WO2014027595A1 - 生体親和性に優れたインプラント材料の処理方法及び処理装置 - Google Patents

生体親和性に優れたインプラント材料の処理方法及び処理装置 Download PDF

Info

Publication number
WO2014027595A1
WO2014027595A1 PCT/JP2013/071397 JP2013071397W WO2014027595A1 WO 2014027595 A1 WO2014027595 A1 WO 2014027595A1 JP 2013071397 W JP2013071397 W JP 2013071397W WO 2014027595 A1 WO2014027595 A1 WO 2014027595A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant material
ozone water
implant
electrolytic ozone
biocompatibility
Prior art date
Application number
PCT/JP2013/071397
Other languages
English (en)
French (fr)
Inventor
弘 村上
和寛 市川
錦 善則
Original Assignee
学校法人愛知学院
ペルメレック電極株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人愛知学院, ペルメレック電極株式会社 filed Critical 学校法人愛知学院
Priority to EP13879455.7A priority Critical patent/EP2883553B1/en
Priority to CN201380043300.1A priority patent/CN104582746A/zh
Priority to KR1020157006443A priority patent/KR20150042843A/ko
Publication of WO2014027595A1 publication Critical patent/WO2014027595A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
    • A61C8/0015Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating being a conversion layer, e.g. oxide layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • A61C13/0012Electrolytic coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0087Means for sterile storage or manipulation of dental implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • A61L2/183Ozone dissolved in a liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/106Other heavy metals refractory metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/24Cleaning or pickling metallic material with solutions or molten salts with neutral solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape
    • A61C8/0037Details of the shape
    • A61C2008/0046Textured surface, e.g. roughness, microstructure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/21Pharmaceuticals, e.g. medicaments, artificial body parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses

Definitions

  • the present invention relates to a method for treating an implant material excellent in biocompatibility, and particularly to a method and apparatus for treating a dental implant material.
  • a titanium implant having a smooth surface structure does not form a sufficient bond in the bone, so the surface must be roughened.
  • a macro rough surface is formed on the surface of an implant material made of titanium or a titanium-based alloy by sand blasting, and subsequently the surface of the macro rough surface is treated by treatment in an acid bath. It has been proposed to superimpose a micro-rough surface. It is described that the macro rough surface has a pore size larger than 10 ⁇ m, preferably 20 ⁇ m or more, and the micro rough surface has a thickness of 0.5 ⁇ m to 2 ⁇ m.
  • the surface of titanium metal is naturally oxidized in the air and water, and a layer made of hydroxyl group or oxygen is formed in the outermost atomic layer by reaction with water. Presumed to be formed.
  • readily volatile hydrocarbons and other compounds present in the air can contaminate the titanium surface, making it more hydrophobic, and these contaminated implant materials fuse with bone material and provide strong healing. It cannot be formed in a short time. Also, the longer the implant material is exposed to air, the thicker the contaminated layer. Similarly, at the time of installation of the implant material, it is essential to keep the surface of the implant material clean and maintain its hydrophilicity.
  • the implant material that has been rendered hydrophilic and sterilized is stored in a sealed container filled with a gas that does not affect biological activity, for example, a rare gas such as nitrogen, oxygen, or argon.
  • a gas that does not affect biological activity for example, a rare gas such as nitrogen, oxygen, or argon.
  • the sealed container is preferably impermeable to gases and liquids.
  • the airtight and watertight sealed container is preferably a sealed ampoule made of glass, metal, synthetic polymer or other airtight and watertight material, or a combination of these materials. .
  • Patent Document 3 discloses a method for obtaining a hydroxylated hydrophilic surface by treating the surface of an implant material with high-energy ultraviolet rays. The advantage of this treatment is that no further sterilization of the implant is necessary.
  • the high energy UV radiation used in the present invention is UV light having a wavelength in the range of 150 nm to 300 nm, preferably in the range of 170 nm to 260 nm, and in particular in the range of the absorption maximum of oxygen, in other words about 184.9 nm.
  • UV light having a wavelength of and a wavelength of ozone absorption maximum in other words, UV light having a wavelength of about 253.7 nm, which simultaneously promotes ozone formation and decomposition, and High energy chemical bonds such as ethylenic carbon-carbon double bonds can be broken.
  • the intensity of the radiation decreases exponentially with the distance from the UV source, it is advantageous to keep the distance between the treated implant surface and the UV source short, for example in the range of about 1 mm. .
  • the duration of the UV treatment depends on the nature and thickness of the contaminated layer, and the irradiation time is preferably 1 to 15 minutes.
  • Patent Document 4 relates to a cleaning apparatus for a living body implant that cleans the living body implant by irradiating the living body with ultraviolet rays and bringing ozone into contact therewith.
  • Patent Document 5 relates to a light irradiation apparatus for dental implant that irradiates ultraviolet rays onto a screw-type dental implant having a screw portion made of a spiral protrusion.
  • Patent Documents 6 and 7 in an organic dental root organic contaminant removal apparatus using an excimer lamp that emits ultraviolet light, ultraviolet light from the excimer lamp is not irradiated to the worker and is generated.
  • a structure of an organic contaminant removal device that can efficiently and safely clean an artificial tooth root with ultraviolet light without worrying about the influence of ozone is described.
  • an implant part having a complicated uneven part can be sufficiently subjected to a complete sterilization of the concave surface and a decomposition process of carbides. Can not. This is because active species such as ultraviolet rays and ozone generated thereby are limited to the irradiated region, and there is a risk of incomplete treatment depending on the shape.
  • the treatment apparatus for implant material using ultraviolet rays as described in Patent Documents 4 to 7 is described as being expensive and impractical and maintaining hydrophilicity for about 1 hour after irradiation.
  • the titanium surface is easily contaminated and cannot be guaranteed.
  • Patent Document 8 discloses a dental cleaning device using ozone water.
  • a dental ozone water cleaning device for supplying ozone water into a patient's oral cavity for cleaning, wherein the ozone water generator generates ozone water, and the tube is connected to the ozone water generator by a tube.
  • a dental handpiece having an insertable size, and ozone water supplied from the ozone water generator is jetted from a jet nozzle provided in the dental handpiece toward a desired site in the oral cavity. It is like that.
  • ozone can be directly delivered to a desired site in the oral cavity and sterilization / disinfection can be performed, it is high in preventing periodontal disease due to anaerobic bacteria and infection from an operation site, which has been insufficient in the past. Demonstrate the effect. Furthermore, there is a possibility that various microorganisms are included in the drainage discharged from the oral cavity by a vacuum tube or the like, but if ozone water washing is performed, the microorganisms in the drainage are ejected into the oral cavity. Since it is inactivated by a large amount of ozone water, the drainage can be discarded as it is.
  • Patent Document 9 shows an apparatus for producing ozone water by an electrolysis method, and discloses that conductive diamond is used as an electrode, and in particular, a strip-shaped diaphragm member is provided on a rod-shaped conductive diamond electrode. Disclosed is an electrolysis cell in which a linear counter electrode is disposed thereon.
  • the membrane-electrode assembly disclosed in Patent Documents 10 and 11 has a rod-shaped or cylindrical electrode, usually a diaphragm such as a cylindrical ion exchange membrane around an anode (hereinafter also referred to as a rod-shaped anode).
  • a linear counter electrode or a porous counter electrode is disposed around the film, and the film and the anode and the film and at least a part of the cathode are in contact with each other, These are fixed using the cathode, and an anode chamber having a gas-liquid flow path is formed between the membrane and the anode, more preferably between a plurality of anodes.
  • Patent Documents 9, 10, and 11 show an example of an apparatus for producing ozone water by an electrolysis method, and it is possible to generate electrolytic ozone water suitable for surface treatment of an implant material according to the present invention. It is not disclosed at all whether it can be applied to the surface treatment of an implant material.
  • JP-A-3-47264 Patent No. 30473373
  • European Patent No. 0388576 JP 2005-505352 A JP 2012-75549 A JP 2012-75548 A JP 2012-119 A JP 2012-120 A JP 2012-5658 A JP 2006-346203 A Patent No. 4410155
  • JP 2009-138262 A Patent No. 4723627
  • JP 2008-73604 A Patent No. 4980016
  • the present invention has studied a method for maintaining and recovering the biocompatibility of a titanium implant surface having a complex surface morphology.
  • surface oxidation treatment with high-concentration ozone water and We devised a device with an ozone water supply mechanism during surgery, and by contacting the implant with ozone water for a certain period of time in the device, it is possible to reduce carbides even for samples stored in the atmosphere for a long time, and affinity It has been found that it is an economically excellent treatment method capable of recovering water and imparting bactericidal properties as washing water at the surgical site. Compared to conventional devices, it is less expensive and has excellent practicality as a device capable of continuous processing.
  • the first problem-solving means in the present invention immerses an implant material having a roughened surface made of titanium or a titanium alloy in electrolytic ozone water and keeps the electrolytic ozone water at room temperature.
  • an implant material excellent in biocompatibility characterized by preventing contamination due to carbide adsorption on the surface of the implant material and imparting hydrophilicity to the material surface. is there.
  • the second problem-solving means in the present invention immerses an implant material having a roughened surface made of titanium or a titanium alloy in electrolytic ozone water and keeps the electrolytic ozone water at room temperature.
  • contamination of the surface of the implant material due to adsorption of carbides is prevented, and hydrophilicity is imparted to the surface of the material.
  • the mounting of the implant material is performed by supplying electrolytic ozone water to the surface of the implant material.
  • the treatment method of the implant material excellent in biocompatibility is characterized in that contamination by carbide adsorption on the surface of the implant material is prevented and hydrophilicity is imparted to the surface of the material. There is.
  • the third problem-solving means in the present invention is characterized in that, in order to achieve the above object, the carbon content of the carbide adsorbed on the surface of the implant material after the treatment is less than 25 atomic%.
  • An object of the present invention is to provide a method for treating an implant material having excellent biocompatibility described in the second problem solving means.
  • the fourth problem-solving means in the present invention is characterized in that the carbon content of the carbide adsorbed on the surface of the implant material after the treatment is less than 20 atomic%.
  • An object of the present invention is to provide a method for treating an implant material having excellent biocompatibility described in the second problem solving means.
  • ozone water having an ozone concentration of 1 ppm to 25 ppm is used as electrolytic ozone water in which the implant material is immersed.
  • An object of the present invention is to provide a method for treating an implant material excellent in biocompatibility according to any one of the four problem solving means.
  • the sixth problem solving means of the present invention is an ozone having an ozone concentration of 0.3 ppm to 5 ppm as the electrolytic ozone water supplied to the surface of the implant material when the implant material is attached.
  • An object of the present invention is to provide a method for treating an implant material excellent in biocompatibility according to any one of the second to fifth problem solving means characterized in that water is used.
  • a seventh problem-solving means in the present invention is the first to fifth problems characterized in that, in order to achieve the above object, the implant material is an implant material that has lost contact with air for a long time and has lost biocompatibility.
  • An object of the present invention is to provide a method for treating an implant material having excellent biocompatibility according to any one of the means for solving the problems.
  • the eighth problem-solving means in the present invention is the living body according to any one of the first to seventh problem-solving means, wherein the implant material is a dental implant material in order to achieve the above object.
  • An object of the present invention is to provide a method for treating an implant material having excellent affinity.
  • a ninth problem solving means of the present invention stores an electrolytic ozone water generating device that generates electrolytic ozone water by electrolysis, and electrolytic ozone water generated by the electrolytic ozone water generating device. And an implant hydrophilization treatment device for hydrophilizing the implant material made of titanium or a titanium alloy and having a roughened surface made of titanium or a titanium alloy and maintaining the temperature at room temperature.
  • An object of the present invention is to provide a treatment apparatus for an implant material excellent in biocompatibility that can prevent contamination due to carbide adsorption on the surface of the implant material and can impart hydrophilicity to the material surface.
  • a tenth problem solving means of the present invention stores an electrolytic ozone water generating device that generates electrolytic ozone water by electrolysis, and electrolytic ozone water generated by the electrolytic ozone water generating device.
  • Implant hydrophilization treatment equipment for hydrophilizing implant material for immersing an implant material made of titanium or a titanium alloy and having a roughened surface in ozone water and maintaining the temperature at room temperature, and mounting of the implant material
  • an ozone water cleaning device for supplying electrolytic ozone water to the surface of the implant material when performing the treatment, preventing contamination due to carbide adsorption on the surface of the implant material, and the material
  • An object of the present invention is to provide an apparatus for treating an implant material that is capable of imparting hydrophilicity to a surface and excellent in biocompatibility.
  • an implant made of titanium or a titanium alloy and having a rough surface suitable for transplantation contamination by surface carbide adsorption occurring before and during surgery is prevented by always contacting with electrolytic ozone water.
  • a biocompatible implant material imparted with hydrophilicity can be obtained. Further, according to the present invention, it is possible to reactivate an implant that has been stored in contact with air for a long time and has lost biocompatibility.
  • ozone water generated by an electrochemical ozone water generator when using electrolytic ozone water generated by an electrochemical ozone water generator, high-concentration ozone water can be easily obtained by using an electrolytic ozone water apparatus having a small and excellent catalyst and an electrolytic cell structure. Almost all the surface of the implant material can be oxidized and sterilized by instantly generating it and constantly immersing the target implant material in running water for a short time. Furthermore, the osseointegration is further promoted by performing the implant operation immediately after ejecting ozone water. Although some ozone gas is generated, it can be processed in a closed space mainly using ozone water, and safety to workers can be ensured.
  • the figure which shows one embodiment of the flow sheet which shows the whole structure of the implant surgery using the processing method and processing apparatus of the implant material by this invention.
  • the flow sheet which shows an example of the ozone water cleaning apparatus used for the processing method and processing apparatus of the implant material by this invention.
  • Sectional drawing which shows one embodiment of the electrolytic ozone generator used for the processing method and processing apparatus of the implant material by this invention.
  • FIG. 1 shows one embodiment of a flow sheet showing the overall configuration of an implant operation using the treatment method and treatment apparatus for an implant material according to the present invention
  • 1 is an electrolysis that generates electrolytic ozone water by electrolysis
  • Type ozone water generator 2 stores electrolytic ozone water generated by the electrolytic ozone water generator 1 and immerses the implant material made of titanium or titanium alloy with a roughened surface until just before the implant operation, and keeps it at room temperature.
  • the implant hydrophilization treatment container 3 for hydrophilizing the implant material includes the electrolytic ozone water generating apparatus 3 after the implant material is taken out from the implant hydrophilization treatment container 2 immediately before the implant surgery and then during the implant surgery.
  • the implant in which the electrolytic ozone water generated by 1 is set in the implant surgical site An ozone water cleaning device for supplying to the surface of the charge.
  • tap water or purified water is sent to the electrolytic ozone water generator 1, and the electrolytic ozone water generator 1 generates electrolytic ozone water.
  • the generated electrolytic ozone water is sent to the implant hydrophilization treatment container 2, stored in the implant hydrophilization treatment container 2, and immersed in an implant material made of titanium or a titanium alloy and having a roughened surface until just before the implant operation. , Kept at room temperature, preventing contamination by carbide adsorption on the surface of the implant material, and imparting hydrophilicity to the living body.
  • the electrolytic ozone water in which the implant material is immersed it is preferable to use ozone water having an ozone water concentration of 1 ppm to 25 ppm.
  • the electrolysis conditions, the stability of the resulting material, the temperature is preferably 40 ° C. from 5 ° C.
  • a DC current applied to the electrolytic cell as a current density with respect to the projection surface of the anode, 0.01 ⁇ 1A / cm 2 Is preferred.
  • the amount of water to be flowed at this time is adjusted so as to obtain the desired concentration.
  • the higher the concentration of ozone water, the shorter the time required for hydrophilization treatment, and the preferred concentration is from 1 ppm to 25 ppm.
  • the water amount may be changed from 1 L / min to 50 mL / min.
  • Carbide removal with ozone water should be done when the concentration of ozone water is high. It can be removed in a short time, and the treatment time is most preferably 5 to 10 minutes.
  • the implant material when used in the oral cavity as it is, it is preferable to maintain the implant material at about room temperature (about 25 ° C.) because it is too cold for the patient.
  • the carbon content of the carbide adsorbed on the surface of the implant material is preferably less than 25 atomic%, and more preferably less than 20 atomic%.
  • the carbon content (atomic%) of the carbide adsorbed on the surface of the implant material is the XPS (trade name “XPS-PHI5000 Versa Probe”, ULVAC-PHI Co., Ltd.). ) And surface analysis.
  • the contact time between the implant material and the ozone water for hydrophilizing the surface of the implant material in the implant hydrophilization treatment container 2 depends on the contamination state of the implant material, but requires 1 to 60 minutes. In order to shorten the treatment time, it is preferable to use ultrasonic treatment together.
  • the implant material is obtained by setting the electrolytic ozone water supplied from the ozone water cleaning device 3 to the implant operation site during the implant operation after the implant material is taken out from the hydrophilic treatment container 2 immediately before the implant operation.
  • the implant material is obtained by setting the electrolytic ozone water supplied from the ozone water cleaning device 3 to the implant operation site during the implant operation after the implant material is taken out from the hydrophilic treatment container 2 immediately before the implant operation.
  • Ozone water used for implant surgery is discharged from the vacuum tube installed in the mouth.
  • the ozone gas concentration in the oral cavity is diluted to a level below the labor standard of 0.1 ppm or less, and the patient can avoid accidentally inhaling the ozone gas.
  • the ozone water concentration is preferably 0.2 ppm to 5 ppm.
  • the concentration of the electrolytic ozone water generated by the electrolytic ozone water generator 1 that immerses the implant material until immediately before the implant operation is high from the viewpoint of preventing contamination due to carbide adsorption on the surface of the implant material.
  • the ozone water supplied to the surface of the implant material set at the implant operation site after the implant operation is taken out from the implant hydrophilization treatment container 2 immediately before the implant operation is an occupational safety standard method. From the viewpoint of the above, it is not preferable to make the concentration high.
  • the electrolytic ozone water generating device 1 and the ozone water cleaning device 3 have been described as separate devices because the generated ozone water concentrations are different, but the electrolytic ozone water generation of the ozone water cleaning device 3 is described.
  • the electrolytic ozone water generator 1 can also be used. In this case, a control device may be provided and the ozone generation amount may be adjusted according to the purpose.
  • FIG. 2 shows a flow sheet showing an example of the ozone water cleaning device 3.
  • the implant material is taken out from the implant hydrophilization treatment container 2 immediately before the implant operation, and then set in the implant operation site when the implant operation is performed.
  • the surface of the implant material is washed with the ozone water cleaning device 3.
  • the generated electrolytic ozone water is supplied.
  • the ozone water cleaning device 3 is preferably connected to the foot switch 14 so that the operation of the ozone water generation module 12 can be controlled. If the foot switch 14 is provided, the generation and supply of ozone water from the spray nozzle can be started by operating the foot switch 14 while performing the operation even while holding the handpiece 8 in hand. It becomes possible to stop.
  • the handpiece 8 may be an irrigator provided with an injection nozzle that injects ozone water toward a desired site in the oral cavity. Further, the handpiece 8 is an external water-implantable implant contra supplied with ozone water through a tube, and the injection nozzle attaches a tool to the external water-implantable implant contra and drills it into the bone. You may come to inject ozone water toward the front-end
  • the ozone water generation module 12 is a device that receives supply of electric power from the power source 9 and generates ozone water from water such as tap water or purified water.
  • the ozone water cleaning device 3 includes a water storage tank 10, a pump 11, and an ozone water generation module 12, and water stored in the water storage tank 10 is sent to the ozone water generation module 12 by the pump 11, and the ozone water
  • the generation module 12 generates ozone water from the fed water.
  • the water storage tank 10 is for storing water, and has a water supply opening that can be opened and closed by a cap 13 so that tap water can be supplied to the water storage tank 10 through the water supply opening.
  • the pump 11 is for sending the water stored by the water storage tank 10 to the ozone water production
  • FIG. 3 shows an example of the electrolytic ozone water generator 1 used in the present invention, in which an electrolytic unit 4 provided in the electrolytic ozone water generator 1 is accommodated.
  • the electrolysis unit 4 is formed by winding a band of a diaphragm 6 made of an ion exchange membrane around an anode 5 which is a metal rod carrying a conductive diamond catalyst, and winding a cathode 7 made of a metal wire around the diaphragm 6. Configured.
  • the electrolysis conditions, the stability of the resulting material, the temperature is preferably 40 ° C. from 5 ° C.
  • a DC current applied to the electrolytic cell as a current density with respect to the projection surface of the anode, 0.01 ⁇ 1A / cm 2 Is preferred.
  • the amount of water to be flowed at this time is adjusted so as to obtain the desired concentration.
  • the higher the concentration of ozone water, the shorter the time required for hydrophilization treatment, and the preferred concentration is from 1 ppm to 25 ppm.
  • the water amount may be changed from 1 L / min to 50 mL / min.
  • Carbide removal with ozone water should be done when the concentration of ozone water is high. It can be removed in a short time, and the treatment time is most preferably 5 to 10 minutes.
  • the implant material is used as it is in the oral cavity, it is preferable to maintain the implant material at about room temperature (about 25 ° C.) because it is too cold for the patient.
  • the carbon content of the carbide adsorbed on the surface of the implant material is preferably less than 25 atomic%, and more preferably less than 20 atomic%.
  • the carbon content (atomic%) of the carbide adsorbed on the surface of the implant material is the XPS (trade name “XPS-PHI5000 Versa Probe”, ULVAC-PHI Co., Ltd.). ) And surface analysis.
  • ozone water is an electrolysis product in which ozone gas obtained by electrolyzing pure water or tap water using an electrolytic cell is mainly dissolved.
  • ozone gas OH radical, superoxide anion, etc.
  • the ozone gas itself is mainly oxidized at low pH (acidic), the ozone gas is decomposed at high pH (alkaline), mainly oxidized by OH radicals generated at that time, and the total oxidation equivalent is Even in the same case, the oxidizing action is even stronger.
  • ozone water production method and equipment General ozone water has the following characteristics. (1) The ozone (OH radical) bactericidal effect is oxidative destruction of the cell wall, and it can be said that there are no resistant bacteria due to indiscriminateness. (2) It decomposes into oxygen and has no persistence. Conventionally, ozone water is generally produced using a discharge-type ozone gas generator, and several ppm of ozone water can be easily produced, and is used in the field of water purification and food washing. However, the discharge-type ozone gas generator is unsuitable as a generator of a handy and high-concentration ozone water apparatus excellent in instantaneous response for the following reasons.
  • oxygen generation proceeds as shown in the following formula (1) when only water is used, but depending on the catalyst and electrolysis conditions, ozone is generated and dissolved as shown in the following formula (2) Ozone water can be synthesized.
  • the electrolysis method is inferior in terms of electric power consumption compared with the discharge method, but is widely used in special fields such as electronic component cleaning due to the characteristics that high-concentration ozone gas and water can be easily obtained. Since a DC low-voltage power supply is used in principle, it has excellent instantaneous response and safety, and is expected to be used as a small ozone gas and ozone water generator. Also, battery drive, generator drive, and AC / DC conversion drive can be selected according to the application.
  • Electrode / Substrate In order to efficiently generate ozone gas, it is essential to select an appropriate catalyst and electrolyte.
  • Known electrode materials include noble metals such as platinum, ⁇ -lead dioxide, ⁇ -lead dioxide, glassy carbon impregnated with fluorocarbon, and conductive diamond.
  • the material that can be used as the electrode substrate preferably has a long life and corrosion resistance so as not to contaminate the treated surface.
  • Si single crystal, polycrystal
  • Nb, Ta, Zr, Ti, Mo, W, graphite or the like can be used, and can be selected depending on the application.
  • the cathodic reaction is mainly hydrogen generation, and an electrode catalyst that does not embrittle with hydrogen is preferable, and platinum group metals, nickel, stainless steel, titanium, zirconium, gold, silver, carbon, diamond, and the like are preferable. It is desirable to use stainless steel, zirconium, carbon, nickel, titanium or the like as the cathode substrate.
  • an ion exchange membrane or a neutral membrane can be used, and an ion exchange membrane is usually used.
  • the diaphragm has the function of preventing the substances generated at the anode and cathode from being consumed at the opposite electrode and also allowing the electrolysis to proceed quickly even when the conductivity of the liquid is low.
  • an ion exchange membrane either a fluororesin or a hydrocarbon resin may be used, but the former is preferable in terms of ozone and peroxide corrosion resistance.
  • the thickness of the membrane is preferably from 0.1 mm to 1 mm.
  • Electrode-electrode assembly As the electrode, conductive diamond is preferably used, and an electrolytic cell in which a strip-shaped diaphragm member is disposed on a rod-shaped conductive diamond electrode and a linear counter electrode is disposed thereon can be used.
  • the membrane-electrode assembly is a rod-shaped or cylindrical electrode, usually a cylindrical ion exchange membrane or the like around a positive electrode (hereinafter also referred to as a rod-shaped anode), and a linear shape around the membrane.
  • a counter electrode and a porous counter electrode usually a linear cathode and a porous cathode are arranged, and the membrane and the anode, and the membrane and at least a part of the cathode are in contact with each other, and these are fixed using the cathode.
  • An anode chamber having a gas-liquid flow path can be formed between the membrane and the anode, more preferably between a plurality of anodes, and this membrane-electrode assembly is a cell structure suitable for the present invention.
  • the length and diameter of the rod-like anode of the membrane-electrode assembly are selected based on the amount of ozone required. Usually, the length is preferably 10 mm to 300 mm, and the diameter is preferably 0.5 mm to 10 mm.
  • the diameter of the diaphragm of the joined body is set to be about 0.1 mm to 5 mm larger than the diameter of the rod-shaped anode housed therein (typically assuming a cylinder).
  • the aperture ratio of the porous cathode is preferably 20% to 80%, and the thickness is preferably 0.1 mm to 2 mm.
  • the diameter is preferably in the range of 0.1 mm to 2 mm. If it is thinner than this, the voltage loss due to the electric resistance cannot be ignored, and in the winding operation, the physical strength is insufficient, so that it is easily cut. On the other hand, if it is too thick, the mass transfer of the electrolytic raw material and the product from the anode chamber is suppressed, resulting in an increase in voltage and a decrease in current efficiency, and the winding operation becomes difficult.
  • the linear cathode or the power supply line is spirally wound around the anode and the membrane, the distance between the cathode lines is preferably about 0.1 mm to 10 mm.
  • the membrane is preferably a membrane whose mechanical strength is increased by reinforcing fibers.
  • a cylindrical diaphragm it is preferable to mold it first. This can be easily performed by a known tube forming process using a precursor resin having thermoplasticity. What uses the reinforced fiber as a diaphragm is preferable. You may make it adhere
  • the end portions can be overlapped and heat-sealed or fixed with an adhesive.
  • the heat fusion treatment temperature is suitably 200 ° C. to 350 ° C.
  • the surface pressure is 2 kg / cm 2 to 20 kg / cm 2
  • the time is 1 second to 1 minute.
  • the above dimensions indicate that even in raw material water having low conductivity, at least part of the electrode and the film are in close contact with each other in a spiral manner, electrolysis can proceed smoothly, and the raw material water supplied in the anode chamber composed of the anode and the film In view of the necessity of having a volume capable of promptly flowing the generated gas component, it is selected and designed.
  • At least one opening of the anode chamber composed of the anode and the diaphragm is fixed to a tube connected to the path of the raw water.
  • the tube has the same diameter as the cylindrical diaphragm, the diaphragm and the tube are fixed with an adhesive, and the feeding terminal of the rod-shaped anode is connected to the anode in the tube.
  • the water that flows out from the electrolysis cell includes raw water that is not sufficiently electrolyzed. Therefore, it is preferable that the amount of water present in the electrolysis cell and the volume of the other pipe portions are small. Dissolution of gasified ozone into the raw material water proceeds, and the generation efficiency of ozone water increases. For this reason, the optimum length of the rod-shaped anode is preferably set so that the contact time is in the range of 0.1 to 10 seconds.
  • the material of the tank and piping of the container for storing the raw water is selected so as not to be affected by the raw water. If there is no problem, PE resin may be used. It is preferable to supply raw material water directly from a pure water production apparatus via a pump.
  • Example 1 A niobium rod (diameter 2 mm) formed with a conductive diamond catalyst (boron doping concentration 2500 ppm) as an anode is formed into a cylindrical ion exchange membrane (Nafion 350, thickness 0.35 mm, diameter 3 mm) (Nafion is manufactured by DuPont). (Registered trademark) was spirally wound around the anode, and a platinum wire was wound from above the diaphragm to form an anode-membrane-cathode assembly. 40 mL of pure water was allowed to flow from the lower part of the electrolytic cell equipped with this membrane-electrode assembly per minute.
  • the membrane When a current of 0.5 A is passed, the membrane is a spiral diaphragm, so oxygen, ozone, and hydrogen gas generated from the anode are mixed together to produce electrolyzed water that dissolves them.
  • the voltage was 10 V and the ozone water concentration was 4 ppm.
  • the surface of a titanium disk having a diameter of 8 mm and a thickness of 1 mm was acid-etched, stored in a glass petri dish, and allowed to elapse for 9 months at room temperature.
  • the acid etching treatment was performed by immersing in a 48% sulfuric acid solution at 60 ° C. for 10 minutes. Immediately thereafter, ultrasonic cleaning was performed twice in a sufficient amount of pure water.
  • the sample that had passed for 9 months was subjected to surface analysis by XPS.
  • XPS-PHI5000 Versa Probe manufactured by ULVAC-PHI was used for XPS.
  • Surface analysis was performed by XPS, and the element concentrations in a volume of ⁇ 100 ⁇ m ⁇ 3 nm on the sample surface were compared. The surface was washed with flowing 4 ppm ozone water in running water for 10 minutes, and then sufficiently dried and reanalyzed. The results are shown in Table 1 and FIG.
  • New and New-2 are samples 4 days after the surface treatment of titanium, Old is a sample after 9 months of standing, and a sample obtained by cleaning it with ozone is Old + Clean, but the amount of carbon on the surface is about 4 days after treatment. It has returned to the state of the sample. Although the C—C bond and the C ( ⁇ O) —O bond decreased, the C—O bond increased. The overall carbon compound was reduced by about 30%. The carbon compound as a whole decreased by about 30%, and the breakdown was that the C—C bond, the C ( ⁇ O) —O bond decreased, and the C—O bond increased.
  • Example 2 A niobium rod (diameter 2 mm) on which a conductive diamond catalyst (boron doping concentration 2500 ppm) is formed as an anode is placed in a cylindrical ion exchange membrane (DuPont Nafion 350, thickness 0.35 mm, diameter 3 mm) as a cathode.
  • a commercially available platinum wire (diameter 0.4 mm) was spirally wound from above the membrane to obtain an anode-membrane-cathode assembly. The helix spacing was 4 mm. Tubes (diameter 4 mm) were bonded to the upper and lower sides of the joined body, and the feeders of the respective electrodes were connected from a direct current power source to form an electrolytic cell.
  • the present invention can be applied to a treatment method of an implant material excellent in biocompatibility, particularly a treatment method and a treatment apparatus for dental implant material.
  • Electrolytic ozone water generating device 2 Implant hydrophilization treatment vessel 3: Ozone water cleaning device 4: Electrolytic unit 5: Anode 6: Diaphragm 7: Cathode 8: Handpiece 9: Power source 10: Water storage tank 11: Pump 12 : Ozone water generation module 13: Cap 14: Foot switch

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Dentistry (AREA)
  • Inorganic Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Dental Prosthetics (AREA)
  • Materials For Medical Uses (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 生体親和性に優れたインプラント材料の処理方法、特に、歯科用インプラント材料の処理方法及び処理装置。 チタンまたはチタン合金からなり表面を粗面化したインプラント材料を電解オゾン水中に浸漬するとともに、前記電解オゾン水を常温に保持することにより、前記インプラント材料の表面の炭化物吸着による汚染を防止し、かつ、親水性を付与したことを特徴とする生体親和性に優れたインプラント材料の処理方法及び処理装置。

Description

生体親和性に優れたインプラント材料の処理方法及び処理装置
 本発明は、生体親和性に優れたインプラント材料の処理方法、特に、歯科用インプラント材料の処理方法及び処理装置に関するものである。
 歯科用インプラント手術においては、インプラントが十分に骨と結合(オッセオインテグレーション)することが肝要である。骨中への挿入のために使用されるインプラント材料としては、チタンまたはチタンをベースとした合金が使用され、その特徴は、該材料の生体親和性が優れており、その骨一体化時間が短くできることである。しかしながら、滑らかな表面構造を持つチタン製インプラントでは骨中に十分な結合が形成されないため、表面を粗面化する必要がある。特許文献1及び2には、最初の工程で、サンドブラストによりチタンまたはチタンをベースとした合金よりなるインプラント材料表面にマクロ粗面を形成し、引き続いて酸浴中での処理により該マクロ粗面上にミクロ粗面を重ねることが提案されている。このマクロ粗面は、その孔の大きさが10μmより大きく、好ましくは、20μm以上とし、ミクロ粗面は、0.5μmから2μmとすることが記載されている。
 また、非特許文献1に記載されているように、チタン金属の表面は、空気中および水中で自然に酸化され、水との反応により、最も外側の原子層中で水酸基や酸素からなる層が形成されると推測される。しかしながら、空気中に存在する易揮発性の炭化水素および他の化合物によりチタン表面が汚染され、疎水性になりやすく、このような汚染されたインプラント材料では、骨物質と融合し、強固な癒合を短時間に形成することができない。また、インプラント材料が空気に暴露される時間が長いほど、汚染層はより厚くなる。同様に、インプラント材料を取付ける時点においても、インプラント材料の表面を清浄にかつその親水性を維持することが不可欠である。
 親水性を付与し滅菌処理を施したインプラント材料は、生物学的活性に影響しない気体、例えば、窒素、酸素またはアルゴンのような希ガスが充填された密封容器中で保存される。該密封容器は、気体および液体に不透過性であることが好ましい。前記気密性かつ水密性の密封容器は、ガラス、金属、合成ポリマーまたは他の気密性かつ水密性の材料から作製されるか、またはこれらの材料の組合せからなる密封されたアンプルであることが好ましい。
 インプラント材料の移植直前に該密封容器を破ったとしても、該インプラント材料の表面と外の大気とは接触し、インプラント材料表面の親水性における劣化を防ぐことは困難である。従って、水酸化された親水性インプラント表面が、その親水性が長時間にわたり、大気との接触によってもこれが実質的に維持されるように製造または処理する方法の開発が期待されていた。
 インプラント治療で使われる人工歯根(歯科用インプラント)は、上記の通り、チタンまたはチタン合金で出来ており、最近の研究(アメリカUCLA大学准教授小川隆広氏らのグループによる研究)によれば、チタンは製造直後から空気中の炭素が表面に付着し、細胞との接着力に重大な影響を及ぼす。製造後1ヶ月経過すると骨と結合する能力は約半分に減少し、その後も減少を続けることが分かっている。本発明者らは、このことは次のような問題を引き起こす可能性があるため、改善の必要があると考えている。
1)インプラント材料は使用される時点で、生物学的老化の途中または完了した状態にある可能性があり、最高の状態で用いられてないことが懸念される。
2)インプラント材料を取付ける際に、インプラント材料の製造年月日を知ることは極めて困難なため、チタン表面がどの程度劣化しているのかが分からない。
3)そのため、例え、同じブランドであっても、製品によって骨との結合能力に差が生じる可能性がある。
 こうした問題を解決するために、特定の波長を持つ紫外線(UV)をインプラントに照射し、付着した炭素を除去し、チタンの結合能力を回復させるという方法が開発されている。これにより、インプラントの骨と結合する能力はUV照射をしない場合に比べ、埋め込み初期では3倍、最終的には1.8倍に高まることが報告されている。
 特許文献3では、インプラント材料の表面に対して高エネルギー紫外線で処理して水酸化された親水性表面を得る方法が開示されている。この処理の利点は、該インプラントのさらなる滅菌が不要なことである。この発明において用いられる高エネルギーUV線は、150nmないし300nmの範囲内、好ましくは170nmないし260nmの範囲内の波長を持つUV光、また特に酸素の吸収極大の範囲内、換言すると、約184.9nmの波長を持つUV光、およびオゾンの吸収極大の範囲内、換言すると、約253.7nmの波長を持つUV光を伴い、この範囲内の波長は、オゾンの形成および分解を同時に促進し、そして高エネルギー化学結合、例えばエチレン性炭素-炭素二重結合を破壊できる。
 前記放射線の強度はUV発生源からの距離と指数関数的に減少するため、処理されるインプラント表面とUV発生源との間の距離を短く、例えば約1mmの範囲内に保つことが有利である。UV処理の期間は汚染層の性状および厚さに依存し、放射時間は1分から15分が好ましい。
 人工歯根表面の有機物を除去する装置として、他にも以下の公知技術が存在する。例えば、特許文献4は、生体インプラントに紫外線を照射すると共にオゾンを接触させることによって、当該生体インプラントを洗浄処理する生体インプラント用洗浄処理装置に関するものである。
 また、特許文献5は、螺旋状の突条よりなる螺子部を有するスクリュータイプのデンタルインプラントに紫外線を照射するデンタルインプラント用光照射装置に関するものである。
 このようなデンタルインプラントに紫外線を照射する光照射装置においては、歯槽骨等に埋入される螺子部に対して確実に紫外線を照射することができ、また、1回のデンタルプラント手術においては、通常、複数のデンタルインプラントが用いられることから複数のスクリュータイプのデンタルインプラントに紫外線を照射するために適した光照射装置が開発されている。
 更に、特許文献6、7では、紫外光を放射するエキシマランプを用いた人工歯根の有機汚染物除去装置において、エキシマランプからの紫外光が作業者に照射されることがなく、かつ、発生するオゾンによる影響を心配することがなく、人工歯根を効率的に安全に紫外光洗浄することのできる有機汚染物除去装置の構造が記載されている。
 しかしながら、上記特許文献4~7に記載のような紫外線によるインプラント材料の処理方法において、複雑な凹凸部を有するインプラント部品では、特に凹部表面の完全な滅菌及び炭化物の分解処理を十分に行うことができない。これは、紫外線やこれにより生成するオゾンなどの活性種は、照射される部位に限定されるからであり、形状によっては不完全な処理となる恐れがある。
 また、上記特許文献4~7に記載のような紫外線によるインプラント材料の処理装置は、装置が高額化し実用的でないとともに、照射後1時間程度は親水性が維持されると記載されているが、インプラント手術プロセスにおいては、チタン表面はたやすく汚染されるため、これを保証できない。
 更に、インプラント被施療者の手術における適切な歯根の選定は、清浄な保存状態では行えず、通常の生活空間にて行うため、表面汚染が避けられない。また、このような装置は、インプラントの取り出し前に、装置内のオゾンを排気し、紫外線照射によって高温になったサンプルを冷却するために待機時間が必要となり、したがって連続使用が困難であるため、問題であった。
 特許文献8には、オゾン水を用いた歯科用洗浄装置について開示されている。患者の口腔内にオゾン水を供給して洗浄するための歯科用オゾン水洗浄装置であって、オゾン水を生成するオゾン水生成器と、チューブによって前記オゾン水生成器に接続され且つ口腔内に挿入可能な寸法を有した歯科用ハンドピースとを備え、前記オゾン水生成器から供給されたオゾン水が前記歯科用ハンドピースに設けられた噴射ノズルから口腔内の所望部位へ向けて噴射されるようになっている。このように口腔内の所望部位に直接オゾンを到達させて殺菌・消毒を行うことができれば、従来は不十分であった嫌気性菌による歯周病や手術部位からの感染症などの予防に高い効果を発揮する。さらに、バキューム管などによって口腔内から排出される排液には、様々な微生物が包含されている可能性があるが、オゾン水洗浄を行えば、排液中の微生物は口腔内に噴出される多量のオゾン水によって不活性化されるので、排液をそのまま廃棄することが可能となる。
 しかしながら、特許文献8によるオゾン水を用いた歯科用洗浄装置のみでは、オゾン水とインプラント材料の接触時間が手術中のみとなり、インプラント材料の表面の清浄化を維持することはできるが、接触時間が短く、時間的に不充分であり、長期間大気中で保存し、インプラント材料の表面に多量に付着した炭化物を低減することはできず、複雑な表面形態を有するチタン製インプラント表面の生体親和性を維持、回復することはできない。
 また、特許文献9は、電解方式によりオゾン水を製造する装置を示したものであり、電極として導電性ダイヤモンドを用いることが開示され、特には、棒状の導電性ダイヤモンド電極に帯状の隔膜部材を配置し、その上に線状の対極を配置した電解セルを開示している。また、特許文献10及び11で開示されている膜-電極接合体は、棒状又は筒状の電極、通常は陽極(以下、棒状陽極ともいう)の周囲に筒状のイオン交換膜等の隔膜を設置し、該膜の周囲に線状対極や多孔性対極、通常は線状陰極や多孔性陰極を配置し、該膜と該陽極、及び該膜と該陰極の少なくとも一部が接するように、該陰極を用いてこれらを固定し、該膜と陽極の間、更に好ましくは複数の陽極間に気液流路を有する陽極室を形成させることを特徴としている。
 しかし、特許文献9、10、11においては、電解方式によりオゾン水を製造する装置の一例が示されており、本発明によるインプラント材料の表面処理に好適な電解オゾン水を生成することはできるが、インプラント材料の表面処理に適用できるか否かについては、全く開示されていない。
特開平3-47264号公報(特許第3047373号) 欧州特許第0388576号公報 特表2005-505352号公報 特開2012-75549号公報 特開2012-75548号公報 特開2012-119号公報 特開2012-120号公報 特開2012-5658号公報 特開2006-346203号公報(特許第4410155号) 特開2009-138262号公報(特許第4723627号) 特開2008-73604号公報(特許第4980016号)
H.P.Boehm, Acidic and Basic Properties of Hydroxylated Metal Oxide Surfaces, Discussions Faraday Society, Vol.52, 1971, p 264 - 275
 本発明は、これらの問題を解決する為に、複雑な表面形態を有するチタン製インプラント表面の生体親和性を維持、回復するための方法について検討した結果、高濃度のオゾン水による表面酸化処理と手術中におけるオゾン水供給機構を有する装置を考案し、装置内でインプラントを一定時間オゾン水に接液させることで、長期間大気中で保存したサンプルに対しても炭化物の低減ができ、親和性を回復させることができ、また、手術部位における洗浄水として殺菌性を付与できる、経済的に優れた処理方法となることを見出した。従来装置に比較して安価であり、連続的な処理が可能な装置として実用性に優れている。
 本発明における第1の課題解決手段は、上記目的を達成する為、チタンまたはチタン合金からなる表面を粗面化したインプラント材料を、電解オゾン水中に浸漬するとともに、該電解オゾン水を常温に保持することにより、前記インプラント材料の表面の炭化物吸着による汚染を防止し、かつ、該材料表面に親水性を付与したことを特徴とする生体親和性に優れたインプラント材料の処理方法を提供することにある。
 本発明における第2の課題解決手段は、上記目的を達成する為、チタンまたはチタン合金からなる表面を粗面化したインプラント材料を、電解オゾン水中に浸漬するとともに、該電解オゾン水を常温に保持することにより、前記インプラント材料の表面の炭化物吸着による汚染を防止し、かつ、該材料表面に親水性を付与し、さらに、該インプラント材料の取付けを、インプラント材料の表面に電解オゾン水を供給しながら行うことで、前記インプラント材料の表面の炭化物吸着による汚染を防止しつつ、かつ、該材料表面に親水性を付与することを特徴とする生体親和性に優れたインプラント材料の処理方法を提供することにある。
 本発明における第3の課題解決手段は、上記目的を達成する為、処理後における前記インプラント材料の表面に吸着した炭化物の炭素含有量を、25原子%未満としたことを特徴とする第1又は第2の課題解決手段に記載の生体親和性に優れたインプラント材料の処理方法を提供することにある。
 本発明における第4の課題解決手段は、上記目的を達成する為、処理後における前記インプラント材料の表面に吸着した炭化物の炭素含有量を、20原子%未満としたことを特徴とする第1又は第2の課題解決手段に記載の生体親和性に優れたインプラント材料の処理方法を提供することにある。
 本発明における第5の課題解決手段は、上記目的を達成する為、前記インプラント材料を浸漬する電解オゾン水として、オゾン濃度が1ppmから25ppmのオゾン水を使用することを特徴とする第1~第4の課題解決手段のいずれかに記載の生体親和性に優れたインプラント材料の処理方法を提供することにある。
 本発明における第6の課題解決手段は、上記目的を達成する為、前記インプラント材料の取付けを行う際にインプラント材料の表面に供給する前記電解オゾン水として、オゾン濃度が0.3ppmから5ppmのオゾン水を使用することを特徴とする第2~第5の課題解決手段のいずれかに記載の生体親和性に優れたインプラント材料の処理方法を提供することにある。
 本発明における第7の課題解決手段は、上記目的を達成する為、インプラント材料が長期間空気と接触して生体親和性を消失したインプラント材料であることを特徴とする第1~第5の課題解決手段のいずれかに記載の生体親和性に優れたインプラント材料の処理方法を提供することにある。
 本発明における第8の課題解決手段は、上記目的を達成する為、前記インプラント材料が、歯科用インプラント材料であることを特徴とする第1~第7の課題解決手段のいずれかに記載の生体親和性に優れたインプラント材料の処理方法を提供することにある。
 本発明における第9の課題解決手段は、上記目的を達成する為、電解により電解オゾン水を生成する電解式オゾン水生成装置と、該電解式オゾン水生成装置により生成した電解オゾン水を貯蔵し、かつ、該オゾン水中に、チタンまたはチタン合金からなり表面を粗面化したインプラント材料を浸漬するとともに常温に保持するためのインプラント材料を親水化処理するインプラント親水化処理器とよりなることを特徴とする、前記インプラント材料の表面の炭化物吸着による汚染を防止し、かつ、該材料表面に親水性を付与できる生体親和性に優れたインプラント材料の処理装置を提供することにある。
 本発明における第10の課題解決手段は、上記目的を達成する為、電解により電解オゾン水を生成する電解式オゾン水生成装置と、該電解式オゾン水生成装置により生成した電解オゾン水を貯蔵し、かつ、該オゾン水中に、チタンまたはチタン合金からなり表面を粗面化したインプラント材料を浸漬するとともに常温に保持するためのインプラント材料を親水化処理するインプラント親水化処理器と、インプラント材料の取付けを行う際に、該インプラント材料の表面に電解オゾン水を供給するためのオゾン水洗浄装置とよりなることを特徴とする、前記インプラント材料の表面の炭化物吸着による汚染を防止し、かつ、該材料表面に親水性を付与できる生体親和性に優れたインプラント材料の処理装置を提供することにある。
 本発明によれば、チタンまたはチタン合金からなり、移植に適した粗面を有するインプラントにおいて、電解オゾン水と常時接触させることにより、手術前および手術中に生じる表面の炭化物吸着による汚染を防止し、かつ、親水性を付与した生体親和性インプラント材料を得ることができる。
 また、本発明によれば、長期間空気と接触して保管され、生体親和性を消失したインプラントを再活性化することができる。
 更に、これまで、オゾンのインプラント材料表面への良好な作用は期待されていたが、適切なオゾン水生成装置が入手できなかったため、実用化に至らなかった。本発明においては、電気化学的なオゾン水生成装置により生成した電解オゾン水を利用すると、小型で優れた触媒と電解セル構造を有する電解オゾン水装置を用いることにより、高濃度オゾン水を簡便に瞬時に生成させ、対象となるインプラント材料をこれに短時間、流水下に常時浸漬させることで、インプラント材料のほぼすべての表面を酸化、殺菌できる。さらに、直後にインプラント手術を、オゾン水を噴出させながら実施することで、よりオッセオインテグレーションの進行が図られる。オゾンガスは多少発生するが、主にオゾン水を用いた閉鎖空間での処理が可能であり、作業者への安全性が担保できる。
本発明によるインプラント材料の処理方法及び処理装置を使用したインプラント手術の全体構成を示すフローシートの一実施態様を示す図。 本発明によるインプラント材料の処理方法及び処理装置に使用するオゾン水洗浄装置の一例を示すフローシート。 本発明によるインプラント材料の処理方法及び処理装置に使用する電解式オゾン発生装置の一実施態様を示す断面図。 本発明によるインプラント材料のオゾン水による処理効果を示すグラフを示す図。
 以下、本発明の実施の態様を図1に基づいて説明する。
 図1は、本発明によるインプラント材料の処理方法及び処理装置を使用したインプラント手術の全体構成を示すフローシートの一実施態様を示したものであり、1は、電解により電解オゾン水を生成する電解式オゾン水生成装置、2は、電解式オゾン水生成装置1により生成した電解オゾン水を貯蔵し、チタンまたはチタン合金からなり表面を粗面化したインプラント材料をインプラント手術直前まで浸漬し常温に保持し、インプラント材料を親水化処理するインプラント親水化処理容器、3は、前記インプラント材料をインプラント手術直前に前記インプラント親水化処理容器2より取り出した後、インプラント手術中に、前記電解式オゾン水生成装置1により生成した電解オゾン水をインプラント手術部位にセットした前記インプラント材料の表面に供給するオゾン水洗浄装置である。
 本発明においては、先ず、水道水又は精製水が電解式オゾン水生成装置1に送られ、電解式オゾン水生成装置1により電解オゾン水が生成される。生成された電解オゾン水は、インプラント親水化処理容器2に送られ、インプラント親水化処理容器2内に貯蔵され、チタンまたはチタン合金からなり表面を粗面化したインプラント材料をインプラント手術直前まで浸漬し、常温に保持し、前記インプラント材料の表面の炭化物吸着による汚染を防止し、かつ、生体親水性を付与する。
 前記インプラント材料を浸漬する電解オゾン水としては、オゾン水濃度が1ppmから25ppmのオゾン水を使用することが好ましい。
 電解条件としては、生成した物質の安定性、活性の観点から温度は5℃から40℃が好ましく、電解セルに流す直流電流は陽極の投影面に対する電流密度として、0.01~1A/cm2が好ましい。このとき流す水量は目的の濃度が得られるよう調整する。オゾン水濃度は高いほど,短時間で親水化処理が可能であり、好ましい濃度は1ppmから25ppmである。例えば1Aを流せるセルで、オゾン水濃度を1ppmから25ppmにするには、水量を1L/minから50mL/minに変化させればよい。
 オゾン水による炭化物除去は、オゾン水の濃度が高ければ.短時間で除去でき、処理時間は、5~10分間がもっとも好ましい。また、インプラント材料は、そのまま口腔内で使用する場合、あまり冷たいと患者への負担が大きいため、室温(約25℃)程度に維持することが好ましい。インプラント材料の表面に吸着した炭化物の炭素含有量は、25原子%未満とすることが好ましく、20原子%未満とすることが更に好ましい。ここで、インプラント材料の表面に吸着した炭化物の炭素含有量(原子%)は、試料表面のφ100μm×3nmの容積中の元素濃度をXPS(商品名「XPS-PHI5000 Versa Probe」、アルバック・ファイ社製)で表面分析することにより求めた。
 インプラント親水化処理容器2においてインプラント材料の表面を親水化するためのインプラント材料とオゾン水との接触時間は、インプラント材料の汚染状態にも依存するが、1分から60分を要する。処理時間を短縮するために超音波処理を併用することは好ましい。
 更に、このインプラント材料は、インプラント手術直前に前記インプラント親水化処理容器2より取り出した後、インプラント手術中に、オゾン水洗浄装置3から供給される電解オゾン水をインプラント手術部位にセットした前記インプラント材料の表面に供給することにより、インプラント手術中においても、インプラント材料の表面の炭化物吸着による汚染は防止され、かつ、生体親水性が付与される。
 インプラント手術に使用されたオゾン水は、口内に設置したバキュームチューブから排出される。このとき、口腔内のオゾンガス濃度は、0.1ppm以下の労働基準以下のレベルまで希釈され、患者がオゾンガスを誤って吸引することは避けることが出来る。このためには、オゾン水濃度は0.2ppmから5ppmとすることが好ましい。
 上記のように、前記インプラント材料をインプラント手術直前まで浸漬する電解式オゾン水生成装置1により生成される電解オゾン水の濃度は、前記インプラント材料の表面の炭化物吸着による汚染を防止する観点から、高濃度のほうが好ましく、一方、インプラント手術直前に前記インプラント親水化処理容器2より取り出した後、インプラント手術中に、インプラント手術部位にセットした前記インプラント材料の表面に供給するオゾン水は、労働安全基準法の観点から高濃度にすることは好ましくない。
 尚、電解式オゾン水生成装置1とオゾン水洗浄装置3とは、生成するオゾン水濃度が相違するため、個別の装置して説明されているが、オゾン水洗浄装置3の電解式オゾン水生成装置として、電解式オゾン水生成装置1を用いることもできる。この場合、制御装置を設け、その目的に応じてオゾン発生量を調節すればよい。
 図2は、オゾン水洗浄装置3の一例を示すフローシートを示したものである。
 本発明においては、インプラント材料は、インプラント手術直前に前記インプラント親水化処理容器2より取り出した後、インプラント手術する際、インプラント手術部位にセットされ、このインプラント材料の表面に、オゾン水洗浄装置3により生成した電解オゾン水が供給される。オゾン水洗浄装置3は、フットスイッチ14に接続して、オゾン水生成モジュール12の作動を制御できるようになっていることが好ましい。フットスイッチ14を備えていれば、ハンドピース8を手に持って手術を行っている間でも、手術を行いながらフットスイッチ14を操作することによって噴射ノズルからのオゾン水の生成及び供給の開始及び停止を行うことなどが可能となる。ハンドピース8は、口腔内の所望部位へ向けてオゾン水を噴射する噴射ノズルを備えたイリゲータであってもよい。また、ハンドピース8が、チューブを通してオゾン水を供給される外部注水型インプラント用コントラであり、前記噴射ノズルが、前記外部注水型インプラント用コントラに工具を装着して骨にドリリングするときに前記工具の先端へ向かってオゾン水を噴射するようになっていてもよい。この場合、工具による骨のドリリング時に施術部位に発生する熱の冷却のためにオゾン水を利用しながら、施術部位の殺菌・消毒を行うことができる。
 図2において、オゾン水生成モジュール12は、電源9から電力の供給を受けて、水道水や精製水などの水からオゾン水を生成する機器である。オゾン水洗浄装置3は、水貯留槽10と、ポンプ11と、オゾン水生成モジュール12とを含み、水貯留槽10に貯留された水がポンプ11によってオゾン水生成モジュール12へ送り込まれ、オゾン水生成モジュール12が送り込まれた水からオゾン水を生成する。
 水貯留槽10は、水を貯留するためのものであり、キャップ13によって開閉可能な給水口を備え、給水口を通して水貯留槽10へ水道水などを補給できるようになっている。また、ポンプ11は、水貯留槽10に貯留された水をオゾン水生成モジュール12へ送り込むためのものであり、水を送ることができれば、任意のタイプのものとすることができる。しかしながら、後述するようにオゾン水の溶存オゾン水濃度の調整を容易にするために、ポンプ11の送水能力を変化させることができるようになっていることが好ましい。
 図3は、本発明に使用する電解式オゾン水生成装置1の1例を示したものであり、電解式オゾン水生成装置1内に設けた電解ユニット4が収納されている。この電解ユニット4は、導電性ダイヤモンド触媒を担持した金属棒である陽極5の周囲に、イオン交換膜からなる隔膜6の帯を巻き、この隔膜6の周囲に金属線からなる陰極7を巻きつけて構成されている。
[電解条件]
 電解条件としては、生成した物質の安定性、活性の観点から温度は5℃から40℃が好ましく、電解セルに流す直流電流は陽極の投影面に対する電流密度として、0.01~1A/cm2が好ましい。このとき流す水量は目的の濃度が得られるよう調整する。オゾン水濃度は高いほど,短時間で親水化処理が可能であり、好ましい濃度は1ppmから25ppmである。例えば1Aを流せるセルで、オゾン水濃度を1ppmから25ppmにするには、水量を1L/minから50mL/minに変化させればよい。
 オゾン水による炭化物除去は、オゾン水の濃度が高ければ.短時間で除去でき、処理時間は、5~10分間がもっとも好ましい。インプラント材料は、そのまま口腔内で使用する場合、あまり冷たいと患者への負担が大きいため、室温(約25℃)程度に維持することが好ましい。インプラント材料の表面に吸着した炭化物の炭素含有量は、25原子%未満とすることが好ましく、20原子%未満とすることが更に好ましい。ここで、インプラント材料の表面に吸着した炭化物の炭素含有量(原子%)は、試料表面のφ100μm×3nmの容積中の元素濃度をXPS(商品名「XPS-PHI5000 Versa Probe」、アルバック・ファイ社製)で表面分析することにより求めた。
[オゾン水]
 本発明において、オゾン水とは、純水又は水道水等を電解セルを用いて電解することによって得られたオゾンガスが主として溶解した電解生成物であるが、オゾンガスのほかOHラジカルやスパーオキサイドアニオン等の酸素ラジカル、過酸化水素及びその他の酸化性物質をも含有するオゾン含有水を意味するものである。このオゾン水の作用としては、低pH(酸性)ではオゾンガス自体が酸化の主体となり、高pH(アルカリ性)ではオゾンガスが分解し、そのとき生成するOHラジカルによる酸化が主体となり、総酸化等量が同じ場合でも酸化作用はさらに強力となる。
[オゾン水製造方法と装置]
 一般的なオゾン水は、以下の特徴を有している。
(1)オゾン(OHラジカル)殺菌効果は細胞壁の酸化破壊であり無差別性のため耐性菌が存在しないといえる。
(2)酸素に分解し残留性がない。
 オゾン水は従来から放電型のオゾンガス発生器を用いて製造することが一般的であり、数ppmのオゾン水を容易に製造でき、浄水処理、食品洗浄分野で利用されている。しかしながら、放電型のオゾンガス発生器では、瞬時応答性に優れたハンディかつ高濃度なオゾン水装置の発生器としては以下の理由により不適当であった。
(1)オゾンをいったんガスとして発生させ、その後、水に溶解させる2つの工程を必要とすること。
(2)後述する電解法に比較して生成オゾン水濃度が低いため高圧下で水中に注入し、溶解させ、製造する必要がある。
(3)発生電源が高電圧・高周波のため、小型化しにくい。
(4)放電によるオゾン水生成装置では、オゾンガス発生能力が安定するまで時間(数分間の待機時間)を要し、瞬時に一定濃度のオゾン水を調製することが困難である。
 電解セルでの陽極反応は、水のみの場合下記(1)式の通り、酸素発生が進行するが、触媒、電解条件によっては、下記(2)式の通りオゾンが生成し、これを溶解したオゾン水が合成できる。
   2H2O=O2+4H++4e-   (1)
   3H2O=O3+6H++6e-   (2)
 電解法は、放電法に比較して電力原単位は劣るが、高濃度のオゾンガス及び水が容易に得られる特徴により、電子部品洗浄などの特殊分野で汎用されている。原理的に直流低圧電源を用いるため、瞬時応答性、安全性に優れており、小型のオゾンガス、オゾン水発生器としての利用が期待されている。また、用途に応じて電池駆動、発電機駆動、交流直流変換駆動が選択できる。
[陽極・基体]
 オゾンガスを効率よく発生させるには、適切な触媒と電解質を選択することが不可欠である。電極材料として、白金などの貴金属、α-二酸化鉛、β-二酸化鉛、フルオロカーボンを含浸させたグラッシーカーボン、導電性ダイヤモンドが知られている。電極基体として使用しうる材料は、長寿命と、処理表面への汚染が起きないように耐食性を有することが好ましく、Si(単結晶,多結晶)、Nb、Ta、Zr、Tiや、Mo、W、黒鉛などが使用可能であり、用途によって選択できる。
[陰極・基体]
 陰極反応は主に水素発生であり、水素に対して脆化しない電極触媒が好ましく、白金族金属、ニッケル、ステンレス、チタン、ジルコニウム、金、銀、カーボン、ダイヤモンドなどが好ましい。陰極基体としてはステンレス、ジルコニウム、カーボン、ニッケル、チタンなどの使用が望ましい。
[隔膜材料]
 隔膜としては、イオン交換膜や中性膜が使用でき、通常はイオン交換膜を使用する。隔膜は、陽極、陰極で生成した物質が反対の電極で消費されるのを防止するとともに、液の電導度の低い場合でも電解を速やかに進行させる機能を有するため、導電性の乏しい純水などを原料として利用する場合に好ましく使用できる。イオン交換膜を使用する場合、フッ素樹脂系、炭化水素樹脂系のいずれでも良いが、オゾンや過酸化物耐食性の面で前者が好ましい。膜の厚さは、0.1mmから1mmが好ましい。
[膜-電極接合体]
 電極としては、導電性ダイヤモンドを用いることが好ましく、棒状の導電性ダイヤモンド電極に帯状の隔膜部材を配置し、その上に線状の対極を配置した電解セルを使用できる。また、膜-電極接合体は、棒状又は筒状の電極、通常は陽極(以下、棒状陽極ともいう)の周囲に筒状のイオン交換膜等の隔膜を設置し、該膜の周囲に線状対極や多孔性対極、通常は線状陰極や多孔性陰極を配置し、該膜と該陽極、及び該膜と該陰極の少なくとも一部が接するように、該陰極を用いてこれらを固定し、該膜と陽極の間、更に好ましくは複数の陽極間に気液流路を有する陽極室を形成させることもでき、この膜-電極接合体は、本発明において好適なセル構造である。
 膜-電極接合体の棒状陽極の長さ及び径は要求されるオゾンの量より選択される。通常、長さは10mmから300mm、径は0.5mmから10mmが好ましい。該接合体の隔膜の直径は、中に収納する棒状陽極の直径(代表的には円柱を想定)より、0.1mmから5mmほど大きく設定する。多孔性陰極の開口率は20%から80%が好ましく、厚さは、0.1mmから2mmが好ましい。
 線状陰極(給電線)を用いる場合、その径は0.1mmから2mmの範囲であることが好ましい。これより細いと電気抵抗による電圧損失が無視できなくなり、巻き付け作業において、物理強度が不足するため切断され易くなる。また、太過ぎると電解原料や生成物の陽極室からの物質移動が抑制され、電圧の増加や電流効率の低下を招き、また、巻き付け作業が困難となる。線状陰極、又は給電線を、陽極と膜の外側に螺旋状に巻きつける場合、陰極線間隔は0.1mmから10mm程度が好適である。該膜は補強繊維により機械的強度を大きくした膜を利用することが好ましい。
 筒状の隔膜が必要な場合は先んじて成形しておくことが好適である。これは熱可塑性を有するプレカーサー樹脂を用いて、公知のチューブ成形加工により簡便に行うことができる。隔膜として補強繊維が用いられているものが好ましい。シート状のまま、筒状にした後、接着させてもよい。フッ素樹脂系イオン交換膜の場合、端部を重ねて、熱融着させるか、接着剤で固定することができる。熱融着の処理温度は、200℃から350℃、面圧は2kg/cm2から20kg/cm2、時間は1秒から1分の範囲が適切である。接合強度を上げ、より完全な接合を達成するために、補強繊維を含まないフッ素樹脂系膜の細い帯を挟んで接着すると好適である。膜表面に凹凸を設けることは、気液透過性を高めることができ、好適である。
 以上の寸法は、導電性の小さい原料水においても、少なくとも電極と膜の一部が螺旋状に密着し、電解が円滑に進行でき、かつ、陽極と膜からなる陽極室において、供給する原料水、発生する気体成分の速やかな流動が可能な容積を有する必要性の観点から、選択、設計される。
[電解セル]
 前記膜-電極接合体のうち、陽極と隔膜からなる陽極室の少なくとも一方の開口部は、原料水の経路に接続するチューブに固定されている。該チューブは、筒状の隔膜と同程度の径を有し、隔膜とチューブを接着剤で固定し、また、棒状陽極の給電端子を該チューブ内の陽極に接続させる。
 最初に電解セルから流出する水は、十分に電解されていない原料水があるため、電解セル内に存在する水量やそれ以外の配管部の容積は小さい方が好ましい。ガス化したオゾンの原料水への溶解が進行し、オゾン水の生成効率が増大する。このため、棒状陽極の最適な長さとしては、接触時間が0.1秒から10秒の範囲となるように設定することが好適である。
[原料水と生成電解水]
 精製水、純水、水道水、井戸水などを原料水として使用することができる。後の2つのように、Ca、Mgなどの金属イオンを多く含む処理対象では、陰極表面に水酸化物或いは、炭酸化物が沈殿し反応が阻害される恐れがある。また陽極表面にはシリカなどの酸化物が析出する。これを防止するための対策として、適当な時間(1分から1時間)ごとに逆電流を流すと、陰極では酸性化し、陽極ではアルカリ化するため、発生ガス及び供給水の流動により、析出物の脱離反応が容易に進行する。
 本発明では、インプラント材料に汚染が生じないように純水原料とすることが好ましい。純水を利用すると、電解性能が安定し長期間にわたって装置を利用できる。
[装置全体材質]
 原料水を貯留する容器のタンク、配管の材質は原料水により侵されない材料を選択する。特に問題がなければPE樹脂でよい。純水製造装置から直接ポンプを介して原料水を供給することが好ましい。
 以下に本発明の実施例を示す。
<実施例1>
 陽極として導電性ダイヤモンド触媒(ホウ素ドープ濃度2500ppm)を形成したニオブ製の棒(直径2mm)を、筒状のイオン交換膜(Nafion350、厚さ0.35mm、直径3mm)(Nafionは、デュポン社の登録商標である)の帯を陽極に螺旋状に巻き、白金線を前記隔膜の上から巻き、陽極-膜-陰極接合体とした。この膜-電極接合体を装着した電解セルの下部から純水を毎分40mL流した。0.5Aの電流を流したところ、螺旋状の隔膜であるため、陽極から発生する酸素、オゾン、陰極から発生する水素ガスは混合され、それらを溶解した電解水が生成し、このときのセル電圧は10V、オゾン水濃度は4ppmであった。
 直径8mm、厚さ1mmのチタン円盤表面を酸エッチング処理し、ガラスシャーレ中に保管し、室温にて9ヶ月間経過させた。酸エッチング処理は60℃、48%硫酸溶液中にて、10分間浸漬して行った。その直後、十分な量の純水中にて超音波洗浄を2回行ったものである。この9ヶ月間経過させた試料をXPSにて表面分析した。XPSにはアルバック・ファイ社製XPS-PHI5000 Versa Probeを使用した。XPSで表面分析し、試料表面のφ100μm×3nmの容積中の元素濃度を比較した。その表面を上記の4ppmのオゾン水で流水中にて10分間で洗浄した後、十分に乾燥して再分析した。その結果を表1、図4に示した。
Figure JPOXMLDOC01-appb-T000001
 New、New-2はチタン表面処理後4日後の試料、Oldは、9ヶ月後放置後の試料、それをオゾン洗浄した試料がOld+Cleanであるが、処理により表面の炭素量は、ほぼ4日後の試料の状態に戻っている。C-C結合、C(=O)-O結合は減少したが、C-O結合は増加していた。炭素化合物全体としては約30%減少していた。炭素化合物全体としては約30%減少し、その内訳はC-C結合、C(=O)-O結合は減少し、C-O結合は増加した。これはオゾン水中の活性種によりC-C結合、C(=O)-O結合は減少したものの、活性種と炭素化合物との結合によりC-O結合は増加したと考えられる。しかし、炭素化合物全体としては約30%減少し、25原子%未満の炭素含量を有する表面が得られ、オゾン水による洗浄効果があることが示唆された。ラットを使った効果確認試験を行い、接合強度に対する違いが定量的に確認できた。
<実施例2>
 陽極として導電性ダイヤモンド触媒(ホウ素ドープ濃度2500ppm)を形成したニオブ製の棒(直径2mm)を、筒状のイオン交換膜(デュポン製Nafion350、厚さ0.35mm、直径3mm)に入れ、陰極として、市販の白金線(直径0.4mm)を膜の上から螺旋状に巻き、陽極-膜-陰極接合体とした。螺旋の間隔は4mmであった。接合体の上下にチューブ(直径4mm)を接着し、直流電源からそれぞれの電極の給電線を接続し電解セルとし、陽極室の下部から純水を毎分40mL流した。1Aの電流を流したところ、このときのセル電圧は19V、オゾン水濃度は21ppmであった。
 実施例1と同様の試験を実施したところ、チタン表面の炭素化合物が50%減少し、20原子%未満の炭素含量を有する表面が得られ、オゾン水による洗浄効果があることが示唆された。ラットを使った効果確認試験を行い,接合強度に対する違いが定量的に確認できた。
 本発明は、生体親和性に優れたインプラント材料の処理方法、特に、歯科用インプラント材料の処理方法及び処理装置に適用することができる。
1:電解式オゾン水生成装置
2:インプラント親水化処理容器
3:オゾン水洗浄装置
4:電解ユニット
5:陽極
6:隔膜
7:陰極
8:ハンドピース
9:電源
10:水貯留槽
11:ポンプ
12:オゾン水生成モジュール
13:キャップ
14:フットスイッチ

Claims (10)

  1.  チタンまたはチタン合金からなる表面を粗面化したインプラント材料を、電解オゾン水中に浸漬するとともに、該電解オゾン水を常温に保持することにより、前記インプラント材料の表面の炭化物吸着による汚染を防止し、かつ、該材料表面に親水性を付与したことを特徴とする生体親和性に優れたインプラント材料の処理方法。
  2.  チタンまたはチタン合金からなる表面を粗面化したインプラント材料を、電解オゾン水中に浸漬するとともに、該電解オゾン水を常温に保持することにより、前記インプラント材料の表面の炭化物吸着による汚染を防止し、かつ、該材料表面に親水性を付与し、さらに、該インプラント材料の取付けを、インプラント材料の表面に電解オゾン水を供給しながら行うことで、前記インプラント材料の表面の炭化物吸着による汚染を防止しつつ、かつ、該材料表面に親水性を付与することを特徴とする生体親和性に優れたインプラント材料の処理方法。
  3.  処理後における前記インプラント材料の表面に吸着した炭化物の炭素含有量を、25原子%未満としたことを特徴とする請求項1又は2に記載の生体親和性に優れたインプラント材料の処理方法。
  4.  処理後における前記インプラント材料の表面に吸着した炭化物の炭素含有量を、20原子%未満としたことを特徴とする請求項1又は2に記載の生体親和性に優れたインプラント材料の処理方法。
  5.  前記インプラント材料を浸漬する電解オゾン水として、オゾン濃度が1ppmから25ppmのオゾン水を使用することを特徴とする請求項1~4のいずれか1項に記載の生体親和性に優れたインプラント材料の処理方法。
  6.  前記インプラント材料の取付けを行う際にインプラント材料の表面に供給する前記電解オゾン水として、オゾン濃度が0.3ppmから5ppmのオゾン水を使用することを特徴とする請求項2~5のいずれか1項に記載の生体親和性に優れたインプラント材料の処理方法。
  7.  インプラント材料が長期間空気と接触して生体親和性を消失したインプラント材料であることを特徴とする請求項1~5のいずれか1項に記載の生体親和性に優れたインプラント材料の処理方法。
  8.  前記インプラント材料が、歯科用インプラント材料であることを特徴とする請求項1~7のいずれか1項に記載の生体親和性に優れたインプラント材料の処理方法。
  9.  電解により電解オゾン水を生成する電解式オゾン水生成装置と、該電解式オゾン水生成装置により生成した電解オゾン水を貯蔵し、かつ、該オゾン水中に、チタンまたはチタン合金からなり表面を粗面化したインプラント材料を浸漬するとともに常温に保持するためのインプラント材料を親水化処理するインプラント親水化処理器とよりなることを特徴とする、前記インプラント材料の表面の炭化物吸着による汚染を防止し、かつ、該材料表面に親水性を付与できる生体親和性に優れたインプラント材料の処理装置。
  10.  電解により電解オゾン水を生成する電解式オゾン水生成装置と、該電解式オゾン水生成装置により生成した電解オゾン水を貯蔵し、かつ、該オゾン水中に、チタンまたはチタン合金からなり表面を粗面化したインプラント材料を浸漬するとともに常温に保持するためのインプラント材料を親水化処理するインプラント親水化処理器と、インプラント材料の取付けを行う際に、該インプラント材料の表面に電解オゾン水を供給するためのオゾン水洗浄装置とよりなることを特徴とする、前記インプラント材料の表面の炭化物吸着による汚染を防止し、かつ、該材料表面に親水性を付与できる生体親和性に優れたインプラント材料の処理装置。
PCT/JP2013/071397 2012-08-13 2013-08-07 生体親和性に優れたインプラント材料の処理方法及び処理装置 WO2014027595A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13879455.7A EP2883553B1 (en) 2012-08-13 2013-08-07 Processing method and processing device for implant material having excellent biocompatibility
CN201380043300.1A CN104582746A (zh) 2012-08-13 2013-08-07 生物亲和性优异的植入材料的处理方法和处理装置
KR1020157006443A KR20150042843A (ko) 2012-08-13 2013-08-07 생체 친화성이 우수한 임플란트 재료의 처리 방법 및 처리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-179257 2012-08-13
JP2012179257A JP5616405B2 (ja) 2012-08-13 2012-08-13 生体親和性に優れたインプラント材料の処理方法

Publications (1)

Publication Number Publication Date
WO2014027595A1 true WO2014027595A1 (ja) 2014-02-20

Family

ID=50285311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071397 WO2014027595A1 (ja) 2012-08-13 2013-08-07 生体親和性に優れたインプラント材料の処理方法及び処理装置

Country Status (6)

Country Link
EP (1) EP2883553B1 (ja)
JP (1) JP5616405B2 (ja)
KR (1) KR20150042843A (ja)
CN (1) CN104582746A (ja)
TW (1) TW201416493A (ja)
WO (1) WO2014027595A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214632A (zh) * 2021-12-21 2022-03-22 淮安钛谷科技有限公司 一种锐型生物钛表面处理装置及其处理方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111588506B (zh) * 2020-01-02 2022-01-25 南京医科大学 一种含维生素c的钛种植体存储液的应用
WO2022138924A1 (ja) * 2020-12-25 2022-06-30 株式会社エー・アイ・システムプロダクト チタン又はチタン合金の表面処理方法
JP7083557B1 (ja) * 2020-12-25 2022-06-13 株式会社エー・アイ・システムプロダクト チタン又はチタン合金の表面処理方法
CN115041462B (zh) * 2022-07-15 2023-09-01 江苏创英医疗器械有限公司 一种牙种植体表面清洗工艺

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388576A1 (de) 1989-03-23 1990-09-26 Institut Straumann Ag Metallisches Implantat
JP2003226987A (ja) * 2002-02-04 2003-08-15 Tosoh Corp チタン酸化物の溶解法
JP2003239088A (ja) * 2002-02-18 2003-08-27 Tosoh Corp チタン酸化物の溶解方法
JP2005505352A (ja) 2001-10-11 2005-02-24 シュトラウマン・ホールディング・アクチェンゲゼルシャフト 骨親和性インプラント
JP2005095584A (ja) * 2003-09-02 2005-04-14 National Institute Of Advanced Industrial & Technology 生体親和性インプラント材及びその製造方法
JP2006346203A (ja) 2005-06-16 2006-12-28 Permelec Electrode Ltd 殺菌方法及び電解水噴出装置
JP2007125548A (ja) * 2005-10-05 2007-05-24 Nippon Soda Co Ltd 基材をオゾン水又は過酸化水素水で洗浄する工程を含む、有機薄膜の製造方法
JP2008073604A (ja) 2006-09-20 2008-04-03 Permelec Electrode Ltd 膜−電極接合体、これを用いた電解ユニット、電解水噴出装置及び殺菌方法
JP2009138262A (ja) 2007-11-15 2009-06-25 Permelec Electrode Ltd 膜−電極接合体、これを用いる電解セル、電解水スプレー装置及び殺菌方法
JP2011079502A (ja) * 2009-10-09 2011-04-21 Shinmaywa Industries Ltd 荷受台昇降装置
JP2012000119A (ja) 2010-06-14 2012-01-05 Ushio Inc 人工歯根の有機汚染物除去装置
JP2012000120A (ja) 2010-06-14 2012-01-05 Ushio Inc 人工歯根の有機汚染物除去装置
JP2012005658A (ja) 2010-06-24 2012-01-12 Ebara Jitsugyo Co Ltd 歯科用オゾン水洗浄装置
JP2012075549A (ja) 2010-09-30 2012-04-19 Ushio Inc 生体インプラント用洗浄処理装置
JP2012075548A (ja) 2010-09-30 2012-04-19 Ushio Inc デンタルインプラント用光照射装置
JP2012075749A (ja) * 2010-10-04 2012-04-19 Olympia:Kk 遊技機
JP2012107270A (ja) * 2010-11-15 2012-06-07 Citizen Finetech Miyota Co Ltd オゾン水による金属表面の改質方法
WO2013081290A1 (ko) * 2011-11-28 2013-06-06 오스템임플란트 주식회사 치과용 임플란트 표면의 친수성 개질방법 및 친수성 표면 유지를 위한 임플란트 보관 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1010160C1 (nl) * 1998-09-23 2000-03-24 Bart Schafrat Hulpmiddelen voor toepassing bij desinfecterende behandelingen en werkwijze voor het reinigen van tandheelkundige implantologische voorzieningen.
JP2001079502A (ja) * 1999-09-10 2001-03-27 Seiko Epson Corp オゾン水洗浄方法及び装置
JP4825955B2 (ja) * 2003-06-13 2011-11-30 独立行政法人産業技術総合研究所 生体インプラント材及びその作製方法
US20090326674A1 (en) * 2008-06-30 2009-12-31 Depuy Products, Inc. Open Celled Metal Implants With Roughened Surfaces and Method for Roughening Open Celled Metal Implants

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388576A1 (de) 1989-03-23 1990-09-26 Institut Straumann Ag Metallisches Implantat
JPH0347264A (ja) 1989-03-23 1991-02-28 Inst Straumann Ag 金属製移植片
JP2005505352A (ja) 2001-10-11 2005-02-24 シュトラウマン・ホールディング・アクチェンゲゼルシャフト 骨親和性インプラント
JP2003226987A (ja) * 2002-02-04 2003-08-15 Tosoh Corp チタン酸化物の溶解法
JP2003239088A (ja) * 2002-02-18 2003-08-27 Tosoh Corp チタン酸化物の溶解方法
JP2005095584A (ja) * 2003-09-02 2005-04-14 National Institute Of Advanced Industrial & Technology 生体親和性インプラント材及びその製造方法
JP2006346203A (ja) 2005-06-16 2006-12-28 Permelec Electrode Ltd 殺菌方法及び電解水噴出装置
JP2007125548A (ja) * 2005-10-05 2007-05-24 Nippon Soda Co Ltd 基材をオゾン水又は過酸化水素水で洗浄する工程を含む、有機薄膜の製造方法
JP2008073604A (ja) 2006-09-20 2008-04-03 Permelec Electrode Ltd 膜−電極接合体、これを用いた電解ユニット、電解水噴出装置及び殺菌方法
JP2009138262A (ja) 2007-11-15 2009-06-25 Permelec Electrode Ltd 膜−電極接合体、これを用いる電解セル、電解水スプレー装置及び殺菌方法
JP2011079502A (ja) * 2009-10-09 2011-04-21 Shinmaywa Industries Ltd 荷受台昇降装置
JP2012000119A (ja) 2010-06-14 2012-01-05 Ushio Inc 人工歯根の有機汚染物除去装置
JP2012000120A (ja) 2010-06-14 2012-01-05 Ushio Inc 人工歯根の有機汚染物除去装置
JP2012005658A (ja) 2010-06-24 2012-01-12 Ebara Jitsugyo Co Ltd 歯科用オゾン水洗浄装置
JP2012075549A (ja) 2010-09-30 2012-04-19 Ushio Inc 生体インプラント用洗浄処理装置
JP2012075548A (ja) 2010-09-30 2012-04-19 Ushio Inc デンタルインプラント用光照射装置
JP2012075749A (ja) * 2010-10-04 2012-04-19 Olympia:Kk 遊技機
JP2012107270A (ja) * 2010-11-15 2012-06-07 Citizen Finetech Miyota Co Ltd オゾン水による金属表面の改質方法
WO2013081290A1 (ko) * 2011-11-28 2013-06-06 오스템임플란트 주식회사 치과용 임플란트 표면의 친수성 개질방법 및 친수성 표면 유지를 위한 임플란트 보관 방법

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
H. P. BOEHM: "Acidic and Basic Properties of Hydroxylated Metal Oxide Surfaces", DISCUSSIONS FARADAY SOCIETY, vol. 52, 1971, pages 264 - 275
HIROSHI ET AL: "OZONE-SUI RIYO NO GUIDELINE SAKUTEI NI MUKETE: DENTAL IMPLANT NI OKERU ONZONE-SUI TEKIYOREI", BULLTIN OF JAPAN RESEARCH SOCIETY FOR MEDICAL AND HYGIENIC USE OF OZONE, vol. 19, no. 2, 31 May 2012 (2012-05-31), pages 58 - 63, XP008176870 *
HIROSHI ET AL: "SHIKA RINSHO NI OKERU OZONE-SUI NO RIYA OZONE-SUI TO DENKAISUI TONO HIKAKU TO SONO KAIHATSU KEII", BULLTIN OF JAPAN RESEARCH SOCIETY FOR MEDICAL AND HYGIENIC USE OF OZONE, vol. 19, no. 1, 19 February 2012 (2012-02-19), pages 18 - 26, XP008176871 *
HIROSHI ET AL: "TITANIUM HYMOMEN NO TANSO KAGOBUTSU NI TAISURU OZONE-SUI SENJO NO KOKA", JOURNAL OF JAPANESE SOCIETY OF ORAL IMPLANTOLOGY, vol. 25, 10 September 2012 (2012-09-10), pages 171 - 181, XP008176869 *
REI KAWAMURA ET AL: "TITANIUM IMPLANT TAIHYOMEN NO TANSO KAGOBITSU NI TAISURU OZONE-SUI SENJO NO KOKA", JAPAN RESEARCH SOCIETY FOR MEDICAL AND HYGIENIC USE OF OZONE, 21 April 2013 (2013-04-21), pages 13 - 15, XP008176872 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214632A (zh) * 2021-12-21 2022-03-22 淮安钛谷科技有限公司 一种锐型生物钛表面处理装置及其处理方法

Also Published As

Publication number Publication date
EP2883553B1 (en) 2018-12-12
TW201416493A (zh) 2014-05-01
CN104582746A (zh) 2015-04-29
EP2883553A1 (en) 2015-06-17
JP2014036716A (ja) 2014-02-27
EP2883553A4 (en) 2016-03-23
KR20150042843A (ko) 2015-04-21
JP5616405B2 (ja) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5616405B2 (ja) 生体親和性に優れたインプラント材料の処理方法
JP5544181B2 (ja) オゾン微細気泡の電解合成方法
EP1833515B1 (en) Device and method for instrument sterilization
JP4410155B2 (ja) 電解水噴出装置
TWI354581B (en) Membrane-electrode assembly, electrolytic unit usi
CN101531411A (zh) 气体扩散电极体系电化学消毒的方法
JP2009138262A (ja) 膜−電極接合体、これを用いる電解セル、電解水スプレー装置及び殺菌方法
JP2008127583A (ja) 膜−電極接合体、これを用いた電解ユニット、電解水噴出装置及び殺菌方法
JPH0960931A (ja) 超音波加湿殺菌装置
TWI472349B (zh) 寄生於養殖魚的外部寄生蟲之驅除方法
JP2016513145A (ja) インプラント部品洗浄用治療液
KR20090030783A (ko) 저수조 살균장치를 포함하는 정수기 및 정수기의 저수조살균장치
JP2011229405A5 (ja)
CN111498956A (zh) 一种牙科综合治疗台供水系统及供水方法
CN201046922Y (zh) 电解水电杀菌器
WO2013002287A1 (ja) 電解水生成装置、およびそれを含む歯科用診療装置、並びに歯科用診療装置の給水管路内を殺菌する方法
JP5823102B2 (ja) 歯科用オゾン水洗浄装置及び歯科用のオゾン水による洗浄方法
JP2004195346A (ja) 電気化学的水処理方法
KR101951448B1 (ko) 농도 조절이 가능한 살균수 생성장치
CN110665032A (zh) 针对牙科手机杀菌的高浓度臭氧水消毒器以及消毒方法
JP2004313780A (ja) 過酢酸の電解合成方法及び殺菌洗浄方法及び装置
JPWO2018025287A1 (ja) 歯科用レーザー治療装置
CN101250738A (zh) 钛合金表面抗凝血氧化钛薄膜的光电催化氧化制备方法
CN110240334A (zh) 医疗废水消毒杀菌装置
CN220608720U (zh) 蓝钻消毒模组、冲牙器及电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879455

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013879455

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157006443

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201501448

Country of ref document: ID