WO2014010328A1 - 銅被膜形成剤及び銅被膜の形成方法 - Google Patents

銅被膜形成剤及び銅被膜の形成方法 Download PDF

Info

Publication number
WO2014010328A1
WO2014010328A1 PCT/JP2013/065108 JP2013065108W WO2014010328A1 WO 2014010328 A1 WO2014010328 A1 WO 2014010328A1 JP 2013065108 W JP2013065108 W JP 2013065108W WO 2014010328 A1 WO2014010328 A1 WO 2014010328A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
carbon atoms
coating
copper film
branched
Prior art date
Application number
PCT/JP2013/065108
Other languages
English (en)
French (fr)
Inventor
宗作 飯田
村井 孝行
浩彦 平尾
Original Assignee
四国化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四国化成工業株式会社 filed Critical 四国化成工業株式会社
Priority to KR1020157000590A priority Critical patent/KR102086501B1/ko
Priority to CN201380036469.4A priority patent/CN104471108B/zh
Priority to IN149DEN2015 priority patent/IN2015DN00149A/en
Priority to JP2014524689A priority patent/JP6027613B2/ja
Priority to EP13816923.0A priority patent/EP2871260B1/en
Priority to US14/413,532 priority patent/US10405422B2/en
Priority to BR112015000524-1A priority patent/BR112015000524B1/pt
Publication of WO2014010328A1 publication Critical patent/WO2014010328A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/30Processes for applying liquids or other fluent materials performed by gravity only, i.e. flow coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/30Processes for applying liquids or other fluent materials performed by gravity only, i.e. flow coating
    • B05D1/305Curtain coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • B05D1/42Distributing applied liquids or other fluent materials by members moving relatively to surface by non-rotary members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Definitions

  • the present invention relates to a copper film forming agent and a method for forming a copper film.
  • Copper is widely used as a wiring material because it has the second highest conductivity after silver among all metals and is inexpensive.
  • a technique for forming a circuit by forming a copper layer on a substrate and removing unnecessary copper portions by etching has been used for a long time.
  • this method has a problem in that the number of treatment steps is large and the treatment of the etching waste liquid is required, so that the cost is increased and the environmental load is increased.
  • metal particles are bonded to each other as if they are melted by heating at a relatively low temperature by reducing the size of the metal particles to the nano level.
  • a technique has been developed in which copper particles are bonded to each other by firing to form a circuit, and the resin binder remaining in the conductor after circuit formation is reduced.
  • this method has a problem that the manufacturing cost is high because the copper particles must be processed to a nano-level size.
  • a method of forming a circuit by printing a wiring pattern using a copper composition that deposits copper by pyrolysis and depositing copper by heating is proposed.
  • the manufacturing cost can be suppressed.
  • the resin binder which remains in a conductor after circuit formation can be reduced, favorable electroconductivity can be obtained.
  • the copper coating formed using such a technique has little or almost no resin binder that contributes to adhesion with the substrate, adhesion with the substrate is exclusively on the surface of copper and the substrate surface. Secured by direct interaction. Since copper is inherently hydrophilic and adhesion is not ensured on a hydrophobic surface, it is desirable that the substrate surface be hydrophilic. Therefore, a composition intended for use in this application is required to have excellent affinity with a hydrophilic surface.
  • copper can be deposited at a lower temperature, specifically, copper can be applied at a temperature of 130 ° C. or lower, which can be applied to a polyethylene terephthalate film. It is required to be able to precipitate.
  • Patent Document 1 discloses that by heating a composition comprising two formate ions coordinated to copper and copper, and two C9 to C20 alkylimidazoles coordinated to copper via nitrogen, A method of depositing copper is disclosed. However, there is no mention of adhesion to the substrate and pattern formation, and no description is given regarding circuit formation technology. In addition, this composition is intended for use in supercritical fluids such as supercritical carbon dioxide, and is not shown for use under normal pressure. In addition, it is highly hydrophobic, so it can form copper films on hydrophilic surfaces. Is not suitable. Patent Document 2 discloses a method of depositing a copper film by heating a mixed product composed of copper formate and alkoxyalkylamine.
  • Patent Document 3 discloses a method for producing a copper film by heating a copper compound composed of copper formate and ammonia. However, copper film formation at 130 ° C. or lower is not shown.
  • Patent Document 4 discloses a method for producing a copper coating by heating a copper precursor composition comprising copper formate and a propanediol compound. However, copper film formation at 130 ° C. or lower is not shown.
  • Non-Patent Document 1 describes purification of a dimeric copper (II) complex with 1-methylimidazole by adding copper formate to an ethanol solution containing excess 1-methylimidazole. However, the content is a consideration regarding the chemical structure, and there is no description regarding the formation of the copper film.
  • the present invention has been made in view of the above-described conventional situation, and can form a copper film at a temperature of 130 ° C. or less under normal pressure, and has excellent affinity with a hydrophilic surface and is uniform copper. It is an object to provide a copper film forming agent capable of forming a film and a method for forming a copper film.
  • the present inventors have obtained a desired effect by using a copper film forming agent containing a copper complex composed of a specific nitrogen-containing heterocyclic compound and copper formate.
  • the inventors have found that the above object can be achieved, and have completed the present invention.
  • a copper complex comprising a 5- or 6-membered nitrogen-containing heterocyclic compound having 1 to 3 nitrogen atoms and copper formate, wherein the nitrogen-containing heterocyclic compound comprises 1 or 2
  • a copper film forming agent having a ring structure, wherein the total number of carbon atoms contained in a substituent is 1 to 5, and an element other than carbon atoms in the compound is not bonded to a hydrogen atom.
  • the copper film forming agent according to (1), wherein the substituent is selected from the group consisting of an alkyl group, an alkenyl group, an alkynyl group, an alkoxyl group, and an alkoxylalkyl group.
  • the copper film forming agent according to (1) or (2), wherein the nitrogen-containing heterocyclic compound is an imidazole compound represented by the following formula (I).
  • R 1 is a linear, branched or cyclic hydrocarbon group having 1 to 5 carbon atoms, or an element other than a carbon atom which is not bonded to a hydrocarbon having 1 to 5 carbon atoms and a hydrogen atom.
  • R 2 to R 4 are each independently a hydrogen atom
  • the imidazole compound represented by the formula (I) is 1-methylimidazole, 1-ethylimidazole, 1,2-dimethylimidazole, 1-ethyl-2-methylimidazole, 2-ethyl-1-methylimi
  • R 5 and R 8 are each independently a straight, branched or cyclic hydrocarbon group having 1 to 5 carbon atoms, or a hydrocarbon having 1 to 5 carbon atoms. And a linear, branched, or cyclic substituent containing an element other than a carbon atom that is not bonded to a hydrogen atom, or is bonded to adjacent R 7 or R 10 to form a heterocyclic ring.
  • 6 and R 7 are each independently a hydrogen atom, a linear, branched or cyclic hydrocarbon group having 1 to 4 carbon atoms, or a carbon atom not bonded to a hydrocarbon having 1 to 4 carbon atoms and a hydrogen atom.
  • R 9 is a hydrogen atom, C1-C4 straight chain, branched chain or cyclic hydrocarbon group, or C1-C4 hydrocarbon Straight chain comprising an element other than carbon atom which is not bonded to a hydrogen atom, a branched or cyclic substituent
  • R 10 is a hydrogen atom, a straight-chain having 1 to 4 carbon atoms, branched or cyclic Or a linear, branched or cyclic substituent comprising an element other than a carbon atom not bonded to a hydrogen atom and a hydrocarbon having 1 to 4 carbon atoms, or adjacent R 8 Bonded to form a heterocyclic ring, provided that the total carbon contained in R 5 to R 7 and the total carbon contained in R 8 to R 10 are all 5 or less.
  • R 11 to R 15 are each independently a hydrogen atom, a linear, branched or cyclic hydrocarbon group having 1 to 5 carbon atoms, or a hydrocarbon and hydrogen having 1 to 5 carbon atoms. Represents a linear, branched or cyclic substituent containing an element other than a carbon atom not bonded to an atom, or bonded to adjacent R 11 , R 12 , R 13 , R 14 or R 15 (A ring or a heterocyclic ring is formed, provided that the total carbon contained in R 11 to R 15 is 5 or less.) (7) The copper film forming agent according to (1) or (2), wherein the nitrogen-containing heterocyclic compound is a pyrazole compound represented by the following formula (IV).
  • R 16 is a linear, branched or cyclic hydrocarbon group having 1 to 5 carbon atoms, or an element other than a carbon atom not bonded to a hydrocarbon having 1 to 5 carbon atoms and a hydrogen atom.
  • (11) The method for forming a copper film according to (10), wherein the substrate surface is subjected to a hydrophilic treatment before the coating step.
  • the substrate is at least one selected from the group consisting of a glass substrate, a silicon substrate, a metal substrate, a ceramic substrate, and a resin substrate.
  • the coating process includes spin coating, dip coating, spray coating, mist coating, flow coating, curtain coating, roll coating, knife coating, blade coating, air doctor coating, and bar coating.
  • any one of the above (10) to (15), which is performed by at least one method selected from the group consisting of a printing method, a screen printing method, a gravure printing method, a flexographic printing method, an offset printing method, and a brush coating method The formation method of the copper film as described in any one of.
  • a wiring board comprising a copper film formed by the method for forming a copper film according to any one of (10) to (16).
  • the copper film forming agent and the method for forming a copper film according to the present invention it is possible to form a highly uniform copper film on the hydrophilic substrate surface in a temperature range of 130 ° C. or lower under normal pressure.
  • a material having low heat resistance which has not been realized in the past, in particular, a material of insulation type B (allowable maximum temperature 130 ° C.) defined in JIS C4003 in the field of electronic materials, such as polyethylene terephthalate film, etc.
  • JIS C4003 a material of insulation type B (allowable maximum temperature 130 ° C.) defined in JIS C4003 in the field of electronic materials, such as polyethylene terephthalate film, etc.
  • the ability to form a copper film at a low temperature means that a sufficient amount of heat can be secured at a high temperature, and shortening of the baking time and improvement in conductivity can be expected even under high-temperature baking conditions as compared with the prior art. .
  • FIG. 1 is an explanatory diagram showing SEM images of the test pieces of Examples 1 to 4 and Comparative Examples 3 and 4.
  • FIG. 2 is an explanatory diagram showing CCD photographed images of the test pieces of Examples 8 to 10 and Comparative Examples 6 and 7.
  • the copper film-forming agent of the present invention is a 5- or 6-membered nitrogen-containing heterocyclic compound having 1 to 3 nitrogen atoms substituted with a specific substituent (hereinafter simply referred to as “the nitrogen-containing heterocyclic ring of the present invention”). And a copper complex composed of copper formate.
  • the nitrogen-containing heterocyclic compound of the present invention has a 5-membered or 6-membered heterocyclic skeleton having 1 to 3 nitrogen atoms.
  • the compound has one or two ring structures, the total number of carbons contained in the substituent is 1 to 5, and elements other than carbon atoms in the compound are not bonded to hydrogen atoms.
  • the nitrogen-containing heterocyclic compound of the present invention in which the nitrogen-containing heterocyclic compound is substituted with a specific substituent can be coordinated to a copper ion by an unshared electron pair on nitrogen.
  • the nitrogen-containing heterocyclic compound of the present invention When the nitrogen-containing heterocyclic compound of the present invention is used, it has moderate basicity and small steric hindrance, so that it can be stably coordinated to copper and is relatively stable at room temperature. A copper formate complex can be formed.
  • the nitrogen-containing heterocyclic compound of the present invention like other amines, can lower the copper reduction reaction with formic acid, and after copper is deposited, it is relatively quick without binding to copper. It is possible to deposit copper which is volatilized and has excellent conductivity with little residue.
  • moderate volatility is imparted, and it is possible to pass through a fluidized state in the process of copper deposition, so that a highly uniform copper coating can be obtained. The effect is obtained.
  • moderate polarity is given and it is possible to maintain affinity for the hydrophilic surface even in a fluidized state, there is an effect that the hydrophilic substrate surface can be satisfactorily adhered.
  • the substituent is preferably selected from the group consisting of an alkyl group, an alkenyl group, an alkynyl group, an alkoxyl group, and an alkoxylalkyl group.
  • Examples of the nitrogen-containing heterocyclic compound of the present invention include imidazole compounds represented by the following formula (I).
  • R 1 is a linear, branched or cyclic hydrocarbon group having 1 to 5 carbon atoms, or an element other than a carbon atom not bonded to a hydrogen atom and a hydrocarbon having 1 to 5 carbon atoms.
  • R 2 to R 4 are each independently a hydrogen atom, A linear, branched or cyclic hydrocarbon group having 1 to 4 carbon atoms, or a linear or branched chain containing a hydrocarbon having 1 to 4 carbon atoms and an element other than a carbon atom not bonded to a hydrogen atom Alternatively, it represents a cyclic substituent or is bonded to adjacent R 1 , R 3 or R 4 to form a ring or heterocyclic ring, provided that the total number of carbon atoms contained in R 1 to R 4 is 5 or less .
  • R 1 examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, vinyl group and the like.
  • imidazole compound represented by the formula (I) specifically, 1-methylimidazole, 1-ethylimidazole, 1-propylimidazole, 1-isopropylimidazole, 1-butylimidazole, 1-isobutylimidazole, 1-sec-butylimidazole, 1-tert-butylimidazole, 1-pentylimidazole, 1-isopentylimidazole, 1- (2-methylbutyl) imidazole, 1- (1-methylbutyl) imidazole, 1- (1-ethylpropyl) imidazole, 1-tert-pentylimidazole, 1,2-dimethylimidazole, 1-ethyl-2-methylimidazole, 2-ethyl-1-methylimidazole, 2-methyl-1-propylimidazole, 2-methyl-1-isopropylimidazole, 1-butyl-2-methylimidazole, 1-isobutyl-2-methylimi
  • Examples of the nitrogen-containing heterocyclic compound of the present invention include triazole compounds represented by the following formula (IIa) or the following formula (IIb).
  • R 5 and R 8 are each independently a straight, branched or cyclic hydrocarbon group having 1 to 5 carbon atoms, or a hydrocarbon having 1 to 5 carbon atoms. And a linear, branched, or cyclic substituent containing an element other than a carbon atom that is not bonded to a hydrogen atom, or is bonded to adjacent R 7 or R 10 to form a heterocyclic ring.
  • 6 and R 7 are each independently a hydrogen atom, a linear, branched or cyclic hydrocarbon group having 1 to 4 carbon atoms, or a carbon atom not bonded to a hydrocarbon having 1 to 4 carbon atoms and a hydrogen atom.
  • R 9 is a hydrogen atom, the number of carbon atoms 1 to 4 linear, branched or cyclic hydrocarbon groups, or hydrocarbons and hydrogen having 1 to 4 carbon atoms
  • R 10 is a hydrogen atom, a straight-chain having 1 to 4 carbon atoms, branched chain or cyclic hydrocarbon Represents a hydrogen group or a linear, branched or cyclic substituent containing an element other than a carbon atom not bonded to a hydrogen atom and a hydrocarbon having 1 to 4 carbon atoms, or bonded to adjacent R 8.
  • R 5 and R 8 examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, vinyl group and the like.
  • triazole compound represented by the formula (IIa) or the formula (IIb) include 1-methyl-1,2,4-triazole, 1-ethyl-1,2,4-triazole, 1-propyl-1,2,4-triazole, 1-isopropyl-1,2,4-triazole, 1-butyl-1,2,4-triazole, 1-methyl-1,2,3-triazole, 1-ethyl-1,2,3-triazole, 1-propyl-1,2,3-triazole, 1-isopropyl-1,2,3-triazole, 1-butyl-1,2,3-triazole, Examples thereof include 1-methylbenzotriazole.
  • the triazole compounds represented by the formula (IIa) or the formula (IIb) in addition to using one appropriate type, it is also possible to use a combination of different types of triazole compounds. .
  • R 11 to R 15 are each independently a hydrogen atom, a linear, branched or cyclic hydrocarbon group having 1 to 5 carbon atoms, or a hydrocarbon and hydrogen having 1 to 5 carbon atoms. Represents a linear, branched or cyclic substituent containing an element other than a carbon atom not bonded to an atom, or bonded to adjacent R 11 , R 12 , R 13 , R 14 or R 15 (A ring or a heterocyclic ring is formed, provided that the total carbon contained in R 11 to R 15 is 5 or less.)
  • R 11 to R 15 examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, vinyl, methoxy, ethoxy, etc. Is mentioned.
  • Specific examples of the pyridine compound represented by the formula (III) include Pyridine, 4-methylpyridine, 4-ethylpyridine, 4-propylpyridine, 4-butylpyridine, 4-pentylpyridine, Quinoline, Isoquinoline, 4-methoxypyridine and the like can be mentioned. In the practice of the present invention, it is also possible to use one pyridine compound represented by the formula (III) in combination, or a combination of different pyridine compounds.
  • R 16 is a linear, branched or cyclic hydrocarbon group having 1 to 5 carbon atoms, or an element other than a carbon atom not bonded to a hydrocarbon having 1 to 5 carbon atoms and a hydrogen atom.
  • each of R 17 to R 19 independently represents a hydrogen atom, a carbon number of 1 A linear, branched or cyclic hydrocarbon group having 1 to 4 carbon atoms, or a hydrocarbon having 1 to 4 carbon atoms and an element other than a carbon atom not bonded to a hydrogen atom
  • R 16 , R 17 , R 18 or R 19 represents a substituent or forms a ring or a heterocyclic ring by combining with adjacent R 16 , R 17 , R 18 or R 19 , provided that the total number of carbon atoms contained in R 16 to R 19 is 5 or less. .
  • R 16 examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, vinyl group and the like.
  • Specific examples of the pyrazole compound represented by the formula (IV) include 1-methylpyrazole, 1-ethylpyrazole, 1-propylpyrazole, 1-isopropylpyrazole, 1-butylpyrazole, Examples thereof include 1-pentylpyrazole.
  • an appropriate one type of pyrazole compounds represented by the formula (IV) may be used, or different types of pyrazole compounds may be used in combination.
  • Examples of the nitrogen-containing heterocyclic compound of the present invention include pyridazine, pyrimidine, pyrazine having 3 nitrogen atoms, and triazine having 3 nitrogen atoms.
  • the above-described compounds may be used alone or in combination of two or more.
  • anhydrous copper formate (II), copper formate (II) dihydrate, copper formate (II) tetrahydrate and the like can be suitably used.
  • copper oxide (II), copper oxide (I) or basic copper carbonate (II), copper acetate (II), copper oxalate (II) and other copper compounds such as one or a combination of two or more and mixed with formic acid
  • a material in which copper formate is generated in the system may be used.
  • the copper film forming agent of the present invention is characterized by containing the above-described nitrogen-containing heterocyclic compound of the present invention and a copper complex composed of copper formate (hereinafter referred to as “the copper complex of the present invention”).
  • the copper film forming agent of the present invention is easily prepared by mixing the nitrogen-containing heterocyclic compound of the present invention, which is a raw material, and copper formate, adding a solvent as necessary, crushing as necessary, and kneading. Yes, no special compositing operations are required.
  • the copper complex of this invention should just be contained in the copper film formation agent of this invention as a composition, prepare the copper complex of this invention separately, and make this into the other component which comprises a copper film formation agent.
  • the raw material constituting the copper complex of the present invention and other components may be directly mixed to form the copper film forming agent of the present invention.
  • the copper complex of the present invention is separately prepared, for example, copper formate is dissolved or dispersed in an appropriate amount of solvent, and the nitrogen-containing heterocyclic compound of the present invention is added thereto and stirred. Then, it can obtain by removing a solvent by vacuum distillation.
  • water, methanol, ethanol and the like can be preferably used as the solvent used for preparing the copper complex of the present invention.
  • the ratio of the nitrogen-containing heterocyclic compound of the present invention to copper formate in the copper film forming agent of the present invention is such that the nitrogen-containing heterocyclic compound of the present invention is equimolar or more with respect to 1 mol of copper formate.
  • the nitrogen-containing heterocyclic compound of the present invention may be added to a slurry in which copper formate is dispersed in a solvent. Then, copper formate may be added to the solvent in which the nitrogen-containing heterocyclic compound of the present invention is dissolved.
  • Examples of the solvent used in preparing the copper film forming agent of the present invention include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1 -Pentanol, 2-pentanol, 3-pentanol, 1-hexanol, 2-hexanol, 3-hexanol, 1-heptanol, 2-heptanol, 1-octanol, 2-octanol, 2-ethylhexanol, cyclopentanol , Cyclohexanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol, propylene glycol, propylene glycol monomethyl ether, acetone, ethyl methyl ketone, pentane, hexane, toluene, key Ren, tetrahydrofuran, dio
  • a solvent will not be specifically limited if the copper film formation agent of this invention can be made into a solution form, a dispersion liquid form, or a paste form, You may use it combining 1 type (s) or 2 or more types.
  • the amount of the solvent may be a general amount, and an appropriate ratio may be determined in consideration of the viscosity and printability of the obtained copper film forming agent.
  • the pulverization method is not particularly limited as long as the copper film forming agent of the present invention is not in the form of a solution as long as it can be formed into a dispersed liquid or a paste.
  • fillers such as particles or powders made of copper or other metals, resins, ceramics, etc. are not damaged. Can be used.
  • the copper film forming agent according to the present invention can be added with an alkalinizing agent, a metal catalyst, etc. in order to further lower the temperature at which the copper film can be formed or to shorten the time required for forming the copper film. It can be used as long as it is not impaired.
  • the alkalizing agent include caustic soda, caustic potassium, ammonia, primary amine, secondary amine, tertiary amine and the like.
  • the metal catalyst include silver, platinum, rhodium and palladium.
  • additives such as a stabilizer, a dispersant, a viscosity modifier, a surfactant, and a pH adjuster can be used within a range not impairing the effects of the present invention.
  • the method for forming a copper film according to the present invention comprises a coating process in which the copper film forming agent described above is applied onto a substrate to form a coating film, and then a heating process in which the coating film is heated and fired at normal pressure. Have.
  • the substrate examples include a glass substrate, a silicon substrate, a metal substrate, a ceramic substrate, and a resin substrate.
  • Resin base resin types include thermosetting resins such as polyimide resin, epoxy resin, bismaleimide / triazine resin, modified polyphenylene ether resin, ABS resin, polyamide resin, polyethylene resin, polypropylene resin, polycarbonate resin, polyethylene
  • thermoplastic resins such as terephthalate resin, polyvinyl chloride resin, fluororesin, and liquid crystal polymer, or vegetable fibers such as pulp and cellulose.
  • the surface of the substrate is preferably hydrophilic, and if necessary, it is preferable to perform a hydrophilic treatment before the coating step.
  • a hydrophilic treatment examples include dry processes such as plasma treatment, ultraviolet treatment and ozone treatment, wet processes such as alkali treatment and acid treatment, or surface modification by graft polymerization or film coating formation.
  • the conditions for these hydrophilization treatments cannot be defined unconditionally depending on the material and properties of the base material, and may be appropriately set according to them.
  • spin coating method dip method, spray coating method, mist coating method, flow coating method, curtain coating method, roll coating method, knife coating method, blade coating method, air doctor coating method
  • examples thereof include a bar coating method, a screen printing method, a gravure printing method, an offset printing method, a flexographic printing method, and a brush coating method.
  • the atmosphere in the heating step is preferably a non-oxidizing atmosphere, and examples thereof include a reducing gas, an inert gas, and a degassing atmosphere.
  • examples of the reducing atmosphere include hydrogen and formic acid
  • examples of the inert gas atmosphere include helium, nitrogen, argon, and carbon dioxide.
  • the heating method is not particularly limited, but a method of applying warm air or hot air to the coated surface, a method of irradiating light such as ultraviolet rays, infrared rays or visible light for a long time or instantaneously, contacting the substrate with a heated medium
  • a method of exposing to a heated gas atmosphere, a method of exposing to solvent vapor, and the like is not particularly limited, but a method of applying warm air or hot air to the coated surface, a method of irradiating light such as ultraviolet rays, infrared rays or visible light for a long time or instantaneously, contacting the substrate with a heated medium.
  • the heating temperature may be higher than the temperature at which the copper complex of the present invention can be decomposed in a processing atmosphere.
  • a preferable heating temperature cannot be generally defined by the type of the copper complex of the present invention, the type of the solvent, the atmosphere at the time of heating, etc., and may be appropriately set according to them.
  • a temperature of 150 ° C. or less is preferable, and 130 ° C. or less is more preferable.
  • the lower limit is preferably at or above the temperature at which the copper complex of the present invention can be decomposed, more preferably at 100 ° C. or more.
  • the heating time cannot be generally defined by the type of the copper complex of the present invention, the type of the solvent, the atmosphere at the time of heating, etc., and may be appropriately set according to them.
  • the above-described formation and heating of the copper film forming agent can be repeated a plurality of times.
  • the copper film forming agent of the present invention can be used to coat any article for which formation of a copper film is desired, and can form a copper film on the surface of various articles by the above-described method for forming a copper film.
  • this article include wiring boards, films, boards, powders, particles, fibers such as cloth and non-woven fabric, paper, leather, models, artworks, and the like.
  • the copper coating formed by the copper coating forming method described above is used as a seed layer, thereby shortening the manufacturing process and reducing the cost. Can be planned.
  • One pattern having a size of 1 mm (thickness) was printed. Subsequently, the sample was placed in an oven and heated at 130 ° C. for 30 minutes in a nitrogen atmosphere at normal pressure to form a copper film, which was returned to room temperature and used as a test piece.
  • the resistance value of the copper film formed on the test piece was measured using a low resistivity meter (“Loresta-GP” manufactured by Mitsubishi Chemical Analytech, AP probe).
  • Examples 1 to 4 A test piece was prepared using a copper film forming agent having the composition described in Table 1, and the appearance of the obtained copper film, the measurement of the deposition temperature, the measurement of the resistance value, and the adhesion test were performed. The test results obtained were as shown in Table 1. An SEM image of the test piece is shown in FIG.
  • the hydrophilic surface of the substrate is highly uniform in a temperature range of 130 ° C. or lower under normal pressure.
  • a copper coating can be formed.
  • the test pieces of Examples 1 to 4 had a highly uniform and dense copper film, whereas the test piece of Comparative Example 3 had an organic residue on the copper surface. In the test piece of Comparative Example 4, coarse copper particles were precipitated, and no uniform copper film was formed.
  • Test Example 2 Test pieces of Examples 5 to 21 and Comparative Examples 6 to 11 were prepared by the following method and used for the following tests.
  • a copper film forming agent was applied on a slide glass of 48 mm (length) ⁇ 28 mm (width) ⁇ 1.2 to 1.5 mm (thickness) in parallel with a polyimide tape having a thickness of 0.055 mm at intervals of 10 mm. After a copper film forming agent was placed on the plate, one pattern having a size of 30 mm (vertical) ⁇ 10 mm (horizontal) ⁇ 0.055 mm (thickness) was printed so that the surplus was scraped off with a plate. Subsequently, using a hot plate, it was heated at 130 ° C. for 30 minutes under a nitrogen atmosphere to form a copper film, which was returned to room temperature and used as a test piece.
  • the resistance value of the copper coating formed on the test piece was measured using a low resistivity meter (“Loresta-GP” manufactured by Mitsubishi Chemical Analytech, TFP probe). However, the test piece that did not become a uniform film was judged not to function as a conductor in the first place, and was not measured.
  • Examples 5 to 21 A test piece was prepared using a copper film forming agent having the composition described in Table 3, and the appearance, resistance value measurement, and adhesion test of the obtained copper film were performed. The test results obtained were as shown in Table 3. Further, FIG. 2 shows the CCD images of the test pieces of Examples 8 to 10.
  • Test pieces were prepared using a copper film forming agent having the composition shown in Table 4, and the appearance, resistance value measurement, and adhesion test of the obtained copper film were performed. The test results obtained were as shown in Table 4. Moreover, the CCD picked-up image of the test piece of Comparative Examples 6 and 7 is shown in FIG.
  • the hydrophilic surface of the substrate is highly uniform in a temperature range of 130 ° C. or lower under normal pressure.
  • a copper coating can be formed.
  • the test pieces of Comparative Examples 6 to 9 since a uniform film was not formed, it was judged that they could not function as a conductor, and the resistance value was not measured. Further, from the results of FIG. 2, the test pieces of Examples 8 to 10 were not repelled on the glass surface, and a uniform film was formed, whereas the test pieces of Comparative Examples 6 and 7 were glass surfaces. And a uniform film was not formed.
  • Example 22 26 g of 1-methylimidazole was dissolved in 40 g of methanol, and 36 g of copper formate tetrahydrate was added thereto and dissolved by stirring to prepare a methanol solution of 1MZ-Cu, which was used as a copper film forming agent.
  • a pulp paper cut into 30 mm square (“Kimwipe S-200” manufactured by Nippon Paper Crecia) was dipped in this, then pulled up and dried in the air. This was hung in an oven, heated at 130 ° C. for 30 minutes in a nitrogen atmosphere to form a copper film, returned to room temperature, and taken out.
  • the taken out paper had a copper color, and its conductivity was confirmed using a low resistivity meter (“Loresta-GP”, TFP probe manufactured by Mitsubishi Chemical Analytech). As a result, it showed a resistance value of 6.14 ⁇ .
  • Example 23 2 g of zeolite (“Boiling Stone” manufactured by Wako Pure Chemical Industries, Ltd.) was added to the copper film forming agent prepared in Example 22, and the mixture was stirred at room temperature for 1 minute. This was collected by filtration, transferred to an evaporating dish, naturally dried, placed in an oven, heated at 130 ° C. for 30 minutes in a nitrogen atmosphere, returned to room temperature, and taken out. The extracted zeolite had a brown color, and when one particle was sandwiched between testers to confirm the conductivity, a resistance value of 50 ⁇ was shown.
  • zeolite “Boiling Stone” manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 24 A 0.125 mm thick polyethylene terephthalate film ("Lumirror S10" manufactured by Toray Industries) cut to 50 mm (vertical) x 30 mm (horizontal) is prepared, and 172 nm using a UV irradiation machine ("Mini excimer” manufactured by USHIO). The hydrophilization treatment was performed by irradiating UV light of 5 minutes. Using the copper film forming agent prepared in Example 8, a pattern having a size of 30 mm (length) ⁇ 20 mm (width) ⁇ 0.055 mm (thickness) was formed on the polyethylene terephthalate film in the same manner as in Example 8. One printed. This was heated on a hot plate at 120 ° C.
  • Example 25 When electrolytic copper plating was performed on the copper coating prepared in Example 24 using a commercially available copper sulfate plating bath, a copper plating coating was formed without any problem.
  • the copper film forming agent and the method for forming a copper film according to the present invention are useful as materials and means for forming conductors such as wiring and electrodes in various fields.
  • conductors such as wiring and electrodes in various fields.
  • a printed wiring board it can be used for RF-ID tags, NFC antennas, flat displays, solar cells, multilayer ceramic capacitors, chip resistors, flat coils, printed transistors using printed electronics, and the like.
  • it is expected to be applied to a wide range of fields such as metal loading on a porous catalyst, antistatic of fibers and leather, electromagnetic wave shielding processing, decorative materials, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 本発明は、1~3個の窒素原子を有する5員又は6員の含窒素複素環式化合物と蟻酸銅からなる銅錯体を含有し、前記含窒素複素環式化合物が1個又は2個の環構造を有し、置換基に含まれる炭素原子の総数が1~5であり、該化合物中の炭素原子以外の元素が水素原子と結合していない銅被膜形成剤である。

Description

銅被膜形成剤及び銅被膜の形成方法
 本発明は、銅被膜形成剤及び銅被膜の形成方法に関するものである。
 銅は全金属中で銀の次に導電性が高く、また安価であることから、配線材料として広く用いられている。例えば、基板上に銅層を形成し、不要な銅部分をエッチングにより除去することにより、回路を形成する技術が古くから用いられている。
 しかしながら、この方法では処理工程数が多い上にエッチング廃液の処理が必要になるため、コストがかかり環境負荷も大きくなるという問題があった。
 これに対し、銅粒子と樹脂バインダーを溶剤等で混練してペースト状に加工し、これを印刷して加熱焼成することにより、樹脂バインダーが硬化して銅粒子同士の接触を保持することにより回路を形成する技術が実用化されている。但し、この方法では回路形成後にも導体内に比較的多くの樹脂バインダーが残るため、十分な導電性を得ることが難しかった。
 また、金属粒子をナノレベルのサイズまで小さくすることにより、比較的低温の加熱で金属粒子同士があたかも溶けあうように接合する現象が知られており、この現象を利用して、印刷して加熱焼成することにより銅粒子同士を接合させて回路を形成し、回路形成後に導体内に残る樹脂バインダーを削減する技術が開発されている。但し、この方法では銅粒子をナノレベルのサイズに加工しなければならないため、製造コストが高くなるという問題があった。
 これに対し、熱分解により銅を析出する銅組成物を用いて配線パターンを印刷し、加熱することにより銅を析出させ、回路を形成する方法が提案されている。この方法によれば、銅粒子をナノレベルのサイズに加工する必要がないため、製造コストを抑えることができる。また、回路形成後に導体内に残る樹脂バインダーを削減できるため、良好な導電性を得ることができる。
 但し、このような技術を用いて形成される銅被膜には、基材との密着に寄与する樹脂バインダーが少ない、又はほとんど含まれないため、基材との密着は専ら銅と基材表面の直接的な相互作用により確保される。銅は元来親水性であり、疎水性表面では密着が確保されないため、基材表面は親水性であることが望ましい。そのため、本用途での使用を目的とする組成物には、親水性表面との親和性に優れていることが求められている。
 また、基材に対する熱負荷を軽減し、エネルギー消費を抑制するために、より低温で銅を析出できること、具体的にはポリエチレンテレフタラートフィルムへの適用が可能となる130℃以下の温度で銅を析出できることが求められている。
 特許文献1には、銅と銅に配位した2個のホルメートイオン及び窒素を介して銅に配位した2個のC9~C20アルキルイミダゾールを含んでなる組成物を加熱することにより、金属銅を沈着させる方法が開示されている。但し、基材との密着性やパターン形成には言及されておらず、回路形成の技術に関しては記載されていない。また、この組成物は超臨界二酸化炭素などの超臨界流体中で用いることを目的としており、常圧下での使用は示されていないほか、疎水性が高いため親水性表面への銅被膜形成には適さない。
 特許文献2には、蟻酸銅とアルコキシアルキルアミンからなる混合生成物を加熱することにより銅被膜を析出させる方法が開示されている。但し、基材との密着性に関しては記載されておらず、130℃以下での銅被膜形成は示されていない。
 特許文献3には、蟻酸銅とアンモニアからなる銅化合物を加熱することにより銅被膜を製造する方法が開示されている。但し、130℃以下での銅被膜形成は示されていない。
 特許文献4には、蟻酸銅とプロパンジオール化合物を配合してなる銅前駆体組成物を加熱することにより銅被膜を製造する方法が開示されている。但し、130℃以下での銅被膜形成は示されていない。
 また、非特許文献1には、過剰の1-メチルイミダゾールを含有するエタノール溶液に蟻酸銅を添加することによる1-メチルイミダゾールによる二量体銅(II)錯体の精製が記載されている。但し、内容は化学的構造に関する考察であり、銅被膜の形成に関する記述は見られない。
日本国特表2005-513117号公報 日本国特開2005-2471号公報 日本国特開2005-35984号公報 日本国特開2009-256218号公報
ThermochimicaActa,98,139~145(1986)
 本発明は、上記従来の実情に鑑みてなされたものであり、常圧下130℃以下の温度で銅被膜を形成することが可能であり、且つ親水性表面との親和性に優れ、均一な銅被膜を形成することが可能な銅被膜形成剤及び銅被膜の形成方法を提供することを課題とする。
 本発明者らは、前記の課題を解決するために鋭意研究を重ねた結果、特定の含窒素複素環式化合物と蟻酸銅からなる銅錯体を含有する銅被膜形成剤を用いることにより、所期の目的を達成し得ることを見出し、本発明を完成するに至ったものである。
 すなわち本発明は以下の(1)~(20)によって達成される。
(1)1~3個の窒素原子を有する5員又は6員の含窒素複素環式化合物と蟻酸銅からなる銅錯体を含有し、前記含窒素複素環式化合物が、1個又は2個の環構造を有し、置換基に含まれる炭素原子の総数は1~5であり、該化合物中の炭素原子以外の元素が水素原子と結合していない、銅被膜形成剤。
(2)前記置換基が、アルキル基、アルケニル基、アルキニル基、アルコキシル基及びアルコキシルアルキル基からなる群から選択される、上記(1)に記載の銅被膜形成剤。
(3)前記含窒素複素環式化合物が、下記式(I)で示されるイミダゾール化合物である、上記(1)又は(2)に記載の銅被膜形成剤。
Figure JPOXMLDOC01-appb-C000005
(式(I)中、Rは炭素数1~5の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~5の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR又はRと結合して複素環を形成し、R~Rは各々独立して、水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR、R又はRと結合して環若しくは複素環を形成する。ただし、R~Rに含まれる炭素原子の合計は5以下である。)
(4)前記式(I)で示されるイミダゾール化合物が、1-メチルイミダゾール、1-エチルイミダゾール、1,2-ジメチルイミダゾール、1-エチル-2-メチルイミダゾール、2-エチル-1-メチルイミダゾール、1-プロピルイミダゾール、1-イソプロピルイミダゾール、1-ブチルイミダゾール、1-ペンチルイミダゾール、1-ビニルイミダゾール、1-アリルイミダゾールからなる群から選択される少なくとも1つである、上記(3)に記載の銅被膜形成剤。
(5)前記含窒素複素環式化合物が、下記式(IIa)又は下記式(IIb)で示されるトリアゾール化合物である、上記(1)又は(2)に記載の銅被膜形成剤。
Figure JPOXMLDOC01-appb-C000006
(式(IIa)及び式(IIb)中、R及びRは各々独立して、炭素数1~5の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~5の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR又はR10と結合して複素環を形成し、R及びRは各々独立して、水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR、R又はRと結合して環若しくは複素環を形成し、Rは水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表し、R10は水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素を含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するRと結合して複素環を形成する。ただし、R~Rに含まれる炭素の合計、及びR~R10に含まれる炭素の合計はいずれも5以下である。)
(6)前記含窒素複素環式化合物が、下記式(III)で示されるピリジン化合物である、上記(1)又は(2)に記載の銅被膜形成剤。
Figure JPOXMLDOC01-appb-C000007
(式(III)中、R11~R15は各々独立して、水素原子、炭素数1~5の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~5の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR11、R12、R13、R14又はR15と結合して環若しくは複素環を形成する。ただし、R11~R15に含まれる炭素の合計は5以下である。)
(7)前記含窒素複素環式化合物が、下記式(IV)で示されるピラゾール化合物である、上記(1)又は(2)に記載の銅被膜形成剤。
Figure JPOXMLDOC01-appb-C000008
(式(IV)中、R16は炭素数1~5の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~5の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR19と結合して複素環を形成し、R17~R19は各々独立して、水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR16、R17、R18又はR19と結合して環若しくは複素環を形成する。ただし、R16~R19に含まれる炭素原子の合計は5以下である。)
(8)有機溶剤又は水を含有する、上記(1)~(7)のいずれか一つに記載の銅被膜形成剤。
(9)金属粉末を含有する、上記(1)~(8)のいずれか一つに記載の銅被膜形成剤。
(10)上記(1)~(9)のいずれか一つに記載の銅被膜形成剤を基材上に塗布して塗布膜を形成する塗布工程、及び前記塗布膜を常圧で加熱焼成する加熱工程を含む、銅被膜の形成方法。
(11)前記塗布工程の前に基材表面に親水化処理を施す、上記(10)に記載の銅被膜の形成方法。
(12)前記加熱工程が、130℃以下の温度で行われる、上記(10)又は(11)に記載の銅被膜の形成方法。
(13)前記加熱工程を不活性ガス雰囲気下で行う、上記(10)~(12)のいずれか一つに記載の銅被膜の形成方法。
(14)前記不活性ガス雰囲気が、窒素雰囲気下である、上記(13)に記載の銅被膜の形成方法。
(15)前記基材が、ガラス基材、シリコン基材、金属基材、セラミック基材及び樹脂基材からなる群から選択される少なくとも1つである、上記(10)~(14)のいずれか一つに記載の銅被膜の形成方法。
(16)前記塗布工程が、スピンコート法、ディップ法、スプレーコート法、ミストコート法、フローコート法、カーテンコート法、ロールコート法、ナイフコート法、ブレードコート法、エアードクターコート法、バーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、及び刷毛塗り法からなる群から選択される少なくとも1つの方法により行われる、上記(10)~(15)のいずれか一つに記載の銅被膜の形成方法。
(17)上記(10)~(16)のいずれか一つに記載の銅被膜の形成方法によって形成された銅被膜を備える、物品。
(18)上記(10)~(16)のいずれか一つに記載の銅被膜の形成方法によって形成された銅被膜を備える、配線基板。
(19)上記(10)~(16)のいずれか一つに記載の銅被膜の形成方法によって形成された銅被膜をシード層として用い、セミアディティブプロセス又はフルアディティブプロセスによって回路形成する、配線基板の製造方法。
(20)上記(19)に記載の製造方法により製造された、配線基板。
 本発明による銅被膜形成剤及び銅被膜の形成方法によれば、常圧下130℃以下の温度領域で、親水性の基材表面に均一性の高い銅被膜を形成させることが可能である。これによって、従来は実現できていなかった耐熱性の低い材質、特に電子材料分野においてはJIS C4003にて規定されている絶縁種別B種(許容最高温度130℃)の材質、例えばポリエチレンテレフタラートフィルムなどに適用範囲を広げることが可能となり、また基材表面の親水化処理による基材と銅被膜の密着を確保することが可能となる。
 また、低温で銅被膜を形成可能ということは、高温では十分な熱量を確保できるということであり、高温の焼成条件においても、従来技術に比べて焼成時間の短縮や導電性の向上が期待できる。
図1は、実施例1~4及び比較例3,4の各試験片のSEM撮影画像を示す説明図である。 図2は、実施例8~10及び比較例6,7の各試験片のCCD撮影画像を示す説明図である。
 以下、本発明を詳細に説明する。
 本発明の銅被膜形成剤は、特定の置換基で置換された1~3個の窒素原子を有する5員又は6員の含窒素複素環式化合物(以下、単に「本発明の含窒素複素環式化合物」ともいう)と蟻酸銅からなる銅錯体を含有する。
 本発明の含窒素複素環式化合物は、1~3個の窒素原子を有する5員又は6員の複素環骨格を有する。該化合物は1個又は2個の環構造を有し、置換基に含まれる炭素の総数は1~5であり、該化合物中の炭素原子以外の元素は水素原子と結合していない。このように含窒素複素環式化合物を特定の置換基で置換した本発明の含窒素複素環式化合物は、窒素上の非共有電子対によって、銅イオンに配位することができる。
 蟻酸銅を窒素雰囲気下で加熱すると、蟻酸イオンによる銅イオンの還元反応が起こり、銅が析出する現象は古くから知られている。また、蟻酸銅にアミン類を配位させることによって、還元反応の温度が低温化することも良く知られている。このことは、一般に還元反応は系のpHが高いほど進みやすいことから、アミン類の塩基性が還元反応の低温化に寄与していると推測することができる。
 しかしながら、一級アミン又は二級アミンを使用した場合には、これらのアミンが析出した銅と結合してしまうために比較的低温で還元反応が進むものの残渣が残りやすく、良好な導電性が得られ難い。また、三級アミンを使用した場合には、残渣の問題は解決されるものの、置換基による立体障害が大きいため、銅に安定に配位することができず十分な低温化効果が得られない。また、三級アミンに水酸基などの極性の置換基を導入し、キレート作用により銅に安定に配位させる試みもなされているが、揮発性が損なわれて高温の加熱が必要になったり、三級アミンの塩基性が強すぎるために常温でも還元反応が進んだりするなどの問題がある。また、ある種の金属触媒を併用することで還元反応を低温化する試みもなされているが、十分な効果は得られていない。
 本発明の含窒素複素環式化合物を使用した場合には、適度な塩基性を有し、且つ立体障害が小さいため、安定に銅に配位することが可能であり、常温で比較的安定な蟻酸銅錯体を形成することができる。本発明の含窒素複素環式化合物は、他のアミン類と同様、蟻酸による銅の還元反応を低温化することが可能であり、また銅が析出した後は銅と結合することなく比較的速やかに揮発し、残渣の少ない導電性に優れた銅を析出することができる。特に、含窒素複素環式化合物に特定の置換基を導入することにより、適度な揮発性が付与され、銅析出の過程で流動状態を経ることが可能となるため、均一性の高い銅被膜が得られるという効果を奏する。また、適度な極性が付与され、流動状態でも親水性表面に対する親和性を維持することが可能となるため、親水性の基材表面に対して良好に密着することができるという効果を奏する。
 前記置換基は、アルキル基、アルケニル基、アルキニル基、アルコキシル基及びアルコキシルアルキル基からなる群から選択されることが好ましい。
 以下、本発明の含窒素複素環式化合物の具体例について説明する。
<イミダゾール化合物>
 本発明の含窒素複素環式化合物として、下記式(I)で示されるイミダゾール化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(式(I)中、Rは炭素数1~5の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~5の炭化水素と水素原子と結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR又はRと結合して複素環を形成し、R~Rは各々独立して、水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR、R又はRと結合して環若しくは複素環を形成する。ただし、R~Rに含まれる炭素原子の合計は5以下である。)
 Rの例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ビニル基等が挙げられる。
 式(I)で示されるイミダゾール化合物としては、具体的には、
1-メチルイミダゾール、
1-エチルイミダゾール、
1-プロピルイミダゾール、
1-イソプロピルイミダゾール、
1-ブチルイミダゾール、
1-イソブチルイミダゾール、
1-sec-ブチルイミダゾール、
1-tert-ブチルイミダゾール、
1-ペンチルイミダゾール、
1-イソペンチルイミダゾール、
1-(2-メチルブチル)イミダゾール、
1-(1-メチルブチル)イミダゾール、
1-(1-エチルプロピル)イミダゾール、
1-tert-ペンチルイミダゾール、
1,2-ジメチルイミダゾール、
1-エチル-2-メチルイミダゾール、
2-エチル-1-メチルイミダゾール、
2-メチル-1-プロピルイミダゾール、
2-メチル-1-イソプロピルイミダゾール、
1-ブチル-2-メチルイミダゾール、
1-イソブチル-2-メチルイミダゾール、
1-sec-ブチル-2-メチルイミダゾール、
1-tert-ブチル-2-メチルイミダゾール、
1,4-ジメチルイミダゾール、
1,2,4-トリメチルイミダゾール、
1,4,5-トリメチルイミダゾール、
1-ビニルイミダゾール、
1-アリルイミダゾール、
1,2,4,5-テトラメチルイミダゾール、
1-メチルベンズイミダゾール、
イミダゾ[1,5-a]ピリジン
等が挙げられる。
 なお、本発明の実施においては、式(I)で示されるイミダゾール化合物のうち、適宜の1種類を使用する他、種類の異なるイミダゾール化合物を組み合わせて使用することも可能である。
<トリアゾール化合物>
 また、本発明の含窒素複素環式化合物として、下記式(IIa)又は下記式(IIb)で示されるトリアゾール化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
(式(IIa)及び式(IIb)中、R及びRは各々独立して、炭素数1~5の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~5の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR又はR10と結合して複素環を形成し、R及びRは各々独立して、水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、R、R又はRと結合して環若しくは複素環を形成し、Rは水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表し、R10は水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素を含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するRと結合して複素環を形成する。ただし、R~Rに含まれる炭素の合計、及びR~R10に含まれる炭素の合計はいずれも5以下である。)
 R及びRの例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ビニル基等が挙げられる。
 式(IIa)又は式(IIb)で示されるトリアゾール化合物の具体例としては、
1-メチル-1,2,4-トリアゾール、
1-エチル-1,2,4-トリアゾール、
1-プロピル-1,2,4-トリアゾール、
1-イソプロピル-1,2,4-トリアゾール、
1-ブチル-1,2,4-トリアゾール、
1-メチル-1,2,3-トリアゾール、
1-エチル-1,2,3-トリアゾール、
1-プロピル-1,2,3-トリアゾール、
1-イソプロピル-1,2,3-トリアゾール、
1-ブチル-1,2,3-トリアゾール、
1-メチルベンゾトリアゾール
等が挙げられる。
 なお、本発明の実施においては、式(IIa)又は式(IIb)で示されるトリアゾール化合物のうち、適宜の1種類を使用する他、種類の異なるトリアゾール化合物を組み合わせて使用することも可能である。
<ピリジン化合物>
 また、本発明の含窒素複素環式化合物として、下記式(III)で示されるピリジン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
(式(III)中、R11~R15は各々独立して、水素原子、炭素数1~5の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~5の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR11、R12、R13、R14又はR15と結合して環若しくは複素環を形成する。ただし、R11~R15に含まれる炭素の合計は5以下である。)
 R11~R15の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ビニル基、メトキシ基、エトキシ基等が挙げられる。
 式(III)で示されるピリジン化合物の具体例としては、
ピリジン、
4-メチルピリジン、
4-エチルピリジン、
4-プロピルピリジン、
4-ブチルピリジン、
4-ペンチルピリジン、
キノリン、
イソキノリン、
4-メトキシピリジン
等が挙げられる。
 なお、本発明の実施においては、式(III)で示されるピリジン化合物のうち、適宜の1種類を使用する他、種類の異なるピリジン化合物を組み合わせて使用することも可能である。
<ピラゾール化合物>
 また、本発明の含窒素複素環式化合物として、下記式(IV)で示されるピラゾール化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
(式(IV)中、R16は炭素数1~5の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~5の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR19と結合して複素環を形成し、R17~R19は各々独立して、水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR16、R17、R18又はR19と結合して環若しくは複素環を形成する。ただし、R16~R19に含まれる炭素原子の合計は5以下である。)
 R16の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ビニル基等が挙げられる。
 式(IV)で示されるピラゾール化合物の具体例としては、
1-メチルピラゾール、
1-エチルピラゾール、
1-プロピルピラゾール、
1-イソプロピルピラゾール、
1-ブチルピラゾール、
1-ペンチルピラゾール
等が挙げられる。
 なお、本発明の実施においては、式(IV)で示されるピラゾール化合物のうち、適宜の1種類を使用する他、種類の異なるピラゾール化合物を組み合わせて使用することも可能である。
<その他>
 また、本発明の含窒素複素環式化合物として、2個の窒素原子を有するピリダジン、ピリミジン、ピラジン、3個の窒素原子を有するトリアジン等も挙げることができる。
 本発明の含窒素複素環式化合物は、上記した化合物を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 蟻酸銅としては、無水蟻酸銅(II)、蟻酸銅(II)・二水和物、蟻酸銅(II)・四水和物等が好適に使用できる。また、酸化銅(II)や酸化銅(I)あるいは塩基性炭酸銅(II)、酢酸銅(II)、シュウ酸銅(II)等の銅化合物を一種若しくは2種以上を組み合わせて蟻酸と混合し、系内で蟻酸銅を生成させたものを用いても良い。
 本発明の銅被膜形成剤は、上記した本発明の含窒素複素環式化合物と蟻酸銅からなる銅錯体(以下、「本発明の銅錯体」と云う)を含有することを特徴とする。
 本発明の銅被膜形成剤は、原料である本発明の含窒素複素環式化合物と蟻酸銅を混合し、必要に応じて溶剤を加え、必要に応じて粉砕し、混練するだけで容易に調製でき、特別な合成操作を必要としない。
 本発明の銅錯体は、組成物として本発明の銅被膜形成剤に含まれていればよく、本発明の銅錯体を別途調製しておき、これを銅被膜形成剤を構成する他の成分に混合してもよいし、本発明の銅錯体を構成する原料と他の成分を直接混合して本発明の銅被膜形成剤としてもよい。
 本発明の銅錯体を別途調製する場合には、例えば蟻酸銅を適量の溶媒に溶解又は分散させ、これに本発明の含窒素複素環式化合物を添加して攪拌する。その後、溶媒を減圧蒸留により、除去することにより得ることができる。
 本発明の銅錯体を調製する際に用いる前記の溶媒としては、水、メタノール、エタノール等を好ましく使用することができる。
 本発明の銅被膜形成剤における、本発明の含窒素複素環式化合物と蟻酸銅との割合は、蟻酸銅1モルに対して、本発明の含窒素複素環式化合物が等モル以上であればよく、望ましくは2モル以上である。
 また、本発明の含窒素複素環式化合物と蟻酸銅の混合方法としては、前述の他に、溶剤に蟻酸銅を分散させたスラリーに本発明の含窒素複素環式化合物を添加してもよいし、本発明の含窒素複素環式化合物を溶解させた溶剤に蟻酸銅を添加してもよい。
 本発明の銅被膜形成剤を調製する際に用いる前記の溶剤としては、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、1-ヘプタノール、2-ヘプタノール、1-オクタノール、2-オクタノール、2-エチルヘキサノール、シクロペンタノール、シクロヘキサノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、エチレングリコール、プロピレングリコール、プロピレングリコールモノメチルエーテル、アセトン、エチルメチルケトン、ペンタン、ヘキサン、トルエン、キシレン、テトラヒドロフラン、ジオキサン、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、ジメチルスルホキシド、ジメチルホルムアミド等が挙げられる。
 溶剤は、本発明の銅被膜形成剤を溶液状、分散液状又はペースト状にできるものであれば特に限定されず、1種もしくは2種以上を組み合わせて使用してもよい。溶剤の配合量は、一般的な量とすることができ、得られる銅被膜の形成剤の粘度、印刷性を考慮して適当な比率を決定すればよい。
 前記の粉砕方法としては、本発明の銅被膜形成剤が溶液状ではない場合に、分散液状又はペースト状にできるものであれば良く、特に限定されない。
 本発明の銅被膜形成剤においては、被膜の厚さを増加させるために、銅又はその他の金属や樹脂、セラミック等からなる粒子又は粉体等の充填材を本発明の効果を損なわない範囲において使用することができる。
 また、本発明による銅被膜形成剤には、銅被膜を形成し得る温度をさらに下げる、もしくは銅被膜の形成に要する時間を短縮するために、アルカリ化剤や金属触媒等を本発明の効果を損なわない範囲において使用することができる。アルカリ化剤の種類としては苛性ソーダ、苛性カリウム、アンモニア、一級アミン、二級アミン、三級アミン等が挙げられる。また金属触媒としては、銀、白金、ロジウム、パラジウム等が挙げられる。
 また、本発明による銅被膜形成剤には、安定化剤、分散剤、粘度調整剤、界面活性剤、pH調整剤等の添加剤を本発明の効果を損なわない範囲において使用することができる。
 次に、銅被膜の形成方法について説明する。
 本発明の銅被膜の形成方法は、上記で説明した銅被膜形成剤を基材上に塗布して塗布膜を形成する塗布工程と、その後、塗布膜を常圧で加熱焼成する加熱工程とを有する。
 上記の基材としては、ガラス基材、シリコン基材、金属基材、セラミック基材、樹脂基材等が挙げられる。樹脂基材の樹脂の種類としては、ポリイミド樹脂、エポキシ樹脂、ビスマレイミド・トリアジン樹脂、変性ポリフェニレンエーテル樹脂等の熱硬化性樹脂や、ABS樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリカーボネート樹脂、ポリエチレンテレフタラート樹脂、ポリ塩化ビニル樹脂、フッ素樹脂、液晶ポリマー等の熱可塑性樹脂、又はパルプ、セルロース等の植物繊維等が挙げられる。
 上記の基材表面は親水性であることが好ましく、必要に応じて塗布工程の前に親水化処理を施すことが好ましい。親水化処理の方法としては、プラズマ処理、紫外線処理、オゾン処理等のドライプロセスや、アルカリ処理、酸処理等のウェットプロセス、又はグラフト重合やフィルム塗膜形成による表面改質等が挙げられる。これらの親水化処理の条件は基材の材質や性状等により一概には規定できず、それらに応じて適宜設定すれば良い。
 上記の塗布工程における塗布方法としては、スピンコート法、ディップ法、スプレーコート法、ミストコート法、フローコート法、カーテンコート法、ロールコート法、ナイフコート法、ブレードコート法、エアードクターコート法、バーコート法、スクリーン印刷法、グラビア印刷法、オフセット印刷法、フレキソ印刷法、刷毛塗り等が挙げられる。
 上記の加熱工程における雰囲気は、非酸化性の雰囲気であることが好ましく、還元性ガス、不活性ガス、又は脱気雰囲気等が挙げられる。還元性の雰囲気としては水素、蟻酸等が挙げられ、不活性ガスの雰囲気としてはヘリウム、窒素、アルゴン、二酸化炭素等が挙げられる。中でも、安全性及びコストの観点から不活性ガス雰囲気下で行うことが好ましい。
 加熱方法としては、特に限定されないが、塗布面に温風又は熱風をあてる方法、紫外線、赤外線又は可視光線等の光を、長時間ないし瞬間的に照射する方法、熱した媒体に基材を接触させる方法、熱したガス雰囲気に晒す方法、溶媒蒸気に晒す方法等が挙げられる。
 前記加熱温度は、処理雰囲気下において本発明の銅錯体が分解し得る温度以上であればよい。好ましい加熱温度は、本発明の銅錯体の種類、溶剤の種類、加熱時の雰囲気等により一概には規定できず、それらに応じて適宜設定すればよい。なお、加熱温度が高すぎると基材の耐熱温度が低い場合は基材が劣化したり、エネルギーの無駄が生じたりするため、150℃以下の温度が好ましく、130℃以下がより好ましい。また、下限値は本発明の銅錯体が分解し得る温度以上が好ましく、100℃以上がより好ましい。
 加熱時間も同様に、本発明の銅錯体の種類、溶剤の種類、加熱時の雰囲気等により一概には規定できず、それらに応じて適宜設定すればよい。
 また、銅被膜の膜厚を厚くするために、上記の銅被膜の形成剤の塗布と加熱を複数回繰り返すことができる。
 本発明の銅被膜形成剤は、銅被膜の形成が望まれる任意の物品を被覆するために使用でき、上記した銅被膜の形成方法により、様々な物品の表面に銅被膜を形成することができる。この物品としては、例えば、配線基板、フィルム、板、粉末、粒子、布や不織布等の繊維、紙、皮革、模型、美術品等が挙げられる。
 また、セミアディティブプロセス又はフルアディティブプロセスによって回路形成する配線基板を製造する際に、上記した銅被膜の形成方法によって形成された銅被膜をシード層として用いることで、製造工程の短縮やコスト削減を図ることができる。
 以下、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。
 なお、使用した主な原材料は、以下のとおりである。
 また、市販品として入手できなかったものについては、公知の方法に従って合成した。すなわち、1位の窒素が未置換のイミダゾール化合物をN,N-ジメチルホルムアルデヒド中において水素化ナトリウムで処理した後、対応するハロゲン化アルキル化合物と加熱下で反応させ、通常の後処理後、溶媒を減圧留去することにより目的物を得た。
[原材料]
・イミダゾール(和光純薬工業製)
・1-メチルイミダゾール(同上)
・1-エチルイミダゾール(同上)
・1-ブチルイミダゾール(同上)
・1-プロピルイミダゾール(東京化成工業製)
・1-イソプロピルイミダゾール(同上)
・1-ビニルイミダゾール(同上)
・4-メトキシピリジン(同上)
・1-アリルイミダゾール(AlfaAesar製)
・1-メチル-1,2,4-トリアゾール(同上)
・2-エチル-1-メチルイミダゾール(2-エチルイミダゾール(商品名「2EZ」、四国化成工業製)より合成)
・1-エチル-2-メチルイミダゾール(2-メチルイミダゾール(商品名「2MZ」、四国化成工業製)より合成)
・1-ペンチルイミダゾール(イミダゾール(和光純薬工業製)より合成)
・1-ヘキシルイミダゾール(イミダゾール(和光純薬工業製)より合成)
・2-エチル-1-ヘキシル-4-メチルイミダゾール(2-エチル-4-メチルイミダゾール(商品名「2E4MZ」、四国化成工業製)より合成)
・1-オクチルイミダゾール(Aldrich製)
・ピリダジン(同上)
・1,2-ジメチルイミダゾール(商品名「1,2DMZ」、四国化成工業製)
・1-ベンジル-2-メチルイミダゾール(商品名「1B2MZ」、四国化成工業製)
・2-メチルイミダゾール(商品名「2MZ」、四国化成工業製)
・4-メチルイミダゾール(商品名「4MZ」、四国化成工業製)
・3-(ジメチルアミノ)-1,2-プロパンジオール(和光純薬工業製)
・蟻酸銅(II)・四水和物(同上)
<<試験例1>>
 実施例1~4及び比較例1~5において銅被膜形成剤の調製に使用した銅錯体は以下のとおりであり、これらの合成例を参考例1~9に示す。
[銅錯体]
・1-メチルイミダゾール銅錯体(「1MZ-Cu」と略記する)
・1-エチルイミダゾール銅錯体(「1EZ-Cu」と略記する)
・1-ブチルイミダゾール銅錯体(「1BZ-Cu」と略記する)
・1,2-ジメチルイミダゾール銅錯体(「1,2MZ-Cu」と略記する)
・イミダゾール銅錯体(「SZ-Cu」と略記する)
・2-メチルイミダゾール銅錯体(「2MZ-Cu」と略記する)
・4-メチルイミダゾール銅錯体(「4MZ-Cu」と略記する)
・3-(ジメチルアミノ)-1,2-プロパンジオール銅錯体(「DMA-Cu」と略記する)
・アンモニア銅錯体(「NH4-Cu」と略記する)
〔参考例1〕
<1MZ-Cuの合成>
 蟻酸銅(II)・四水和物2.26gを乳鉢で細かく粉砕し、100mLのメタノール中に分散させた。これに1-メチルイミダゾール1.64gを加え、室温で撹拌して青色透明溶液を得た。次に溶剤を減圧留去して、青色固体の1-メチルイミダゾール銅錯体3.0gを得た。
〔参考例2〕
<1EZ-Cuの合成>
 参考例1の1-メチルイミダゾール1.64gを1-エチルイミダゾール1.92gに代えて、参考例1の方法に準拠して合成操作を行って、青色粘稠液体の1-エチルイミダゾール銅錯体3.3gを得た。
〔参考例3〕
<1BZ-Cuの合成>
 参考例1の1-メチルイミダゾール1.64gを1-ブチルイミダゾール2.48gに代えて、参考例1の方法に準拠して合成操作を行って、青色液体の1-ブチルイミダゾール銅錯体3.8gを得た。
〔参考例4〕
<1,2MZ-Cuの合成>
 参考例1の1-メチルイミダゾール1.64gを1,2-ジメチルイミダゾール1.92gに代えて、参考例1の方法に準拠して合成操作を行って、青色固体の1,2-ジメチルイミダゾール銅錯体3.3gを得た。
〔参考例5〕
<SZ-Cuの合成>
 参考例1の1-メチルイミダゾール1.64gをイミダゾール1.36gに代えて、参考例1の方法に準拠して合成操作を行って、青色固体のイミダゾール銅錯体2.7gを得た。
〔参考例6〕
<2MZ-Cuの合成>
 参考例1の1-メチルイミダゾール1.64gを2-メチルイミダゾール1.64gに代えて、参考例1の方法に準拠して合成操作を行って、青色固体の2-メチルイミダゾール銅錯体3.0gを得た。
〔参考例7〕
<4MZ-Cuの合成>
 参考例1の1-メチルイミダゾール1.64gを4-メチルイミダゾール1.64gに代えて、参考例1の方法に準拠して合成操作を行って、青色固体の4-メチルイミダゾール銅錯体3.0gを得た。
〔参考例8〕
<DMA-Cuの合成>
 参考例1の1-メチルイミダゾール1.64gを3-(ジメチルアミノ)-1,2-プロパンジオール2.38gに代えて、参考例1の方法に準拠して合成操作を行って、青色液体の3-(ジメチルアミノ)-1,2-プロパンジオール銅錯体3.7gを得た。
〔参考例9〕
<NH4-Cuの合成>
 参考例1の1-メチルイミダゾール1.64gを25%アンモニア水1.36gに代えて、参考例1の方法に準拠して合成操作を行って、青色固体のアンモニア銅錯体1.8gを得た。
 実施例1~4、及び比較例1~5で採用した評価試験方法は、以下のとおりである。
[試験片の作製]
 銅錯体の内、固体又は粘稠液体のものは、表1及び表2記載の割合でジエチレングリコールを加えて混練し、必要に応じて乳鉢で粉砕し、ペースト状にして銅被膜形成剤とした。液体のものは、そのまま銅被膜形成剤として使用した。
 銅被膜形成剤の親水性表面に対する親和性を比較するために、元来親水性であるガラスを基材として使用した。
 銅被膜形成剤を、48mm(縦)×28mm(横)×1.2~1.5mm(厚み)のスライドガラス上に、バーコーターを用いて、30mm(縦)×10mm(横)×0.1mm(厚み)のサイズのパターンを1つ印刷した。続いて、オーブンに入れて常圧の窒素雰囲気下で、130℃で30分間加熱し、銅被膜を形成させて、室温に戻してこれを試験片とした。
[銅被膜の外観]
 試験片上に形成された銅被膜の外観様相を目視により確認した。銅色の膜状の銅被膜が形成されていれば外観良好であり、変色したり粉状に析出していたりすれば外観不良と判定した。
 ○:外観良好(銅色膜状)
 ×:外観不良(褐色膜状、又は粉状)
[銅被膜のSEM撮影観察]
 走査電子顕微鏡(日立製作所製「S-4800」)を用い、加速電圧5kVとして3000倍及び30000倍の倍率でSEM撮影を行った。
[析出温度の測定]
 TG-DTA(セイコーインスツル製「EXSTAR6000-TG/DTA6300」を用い、窒素流量500mL/minで室温から200℃まで昇温速度10℃/minで昇温した。重量減少を伴う吸熱を示した後の発熱ピーク温度を析出温度として記録した。尚、析出温度は、銅被膜形成剤を加熱焼成する際に、温度設定の目安となるパラメーターであり、銅被膜を形成し得る温度を示すものではない。
[抵抗値の測定]
 低抵抗率計(三菱化学アナリテック製「ロレスタ-GP」、APプローブ)を用いて、試験片上に形成された銅被膜の抵抗値を測定した。
[密着性試験]
 試験片上に形成された銅被膜を綿棒で擦り、密着性を確認した。容易に剥がれなければ密着性良好であり、剥がれれば密着性不良と判定した。
 ○:密着性良好
 ×:密着性不良
〔実施例1~4〕
 表1に記載の組成を有する銅被膜形成剤を用いて試験片を作製し、得られた銅被膜の外観、析出温度の測定、抵抗値の測定及び密着性試験を行った。得られた試験結果は、表1に示したとおりであった。
 また、試験片のSEM撮影画像を図1に示す。
〔比較例1~5〕
 表2に記載の組成を有する銅被膜形成剤を用いて試験片を作製し、得られた銅被膜の外観、析出温度の測定、抵抗値の測定及び密着性試験を行った。得られた試験結果は、表2に示したとおりであった。
 また、比較例3及び4の試験片のSEM撮影画像を図1に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表1、表2及び図1に示した試験結果によれば、本発明の銅被膜形成剤を用いることにより、常圧下130℃以下の温度領域で、基材の親水性表面に均一性の高い銅被膜を形成することができる。
 また、図1の結果より、実施例1~4の試験片は均一性が高く緻密な銅被膜が形成されていたのに対し、比較例3の試験片は銅表面に有機物残渣が存在しており、比較例4の試験片は粗大な銅粒子が析出しており、いずれも均一な銅被膜が形成されなかった。
<<試験例2>>
 下記の方法により実施例5~21及び比較例6~11の試験片を作製し、以下の試験に供した。
[試験片の作製]
 含窒素複素環式化合物及び蟻酸銅・四水和物を、表3又は表4記載の割合で配合して混練し、固体又は粘稠液体になったものについてはエチレングリコールを加えて混練し、必要に応じて乳鉢で粉砕し、ペースト状にして銅被膜形成剤とした。エチレングリコールを加えずとも液体のものは、そのまま銅被膜形成剤として使用した。
 銅被膜形成剤の親水性表面に対する親和性を比較するために、元来親水性であるガラスを基材として使用した。
 銅被膜の形成剤を、48mm(縦)×28mm(横)×1.2~1.5mm(厚み)のスライドガラス上に、厚さ0.055mmのポリイミドテープを10mm間隔で平行に貼り、その間に銅被膜形成剤を盛り付けたのち、余剰分をプレートでかきとるようにして、30mm(縦)×10mm(横)×0.055mm(厚み)のサイズのパターンを1つ印刷した。続いて、ホットプレートを用いて窒素雰囲気下で、130℃で30分間加熱し、銅被膜を形成させて、室温に戻してこれを試験片とした。
[銅被膜の外観]
 試験片上に形成された銅被膜の外観様相を目視により確認した。銅色の膜状の銅被膜が形成されていれば外観良好であり、ムラになっていたり固まっていなかったりしていれば外観不良と判定した。
 ○:外観良好(銅色膜状)
 ×:外観不良(ムラ、又は固まっていない(ウェット)、又は黒色膜状)
[銅被膜のCCD撮影観察]
 顕微CCDカメラ(ニコン製「DS-5M-U1」)を用い、7倍の倍率でCCD撮影を行った。
[抵抗値の測定]
 低抵抗率計(三菱化学アナリテック製「ロレスタ-GP」、TFPプローブ)を用いて、試験片上に形成された銅被膜の抵抗値を測定した。但し、均一な膜状にならなかった試験片については、そもそも導体として機能し得ないと判断し、測定を実施しなかった。
[密着性試験]
 試験片上に形成された銅被膜を綿棒で擦り、密着性を確認した。容易に剥がれなければ密着性良好であり、剥がれれば密着性不良と判定した。
 ○:密着性良好
 ×:密着性不良
〔実施例5~21〕
 表3に記載の組成を有する銅被膜形成剤を用いて試験片を作製し、得られた銅被膜の外観、抵抗値の測定及び密着性試験を行った。得られた試験結果は、表3に示したとおりであった。
 また、実施例8~10の試験片のCCD撮影画像を図2に示す。
〔比較例6~11〕
 表4に記載の組成を有する銅被膜形成剤を用いて試験片を作製し、得られた銅被膜の外観、抵抗値の測定及び密着性試験を行った。得られた試験結果は、表4に示したとおりであった。
 また、比較例6、7の試験片のCCD撮影画像を図2に示す。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表3、表4及び図2に示した試験結果によれば、本発明の銅被膜形成剤を用いることにより、常圧下130℃以下の温度領域において、基材の親水性表面に均一性の高い銅被膜を形成させることができる。尚、比較例6~9の試験片については、均一な被膜が形成されなかったため、導体として機能し得ないと判断し、抵抗値の測定は実施しなかった。
 また、図2の結果より、実施例8~10の試験片は、ガラス表面で弾かれることなく、均一な膜が形成されていたのに対し、比較例6,7の試験片は、ガラス表面で弾かれてしまい、均一な膜が形成されなかった。
<<試験例3>>
 下記の方法により、本発明の銅被膜形成剤による様々な材質や性状の基材に対する銅被膜の形成、及び加工について確認試験を行った。
〔実施例22〕
 1-メチルイミダゾール26gを40gのメタノールに溶解させ、これに蟻酸銅・四水和物36gを加えて撹拌して溶解させ、1MZ-Cuのメタノール溶液を調製し銅被膜形成剤とした。これに30mm角に切断したパルプ紙(日本製紙クレシア製「キムワイプS-200」)を浸漬したのち引き上げ、空気中で乾燥させた。これをオーブンの中に吊るし、窒素雰囲気下130℃で30分間加熱して銅被膜を形成させ、室温に戻して取り出した。取り出した紙は銅色を呈しており、低抵抗率計(三菱化学アナリテック製「ロレスタ-GP」、TFPプローブ)を用いて導電性を確認したところ、6.14Ωの抵抗値を示した。
〔実施例23〕
 実施例22で調製した銅被膜形成剤にゼオライト(和光純薬工業製「沸騰石」)を2g加え、常温で1分間撹拌した。これをろ別採取して蒸発皿に移し、自然乾燥させたのち、オーブンに入れて窒素雰囲気下130℃で30分間加熱し、室温に戻して取り出した。取り出したゼオライトは茶色を呈しており、粒子一粒をテスターで挟んで導電性を確認したところ、50Ωの抵抗値を示した。
〔実施例24〕
 50mm(縦)×30mm(横)に切断した厚み0.125mmのポリエチレンテレフタラートフィルム(東レ製、「ルミラーS10」)を用意し、UV照射機(ウシオ電機製「ミニエキシマ」)を用いて172nmのUV光を5分間照射することにより親水化処理を施した。実施例8で調製した銅被膜形成剤を用い、実施例8と同様にして、このポリエチレンテレフタラートフィルム上に、30mm(縦)×20mm(横)×0.055mm(厚み)のサイズのパターンを1つ印刷した。これをホットプレート上で、窒素雰囲気下120℃で30分間加熱して銅被膜を形成させ、室温に戻して取り出した。取り出した試料は銅色膜状を呈しており、JIS K5400に準じて密着性を評価したところ、一片も剥がれることなく良好な密着性を示した。低抵抗率計(三菱化学アナリテック製「ロレスタ-GP」、TFPプローブ)を用いて導電性を確認したところ、0.03Ωの抵抗値を示した。
〔実施例25〕
 実施例24で作成した銅被膜上に市販の硫酸銅めっき浴を用いて電解銅めっきを施したところ、問題なく銅めっき被膜が形成された。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2012年7月9日出願の日本特許出願(特願2012-154124)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明による銅被膜形成剤及び銅被膜の形成方法は、種々の分野における配線や電極等の導体を形成するための材料及び手段として有用である。例えば、プリント配線板の他に、RF-IDタグ、NFCアンテナ、平面ディスプレイ、太陽電池、積層セラミックコンデンサ、チップ抵抗器、平面コイル、プリンテッドエレクトロニクスによる印刷トランジスタ等に用いることができる。また、例えば多孔質触媒への金属担持、繊維や皮革の帯電防止、電磁波シールド加工、加飾材料等、幅広い分野への応用が期待される。

Claims (20)

  1.  1~3個の窒素原子を有する5員又は6員の含窒素複素環式化合物と蟻酸銅からなる銅錯体を含有し、前記含窒素複素環式化合物が1個又は2個の環構造を有し、置換基に含まれる炭素原子の総数は1~5であり、該化合物中の炭素原子以外の元素が水素原子と結合していない、銅被膜形成剤。
  2.  前記置換基が、アルキル基、アルケニル基、アルキニル基、アルコキシル基及びアルコキシルアルキル基からなる群から選択される、請求項1に記載の銅被膜形成剤。
  3.  前記含窒素複素環式化合物が、下記式(I)で示されるイミダゾール化合物である、請求項1又は請求項2に記載の銅被膜形成剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、Rは炭素数1~5の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~5の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR又はRと結合して複素環を形成し、R~Rは各々独立して、水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR、R又はRと結合して環若しくは複素環を形成する。ただし、R~Rに含まれる炭素原子の合計は5以下である。)
  4.  前記式(I)で示されるイミダゾール化合物が、1-メチルイミダゾール、1-エチルイミダゾール、1,2-ジメチルイミダゾール、1-エチル-2-メチルイミダゾール、2-エチル-1-メチルイミダゾール、1-プロピルイミダゾール、1-イソプロピルイミダゾール、1-ブチルイミダゾール、1-ペンチルイミダゾール、1-ビニルイミダゾール、1-アリルイミダゾールからなる群から選択される少なくとも1つである、請求項3に記載の銅被膜形成剤。
  5.  前記含窒素複素環式化合物が、下記式(IIa)又は下記式(IIb)で示されるトリアゾール化合物である、請求項1又は請求項2に記載の銅被膜形成剤。
    Figure JPOXMLDOC01-appb-C000002
    (式(IIa)及び式(IIb)中、R及びRは各々独立して、炭素数1~5の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~5の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR又はR10と結合して複素環を形成し、R及びRは各々独立して、水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、R、R又はRと結合して環若しくは複素環を形成し、Rは水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素を含んでなる直鎖、分岐鎖若しくは環状の置換基を表し、R10は水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素を含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するRと結合して複素環を形成する。ただし、R~Rに含まれる炭素の合計、及びR~R10に含まれる炭素の合計はいずれも5以下である。)
  6.  前記含窒素複素環式化合物が、下記式(III)で示されるピリジン化合物である、請求項1又は請求項2に記載の銅被膜形成剤。
    Figure JPOXMLDOC01-appb-C000003
    (式(III)中、R11~R15は各々独立して、水素原子、炭素数1~5の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~5の炭化水素と水素原子に結合していない炭素原子以外の元素を含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR11、R12、R13、R14又はR15と結合して環若しくは複素環を形成する。ただし、R11~R15に含まれる炭素の合計は5以下である。)
  7.  前記含窒素複素環式化合物が、下記式(IV)で示されるピラゾール化合物である、請求項1又は請求項2に記載の銅被膜形成剤。
    Figure JPOXMLDOC01-appb-C000004
    (式(IV)中、R16は炭素数1~5の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~5の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR19と結合して複素環を形成し、R17~R19は各々独立して、水素原子、炭素数1~4の直鎖、分岐鎖若しくは環状の炭化水素基、又は炭素数1~4の炭化水素と水素原子に結合していない炭素原子以外の元素とを含んでなる直鎖、分岐鎖若しくは環状の置換基を表すか、隣接するR16、R17、R18又はR19と結合して環若しくは複素環を形成する。ただし、R16~R19に含まれる炭素原子の合計は5以下である。)
  8.  有機溶剤又は水を含有する、請求項1~請求項7のいずれか一項に記載の銅被膜形成剤。
  9.  金属粉末を含有する、請求項1~請求項8のいずれか一項に記載の銅被膜形成剤。
  10.  請求項1~請求項9のいずれか一項に記載の銅被膜形成剤を基材上に塗布して塗布膜を形成する塗布工程、及び前記塗布膜を常圧で加熱焼成する加熱工程を含む、銅被膜の形成方法。
  11.  前記塗布工程の前に基材表面に親水化処理を施す、請求項10に記載の銅被膜の形成方法。
  12.  前記加熱工程が、130℃以下の温度で行われる、請求項10又は請求項11に記載の銅被膜の形成方法。
  13.  前記加熱工程を不活性ガス雰囲気下で行う、請求項10~請求項12のいずれか一項に記載の銅被膜の形成方法。
  14.  前記不活性ガス雰囲気が、窒素雰囲気である、請求項13に記載の銅被膜の形成方法。
  15.  前記基材が、ガラス基材、シリコン基材、金属基材、セラミック基材及び樹脂基材からなる群から選択される少なくとも1つである、請求項10~請求項14のいずれか一項に記載の銅被膜の形成方法。
  16.  前記塗布工程が、スピンコート法、ディップ法、スプレーコート法、ミストコート法、フローコート法、カーテンコート法、ロールコート法、ナイフコート法、ブレードコート法、エアードクターコート法、バーコート法、スクリーン印刷法、グラビア印刷法、オフセット印刷法、フレキソ印刷法、及び刷毛塗り法からなる群から選択される少なくとも1つの方法により行われる、請求項10~請求項15のいずれか一項に記載の銅被膜の形成方法。
  17.  請求項10~請求項16のいずれか一項に記載の銅被膜の形成方法によって形成された銅被膜を備える、物品。
  18.  請求項10~請求項16のいずれか一項に記載の銅被膜の形成方法によって形成された銅被膜を備える、配線基板。
  19.  請求項10~請求項16のいずれか一項に記載の銅被膜の形成方法によって形成された銅被膜をシード層として用い、セミアディティブプロセス又はフルアディティブプロセスによって回路形成する、配線基板の製造方法。
  20.  請求項19に記載の製造方法により製造された、配線基板。
PCT/JP2013/065108 2012-07-09 2013-05-30 銅被膜形成剤及び銅被膜の形成方法 WO2014010328A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157000590A KR102086501B1 (ko) 2012-07-09 2013-05-30 구리 피막 형성제 및 구리 피막의 형성 방법
CN201380036469.4A CN104471108B (zh) 2012-07-09 2013-05-30 铜覆膜形成剂及铜覆膜的形成方法
IN149DEN2015 IN2015DN00149A (ja) 2012-07-09 2013-05-30
JP2014524689A JP6027613B2 (ja) 2012-07-09 2013-05-30 銅被膜形成剤及び銅被膜の形成方法
EP13816923.0A EP2871260B1 (en) 2012-07-09 2013-05-30 Copper film-forming agent and method for forming copper film
US14/413,532 US10405422B2 (en) 2012-07-09 2013-05-30 Copper film-forming agent and method for forming copper film
BR112015000524-1A BR112015000524B1 (pt) 2012-07-09 2013-05-30 Método para formar uma película de cobre e método para fabricar uma placa de fiação

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012154124 2012-07-09
JP2012-154124 2012-07-09

Publications (1)

Publication Number Publication Date
WO2014010328A1 true WO2014010328A1 (ja) 2014-01-16

Family

ID=49915802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065108 WO2014010328A1 (ja) 2012-07-09 2013-05-30 銅被膜形成剤及び銅被膜の形成方法

Country Status (10)

Country Link
US (1) US10405422B2 (ja)
EP (1) EP2871260B1 (ja)
JP (1) JP6027613B2 (ja)
KR (1) KR102086501B1 (ja)
CN (1) CN104471108B (ja)
BR (1) BR112015000524B1 (ja)
IN (1) IN2015DN00149A (ja)
MY (1) MY171068A (ja)
TW (1) TWI567231B (ja)
WO (1) WO2014010328A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079439A (ja) * 2014-10-14 2016-05-16 四国化成工業株式会社 銅被膜形成剤およびその利用
WO2016197234A1 (en) * 2015-06-11 2016-12-15 National Research Council Of Canada Preparation of high conductivity copper films
JP2021517933A (ja) * 2018-11-14 2021-07-29 ワイエムティー カンパニー リミテッド めっき積層体及びプリント回路基板

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7242557B2 (ja) 2017-02-08 2023-03-20 ナショナル リサーチ カウンシル オブ カナダ 低粘度及び低処理温度を有する銀分子インク
TW201842088A (zh) 2017-02-08 2018-12-01 加拿大國家研究委員會 可印刷分子油墨
TW201842087A (zh) 2017-02-08 2018-12-01 加拿大國家研究委員會 具改良之熱穩定性的分子油墨
JP6573942B2 (ja) * 2017-09-15 2019-09-11 住友化学株式会社 ガス分離方法
JP6573650B2 (ja) 2017-09-15 2019-09-11 住友化学株式会社 ガス分離方法
JP7427325B2 (ja) * 2019-06-18 2024-02-05 株式会社ディスコ テープ貼着方法
CN118202008A (zh) * 2021-11-11 2024-06-14 柯尼卡美能达株式会社 非感光性表面改性剂、层叠体、印刷电路板和电子器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217335A (en) * 1975-08-01 1977-02-09 Hitachi Ltd Chemical copper plating solution
JP2005002471A (ja) 2003-06-03 2005-01-06 Basf Ag 基材上の銅層の析出
JP2005035984A (ja) 2003-07-03 2005-02-10 Mec Kk 銅化合物及びそれを用いた銅薄膜の製造方法
JP2005513117A (ja) 2001-12-12 2005-05-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 銅ホルメート錯体を用いる銅の沈着
JP2009256218A (ja) 2008-04-14 2009-11-05 Toray Ind Inc 銅前駆体組成物およびそれを用いた銅膜の製造方法。
JP2012112022A (ja) * 2010-11-26 2012-06-14 Adeka Corp 銅膜形成用組成物及び該組成物を用いた銅膜の製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818255A (en) 1987-02-10 1989-04-04 Kozo Director-general of Agency of Industrial Science and Technology Iizuka Material for gas separation
KR0137370B1 (ko) 1988-11-07 1998-04-27 니시가와 레이치 구리 도금된 수지 제품의 제조방법
JPH06181387A (ja) 1992-12-15 1994-06-28 Mitsubishi Gas Chem Co Inc 銅膜形成基材の製造法
TW263534B (ja) * 1993-08-11 1995-11-21 Makkusu Kk
US20030148024A1 (en) * 2001-10-05 2003-08-07 Kodas Toivo T. Low viscosity precursor compositons and methods for the depositon of conductive electronic features
KR100707818B1 (ko) * 1998-09-14 2007-04-13 이비덴 가부시키가이샤 프린트 배선판 및 그 제조방법
JP3986743B2 (ja) 2000-10-03 2007-10-03 株式会社日立製作所 配線基板とその製造方法及びそれに用いる無電解銅めっき液
JP4309602B2 (ja) * 2001-04-25 2009-08-05 メック株式会社 銅または銅合金と樹脂との接着性を向上させる方法、ならびに積層体
US6951666B2 (en) 2001-10-05 2005-10-04 Cabot Corporation Precursor compositions for the deposition of electrically conductive features
EP1626614B1 (en) * 2003-05-16 2013-08-28 Harima Chemicals, Inc. Method for forming fine copper particle sintered product type of electric conductor having fine shape, method for forming fine copper wiring and thin copper film
EP1662020B1 (en) 2003-07-03 2008-05-14 Mec Company Ltd. Method for producing a copper thin film
JP3952410B2 (ja) * 2004-02-10 2007-08-01 タムラ化研株式会社 金属の表面処理剤、プリント回路基板およびプリント回路基板の金属の表面処理方法
TW200613586A (en) * 2004-07-22 2006-05-01 Rohm & Haas Elect Mat Leveler compounds
US7550179B2 (en) * 2004-08-30 2009-06-23 E.I Du Pont De Nemours And Company Method of copper deposition from a supercritical fluid solution containing copper (I) complexes with monoanionic bidentate and neutral monodentate ligands
US20060096867A1 (en) * 2004-11-10 2006-05-11 George Bokisa Tin alloy electroplating system
JP4489618B2 (ja) * 2005-03-14 2010-06-23 株式会社ルネサステクノロジ 半導体装置の製造方法
US7662981B2 (en) 2005-07-16 2010-02-16 Rohm And Haas Electronic Materials Llc Leveler compounds
JP2008205430A (ja) * 2007-01-26 2008-09-04 Konica Minolta Holdings Inc 金属パターン形成方法及び金属塩混合物
KR20080083790A (ko) 2007-03-13 2008-09-19 삼성전자주식회사 무전해 구리 도금액, 그의 제조방법 및 무전해 구리도금방법
CN101868563B (zh) 2007-11-19 2012-09-12 日本帕卡濑精株式会社 金属材料用基底处理剂和金属材料的基底处理方法
US8449948B2 (en) * 2009-09-10 2013-05-28 Western Digital (Fremont), Llc Method and system for corrosion protection of layers in a structure of a magnetic recording transducer
US20110220512A1 (en) * 2010-03-15 2011-09-15 Rohm And Haas Electronic Materials Llc Plating bath and method
US8268157B2 (en) * 2010-03-15 2012-09-18 Rohm And Haas Electronic Materials Llc Plating bath and method
KR101194541B1 (ko) * 2010-12-09 2012-10-26 삼성전기주식회사 주석 또는 주석 합금 도금의 변색 방지제, 및 이를 이용한 회로 기판 및 그 제조방법
JP5615227B2 (ja) * 2011-05-23 2014-10-29 四国化成工業株式会社 銅または銅合金の表面処理剤及びその利用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217335A (en) * 1975-08-01 1977-02-09 Hitachi Ltd Chemical copper plating solution
JP2005513117A (ja) 2001-12-12 2005-05-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 銅ホルメート錯体を用いる銅の沈着
JP2005002471A (ja) 2003-06-03 2005-01-06 Basf Ag 基材上の銅層の析出
JP2005035984A (ja) 2003-07-03 2005-02-10 Mec Kk 銅化合物及びそれを用いた銅薄膜の製造方法
JP2009256218A (ja) 2008-04-14 2009-11-05 Toray Ind Inc 銅前駆体組成物およびそれを用いた銅膜の製造方法。
JP2012112022A (ja) * 2010-11-26 2012-06-14 Adeka Corp 銅膜形成用組成物及び該組成物を用いた銅膜の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2871260A4
THERMOCHIMICA ACTA, vol. 98, 1986, pages 139 - 145

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079439A (ja) * 2014-10-14 2016-05-16 四国化成工業株式会社 銅被膜形成剤およびその利用
WO2016197234A1 (en) * 2015-06-11 2016-12-15 National Research Council Of Canada Preparation of high conductivity copper films
JP2018525770A (ja) * 2015-06-11 2018-09-06 ナショナル リサーチ カウンシル オブ カナダ 高導電性銅フィルムの調製
EP3307705A4 (en) * 2015-06-11 2019-01-23 National Research Council of Canada PREPARATION OF COPPER FILMS WITH HIGH CONDUCTIVITY
US10954406B2 (en) 2015-06-11 2021-03-23 National Research Council Of Canada Preparation of high conductivity copper films
JP2021517933A (ja) * 2018-11-14 2021-07-29 ワイエムティー カンパニー リミテッド めっき積層体及びプリント回路基板
JP7205027B2 (ja) 2018-11-14 2023-01-17 ワイエムティー カンパニー リミテッド めっき積層体及びプリント回路基板

Also Published As

Publication number Publication date
TW201406991A (zh) 2014-02-16
EP2871260A4 (en) 2016-07-06
KR102086501B1 (ko) 2020-03-09
IN2015DN00149A (ja) 2015-06-12
BR112015000524A2 (ja) 2019-12-31
JPWO2014010328A1 (ja) 2016-06-20
CN104471108A (zh) 2015-03-25
TWI567231B (zh) 2017-01-21
US20150189748A1 (en) 2015-07-02
EP2871260B1 (en) 2019-03-06
BR112015000524B1 (pt) 2021-03-30
US10405422B2 (en) 2019-09-03
JP6027613B2 (ja) 2016-11-16
KR20150034168A (ko) 2015-04-02
MY171068A (en) 2019-09-24
EP2871260A1 (en) 2015-05-13
CN104471108B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
JP6027613B2 (ja) 銅被膜形成剤及び銅被膜の形成方法
KR100711505B1 (ko) 도전막 형성을 위한 은 페이스트
JP2009256218A (ja) 銅前駆体組成物およびそれを用いた銅膜の製造方法。
EP2684917B1 (en) Zinc oxide film-forming composition, zinc oxide film production method, and zinc compound
WO2013130450A2 (en) Self-reducing metal complex inks soluble in polar protic solvents and improved curing methods
EP2902529B1 (en) Substrate processing method for supporting a catalyst particle for plating process
CN107636055B (zh) 金属纳米粒子分散体
JP2016079439A (ja) 銅被膜形成剤およびその利用
JP6067515B2 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
CN107636083B (zh) 金属纳米粒子分散体
EP3307705B1 (en) Preparation of high conductivity copper films
JP6100178B2 (ja) 銅被膜形成剤および銅被膜の形成方法
JP2016139597A (ja) 樹枝状銀コート銅粉の製造方法
JP6324728B2 (ja) 銅回路の形成方法
JP2009228017A (ja) 銅微粒子の製造方法および銅微粒子
JP2009161838A (ja) 銅微粒子の製造方法および銅微粒子
KR100587402B1 (ko) 도전선 패턴 형성을 위한 은 오르가노 졸 잉크
JP2009149918A (ja) 銅微粒子の製造方法および銅微粒子
WO2019009146A1 (ja) 導電性ペースト
JP2015128094A (ja) 銅回路の形成方法
WO2023215849A2 (en) Conductive ink compositions comprising gold complexes
JP6111170B2 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2011184728A (ja) 無電解めっき前処理剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524689

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013816923

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14413532

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157000590

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015000524

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015000524

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150109

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015000524

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2012-154124; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES DESTA (TITULARES, NUMERO DE REGISTRO, DATA E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013. CABESALIENTAR QUE NAO FOI POSSIVEL IDENTIFICAR OS TITULARES DO PEDIDO PRIORITARIO NOS DOCUMENTOS JUNTADOS AO PROCESSO, TAMPOUCO NOS APRESENTADOS NA OMPI, POIS SE ENCONTRAM EM JAPONES.

ENP Entry into the national phase

Ref document number: 112015000524

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150109