WO2014021272A1 - 非水電解液及びそれを用いた蓄電デバイス - Google Patents

非水電解液及びそれを用いた蓄電デバイス Download PDF

Info

Publication number
WO2014021272A1
WO2014021272A1 PCT/JP2013/070504 JP2013070504W WO2014021272A1 WO 2014021272 A1 WO2014021272 A1 WO 2014021272A1 JP 2013070504 W JP2013070504 W JP 2013070504W WO 2014021272 A1 WO2014021272 A1 WO 2014021272A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
group
lithium
methyl
carbon atoms
Prior art date
Application number
PCT/JP2013/070504
Other languages
English (en)
French (fr)
Inventor
安部 浩司
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2014528149A priority Critical patent/JP6115569B2/ja
Priority to EP13825021.2A priority patent/EP2882030B1/en
Priority to CN201380040186.7A priority patent/CN104508896B/zh
Priority to US14/417,670 priority patent/US9966632B2/en
Priority to KR1020157002018A priority patent/KR20150039751A/ko
Publication of WO2014021272A1 publication Critical patent/WO2014021272A1/ja
Priority to US15/917,068 priority patent/US20180198166A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a nonaqueous electrolytic solution capable of improving electrochemical properties at high temperatures and an electricity storage device using the same.
  • a lithium secondary battery is mainly composed of a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium, and a non-aqueous electrolyte composed of a lithium salt and a non-aqueous solvent.
  • the non-aqueous solvent include ethylene carbonate (EC) and propylene. Carbonates such as carbonate (PC) are used.
  • EC ethylene carbonate
  • PC propylene
  • Carbonates such as carbonate
  • negative electrodes of lithium secondary batteries lithium metal, metal compounds capable of inserting and extracting lithium (metal simple substance, oxide, alloy with lithium, etc.) and carbon materials are known.
  • non-aqueous electrolyte secondary batteries using carbon materials that can occlude and release lithium such as coke and graphite (artificial graphite, natural graphite), are widely used.
  • materials capable of occluding and releasing lithium such as LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4 and the like used as the positive electrode material, store lithium and electrons at a noble voltage of 3.5 V or more on the basis of lithium. Because of the release, many solvents have the potential to undergo oxidative decomposition, especially at high temperatures, and some of the solvent in the electrolyte solution is oxidatively decomposed on the positive electrode regardless of the type of positive electrode material. However, the deposition of decomposition products and the generation of gas hinder the movement of lithium ions, resulting in a problem that battery characteristics such as cycle characteristics deteriorate.
  • Patent Document 1 when a non-aqueous electrolyte secondary battery using an electrolyte containing 1,3-dioxane is stored in a charged state, the positive electrode active material and the non-aqueous electrolyte react to expand the battery. It is possible to prevent the battery capacity of the non-aqueous electrolyte secondary battery from being reduced, and Patent Document 2 discloses that an electrolyte containing triethylphosphonoacetate can suppress gas after continuous charging. It has been shown to be effective in high temperature storage properties. Patent Document 3 shows that an electrolytic solution containing 1,3-dioxane and a chain sulfonic acid ester is effective for cycle characteristics and high-temperature storage characteristics.
  • the present invention provides a nonaqueous electrolytic solution capable of improving electrochemical characteristics at high temperatures and reducing not only the capacity retention rate after a high temperature cycle test but also the rate of increase in electrode thickness, and an electricity storage device using the same.
  • the issue is to provide.
  • the present inventors examined in detail about the performance of the non-aqueous electrolyte solution of the said patent document.
  • the battery of Patent Document 1 can prevent the battery from expanding due to suppression of gas generation, it cannot be said that the problem of reducing the increase rate of the electrode thickness is sufficiently satisfied.
  • the non-aqueous electrolytes of Patent Documents 2 and 3 can be sufficiently satisfied with respect to the problem of reducing the increase rate of the electrode thickness although the capacity retention rate after the high-temperature cycle can be improved. There was no actual situation.
  • the present inventors contain 1,3-dioxane, and further have a specific phosphate compound, a cyclic sulfonate compound, and allyl hydrogen.
  • a specific phosphate compound a cyclic sulfonate compound
  • allyl hydrogen By adding at least one selected from cyclic acid anhydrides containing side chains to the non-aqueous electrolyte, it is possible to improve the capacity retention rate after a high temperature cycle and reduce the increase rate of the electrode thickness.
  • the present invention has been completed by finding out what can be done.
  • the present invention provides the following (1) and (2).
  • a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent 0.001 to 5% by mass of 1,3-dioxane is contained in the non-aqueous electrolyte, and the following general formula (I) 0.001 to 5% by mass of at least one selected from a phosphoric acid ester compound represented by formula, a cyclic sulfonic acid ester compound represented by general formula (II), and a cyclic acid anhydride containing a side chain having allyl hydrogen
  • a non-aqueous electrolyte characterized by containing containing.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms, or a halogenated alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom is substituted with a halogen atom;
  • R 3 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkynyl group having 3 to 6 carbon atoms, and
  • R 4 and R 5 each independently represents a hydrogen atom or a halogen atom. Or an alkyl group having 1 to 4 carbon atoms.
  • R 6 and R 7 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, or a halogen atom; , —CH (OR 8 ) — or —C ( ⁇ O) —, wherein R 8 is a formyl group, an alkylcarbonyl group having 2 to 7 carbon atoms, an alkenylcarbonyl group having 3 to 7 carbon atoms, or 3 to 3 carbon atoms.
  • 7 represents an alkynylcarbonyl group having 7 or an arylcarbonyl group having 7 to 13 carbon atoms, and R 8 may have at least one hydrogen atom substituted with a halogen atom.
  • the non-aqueous electrolyte contains 0.001 to 5% by mass of 1,3-dioxane.
  • the phosphoric acid ester compound represented by the general formula (I) the cyclic sulfonic acid ester compound represented by the general formula (II), and a cyclic acid anhydride containing a side chain having allyl hydrogen are selected.
  • An electrical storage device containing 0.001 to 5 mass% of at least one kind.
  • capacitance maintenance factor after a high temperature cycle can be improved, and electrical storage devices, such as a lithium battery using the nonaqueous electrolyte solution which reduces the increase rate of electrode thickness, and it can be provided. .
  • the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, and contains 0.001 to 5% by mass of 1,3-dioxane in the non-aqueous electrolyte.
  • the reason why the non-aqueous electrolyte of the present invention can greatly improve the electrochemical characteristics in a wide temperature range is not clear, but is considered as follows.
  • the 1,3-dioxane used in the present invention decomposes on the negative electrode to form a film, but by itself, by repeatedly charging and discharging under high temperature conditions, the film grows by dissolution and re-formation, and the thickness of the electrode is reduced. It will increase greatly.
  • a phosphoric acid ester compound represented by general formula (I) a cyclic sulfonic acid ester compound represented by general formula (II)
  • the content of 1,3-dioxane is 0.001 to 5% by mass in the non-aqueous electrolyte. If the content is 5% by mass or less, a film is excessively formed on the electrode and the high-temperature cycle characteristics are less likely to be deteriorated. If the content is 0.001% by mass or more, the film is sufficiently formed, and the temperature is high. The effect of improving cycle characteristics is enhanced.
  • the content is preferably 0.01% by mass or more, and more preferably 0.1% by mass or more in the nonaqueous electrolytic solution.
  • the upper limit is preferably 4% by mass or less, and more preferably 2% by mass or less.
  • the phosphate ester compound contained in the non-aqueous electrolyte of the present invention is represented by the following general formula (I).
  • R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms, or a halogenated alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom is substituted with a halogen atom;
  • R 3 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkynyl group having 3 to 6 carbon atoms, and
  • R 4 and R 5 each independently represents a hydrogen atom or a halogen atom. Or an alkyl group having 1 to 4 carbon atoms.
  • R 1 and R 2 include a straight chain alkyl group such as methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, isopropyl group, sec-butyl.
  • Fluorine in which part of hydrogen atoms such as branched chain alkyl groups such as tert-butyl and tert-amyl groups, fluoromethyl groups and 2,2,2-trifluoroethyl groups are substituted with fluorine atoms
  • An alkyl group etc. are mentioned.
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group, or a 2,2,2-trifluoroethyl group is preferable, and a methyl group or an ethyl group is more preferable.
  • R 3 include linear alkyl groups such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl, isopropyl, sec-butyl, tert -Branched alkyl groups such as butyl group, tert-amyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 4-pentenyl group, 5-hexenyl group, 2-methyl-2-propenyl group An alkenyl group such as 3-methyl-2-butenyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 4-pentynyl group, 5-hexynyl group, 1-methyl-2-propynyl group, 1, Examples thereof include alkynyl groups such as 1-dimethyl-2-propynyl group.
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a 2-propenyl group, a 2-butenyl group, a 2-propynyl group, a 2-butynyl group, or a 1-methyl-2-propynyl group is preferable.
  • a methyl group, an ethyl group, a 2-propenyl group, a 2-propynyl group, or a 1-methyl-2-propynyl group is more preferable.
  • R 4 and R 5 include a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, an ethyl group, an n-propyl group, an n-butyl group and other linear alkyl groups, an isopropyl group, and a sec-butyl group.
  • Preferred examples include branched chain alkyl groups such as tert-butyl group.
  • a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, an n-propyl group, or an isopropyl group is preferable, and a hydrogen atom, a fluorine atom, a methyl group, or an ethyl group is more preferable.
  • Examples of the phosphate ester compound represented by the general formula (I) include the following compounds.
  • the structures of I-2, I-4 to I-6, I-14, I-18, I-21 to I-40, I-42 to I-50, and I-52 to I-54 Preferred compounds include ethyl 2- (dimethoxyphosphoryl) acetate (Compound I-2), 2-propynyl 2- (dimethoxyphosphoryl) acetate (Compound I-4), methyl 2- (diethoxyphosphoryl) acetate (Compound I -5), ethyl 2- (diethoxyphosphoryl) acetate (compound I-6), 2-propenyl 2- (diethoxyphosphoryl) acetate (compound I-14), 2-propynyl 2- (diethoxyphosphoryl) acetate ( Compound I-18), 1-methyl-2-propynyl 2- (diethoxyphosphoryl) acetate (Compound I-21), 2-propini 2- (dimethoxyphosphoryl) propanoate (compound I-30), 2-propynyl 2- (dimethoxyphosphoryl) propanoate (compound I-34
  • the cyclic sulfonate compound contained in the non-aqueous electrolyte of the present invention is represented by the following general formula (II).
  • R 6 and R 7 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, or a halogen atom; , —CH (OR 8 ) — or —C ( ⁇ O) —, wherein R 8 is a formyl group, an alkylcarbonyl group having 2 to 7 carbon atoms, an alkenylcarbonyl group having 3 to 7 carbon atoms, or 3 to 3 carbon atoms.
  • 7 represents an alkynylcarbonyl group having 7 or an arylcarbonyl group having 7 to 13 carbon atoms, and R 8 may have at least one hydrogen atom substituted with a halogen atom.
  • R 6 and R 7 are each preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, or a halogen atom, and a hydrogen atom or at least one hydrogen atom is More preferred is an alkyl group having 1 or 2 carbon atoms which may be substituted with a halogen atom.
  • R 8 is preferably a formyl group, an alkylcarbonyl group having 2 to 7 carbon atoms, or an alkenylcarbonyl group having 3 to 5 carbon atoms, more preferably a formyl group or an alkylcarbonyl group having 2 to 5 carbon atoms.
  • Examples of the cyclic sulfonate compound represented by the general formula (II) include the following compounds.
  • the cyclic acid anhydride containing a side chain having allyl hydrogen contained in the nonaqueous electrolytic solution of the present invention contains a cyclic acid anhydride body and a side chain having allyl hydrogen bonded thereto.
  • the cyclic acid anhydride body is preferably a cyclic acid anhydride having 4 to 5 carbon atoms, and preferably succinic anhydride.
  • the side chain having allyl hydrogen is preferably a linear or branched hydrocarbon group having 3 to 12 carbon atoms, more preferably 3 to 10 carbon atoms.
  • "allylic hydrogen "Having” means having at least one of the two hydrogens.
  • the number of allyl hydrogens is preferably 1 to 4, more preferably 1 or 2, and still more preferably 2.
  • allyl carbon is present between the double bond and the cyclic acid anhydride, and the direct bond is formed between both the double bond and the cyclic acid anhydride. More preferably.
  • the number of hydrogen atoms directly bonded to the double bond in the side chain is preferably 2 or 3, and more preferably 3, that is, a terminal double bond. This is because by including allyl hydrogen and a terminal double bond, it is considered that a strong composite film can be easily formed quickly by using together with 1,3-dioxane.
  • the side chain having allyl hydrogen may be cyclic, straight chain, or branched, and may be substituted with an alkyl group, an aryl group, or a group containing a hetero atom.
  • Specific examples of the side chain having allyl hydrogen include allyl group, 3-buten-2-yl group, 1-penten-3-yl group, 1-hexen-3-yl group, and 1-hepten-3-yl group.
  • allyl group 1-penten-3-yl group, 1-hexen-3-yl group, 1-hepten-3-yl group, 1-octen-3-yl group, 1-nonene-3- Yl group, 3-buten-2-yl group, 2-methylallyl group, 3-methyl-3-buten-2-yl group are preferred, allyl water group, 3-buten-2-yl group, 2-methylallyl group, A 3-methyl-3-buten-2-yl group is more preferred.
  • cyclic acid anhydride examples include 2-allyl succinic anhydride, 2- (3-buten-2-yl) succinic anhydride, 2- (1-penten-3-yl) succinic anhydride, 2- (1-hexen-3-yl) succinic anhydride, 2- (1-hepten-3-yl) succinic anhydride, 2- (1-octen-3-yl) succinic anhydride, 2- (1-nonene- 3-yl) succinic anhydride, 2- (2-buten-1-yl) succinic anhydride, 2- (3-methyl-2-buten-1-yl) succinic anhydride, 2- (2,3-dimethyl) -2-buten-1-yl) succinic anhydride, 2- (4-methyl-1-penten-3-yl) succinic anhydride, 2- (4-methyl-1-hexen-3-yl) succinic anhydride 2- (4,4-dimethyl-1-penten-3-yl) succinic anhydride
  • 2-allyl succinic anhydride 2- (1-penten-3-yl) succinic anhydride, 2- (1-hexen-3-yl) succinic anhydride, 2- (1-heptene-3- Yl) succinic anhydride, 2- (1-octen-3-yl) succinic anhydride, 2- (1-nonen-3-yl) succinic anhydride, 2- (3-buten-2-yl) succinic anhydride , 2- (2-methylallyl) succinic anhydride, and 2- (3-methyl-3-buten-2-yl) succinic anhydride are more preferable, and 2-allyl succinic anhydride, 2- ( More preferred is at least one selected from 3-buten-2-yl) succinic anhydride, 2- (2-methylallyl) succinic anhydride, and 2- (3-methyl-3-buten-2-yl) succinic anhydride. .
  • the phosphoric acid ester compound represented by the general formula (I), the cyclic sulfonic acid ester compound represented by the general formula (II), and allyl hydrogen contained in the nonaqueous electrolytic solution The content of at least one selected from cyclic acid anhydrides containing a side chain having a value of 0.001 to 5% by mass in the non-aqueous electrolyte. If the content is 5% by mass or less, a film is excessively formed on the electrode and the high-temperature cycle characteristics are less likely to be deteriorated. If the content is 0.001% by mass or more, the film is sufficiently formed, and the temperature is high. The effect of improving cycle characteristics is enhanced.
  • the content is preferably 0.01% by mass or more, more preferably 0.1% by mass or more in the non-aqueous electrolyte, and the upper limit thereof is preferably 4% by mass or less, more preferably 2% by mass or less.
  • the mixing ratio (weight ratio) of the cyclic acid anhydride having a side chain having allyl hydrogen: 1,3-dioxane is preferably 2:98 to 80:20, more preferably 5:95 to 40:60. 10:90 to 30:70 is more preferable.
  • a phosphoric acid ester compound represented by the general formula (I) a cyclic sulfonic acid ester compound represented by the general formula (II), and a cyclic acid containing a side chain having allyl hydrogen
  • the capacity retention rate after a high-temperature cycle can be improved, and the rate of increase in electrode thickness can be increased. It produces a unique effect of reducing.
  • Nonaqueous solvent examples include one or more selected from cyclic carbonates, chain esters, ethers, amides, sulfones, and lactones, and at least one cyclic carbonate. It is preferable that both a cyclic carbonate and a chain ester are included.
  • chain ester is used as a concept including chain carbonate and chain carboxylic acid ester.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or Cis-4,5-difluoro-1,3-dioxolan-2-one (hereinafter collectively referred to as “DFEC”), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and 4-ethynyl-1 , 3-dioxolan-2-one (EEC), ethylene carbonate, propylene carbonate, 4-fluoro-1,3-dioxolan-2-one, vinylene carbonate and 4-ethynyl- One selected from 1,3-dioxolan-2-one (EEC) Or two or more is more preferable.
  • the carbon-carbon double bond, unsaturated bond such as carbon-carbon triple bond, or cyclic carbonate having a fluorine atom because the low-temperature load characteristics after high-temperature charge storage are further improved. More preferably, both a cyclic carbonate having an unsaturated bond such as a carbon double bond or a carbon-carbon triple bond and a cyclic carbonate having a fluorine atom are included.
  • VC, VEC or EEC is more preferable
  • the cyclic carbonate having a fluorine atom FEC or DFEC is more preferable.
  • the content of the cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond is preferably 0.07% by volume or more, more preferably 0.8%, based on the total volume of the nonaqueous solvent. 2 vol% or more, more preferably 0.7 vol% or more, and the upper limit thereof is preferably 7 vol% or less, more preferably 4 vol% or less, further preferably 2.5 vol% or less. It is preferable because the stability of the coating during storage at high temperatures can be further increased without impairing the Li ion permeability at low temperatures.
  • the content of the cyclic carbonate having a fluorine atom is preferably 0.07% by volume or more, more preferably 4% by volume or more, still more preferably 7% by volume or more, based on the total volume of the nonaqueous solvent.
  • the upper limit is preferably 35% by volume or less, more preferably 25% by volume or less, and even more preferably 15% by volume or less, and the stability of the coating during storage at a high temperature is further reduced without impairing the Li ion permeability at low temperatures. Can be increased.
  • the carbon content relative to the content of the cyclic carbonate having a fluorine atom is preferably 0.2% by volume or more, more preferably 3% by volume or more, and further preferably 7% by volume or more.
  • the upper limit is preferably 40% by volume or less, more preferably 30% by volume or less, and even more preferably 15% by volume or less, and the coating during further high-temperature storage without impairing the Li ion permeability at low temperatures. It is particularly preferable because the stability of the can be increased. Moreover, since the resistance of the film formed on an electrode becomes small when a nonaqueous solvent contains both ethylene carbonate, propylene carbonate, or both ethylene carbonate and propylene carbonate, it is preferable.
  • the content of ethylene carbonate, propylene carbonate, or both ethylene carbonate and propylene carbonate is preferably at least 3% by volume, more preferably at least 5% by volume, even more preferably at least 7% by volume, based on the total volume of the nonaqueous solvent.
  • the upper limit thereof is preferably 45% by volume or less, more preferably 35% by volume or less, and still more preferably 25% by volume or less.
  • solvents may be used singly, and when used in combination of two or more, it is preferable because electrochemical characteristics in a wide temperature range are further improved, and it is particularly preferable to use a combination of three or more.
  • Preferred combinations of these cyclic carbonates include EC and PC, EC and VC, PC and VC, VC and FEC, EC and FEC, PC and FEC, FEC and DFEC, EC and DFEC, PC and DFEC, VC and DFEC , VEC and DFEC, VC and EEC, EC and EEC, EC and PC and VC, EC and PC and FEC, EC and VC and FEC, EC and VC and VEC, EC and VC and EEC, EC and EEC and FEC, PC And VC and FEC, EC and VC and DFEC, PC and VC and DFEC, EC and PC and VC and FEC, EC and PC and VC and FEC, EC and PC and VC and
  • chain esters examples include asymmetric chain carbonates such as methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate, dimethyl carbonate (DMC), and diethyl carbonate ( DEC), symmetric chain carbonates such as dipropyl carbonate and dibutyl carbonate, pivalate esters such as methyl pivalate, ethyl pivalate, and propyl pivalate, chains such as methyl propionate, ethyl propionate, methyl acetate, and ethyl acetate Preferred examples include carboxylic acid esters.
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MIPC methyl isopropyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • symmetric chain carbonates such as dipropyl carbonate
  • a negative electrode When using a negative electrode whose charging potential in a fully charged state is less than 1 V on the basis of Li, among the chain esters, dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, methyl propionate, acetic acid
  • a chain ester having a methyl group selected from methyl and ethyl acetate is preferable, and a chain carbonate having a methyl group is particularly preferable. This is because decomposition at the negative electrode hardly proceeds and capacity deterioration can be suppressed.
  • the chain carbonate which has a methyl group it is preferable to use 2 or more types. Further, it is more preferable that both a symmetric chain carbonate and an asymmetric chain carbonate are contained, and it is more preferable that the content of the symmetric chain carbonate is more than that of the asymmetric chain carbonate.
  • the content of the chain ester is not particularly limited, but it is preferably used in the range of 60 to 90% by volume with respect to the total volume of the nonaqueous solvent. If the content is 60% by volume or more, the effect of lowering the viscosity of the non-aqueous electrolyte is sufficiently obtained, and if it is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte is sufficiently increased, and in a wide temperature range.
  • the above-mentioned range is preferable since the electrochemical characteristics of the above are improved.
  • chain carbonate it is preferable to use 2 or more types.
  • both a symmetric chain carbonate and an asymmetric chain carbonate are contained, and it is more preferable that the content of the symmetric chain carbonate is more than that of the asymmetric chain carbonate.
  • the volume ratio of the symmetric chain carbonate in the chain carbonate is preferably 51% by volume or more, and more preferably 55% by volume or more. As an upper limit, 95 volume% or less is more preferable, and it is still more preferable in it being 85 volume% or less. It is particularly preferred that the symmetric chain carbonate contains dimethyl carbonate.
  • the asymmetric chain carbonate preferably has a methyl group, and methyl ethyl carbonate is particularly preferable. The above case is preferable because the high-temperature cycle characteristics are further improved.
  • the ratio between the cyclic carbonate and the chain ester is preferably 10:90 to 45:55, and 15:85 to 40:55 in terms of the cyclic carbonate: chain ester (volume ratio) from the viewpoint of improving electrochemical characteristics in a wide temperature range. 60 is more preferable, and 20:80 to 35:65 is still more preferable.
  • non-aqueous solvents include cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2- Preferred examples include one or more selected from chain ethers such as dibutoxyethane, amides such as dimethylformamide, sulfones such as sulfolane, lactones such as ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -angelicalactone. .
  • Electrode salt Preferred examples of the electrolyte salt used in the present invention include the following lithium salts.
  • (Lithium salt) Preferred examples of the electrolyte salt used in the present invention include the following lithium salts.
  • the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , Li 2 PO 3 F, LiBF 4 , LiClO 4 , LiSO 3 F, LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2.
  • LiPF 6 , LiBF 4 , LiPO 2 F 2 , LiSO 3 F, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 F) 2 bis [oxalate-O, O
  • the concentration of the lithium salt is usually preferably 0.3 M or more, more preferably 0.7 M or more, and further preferably 1.1 M or more with respect to the non-aqueous solvent.
  • the upper limit is preferably 2.5M or less, more preferably 2.0M or less, and still more preferably 1.6M or less.
  • the non-aqueous electrolyte of the present invention is, for example, mixed with the above-mentioned non-aqueous solvent, and is represented by the general formula (I) with 1,3-dioxane with respect to the electrolyte salt and the non-aqueous electrolyte. It can be obtained by adding at least one selected from a phosphoric acid ester compound, a cyclic sulfonic acid ester compound represented by the general formula (II), and a cyclic acid anhydride containing a side chain having allyl hydrogen. At this time, it is preferable that the compound added to the non-aqueous solvent and the non-aqueous electrolyte to be used is one that is purified in advance and has as few impurities as possible within a range that does not significantly reduce the productivity.
  • the nonaqueous electrolytic solution of the present invention can be used for the following first and second electric storage devices, and as the nonaqueous electrolyte, not only a liquid but also a gelled one can be used. . Furthermore, the non-aqueous electrolyte of the present invention can be used for a solid polymer electrolyte. Among these, it is preferable to use for the 1st electrical storage device (namely, for lithium batteries) or the 2nd electrical storage device (namely, for lithium ion capacitors) which uses lithium salt for electrolyte salt, It uses for lithium batteries More preferably, it is most suitable to be used for a lithium secondary battery.
  • the lithium battery of the present invention is a general term for a lithium primary battery and a lithium secondary battery.
  • the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
  • the lithium battery of the present invention comprises the nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a nonaqueous solvent.
  • Components other than the non-aqueous electrolyte, such as a positive electrode and a negative electrode can be used without particular limitation.
  • a composite metal oxide with lithium containing one or more selected from cobalt, manganese, and nickel is used as the positive electrode active material for a lithium secondary battery.
  • These positive electrode active materials can be used individually by 1 type or in combination of 2 or more types.
  • Examples of such lithium composite metal oxides include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo 1/3 Ni 1/3.
  • One type or two or more types selected from Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 , and LiCo 0.98 Mg 0.02 O 2 may be mentioned.
  • LiCoO 2 and LiMn 2 O 4 , LiCoO 2 and LiNiO 2 , LiMn 2 O 4 and LiNiO 2 may be used in combination.
  • a part of the lithium composite metal oxide may be substituted with another element.
  • a part of cobalt, manganese, nickel is replaced with at least one element such as Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, Bi, Mo, La,
  • a part of O can be substituted with S or F, or a compound containing these other elements can be coated.
  • lithium composite metal oxides such as LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 that can be used at a charged potential of the positive electrode in a fully charged state of 4.3 V or more on the basis of Li are preferable, and LiCo 1-x M x O 2 (wherein M is one or more elements selected from Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, 0.001 ⁇ x ⁇ 0.05) ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 1/2 Mn 3/2 O 4 , Li 2 MnO 3 And LiMO 2 (M is a transition metal such as Co, Ni, Mn, Fe, etc.) and more preferably a lithium composite metal oxide usable at 4.4 V or higher.
  • M is one or more elements selected from Sn, Mg, Fe, Ti, Al, Zr, Cr,
  • lithium-containing olivine-type phosphate can also be used as the positive electrode active material.
  • lithium-containing olivine-type phosphate containing one or more selected from iron, cobalt, nickel and manganese is preferable. Specific examples thereof include LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 and the like. Some of these lithium-containing olivine-type phosphates may be substituted with other elements, and some of iron, cobalt, nickel, and manganese are replaced with Co, Mn, Ni, Mg, Al, B, Ti, V, and Nb.
  • Cu, Zn, Mo, Ca, Sr, W and Zr can be substituted by one or more elements selected from these, or can be coated with a compound or carbon material containing these other elements.
  • LiFePO 4 or LiMnPO 4 is preferable.
  • mold phosphate can also be mixed with the said positive electrode active material, for example, and can be used.
  • the positive electrode for lithium primary battery CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4, CuS, CuSO 4, TiO 2, TiS 2, SiO 2, SnO, V 2 O 5, V 6 O 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Bi 2 Pb 2 O 5 , Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , WO 3 , SeO 2 , MnO 2 , Mn 2 O 3 , Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO and other oxides of one or more metal elements or chalcogen compounds, sulfur such as SO 2 and SOCl 2 Examples thereof include compounds, and fluorocarbons (fluorinated graphite) represented by the general formula (CF x ) n . Of these, MnO 2 , V 2 O 5 , graphite fluoride and the like are preferable.
  • the positive electrode conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change.
  • graphite such as natural graphite (flaky graphite, etc.), graphite such as artificial graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, or one or more carbon blacks can be used. . Further, graphite and carbon black may be appropriately mixed and used.
  • the addition amount of the conductive agent to the positive electrode mixture is preferably 1 to 10% by mass, and particularly preferably 2 to 5% by mass.
  • the positive electrode is composed of a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene.
  • a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • SBR styrene and butadiene
  • SBR styrene and butadiene
  • acrylonitrile and butadiene acrylonitrile and butadiene.
  • binder such as copolymer (NBR), carb
  • this positive electrode mixture was applied to a current collector aluminum foil, a stainless steel lath plate, etc., dried and pressure-molded, and then subjected to vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. It can be manufactured by heat treatment.
  • the density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, to further enhance the capacity of the battery, is preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 It is above, More preferably, it is 3.6 g / cm 3 or more. In addition, as an upper limit, 4 g / cm ⁇ 3 > or less is preferable.
  • Examples of the negative electrode active material for a lithium secondary battery include lithium metal, lithium alloy, and carbon material capable of occluding and releasing lithium [easily graphitized carbon and difficult to have a (002) plane spacing of 0.37 nm or more.
  • One or two or more selected from compounds and the like can be used in combination.
  • a highly crystalline carbon material such as artificial graphite and natural graphite
  • the lattice spacing (002) of the lattice plane ( 002 ) is 0.00.
  • a carbon material having a graphite type crystal structure of 340 nm (nanometer) or less, particularly 0.335 to 0.337 nm.
  • a mechanical action such as compression force, friction force, shear force, etc.
  • the density of the portion excluding the current collector of the negative electrode can be obtained from X-ray diffraction measurement of the negative electrode sheet when pressure-molded to a density of 1.5 g / cm 3 or more.
  • the ratio I (110) / I (004) of the peak intensity I (110) of the (110) plane of the graphite crystal and the peak intensity I (004) of the (004) plane is 0.01 or more, the temperature becomes even wider.
  • the highly crystalline carbon material is coated with a carbon material having lower crystallinity than the core material because electrochemical characteristics in a wide temperature range are further improved.
  • the crystallinity of the carbon material of the coating can be confirmed by TEM.
  • Examples of the metal compound capable of inserting and extracting lithium as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, and Cu. , Zn, Ag, Mg, Sr, Ba, and other compounds containing at least one metal element.
  • These metal compounds may be used in any form such as a simple substance, an alloy, an oxide, a nitride, a sulfide, a boride, and an alloy with lithium, but any of a simple substance, an alloy, an oxide, and an alloy with lithium. Is preferable because the capacity can be increased.
  • those containing at least one element selected from Si, Ge and Sn are preferable, and those containing at least one element selected from Si and Sn are particularly preferable because the capacity of the battery can be increased.
  • the negative electrode is kneaded using the same conductive agent, binder, and high-boiling solvent as in the production of the positive electrode, and then the negative electrode mixture is applied to the copper foil of the current collector. After being dried and pressure-molded, it can be produced by heat treatment under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
  • the density of the portion excluding the current collector of the negative electrode is usually 1.1 g / cm 3 or more, and is preferably 1.5 g / cm 3 or more, particularly preferably 1.7 g in order to further increase the capacity of the battery. / Cm 3 or more.
  • 2 g / cm ⁇ 3 > or less is preferable.
  • examples of the negative electrode active material for a lithium primary battery include lithium metal and lithium alloy.
  • the structure of the lithium battery is not particularly limited, and a coin-type battery, a cylindrical battery, a square battery, a laminated battery, or the like having a single-layer or multi-layer separator can be applied. Although it does not restrict
  • the lithium secondary battery according to the present invention has excellent electrochemical characteristics in a wide temperature range even when the end-of-charge voltage is 4.2 V or more, particularly 4.3 V or more, and the characteristics are also good at 4.4 V or more. is there.
  • the end-of-discharge voltage is usually 2.8 V or more, and further 2.5 V or more, but the lithium secondary battery in the present invention can be 2.0 V or more.
  • the current value is not particularly limited, but is usually used in the range of 0.1 to 30C.
  • the lithium battery in the present invention can be charged / discharged at ⁇ 40 to 100 ° C., preferably ⁇ 10 to 80 ° C.
  • a method of providing a safety valve on the battery lid or cutting a member such as a battery can or a gasket can be employed.
  • the battery lid can be provided with a current interruption mechanism that senses the internal pressure of the battery and interrupts the current.
  • LiPF 6 LiPF 6
  • LiPF 6 LiPF 6
  • Examples I-1 to I-23, Comparative Examples I-1 to I-3 [Production of lithium ion secondary battery] 94% by mass of LiCoO 2 and 3% by mass of acetylene black (conducting agent) are mixed and added to a solution in which 3% by mass of polyvinylidene fluoride (binder) is dissolved in 1-methyl-2-pyrrolidone in advance. Then, a positive electrode mixture paste was prepared. This positive electrode mixture paste was applied to one surface of an aluminum foil (current collector), dried and pressurized, and cut into a predetermined size to produce a positive electrode sheet. The density of the portion excluding the current collector of the positive electrode was 3.6 g / cm 3 .
  • the ratio of the peak intensity I (110) of the (110) plane of the graphite crystal to the peak intensity I (004) of the (004) plane [I (110) / I (004)] was 0.1.
  • the positive electrode sheet obtained above, a separator made of a microporous polyethylene film, and the negative electrode sheet obtained above are laminated in this order, and a non-aqueous electrolyte solution having the composition shown in Tables 1 and 2 is added to obtain a laminate type battery. Produced.
  • the relative amount of gas generated was examined on the basis of the amount of gas generated in Comparative Example 1 as 100%.
  • ⁇ Initial anode thickness> The battery cycled by the above method was disassembled and the initial negative electrode thickness was measured.
  • ⁇ Negative thickness after cycle> The battery which was cycled at 60 ° C. by the above method was disassembled, and the negative electrode thickness after the high temperature cycle was measured.
  • ⁇ Negative electrode thickness increase rate> The negative electrode thickness increase rate was determined by the following formula. Rate of increase in negative electrode thickness (%) [(negative electrode thickness after 100 ° C., 100 cycles ⁇ initial negative electrode thickness) / initial negative electrode thickness] ⁇ 100
  • Table 1 shows battery manufacturing conditions and battery characteristics.
  • Examples I-26, I-27 and Comparative Example I-5 A positive electrode sheet was produced using LiFePO 4 (positive electrode active material) coated with amorphous carbon instead of the positive electrode active material used in Example I-2 and Comparative Example I-2. 90% by mass of LiFePO 4 coated with amorphous carbon and 5% by mass of acetylene black (conductive agent) are mixed, and 5% by mass of polyvinylidene fluoride (binder) is dissolved in 1-methyl-2-pyrrolidone in advance.
  • a positive electrode mixture paste was prepared by adding to and mixing with the previously prepared solution. This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried, pressurized, cut into a predetermined size, and a positive electrode sheet was produced.
  • a laminated battery was fabricated and evaluated in the same manner as in Example I-2 and Comparative Example I-2 except that 3.6 V and the final discharge voltage were 2.0 V. The results are shown in Table 4.
  • Comparative Example I-1 in the case where the 1,3-dioxane of the present invention and the compound of the general formula (I) were not added to the nonaqueous electrolytic solution
  • Comparative Example I-3 when only ethyl 2- (diethoxyphosphoryl) acetate was added, the cycle characteristics were While improving, the increase in negative electrode thickness is suppressed.
  • Comparative Example I-1 and Comparative Example I-2 were measured by the Archimedes method, Comparative Example I-1 Assuming that the amount of generated gas is 100%, Example I-3 is 77% and Comparative Example I-2 is 78%, and the generated gas is suppressed by adding the compound of the general formula (I). there were. From the above, it has been found that the effect of the present invention is a characteristic effect when a specific compound of the present invention is contained in a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent.
  • non-aqueous electrolytes of Examples I-1 to I-27 also have an effect of improving the discharge characteristics in a wide temperature range of the lithium primary battery.
  • Examples II-1 to II-13, Comparative Examples II-1 to II-2 [Production of lithium ion secondary battery] 94% by mass of LiCoO 2 and 3% by mass of acetylene black (conducting agent) are mixed and added to a solution in which 3% by mass of polyvinylidene fluoride (binder) is dissolved in 1-methyl-2-pyrrolidone in advance. Then, a positive electrode mixture paste was prepared. This positive electrode mixture paste was applied to one surface of an aluminum foil (current collector), dried and pressurized, and cut into a predetermined size to produce a positive electrode sheet. The density of the portion excluding the current collector of the positive electrode was 3.6 g / cm 3 .
  • the ratio of the peak intensity I (110) of the (110) plane of the graphite crystal to the peak intensity I (004) of the (004) plane [I (110) / I (004)] was 0.1.
  • the positive electrode sheet obtained above, a separator made of a microporous polyethylene film, and the negative electrode sheet obtained above were laminated in this order, and a non-aqueous electrolyte solution having the composition shown in Table 5 was added to produce a laminate type battery.
  • the relative amount of gas generated was examined on the basis of the amount of gas generated in Comparative Example 1 as 100%.
  • ⁇ Initial anode thickness> The battery cycled by the above method was disassembled and the initial negative electrode thickness was measured.
  • ⁇ Negative thickness after cycle> The battery which was cycled at 60 ° C. by the above method was disassembled, and the negative electrode thickness after the high temperature cycle was measured.
  • ⁇ Negative electrode thickness increase rate> The negative electrode thickness increase rate was determined by the following formula. Rate of increase in negative electrode thickness (%) [(negative electrode thickness after 100 ° C., 100 cycles ⁇ initial negative electrode thickness) / initial negative electrode thickness] ⁇ 100
  • Table 5 shows battery manufacturing conditions and battery characteristics.
  • Example II-2 was compared with Example II-2 except that this negative electrode mixture paste was applied to one side of a copper foil (current collector), dried and pressurized to produce a negative electrode sheet cut into a predetermined size.
  • a laminated battery was prepared in the same manner as in Example II-2, and the battery was evaluated. The results are shown in Table 6.
  • Example II-15 and Comparative Example II-4 A positive electrode sheet was produced using LiFePO 4 (positive electrode active material) coated with amorphous carbon instead of the positive electrode active material used in Example II-2 and Comparative Example II-2. 90% by mass of LiFePO 4 coated with amorphous carbon and 5% by mass of acetylene black (conductive agent) are mixed, and 5% by mass of polyvinylidene fluoride (binder) is dissolved in 1-methyl-2-pyrrolidone in advance.
  • a positive electrode mixture paste was prepared by adding to and mixing with the previously prepared solution. This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried, pressurized, cut into a predetermined size, and a positive electrode sheet was produced.
  • a laminate type battery was produced and evaluated in the same manner as in Example II-2 and Comparative Example II-2 except that 3.6 V and the discharge end voltage were set to 2.0 V. The results are shown in Table 7.
  • non-aqueous electrolytes of Examples II-1 to II-15 also have an effect of improving the discharge characteristics in a wide temperature range of the lithium primary battery.
  • Examples III-1 to III-8 [Production of lithium ion secondary battery]
  • a positive electrode sheet and a negative electrode sheet were prepared, and a positive electrode sheet, a microporous polyethylene film separator, and a negative electrode sheet were laminated in this order, and a nonaqueous electrolytic solution having the composition shown in Table 8 was added.
  • a laminate type battery was produced.
  • High temperature cycle characteristics were evaluated in the same manner as in Example I-1. Table 8 shows the production conditions and battery characteristics of the battery.
  • the Comparative Example was When the gas generation amount of I-1 is 100%, Example III-2 is 76%, Comparative Example I-2 is 78%, and the compound used in combination with 1,3-dioxane is used for suppressing the generated gas. It was equivalent even if added. From the above, it has been found that the effect of the present invention is a characteristic effect when a specific compound of the present invention is contained in a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent.
  • nonaqueous electrolytes of Examples III-1 to III-8 also have an effect of improving the discharge characteristics in a wide temperature range of the lithium primary battery.
  • the electricity storage device using the non-aqueous electrolyte of the present invention is useful as an electricity storage device such as a lithium secondary battery having excellent electrochemical characteristics in a wide temperature range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)

Abstract

 非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に1,3-ジオキサンを0.001~5質量%含有し、更に特定のリン酸エステル化合物、特定の環状スルホン酸エステル化合物、及びアリル水素を有する側鎖を含有する環状酸無水物から選ばれる少なくとも一種を0.001~5質量%含有する非水電解液、及びそれを用いた蓄電デバイスである。この非水電解液は、高温下での電気化学特性を向上させ、さらに高温サイクル試験後の容量維持率だけでなく電極厚みの増加率を低減することができる。

Description

非水電解液及びそれを用いた蓄電デバイス
 本発明は、高温下での電気化学特性を向上できる非水電解液及びそれを用いた蓄電デバイスに関する。
 近年、蓄電デバイス、特にリチウム二次電池は携帯電話やノート型パソコン等の電子機器の電源、及び電気自動車や電力貯蔵用の電源として広く使用されている。これらの電子機器や自動車に搭載された電池は、真夏の高温下や、電子機器の発熱により暖められた環境下で使用される可能性が高い。また、タブレット端末やウルトラブック等の薄型電子機器では外装部材にアルミラミネートフィルム等のラミネートフィルムを使用するラミネート型電池や角型電池が用いられることが多いが、これらの電池は、薄型であるため少しの外装部材の膨張等により変形しやすいという問題が生じやすく、その変形が電子機器に与える影響が非常に大きいことが問題である。
 リチウム二次電池は、主にリチウムを吸蔵放出可能な材料を含む正極及び負極、リチウム塩と非水溶媒からなる非水電解液から構成され、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等のカーボネート類が使用されている。
 また、リチウム二次電池の負極としては、リチウム金属、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金等)、炭素材料が知られている。特に、炭素材料のうち、例えばコークス、黒鉛(人造黒鉛、天然黒鉛)等のリチウムを吸蔵及び放出することが可能な炭素材料を用いた非水系電解液二次電池が広く実用化されている。上記の負極材料はリチウム金属と同等の極めて卑な電位でリチウムと電子を貯蔵・放出するために、特に高温下において、多くの溶媒が還元分解を受ける可能性を有しており、負極材料の種類に拠らず負極上で電解液中の溶媒が一部還元分解してしまい、分解物の沈着、ガス発生、電極の膨れにより、リチウムイオンの移動が妨げられ、特に高温下でのサイクル特性等の電池特性を低下させる問題や電極の膨れにより電池が変形する等の問題があった。更に、リチウム金属やその合金、スズ又はケイ素等の金属単体や酸化物を負極材料として用いたリチウム二次電池は、初期の容量は高いもののサイクル中に微粉化が進むため、炭素材料の負極に比べて非水溶媒の還元分解が加速的に起こり、特に高温下において電池容量やサイクル特性のような電池性能が大きく低下することや電極の膨れにより電池が変形する等の問題が知られている。
 一方、正極材料として用いられるLiCoO2、LiMn24、LiNiO2、LiFePO4等のリチウムを吸蔵及び放出可能な材料は、リチウム基準で3.5V以上の貴な電圧でリチウムと電子を貯蔵及び放出するために、特に高温下において、多くの溶媒が酸化分解を受ける可能性を有しており、正極材料の種類に拠らず正極上で電解液中の溶媒が一部酸化分解してしまい、分解物の沈着や、ガス発生により、リチウムイオンの移動が妨げられ、サイクル特性等の電池特性を低下させる問題があった。
 以上のような状況にも関わらず、リチウム二次電池が搭載されている電子機器の多機能化はますます進み、電力消費量が増大する流れにある。そのため、リチウム二次電池の高容量化はますます進んでおり、電極の密度を高めたり、電池内の無駄な空間容積を減らす等、電池内の非水電解液の占める体積が小さくなっている。従って、少しの非水電解液の分解で、高温での電池性能が低下しやすい状況にある。
 特許文献1には1,3-ジオキサンを含む電解液を用いた非水電解質二次電池を充電状態で保存した場合に、この正極活物質と非水電解液とが反応して電池が膨化するのを防止すると共に、この非水電解質二次電池の電池容量が低下するのを抑制することが、また、特許文献2にはトリエチルホスホノアセテートを含む電解液が、連続充電後のガス抑制や高温保存特性に効果を示すことが示されている。
 特許文献3には1,3-ジオキサン及び鎖状のスルホン酸エステルを含む電解液が、サイクル特性、高温保存特性に効果を示すことが示されている。
特開2008-235147号公報 特開2008-262908号公報 特開2009-140919号公報
 本発明は、高温下での電気化学特性を向上させ、さらに高温サイクル試験後の容量維持率だけでなく電極厚みの増加率を低減することができる非水電解液及びそれを用いた蓄電デバイスを提供することを課題とする。
 本発明者らは、上記特許文献の非水電解液の性能について詳細に検討した。
 その結果、特許文献1の電池では、ガス発生の抑制により電池が膨化するのを防止できるものの、電極厚みの増加率を低減させるという課題に対しては十分に満足できるとは言えない。
 また、特許文献2及び3の非水電解液では、高温サイクル後の容量維持率を向上させることができるものの電極厚みの増加率を低減させるという課題に対しては、十分に満足できるとは言えないのが実情であった。
 そこで、本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、1,3-ジオキサンを含有し、更に特定のリン酸エステル化合物、環状スルホン酸エステル化合物、及びアリル水素を有する側鎖を含有する環状酸無水物から選ばれる少なくとも一種を非水電解液に添加することにより、高温サイクル後の容量維持率を向上させることができ、かつ電極厚みの増加率を低減させることができることを見出し、本発明を完成した。
 すなわち、本発明は、下記の(1)及び(2)を提供するものである。
(1)非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に1,3-ジオキサンを0.001~5質量%含有し、更に下記一般式(I)で表されるリン酸エステル化合物、一般式(II)で表される環状スルホン酸エステル化合物、及びアリル水素を有する側鎖を含有する環状酸無水物から選ばれる少なくとも一種を0.001~5質量%含有することを特徴とする非水電解液。
Figure JPOXMLDOC01-appb-C000003
(式中、R1及びR2は、それぞれ独立に、炭素数1~6のアルキル基、又は少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6のハロゲン化アルキル基を示し、R3は、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、又は炭素数3~6のアルキニル基を示し、R4及びR5は、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~4のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000004
(式中、R6及びR7は、それぞれ独立に、水素原子、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1~6のアルキル基、又はハロゲン原子を示し、Xは、-CH(OR8)-又は-C(=O)-を示し、R8は、ホルミル基、炭素数2~7のアルキルカルボニル基、炭素数3~7のアルケニルカルボニル基、炭素数3~7のアルキニルカルボニル基、又は炭素数7~13のアリールカルボニル基を示す。R8は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい。)
(2)正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスにおいて、非水電解液中に1,3-ジオキサンを0.001~5質量%含有し、更に前記一般式(I)で表されるリン酸エステル化合物、前記一般式(II)で表される環状スルホン酸エステル化合物、及びアリル水素を有する側鎖を含有する環状酸無水物から選ばれる少なくとも一種を0.001~5質量%含有することを特徴とする蓄電デバイス。
 本発明によれば、高温サイクル後の容量維持率を向上させることができ、かつ電極厚みの増加率を低減させる非水電解液及びそれを用いたリチウム電池等の蓄電デバイスを提供することができる。
〔非水電解液〕
 本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に1,3-ジオキサンを0.001~5質量%含有し、更に下記一般式(I)で表されるリン酸エステル化合物、一般式(II)で表される環状スルホン酸エステル化合物、及びアリル水素を有する側鎖を含有する環状酸無水物から選ばれる少なくとも一種を0.001~5質量%含有することを特徴とする。
 本発明の非水電解液が広い温度範囲での電気化学特性を大幅に改善できる理由は明らかではないが、以下のように考えられる。
 本発明で使用される1,3-ジオキサンは負極上で分解し被膜を形成するが、単独では高温条件下で充放電を繰り返すことで被膜の溶解、再形成により被膜が成長し電極の厚みが大きく増大してしまう。一方、一般式(I)で表されるリン酸エステル化合物、一般式(II)で表される環状スルホン酸エステル化合物、及びアリル水素を有する側鎖を含有する環状酸無水物から選ばれる少なくとも一種を併せて使用すると、1,3-ジオキサンの負極上での分解が抑制されるとともに、1,3-ジオキサンとの反応サイトを複数持つ前記の化合物による強固な複合被膜が負極上の活性点に素早く形成され、高温サイクル特性が向上するとともに、被膜の成長が抑制され電極厚みの増加をより一層抑制できることが判明した。
 本発明の非水電解液において、1,3-ジオキサンの含有量は、非水電解液中に0.001~5質量%である。該含有量が5質量%以下であれば、電極上に過度に被膜が形成され高温サイクル特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温サイクル特性の改善効果が高まる。該含有量は、非水電解液中に0.01質量%以上が好ましく、0.1質量%以上がより好ましい。また、その上限は、4質量%以下が好ましく、2質量%以下がより好ましい。
 本発明の非水電解液に含まれるリン酸エステル化合物は、下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000005
(式中、R1及びR2は、それぞれ独立に、炭素数1~6のアルキル基、又は少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6のハロゲン化アルキル基を示し、R3は、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、又は炭素数3~6のアルキニル基を示し、R4及びR5は、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~4のアルキル基を示す。)
 R1及びR2の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等の直鎖のアルキル基、イソプロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基等の分枝鎖のアルキル基、フルオロメチル基、2,2,2-トリフルオロエチル基等の水素原子の一部がフッ素原子で置換されたフッ化アルキル基等が挙げられる。
 これらの中でも、メチル基、エチル基、n-プロピル基、イソプロピル基、又は2,2,2-トリフルオロエチル基が好ましく、メチル基又はエチル基がより好ましい。
 R3の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等の直鎖のアルキル基、イソプロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基等の分枝鎖のアルキル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、4-ペンテニル基、5-ヘキセニル基、2-メチル-2-プロペニル基、3-メチル-2-ブテニル基等のアルケニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基、1-メチル-2-プロピニル基、1,1-ジメチル-2-プロピニル基等のアルキニル基等が挙げられる。
 これらの中でも、メチル基、エチル基、n-プロピル基、イソプロピル基、2-プロペニル基、2-ブテニル基、2-プロピニル基、2-ブチニル基、又は1-メチル-2-プロピニル基が好ましく、メチル基、エチル基、2-プロペニル基、2-プロピニル基、又は1-メチル-2-プロピニル基がより好ましい。
 R4及びR5の具体例としては、水素原子、フッ素原子、塩素原子、メチル基、エチル基、n-プロピル基、n-ブチル基等の直鎖のアルキル基、イソプロピル基、sec-ブチル基、tert-ブチル基等の分枝鎖のアルキル基が好適に挙げられる。
 これらの中でも水素原子、フッ素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基が好ましく、水素原子、フッ素原子、メチル基、又はエチル基がより好ましい。
 一般式(I)で表されるリン酸エステル化合物としては、以下の化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 これらの中でも、上記I-2、I-4~I-6、I-14、I-18、I-21~I-40、I-42~I-50、I-52~I-54の構造を有する化合物が好ましく、エチル 2-(ジメトキシホスホリル)アセテート(化合物I-2)、2-プロピニル 2-(ジメトキシホスホリル)アセテート(化合物I-4)、メチル 2-(ジエトキシホスホリル)アセテート(化合物I-5)、エチル 2-(ジエトキシホスホリル)アセテート(化合物I-6)、2-プロペニル 2-(ジエトキシホスホリル)アセテート(化合物I-14)、2-プロピニル 2-(ジエトキシホスホリル)アセテート(化合物I-18)、1-メチル-2-プロピニル 2-(ジエトキシホスホリル)アセテート(化合物I-21)、2-プロピニル 2-(ジメトキシホスホリル)プロパノエート(化合物I-30)、2-プロピニル 2-(ジメトキシホスホリル)プロパノエート(化合物I-34)、エチル 2-(ジメトキシホスホリル)-2-フルオロアセテート(化合物I-37)、メチル 2-(ジエトキシホスホリル-2-フルオロ)アセテート(化合物I-39)、エチル 2-(ジエトキシホスホリル)-2-フルオロアセテート(化合物I-40)、2-プロペニル 2-(ジエトキシホスホリル)-2-フルオロアセテート(化合物I-42)、2-プロピニル 2-(ジエトキシホスホリル)-2-フルオロアセテート(化合物I-43)、1-メチル-2-プロピニル 2-(ジエトキシホスホリル)-2-フルオロアセテート(化合物I-44)、エチル 2-(ジメトキシホスホリル)-2,2-ジフルオロアセテート(化合物I-47)、メチル 2-(ジエトキシホスホリル-2,2-ジフルオロ)アセテート(化合物I-49)、エチル 2-(ジエトキシホスホリル)-2,2-ジフルオロアセテート(化合物I-50)、2-プロペニル 2-(ジエトキシホスホリル)-2,2-ジフルオロアセテート(化合物I-52)、2-プロピニル 2-(ジエトキシホスホリル)-2,2-ジフルオロアセテート(化合物I-53)、1-メチル-2-プロピニル 2-(ジエトキシホスホリル)-2,2-ジフルオロアセテート(化合物I-54)がより好ましい。
 本発明の非水電解液に含まれる環状スルホン酸エステル化合物は、下記一般式(II)で表される。
Figure JPOXMLDOC01-appb-C000008
(式中、R6及びR7は、それぞれ独立に、水素原子、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1~6のアルキル基、又はハロゲン原子を示し、Xは、-CH(OR8)-又は-C(=O)-を示し、R8は、ホルミル基、炭素数2~7のアルキルカルボニル基、炭素数3~7のアルケニルカルボニル基、炭素数3~7のアルキニルカルボニル基、又は炭素数7~13のアリールカルボニル基を示す。R8は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい。)
 R6及びR7は、水素原子、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基、又はハロゲン原子がより好ましく、水素原子、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1又は2のアルキル基が更に好ましい。
 R8は、ホルミル基、炭素数2~7のアルキルカルボニル基、又は炭素数3~5のアルケニルカルボニル基が好ましく、ホルミル基又は炭素数2~5のアルキルカルボニル基がより好ましい。
 一般式(II)で表される環状スルホン酸エステル化合物としては、以下の化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 これらの中でも、上記II-1~II-3、II-6、II-8、II-9、II-11、II-22、II-24、II-25の構造を有する化合物が好ましく、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート(化合物II-2)、2,2-ジオキシド-1,2-ジオキサチオラン-4-イル プロピオネート(化合物II-3)、5-メチル-1,2-オキサチオラン-4-オン 2,2-ジオキシド(化合物II-22)、又は5,5-ジメチル-1,2-オキサチオラン-4-オン 2,2-ジオキシド(化合物II-24)がより好ましい。
 本発明の非水電解液に含まれるアリル水素を有する側鎖を含有する環状酸無水物は、環状酸無水物本体とそれに結合しているアリル水素を有する側鎖を含有する。
 環状酸無水物本体は、好ましくは炭素数4~5の環状酸無水物であり、好ましくは無水こはく酸である。
 アリル水素を有する側鎖は、好ましくは炭素数3~12、より好ましくは炭素数3~10の直鎖又は分岐鎖の炭化水素基が好ましい。
 ここで、「アリル水素」とは、例えば右記、CH2=CH-CH2-で示されるアリル基の場合、二重結合の隣のアリル炭素に結合する2つの水素を意味し、「アリル水素を有する」とは、この2つの水素の少なくとも1つを有することを意味する。本発明の化合物において、アリル水素の数は、好ましくは1~4、より好ましくは1又は2、更に好ましくは2である。
 前記アリル水素を有する側鎖を含有する環状酸無水物において、アリル炭素が、二重結合と環状酸無水物の間に存在することが好ましく、二重結合と環状酸無水物の両方と直接結合していることがより好ましい。
 また、側鎖の二重結合に直接結合した水素原子の数が2つ又は3つであることが好ましく、3つであること、即ち末端二重結合であることがより好ましい。アリル水素と末端二重結合を含むことにより、1,3-ジオキサンと併用することで強固な複合被膜を素早く形成しやすくなると考えられるためである。
 アリル水素を有する側鎖は、環状、直鎖、又は分岐鎖のいずれでもよく、アルキル基、アリール基、又はヘテロ原子等を含む基で置換されていてもよい。
 アリル水素を有する側鎖の具体例としては、アリル基、3-ブテン-2-イル基、1-ペンテン-3-イル基、1-ヘキセン-3-イル基、1-ヘプテン-3-イル基、1-オクテン-3-イル基、1-ノネン-3-イル基、2-ブテン-1-イル基、3-メチル-2-ブテン-1-イル基、2,3-ジメチル-2-ブテン-1-イル基、4-メチル-1-ペンテン-3-イル基、4-メチル-1-ヘキセン-3-イル基、4,4-ジメチル-1-ペンテン-3-イル基、3-ブテン-1-イル基、3-ペンテン-2-イル基、4-ペンテン-1-イル基、5-ヘキセン-2-イル基、2-メチルアリル基、2-メチル-1-ペンテン-3-イル基、2,4-ジメチル-1-ペンテン-3-イル基、2,3-ジメチル-3-ブテン-2-イル基、3-メチル-3-ブテン-1-イル基、4-メチル-4-ペンテン-2-イル基等が好適に挙げられる。
 これらの中では、アリル基、1-ペンテン-3-イル基、1-ヘキセン-3-イル基、1-ヘプテン-3-イル基、1-オクテン-3-イル基、1-ノネン-3-イル基、3-ブテン-2-イル基、2-メチルアリル基、3-メチル-3-ブテン-2-イル基が好ましく、アリル水基、3-ブテン-2-イル基、2-メチルアリル基、3-メチル-3-ブテン-2-イル基がより好ましい。
 前記環状酸無水物の具体例としては、2-アリル無水こはく酸、2-(3-ブテン-2-イル)無水こはく酸、2-(1-ペンテン-3-イル)無水こはく酸、2-(1-ヘキセン-3-イル)無水こはく酸、2-(1-ヘプテン-3-イル)無水こはく酸、2-(1-オクテン-3-イル)無水こはく酸、2-(1-ノネン-3-イル)無水こはく酸、2-(2-ブテン-1-イル)無水こはく酸、2-(3-メチル-2-ブテン-1-イル)無水こはく酸、2-(2,3-ジメチル-2-ブテン-1-イル)無水こはく酸、2-(4-メチル-1-ペンテン-3-イル)無水こはく酸、2-(4-メチル-1-ヘキセン-3-イル)無水こはく酸、2-(4,4-ジメチル-1-ペンテン-3-イル)無水こはく酸、2-(3-ブテン-1-イル)無水こはく酸、2-(3-ペンテン-2-イル)無水こはく酸、2-(4-ペンテン-1-イル)無水こはく酸、2-(5-ヘキセン-2-イル)無水こはく酸、2-(2-メチルアリル)無水こはく酸、2-(2-メチル-1-ペンテン-3-イル)無水こはく酸、2-(2,4-ジメチル-1-ペンテン-3-イル)無水こはく酸、2-(2,3-ジメチル-3-ブテン-2-イル)無水こはく酸、2-(3-メチル-3-ブテン-1-イル)無水こはく酸、2-(4-メチル-4-ペンテン-2-イル)無水こはく酸等が好適に挙げられる。
 これらの中でも、2-アリル無水こはく酸、2-(1-ペンテン-3-イル)無水こはく酸、2-(1-ヘキセン-3-イル)無水こはく酸、2-(1-ヘプテン-3-イル)無水こはく酸、2-(1-オクテン-3-イル)無水こはく酸、2-(1-ノネン-3-イル)無水こはく酸、2-(3-ブテン-2-イル)無水こはく酸、2-(2-メチルアリル)無水こはく酸、及び2-(3-メチル-3-ブテン-2-イル)無水こはく酸から選ばれる少なくとも一種がより好ましく、2-アリル無水こはく酸、2-(3-ブテン-2-イル)無水こはく酸、2-(2-メチルアリル)無水こはく酸、及び2-(3-メチル-3-ブテン-2-イル)無水こはく酸から選ばれる少なくとも一種が更に好ましい。
 本発明の非水電解液において、非水電解液中に含有される一般式(I)で表されるリン酸エステル化合物、一般式(II)で表される環状スルホン酸エステル化合物、及びアリル水素を有する側鎖を含有する環状酸無水物から選ばれる少なくとも一種の含有量は、非水電解液中に0.001~5質量%である。該含有量が5質量%以下であれば、電極上に過度に被膜が形成され高温サイクル特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温サイクル特性の改善効果が高まる。該含有量は、非水電解液中に0.01質量%以上が好ましく、0.1質量%以上がより好ましく、その上限は、4質量%以下が好ましく、2質量%以下がより好ましい。
 また、アリル水素を有する側鎖を含有する環状酸無水物:1,3-ジオキサンの混合比(重量比)は、2:98~80:20が好ましく、5:95~40:60がより好ましく10:90~30:70が更に好ましい。
 更に、一般式(I)で表されるリン酸エステル化合物、一般式(II)で表される環状スルホン酸エステル化合物、及びアリル水素を有する側鎖を含有する環状酸無水物から選ばれる2種以上を併せて使用すると更に好ましい。
 本発明の非水電解液において、一般式(I)で表されるリン酸エステル化合物、一般式(II)で表される環状スルホン酸エステル化合物、及びアリル水素を有する側鎖を含有する環状酸無水物から選ばれる少なくとも一種と1,3-ジオキサンを、以下に述べる非水溶媒、電解質塩と組み合わせることにより、高温サイクル後の容量維持率を向上させることができ、かつ電極厚みの増加率を低減させるという特異な効果を発現する。
〔非水溶媒〕
 本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状エステル、エーテル、アミド、スルホン、及びラクトンから選ばれる一種又は二種以上が挙げられ、少なくとも1種の環状カーボネートを含むことが好ましく、環状カーボネートと鎖状エステルの両方が含まれることがより好ましい。
 なお、鎖状エステルなる用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念として用いる。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる一種又は二種以上が挙げられ、エチレンカーボネート、プロピレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる一種又は二種以上がより好適である。
 また、前記炭素-炭素二重結合、炭素-炭素三重結合等の不飽和結合又はフッ素原子を有する環状カーボネートのうち少なくとも一種を使用すると高温充電保存後の低温負荷特性が一段と向上するので好ましく、炭素-炭素二重結合、炭素-炭素三重結合等の不飽和結合を含む環状カーボネートとフッ素原子を有する環状カーボネートを両方含むことがより好ましい。炭素-炭素二重結合、炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとしては、VC、VEC、EECが更に好ましく、フッ素原子を有する環状カーボネートとしては、FEC、DFECが更に好ましい。
 炭素-炭素二重結合、炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は、非水溶媒の総体積に対して、好ましくは0.07体積%以上、より好ましくは0.2体積%以上、更に好ましくは0.7体積%以上であり、また、その上限としては、好ましくは7体積%以下、より好ましくは4体積%以下、更に好ましくは2.5体積%以下であると、低温でのLiイオン透過性を損なうことなく一段と高温保存時の被膜の安定性を増すことができるので好ましい。
 フッ素原子を有する環状カーボネートの含有量は、非水溶媒の総体積に対して好ましくは0.07体積%以上、より好ましくは4体積%以上、更に好ましくは7体積%以上であり、また、その上限としては、好ましくは35体積%以下、より好ましくは25体積%以下、更に好ましくは15体積%以下であると、低温でのLiイオン透過性を損なうことなく一段と高温保存時の被膜の安定性を増すことができるので好ましい。
 非水溶媒が炭素-炭素二重結合、炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとフッ素原子を有する環状カーボネートの両方を含む場合、フッ素原子を有する環状カーボネートの含有量に対する炭素-炭素二重結合、炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は、好ましくは0.2体積%以上、より好ましくは3体積%以上、更に好ましくは7体積%以上であり、その上限としては、好ましくは40体積%以下、より好ましくは30体積%以下、更に好ましくは15体積%以下であると、低温でのLiイオン透過性を損なうことなく更に一段と高温保存時の被膜の安定性を増すことができるので特に好ましい。
 また、非水溶媒がエチレンカーボネート、プロピレンカーボネート、又はエチレンカーボネートとプロピレンカーボネートの両者を含むと電極上に形成される被膜の抵抗が小さくなるので好ましい。エチレンカーボネート、プロピレンカーボネート、又はエチレンカーボネートとプロピレンカーボネートの両者の含有量は、非水溶媒の総体積に対し、好ましくは3体積%以上、より好ましくは5体積%以上、更に好ましくは7体積%以上であり、また、その上限としては、好ましくは45体積%以下、より好ましくは35体積%以下、更に好ましくは25体積%以下である。
 これらの溶媒は一種で使用してもよく、また二種以上を組み合わせて使用した場合は、広い温度範囲での電気化学特性が更に向上するので好ましく、三種以上を組み合わせて使用することが特に好ましい。これらの環状カーボネートの好適な組合せとしては、ECとPC、ECとVC、PCとVC、VCとFEC、ECとFEC、PCとFEC、FECとDFEC、ECとDFEC、PCとDFEC、VCとDFEC、VECとDFEC、VCとEEC、ECとEEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとVEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、ECとVCとDFEC、PCとVCとDFEC、ECとPCとVCとFEC、ECとPCとVCとDFEC等が好ましい。前記の組合せのうち、ECとVC、ECとFEC、PCとFEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、ECとPCとVCとFEC等の組合せがより好ましい。
 鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、エチルプロピルカーボネート等の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、ジブチルカーボネート等の対称鎖状カーボネート、ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル等のピバリン酸エステル、プロピオン酸メチル、プロピオン酸エチル、酢酸メチル、酢酸エチル等の鎖状カルボン酸エステルが好適に挙げられる。
 満充電状態における充電電位がLi基準で1V未満となる負極を用いる場合、前記鎖状エステルの中でも、ジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチル及び酢酸エチルから選ばれるメチル基を有する鎖状エステルが好ましく、特にメチル基を有する鎖状カーボネートが好ましい。負極での分解が進行しにくく、容量劣化を抑制できるためである。
 また、メチル基を有する鎖状カーボネートを用いる場合には、二種以上を用いることが好ましい。更に対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるとより好ましく、対称鎖状カーボネートの含有量が非対称鎖状カーボネートより多く含まれると更に好ましい。
 鎖状エステルの含有量は、特に制限されないが、非水溶媒の総体積に対して、60~90体積%の範囲で用いるのが好ましい。該含有量が60体積%以上であれば非水電解液の粘度を下げる効果が十分に得られ、90体積%以下であれば非水電解液の電気伝導度が十分に高まり、広い温度範囲での電気化学特性が向上するので上記範囲であることが好ましい。
 また、鎖状カーボネートを用いる場合には、二種以上を用いることが好ましい。更に対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるとより好ましく、対称鎖状カーボネートの含有量が非対称鎖状カーボネートより多く含まれると更に好ましい。
 鎖状カーボネート中に対称鎖状カーボネートが占める体積の割合は、51体積%以上が好ましく、55体積%以上がより好ましい。上限としては、95体積%以下がより好ましく、85体積%以下であると更に好ましい。対称鎖状カーボネートにジメチルカーボネートが含まれると特に好ましい。また、非対称鎖状カーボネートはメチル基を有するとより好ましく、メチルエチルカーボネートが特に好ましい。
 上記の場合に一段と高温サイクル特性が向上するので好ましい。
 環状カーボネートと鎖状エステルの割合は、広い温度範囲での電気化学特性向上の観点から、環状カーボネート:鎖状エステル(体積比)が10:90~45:55が好ましく、15:85~40:60がより好ましく、20:80~35:65が更に好ましい。
 その他の非水溶媒としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン等の環状エーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等の鎖状エーテル、ジメチルホルムアミド等のアミド、スルホラン等のスルホン、γ-ブチロラクトン、γ-バレロラクトン、α-アンゲリカラクトン等のラクトン等から選ばれる一種又は二種以上が好適に挙げられる。
〔電解質塩〕
 本発明に使用される電解質塩としては、下記のリチウム塩が好適に挙げられる。
(リチウム塩)
 本発明に使用される電解質塩としては、下記のリチウム塩が好適に挙げられる。
 リチウム塩としては、LiPF6、LiPO22、Li2PO3F、LiBF4、LiClO4、LiSO3F等の無機リチウム塩、LiN(SO2F)2、LiN(SO2CF32、LiN(SO2252、LiCF3SO3、LiC(SO2CF33、LiPF4(CF32、LiPF3(C253、LiPF3(CF33、LiPF3(iso-C373、LiPF5(iso-C37)等の鎖状のフッ化アルキル基を含有するリチウム塩や、(CF22(SO22NLi、(CF23(SO22NLi等の環状のフッ化アルキレン鎖を有するリチウム塩、ビス[オキサレート-O,O’]ホウ酸リチウム(LiBOB)やジフルオロ[オキサレート-O,O’]ホウ酸リチウム、ジフルオロビス[オキサレート-O,O’]リン酸リチウム(LiPFO)及びテトラフルオロ[オキサレート-O,O’]リン酸リチウム等のオキサレート錯体をアニオンとするリチウム塩が好適に挙げられ、これらの一種又は二種以上を混合して使用することができる。
 これらの中でも、LiPF6、LiBF4、LiPO22、Li2PO3F、LiSO3F、LiN(SO2F)2、LiN(SO2CF32、LiN(SO2252、ビス[オキサレート-O,O’]ホウ酸リチウム(LiBOB)、ジフルオロビス[オキサレート-O,O’]リン酸リチウム(LiPFO)、及びテトラフルオロ[オキサレート-O,O’]リン酸リチウムから選ばれる一種又は二種以上が好ましく、LiPF6、LiBF4、LiPO22、LiSO3F、LiN(SO2CF32、LiN(SO2F)2、ビス[オキサレート-O,O’]ホウ酸リチウム及びジフルオロビス[オキサレート-O,O’]リン酸リチウム(LiPFO)から選ばれる一種又は二種以上を含むことがより好ましい。
 リチウム塩の濃度は、前記の非水溶媒に対して、通常0.3M以上が好ましく、0.7M以上がより好ましく、1.1M以上が更に好ましい。またその上限は、2.5M以下が好ましく、2.0M以下がより好ましく、1.6M以下が更に好ましい。
〔非水電解液の製造〕
 本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び該非水電解液に対して1,3-ジオキサンと、一般式(I)で表されるリン酸エステル化合物、一般式(II)で表される環状スルホン酸エステル化合物、及びアリル水素を有する側鎖を含有する環状酸無水物から選ばれる少なくとも一種を添加することにより得ることができる。
 この際、用いる非水溶媒及び非水電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
 本発明の非水電解液は、下記の第1及び第2の蓄電デバイスに使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用することができる。更に本発明の非水電解液は固体高分子電解質用としても使用できる。
 これらの中でも電解質塩にリチウム塩を使用する第1の蓄電デバイス用(即ち、リチウム電池用)又は第2の蓄電デバイス用(即ち、リチウムイオンキャパシタ用)として用いることが好ましく、リチウム電池用として用いることが更に好ましく、リチウム二次電池用として用いることが最も適している。
〔第1の蓄電デバイス(リチウム電池)〕
 本発明のリチウム電池は、リチウム一次電池及びリチウム二次電池の総称である。また、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。本発明のリチウム電池は、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
 例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン、及びニッケルから選ばれる一種又は二種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、一種単独又は二種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO2、LiMn24、LiNiO2、LiCo1-xNix2(0.01<x<1)、LiCo1/3Ni1/3Mn1/32、LiNi1/2Mn3/24、LiCo0.98Mg0.022から選ばれる一種又は二種以上が挙げられる。また、LiCoO2とLiMn24、LiCoO2とLiNiO2、LiMn24とLiNiO2のように併用してもよい。
 また、過充電時の安全性やサイクル特性を向上したり、4.3V以上の充電電位での使用を可能にするために、リチウム複合金属酸化物の一部は他元素で置換してもよい。例えば、コバルト、マンガン、ニッケルの一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cu、Bi、Mo、La等の少なくとも一種以上の元素で置換したり、Oの一部をSやFで置換したり、又はこれらの他元素を含有する化合物を被覆することもできる。
 これらの中では、LiCoO2、LiMn24、LiNiO2のような満充電状態における正極の充電電位がLi基準で4.3V以上で使用可能なリチウム複合金属酸化物が好ましく、LiCo1-xx2(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cuから選ばれる一種又は二種以上の元素、0.001≦x≦0.05)、LiCo1/3Ni1/3Mn1/32、LiNi0.5Mn0.3Co0.22、LiNi0.85Co0.10Al0.052、LiNi1/2Mn3/24、Li2MnO3とLiMO2(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体のような4.4V以上で使用可能なリチウム複合金属酸化物がより好ましい。高充電電圧で動作するリチウム複合金属酸化物を使用すると、充電時における電解液との反応により特に広い温度範囲での電気化学特性が低下しやすいが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができる。
 更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特に鉄、コバルト、ニッケル及びマンガンから選ばれる一種又は二種以上を含有するリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO4、LiCoPO4、LiNiPO4、LiMnPO4等が挙げられる。
 これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W及びZr等から選ばれる一種以上の元素で置換したり、又はこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO4又はLiMnPO4が好ましい。
 また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
 また、リチウム一次電池用正極としては、CuO、Cu2O、Ag2O、Ag2CrO4、CuS、CuSO4、TiO2、TiS2、SiO2、SnO、V25、V612、VOx、Nb25、Bi23、Bi2Pb25,Sb23、CrO3、Cr23、MoO3、WO3、SeO2、MnO2、Mn23、Fe23、FeO、Fe34、Ni23、NiO、CoO3、CoO等の、一種もしくは二種以上の金属元素の酸化物あるいはカルコゲン化合物、SO2、SOCl2等の硫黄化合物、一般式(CFxnで表されるフッ化炭素(フッ化黒鉛)等が挙げられる。中でも、MnO2、V25、フッ化黒鉛等が好ましい。
 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックから選ばれる一種又は二種以上のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1~10質量%が好ましく、特に2~5質量%が好ましい。
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 正極の集電体を除く部分の密度は、通常は1.5g/cm3以上であり、電池の容量を更に高めるため、好ましくは2g/cm3以上であり、より好ましくは、3g/cm3以上であり、更に好ましくは、3.6g/cm3以上である。なお、上限としては、4g/cm3以下が好ましい。
 リチウム二次電池用負極活物質としては、リチウム金属、リチウム合金、リチウムを吸蔵及び放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛等〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、及びLi4Ti512等のチタン酸リチウム化合物等から選ばれる一種又は二種以上を組み合わせて用いることができる。
 これらの中では、リチウムイオンの吸蔵及び放出能力において、人造黒鉛や天然黒鉛等の高結晶性の炭素材料を使用することが更に好ましく、格子面(002)の面間隔(d002)が0.340nm(ナノメータ)以下、特に0.335~0.337nmである黒鉛型結晶構造を有する炭素材料を使用することが特に好ましい。
 複数の扁平状の黒鉛質微粒子が互いに非平行に集合或いは結合した塊状構造を有する人造黒鉛粒子や、例えば鱗片状天然黒鉛粒子に圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、球形化処理を施した黒鉛粒子を用いることにより、負極の集電体を除く部分の密度を1.5g/cm3以上の密度に加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が0.01以上となると一段と広い温度範囲での電気化学特性が向上するので好ましく、0.05以上となることがより好ましく、0.1以上となることが更に好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、上限は0.5以下が好ましく、0.3以下がより好ましい。
 また、高結晶性の炭素材料(コア材)はコア材よりも低結晶性の炭素材料によって被膜されていると、広い温度範囲での電気化学特性が一段と良好となるので好ましい。被覆の炭素材料の結晶性は、TEMにより確認することができる。
 高結晶性の炭素材料を使用すると、充電時において非水電解液と反応し、界面抵抗の増加によって低温もしくは高温における電気化学特性を低下させる傾向があるが、本発明に係るリチウム二次電池では広い温度範囲での電気化学特性が良好となる。
 また、負極活物質としてのリチウムを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、Ba等の金属元素を少なくとも一種含有する化合物が挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、リチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金の何れかが高容量化できるので好ましい。中でも、Si、Ge及びSnから選ばれる少なくとも一種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも一種の元素を含むものが電池を高容量化できるので特に好ましい。
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 負極の集電体を除く部分の密度は、通常は1.1g/cm3以上であり、電池の容量を更に高めるため、好ましくは1.5g/cm3以上であり、特に好ましくは1.7g/cm3以上である。なお、上限としては、2g/cm3以下が好ましい。
 また、リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。
 リチウム電池の構造には特に限定はなく、単層又は複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート電池等を適用できる。
 電池用セパレータとしては、特に制限はされないが、ポリプロピレン、ポリエチレン等のポリオレフィンの単層又は積層の微多孔性フィルム、織布、不織布等を使用できる。
 本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも広い温度範囲での電気化学特性に優れ、更に、4.4V以上においても特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることが出来るが、本願発明におけるリチウム二次電池は、2.0V以上とすることが出来る。電流値については特に限定されないが、通常0.1~30Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。
 本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。
〔第2の蓄電デバイス(リチウムイオンキャパシタ)〕
 負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスである。リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気二重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF6等のリチウム塩が含まれる。
実施例I-1~I-23、比較例I-1~I-3
〔リチウムイオン二次電池の作製〕
 LiCoO294質量%、アセチレンブラック(導電剤)3質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに切り抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cm3であった。
 また、人造黒鉛(d002=0.335nm、負極活物質)95質量%を、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに切り抜き負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cm3であった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。
 上記で得られた正極シート、微多孔性ポリエチレンフィルム製セパレータ、上記で得られた負極シートの順に積層し、表1及び表2に記載の組成の非水電解液を加えて、ラミネート型電池を作製した。
〔高温サイクル特性の評価〕
 上記の方法で作製した電池を用いて60℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.3Vまで3時間充電し、次に1Cの定電流下、放電電圧3.0Vまで放電することを1サイクルとし、これを100サイクルに達するまで繰り返した。そして、以下の式により60℃100サイクル後の放電容量維持率を求めた。
 放電容量維持率(%)=(60℃100サイクル後の放電容量/1サイクル後の放電容量)×100
<100サイクル後のガス発生量の評価>
 100サイクル後のガス発生量はアルキメデス法により測定した。ガス発生量は、比較例1のガス発生量を100%としたときを基準とし、相対的なガス発生量を調べた。
<初期負極厚み>
 上記の方法で1サイクルさせた電池を解体し、初期の負極厚みを測定した。
<サイクル後の負極厚み>
 上記の方法で60℃100サイクルさせた電池を解体し、高温サイクル後の負極厚みを測定した。
<負極厚み上昇率>
 負極厚み上昇率を以下の式により求めた。
 負極厚み上昇率(%)=[(60℃100サイクル後の負極厚み-初期の負極厚み)/初期の負極厚み]×100
 また、電池の作製条件及び電池特性を表1に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
実施例I-24、I-25及び比較例I-4
 実施例I-2及び比較例I-2で用いた負極活物質に変えて、ケイ素(単体)(負極活物質)を用いて、負極シートを作製した。ケイ素(単体)40質量%、人造黒鉛(d002=0.335nm、負極活物質)50質量%、アセチレンブラック(導電剤)5質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに切り抜き負極シートを作製したことの他は、実施例I-2、比較例I-2と同様にラミネート型電池を作製し、電池評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000012
実施例I-26、I-27及び比較例I-5
 実施例I-2及び比較例I-2で用いた正極活物質に変えて、非晶質炭素で被覆されたLiFePO4(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiFePO490質量%、アセチレンブラック(導電剤)5質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに切り抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとしたことの他は、実施例I-2及び、比較例I-2と同様にラミネート型電池を作製し、電池評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000013
 上記実施例I-1~I-23のリチウム二次電池は何れも、非水電解液に本願発明の1,3-ジオキサン及び一般式(I)の化合物を添加しない場合の比較例I-1、1,3-ジオキサンのみを添加した場合の比較例I-2、及びエチル 2-(ジエトキシホスホリル)アセテートのみを添加した場合の比較例I-3のリチウム二次電池に比べ、サイクル特性を向上させるとともに負極厚みの増加を抑制している。
 また、実施例I-3、比較例I-1、比較例I-2と同じ条件で作製したリチウム二次電池の高温サイクル後のガス発生量をアルキメデス法により測定したところ、比較例I-1のガス発生量を100%としたとき、実施例I-3は77%、比較例I-2は78%であり、発生ガス抑制に関しては一般式(I)の化合物を添加しても同等であった。
 以上より、本発明の効果は、非水溶媒に電解質塩が溶解されている非水電解液において、本願発明の特定の化合物を含有させた場合に特有の効果であることが判明した。
 また、実施例I-24、I-25と比較例I-4の対比、実施例I-26、I-27と比較例I-5の対比から、負極にケイ素(単体)を用いた場合や、正極にリチウム含有オリビン型リン酸鉄塩(LiFePO4)を用いた場合にも同様な効果がみられる。従って、本発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
 更に、実施例I-1~I-27の非水電解液は、リチウム一次電池の広い温度範囲での放電特性を改善する効果も有する。
実施例II-1~II-13、比較例II-1~II-2
〔リチウムイオン二次電池の作製〕
 LiCoO294質量%、アセチレンブラック(導電剤)3質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに切り抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cm3であった。
 また、人造黒鉛(d002=0.335nm、負極活物質)95質量%を、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに切り抜き負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cm3であった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。
 上記で得られた正極シート、微多孔性ポリエチレンフィルム製セパレータ、上記で得られた負極シートの順に積層し、表5に記載の組成の非水電解液を加えて、ラミネート型電池を作製した。
〔高温サイクル特性の評価〕
 上記の方法で作製した電池を用いて60℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.3Vまで3時間充電し、次に1Cの定電流下、放電電圧3.0Vまで放電することを1サイクルとし、これを100サイクルに達するまで繰り返した。そして、以下の式により60℃100サイクル後の放電容量維持率を求めた。
 放電容量維持率(%)=(60℃100サイクル後の放電容量/1サイクル後の放電容量)×100
<100サイクル後のガス発生量の評価>
 100サイクル後のガス発生量はアルキメデス法により測定した。ガス発生量は、比較例1のガス発生量を100%としたときを基準とし、相対的なガス発生量を調べた。
<初期負極厚み>
 上記の方法で1サイクルさせた電池を解体し、初期の負極厚みを測定した。
<サイクル後の負極厚み>
 上記の方法で60℃100サイクルさせた電池を解体し、高温サイクル後の負極厚みを測定した。
<負極厚み上昇率>
 負極厚み上昇率を以下の式により求めた。
負極厚み上昇率(%)=[(60℃100サイクル後の負極厚み-初期の負極厚み)/初期の負極厚み]×100
 また、電池の作製条件及び電池特性を表5に示す。
Figure JPOXMLDOC01-appb-T000014
実施例II-14及び比較例II-3
 実施例II-2及び比較例II-2で用いた負極活物質に変えて、ケイ素(単体)(負極活物質)を用いて、負極シートを作製した。ケイ素(単体)40質量%、人造黒鉛(d002=0.335nm、負極活物質)50質量%、アセチレンブラック(導電剤)5質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに切り抜き負極シートを作製したことの他は、実施例II-2、比較例II-2と同様にラミネート型電池を作製し、電池評価を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000015
実施例II-15及び比較例II-4
 実施例II-2及び比較例II-2で用いた正極活物質に変えて、非晶質炭素で被覆されたLiFePO4(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiFePO490質量%、アセチレンブラック(導電剤)5質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに切り抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとしたことの他は、実施例II-2及び、比較例II-2と同様にラミネート型電池を作製し、電池評価を行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000016
 上記実施例II-1~II-13のリチウム二次電池は何れも、非水電解液に本願発明の1,3-ジオキサン及び一般式(II)の化合物を添加しない場合の比較例II-1、1,3-ジオキサンのみを添加した場合の比較例II-2のリチウム二次電池に比べ、サイクル特性を向上させるとともに負極厚みの増加を抑制している。
 また、実施例II-3、実施例II-9、比較例II-1、比較例II-2と同じ条件で作製したリチウム二次電池の高温サイクル後のガス発生量をアルキメデス法により測定したところ、比較例II-1のガス発生量を100%としたとき、実施例II-3は80%、実施例II-9は79%、比較例II-2は81%であり、発生ガス抑制に関しては一般式(I)の化合物を添加しても同等であった。
 以上より、本発明の電極厚みの増加率を低減させる効果は、非水溶媒に電解質塩が溶解されている非水電解液において、本願発明の特定の化合物を含有させた場合に特有の効果であることが判明した。
 また、実施例II-14と比較例II-3の対比、実施例II-15と比較例II-4の対比から、負極にケイ素(単体)を用いた場合や、正極にリチウム含有オリビン型リン酸鉄塩(LiFePO4)を用いた場合にも同様な効果がみられる。従って、本発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
 更に、実施例II-1~II-15の非水電解液は、リチウム一次電池の広い温度範囲での放電特性を改善する効果も有する。
実施例III-1~III-8
〔リチウムイオン二次電池の作製〕
 実施例I-1と同様にして、正極シート、負極シートを作製し、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表8に記載の組成の非水電解液を加えて、ラミネート型電池を作製した。
 実施例I-1と同様にして、高温サイクル特性を評価した。
 電池の作製条件及び電池特性を表8に示す。
Figure JPOXMLDOC01-appb-T000017
 上記実施例III-1~III-8のリチウム二次電池は何れも、非水電解液に本願発明の1,3-ジオキサン及び1,3-ジオキサンと組み合わせて用いる化合物を添加しない場合の前記比較例I-1、1,3-ジオキサンのみを添加した場合の前記比較例I-2のリチウム二次電池に比べ、サイクル特性を向上させるとともに負極厚みの増加を抑制している。
 また、実施例III-2、前記比較例I-1、前記比較例I-2と同じ条件で作製したリチウム二次電池の高温サイクル後のガス発生量をアルキメデス法により測定したところ、前記比較例I-1のガス発生量を100%としたとき、実施例III-2は76%、前記比較例I-2は78%であり、発生ガス抑制に関しては1,3-ジオキサンと組み合わせて用いる化合物を添加しても同等であった。
 以上より、本発明の効果は、非水溶媒に電解質塩が溶解されている非水電解液において、本願発明の特定の化合物を含有させた場合に特有の効果であることが判明した。
 更に、実施例III-1~III-8の非水電解液は、リチウム一次電池の広い温度範囲での放電特性を改善する効果も有する。
 本発明の非水電解液を用いた蓄電デバイスは、広い温度範囲での電気化学特性に優れたリチウム二次電池等の蓄電デバイスとして有用である。

Claims (14)

  1.  非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に1,3-ジオキサンを0.001~5質量%含有し、更に下記一般式(I)で表されるリン酸エステル化合物、一般式(II)で表される環状スルホン酸エステル化合物、及びアリル水素を有する側鎖を含有する環状酸無水物から選ばれる少なくとも一種を0.001~5質量%含有することを特徴とする非水電解液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2は、それぞれ独立に、炭素数1~6のアルキル基、又は少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6のハロゲン化アルキル基を示し、R3は、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、又は炭素数3~6のアルキニル基を示し、R4及びR5は、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~4のアルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R6及びR7は、それぞれ独立に、水素原子、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1~6のアルキル基、又はハロゲン原子を示し、Xは、-CH(OR8)-又は-C(=O)-を示し、R8は、ホルミル基、炭素数2~7のアルキルカルボニル基、炭素数3~7のアルケニルカルボニル基、炭素数3~7のアルキニルカルボニル基、又は炭素数7~13のアリールカルボニル基を示す。R8は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい。)
  2.  一般式(I)で表されるリン酸エステル化合物が、メチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロペニル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)プロパノエート、2-プロピニル 2-(ジメトキシホスホリル)プロパノエート、メチル 2-(ジエトキシホスホリル)-2-フルオロアセテート、エチル 2-(ジエトキシホスホリル)-2-フルオロアセテート、2-プロペニル 2-(ジエトキシホスホリル)-2-フルオロアセテート、2-プロピニル 2-(ジエトキシホスホリル)-2-フルオロアセテート、メチル 2-(ジエトキシホスホリル)-2,2-ジフルオロアセテート、エチル 2-(ジエトキシホスホリル)-2,2-ジフルオロアセテート、2-プロペニル 2-(ジエトキシホスホリル)-2,2-ジフルオロアセテート、及び2-プロピニル 2-(ジエトキシホスホリル)-2,2-ジフルオロアセテートから選ばれる少なくとも一種である、請求項1に記載の非水電解液。
  3.  一般式(II)で表される環状スルホン酸エステル化合物が、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、及び5,5-ジメチル-1,2-オキサチオラン-4-オン 2,2-ジオキシドから選ばれる少なくとも一種である、請求項1に記載の非水電解液。
  4.  環状酸無水物が無水こはく酸である、請求項1~3のいずれかに記載の非水電解液。
  5.  アリル水素を有する側鎖を含有する無水こはく酸が、2-アリル無水こはく酸、2-(1-ペンテン-3-イル)無水こはく酸、2-(1-ヘキセン-3-イル)無水こはく酸、2-(1-ヘプテン-3-イル)無水こはく酸、2-(1-オクテン-3-イル)無水こはく酸、2-(1-ノネン-3-イル)無水こはく酸、2-(3-ブテン-2-イル)無水こはく酸、2-(2-メチルアリル)無水こはく酸、及び2-(3-メチル-3-ブテン-2-イル)無水こはく酸から選ばれる少なくとも一種である、請求項4に記載の非水電解液。
  6.  非水溶媒が少なくとも一種の環状カーボネートを含む、請求項1~5のいずれかに記載の非水電解液。
  7.  環状カーボネートが、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート、ビニルエチレンカーボネート、及び4-エチニル-1,3-ジオキソラン-2-オンから選ばれる一種又は二種以上である、請求項6に記載の非水電解液。
  8.  非水溶媒が、更に鎖状エステルを含有する、請求項1~7のいずれかに記載の非水電解液。
  9.  鎖状エステルが、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、及びエチルプロピルカーボネートから選ばれる非対称鎖状カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、及びジブチルカーボネートから選ばれる対称鎖状カーボネート、及び鎖状カルボン酸エステルから選ばれる一種又は二種以上である、請求項8に記載の非水電解液。
  10.  電解質塩が、LiPF6、LiBF4、LiPO22、Li2PO3F、LiSO3F、LiN(SO2F)2、LiN(SO2CF32、LiN(SO2252、ビス[オキサレート-O,O’]ホウ酸リチウム、ジフルオロビス[オキサレート-O,O’]リン酸リチウム、及びテトラフルオロ[オキサレート-O,O’]リン酸リチウムから選ばれる一種又は二種以上のリチウム塩を含む、請求項1~9のいずれかに記載の非水電解液。
  11.  リチウム塩の濃度が、非水溶媒に対して0.3~2.5Mである、請求項10に記載の非水電解液。
  12.  正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスにおいて、非水電解液中に1,3-ジオキサンを0.001~5質量%含有し、更に請求項1に記載の一般式(I)で表されるリン酸エステル化合物、一般式(II)で表される環状スルホン酸エステル化合物、及びアリル水素を有する側鎖を含有する環状酸無水物から選ばれる少なくとも一種を0.001~5質量%含有することを特徴とする蓄電デバイス。
  13.  正極の活物質が、コバルト、マンガン、及びニッケルから選ばれる一種又は二種以上を含有するリチウムとの複合金属酸化物、又は鉄、コバルト、ニッケル、及びマンガンから選ばれる一種又は二種以上を含有するリチウム含有オリビン型リン酸塩である、請求項12に記載の蓄電デバイス。
  14.  負極の活物質が、リチウム金属、リチウム合金、リチウムを吸蔵及び放出することが可能な炭素材料、スズ、スズ化合物、ケイ素、ケイ素化合物、及びチタン酸リチウム化合物から選ばれる一種又は二種以上を含有する、請求項12又は13に記載の蓄電デバイス。
PCT/JP2013/070504 2012-07-31 2013-07-29 非水電解液及びそれを用いた蓄電デバイス WO2014021272A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014528149A JP6115569B2 (ja) 2012-07-31 2013-07-29 非水電解液及びそれを用いた蓄電デバイス
EP13825021.2A EP2882030B1 (en) 2012-07-31 2013-07-29 Non-aqueous electrolyte and energy storage device using the same
CN201380040186.7A CN104508896B (zh) 2012-07-31 2013-07-29 非水电解液以及使用了该非水电解液的蓄电设备
US14/417,670 US9966632B2 (en) 2012-07-31 2013-07-29 Non-aqueous electrolyte and power storage device using same
KR1020157002018A KR20150039751A (ko) 2012-07-31 2013-07-29 비수 전해액 및 그것을 이용한 축전 디바이스
US15/917,068 US20180198166A1 (en) 2012-07-31 2018-03-09 Non-aqueous electrolyte and power storage device using same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-169847 2012-07-31
JP2012-169871 2012-07-31
JP2012169847 2012-07-31
JP2012169871 2012-07-31
JP2012227665 2012-10-15
JP2012-227665 2012-10-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/417,670 A-371-Of-International US9966632B2 (en) 2012-07-31 2013-07-29 Non-aqueous electrolyte and power storage device using same
US15/917,068 Division US20180198166A1 (en) 2012-07-31 2018-03-09 Non-aqueous electrolyte and power storage device using same

Publications (1)

Publication Number Publication Date
WO2014021272A1 true WO2014021272A1 (ja) 2014-02-06

Family

ID=50027947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070504 WO2014021272A1 (ja) 2012-07-31 2013-07-29 非水電解液及びそれを用いた蓄電デバイス

Country Status (6)

Country Link
US (2) US9966632B2 (ja)
EP (1) EP2882030B1 (ja)
JP (1) JP6115569B2 (ja)
KR (1) KR20150039751A (ja)
CN (1) CN104508896B (ja)
WO (1) WO2014021272A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111551A (ja) * 2013-11-11 2015-06-18 日立マクセル株式会社 リチウム二次電池
JP2015164126A (ja) * 2014-01-29 2015-09-10 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
CN106471664A (zh) * 2014-07-15 2017-03-01 宇部兴产株式会社 非水电解液以及使用了该非水电解液的蓄电设备
WO2017043576A1 (ja) * 2015-09-09 2017-03-16 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
WO2017061464A1 (ja) * 2015-10-09 2017-04-13 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
WO2018164138A1 (ja) * 2017-03-08 2018-09-13 住友精化株式会社 非水電解液用添加剤、非水電解液及び蓄電デバイス
WO2018164130A1 (ja) * 2017-03-08 2018-09-13 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
WO2019189413A1 (ja) * 2018-03-27 2019-10-03 三菱ケミカル株式会社 非水系電解液及びそれを用いたエネルギーデバイス
JP2020155254A (ja) * 2019-03-19 2020-09-24 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液電池

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147818A1 (ja) * 2011-04-26 2012-11-01 宇部興産株式会社 非水電解液、それを用いた蓄電デバイス、及び環状スルホン酸エステル化合物
KR102547064B1 (ko) * 2016-03-18 2023-06-23 삼성에스디아이 주식회사 유기전해액 및 상기 전해액을 채용한 리튬 전지
WO2018179884A1 (ja) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 非水電解液及び非水電解液二次電池
CN109309248B (zh) * 2017-07-27 2021-09-21 宁德时代新能源科技股份有限公司 电解液及二次电池
CN108346821A (zh) * 2018-01-22 2018-07-31 江苏佳富特高新材料有限公司 一种含阻燃添加剂的电解液及其制备方法
CN108336407A (zh) * 2018-01-22 2018-07-27 江苏佳富特高新材料有限公司 一种含阻燃添加剂电解液的锂离子二次电池
WO2019150896A1 (ja) * 2018-01-30 2019-08-08 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
KR102542965B1 (ko) * 2018-02-16 2023-06-14 다이킨 고교 가부시키가이샤 전해액, 전기 화학 디바이스, 리튬 이온 이차 전지 및 모듈
JP7034292B2 (ja) * 2018-07-26 2022-03-11 三井化学株式会社 電池用非水電解液及びリチウム二次電池
CN111129585B (zh) * 2018-10-30 2021-09-17 宁德时代新能源科技股份有限公司 一种电解液及锂离子电池
CN109273766A (zh) * 2018-11-28 2019-01-25 杉杉新材料(衢州)有限公司 一种作用于镍锰酸锂正极材料的高温高电压的非水电解液
CN110931864A (zh) * 2019-11-20 2020-03-27 珠海市赛纬电子材料股份有限公司 锂离子电池非水电解液及锂离子电池
WO2021128002A1 (zh) * 2019-12-24 2021-07-01 宁德时代新能源科技股份有限公司 二次电池及含有该二次电池的装置
CN114503327A (zh) * 2020-06-22 2022-05-13 株式会社Lg新能源 锂二次电池用非水电解质和包含其的锂二次电池
CN112002944B (zh) * 2020-09-25 2022-04-29 天目湖先进储能技术研究院有限公司 一种用于硅碳复合负极的高温电解液和二次电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235147A (ja) 2007-03-23 2008-10-02 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008262908A (ja) 2007-03-19 2008-10-30 Mitsubishi Chemicals Corp 非水系電解液および非水系電解液電池
JP2008277086A (ja) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009070615A (ja) * 2007-09-11 2009-04-02 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP2009140919A (ja) 2007-11-16 2009-06-25 Sanyo Electric Co Ltd 非水電解質二次電池
JP2010165549A (ja) * 2009-01-15 2010-07-29 Sony Corp 二次電池
JP2011060464A (ja) * 2009-09-07 2011-03-24 Mitsubishi Chemicals Corp 非水系電解液およびそれを用いた電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189039A (ja) 1996-12-25 1998-07-21 Mitsui Chem Inc 非水電解液及び非水電解液二次電池
JP2006066320A (ja) 2004-08-30 2006-03-09 Shin Kobe Electric Mach Co Ltd カルボン酸無水有機化合物、それを含む非水電解液及びそれを用いたリチウム二次電池
JP4948025B2 (ja) * 2006-04-18 2012-06-06 三洋電機株式会社 非水系二次電池
WO2007139130A1 (ja) * 2006-05-31 2007-12-06 Sanyo Electric Co., Ltd. 高電圧充電型非水電解質二次電池
CN102780038A (zh) 2007-03-19 2012-11-14 三菱化学株式会社 非水系电解液电池
BR112013026067A2 (pt) * 2011-04-12 2019-09-24 Ube Industries solução de eletrólito não aquosa e um dispositivo de armazenamento de eletricidade usando o mesmo
JP2012256502A (ja) * 2011-06-08 2012-12-27 Sony Corp 非水電解質および非水電解質電池、ならびに非水電解質電池を用いた電池パック、電子機器、電動車両、蓄電装置および電力システム
CN103891036B (zh) * 2011-10-17 2016-01-06 宇部兴产株式会社 非水电解液及使用了该非水电解液的蓄电设备
CN103515666B (zh) * 2012-06-22 2017-03-01 日立麦克赛尔株式会社 锂二次电池
KR20150046050A (ko) * 2012-08-24 2015-04-29 우베 고산 가부시키가이샤 비수 전해액 및 그것을 이용한 축전 디바이스

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262908A (ja) 2007-03-19 2008-10-30 Mitsubishi Chemicals Corp 非水系電解液および非水系電解液電池
JP2008235147A (ja) 2007-03-23 2008-10-02 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008277086A (ja) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009070615A (ja) * 2007-09-11 2009-04-02 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP2009140919A (ja) 2007-11-16 2009-06-25 Sanyo Electric Co Ltd 非水電解質二次電池
JP2010165549A (ja) * 2009-01-15 2010-07-29 Sony Corp 二次電池
JP2011060464A (ja) * 2009-09-07 2011-03-24 Mitsubishi Chemicals Corp 非水系電解液およびそれを用いた電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2882030A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111551A (ja) * 2013-11-11 2015-06-18 日立マクセル株式会社 リチウム二次電池
JP2015164126A (ja) * 2014-01-29 2015-09-10 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
US10263287B2 (en) 2014-07-15 2019-04-16 Ube Industries, Ltd. Non-aqueous electrolyte solution and electricity storage device in which same is used
EP3171445A4 (en) * 2014-07-15 2018-04-04 UBE Industries, Ltd. Non-aqueous electrolyte solution and electricity storage device in which same is used
CN106471664B (zh) * 2014-07-15 2020-01-21 宇部兴产株式会社 非水电解液以及使用了该非水电解液的蓄电设备
CN106471664A (zh) * 2014-07-15 2017-03-01 宇部兴产株式会社 非水电解液以及使用了该非水电解液的蓄电设备
WO2017043576A1 (ja) * 2015-09-09 2017-03-16 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
JPWO2017043576A1 (ja) * 2015-09-09 2018-08-02 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
US20180248226A1 (en) * 2015-09-09 2018-08-30 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
US11038201B2 (en) * 2015-09-09 2021-06-15 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
WO2017061464A1 (ja) * 2015-10-09 2017-04-13 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
WO2018164130A1 (ja) * 2017-03-08 2018-09-13 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
JPWO2018164138A1 (ja) * 2017-03-08 2020-01-09 住友精化株式会社 非水電解液用添加剤、非水電解液及び蓄電デバイス
WO2018164138A1 (ja) * 2017-03-08 2018-09-13 住友精化株式会社 非水電解液用添加剤、非水電解液及び蓄電デバイス
US11342587B2 (en) 2017-03-08 2022-05-24 Sumitomo Seika Chemicals Co., Ltd. Additive for non-aqueous electrolytic solutions, non-aqueous electrolytic solution, and electrical storage device
JP7034136B2 (ja) 2017-03-08 2022-03-11 住友精化株式会社 非水電解液用添加剤、非水電解液及び蓄電デバイス
WO2019189413A1 (ja) * 2018-03-27 2019-10-03 三菱ケミカル株式会社 非水系電解液及びそれを用いたエネルギーデバイス
JPWO2019189413A1 (ja) * 2018-03-27 2021-04-15 三菱ケミカル株式会社 非水系電解液及びそれを用いたエネルギーデバイス
JP7187125B2 (ja) 2018-03-27 2022-12-12 三菱ケミカル株式会社 非水系電解液及びそれを用いたエネルギーデバイス
JP2020155254A (ja) * 2019-03-19 2020-09-24 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液電池

Also Published As

Publication number Publication date
JP6115569B2 (ja) 2017-04-19
CN104508896B (zh) 2017-06-09
EP2882030A4 (en) 2016-03-16
KR20150039751A (ko) 2015-04-13
US20180198166A1 (en) 2018-07-12
EP2882030B1 (en) 2017-06-21
CN104508896A (zh) 2015-04-08
US20150221985A1 (en) 2015-08-06
US9966632B2 (en) 2018-05-08
JPWO2014021272A1 (ja) 2016-07-21
EP2882030A1 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP6115569B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6866183B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6614146B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP7116314B2 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP5494472B2 (ja) リチウム電池用非水電解液及びそれを用いたリチウム電池
JP6222106B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6279233B2 (ja) リチウム二次電池
WO2014030684A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
US9793576B2 (en) Nonaqueous electrolytic solution and energy storage device using same
JP6380377B2 (ja) リチウムイオン二次電池
JP6737280B2 (ja) 蓄電デバイス用非水電解液及びそれを用いた蓄電デバイス
JP6229453B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
WO2012077623A1 (ja) 非水電解液及びそれを用いた電気化学素子
JP2011171282A (ja) 非水電解液及びそれを用いた電気化学素子
JP7051422B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP2019164937A (ja) 非水電解液およびそれを用いた蓄電デバイス
JP2019197705A (ja) 非水電解液およびそれを用いた蓄電デバイス
JP6252200B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP6179511B2 (ja) リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528149

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157002018

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013825021

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013825021

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14417670

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE