tg 29.2 ° C.
  • Tch 58.0 ° C.
  • Tm 185.0 ° C.
  • the film was extruded into a film and cooled with a metal roll set at a temperature of 40 ° C. to obtain an unstretched film having a thickness of about 100 ⁇ m made of a polyether polyamide composition.
  • the said evaluation was performed using the obtained film. The results are shown in Table 1.
  • Example 1-2 Example 1 except that the amount of metaxylylenediamine in Example 1-1 was changed to 272.4 g and the amount of polyetherdiamine (manufactured by HUNTSMAN, USA, trade name: XTJ-542) was changed to 500.0 g.
  • polyether polyamide (A1) was obtained.
  • ⁇ r 1.20
  • [COOH] 12.7 ⁇ eq / g
  • [NH 2 ] 67.2 ⁇ eq / g
  • Mn 11119
  • Tg 13.7 ° C.
  • Tch 46.0 ° C.
  • Tm 182.7 ° C.
  • Example 1-3 an unstretched film having a thickness of about 100 ⁇ m made of a polyether polyamide composition was prepared in the same manner as in Example 1-1, except that the amount of carbodilite LA-1 was changed to 10 parts by mass. Obtained and evaluated. The results are shown in Table 1.
  • Example 1-1 except that 100 parts by mass of the obtained polyether polyamide (A1) and 2 parts by mass of carbodilite LA-1 as a molecular chain extender were used and the temperature of the cylinder and the T-die was 280 ° C. Similarly, an unstretched film having a thickness of about 100 ⁇ m made of a polyether polyamide composition was obtained and evaluated. The results are shown in Table 1.
  • Example 1-6 A reaction vessel having a volume of about 3 L equipped with a stirrer, a nitrogen gas inlet, and a condensed water outlet was charged with 584.6 g of adipic acid, 0.683 g of sodium hypophosphite monohydrate and 0.476 g of sodium acetate. The interior was sufficiently purged with nitrogen, and then melted at 170 ° C. while supplying nitrogen gas at 20 ml / min. The polymerization temperature at the end of the dropwise addition of the diamine component was set to 260 ° C., and gradually raised to the temperature, 490.3 g of metaxylylenediamine (MXDA) (Mitsubishi Gas Chemical Co., Ltd.) and polyether were added thereto.
  • MXDA metaxylylenediamine
  • a mixture of 400.00 g of diamine (trade name: XTJ-542, manufactured by HUNTSMAN, USA) was added dropwise, and polymerization was carried out for about 2 hours after the start of the addition of the diamine component to obtain a polyether polyamide (A1).
  • ⁇ r 1.38
  • [COOH] 110.17 ⁇ eq / g
  • [NH 2 ] 59.57 ⁇ eq / g
  • Mn 111783
  • Tg 71.7 ° C.
  • Tch 108.3 ° C.
  • Tm 232.8 ° C.
  • Example 1-1 except that 100 parts by mass of the obtained polyether polyamide (A1) and 2 parts by mass of carbodilite LA-1 as a molecular chain extender were used and the temperature of the cylinder and the T-die was 260 ° C. Similarly, an unstretched film having a thickness of about 100 ⁇ m made of a polyether polyamide composition was obtained and evaluated. The results are shown in Table 1.
  • Example 1-1 except that 100 parts by mass of the obtained polyether polyamide (A1) and 2 parts by mass of carbodilite LA-1 as a molecular chain extender were used and the temperature of the cylinder and the T-die was 280 ° C. Similarly, an unstretched film having a thickness of about 100 ⁇ m made of a polyether polyamide composition was obtained and evaluated. The results are shown in Table 1.
  • Example 1-1 the thickness and thickness of the polyether polyamide composition were about 100 ⁇ m in the same manner as in Example 1-1, except that the type and amount of the molecular chain extender were changed as shown in Table 1. A non-stretched film was obtained and evaluated. The results are shown in Table 1.
  • Comparative Example 1-1 100 parts by mass of nylon-6 (manufactured by Ube Industries, Ltd., trade name: UBE nylon 1024B) and aliphatic polycarbodiimide compound (B1) as a molecular chain extender (trade name: Carbodilite LA-, manufactured by Nisshinbo Holdings Inc.) 1) 2 parts by mass are dry blended and melt kneaded at a cylinder temperature of 240 ° C. in a twin screw extruder equipped with a kneading part consisting of a kneading disk, a 28 mm diameter screw, an open vent, and a T die.
  • An unstretched film having a thickness of about 100 ⁇ m was obtained by extruding into a film form from a T-die set at ° C and cooling with a metal roll set at a temperature of 50 ° C. The said evaluation was performed using the obtained film. The results are shown in Table 2.
  • Comparative Example 1-2 An unstretched film having a thickness of about 100 ⁇ m was obtained in the same manner as in Comparative Example 1-1 except that the molecular chain extender was not blended, and the evaluation was performed. The results are shown in Table 2.
  • Comparative Example 1-3 An unstretched film having a thickness of about 100 ⁇ m was obtained in the same manner as in Example 1-1 except that the molecular chain extender was not blended, and the evaluation was performed. The results are shown in Table 2.
  • Example 1-1 Comparative Example 1-4
  • Example 1-1 an attempt was made to obtain a film in the same manner as in Example 1-1 except that the amount of carbodilite LA-1 was changed to 20 parts by mass with respect to 100 parts by mass of the polyether polyamide.
  • the viscosity increased remarkably, and the film could not be formed due to poor extrudability.
  • Table 2 The results are shown in Table 2.
  • Comparative Example 1-5 90 parts by mass of polymetaxylylene adipamide (Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S6001, polyamide resin comprising metaxylylenediamine and adipic acid), nylon-12 (manufactured by Ube Industries, Ltd.) (Product name: UBESTA 3030XA) 10 parts by weight and 2 parts by weight of carbodilite LA-1 as a molecular chain extender are dry-blended and equipped with a 28 mm diameter screw having a kneading part, an open vent, and a T-die.
  • polymetaxylylene adipamide Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S6001, polyamide resin comprising metaxylylenediamine and adipic acid
  • nylon-12 manufactured by Ube Industries, Ltd.
  • UBESTA 3030XA 10 parts by weight and 2 parts by weight of carbodilite LA-1 as a molecular chain extender
  • the polyether polyamide composition of the present invention is a material having hydrolysis resistance and transparency, and excellent mechanical properties such as flexibility and tensile elongation at break. I understand.
  • Example 2-1 A reaction vessel equipped with a stirrer, a nitrogen gas inlet, and a condensed water outlet was charged with 687.65 g of sebacic acid, 0.6612 g of sodium hypophosphite monohydrate and 0.4605 g of sodium acetate in the vessel. was sufficiently purged with nitrogen, and then melted at 170 ° C. while supplying nitrogen gas at 20 ml / min.
  • the film was extruded into a film and cooled with a metal roll set at a temperature of 40 ° C. to obtain an unstretched film having a thickness of about 100 ⁇ m made of a polyether polyamide composition.
  • the said evaluation was performed using the obtained film. The results are shown in Table 3.
  • Example 2-2 A reaction vessel having a volume of about 3 L equipped with a stirrer, a nitrogen gas inlet, and a condensed water outlet was charged with 563.30 g of sebacic acid, 0.6543 g of sodium hypophosphite monohydrate and 0.4557 g of sodium acetate, Was sufficiently purged with nitrogen, and then melted at 170 ° C. while supplying nitrogen gas at 20 ml / min.
  • Example 2-3 An unstretched film having a thickness of about 100 ⁇ m made of a polyether polyamide composition was obtained in the same manner as in Example 2-1, except that the amount of carbodilite LA-1 was changed to 10 parts by mass in Example 2-1. Obtained and evaluated. The results are shown in Table 3.
  • Example 2-4 A reaction vessel equipped with a stirrer, a nitrogen gas inlet, and a condensed water outlet was charged with 687.65 g of sebacic acid, 0.6612 g of sodium hypophosphite monohydrate and 0.4605 g of sodium acetate in the vessel. was sufficiently purged with nitrogen, and then melted at 170 ° C. while supplying nitrogen gas at 20 ml / min.
  • Example 2-6 A reaction vessel equipped with a stirrer, a nitrogen gas inlet, and a condensed water outlet was charged with about 58.60 g of adipic acid, 0.6613 g of sodium hypophosphite monohydrate and 0.4606 g of sodium acetate in the vessel. was sufficiently purged with nitrogen, and then melted at 170 ° C. while supplying nitrogen gas at 20 ml / min.
  • Example 2-7 A reaction vessel having a volume of about 3 L equipped with a stirrer, a nitrogen gas inlet, and a condensed water outlet was charged with 584.60 g of adipic acid, 0.6626 g of sodium hypophosphite monohydrate and 0.4616 g of sodium acetate. Was sufficiently purged with nitrogen, and then melted at 170 ° C. while supplying nitrogen gas at 20 ml / min.
  • MXDA metaxylylenediamine
  • PXDA paraxylenediamine
  • Example 2-1 except that 100 parts by mass of the obtained polyether polyamide (A2) and 2 parts by mass of carbodilite LA-1 as a molecular chain extender were used, and the temperature of the cylinder and T-die was 280 ° C. Similarly, an unstretched film having a thickness of about 100 ⁇ m made of a polyether polyamide composition was obtained and evaluated. The results are shown in Table 3.
  • Example 2-1 the thickness and thickness of the polyether polyamide composition were about 100 ⁇ m in the same manner as in Example 2-1, except that the type and amount of the molecular chain extender were changed as shown in Table 3. A non-stretched film was obtained and evaluated. The results are shown in Table 3.
  • Comparative Example 2-1 100 parts by mass of nylon-6 (manufactured by Ube Industries, Ltd., trade name: UBE nylon 1024B) and aliphatic polycarbodiimide compound (B1) as a molecular chain extender (trade name: Carbodilite LA-, manufactured by Nisshinbo Holdings Inc.) 1) 2 parts by mass are dry blended and melt kneaded at a cylinder temperature of 240 ° C. in a twin screw extruder equipped with a kneading part consisting of a kneading disk, a 28 mm diameter screw, an open vent, and a T die.
  • An unstretched film having a thickness of about 100 ⁇ m was obtained by extruding into a film form from a T-die set at ° C and cooling with a metal roll set at a temperature of 50 ° C. The said evaluation was performed using the obtained film. The results are shown in Table 4.
  • Comparative Example 2-2 An unstretched film having a thickness of about 100 ⁇ m was obtained in the same manner as in Comparative Example 2-1, except that the molecular chain extender was not blended, and the evaluation was performed. The results are shown in Table 4.
  • Comparative Example 2-3 An unstretched film having a thickness of about 100 ⁇ m was obtained in the same manner as in Example 2-1, except that the molecular chain extender was not blended, and the evaluation was performed. The results are shown in Table 4.
  • Comparative Example 2-4 An attempt was made to obtain a film in the same manner as in Example 2-1, except that the amount of the molecular chain extender was changed to 20 parts by mass with respect to 100 parts by mass of the polyether polyamide. The film could not be formed due to poor extrudability. The results are shown in Table 4.
  • Comparative Example 2-5 90 parts by mass of polymetaxylylene adipamide (Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon S6001, polyamide resin comprising metaxylylenediamine and adipic acid), nylon-12 (manufactured by Ube Industries, Ltd.)
  • B1 aliphatic polycarbodiimide compound
  • B1 manufactured by Nisshinbo Holdings, Inc., trade name: Carbodilite LA-1
  • the mixture is melt kneaded at a cylinder temperature of 240 ° C., and extruded from a T die set at a temperature of 240 ° C.
  • ED-900 Polyether diamine manufactured by HUNTSMAN, USA According to the catalog of US HUNTSMAN Co., the approximate number of x2 + z2 in the formula (2) is 6.0, the approximate number of y2 is 12.5, and the number average molecular weight is 900.
  • ED-600 Polyether diamine manufactured by HUNTSMAN, USA. According to the catalog of US HUNTSMAN Co., the approximate number of x2 + z2 in the formula (2) is 3.0, the approximate number of y2 is 9.0, and the number average molecular weight is 600.
  • the polyether polyamide composition of the present invention is a material having hydrolysis resistance and transparency, and excellent mechanical properties such as flexibility and tensile elongation at break. I understand.
  • the polyether polyamide composition of the present invention has hydrolysis resistance and transparency, and is excellent in mechanical properties such as flexibility and tensile elongation at break. Also, melt moldability, toughness and heat resistance are good. Therefore, the polyether polyamide composition of the present invention is used for various industrial parts, gears and connectors for machinery and electrical precision equipment, fuel tubes around automobile engines, connector parts, sliding parts, belts, hoses, silencer gears, etc. It can be suitably applied to parts, electronic parts, sporting goods and the like.

Abstract

 ジアミン構成単位が特定のポリエーテルジアミン化合物及びキシリレンジアミンに由来し、ジカルボン酸構成単位が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリエーテルポリアミド100質量部に対し、カルボジイミド化合物及び分子内に2個以上のエポキシ基を含有する化合物から選ばれる少なくとも1種の分子鎖延長剤0.01~15質量部を配合したポリエーテルポリアミド組成物である。

Description

ポリエーテルポリアミド組成物
 本発明は、ポリエーテルポリアミド組成物に関し、詳しくは、自動車部品や電気部品、電子部品等の材料として好適なポリエーテルポリアミド組成物に関する。
 ポリアミド樹脂は、繊維やエンジニアリニングプラスチック等、幅広い用途に用いられている材料であるが、酸性媒体中では容易に加水分解されることが知られている。
 ポリアミド樹脂の耐加水分解性等を改良するために、ポリアミド樹脂に脂肪族カルボジイミド化合物を配合したポリアミド樹脂組成物が知られている(特許文献1)。このようなポリアミド樹脂組成物は耐加水分解性に優れるという特性を有しているが、柔軟性や耐衝撃性が不足することがある。
 そこで、バリア性及び強度、耐衝撃性や伸び等の機械的特性に優れる熱可塑性樹脂組成物として、ジアミン構成単位の70モル%以上がメタキシリレンジアミンに由来し、ジカルボン酸構成単位の70モル%以上が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリアミド樹脂(a-1)と、ナイロン11及び/又はナイロン12(a-2)からなるポリアミド樹脂組成物(A)及び分子中に2個以上のカルボジイミド基を有するカルボジイミド化合物(B)を含有する熱可塑性樹脂組成物が知られている(特許文献2)。
特開平11-343408号公報 特開2008-133455号公報
 しかしながら、特許文献2に開示された熱可塑性樹脂組成物は、屈折率の異なる2種類のポリアミド樹脂をブレンドしているため、結晶化の程度によらず白濁が生じる場合があり、一定以上の透明性が要求される用途に対しては、さらに透明性の向上が望まれる。
 本発明が解決しようとする課題は、耐加水分解性及び透明性を有し、かつ、柔軟性、引張破断伸び等の機械的特性に優れるポリアミド系の樹脂組成物を提供することである。
 本発明は、以下のポリエーテルポリアミド組成物及び成形品を提供する。
<1>ジアミン構成単位が下記一般式(1)で表されるポリエーテルジアミン化合物(a1-1)及びキシリレンジアミン(a-2)に由来し、ジカルボン酸構成単位が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリエーテルポリアミド(A1)100質量部に対し、カルボジイミド化合物及び分子内に2個以上のエポキシ基を含有する化合物から選ばれる少なくとも1種の分子鎖延長剤(B)0.01~15質量部を配合したポリエーテルポリアミド組成物。
Figure JPOXMLDOC01-appb-C000003
(式中、x1+z1は1~30、y1は1~50を表し、R1はプロピレン基を表す。)
<2>ポリエーテルポリアミド(A1)100質量部に対し、分子鎖延長剤(B)を0.01~15質量部配合し、溶融混練することを特徴とする、上記<1>に記載のポリエーテルポリアミド組成物の製造方法。
<3>上記<1>に記載のポリエーテルポリアミド組成物を含む成形品。
<4>ジアミン構成単位が下記一般式(2)で表されるポリエーテルジアミン化合物(a2-1)及びキシリレンジアミン(a-2)に由来し、ジカルボン酸構成単位が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリエーテルポリアミド(A2)100質量部に対し、カルボジイミド化合物及び分子内に2個以上のエポキシ基を含有する化合物から選ばれる少なくとも1種の分子鎖延長剤(B)0.01~15質量部を配合したポリエーテルポリアミド組成物。
Figure JPOXMLDOC01-appb-C000004
(式中、x2+z2は1~60、y2は1~50を表し、R2はプロピレン基を表す。)
<5>ポリエーテルポリアミド(A2)100質量部に対し、分子鎖延長剤(B)を0.01~15質量部配合し、溶融混練することを特徴とする、上記<4>に記載のポリエーテルポリアミド組成物の製造方法。
<6>上記<4>に記載のポリエーテルポリアミド組成物を含む成形品。
 本発明のポリエーテルポリアミド組成物は、耐加水分解性及び透明性を有し、かつ、柔軟性、引張破断伸び等の機械的特性に優れる。また、溶融成形性、強靭性及び耐熱性も良好である。
[ポリエーテルポリアミド組成物]
 第一の発明として、本発明のポリエーテルポリアミド組成物は、ジアミン構成単位が下記一般式(1)で表されるポリエーテルジアミン化合物(a1-1)及びキシリレンジアミン(a-2)に由来し、ジカルボン酸構成単位が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリエーテルポリアミド(A1)100質量部に対し、カルボジイミド化合物及び分子内に2個以上のエポキシ基を含有する化合物から選ばれる少なくとも1種の分子鎖延長剤(B)0.01~15質量部を配合したものである。
Figure JPOXMLDOC01-appb-C000005
(式中、x1+z1は1~30、y1は1~50を表し、R1はプロピレン基を表す。)
 また第二の発明として、本発明のポリエーテルポリアミド組成物は、ジアミン構成単位が下記一般式(2)で表されるポリエーテルジアミン化合物(a2-1)及びキシリレンジアミン(a-2)に由来し、ジカルボン酸構成単位が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリエーテルポリアミド(A2)100質量部に対し、カルボジイミド化合物及び分子内に2個以上のエポキシ基を含有する化合物から選ばれる少なくとも1種の分子鎖延長剤(B)0.01~15質量部を配合したものである。
Figure JPOXMLDOC01-appb-C000006
(式中、x2+z2は1~60、y2は1~50を表し、R2はプロピレン基を表す。)
<ポリエーテルポリアミド(A1)及び(A2)>
 ポリエーテルポリアミド(A1)は、ジアミン構成単位が上記一般式(1)で表されるポリエーテルジアミン化合物(a1-1)及びキシリレンジアミン(a-2)に由来し、ジカルボン酸構成単位が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来する。また、ポリエーテルポリアミド(A2)は、ジアミン構成単位が上記一般式(2)で表されるポリエーテルジアミン化合物(a2-1)及びキシリレンジアミン(a-2)に由来し、ジカルボン酸構成単位が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来する。該ポリエーテルポリアミド(A1)及び(A2)を用いることで、柔軟性、引張破断伸び等の機械的特性に優れるポリエーテルポリアミド組成物とすることができる。
(ジアミン構成単位)
 ポリエーテルポリアミド(A1)を構成するジアミン構成単位は、上記一般式(1)で表されるポリエーテルジアミン化合物(a1-1)及びキシリレンジアミン(a-2)に由来する。また、ポリエーテルポリアミド(A2)を構成するジアミン構成単位は、上記一般式(2)で表されるポリエーテルジアミン化合物(a2-1)及びキシリレンジアミン(a-2)に由来する。
〔ポリエーテルジアミン化合物(a1-1)〕
 ポリエーテルポリアミド(A1)を構成するジアミン構成単位は、上記一般式(1)で表されるポリエーテルジアミン化合物(a1-1)に由来する構成単位を含む。上記一般式(1)における(x1+z1)は1~30であり、好ましくは2~25、より好ましくは2~20、更に好ましくは2~15である。また、y1は1~50であり、好ましくは1~40、より好ましくは1~30、更に好ましくは1~20である。x1、y1、z1の値が上記範囲より大きい場合、溶融重合の反応途中に生成するキシリレンジアミンとジカルボン酸とからなるオリゴマーやポリマーとの相溶性が低くなり、重合反応が進行しづらくなる。
 また、上記一般式(1)におけるR1はいずれもプロピレン基を表す。-OR1-で表されるオキシプロピレン基の構造は、-OCH2CH2CH2-、-OCH(CH3)CH2-、-OCH2CH(CH3)-のいずれであってもよい。
 ポリエーテルジアミン化合物(a1-1)の数平均分子量は、好ましくは204~5000、より好ましくは250~4000、更に好ましくは300~3000、より更に好ましくは400~2000、より更に好ましくは500~1800である。ポリエーテルジアミン化合物の数平均分子量が上記範囲内であれば、柔軟性を発現するポリマーを得ることができる。
〔ポリエーテルジアミン化合物(a2-1)〕
 ポリエーテルポリアミド(A2)を構成するジアミン構成単位は、上記一般式(2)で表されるポリエーテルジアミン化合物(a2-1)に由来する構成単位を含む。上記一般式(2)における(x2+z2)は1~60であり、好ましくは2~40、より好ましくは2~30、更に好ましくは2~20である。また、y2は1~50であり、好ましくは1~40、より好ましくは1~30、更に好ましくは1~20である。x2、y2、z2の値が上記範囲より大きい場合、溶融重合の反応途中に生成するキシリレンジアミンとジカルボン酸とからなるオリゴマーやポリマーとの相溶性が低くなり、重合反応が進行しづらくなる。
 また、上記一般式(2)におけるR2はいずれもプロピレン基を表す。-OR2-で表されるオキシプロピレン基の構造は、-OCH2CH2CH2-、-OCH(CH3)CH2-、-OCH2CH(CH3)-のいずれであってもよい。
 ポリエーテルジアミン化合物(a2-1)の数平均分子量は、好ましくは180~5700、より好ましくは200~4000、更に好ましくは300~3000、より更に好ましくは300~2000、より更に好ましくは300~1500である。ポリエーテルジアミン化合物の数平均分子量が上記範囲内であれば、柔軟性及び水分の吸放湿性を発現するポリマーを得ることができる。
〔キシリレンジアミン(a-2)〕
 ポリエーテルポリアミド(A1)及び(A2)を構成するジアミン構成単位は、キシリレンジアミン(a-2)に由来する構成単位を含む。キシリレンジアミン(a-2)としては、メタキシリレンジアミン、パラキシリレンジアミン又はこれらの混合物であることが好ましく、メタキシリレンジアミン、又はメタキシリレンジアミンとパラキシリレンジアミンとの混合物であることがより好ましい。
 キシリレンジアミン(a-2)がメタキシリレンジアミンに由来する場合、得られるポリエーテルポリアミドは、柔軟性、結晶性、溶融成形性、成形加工性、強靭性に優れたものとなる。
 キシリレンジアミン(a-2)が、メタキシリレンジアミンとパラキシリレンジアミンとの混合物に由来する場合、得られるポリエーテルポリアミドは柔軟性、結晶性、溶融成形性、成形加工性、強靭性に優れ、さらに高耐熱性、高弾性率を示す。
 キシリレンジアミン(a-2)として、メタキシリレンジアミンとパラキシリレンジアミンとの混合物を用いる場合には、メタキシリレンジアミン及びパラキシリレンジアミンの総量に対するパラキシリレンジアミンの割合は、好ましくは90モル%以下であり、より好ましくは1~80モル%、更に好ましくは5~70モル%である。パラキシリレンジアミンの割合が上記範囲であれば、得られるポリエーテルポリアミドの融点が、該ポリエーテルポリアミドの分解温度に近接せず、好ましい。
 ジアミン構成単位中のキシリレンジアミン(a-2)に由来する構成単位の割合、すなわち、ジアミン構成単位を構成するポリエーテルジアミン化合物(a1-1)又は(a2-1)とキシリレンジアミン(a-2)との総量に対する、キシリレンジアミン(a-2)の割合は、好ましくは50~99.8モル%、より好ましくは50~99.5モル%、更に好ましくは50~99モル%である。ジアミン構成単位中のキシリレンジアミン(a-2)に由来する構成単位の割合が上記範囲内であれば、得られるポリエーテルポリアミドは溶融成形性に優れ、さらに強度、弾性率等の機械的物性が優れたものとなる。
 ポリエーテルポリアミド(A1)及び(A2)を構成するジアミン構成単位は、上述したように、前記一般式(1)で表されるポリエーテルジアミン化合物(a1-1)及びキシリレンジアミン(a-2)、又は前記一般式(2)で表されるポリエーテルジアミン化合物(a2-1)及びキシリレンジアミン(a-2)に由来するが、本発明の効果を損なわない範囲であれば、その他のジアミン化合物に由来する構成単位を含んでもよい。
 ポリエーテルジアミン化合物(a1-1)及びキシリレンジアミン(a-2)、並びにポリエーテルジアミン化合物(a2-1)及びキシリレンジアミン(a-2)以外のジアミン構成単位を構成しうるジアミン化合物としては、テトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチル-ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン;1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環族ジアミン;ビス(4-アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン類等を例示することができるが、これらに限定されるものではない。
(ジカルボン酸構成単位)
 ポリエーテルポリアミド(A1)及び(A2)を構成するジカルボン酸構成単位は、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来する。炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,10-デカンジカルボン酸、1,11-ウンデカンジカルボン酸、1,12-ドデカンジカルボン酸等を例示できるが、これらの中でも結晶性、高弾性の観点からアジピン酸及びセバシン酸から選ばれる少なくとも1種が好ましく使用される。これらのジカルボン酸は、単独で使用してもよいし、2種類以上を併用してもよい。
 ポリエーテルポリアミド(A1)及び(A2)を構成するジカルボン酸構成単位は、上述したように、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するが、本発明の効果を損なわない範囲であれば、その他のジカルボン酸に由来する構成単位を含んでもよい。
 炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸以外のジカルボン酸構成単位を構成しうるジカルボン酸としては、シュウ酸、マロン酸等の脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸類等を例示できるが、これらに限定されるものではない。
 ジカルボン酸成分として、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸とイソフタル酸との混合物を使用する場合、ポリエーテルポリアミド(A1)及び(A2)の耐熱性及び成形加工性を向上させることができる。炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸とイソフタル酸とのモル比(炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸/イソフタル酸)は、50/50~99/1が好ましく、70/30~95/5がより好ましい。
(ポリエーテルポリアミド(A1)及び(A2)の物性)
 ポリエーテルポリアミド(A1)及び(A2)は、キシリレンジアミン(a-2)と炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸とから形成される高結晶性のポリアミドブロックをハードセグメントとし、ポリエーテルジアミン化合物(a1-1)又は(a2-1)由来のポリエーテルブロックをソフトセグメントとすることで、溶融成形性及び成形加工性に優れる。さらに得られたポリエーテルポリアミドは強靭性、柔軟性、結晶性、耐熱性等に優れている。
 ポリエーテルポリアミド(A1)及び(A2)の相対粘度は、成形性及び他の樹脂との溶融混合性の観点から、好ましくは1.1~3.0の範囲、より好ましくは1.1~2.9の範囲、更に好ましくは1.1~2.8の範囲である。当該相対粘度は実施例に記載の方法により測定される。
 ポリエーテルポリアミド(A1)の融点は、耐熱性の観点から、好ましくは170~270℃の範囲、より好ましくは175~270℃の範囲、更に好ましくは180~270℃の範囲である。また、ポリエーテルポリアミド(A2)の融点は、耐熱性の観点から、好ましくは170~270℃の範囲、より好ましくは175~270℃の範囲、更に好ましくは180~270℃の範囲、更に好ましくは180~260℃の範囲である。当該融点は実施例に記載の方法により測定される。
 ポリエーテルポリアミド(A1)の引張破断伸び率(測定温度23℃、湿度50%RH)は、柔軟性の観点から、好ましくは50%以上、より好ましくは100%以上、更に好ましくは200%以上、更に好ましくは250%以上、更に好ましくは300%以上である。また、ポリエーテルポリアミド(A2)の引張破断伸び率(測定温度23℃、湿度50%RH)は、柔軟性の観点から、好ましくは100%以上、より好ましくは200%以上、更に好ましくは250%以上、更に好ましくは300%以上である。
 ポリエーテルポリアミド(A1)の引張弾性率(測定温度23℃、湿度50%RH)は、柔軟性及び機械強度の観点から、好ましくは200MPa以上、より好ましくは300MPa以上、更に好ましくは400MPa以上、更に好ましくは500MPa以上、更に好ましくは1000MPa以上である。また、ポリエーテルポリアミド(A2)の引張弾性率(測定温度23℃、湿度50%RH)は、柔軟性及び機械強度の観点から、好ましくは100MPa以上、より好ましくは200MPa以上、更に好ましくは300MPa以上、更に好ましくは400MPa以上、更に好ましくは500MPa以上である。
(ポリエーテルポリアミド(A1)及び(A2)の製造)
 ポリエーテルポリアミド(A1)及び(A2)の製造は、特に限定されるものではなく、任意の方法、重合条件により行うことができる。
 例えば、ジアミン成分(ポリエーテルジアミン化合物(a1-1)及びキシリレンジアミン(a-2)等のジアミン、又はポリエーテルジアミン化合物(a2-1)及びキシリレンジアミン(a-2)等のジアミン)とジカルボン酸成分(炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸等のジカルボン酸)とからなる塩を水の存在下に加圧状態で昇温し、加えた水及び縮合水を除きながら溶融状態で重合させる方法によりポリエーテルポリアミド(A1)及び(A2)を製造することができる。
 また、ジアミン成分(ポリエーテルジアミン化合物(a1-1)及びキシリレンジアミン(a-2)等のジアミン、又はポリエーテルジアミン化合物(a2-1)及びキシリレンジアミン(a-2)等のジアミン)を溶融状態のジカルボン酸成分(炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸等のジカルボン酸)に直接加えて、常圧下で重縮合する方法によってもポリエーテルポリアミド(A1)及び(A2)を製造することができる。この場合、反応系を均一な液状態で保つために、ジアミン成分をジカルボン酸成分に連続的に加え、その間、反応温度が生成するオリゴアミド及びポリアミドの融点よりも下回らないように反応系を昇温しつつ、重縮合が進められる。
 ジアミン成分(ポリエーテルジアミン化合物(a1-1)及びキシリレンジアミン(a-2)等のジアミン、又はポリエーテルジアミン化合物(a2-1)及びキシリレンジアミン(a-2)等のジアミン)と、ジカルボン酸成分(炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸等のジカルボン酸)とのモル比(ジアミン成分/ジカルボン酸成分)は、好ましくは0.9~1.1の範囲、より好ましくは0.93~1.07の範囲、更に好ましくは0.95~1.05の範囲、更に好ましくは0.97~1.02の範囲である。モル比が上記範囲内であれば、高分子量化が進行しやすくなる。
 重合温度は、好ましくは150~300℃、より好ましくは160~280℃、更に好ましくは170~270℃である。重合温度が上記温度範囲内であれば、重合反応が速やかに進行する。また、モノマーや重合途中のオリゴマー、ポリマー等の熱分解が起こりにくいため、得られるポリエーテルポリアミドの性状が良好なものとなる。
 重合時間は、ジアミン成分を滴下し始めてから通常1~5時間である。重合時間を上記範囲内とすることにより、ポリエーテルポリアミド(A1)及び(A2)の分子量を十分に上げることができ、さらに得られたポリエーテルポリアミドの着色を抑えることができる。
 また、ポリエーテルポリアミド(A1)及び(A2)の製造方法として、ジアミン成分のうちポリエーテルジアミン化合物(a1-1)又は(a2-1)を、ジカルボン酸成分とともに予め反応槽内に仕込み加熱して溶融混合物とし〔工程(1)〕、得られた溶融混合物に前記ポリエーテルジアミン化合物(a1-1)及び(a2-1)以外のキシリレンジアミン(a-2)等のジアミン成分を添加〔工程(2)〕してもよい。
 その場合もまた、反応系を均一な液状態で保つために、ポリエーテルジアミン化合物(a1-1)及び(a2-1)以外のジアミン成分をジカルボン酸成分に連続的に加え、その間、反応温度が生成するオリゴアミド及びポリアミドの融点よりも下回らないように反応系を昇温しつつ、重縮合が進められる。
 ここで、上記〔工程(1)〕及び〔工程(2)〕について説明するが、該説明においてポリエーテルポリアミド(A1)及び(A2)を「ポリエーテルポリアミド(A)」と称すことがあり、またポリエーテルジアミン化合物(a1-1)及び(a2-1)を「ポリエーテルジアミン化合物(a-1)」と称すことがある。
〔工程(1)〕
 工程(1)は、前記ポリエーテルジアミン化合物(a-1)と前記α,ω-直鎖脂肪族ジカルボン酸化合物とを混合し、加熱して溶融混合物とする工程である。
 工程(1)を経ることで、得られるポリエーテルポリアミドが臭気及び着色が少なく、引張破断伸び率に更に優れた樹脂とすることができる。これは、工程(1)を経ることで、ポリエーテルジアミン化合物(a-1)とα,ω-直鎖脂肪族ジカルボン酸化合物とが均一に溶融混合されるため、ポリエーテルポリアミドの合成過程において、反応容器内の温度がポリエーテルジアミン化合物(a-1)の分解が進行する温度に達する前に、ポリエーテルジアミン化合物(a-1)がα,ω-直鎖脂肪族ジカルボン酸化合物と(重)縮合し安定化されるためと推定される。すなわち、工程(1)を経ることで、ポリエーテルポリアミドの合成過程において、ポリエーテルジアミン化合物(a-1)が熱履歴等により劣化することを防ぎ、ポリエーテルポリアミド中に効率よく取り込まれ、結果としてポリエーテルジアミン化合物(a-1)由来の分解物が生じにくくなるためと考えられる。
 ポリエーテルジアミン化合物(a-1)が、反応系内でどの程度安定化されているかについては、取り込み率を求めることで評価することができる。取り込み率は、α,ω-直鎖脂肪族ジカルボン酸化合物の種類にも依存し、α,ω-直鎖脂肪族ジカルボン酸化合物の直鎖の炭素数が増えるほどポリエーテルジアミン化合物(a-1)の取り込み率は高くなるが、工程(1)を経ることで、その取り込み率が更に高くなる。
 上記ポリエーテルジアミン化合物(a-1)の取り込み率は次の方法で求めることができる。
 (1)得られたポリエーテルポリアミド(A)0.2gを2mlのヘキサフルオロイソプロパノール(HFIP)に溶解する。
 (2)(1)で得た溶液を100mlのメタノールに滴下し、再沈殿を行う。
 (3)(2)で得られた再沈殿物を目開き10μmのメンブランフィルターでろ過する。
 (4)(3)で得られたフィルター上の残渣を重HFIP(シグマ・アルドリッチ社製)に溶解し、1H-NMR(ブルカー・バイオスピン社製AV400M)にて分析を行い、フィルター上の残渣のポリエーテルジアミン化合物(a-1)とキシリレンジアミン(a-2)との共重合率(a)を算出する。共重合率の算出は、キシリレンジアミン(a-2)由来のスペクトルピーク面積と、ポリエーテルジアミン化合物(a-1)由来のスペクトルピーク面積の比率から算出する。
 (5)次式から、ポリエーテルジアミン化合物(a-1)の取り込み率を算出する。
 ポリエーテルジアミン化合物(a-1)の取り込み率=a/b×100(%)
  a:(4)にて算出されたフィルター上の残渣のポリエーテルジアミン化合物(a-1)由来の構成単位の全ジアミン構成単位に対する共重合率
  b:重合時の仕込み量から算出されるポリエーテルジアミン化合物(a-1)由来の構成単位の全ジアミン構成単位に対する共重合率
 まず工程(1)において、予め反応容器内にポリエーテルジアミン化合物(a-1)と、α,ω-直鎖脂肪族ジカルボン酸化合物とを仕込み、溶融状態のポリエーテルジアミン化合物(a-1)とα,ω-直鎖脂肪族ジカルボン酸化合物とを混合する。
 ポリエーテルジアミン化合物(a-1)及びα,ω-直鎖脂肪族ジカルボン酸化合物を溶融状態とするには、
(i)固体のα,ω-直鎖脂肪族ジカルボン酸化合物、液体又は固体のポリエーテルジアミン化合物(a-1)を反応容器に仕込み、その後、α,ω-直鎖脂肪族ジカルボン酸化合物の融点以上に加熱して溶融させても良く、
(ii)液体又は固体のポリエーテルジアミン化合物(a-1)が仕込まれた反応容器内に、溶融したα,ω-直鎖脂肪族ジカルボン酸化合物を仕込んでも良く、
(iii)溶融状態のα,ω-直鎖脂肪族ジカルボン酸化合物が仕込まれた反応容器内に、液体又は固体のポリエーテルジアミン化合物(a-1)を仕込んでも良く、
(iv)溶融したポリエーテルジアミン化合物(a-1)及びα,ω-直鎖脂肪族ジカルボン酸化合物を予め混合した混合物を、反応容器内に仕込んでも良い。
 上記(i)~(iv)において、反応容器内にポリエーテルジアミン化合物(a-1)及び/又はα,ω-直鎖脂肪族ジカルボン酸化合物を仕込む際に、適当な溶媒に溶解もしくは分散させても良い。この際の溶媒としては水等が挙げられる。
 また、着色の少ないポリエーテルポリアミドを製造する観点から、反応容器へポリエーテルジアミン化合物(a-1)及びα,ω-直鎖脂肪族ジカルボン酸化合物を仕込むにあたって、反応容器内を不活性ガスで十分に置換することが好ましい。
 上記(i)の場合には、溶融させる前に不活性ガスで置換することが好ましく、上記(ii)又は(iii)の場合には、溶融したα,ω-直鎖脂肪族ジカルボン酸化合物を仕込む前に反応容器内を不活性ガスで置換することが好ましく、上記(iv)の場合には、上記混合物を仕込む前に反応容器内を不活性ガスで置換することが好ましい。
 次に工程(1)において、上記混合した溶融状態のポリエーテルジアミン化合物(a-1)及びα,ω-直鎖脂肪族ジカルボン酸化合物の混合物を加熱する。
 上記混合物を加熱する際の加熱温度は、α,ω-直鎖脂肪族ジカルボン酸化合物の融点以上であることが好ましく、α,ω-直鎖脂肪族ジカルボン酸化合物の融点~融点+40℃の範囲であることがより好ましく、α,ω-直鎖脂肪族ジカルボン酸化合物の融点~融点+30℃の範囲であることが更に好ましい。
 また、工程(1)が終了した時点の加熱温度は、α,ω-直鎖脂肪族ジカルボン酸化合物の融点~融点+50℃であることが好ましい。該温度がα,ω-直鎖脂肪族ジカルボン酸化合物の融点以上であれば、ポリエーテルジアミン化合物(a-1)とα,ω-直鎖脂肪族ジカルボン酸化合物との混合状態が均一となり、本発明の効果が十分に発現できる。また、該温度がα,ω-直鎖脂肪族ジカルボン酸化合物の融点+50℃以下であれば、ポリエーテルジアミン化合物(a-1)及びα,ω-直鎖脂肪族ジカルボン酸化合物の熱分解が進行するおそれがない。
 なお、α,ω-直鎖脂肪族ジカルボン酸化合物の融点は示差走査熱量測定(DSC)等を用いて測定することができる。
 工程(1)における加熱時間は、通常15~120分程度である。加熱時間を上記範囲内とすることにより、ポリエーテルジアミン化合物(a-1)とα,ω-直鎖脂肪族ジカルボン酸化合物との混合状態を十分均一ことができ、熱分解が進行するおそれがない。
 工程(1)において、上述したように溶融状態のポリエーテルジアミン化合物(a-1)及びα,ω-直鎖脂肪族ジカルボン酸化合物が均一に混合された溶融混合物が得られる。また一方で、工程(1)において、仕込んだ全ポリエーテルジアミン化合物(a-1)のうちのアミノ基30~100モル%が、α,ω-直鎖脂肪族ジカルボン酸化合物と(重)縮合をし、オリゴマー又はポリマーを形成していると好ましい。このことから、工程(1)において得られる上記溶融混合物には、更に溶融した上記オリゴマー及びポリマーが含まれることがある。
 工程(1)における、上記ポリエーテルジアミン化合物(a-1)とα,ω-直鎖脂肪族ジカルボン酸化合物との(重)縮合の程度は、ポリエーテルジアミン化合物(a-1)とα,ω-直鎖脂肪族ジカルボン酸化合物との組み合わせや、その混合比、混合する際の反応容器の温度、混合時間により異なるが、ポリエーテルジアミン化合物(a-1)以外のジアミン成分を添加する工程(2)の前に、仕込んだ全ポリエーテルジアミン化合物(a-1)のうちのアミノ基30モル%以上がα,ω-直鎖脂肪族ジカルボン酸化合物と(重)縮合していることが好ましく、仕込んだ全ポリエーテルジアミン化合物(a-1)のうちのアミノ基50モル%以上がα,ω-直鎖脂肪族ジカルボン酸化合物と(重)縮合していることがより好ましく、仕込んだ全ポリエーテルジアミン化合物(a-1)のうちのアミノ基70%以上がα,ω-直鎖脂肪族ジカルボン酸化合物と(重)縮合していることが更に好ましい。
 この全ポリエーテルジアミン化合物のアミノ基の反応率は、以下の式より算出することができる。
アミノ基の反応率=(1-[NH2,工程(1)]/[NH2,a-1])×100
 [NH2,a-1]:仕込んだ全ポリエーテルジアミン化合物(a-1)とα,ω-直鎖脂肪族ジカルボン酸化合物とが未反応であるとした際に算出されるアミノ末端基濃度
[NH2,工程(1)]:工程(1)における混合物のアミノ末端基濃度
 また工程(1)において、反応容器内にポリエーテルジアミン化合物(a-1)、α,ω-直鎖脂肪族カルボン酸化合物を仕込む際、後述するリン原子含有化合物及びアルカリ金属化合物を添加してもよい。
〔工程(2)〕
 工程(2)は、工程(1)で得られた溶融混合物に、前記ポリエーテルジアミン化合物(a-1)以外のキシリレンジアミン(a-2)等のジアミン成分(以下、「キシリレンジアミン(a-2)等」と略記することがある)を添加する工程である。
 工程(2)において、キシリレンジアミン(a-2)等を添加する際の反応容器内の温度は、生成するポリエーテルアミドオリゴマーの融点以上~融点+30℃の温度であることが好ましい。キシリレンジアミン(a-2)等を添加する際の反応容器内の温度が、ポリエーテルジアミン化合物(a-1)とα,ω-直鎖脂肪族ジカルボン酸化合物との溶融混合物及びキシリレンジアミン(a-2)等からなるポリエーテルアミドオリゴマーの融点以上~融点+30℃の温度であれば、反応容器内で反応混合物が固化する可能性が無く、反応混合物の劣化の可能性が少なくなるため好ましい。
 上記添加方法としては特に制限はないが、上記温度範囲内で反応容器内の温度をコントロールしながら、キシリレンジアミン(a-2)等を連続的に滴下することが好ましく、キシリレンジアミン(a-2)等の滴下量の増加にしたがって、反応容器内の温度を連続的に昇温させることがより好ましい。
 また、キシリレンジアミン(a-2)等のジアミン成分全量の添加が完了した時点での反応容器内の温度は、製造するポリエーテルポリアミドの融点~融点+30℃となることが好ましい。キシリレンジアミン(a-2)等の添加が完了した時点での反応容器内の温度が、得られるポリエーテルアミド(A)の融点以上~融点+30℃の温度であれば、反応容器内で反応混合物が固化する可能性が無く、反応混合物の劣化の可能性が少なくなるため好ましい。
 なお、ここでのポリエーテルアミドオリゴマー、又はポリエーテルポリアミドの融点は、予めポリエーテルジアミン化合物(a-1)、キシリレンジアミン(a-2)等、ジカルボン酸化合物を所定のモル比で混合し、窒素気流下で、混合物が溶融する程度の加熱条件下で、少なくとも1時間程度溶融混合して得られたものについてDSC等を用いて確認することができる。
 この間、反応容器内は窒素で置換されていることが好ましい。またこの間、反応容器内は攪拌翼にて混合され、反応容器内は均一な流動状態となることが好ましい。
 キシリレンジアミン(a-2)等の添加速度は、アミド化反応の生成熱、縮合生成水の留去に消費される熱量、熱媒から反応容器壁を通して反応混合物に供給される熱量、縮合生成水と原料化合物とを分離する部分の構造等を勘案し、反応系が均一な溶融状態に保持されるように選定される。
 キシリレンジアミン(a-2)等の添加に要する時間は、反応容器の規模によって変化するが、通常は0.5~5時間の範囲内であり、より好ましくは1~3時間の範囲である。この範囲内であると、反応容器内で生成するポリエーテルアミドオリゴマー並びにポリエーテルポリアミド(A)の固化が抑制でき、なおかつ反応系の熱履歴による着色を抑えることができる。
 キシリレンジアミン(a-2)等の添加の間、反応の進行と共に生成する縮合水は、反応系外に留出される。なお、飛散するジアミン化合物、ジカルボン酸化合物等の原料は縮合水と分離され、反応容器に戻されるが、その量はコントロール可能であり、例えば還流塔の温度を最適な範囲にコントロールすることや充填塔の充填物、所謂、ラシヒリングやレッシングリング、サドル等を適切な形状、充填量に制御することでコントロールできる。原料と縮合水の分離には分縮器が好適であり、縮合水は全縮器を通して留出させることが好ましい。
 上記工程(2)での反応容器内部の圧力は、0.1~0.6MPaであることが好ましく、0.15~0.5MPaであることがより好ましい。反応容器内部の圧力を0.1MPa以上とすることで、未反応のキシリレンジアミン(a-2)等及びジカルボン酸化合物が縮合水とともに系外に飛散するのを抑制することができる。未反応のキシリレンジアミン(a-2)等、ジカルボン酸化合物が系外に飛散するのを防止するには、反応容器内部の圧力を高くすることで抑制できるが、0.6MPa以下の圧力で十分抑制できる。反応容器内の圧力を0.6MPaより高くすると、縮合水の沸点が高くなり、分縮器により高温の熱媒を通す必要が生じるおそれがある等、縮合水を反応系外に留出するのに、より多くのエネルギーを要するため好ましくない。
 加圧する場合は、窒素等の不活性ガスによるものでもよいし、反応中に生成する縮合水の蒸気によってもよい。加圧した場合はキシリレンジアミン(a-2)等の添加終了後、常圧に達するまで減圧を行う。
〔工程(3)〕
 工程(2)終了後、重縮合反応を終了してもよいが、常圧又は負圧にて一定時間更に重縮合反応を継続する工程(3)を行ってもよい。
 負圧下で更に重縮合反応を継続する場合は、反応系の圧を最終的に0.08MPa以下に減圧することが好ましい。キシリレンジアミン(a-2)等の添加終了から減圧開始までの時間に特に制限はないが、添加終了後30分以内に減圧を開始することが好ましい。減圧速度は減圧中に未反応のキシリレンジアミン(a-2)等が、水と共に系外に留出しない速度が選択され、例えば、0.1~1MPa/時間の範囲から選択される。減圧速度を遅くすることは、製造に必要な時間が増加するだけではなく、減圧に時間を要するため、得られるポリエーテルポリアミド(A)の熱劣化を招くことがあるため好ましくない。
 工程(3)における反応容器の温度は、得られるポリエーテルポリアミド(A)が固化することのない温度、すなわち、得られるポリエーテルポリアミド(A)の融点~融点+30℃の範囲であることが好ましい。なお、ここでのポリエーテルポリアミドの融点はDSC等を用いることで確認することができる。
 工程(3)における重縮合反応時間は、通常120分以下である。重合時間を上記範囲内とすることにより、ポリエーテルポリアミド(A)の分子量を十分に上げることができ、更に得られたポリマーの着色が抑えることができる。
 重縮合反応を終了した後、ポリエーテルポリアミド(A)を反応容器から取り出す方法は特に限定されず、公知の手法を用いることができるが、生産性並びにその後の取り扱い性の観点から、ポリエーテルポリアミド(A)の融点~融点+50℃の温度に加温したストランドダイを通してストランドとして抜き出しながら、水槽にて溶融樹脂のストランドを冷却した後、ペレタイザーにてカットしてペレットとして得る手法、又は所謂ホットカット、水中カット等が好ましい。この際、ストランドダイからのポリエーテルポリアミド(A)の吐出速度の高速化、安定化等を目的として反応容器内を加圧しても良い。加圧する場合はポリエーテルポリアミド(A)の劣化を抑えるべく、不活性ガスを用いることが好ましい。
 ポリエーテルポリアミド(A1)及び(A2)は、リン原子含有化合物を添加して溶融重縮合(溶融重合)法により製造されることが好ましい。溶融重縮合法としては、常圧で溶融させたジカルボン酸成分中にジアミン成分を滴下し、縮合水を除きながら溶融状態で重合させる方法が好ましい。
 ポリエーテルポリアミド(A1)及び(A2)の重縮合系内には、その特性が阻害されない範囲で、リン原子含有化合物を添加できる。添加できるリン原子含有化合物としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸、次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸エチル、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウム、フェニル亜ホスホン酸エチル、フェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウム、亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等が挙げられ、これらの中でも特に次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム等の次亜リン酸金属塩がアミド化反応を促進する効果が高く、かつ着色防止効果にも優れるため好ましく用いられ、特に次亜リン酸ナトリウムが好ましい。本発明で使用できるリン原子含有化合物はこれらの化合物に限定されない。重縮合系内に添加するリン原子含有化合物の添加量は、良好な外観及び成形加工性の観点から、ポリエーテルポリアミド(A1)及び(A2)中のリン原子濃度換算で、好ましくは1~1000ppm、より好ましくは5~1000ppm、更に好ましくは10~1000ppmである。
 また、ポリエーテルポリアミド(A1)及び(A2)の重縮合系内には、リン原子含有化合物と併用してアルカリ金属化合物を添加することが好ましい。重縮合中のポリマーの着色を防止するためにはリン原子含有化合物を十分な量存在させる必要があるが、場合によってはポリマーのゲル化を招くおそれがあるため、アミド化反応速度を調整するためにもアルカリ金属化合物を共存させることが好ましい。アルカリ金属化合物としては、アルカリ金属水酸化物やアルカリ金属酢酸塩が好ましい。本発明で用いることのできるアルカリ金属化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム等が挙げられるが、これらの化合物に限定されることなく用いることができる。重縮合系内にアルカリ金属化合物を添加する場合、該化合物のモル数をリン原子含有化合物のモル数で除した値が0.5~1となるようにすることが好ましく、より好ましくは0.55~0.95であり、更に好ましくは0.6~0.9である。上記範囲内であると、リン原子含有化合物のアミド化反応促進を適度に抑制する効果があるので、反応を抑制しすぎることにより重縮合反応速度が低下し、ポリマーの熱履歴が増加してポリマーのゲル化が増大することを避けることができる。
 ポリエーテルポリアミド(A1)及び(A2)の硫黄原子濃度は、好ましくは1~200ppm、より好ましくは10~150ppm、更に好ましくは20~100ppmである。上記の範囲であると、製造時にポリエーテルポリアミドの黄色度(YI値)の増加を抑えることができるばかりでなく、本発明のポリエーテルポリアミド組成物を溶融成形する際のYI値の増加を抑えることができ、得られる成形品のYI値を低くすることができる。
 さらに、ジカルボン酸としてセバシン酸を使用する場合には、その硫黄原子濃度が1~500ppmであることが好ましく、より好ましくは1~200ppm、更に好ましくは10~150ppm、特に好ましくは20~100ppmである。上記の範囲であると、ポリエーテルポリアミドを重合する際、及び本発明のポリエーテルポリアミド組成物を溶融成形する際のYI値の増加を抑えることができ、得られる成形品のYI値を低くすることができる。
 同様に、ジカルボン酸としてセバシン酸を使用する場合には、そのナトリウム原子濃度が1~500ppmであることが好ましく、より好ましくは10~300ppm、更に好ましくは20~200ppmである。上記の範囲であると、ポリエーテルポリアミドを合成する際の反応性がよく、適切な分子量範囲にコントロールしやすく、さらに、前述のアミド化反応速度調整の目的で配合するアルカリ金属化合物の使用量を少なくすることができる。また、本発明のポリエーテルポリアミド組成物を溶融成形する際に粘度増加を抑制することができ、成形性が良好となると共に成形加工時にコゲの発生を抑制できることから、得られる成形品の品質が向上する傾向にある。
 このようなセバシン酸は、植物由来のものであることが好ましい。植物由来のセバシン酸は、不純物として硫黄化合物やナトリウム化合物を含有することから、植物由来のセバシン酸に由来する単位を構成単位とするポリエーテルポリアミドは、酸化防止剤を添加しなくてもYI値が低く、また、得られる成形品のYI値も低い。また、植物由来のセバシン酸は、不純物を過度に精製することなく使用することが好ましい。過度に精製する必要がないので、コスト的にも優位である。
 植物由来の場合のセバシン酸の純度は、99~100質量%が好ましく、99.5~100質量%がより好ましく、99.6~100質量%が更に好ましい。この範囲であると、得られるポリエーテルポリアミドの品質が良好になり、重合に影響を及ぼさないため好ましい。
 例えば、セバシン酸に含まれる他のジカルボン酸(1,10-デカメチレンジカルボン酸等)は、0~1質量%が好ましく、0~0.7質量%がより好ましく、0~0.6質量%が更に好ましい。この範囲であると、得られるポリエーテルポリアミドの品質が良好であり、重合に影響を及ぼさないため好ましい。
 また、セバシン酸に含まれるモノカルボン酸(オクタン酸、ノナン酸、ウンデカン酸等)は、0~1質量%が好ましく、0~0.5質量%がより好ましく、0~0.4質量%が更に好ましい。この範囲であると、得られるポリエーテルポリアミドの品質が良好になり、重合に影響を及ぼさないため好ましい。
 セバシン酸の色相(APHA)は、100以下が好ましく、75以下がより好ましく、50以下が更に好ましい。この範囲であると、得られるポリエーテルポリアミドのYI値が低いため、好ましい。なお、APHAは、日本油化学会(Japan Oil Chemist’s Society)の基準油脂分析試験法(Standard Methods for the Analysis of Fats,Oils and Related Materials)により測定することができる。
 溶融重縮合で得られたポリエーテルポリアミド(A1)及び(A2)は、一旦取り出され、ペレット化された後、乾燥して使用される。また更に重合度を高めるために固相重合してもよい。乾燥乃至固相重合で用いられる加熱装置としては、連続式の加熱乾燥装置やタンブルドライヤー、コニカルドライヤー、ロータリードライヤー等と称される回転ドラム式の加熱装置及びナウタミキサーと称される内部に回転翼を備えた円錐型の加熱装置が好適に使用できるが、これらに限定されることなく公知の方法、装置を使用することができる。
<分子鎖延長剤(B)>
 本発明に用いられる分子鎖延長剤(B)は、カルボジイミド化合物及び分子内に2個以上のエポキシ基を含有する化合物から選ばれる少なくとも1種である。
 前記ポリエーテルポリアミド(A1)又は(A2)に分子鎖延長剤(B)を配合すると、溶融混練時に分子鎖延長剤(B)の一部又は全部が前記ポリエーテルポリアミド(A1)又は(A2)と反応して、耐加水分解性が高く、かつ高分子量のポリエーテルポリアミド組成物とすることができる。ポリエーテルポリアミド(A1)及び(A2)を高分子量化するには溶融重縮合を長時間行う必要があり、その際に前記一般式(1)又は(2)で表されるポリエーテルジアミン化合物(a1-1)又は(a2-1)の熱劣化が起こる場合があるが、ポリエーテルポリアミド(A1)又は(A2)に分子鎖延長剤(B)を所定量配合して加熱溶融することで、短時間の加熱溶融で高分子量のポリエーテルポリアミド組成物を得ることができる。
(カルボジイミド化合物)
 本発明で分子鎖延長剤(B)として用いられるカルボジイミド化合物は、分子内に1個以上のカルボジイミド基を有する化合物である。
 本発明に用いられるカルボジイミド化合物としては、芳香族、脂肪族のカルボジイミド化合物が挙げられる。これらの中では、耐加水分解性の効果の発現の度合い、押出時の溶融混練性、及び得られるフィルムの透明性の点から、脂肪族カルボジイミド化合物を用いることが好ましく、分子内に2個以上のカルボジイミド基を有する脂肪族ポリカルボジイミド化合物を用いることがより好ましく、4,4’-ジシクロヘキシルメタンジイソシアネートより製造されるポリカルボジイミドを用いることが更に好ましい。4,4’-ジシクロヘキシルメタンジイソシアネートより製造されるポリカルボジイミドとしては、日清紡ホールディングス株式会社製「カルボジライトLA-1」等が挙げられる。
 上記カルボジイミド化合物に含まれる、分子内に1個のカルボジイミド基を有するモノカルボジイミド化合物としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミド等を例示することができ、これらの中では、特に工業的に入手が容易な点から、ジシクロヘキシルカルボジイミドやジイソプロピルカルボジイミドが好適である。
 上記カルボジイミド化合物に含まれる、分子内に2個以上のカルボジイミド基を有するポリカルボジイミド化合物としては、種々の方法で製造したものを使用することができるが、基本的には従来のポリカルボジイミドの製造方法により製造したものを用いることができる。例えば、カルボジイミド化触媒の存在下、各種有機ジイソシアネートを約70℃以上の温度で不活性溶媒中、もしくは溶媒を使用することなく、脱炭酸縮合反応させることによって合成する方法等を挙げることができる。
 上記ポリカルボジイミド化合物の合成原料である有機ジイソシアネートとしては、例えば芳香族ジイソシアネート、脂肪族ジイソシアネート等の各種有機ジイソシアネートやこれらの混合物を使用することができる。有機ジイソシアネートとしては、具体的には、1,5-ナフタレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,6-ジイソプロピルフェニルイソシアネート、1,3,5-トリイソプロピルベンゼン-2,4-ジイソシアネート等を例示することができる。これらのうち、得られるポリカルボジイミドの押出時の溶融混練性の点から、脂肪族ジイソシアネートが好ましく、4,4’-ジシクロヘキシルメタンジイソシアネートがより好ましい。
 上記ポリカルボジイミド化合物の末端を封止してその重合度を制御するために、モノイソシアネート等の末端封止剤を使用することができる。モノイソシアネートとしては、例えば、フェニルイソシアネート、トリルイソシアネート、ジメチルフェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネート等が挙げられる。
 なお、末端封止剤としては、上記のモノイソシアネートに限定されることはなく、イソシアネートと反応し得る活性水素化合物であればよい。このような活性水素化合物としては、脂肪族、芳香族の化合物の中で、-OH基を持つメタノール、エタノール、フェノール、シクロヘキサノール、N-メチルエタノールアミン、ポリエチレングリコールモノメチルエーテル、ポリプロピレングリコールモノメチルエーテル、ジエチルアミン、ジシクロヘキシルアミン等の2級アミン、ブチルアミン、シクロヘキシルアミン等の1級アミン、コハク酸、安息香酸、ジクロヘキサンカルボン酸等のカルボン酸、エチルメルカプタン、アリルメルカプタン、チオフェノール等のチオール類やエポキシ基を有する化合物等を例示することができる。
 カルボジイミド化触媒としては、例えば、1-フェニル-2-ホスホレン-1-オキシド、3-メチル-1-フェニル-2-ホスホレン-1-オキシド、1-エチル-2-ホスホレン-1-オキシド、3-メチル-2-ホスホレン-1-オキシド及びこれらの3-ホスホレン異性体等のホスホレンオキシド等、チタン酸テトラブチル等の金属触媒等を使用することができ、これらの内では、反応性の面から3-メチル-1-フェニル-2-ホスホレン-1-オキシドが好適である。
 本発明に用いられるカルボジイミド化合物の数平均分子量(Mn)は、ポリエーテルポリアミド(A1)及び(A2)への分散性の観点から、好ましくは100~40,000の範囲、より好ましくは100~30,000の範囲である。数平均分子量(Mn)が40,000以下であれば、ポリエーテルポリアミド(A1)及び(A2)への分散性が良好であり、本発明の効果が十分に得られる。
(分子内に2個以上のエポキシ基を含有する化合物)
 本発明で分子鎖延長剤(B)として用いられる、分子内に2個以上のエポキシ基を含有する化合物(以下、単に「エポキシ基含有化合物」ともいう)は、エポキシ基を2個以上含有する化合物であれば特に制限されず、モノマー、オリゴマー、ポリマーのいずれも用いることができる。
 エポキシ基含有化合物がポリマーである場合には、その重量平均分子量は、耐加水分解性により優れ、組成物がゲル化しにくく、取り扱い性に優れるという観点から、2,000~1,000,000であるのが好ましく、3,000~500,000であるのがより好ましく、4,000~250,000であるのが更に好ましい。
 上記エポキシ基含有化合物としては、例えば、エポキシ基含有(メタ)アクリル系ポリマー、エポキシ基含有ポリスチレン、エポキシ化植物油、ポリグリシジルエーテル等が挙げられる。
 エポキシ基含有化合物は、なかでも、耐加水分解性により優れ、組成物がゲル化しにくいという観点から、エポキシ基含有(メタ)アクリル系ポリマー、ポリグリシジルエーテルが好ましい。また、耐久性により優れ、組成物がゲル化しにくいという観点から、エポキシ基含有(メタ)アクリル系ポリマーがより好ましい。エポキシ基含有(メタ)アクリル系ポリマーは、特に常温で固体のものが好ましい。
 エポキシ基含有(メタ)アクリル系ポリマーについて以下に説明する。分子鎖延長剤(B)としてのエポキシ基含有(メタ)アクリル系ポリマーは、主鎖が(メタ)アクリル系ポリマーであり、分子内にエポキシ基を2個以上含有するポリマーであれば特に制限されない。なお、本発明において、(メタ)アクリルはアクリル及びメタクリルのうちの一方又は両方を意味する。
 主鎖としての(メタ)アクリル系ポリマーは、ホモポリマー及びコポリマーのうちのいずれであってもよい。エポキシ基含有(メタ)アクリル系ポリマーとしては、例えば、メタクリル酸メチル-メタクリル酸グリシジル共重合体、メタクリル酸メチル-スチレン-メタクリル酸グリシジル共重合体等が挙げられる。
 エポキシ基含有(メタ)アクリル系ポリマーは、なかでも、耐加水分解性により優れ、組成物がゲル化しにくく、取り扱い性に優れるという観点から、メタクリル酸メチル-メタクリル酸グリシジル共重合体、メタクリル酸メチル-スチレン-メタクリル酸グリシジル共重合体が好ましい。
 エポキシ基含有(メタ)アクリル系ポリマーの重量平均分子量は、耐加水分解性により優れ、組成物がゲル化しにくく、取り扱い性に優れるという観点から、3,000~300,000であるのが好ましく、4,000~250,000であるのがより好ましい。
 ポリグリシジルエーテルについて以下に説明する。本発明に用いられるエポキシ基含有化合物としてのポリグリシジルエーテルは、分子内に2個以上のグリシジルオキシ基を有する化合物であれば特に制限されない。
 ポリグリシジルエーテルとしては、例えば、グリセリン・エピクロルヒドリン-0~1モル付加物のポリグリシジルエーテル、エチレングリコール-エピクロルヒドリン-0~2モル付加物のポリグリシジルエーテル、ポリエチレングリコール-ジグリシジルエーテル、ネオペンチルグリコール-ジグリシジルエーテル、トリメチロールプロパン-ポリグリシジルエーテル等が挙げられる。
 エポキシ基含有化合物のエポキシ当量は、耐加水分解性により優れ、組成物がゲル化しにくいという観点から、170~3300g/当量であるのが好ましく、200~2000g/当量であるのがより好ましい。
 本発明に用いられるエポキシ基含有化合物として、市販品を使用することができる。
 エポキシ基含有(メタ)アクリル系ポリマーの市販品としては、例えば、Joncryl ADR-4368(アクリル系ポリマー、粉体、重量平均分子量6,800、エポキシ当量285g/当量、BASF社製)、マープルーフG-0150M(アクリル系ポリマー、粉体、重量平均分子量8,000~10,000、エポキシ当量310g/当量、日油株式会社製)、マープルーフG-2050M(アクリル系ポリマー、粉体、重量平均分子量200,000~250,000、エポキシ当量340g/当量、日油株式会社製)が挙げられる。
 エポキシ基含有ポリスチレンの市販品としては、例えば、マープルーフG-1010S(スチレン系ポリマー、粉体、重量平均分子量100,000、エポキシ当量1,700g/当量、日油株式会社製)が挙げられる。
 エポキシ化植物油の市販品としては、例えば、エポキシ化大豆油であるニューサイザー510R(日油株式会社製)等が挙げられる。
 本発明のポリエーテルポリアミド組成物において、分子鎖延長剤(B)は、それぞれ単独で又は2種類以上を組み合わせて使用することができる。
 分子鎖延長剤(B)の配合量は、耐加水分解性により優れ、組成物がゲル化しにくいという観点から、ポリエーテルポリアミド(A)100質量部に対して、0.01~15質量部であり、0.1~10質量部であるのが好ましく、0.4~4質量部であるのがより好ましい。
 上記配合量が0.01質量部以上であれば、耐加水分解性の改善効果を十分に発揮することができ、配合量を15質量部以下とすることにより、ポリエーテルポリアミド組成物を製造する際に急激な増粘が生じることを避けることができる。
<その他の成分>
 本発明のポリエーテルポリアミド組成物には、その特性が阻害されない範囲で、艶消剤、紫外線吸収剤、核剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、ゲル化防止剤等の添加剤を、必要に応じて配合することができる。
 また、本発明のポリエーテルポリアミド組成物には、その特性が阻害されない範囲で、ポリアミド樹脂、ポリエステル樹脂、ポリオレフィン樹脂等の熱可塑性樹脂を、必要に応じて配合することができる。
 ポリアミド樹脂としては、ポリカプロアミド(ナイロン6)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンアゼラミド(ナイロン69)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリウンデカメチレンアジパミド(ナイロン116)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリヘキサメチレンテレフタラミド(ナイロン6T(Tは、テレフタル酸成分単位を表す。以下において同じ))、ポリヘキサメチレンイソフタラミド(ナイロン6I(Iは、イソフタル酸成分単位を表す。以下において同じ))、ポリヘキサメチレンテレフタルイソフタルアミド(ナイロン6TI)、ポリヘプタメチレンテレフタルアミド(ナイロン9T)、ポリメタキシリレンアジパミド(ナイロンMXD6(MXDは、m-キシリレンジアミン成分単位を表す。以下において同じ))、ポリメタキシリレンセバカミド(ナイロンMXD10)、ポリパラキシリレンセバカミド(ナイロンPXD10(PXDは、p-キシリレンジアミン成分単位を表す。))、1,3-又は1,4-ビス(アミノメチル)シクロヘキサンとアジピン酸を重縮合して得られるポリアミド樹脂(ナイロン1,3-/1,4-BAC6(BACは、ビス(アミノメチル)シクロヘキサン成分単位を表す。))及びこれらの共重合アミド等を使用することができる。
 ポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート-イソフタレート共重合樹脂、ポリエチレン-1,4-シクロヘキサンジメチレン-テレフタレート共重合樹脂、ポリエチレン-2,6-ナフタレンジカルボキレート樹脂、ポリエチレン-2,6-ナフタレンジカルボキシレート-テレフタレート共重合樹脂、ポリエチレン-テレフタレート-4,4' -ビフェニルジカルボキシレート共重合樹脂、ポリ-1,3-プロピレン-テレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリブチレン-2,6-ナフタレンジカルボキシレート樹脂等がある。より好ましいポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート-イソフタレート共重合樹脂、ポリブチレンテレフタレート樹脂及びポリエチレン-2,6-ナフタレンジカルボキシレート樹脂が挙げられる。
 ポリオレフィン樹脂としては、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)等のポリエチレン;プロピレン単独重合体、プロピレンとエチレンまたはα-オレフィンとのランダム若しくはブロック共重合体等のポリプロピレン;これらの2種以上の混合物等が挙げられる。ポリエチレンの多くは、エチレンとα-オレフィンとの共重合体である。またポリオレフィン樹脂には、少量のアクリル酸、マレイン酸、メタクリル酸、無水マレイン酸、フマル酸、イタコン酸等のカルボキシル基含有単量体によって変性された変性ポリオレフィン樹脂が含まれる。変性は、通常、共重合またはグラフト変性によって行われる。
 本発明のポリエーテルポリアミド組成物を、ポリアミド樹脂、ポリエステル樹脂、ポリオレフィン樹脂等の熱可塑性樹脂の少なくとも一部に利用することで、射出成形、押出成形、ブロー成形等の成形方法により、強靭性、柔軟性、引張破断伸びに優れた成形体を得ることができる。
[ポリエーテルポリアミド組成物の物性]
 以下の物性の説明において、「ポリエーテルポリアミド組成物」とは、特に特定のない場合はポリエーテルポリアミド(A1)を含むポリエーテルポリアミド組成物及びポリエーテルポリアミド(A2)を含むポリエーテルポリアミド組成物を意味する。
 本発明のポリエーテルポリアミド組成物の相対粘度は、成形性及び他の樹脂との溶融混合性の観点から、好ましくは1.1~3.5の範囲、より好ましくは1.1~3.3の範囲、更に好ましくは1.1~3.0の範囲である。当該相対粘度は実施例に記載の方法により測定される。
 ポリエーテルポリアミド組成物の融点は、耐熱性の観点から、好ましくは170~270℃の範囲、より好ましくは175~270℃の範囲、更に好ましくは180~270℃の範囲である。当該融点は実施例に記載の方法により測定される。
 ポリエーテルポリアミド組成物の数平均分子量(Mn)は、成形性及び他の樹脂との溶融混合性の観点から、好ましくは8,000~200,000の範囲、より好ましくは9,000~150,000の範囲、更に好ましくは10,000~100,000の範囲である。当該数平均分子量(Mn)は実施例に記載の方法により測定される。
 ポリエーテルポリアミド組成物のHaze値は、透明性及び外観性の観点から、厚さ100μmのフィルムとした場合に、好ましくは50%以下、より好ましくは30%以下、更に好ましくは10%以下である。また、ポリエーテルポリアミド組成物のYI値は、透明性及び外観性の観点から、厚さ100μmのフィルムとした場合に、好ましくは10以下、より好ましくは5以下である。上記Haze値及びYI値はJIS K7105に準ずる方法を用いて、具体的には実施例に記載の方法により測定される。
 ポリエーテルポリアミド組成物の引張破断伸び率(測定温度23℃、湿度50%RH)は、柔軟性の観点から、好ましくは100%以上、より好ましくは200%以上、更に好ましくは250%以上、より更に好ましくは300%以上である。当該引張破断伸び率は、具体的には実施例に記載の方法により測定される。
 ポリエーテルポリアミド組成物の引張弾性率(測定温度23℃、湿度50%RH)は、柔軟性及び機械強度の観点から、ポリエーテルポリアミド(A1)を含有するポリエーテルポリアミド組成物の場合、好ましくは100MPa以上、より好ましくは200MPa以上、更に好ましくは300MPa以上、更に好ましくは500MPa以上である。また、ポリエーテルポリアミド(A2)を含有するポリエーテルポリアミド組成物の場合、好ましくは50MPa以上、より好ましくは100MPa以上、更に好ましくは200MPa以上、より更に好ましくは300MPa以上、より更に好ましくは500MPa以上である。当該引張弾性率は、具体的には実施例に記載の方法により測定される。
 本発明のポリエーテルポリアミド組成物は、下式で算出される耐加水分解性試験600時間経過後の引張破断伸び保持率が、ポリエーテルポリアミド(A1)を含有するポリエーテルポリアミド組成物の場合、好ましくは65%以上、より好ましくは68%以上、更に好ましくは70%以上、より更に好ましくは73%以上である。また、ポリエーテルポリアミド(A2)を含有するポリエーテルポリアミド組成物の場合、好ましくは50%以上、より好ましくは60%以上、更に好ましくは65%以上、より更に好ましくは68%以上である。
 耐加水分解性試験600時間経過後の引張破断伸び保持率(%)=〔耐加水分解性試験600時間経過後のフィルムの引張破断伸び率(%)/100℃の蒸留水中にて72時間状態調整した後のフィルムの引張破断伸び率(%)〕×100
 ここで、100℃の蒸留水中にて72時間状態調整した後のフィルムの引張破断伸び率、及びフィルムの耐加水分解性試験600時間経過後の引張破断伸び率は実施例に記載の方法により測定される。
[ポリエーテルポリアミド組成物の製造]
 本発明のポリエーテルポリアミド組成物は、前記ポリエーテルポリアミド(A1)又は(A2)100質量部に対し、分子鎖延長剤(B)0.01~15質量部、及び必要に応じてその他の成分を配合し、溶融混練することにより製造することが好ましい。分子鎖延長剤(B)の配合の方法は特に限定されず、反応槽内で溶融状態のポリエーテルポリアミド(A1)又は(A2)に分子鎖延長剤(B)等を添加する手法や、ポリエーテルポリアミド(A1)又は(A2)に対し分子鎖延長剤(B)等をドライブレンドし、押出機にて溶融混練する手法などが挙げられる。
 本発明のポリエーテルポリアミド組成物を溶融混練する方法については、単軸もしくは二軸押出機等の通常用いられる種々の押出機を用いて溶融混練する方法等が挙げられるが、これらのなかでも、生産性、汎用性等の点から二軸押出機を用いる方法が好ましい。その際、溶融混練温度は、ポリエーテルポリアミド(A1)又は(A2)の融点以上~融点より80℃高い温度範囲に設定することが好ましく、該(A1)又は(A2)成分の融点より10~60℃高い温度範囲に設定することがより好ましい。溶融混練温度をポリエーテルポリアミド(A1)又は(A2)の融点以上とすることで、該(A1)又は(A2)成分の固化を抑制することができ、融点より80℃高い温度以下とすることで、該(A1)又は(A2)成分の熱劣化を抑制することができる。
 溶融混練における滞留時間は1~10分の範囲に調整することが好ましく、2~7分の範囲に調整することがより好ましい。滞留時間を1分以上とすることで、ポリエーテルポリアミド(A1)又は(A2)と分子鎖延長剤(B)との分散が十分となり、滞留時間を10分以下とすることでポリエーテルポリアミド(A1)及び(A2)の熱劣化を抑制することができる。
 二軸押出機のスクリューは少なくとも1箇所以上の逆目スクリューエレメント部分及び/又はニーディングディスク部分を有し、該部分においてポリエーテルポリアミド組成物を一部滞留させながら溶融混練を行うことが好ましい。
 溶融混練したポリエーテルポリアミド組成物は、そのまま押出成形し、フィルム等の成形品としてもよく、一度ペレットとした後、改めて押出成型、射出成型等を行って種々の成形品としてもよい。
[成形品]
 本発明の成形品は、前記ポリエーテルポリアミド組成物を含むものであり、本発明のポリエーテルポリアミド組成物を従来公知の成形方法により、各種形態に成形して得られる。成形法としては、例えば、射出成形、ブロー成形、押出成形、圧縮成形、真空成形、プレス成形、ダイレクトブロー成形、回転成形、サンドイッチ成形及び二色成形等の成形法を例示することができる。
 本発明のポリエーテルポリアミド組成物を含む成形品は、優れた耐加水分解性及び透明性に加え、柔軟性、引張破断伸び等の機械的特性を有し、自動車部品、電機部品、電子部品等として好適である。特に、ポリエーテルポリアミド組成物を含んでなる成形品としては、ホース、チューブ又は金属被覆材が好ましい。
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されない。なお、本実施例において各種測定は以下の方法により行った。
1)相対粘度(ηr)
 試料0.2gを精秤し、96%硫酸20mlに20~30℃で撹拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mlを取り、25℃の恒温槽中で10分間放置後、落下時間(t)を測定した。また、96%硫酸そのものの落下時間(t0)も同様に測定した。t及びt0から下式により相対粘度を算出した。
  相対粘度=t/t0
2)数平均分子量(Mn)
 まず試料をフェノール/エタノール混合溶媒、及びベンジルアルコール溶媒にそれぞれ溶解させ、カルボキシル末端基濃度とアミノ末端基濃度を塩酸及び水酸化ナトリウム水溶液の中和滴定により求めた。数平均分子量は、アミノ末端基濃度及びカルボキシル末端基濃度の定量値から次式により求めた。
数平均分子量=2×1,000,000/([NH2]+[COOH])
[NH2]:アミノ末端基濃度(μeq/g)
[COOH]:カルボキシル末端基濃度(μeq/g)
3)示差走査熱量測定(ガラス転移温度、結晶化温度及び融点)
 示差走査熱量の測定はJIS K7121、K7122に準じて行った。示差走査熱量計((株)島津製作所製、商品名:DSC-60)を用い、各試料をDSC測定パンに仕込み、窒素雰囲気下にて昇温速度10℃/分で300℃まで昇温し、急冷する前処理を行った後に測定を行った。測定条件は、昇温速度10℃/分で、300℃で5分保持した後、降温速度-5℃/分で100℃まで測定を行い、ガラス転移温度Tg、結晶化温度Tch及び融点Tmを求めた。
4)光学物性評価(Haze、YI)
 Haze及びYIの測定はJIS K7105に準じて行った。作製した厚さ約100μmのフィルムを50mm×50mmに切出して試験片とした。測定装置は、曇価測定装置(日本電色工業(株)製、型式:COH-300A)を使用した。
5)引張試験(引張弾性率、引張破断伸び率及び引張破断伸び保持率)
(引張弾性率及び引張破断伸び率の測定)
 引張弾性率及び引張破断伸び率の測定はJIS K7161に準じて行った。作製した厚さ約100μmのフィルムを10mm×100mmに切り出して試験片とした。引張試験機((株)東洋精機製作所製、ストログラフ)を用いて、測定温度23℃、湿度50%RH、チャック間距離50mm、引張速度50mm/分の条件で引張試験を実施し、引張弾性率及び引張破断伸び率を求めた。
(引張破断伸び保持率の測定<耐加水分解性試験>)
 作製した厚さ約100μmのフィルムを、100℃の蒸留水中にて72時間状態調整を行った。次に、状態調整を行ったフィルムを100℃の蒸留水中に入れ、この時間を耐加水分解試験の開始時間とし、状態調整後のフィルム及び、耐加水分解性試験を開始して200,400及び600時間経過後のフィルムについてJIS K7127に準じて引張試験を行い、引張破断伸び率(%)を求めた。なお、装置は引張試験機((株)東洋精機製作所製、ストログラフ)を使用し、試験片幅を10mm、チャック間距離を50mm、引張速度を50mm/分とし、測定温度を23℃、測定湿度を50%RHとして測定した。状態調整後のフィルムならびに、耐加水分解性試験を開始して所定時間経過後のフィルムの引張破断伸び率の比を引張破断伸び保持率とし、下記式より引張破断伸び保持率(%)を算出した。この引張破断伸び保持率が高いほど耐加水分解性に優れることを意味する。
  耐加水分解性試験600時間経過後の引張破断伸び保持率(%)=〔耐加水分解性試験開始後所定時間経過後のフィルムの引張破断伸び率(%)/100℃の蒸留水中にて72時間状態調整した後のフィルムの引張破断伸び率(%)〕×100
6)硫黄原子濃度
 各例で用いたセバシン酸をプレス機で錠剤成形し、蛍光X線分析(XRF)を実施した。蛍光X線分析装置((株)リガク製、商品名:ZSX Primus)を用い、管球はRh管球(4kw)を使用した。分析窓用フィルムはポリプロピレンフィルムを使用し、真空雰囲気下で、照射領域30mmφでEZスキャンを実施した。
実施例1-1
 撹拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にセバシン酸505.6g、次亜リン酸ナトリウム一水和物0.499g、酢酸ナトリウム0.348gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。ジアミン成分の滴下終了時の重合温度を240℃に設定し、該温度まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学(株)製)306.4gとポリエーテルジアミン(米国HUNTSMAN社製、商品名:XTJ-542)250.0gの混合液を滴下し、ジアミン成分を滴下し始めてから約2時間重合を行い、ポリエーテルポリアミド(A1)を得た。ηr=1.29、[COOH]=110.8μeq/g、[NH2]=38.4μeq/g、Mn=14368、Tg=29.2℃、Tch=58.0℃、Tm=185.0℃。
 次に、得られたポリエーテルポリアミド(A1)100質量部と、分子鎖延長剤として脂肪族ポリカルボジイミド化合物(B1)(日清紡ホールディングス(株)製、商品名:カルボジライトLA-1)2質量部とをドライブレンドし、ニーディングディスクからなる混練部を有する直径28mmのスクリュー、オープンベントならびにTダイを備える二軸押出機にて、シリンダー温度240℃で溶融混練し、温度240℃に設定したTダイからフィルム状に押出成形し、温度40℃に設定した金属ロールで冷却することで、ポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得た。
 得られたフィルムを用いて、前記評価を行った。結果を表1に示す。
実施例1-2
 実施例1-1において、メタキシリレンジアミンの量を272.4g、ポリエーテルジアミン(米国HUNTSMAN社製、商品名:XTJ-542)の量を500.0gに変更したこと以外は、実施例1と同様にしてポリエーテルポリアミド(A1)を得た。ηr=1.20、[COOH]=112.7μeq/g、[NH2]=67.2μeq/g、Mn=11119、Tg=13.7℃、Tch=46.0℃、Tm=182.7℃。
 得られたポリエーテルポリアミド(A1)100質量部と、分子鎖延長剤としてカルボジライトLA-1 2質量部とを用いて、実施例1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表1に示す。
実施例1-3
 実施例1-1において、カルボジライトLA-1の配合量を10質量部に変更したこと以外は、実施例1-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表1に示す。
実施例1-4
 実施例1-1において、メタキシリレンジアミン306.4gを、メタキシリレンジアミン214.5g及びパラキシリレンジアミン(PXDA)(三菱ガス化学(株)製)91.9gに変更したこと以外は、実施例1-1と同様にしてポリエーテルポリアミド(A1)を得た。ηr=1.31、[COOH]=81.6μeq/g、[NH2]=69.0μeq/g、Mn=13283、Tg=12.9℃、Tch=69.5℃、Tm=204.5℃。
 得られたポリエーテルポリアミド(A1)100質量部と、分子鎖延長剤としてカルボジライトLA-1 2質量部とを用いて、実施例1-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表1に示す。
実施例1-5
 実施例1-1において、メタキシリレンジアミン306.4gを、メタキシリレンジアミン91.9g及びパラキシリレンジアミン214.5gに変更し、ジアミン成分の滴下終了時の重合温度を270℃としたこと以外は、実施例1-1と同様にしてポリエーテルポリアミド(A1)を得た。ηr=1.29、[COOH]=64.6μeq/g、[NH2]=62.8μeq/g、Mn=15704、Tg=38.0℃、Tch=68.0℃、Tm=253.0℃。
 得られたポリエーテルポリアミド(A1)100質量部と、分子鎖延長剤としてカルボジライトLA-1 2質量部とを用いて、シリンダーならびにTダイの温度を280℃とした以外は実施例1-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表1に示す。
実施例1-6
 撹拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にアジピン酸584.6g、次亜リン酸ナトリウム一水和物0.683g及び酢酸ナトリウム0.476gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。ジアミン成分の滴下終了時の重合温度を260℃に設定し、該温度まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学(株)製)490.3gとポリエーテルジアミン(米国HUNTSMAN社製、商品名:XTJ-542)400.00gの混合液を滴下し、ジアミン成分を滴下し始めてから約2時間重合を行い、ポリエーテルポリアミド(A1)を得た。ηr=1.38、[COOH]=110.17μeq/g、[NH2]=59.57μeq/g、Mn=11783、Tg=71.7℃、Tch=108.3℃、Tm=232.8℃。
 得られたポリエーテルポリアミド(A1)100質量部と、分子鎖延長剤としてカルボジライトLA-1 2質量部とを用いて、シリンダーならびにTダイの温度を260℃とした以外は実施例1-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表1に示す。
実施例1-7
 実施例1-6において、メタキシリレンジアミン490.3gを、メタキシリレンジアミン343.2g及びパラキシリレンジアミン147.1gに変更し、ジアミン成分の滴下終了時の重合温度を270℃としたこと以外は、実施例1-6と同様にしてポリエーテルポリアミド(A1)を得た。ηr=1.36、[COOH]=64.8μeq/g、[NH2]=100.7μeq/g、Mn=12083、Tg=79.3℃、Tch=107.1℃、Tm=251.4℃。
 得られたポリエーテルポリアミド(A1)100質量部と、分子鎖延長剤としてカルボジライトLA-1 2質量部とを用いて、実施例1-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表1に示す。
実施例1-8
 実施例1-6において、メタキシリレンジアミン490.3gを、メタキシリレンジアミン294.2g及びパラキシリレンジアミン196.1gに変更し、ジアミン成分の滴下終了時の重合温度を270℃としたこと以外は、実施例1-6と同様にしてポリエーテルポリアミド(A1)を得た。ηr=1.36、[COOH]=84.5μeq/g、[NH2]=85.6μeq/g、Mn=11760、Tg=61.2℃、Tch=104.8℃、Tm=262.1℃。
 得られたポリエーテルポリアミド(A1)100質量部と、分子鎖延長剤としてカルボジライトLA-1 2質量部とを用いて、シリンダーならびにTダイの温度を280℃とした以外は実施例1-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表1に示す。
実施例1-9~1-13
 実施例1-1において、分子鎖延長剤の種類と量を各々表1に記載のとおりに変更したこと以外は、実施例1-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表1に示す。
比較例1-1
 ナイロン-6(宇部興産(株)製、商品名:UBEナイロン 1024B)100質量部と、分子鎖延長剤として脂肪族ポリカルボジイミド化合物(B1)(日清紡ホールディングス(株)製、商品名:カルボジライトLA-1)2質量部とをドライブレンドし、ニーディングディスクからなる混練部を有する直径28mmのスクリュー、オープンベントならびにTダイを備える二軸押出機にて、シリンダー温度240℃で溶融混練し、温度240℃に設定したTダイからフィルム状に押出成形し、温度50℃に設定した金属ロールで冷却することで、厚さ約100μmの無延伸フィルムを得た。
 得られたフィルムを用いて、前記評価を行った。結果を表2に示す。
比較例1-2
 分子鎖延長剤を配合しなかったこと以外は、比較例1-1と同様にして厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表2に示す。
比較例1-3
 分子鎖延長剤を配合しなかったこと以外は、実施例1-1と同様にして厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表2に示す。
比較例1-4
 実施例1-1において、カルボジライトLA-1の配合量をポリエーテルポリアミド100質量部に対し20質量部に変更したこと以外は、実施例1-1と同様にしてフィルムを得ようと試みたが、粘度の増加が著しく、押出し性が不良で製膜できなかった。結果を表2に示す。
比較例1-5
 ポリメタキシリレンアジパミド(三菱ガス化学(株)製、商品名:MXナイロン S6001、メタキシリレンジアミンとアジピン酸からなるポリアミド樹脂)90質量部と、ナイロン-12(宇部興産(株)製、商品名:UBESTA 3030XA)10質量部と、分子鎖延長剤としてカルボジライトLA-1 2質量部とをドライブレンドし、ニーディングディスクからなる混練部を有する直径28mmのスクリュー、オープンベントならびにTダイを備える二軸押出機にて、シリンダー温度240℃で溶融混練し、温度240℃に設定したTダイからフィルム状に押出成形し、温度40℃に設定した金属ロールで冷却することで、厚さ約100μmの無延伸フィルムを得た。
 得られたフィルムを用いて、前記評価を行った。結果を表2に示す。
 なお、表中の略号は、各々以下のとおりである。
 XTJ-542:米国HUNTSMAN社製のポリエーテルジアミン。米国HUNTSMAN社のカタログによれば、前記一般式(1)におけるx1+z1の概数は6.0、y1の概数は9.0、数平均分子量は1000である。
 脂肪族ポリカルボジイミド化合物(B1):日清紡ホールディングス(株)製、商品名:カルボジライトLA-1
 脂肪族モノカルボジイミド化合物(B2):東京化成工業(株)製、N,N’-ジイソプロピルカルボジイミド
 芳香族ポリカルボジイミド化合物(B3):Rhein Chemie製、商品名:Stabaxol P400
 エポキシ基含有(メタ)アクリル系ポリマー(B4):BASF社製、商品名:Joncryl ADR-4368、重量平均分子量6,800、エポキシ当量285g/当量
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表1及び表2の結果より、本発明のポリエーテルポリアミド組成物は、耐加水分解性及び透明性を有し、かつ、柔軟性、引張破断伸び等の機械的特性にも優れる材料であることがわかる。
実施例2-1
 攪拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にセバシン酸687.65g、次亜リン酸ナトリウム一水和物0.6612g及び酢酸ナトリウム0.4605gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。260℃まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学株式会社製)416.77gとポリエーテルジアミン(米国HUNTSMAN社製、商品名:ED-900)306.00gの混合液を滴下し約2時間重合を行い、ポリエーテルポリアミド(A2)を得た。ηr=1.33、[COOH]=96.88μeq/g、[NH2]=37.00μeq/g、Mn=14939、Tg=22.2℃、Tch=43.0℃、Tm=182.8℃。
 次に、得られたポリエーテルポリアミド(A2)100質量部と、分子鎖延長剤として脂肪族ポリカルボジイミド化合物(B1)(日清紡ホールディングス(株)製、商品名:カルボジライトLA-1)2質量部とをドライブレンドし、ニーディングディスクからなる混練部を有する直径28mmのスクリュー、オープンベントならびにTダイを備える二軸押出機にて、シリンダー温度240℃で溶融混練し、温度240℃に設定したTダイからフィルム状に押出成形し、温度40℃に設定した金属ロールで冷却することで、ポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得た。
 得られたフィルムを用いて、前記評価を行った。結果を表3に示す。
実施例2-2
 攪拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にセバシン酸566.30g、次亜リン酸ナトリウム一水和物0.6543g及び酢酸ナトリウム0.4557gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。260℃まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学株式会社製)305.09gとポリエーテルジアミン(米国HUNTSMAN社製、商品名:ED-900)504.00gの混合液を滴下し約2時間重合を行い、ポリエーテルポリアミド(A2)を得た。ηr=1.24、[COOH]=141.80μeq/g、[NH2]=83.03μeq/g、Mn=8895、Tm=175.5℃。
 得られたポリエーテルポリアミド(A2)100質量部と、分子鎖延長剤としてカルボジライトLA-1 2質量部とを用いて、実施例2-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表3に示す。
実施例2-3
 実施例2-1において、カルボジライトLA-1の配合量を10質量部に変更したこと以外は、実施例2-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表3に示す。
実施例2-4
 攪拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にセバシン酸687.65g、次亜リン酸ナトリウム一水和物0.6612g及び酢酸ナトリウム0.4605gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。260℃まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学株式会社製)291.74gとパラキシリレンジアミン(PXDA)(三菱ガス化学株式会社製)125.03g(モル比(MXDA/PXDA=70/30))、及びポリエーテルジアミン(米国HUNTSMAN社製、商品名:ED-900)306.00gの混合液を滴下し約2時間重合を行い、ポリエーテルポリアミド(A2)を得た。ηr=1.36、[COOH]=66.35μeq/g、[NH2]=74.13μeq/g、Mn=14237、Tg=16.9℃、Tch=52.9℃、Tm=201.9℃。
 得られたポリエーテルポリアミド(A2)100質量部と、分子鎖延長剤としてカルボジライトLA-1 2質量部とを用いて、実施例2-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表3に示す。
実施例2-5
 実施例2-1において、ポリエーテルジアミン(米国HUNTSMAN社製、商品名:ED-900)306.00gを、ポリエーテルジアミン(米国HUNTSMAN社製、商品名:ED-600)204.00gに変更したこと以外は、実施例4と同様にしてポリエーテルポリアミド(A2)を得た。ηr=1.36、[COOH]=102.39μeq/g、[NH2]=33.90μeq/g、Mn=14675、Tg=26.8℃、Tch=67.8℃、Tm=202.1℃。
 得られたポリエーテルポリアミド100質量部と、分子鎖延長剤としてカルボジライトLA-1 2質量部とを用いて、実施例2-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表3に示す。
実施例2-6
 攪拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にアジピン酸584.60g、次亜リン酸ナトリウム一水和物0.6613g及び酢酸ナトリウム0.4606gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。260℃まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学株式会社製)489.34gとポリエーテルジアミン(米国HUNTSMAN社製、商品名:ED-900)359.28gの混合液を滴下し約2時間重合を行い、ポリエーテルポリアミド(A2)を得た。ηr=1.35、[COOH]=73.24μeq/g、[NH2]=45.92μeq/g、Mn=16784、Tg=42.1℃、Tch=89.7℃、Tm=227.5℃。
 得られたポリエーテルポリアミド(A2)100質量部と、分子鎖延長剤としてカルボジライトLA-1 2質量部とを用いて、実施例2-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表3に示す。
実施例2-7
 攪拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にアジピン酸584.60g、次亜リン酸ナトリウム一水和物0.6626g及び酢酸ナトリウム0.4616gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。260℃まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学株式会社製)343.22gとパラキシレンジアミン(PXDA)(三菱ガス化学株式会社製)147.10g(モル比(MXDA/PXDA=70/30))、及びポリエーテルジアミン(米国HUNTSMAN社製、商品名:ED-900)360.00gの混合液を滴下し約2時間重合を行い、ポリエーテルポリアミド(A2)を得た:ηr=1.34、[COOH]=75.95μeq/g、[NH2]=61.83μeq/g、Mn=14516、Tg=33.2℃、Tch=73.9℃、Tm=246.2℃。
 得られたポリエーテルポリアミド(A2)100質量部と、分子鎖延長剤としてカルボジライトLA-1 2質量部とを用いて、シリンダーならびにTダイの温度を280℃とした以外は実施例2-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表3に示す。
実施例2-8~2-12
 実施例2-1において、分子鎖延長剤の種類と量を各々表3に記載のとおりに変更したこと以外は、実施例2-1と同様にしてポリエーテルポリアミド組成物からなる厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表3に示す。
比較例2-1
 ナイロン-6(宇部興産(株)製、商品名:UBEナイロン 1024B)100質量部と、分子鎖延長剤として脂肪族ポリカルボジイミド化合物(B1)(日清紡ホールディングス(株)製、商品名:カルボジライトLA-1)2質量部とをドライブレンドし、ニーディングディスクからなる混練部を有する直径28mmのスクリュー、オープンベントならびにTダイを備える二軸押出機にて、シリンダー温度240℃で溶融混練し、温度240℃に設定したTダイからフィルム状に押出成形し、温度50℃に設定した金属ロールで冷却することで、厚さ約100μmの無延伸フィルムを得た。
 得られたフィルムを用いて、前記評価を行った。結果を表4に示す。
比較例2-2
 分子鎖延長剤を配合しなかったこと以外は、比較例2-1と同様にして厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表4に示す。
比較例2-3
 分子鎖延長剤を配合しなかったこと以外は、実施例2-1と同様にして厚さ約100μmの無延伸フィルムを得、前記評価を行った。結果を表4に示す。
比較例2-4
 分子鎖延長剤の配合量を、ポリエーテルポリアミド100質量部に対し20質量部に変更したこと以外は、実施例2-1と同様にしてフィルムを得ようと試みたが、粘度の増加が著しく、押出し性が不良で製膜できなかった。結果を表4に示す。
比較例2-5
 ポリメタキシリレンアジパミド(三菱ガス化学(株)製、商品名:MXナイロン S6001、メタキシリレンジアミンとアジピン酸からなるポリアミド樹脂)90質量部と、ナイロン-12(宇部興産(株)製、商品名:UBESTA 3030XA)10質量部、カルボジイミド化合物として脂肪族ポリカルボジイミド化合物(B1)(日清紡ホールディングス(株)製、商品名:カルボジライトLA-1)2質量部とをドライブレンドし、ニーディングディスクからなる混練部を有する直径28mmのスクリュー、オープンベントならびにTダイを備える二軸押出機にて、シリンダー温度240℃で溶融混練し、温度240℃に設定したTダイからフィルム状に押出成形し、温度40℃に設定した金属ロールで冷却することで、厚さ約100μmの無延伸フィルムを得た。
 得られたフィルムを用いて、前記評価を行った。結果を表4に示す。
 なお、表中の略号は、各々以下のとおりである。
 ED-900:米国HUNTSMAN社製のポリエーテルジアミン。米国HUNTSMAN社のカタログによると、式(2)におけるx2+z2の概数は6.0、y2の概数は12.5、数平均分子量は900である。
 ED-600:米国HUNTSMAN社製のポリエーテルジアミン。米国HUNTSMAN社のカタログによると、式(2)におけるx2+z2の概数は3.0、y2の概数は9.0、数平均分子量は600である。
 脂肪族ポリカルボジイミド化合物(B1):日清紡ホールディングス(株)製、商品名:カルボジライトLA-1
 脂肪族モノカルボジイミド化合物(B2):東京化成工業(株)製、N,N’-ジイソプロピルカルボジイミド
 芳香族ポリカルボジイミド化合物(B3):Rhein Chemie製、商品名:Stabaxol P400
 エポキシ基含有(メタ)アクリル系ポリマー(B4):BASF社製、商品名:Joncryl ADR-4368、重量平均分子量6,800、エポキシ当量285g/当量
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表3及び表4の結果より、本発明のポリエーテルポリアミド組成物は、耐加水分解性及び透明性を有し、かつ、柔軟性、引張破断伸び等の機械的特性にも優れる材料であることがわかる。
 本発明のポリエーテルポリアミド組成物は、耐加水分解性及び透明性を有し、かつ、柔軟性、引張破断伸び等の機械的特性にも優れる。また、溶融成形性、強靭性及び耐熱性も良好である。そのため、本発明のポリエーテルポリアミド組成物は、各種工業部品、機械及び電気精密機器のギア及びコネクタ、自動車のエンジン回りの燃料チューブ、コネクタ部品、摺動部品、ベルト、ホース、消音ギア等の電気部品及び電子部品、スポーツ用品等に好適に適用できる。

Claims (28)

  1.  ジアミン構成単位が下記一般式(1)で表されるポリエーテルジアミン化合物(a1-1)及びキシリレンジアミン(a-2)に由来し、ジカルボン酸構成単位が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリエーテルポリアミド(A1)100質量部に対し、カルボジイミド化合物及び分子内に2個以上のエポキシ基を含有する化合物から選ばれる少なくとも1種の分子鎖延長剤(B)0.01~15質量部を配合したポリエーテルポリアミド組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、x1+z1は1~30、y1は1~50を表し、R1はプロピレン基を表す。)
  2.  キシリレンジアミン(a-2)が、メタキシリレンジアミン、パラキシリレンジアミン又はこれらの混合物である、請求項1に記載のポリエーテルポリアミド組成物。
  3.  キシリレンジアミン(a-2)が、メタキシリレンジアミンである、請求項1に記載のポリエーテルポリアミド組成物。
  4.  キシリレンジアミン(a-2)が、メタキシリレンジアミンとパラキシリレンジアミンとの混合物である、請求項1に記載のポリエーテルポリアミド組成物。
  5.  メタキシリレンジアミン及びパラキシリレンジアミンの総量に対するパラキシリレンジアミンの割合が90モル%以下である、請求項4に記載のポリエーテルポリアミド組成物。
  6.  炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸が、アジピン酸及びセバシン酸から選ばれる少なくとも1種である、請求項1~5のいずれかに記載のポリエーテルポリアミド組成物。
  7.  ジアミン構成単位中のキシリレンジアミン(a-2)に由来する構成単位の割合が、50~99.8モル%である、請求項1~6のいずれかに記載のポリエーテルポリアミド組成物。
  8.  分子鎖延長剤(B)が、脂肪族カルボジイミド化合物である、請求項1~7のいずれかに記載のポリエーテルポリアミド組成物。
  9.  分子鎖延長剤(B)が、エポキシ基含有(メタ)アクリル系ポリマーである、請求項1~7のいずれかに記載のポリエーテルポリアミド組成物。
  10.  ポリエーテルポリアミド組成物の相対粘度が1.1~3.5である、請求項1~9のいずれかに記載のポリエーテルポリアミド組成物。
  11.  ポリエーテルポリアミド組成物の融点が170~270℃である、請求項1~10のいずれかに記載のポリエーテルポリアミド組成物。
  12.  測定温度23℃、湿度50%RHにおける引張破断伸び率が100%以上である、請求項1~11のいずれかに記載のポリエーテルポリアミド組成物。
  13.  ポリエーテルポリアミド(A1)100質量部に対し、分子鎖延長剤(B)を0.01~15質量部配合し、溶融混練することを特徴とする、請求項1~12のいずれかに記載のポリエーテルポリアミド組成物の製造方法。
  14.  請求項1~12のいずれかに記載のポリエーテルポリアミド組成物を含む成形品。
  15.  ジアミン構成単位が下記一般式(2)で表されるポリエーテルジアミン化合物(a2-1)及びキシリレンジアミン(a-2)に由来し、ジカルボン酸構成単位が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリエーテルポリアミド(A2)100質量部に対し、カルボジイミド化合物及び分子内に2個以上のエポキシ基を含有する化合物から選ばれる少なくとも1種の分子鎖延長剤(B)0.01~15質量部を配合したポリエーテルポリアミド組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、x2+z2は1~60、y2は1~50を表し、R2はプロピレン基を表す。)
  16.  キシリレンジアミン(a-2)が、メタキシリレンジアミン、パラキシリレンジアミン又はこれらの混合物である、請求項15に記載のポリエーテルポリアミド組成物。
  17.  キシリレンジアミン(a-2)が、メタキシリレンジアミンである、請求項15に記載のポリエーテルポリアミド組成物。
  18.  キシリレンジアミン(a-2)が、メタキシリレンジアミンとパラキシリレンジアミンとの混合物である、請求項15に記載のポリエーテルポリアミド組成物。
  19.  メタキシリレンジアミン及びパラキシリレンジアミンの総量に対するパラキシリレンジアミンの割合が90モル%以下である、請求項18に記載のポリエーテルポリアミド組成物。
  20.  炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸が、アジピン酸及びセバシン酸から選ばれる少なくとも1種である、請求項15~19のいずれかに記載のポリエーテルポリアミド組成物。
  21.  ジアミン構成単位中のキシリレンジアミン(a-2)に由来する構成単位の割合が、50~99.8モル%である、請求項15~20のいずれかに記載のポリエーテルポリアミド組成物。
  22.  分子鎖延長剤(B)が、脂肪族カルボジイミド化合物である、請求項15~21のいずれかに記載のポリエーテルポリアミド組成物。
  23.  分子鎖延長剤(B)が、エポキシ基含有(メタ)アクリル系ポリマーである、請求項15~21のいずれかに記載のポリエーテルポリアミド組成物。
  24.  ポリエーテルポリアミド組成物の相対粘度が1.1~3.5である、請求項15~23のいずれかに記載のポリエーテルポリアミド組成物。
  25.  ポリエーテルポリアミド組成物の融点が170~270℃である、請求項15~24のいずれかに記載のポリエーテルポリアミド組成物。
  26.  測定温度23℃、湿度50%RHにおける引張破断伸び率が100%以上である、請求項15~25のいずれかに記載のポリエーテルポリアミド組成物。
  27.  ポリエーテルポリアミド(A2)100質量部に対し、分子鎖延長剤(B)を0.01~15質量部配合し、溶融混練することを特徴とする、請求項15~26のいずれかに記載のポリエーテルポリアミド組成物の製造方法。
  28.  請求項15~27のいずれかに記載のポリエーテルポリアミド組成物を含む成形品。
PCT/JP2013/071839 2012-08-14 2013-08-12 ポリエーテルポリアミド組成物 WO2014027651A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380042965.0A CN104583321B (zh) 2012-08-14 2013-08-12 聚醚聚酰胺组合物
EP13879254.4A EP2886608B1 (en) 2012-08-14 2013-08-12 Polyether polyamide composition
US14/421,007 US9512314B2 (en) 2012-08-14 2013-08-12 Polyether polyamide composition
KR1020157003008A KR20150044884A (ko) 2012-08-14 2013-08-12 폴리에테르폴리아미드 조성물

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-179744 2012-08-14
JP2012-179745 2012-08-14
JP2012179744A JP5929622B2 (ja) 2012-08-14 2012-08-14 ポリエーテルポリアミド組成物
JP2012179745A JP5929623B2 (ja) 2012-08-14 2012-08-14 ポリエーテルポリアミド組成物

Publications (1)

Publication Number Publication Date
WO2014027651A1 true WO2014027651A1 (ja) 2014-02-20

Family

ID=50685599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071839 WO2014027651A1 (ja) 2012-08-14 2013-08-12 ポリエーテルポリアミド組成物

Country Status (6)

Country Link
US (1) US9512314B2 (ja)
EP (1) EP2886608B1 (ja)
KR (1) KR20150044884A (ja)
CN (1) CN104583321B (ja)
TW (1) TW201414771A (ja)
WO (1) WO2014027651A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021503526A (ja) * 2017-11-17 2021-02-12 アルケマ フランス 改善された耐摩耗性と改善された引裂き抵抗を示すブロックコポリマー
JP7466445B2 (ja) 2017-11-17 2024-04-12 アルケマ フランス 改善された耐摩耗性と改善された引裂き抵抗を示すブロックコポリマー

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3073851B1 (fr) * 2017-11-17 2019-11-08 Arkema France Film imper-respirant souple et etirable a base de copolymere a blocs
JP6796353B2 (ja) * 2018-10-25 2020-12-09 ユニチカ株式会社 柔軟性ポリアミド
CN109608622B (zh) * 2018-12-18 2021-03-02 江西高信前沿科技有限公司 一种非离子型水性聚酰胺固化剂及其制备方法
CN114149590B (zh) * 2021-12-28 2022-12-02 无锡殷达尼龙有限公司 一种聚醚酰胺弹性体的生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343408A (ja) 1998-03-30 1999-12-14 Nisshinbo Ind Inc ポリアミド樹脂組成物
JP2006028314A (ja) * 2004-07-14 2006-02-02 Daicel Degussa Ltd 複合材料及びその製造方法
JP2008133455A (ja) 2006-10-26 2008-06-12 Mitsubishi Gas Chem Co Inc バリア性に優れた熱可塑性樹脂組成物
WO2010047315A1 (ja) * 2008-10-21 2010-04-29 宇部興産株式会社 ゴム組成物及びポリアミド積層体
WO2012090797A1 (ja) * 2010-12-27 2012-07-05 三菱瓦斯化学株式会社 ポリアミド組成物
WO2013133145A1 (ja) * 2012-03-06 2013-09-12 東洋紡株式会社 共重合ポリエーテルポリアミド樹脂組成物

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49110744A (ja) 1973-02-22 1974-10-22
JPS5519948B2 (ja) * 1973-02-06 1980-05-29
JPS5432458B2 (ja) 1974-11-26 1979-10-15
US4218351A (en) * 1978-07-17 1980-08-19 Minnesota Mining And Manufacturing Company Impact resistant, thermoplastic polyamides
DE2932234C2 (de) 1979-08-09 1982-01-28 Chemische Werke Hüls AG, 4370 Marl Verfahren zur Herstellung von Polyether(ester)amiden
JPS60158221A (ja) 1984-01-27 1985-08-19 Ube Ind Ltd ポリエ−テルアミドの製法
US5128441A (en) 1987-07-27 1992-07-07 Texaco Chemical Company Block polyamido condensation products
EP0313861A1 (en) 1987-10-29 1989-05-03 General Electric Company Amide-etheramide copolymers and process for the preparation thereof
JP2638093B2 (ja) * 1988-06-29 1997-08-06 東洋紡績株式会社 ポリアミド組成物
JP2881908B2 (ja) 1990-02-15 1999-04-12 三菱化学株式会社 末端変性ポリエーテルアミド樹脂
JPH06335522A (ja) 1992-12-01 1994-12-06 Terumo Corp 血液適合性材料
EP0761715B1 (en) 1995-08-17 2003-11-05 Solar Dew Copolyether amide and water vapour permeable film made therefrom
US5906891A (en) 1995-12-26 1999-05-25 Mitsubishi Gas Chemical Company, Inc. Oriented polyamide fiber and process for producing same
JP3738794B2 (ja) 1995-12-26 2006-01-25 三菱瓦斯化学株式会社 延伸ポリアミド繊維およびその製造方法
US5882793A (en) 1995-12-26 1999-03-16 Mitsubishi Gas Chemical Company, Inc. Oriented polyamide fiber and process for producing same
JPH1193320A (ja) 1997-09-24 1999-04-06 Asahi Chem Ind Co Ltd 屋根部材及び屋根の形成方法
JPH11315419A (ja) 1998-04-28 1999-11-16 Mitsubishi Gas Chem Co Inc 延伸ポリアミド繊維およびその製造方法
JP4123475B2 (ja) 2001-11-27 2008-07-23 宇部興産株式会社 低吸水性ポリエーテルポリアミドエラストマー
EP1314750B1 (en) 2001-11-27 2006-05-10 Ube Industries, Ltd. Polyetherpolyamide elastomer having low water absorption
JP2004010768A (ja) 2002-06-07 2004-01-15 Toray Ind Inc 高分子微粒子およびそれを含有する吸放湿性樹脂
JP4193588B2 (ja) 2003-05-26 2008-12-10 宇部興産株式会社 ポリアミド系エラストマー
BRPI0506484A (pt) 2004-01-22 2007-02-06 Rhodia Chimie Sa processo de fabricação de superfìcies não tecidas
JP4700927B2 (ja) 2004-05-17 2011-06-15 ダイセル・エボニック株式会社 複合成形体及びその製造方法
KR101217582B1 (ko) 2004-06-25 2013-01-02 테크노 폴리머 가부시키가이샤 열가소성 수지 조성물 및 성형품
DE602005023768D1 (de) * 2004-11-22 2010-11-04 Novartis Ag Vernetzbare, Polyoxyalkylen-enthaltende Polyamidprepolymere
DE202005021503U1 (de) 2005-02-19 2008-07-24 Evonik Degussa Gmbh Polymerpulver mit Blockpolyetheramid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
EP2036939A1 (en) 2006-06-16 2009-03-18 Ube Industries, Ltd. Polyether polyamide elastomer
JP5007795B2 (ja) 2006-09-29 2012-08-22 宇部興産株式会社 吸放湿材料
WO2008050793A1 (en) * 2006-10-26 2008-05-02 Mitsubishi Gas Chemical Company, Inc. Thermoplastic resin composition excellent in barrier property
JP5251883B2 (ja) 2007-10-31 2013-07-31 宇部興産株式会社 ポリエーテルポリアミドエラストマー及びそれを用いた積層体
KR100931151B1 (ko) 2007-12-13 2009-12-10 현대자동차주식회사 폴리아미드 수지 조성물
PT2113380E (pt) 2008-04-24 2014-10-13 Mitsubishi Gas Chemical Co Estrutura laminada com barreira elevada
WO2009139087A1 (ja) * 2008-05-15 2009-11-19 東洋紡績株式会社 共重合ポリエーテルポリアミド樹脂
AU2011275035B2 (en) 2010-07-08 2013-07-25 Mitsubishi Gas Chemical Company, Inc. Polyamide resin compositions
JP2011026762A (ja) 2010-11-08 2011-02-10 Kb Seiren Ltd 高収縮繊維
WO2012111636A1 (ja) 2011-02-14 2012-08-23 三菱瓦斯化学株式会社 ポリエーテルポリアミドエラストマー
WO2012111635A1 (ja) 2011-02-14 2012-08-23 三菱瓦斯化学株式会社 ポリエーテルポリアミドエラストマー
WO2013105607A1 (ja) 2012-01-12 2013-07-18 三菱瓦斯化学株式会社 ポリエーテルポリアミドエラストマー
JP5884676B2 (ja) 2012-08-14 2016-03-15 三菱瓦斯化学株式会社 ポリエーテルポリアミド繊維
KR20150042194A (ko) 2012-08-14 2015-04-20 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리에테르폴리아미드 섬유
KR20150043306A (ko) 2012-08-14 2015-04-22 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리에테르폴리아미드 수지 조성물
JP6007665B2 (ja) 2012-08-14 2016-10-12 三菱瓦斯化学株式会社 吸放湿性材料
US20150218344A1 (en) 2012-08-14 2015-08-06 Mitsubishi Gas Chemical Company, Inc. Polyether-polyamide composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343408A (ja) 1998-03-30 1999-12-14 Nisshinbo Ind Inc ポリアミド樹脂組成物
JP2006028314A (ja) * 2004-07-14 2006-02-02 Daicel Degussa Ltd 複合材料及びその製造方法
JP2008133455A (ja) 2006-10-26 2008-06-12 Mitsubishi Gas Chem Co Inc バリア性に優れた熱可塑性樹脂組成物
WO2010047315A1 (ja) * 2008-10-21 2010-04-29 宇部興産株式会社 ゴム組成物及びポリアミド積層体
WO2012090797A1 (ja) * 2010-12-27 2012-07-05 三菱瓦斯化学株式会社 ポリアミド組成物
WO2013133145A1 (ja) * 2012-03-06 2013-09-12 東洋紡株式会社 共重合ポリエーテルポリアミド樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2886608A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021503526A (ja) * 2017-11-17 2021-02-12 アルケマ フランス 改善された耐摩耗性と改善された引裂き抵抗を示すブロックコポリマー
JP7466445B2 (ja) 2017-11-17 2024-04-12 アルケマ フランス 改善された耐摩耗性と改善された引裂き抵抗を示すブロックコポリマー

Also Published As

Publication number Publication date
TW201414771A (zh) 2014-04-16
EP2886608B1 (en) 2017-12-13
CN104583321A (zh) 2015-04-29
EP2886608A4 (en) 2016-10-19
KR20150044884A (ko) 2015-04-27
US20150210852A1 (en) 2015-07-30
EP2886608A1 (en) 2015-06-24
CN104583321B (zh) 2016-07-06
US9512314B2 (en) 2016-12-06

Similar Documents

Publication Publication Date Title
JP5867419B2 (ja) ポリエーテルポリアミドエラストマー
WO2014027648A1 (ja) ポリエーテルポリアミド繊維
JP5867418B2 (ja) ポリエーテルポリアミドエラストマー
JP5920543B2 (ja) ポリアミドの製造方法
JP6024671B2 (ja) ポリエーテルポリアミドエラストマー
JP5884676B2 (ja) ポリエーテルポリアミド繊維
US9512314B2 (en) Polyether polyamide composition
WO2014027649A1 (ja) ポリエーテルポリアミド樹脂組成物
JP5194573B2 (ja) ポリアミド樹脂組成物
JP2014037470A (ja) ポリエーテルポリアミド繊維
JP5929623B2 (ja) ポリエーテルポリアミド組成物
JP5929622B2 (ja) ポリエーテルポリアミド組成物
JP6052031B2 (ja) ポリアミド樹脂組成物及びこれを用いた成形品
WO2014027650A1 (ja) ポリエーテルポリアミド組成物
JP6007665B2 (ja) 吸放湿性材料
JP6225693B2 (ja) ポリアミド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157003008

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14421007

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013879254

Country of ref document: EP