WO2014008979A1 - Isononylamine ausgehend von 2-ethylhexanol, verfahren zu ihrer herstellung sowie ihre verwendung - Google Patents

Isononylamine ausgehend von 2-ethylhexanol, verfahren zu ihrer herstellung sowie ihre verwendung Download PDF

Info

Publication number
WO2014008979A1
WO2014008979A1 PCT/EP2013/001812 EP2013001812W WO2014008979A1 WO 2014008979 A1 WO2014008979 A1 WO 2014008979A1 EP 2013001812 W EP2013001812 W EP 2013001812W WO 2014008979 A1 WO2014008979 A1 WO 2014008979A1
Authority
WO
WIPO (PCT)
Prior art keywords
isononylamines
catalyst
ethylhexanol
hydrogen
octene
Prior art date
Application number
PCT/EP2013/001812
Other languages
English (en)
French (fr)
Inventor
Jens Theuerkauf
Guido D. Frey
Matthias Eisenacher
Kristina Gedrich
Heinz Strutz
Original Assignee
Oxea Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxea Gmbh filed Critical Oxea Gmbh
Priority to CN201380034507.2A priority Critical patent/CN104395264B/zh
Priority to JP2015520838A priority patent/JP6263530B2/ja
Priority to EP13731294.8A priority patent/EP2872467B1/de
Priority to KR1020157000764A priority patent/KR20150030238A/ko
Priority to US14/413,444 priority patent/US9714201B2/en
Publication of WO2014008979A1 publication Critical patent/WO2014008979A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C333/00Derivatives of thiocarbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C333/14Dithiocarbamic acids; Derivatives thereof
    • C07C333/16Salts of dithiocarbamic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/12Thio-acids; Thiocyanates; Derivatives thereof
    • C10M135/14Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond
    • C10M135/18Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond thiocarbamic type, e.g. containing the groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina

Definitions

  • the present invention relates to isononylamines starting from 2-ethylhexanol, to processes for their preparation by dehydration of 2-ethylhexanol, hydroformylation of the resulting octene mixture to isononanal and conversion to the corresponding isononylamines, and to their use.
  • Aliphatic amines are important organic intermediates that are produced on a large industrial scale. For example, they are further processed for the preparation of pharmaceutical products, agrochemicals or dyes or they serve as an additive in surface-active formulations, as a corrosion inhibitor and as additives in lubricants, for example in the form of their dithiocarbamates or corresponding salts, for improving the abrasion resistance of mechanical apparatuses which are high Printing or as auxiliaries for the paper, textile and rubber industries.
  • the short-chain alkylamines having less than six carbon atoms per alkyl group and the so-called fatty amines having about eight to 24 carbon atoms per alkyl chain are of technical importance. While fatty amines were first produced from native fatty acids, fatty amines have also been obtained on the basis of petrochemical raw materials by methods that have been established for the production of short-chain amines for many years.
  • the catalytic hydrogenation can be carried out in the presence of conventional hydrogenation catalysts, such as nickel or cobalt catalysts, which are activated with chromium additives (DE 1257 782 A1, DE 2048 750 A1). If secondary amines are reacted with aldehydes or ketones, a hydrogen atom which can be split off to form an enamine in the form of water must be bound to the carbon atom adjacent to the carbonyl group. The subsequent catalytic hydrogenation then leads to tertiary amines.
  • conventional hydrogenation catalysts such as nickel or cobalt catalysts, which are activated with chromium additives (DE 1257 782 A1, DE 2048 750 A1). If secondary amines are reacted with aldehydes or ketones, a hydrogen atom which can be split off to form an enamine in the form of water must be bound to the carbon atom adjacent to the carbonyl group. The subsequent catalytic hydrogenation then leads to tertiary amines.
  • ammonia is reacted with aldehydes or ketones, primary amines are first formed, which then react with further aldehyde or ketone via the azomethine intermediate to give the secondary amine, which can then react further analogously to tertiary amines.
  • the product distribution can be controlled by the ammonia use. High molar excesses of ammonia favor the formation of primary amines.
  • R 2 and R 3 are hydrogen
  • a primary amine initially forms, which reacts further with further alcohol to give a secondary amine which can react in a similar manner to a tertiary amine.
  • the product distribution can be controlled by the AmmoniakCloud. A high molar excess of ammonia promotes the formation of the primary amine.
  • Suitable hydrogenation catalysts are nickel, cobalt, iron or copper catalysts, such as Raney Nickel (US Pat. No. 2,782,237, US Pat. No. 2,182,807).
  • the amination of alcohols can also be carried out in the presence of hydrogen.
  • Isononylamine (CAS number 27775-00-4) and di-isononylamine (CAS number 28454-70-8) have technical significance as lubricant additives and as additives in lubricants, for example in the form of their dithiocarbamates or corresponding salts, to improve the abrasion resistance of mechanical Apparatus operating under high pressure, as an additive in corrosion inhibitors or for hydraulic fluids.
  • Isononylamine predominantly contains the 3,5,5-trimethylhexylamine and di-isononylamine predominantly contains the di (3,5,5-trimethylhexyl) amine as the main isomer.
  • the C-9 hydrocarbon skeleton 3,5,5-trimethylhexyl is based on the petrochemical precursor isobutene, which is dimerized to diisobutene in the presence of acidic catalysts and also formed by them is isolated by distillation (Hydrocarbon Processing, April 1973, pages 171-173, Ullmann's Encyclopedia of Industrial Chemistry, 6th Ed., 2003, Vol. 6, page 3).
  • Diisobutene consists essentially of the isomeric octenes 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene and can be prepared by oxo reaction or hydroformylation reaction with carbon monoxide and hydrogen in the presence of rhodium or cobalt catalysts are converted into the corresponding aldehyde 3,5,5-trimethylhexanal (Ullmann's Encyclopedia of Industrial Chemistry, 6th Ed., 2003, Vol. 2, page 68, 75, DE 2737633 A). The hydrogenation gives the alcohol 3,5,5-trimethylhexanol, which is used, for example, as a high-boiling solvent (Ullmann's Encyclopedia of Industrial Chemistry, 6th Ed., 2003, Vol.2, pages 22, 33).
  • the most important raw material source for isobutene is the C4 cut from the steam cracking of naphtha. Its availability compared to the C2 and C3 fission products can be controlled by the conditions of the steam cracking and depends on the market conditions.
  • raffinate I contains predominantly the unsaturated butenes isobutene, 1-butene and 2-butene and the hydrogenated products n-butane and isobutane.
  • Isobutene is removed from the raffinate I in the next step and the isobutene-free C4 mixture obtained is referred to as raffinate II.
  • the butadiene-free C4 raffinate may be contacted at elevated temperature and under pressure with an acidic suspended ion exchanger.
  • Isobutene is oligomerized to di-isobutene, triisobutene and, to a lesser extent, higher oligomers.
  • the oligomers are separated from the unreacted C4 compounds. From the oligomerizate di-isobutene or tri-isobutene can then be recovered by distillation. The dimerization of n-butenes with isobutene is to a small extent
  • Di-isobutene either prepared by the oligomerization of pure isobutene obtained by cleavage or recovered in the course of the work-up of a butadiene-free raffinate I, is then converted via the hydroformylation reaction or oxo reaction into a C-9 extended by one carbon atom.
  • the isononanal prepared in this way can then be converted via the reductive amination with ammonia and hydrogen into isononylamine or diisononylamine as described above. It is also possible to reduce isononanal at the metal contact, for example at nickel or cobalt catalysts, with hydrogen to the isononanol and then derivatize it via the amination reaction into the corresponding isononylamines.
  • isononanal at the metal contact, for example at nickel or cobalt catalysts, with hydrogen to the isononanol and then derivatize it via the amination reaction into the corresponding isononylamines.
  • it is desirable to develop additional octene sources based on low cost, bulk products that are easily transported to various locations can.
  • 2-ethylhexanol is available inexpensively as a large industrial product that can be widely distributed without any problems.
  • 2-ethylhexanol is industrially produced by hydroformylation or oxo reaction of propylene to n-butyraldehyde with subsequent alkali-catalyzed aldol condensation to 2-ethylhexenal and subsequent full hydrogenation to 2-ethylhexanol (Ullmanns Encyklopadie der ischen Chemie, 4th edition, 1974, Verlag Chemie, Volume 7, pages 214-215).
  • WO 03/029180 A1 is briefly a.
  • the focus here is on the adjustment of the viscosity of the isomeric phthalic acid dialkyl esters which are obtained by esterification of isomeric nonanols with phthalic acid or phthalic anhydride. Indications of converting the dehydration products of 2-ethylhexanol into isononylamines are not given.
  • the present invention therefore consists in a process for the preparation of isononylamines starting from 2-ethylhexanol.
  • the method is characterized in that one (a) 2-ethylhexanol in the presence of a catalyst to octene
  • step b) reacting the octene obtained after step a) in the presence of a transition metal compound of group VIII of the Periodic Table of the Elements with carbon monoxide and hydrogen to form isononanal;
  • step b) the isononanal obtained after step b) is converted into isononylamines.
  • the present invention also relates to isononylamines obtainable by reacting
  • step b) reacting the octene obtained after step a) in the presence of a transition metal compound of group VIII of the Periodic Table of the Elements with carbon monoxide and hydrogen to form isononanal;
  • step b) the isononanal obtained after step b) is converted into isononylamines.
  • the dehydration of 2-ethylhexanol can be carried out on a suitable catalyst both in the liquid phase and in the gas phase.
  • the dehydration in the gas phase takes place at temperatures in the range of 200 to 450 ° C, preferably from 250 to 380 ° C using customary reactors in the presence of heterogeneous catalysts having dehydrating properties, such as alumina in its various modifications, nickel deposited on alumina , or phosphoric acid deposited on silica or alumina.
  • heterogeneous catalysts suitable for dehydration are known from the prior art (GB 313426, US Pat. No. 2,468,764, US Pat. No. 2,919,973) and are commercially available, for example, as AI3996 from BASF SE.
  • No. 2,919,973 deals with the dehydration of 2-ethylhexanol on a heterogeneous aluminum oxide catalyst at temperatures of about 350 ° C. and with a catalyst loading of 2.4 to 2.8 liters of 2-ethylhexanol per liter of catalyst per hour.
  • the state of the art exists however, no information about the isomer distribution in the resulting octene mixture.
  • the reactor used for the dehydration of 2-ethylhexanol in the process according to the invention may contain, in addition to the catalyst bed, further fillers or internals, for example Raschig rings, saddles, pall rings, filter plates or column bottoms. If one uses packing, then they are preferably mounted above the catalyst bed to reduce the dead volume. If dehydration is carried out in the liquid phase, it is possible to dispense with internals and fillers, so that only the dehydration catalyst is present in the reaction vessel.
  • further fillers or internals for example Raschig rings, saddles, pall rings, filter plates or column bottoms. If one uses packing, then they are preferably mounted above the catalyst bed to reduce the dead volume. If dehydration is carried out in the liquid phase, it is possible to dispense with internals and fillers, so that only the dehydration catalyst is present in the reaction vessel.
  • 2-ethylhexanol is heated in an upstream evaporator and passed over the catalyst bed in gaseous form, optionally with the use of an inert carrier gas such as nitrogen, carbon dioxide or noble gases.
  • the load V / Vh of the heterogeneous catalyst can vary over a wide range and is generally from 0.2 to 3.5 liters of 2-ethylhexanol per liter of catalyst per hour.
  • the split-off water causes the formation of an aqueous phase, which is separated from the organic olefin phase by simple phase separation.
  • the octene obtained is a mixture of structisomeric octenes with the singly branched octenes 2-ethyl-1-hexene and cis / trans 3-methyl-3-heptene and cis / trans 3-methyl-2-heptene as main components. Notable amounts of di-C8 ethers are not formed.
  • the octene present after removal of the splitting water is then used without further purification or expediently after distillative purification for the reaction with carbon monoxide and hydrogen in the hydroformylation reaction or oxo reaction.
  • the hydroformylation reaction is carried out in a homogeneous reaction system.
  • the term homogeneous reaction system stands for a homogeneous solution composed essentially of solvent, if added, catalyst, olefinically unsaturated compound and reaction product.
  • Particularly effective solvents have proved to be the higher-boiling condensation compounds of the aldehydes to be prepared, in particular the trimers of the aldehydes to be prepared, which are obtained as by-products in the hydroformylation, and their
  • Solvents are organic compounds in which starting material, reaction product and catalyst are soluble. Examples of such compounds are aromatic hydrocarbons such as benzene and toluene or the isomeric xylenes and mesitylene. Other in use
  • Solvents are paraffin oil, cyclohexane, n-hexane, n-heptane or n-octane, ethers, such as tetrahydrofuran, ketones or Texanol® from Eastman.
  • the proportion of the solvent in the reaction medium can be varied over a wide range and is usually between 20 and 90% by weight, preferably 50 to 80 wt .-% based on the reaction mixture.
  • the hydroformylation of the octene can also be carried out without addition of solvent.
  • the hydroformylation reaction is typically carried out in a homogeneous organic phase in the presence of at least one transition metal compound of Group VIII of the Periodic Table of the Elements.
  • the reaction can be carried out both in the presence and in the absence of complexing organoelement compounds which act as complexing ligands.
  • organophosphorus compounds When the hydroformylation reaction is carried out in the presence of complex ligands, the use of organophosphorus compounds is suitable as organoelement compounds.
  • complex compounds and their preparation are known (US 3,527,809 A, US 4,148,830 A, US 4,247,486 A, US 4,283,562 A). They can be used as uniform complex compounds or else as a mixture of different complex compounds.
  • the transition metal concentration in the reaction medium extends over a broad range from about 1 to about 1000 ppm by weight and is preferably 10 to 700 ppm by weight, and more preferably 25 to 500 ppm by weight, based in each case on the homogeneous reaction mixture.
  • the catalyst used may be the stoichiometrically composed transition metal complex compound.
  • the free complex ligand can be the same as in the transition metal complex compound, but it can also be used by this different complex ligands.
  • Preferred complexing ligands include triarylphosphines such as triphenylphosphine, trialkylphosphines such as tri (cyclohexyl) phosphine, alkylphenylphosphines, organic phosphites or diphosphites.
  • the molar ratio of transition metal to complex ligand is generally 1: 1 to 1: 1000, but it may also be higher. Preference is given to using the transition metal and the complex ligand in a molar ratio of 1: 3 to 1: 500 and in particular from 1:50 to 1: 300.
  • the hydroformylation reaction in the presence of complex ligands is often referred to as a modified variant, which is usually at temperatures of 50 to 180 ° C, preferably from 100 to 160 ° C and total pressures from 0.2 to 30 MPa, preferably from 1 to 20 MPa is carried out.
  • the hydroformylation reaction can also be carried out in the absence of complex ligands according to the unmodified variant.
  • Starting metal catalysts and their suitability as a catalyst for hydroformylation are known from the literature and they are referred to as unmodified transition metal catalysts. It is believed in the literature that the transition metal compound HM (CO) 4 is the catalytically active transition metal species in unmodified transition metal catalysis, although this is not clearly demonstrated due to the many chemistries running side by side in the reaction zone.
  • transition metals of Group VIII of the Periodic Table of the Elements cobalt, rhodium, iridium, nickel, palladium, platinum, iron or ruthenium and in particular cobalt or rhodium.
  • the modified or unmodified transition metal catalyst is formed under the conditions of the hydroformylation reaction from the transition metal compounds used, such as their salts, such as chlorides, nitrates, sulfates, acetates, pentanoates, 2-ethylhexanoates or isononanoates, their chalcogenides, such as oxides or sulfides, their carbonyl compounds such as M 2 (CO) 8 , M 4 (CO) i 2 , M 6 (CO) i 6 , M 2 (CO) 9 , M 3 (CO) i 2 , their organotransition metal compounds, such as carbonyl acetylacetonates or cycloalkyl octadienyl acetates or
  • the transition metal compound can be used as a solid or expediently in solution.
  • rhodium isononanoate, rhodium acetate, rhodium 2-ethylhexanoate or cobalt isononanoate, cobalt acetate or cobalt 2-ethylhexanoate, or Co 2 (CO) 8 , Co 4 (CO) i 2 are suitable as the transition metal compound used as catalyst precursor.
  • Rh 2 (CO) 8 Rh (CO) i 2 or Rh 6 (CO) 16 or cyclopentadienyl rhodium compounds, rhodium acetylacetonate, or rhodium dicarbonyl acetylacetonate.
  • Rhodium oxide and in particular rhodium acetate, rhodium 2-ethylhexanoate and rhodium isononanoate are preferably used.
  • the conditions of Preforming generally corresponds to the hydroformylation conditions.
  • the unmodified variant is generally processed with a transition metal amount of 1 to 100 ppm, preferably 2 to 30 ppm, based on the octene used. More particularly, rhodium or cobalt is used in an amount of from 2 to 30 ppm, preferably from 5 to 10 ppm, based in each case on the octene used.
  • reaction of the octene with hydrogen and carbon monoxide to isononanal it is expedient to work at higher pressures in the range from 5 to 70 MPa, preferably from 5 to 60 MPa and in particular from 10 to 30 MPa.
  • Suitable reaction temperatures range from 50 to 180 ° C, preferably from 50 to 150 ° C and especially from 100 to 150 ° C.
  • composition of the synthesis gas ie the proportions of carbon monoxide and hydrogen in the gas mixture
  • the composition of the synthesis gas can be varied within wide limits. In general, mixtures are used in which the molar ratio of carbon monoxide to hydrogen is 5: 1 to 1: 5. Usually, this ratio is 1: 1 or deviates slightly from this value.
  • the olefinic compound can be added as such or in solution of the reaction zone.
  • Suitable solvents are ketones such as acetone, methyl ethyl ketone, acetophenone, lower aliphatic nitriles such as acetonitrile, propionitrile or benzonitrile, dimethylformamide, linear or branched saturated aliphatic monohydroxy compounds such as methanol, ethanol, propanol and isopropanol, aromatic hydrocarbons such as benzene or toluene and saturated cycloaliphatic hydrocarbons like cyclopentane or cyclohexane.
  • the hydroformylation step can be carried out both batchwise and continuously.
  • the recovery of the desired aldehydes from the crude hydroformylation product is carried out by conventional methods, for example by distillation. Isononanal and other volatile components are withdrawn as top products and, if necessary, subjected to further fine cleaning.
  • the amounts of transition metal used accumulate in the distillation residue and are optionally recycled to the reaction zone after addition of fresh transition metal compound and removal of part of the aldehyde condensation products formed in the course of the reaction.
  • the mixture of isomeric Isononanale obtained is purified, suitably by distillation, and then converted via the reductive amination in Isononylamine.
  • Reductive amination in the context of the present invention is understood to mean not only the reaction of the isononanal with ammonia, a primary or secondary amine with hydrogen in the presence of a common amination catalyst in which primary, secondary and tertiary isononylamines are formed, but also the corresponding reaction of the isononanol although at the
  • isononanol is used as starting material for the amine synthesis
  • isononanal is first hydrogenated to isononanol in the presence of customary hydrogenation catalysts by gas phase or liquid phase processes known per se.
  • Suitable hydrogenation catalysts are, for example, nickel or copper catalysts, preferably nickel catalysts.
  • the hydrogenations are generally carried out at hydrogen pressures of 6 to 15 MPa and at temperatures of 90 to 150 ° C.
  • the hydrogenation is carried out in a first hydrogenation stage on the copper catalyst in the gas phase and subsequently in a second hydrogenation stage on the nickel contact in the liquid phase.
  • the reductive amination of both the isononanal and the isononanol is carried out in customary reactors, preferably on fixed amination catalysts.
  • tube reactors are suitable, under which one also understands a bundle of several closely parallel connected tubes.
  • the tubular reactors used can also contain fillers or internals, for example Raschig rings, saddles, pall rings, filter plates or column trays, and optionally stirring devices.
  • the suspension hydrogenation is less suitable. Both the continuous reaction and the batchwise process are possible.
  • the starting product isononanal or isononanol can be reacted in excess or deficiency with ammonia and hydrogen.
  • ammonia and hydrogen In general, at least 0.2 mol, preferably from 0.3 to 40 mol of ammonia are used per mole of starting material.
  • the product distribution between isononylamine, diisononylamine and tri-isononylamine can be controlled by the use of ammonia, with a high excess of ammonia favoring the formation of the primary isononylamine.
  • primary or secondary amines such as propylamine, n-butylamine, 2-ethylhexylamine, di-n-propylamine, di-n-butylamine or di (2-ethylhexyl) amine can be used, so that mixed di-isononylamine and mixed Tri-isononylamine be obtained.
  • the reductive amination can be carried out solvent-free without addition of a solvent or diluent or with addition of solvents, such as, for example, methanol or ethanol (DE 199 35 448 A1).
  • the reaction components fed to the reductive amination may be in a gaseous or compressed state under reaction conditions, with individual reaction components or the mixture itself being able to assume different states of aggregation.
  • the reductive amination at temperatures in the range of 100 to 200 ° C, preferably from 110 to 150 ° C and at pressures in the range of 0.1 to 40 MPa, preferably from 0.5 to 30 MPa performed.
  • customary amination catalysts which contain at least one metal from subgroup 8 to 11 of the Periodic Table of the Elements, such as nickel, cobalt, platinum, palladium, iron, rhodium or copper. Preference is given to nickel or cobalt catalysts.
  • carrier-free catalysts such as Raney nickel or Raney cobalt, supported catalysts can also be used.
  • Suitable catalyst supports are all conventional support materials, for example alumina, alumina hydrates in their various forms, silica, polysilicas (silica gels) including kieselguhr, silica xerogels, magnesia, zinc oxide, zirconia and activated carbon.
  • the amination catalysts may also contain minor amounts of additives which serve, for example, to improve their activity and / or their service life and / or their selectivity.
  • additives are known, including, for example, the oxides of calcium, barium, zinc, aluminum, zirconium and chromium.
  • Nickel has proved to be the preferred catalytically active metal.
  • nickel catalysts on kieselguhr are suitable as carrier material and with chromium as additive for the reductive amination.
  • the reaction mixture withdrawn from the reactor is depressurized to atmospheric pressure via a high-pressure separator and subsequent expansion devices, and the crude isononylamines obtained are purified by customary methods, for example by distillation, to give product in accordance with specifications.
  • the isononylamines prepared from the process according to the invention starting from 2-ethylhexanol are the primary isononylamine, diisononylamine or triisocyanate.
  • the isononyl radical is a C 9 hydrocarbon radical which is essentially unbranched or singly branched in the a position.
  • the obtained isononylamines are particularly suitable for use as corrosion inhibitors in lubricants.
  • the resulting isononylamines can also be used as auxiliaries in rubber formulations and as vulcanization accelerators. They are also used as additives in lubricants, for example in the form of their dithiocarbamates or corresponding salts, such as molybdenum, zinc or sodium dithiocarbamates, for improving the abrasion resistance of mechanical equipment operated under high pressure.
  • 2-ethylhexanol was evaporated in an upstream evaporator and with the aid of a nitrogen stream as a carrier gas at atmospheric pressure over the catalyst bed at a temperature of 350 ° C and with a
  • the crude octene obtained after step I was dissolved in the presence of 5 ppm rhodium, added in the form of a solution of rhodium 2-ethylhexanoate 2-ethylhexanol and based on octene, at a temperature of 140 ° C and droformylated at a synthesis gas pressure of 19 MPa over a period of three hours h.
  • the molar composition of the synthesis gas was 1 mole of hydrogen to 1 mole of carbon monoxide.
  • the crude hydroformylation product obtained had the following gas chromatographically determined composition (FI .-%, according to DIN 51405):
  • the reaction mixture was heated to 250 ° C and brought by hydrogen metering to a pressure of 29 MPa. After eight hours reaction time, the reaction mixture was decompressed and filtered from the catalyst.
  • the crude product obtained had the following gas chromatographically determined composition (FI .-%, according to DIN 5 05): Lead 7,6
  • the organic phase containing the Schiff base was introduced together with the commercially available nickel catalyst Ni 52/35 from Johnson Matthey, which was used in an amount of 5 wt .-%, based on the reaction mixture, in an autoclave and at a hydrogen pressure of 0 MPa and hydrogenated at a temperature of 120 ° C over a period of six hours.
  • the crude product obtained after filtration of the catalyst showed Gaschromatographisch determined composition (FI .-%, according to DIN 51405):
  • Step III obtained isononanol
  • Isononanol obtained was presented together with the conventionally available nickel catalyst Ni 55/5 from Johnson Matthey, which was used in an amount of 5 wt .-%, based on the reaction mixture, in a stirred vessel.
  • hydrogen was passed through the reaction solution in an amount of 5 standard liters per hour and, in parallel thereto, ammonia was added in an amount of 0.9 mole of ammonia per mole of isononanol over a period of three hours.
  • the resulting reaction water was removed azeotropically. After three hours, the reaction was stopped and the catalyst was filtered off.
  • the crude product obtained had the following gas chromatographically determined composition (FI .-%, according to DIN 51405): Advance 1, 5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Lubricants (AREA)

Abstract

Die vorliegende Erfindung betrifft Isononylamine ausgehend von 2-Ethylhexanol, Verfahren zu ihrer Herstellung durch Dehydratisierung von 2-Ethylhexanol zu einem Octen, anschließende Hydroformylierung zum Isononanal gegebenenfalls nachfolgende Hydrierung zum Isononanol, anschließende reduktive Aminierung oder gegebenenfalls Ammonolyse zu Isononylaminen und ihre Verwendung als Korrosionsschutzmittel, als Hilfsmittel in Gummiformulierungen, als Vulkanisationsbeschleuniger sowie als Additiv in Schmiermitteln zur Verbesserung der Abriebsbeständigkeit unter erhöhtem Druck betriebenen mechanischer Apparaturen.

Description

Isononylamine ausgehend von 2-Ethylhexanol,
Verfahren zu ihrer Herstellung sowie ihre Verwendung
Die vorliegende Erfindung betrifft Isononylamine ausgehend von 2-Ethyl- hexanol, Verfahren zu ihrer Herstellung durch Dehydratisierung von 2-Ethyl- hexanol, Hydroformylierung des erhaltenen Octengemisches zu Isononanal und Umsetzung zu den entsprechenden Isononylaminen sowie ihre Verwendung.
Aliphatische Amine sind wichtige organische Zwischenprodukte, die in großem industriellen Maßstab hergestellt werden. Beispielsweise werden sie für die Herstellung von pharmazeutischen Produkten, Agrochemikalien oder Farbstoffen weiterverarbeitet oder sie dienen als Zusatz in oberflächenaktiven Formulierungen, als Korrosionsinhibitor sowie als Additive in Schmiermitteln, beispielsweise in Form ihrer Dithiocarbamate oder entsprechender Salze, zur Verbesserung der Abriebsbeständigkeit mechanischer Apparaturen, die unter hohem Druck betrieben werden, oder als Hilfsstoffe für die Papier-, Textil- und Kautschukindustrie. Technische Bedeutung haben die kurzkettigen Alkylamine mit weniger als sechs Kohlenstoffatomen pro Alkyl- gruppe und die sogenannten Fettamine mit etwa acht bis 24 Kohlenstoff- atomen pro Alkylkette. Während zunächst Fettamine aus nativen Fettsäuren hergestellt wurden, werden seit einigen Jahren Fettamine auch auf Basis petrochemischer Rohstoffe nach Verfahren gewonnen, die für die Herstellung kurzkettiger Amine schon seit vielen Jahren etabliert sind.
So führt die reduktive Aminierung von Aldehyden und Ketonen mit Ammoniak, primären oder sekundären Aminen zu primären, sekundären oder terti- ären Aminen. Die Aminbildung kann beispielsweise durch folgende Reaktionsstufen beschrieben werden:
R -C(=0)-R2 + R3NH2 -* R -C(=NR3)-R2 + H20 (1 )
R1-C(=NR3)-R2 + H2 -> R1-CHR2-NHR3 (2) In der ersten Reaktionsstufe wird durch Umsetzung eines Aldehyds (R1 gleich Alkyl und R2 gleich Wasserstoff) oder eines Ketons (R1 und R2 gleich Alkyl) mit Ammoniak eine Iminzwischenstufe gebildet (R3 gleich Wasserstoff) oder mit einem primären Amin eine Azomethinzwischenstufe oder Schiffsche Base (R3 gleich Alkyl). Diese Zwischenstufen werden anschließend kataly- tisch hydriert, entweder direkt einstufig oder nach ihrer Isolierung wasserfrei in getrennten Reaktionsstufen. Die katalytische Hydrierung kann in Gegenwart gängiger Hydrierkatalysatoren, wie Nickel- oder Kobaltkatalysatoren, die mit Chromzusätzen aktiviert sind, erfolgen (DE 1257 782 A1 , DE 2048 750 A1 ). Werden sekundäre Amine mit Aldehyden oder Ketonen umgesetzt, so muss an dem zur Carbonylgruppe benachbarten Kohlenstoffatom ein Wasserstoffatom gebunden sein, das unter Ausbildung eines Enamins in Form von Wasser abgespalten werden kann. Die nachfolgende katalytische Hydrierung führt dann zu tertiären Aminen. Setzt man Ammoniak mit Aldehyden oder Ketonen um, werden zunächst primäre Amine gebildet, die dann mit weiterem Aldehyd oder Keton über die Azomethinzwischenstufe zum sekundären Amin abreagieren, die dann noch analog zu tertiären Aminen weiterreagieren können. Die Produktverteilung kann durch den Ammoniakeinsatz gesteuert werden. Hohe molare Über- schüsse an Ammoniak begünstigen die Bildung primärer Amine.
Neben der reduktiven Aminierung von Carbonylverbindungen wird auch die Amimierung von Alkoholen oder Ammonolyse in Gegenwart von Hydrierkatalysatoren technisch betrieben: R1-OH + HNR2R3 -» R -NR2R3 + H20 (3)
Wird Ammoniak umgesetzt (R2 und R3 gleich Wasserstoff), bildet sich zunächst ein primäres Amin, das mit weiterem Alkohol zu einem sekundären Amin weiterreagiert, das analog zu einem tertiären Amin abreagieren kann. Auch bei dieser Reaktionsführung kann die Produktverteilung durch den Ammoniakeinsatz gesteuert werden. Ein hoher molarer Überschuss an Ammoniak fördert die Bildung des primären Amins.
Als Hydrierkatalysatoren eignen sich Nickel-, Kobalt-, Eisen- oder Kupferkatalysatoren, wie Raney Nickel (US 2782237, US 2182807). Die Aminierung von Alkoholen kann auch in Gegenwart von Wasserstoff erfolgen.
Weitere Verfahren zur Herstellung von Aminen umfassen die Umsetzung von Alkylhalogeniden mit Ammoniak, die Anlagerung von Ammoniak an olefini- sche Doppelbindungen, die katalytische Hydrierung von Carbonsäurenitrilen sowie die katalytische Reduktion von Nitroalkanen mit Wasserstoff (Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Band 7, 1974, Seiten 374- 389; Band 11 , 1976, Seiten 447-452).
Isononylamin (CAS-Nummer 27775-00-4) und Di-isononylamin (CAS- Nummer 28454-70-8) besitzen technische Bedeutung als Schmiermittelzusatz sowie als Additive in Schmiermitteln, beispielsweise in Form ihrer Dithiocarbamate oder entsprechender Salze, zur Verbesserung der Abriebsbeständigkeit mechanischer Apparaturen, die unter hohem Druck betrieben werden, als Zusatz in Korrosionsschutzmitteln oder für hydraulische Flüssigkeiten. Isononylamin enthält überwiegend das 3,5,5-Trimethylhexylamin und Di-isononylamin enthält überwiegend das Di-(3,5,5-Trimethylhexyl)amin als Hauptisomer.
Das C-9 Kohlenwasserstoffgerüst 3,5,5-Trimethylhexyl basiert auf dem petrochemischen Vorprodukt Isobuten, das in Gegenwart saurer Katalysatoren zu Diisobuten dimerisiert wird und von den dabei ebenfalls gebildeten höheren Oligomerisaten destillativ abgetrennt wird (Hydrocarbon Processing, April 1973, Seiten 171-173; Ullmann's Encyclopedia of Industrial Chemistry, 6th. Ed., 2003, Vol. 6, Seite 3). Diisobuten besteht im Wesentlichen aus den isomeren Octenen 2,4,4-Trimethyl-1-penten und 2,4,4-Trimethyl-2-penten und kann durch Oxo-Reaktion oder Hydroformylierungsreaktion mit Kohlen- monoxid und Wasserstoff in Gegenwart von Rhodium- oder Kobaltkatalysatoren in den entsprechenden Aldehyd 3,5,5-Trimethylhexanal umgewandelt werden (Ullmann's Encyclopedia of Industrial Chemistry, 6th. Ed., 2003, Vol. 2, Seite 68, 75; DE 2737633 A). Die Hydrierung liefert den Alkohol 3,5,5-Tri- methylhexanol, den man beispielsweise als hochsiedendes Lösungsmittel verwendet (Ullmann's Encyclopedia of Industrial Chemistry, 6th. Ed., 2003, Vol.2, Seiten 22, 33).
Die bedeutendste Rohstoffquelle für Isobuten ist der C4-Schnitt aus der Dampfspaltung von Naphtha. Seine Verfügbarkeit im Vergleich zu den C2- und C3-Spaltprodukten kann durch die Bedingungen der Dampfspaltung gesteuert werden und richtet sich nach den Marktgegebenheiten.
Aus den C4-Spaltprodukten wird zunächst 1 ,3-Butadien durch Extraktion oder durch Selektivhydrierung in n-Butene entfernt. Das erhaltene C4~Raffi- nat, auch als Raffinat I bezeichnet, enthält überwiegend die ungesättigten Butene Isobuten, 1 -Buten und 2-Buten sowie die hydrierten Produkte n- Butan und Isobutan. Aus dem Raffinat I wird im nächsten Schritt Isobuten entfernt und das erhaltene, isobutenfreie C4-Gemisch bezeichnet man als Raffinat II. Für die Isobutenabtrennung werden in der industriellen Produktion verschiedene Verfahren angewandt, bei denen man die relativ höchste Reaktivität des Isobutens in dem Raffinat I ausnutzt. Bekannt ist die reversible protonenkatalysierte Wasseranlagerung zum tertiär-Butanol oder die Methanolanlagerung zum Methyl-tertiär-butylether. Aus diesen Additionsprodukten kann durch RückSpaltung wieder Isobuten zurückgewonnen werden (Weissermel, Arpe, Industrielle Organische Chemie, VCH Verlagsgesellschaft, 3. Auflage, 1988, S. 74-79).
Ebenfalls kann das butadienfreie C4-Raffinat bei erhöhter Temperatur und unter Druck mit einem sauren suspendierten Ionenaustauscher in Kontakt gebracht werden. Isobuten oligomerisiert zu Di-isobuten, Tri-isobuten und in geringem Maße zu höheren Oligomeren. Die Oligomeren werden von den nicht reagierten C4-Verbindungen abgetrennt. Aus dem Oligomerisat kann dann Di-isobuten oder Tri-isobuten destillativ rein gewonnen werden. Durch die Dimerisierung von n-Butenen mit Isobuten wird in geringem Maße
Codimer gebildet (Weissermel, Arpe, Industrielle Organische Chemie, VCH Verlagsgesellschaft, 3. Auflage, 1988, Seite 77; Hydrocarbon Processing, April 1973, Seiten 171-173). Di-isobuten, entweder hergestellt durch die Oligomerisierung von durch Rückspaltung erhaltenem reinen Isobuten oder gewonnen im Zuge der Aufarbeitung eines butadienfreien Raffinat I, wird anschließend über die Hydro- formylierungsreaktion oder Oxo-Reaktion in ein um ein C-Atom verlängertes C9-Derivat überführt. Da Di-isobuten in überwiegendem Maße die Octene 2,4,4-Trimethyl-1~penten und 2,4,4-Trimethyl-2-penten enthält, ergibt die Hydroformylierungsreaktion den C9-Aldehyd 3,5,5-Trimethylhexanal als Hauptbestandteil. Weitere C9-lsomere, die in geringen Mengen zugegen sind, sind 3,4,4- und 3,4,5-Trimethylhexanal sowie 2,5,5-Trimethylhexanal, 4,5,5-Trimethylhexanal und 6,6-Dimethylheptanal.
Das so hergestellte Isononanal kann anschließend wie zuvor beschrieben über die reduktive Aminierung mit Ammoniak und Wasserstoff in Isononyl- amin oder Di-isononyiamin umgewandelt werden. Auch kann Isononanal am Metallkontakt, beispielsweise an Nickel- oder Kobaltkatalysatoren, mit Wasserstoff zum Isononanol reduziert werden und anschließend über die Aminierungsreaktion in die entsprechenden Isononylamine derivatisiert werden. Vor dem Hintergrund, dass die Verfügbarkeit an Octenen basierend auf dem C4-Schnitt aus der Naphthaspaltung beschränkt ist und von den lokalen Standortbedingungen abhängt, ist es wünschenswert, weitere Octenquellen auf Basis preiswert verfügbarer Großprodukte zu erschließen, die auf einfache Weise zu verschiedenen Standorten transportiert werden können. 2-Ethylhexanol steht als industrielles Großprodukt preiswert zur Verfügung, das ohne Probleme weitläufig vertrieben werden kann. 2-Ethylhexanol wird bekanntermaßen durch Hydroformylierung oder Oxo-Reaktion von Propylen zu n-Butyraldehyd mit nachfolgender alkalisch katalysierter Aldolkondensa- tion zum 2-Ethylhexenal und anschließender Vollhydrierung zum 2-Ethylhexanol großtechnisch hergestellt (Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, 1974, Verlag Chemie, Band 7, Seiten 214-215). Auf die Verwendung von 2-Ethylhexanol zur Herstellung eines Octenge- misches, das über die Dehydratisierung, Hydroformylierung und Hydrierung zu einem Isononanolgemisch verarbeitet wird, geht WO 03/029180 A1 kurz ein. Dabei steht die Einstellung der Viskosität der isomeren Phthalsäure-di- alkylester im Mittelpunkt, die durch Veresterung von isomeren Nonanolen mit Phthalsäure oder Phthalsäureanhydrid erhalten werden. Hinweise, die Dehy- dratisierungsprodukte von 2-Ethylhexanol in Isononylamine zu überführen, werden nicht gegeben.
Die Nutzung von 2-Ethylhexanol als Octenquelle ermöglicht die Bereit- Stellung von Isononylaminen auf Basis von Propylen und mindert die Abhängigkeit von der Octenverfügbarkeit auf Butenbasis.
Die vorliegende Erfindung besteht daher in einem Verfahren zur Herstellung von Isononylaminen ausgehend von 2-Ethylhexanol. Das Verfahren ist dadurch gekennzeichnet, dass man (a) 2-Ethylhexanol in Gegenwart eines Katalysators zu Octen
dehydratisiert;
(b) das nach Schritt a) erhaltene Octen in Gegenwart einer Übergangsmetallverbindung der Gruppe VIII des Periodensystems der Elemente mit Kohlenmonoxid und Wasserstoff zu Isononanal umsetzt; und
(c) das nach Schritt b) erhaltene Isononanal in Isononylamine überführt.
Die vorliegende Erfindung betrifft ebenfalls Isononylamine, dadurch erhältlich, dass man
(a) 2-Ethylhexanol in Gegenwart eines Katalysators zu Octen
dehydratisiert;
(b) das nach Schritt a) erhaltene Octen in Gegenwart einer Übergangsmetallverbindung der Gruppe VIII des Periodensystems der Elemente mit Kohlenmonoxid und Wasserstoff zu Isononanal umsetzt; und
(c) das nach Schritt b) erhaltene Isononanal in Isononylamine überführt.
Die Dehydratisierung von 2-Ethylhexanol kann sowohl in der Flüssigphase als auch in der Gasphase an einem dafür geeigneten Katalysator durchge- führt werden. Bevorzugt erfolgt die Dehydratisierung in der Gasphase bei Temperaturen im Bereich von 200 bis 450°C, vorzugsweise von 250 bis 380°C unter Verwendung fachüblicher Reaktoren in Gegenwart heterogener Katalysatoren mit dehydratisierenden Eigenschaften, wie Aluminiumoxid in seinen verschiedenen Modifikationen, Nickel niedergeschlagen auf Alumini- umoxid, oder Phosphorsäure niedergeschlagen auf Siliziumdioxid oder Aluminiumoxid. Solche zur Dehydratisierung geeignete Heterogenkatalysatoren sind aus dem Stand der Technik her bekannt (GB 313426, US 2468764, US 2919973) und stehen beispielsweise als AI3996 der Firma BASF SE kommerziell zur Verfügung. US 2919973 behandelt die Dehydratisierung von 2-Ethylhexanol an einem heterogenen Aluminiumoxidkatalysator bei Temperaturen um 350°C und bei einer Katalysatorbelastung von 2,4 bis 2,8 Liter 2- Ethylhexanol pro Liter Katalysator und Stunde. Der Stand der Technik gibt jedoch keine Auskunft über die Isomerenverteilung in dem erhaltenen Octen- gemisch.
Der in dem erfindungsgemäßen Verfahren für die Dehydratisierung von 2- Ethylhexanol eingesetzte Reaktor kann neben der Katalysatorschüttung noch weitere Füllkörper oder Einbauten enthalten, beispielsweise Raschigringe, Sättel, Pallringe, Filterplatten oder Kolonnenböden. Verwendet man Füllkörper, dann werden sie vorzugsweise oberhalb der Katalysatorschüttung angebracht, um das Totvolumen zu verringern. Wird in der Flüssigphase dehydra- tisiert, kann auf Einbauten und Füllkörper verzichtet werden, so dass in dem Reaktionsgefäß nur der Dehydratisierungskatalysator anwesend ist.
In der bevorzugten Arbeitsweise wird 2-Ethylhexanol in einem vorgeschalteten Verdampfer erhitzt und gasförmig über die Katalysatorschüttung geführt, gegebenenfalls unter Verwendung eines inerten Trägergases wie Stickstoff, Kohlendioxid oder Edelgase. Die Belastung V/Vh des heterogenen Katalysators kann über einen weiten Bereich variieren und beträgt im Allgemeinen von 0,2 bis 3,5 Liter 2-Ethylhexanol pro Liter Katalysator und Stunde. Das der Dehydratisierungszone entnommene Reaktionsgemisch wird
anschließend kondensiert. Durch das abgespaltene Wasser fällt eine wässrige Phase an, die von der organischen Olefinphase durch einfache Phasentrennung separiert wird. Bei dem erhaltenen Octen handelt es sich aus einem Gemisch strukturisomerer Octene mit den einfach verzweigten Octenen 2-Ethyl-1 -hexen sowie cis/trans 3-Methyl-3-hepten und cis/trans 3- Methyl-2-hepten als Hauptkomponenten. Nennenswerte Mengen an Di-C8- Ethern werden nicht gebildet.
Das nach Entfernen des Spaltwassers vorliegende Octen wird anschließend ohne weitere Reinigung oder zweckmäßigerweise nach destillativer Aufreini- gung für die Umsetzung mit Kohlenmonoxid und Wasserstoff in der Hydro- formylierungsreaktion oder Oxo-Reaktion verwendet. Die eingesetzte
Mischung aus Kohlenmonoxid und Wasserstoff bezeichnet man auch als Synthesegas. Man führt die Hydroformylierungsreaktion in einem homogenen Reaktionssystem durch. Der Begriff homogenes Reaktionssystem steht für eine im Wesentlichen aus Lösungsmittel, falls zugesetzt, Katalysator, olefinisch ungesättigter Verbindung und Reaktionsprodukt zusammenge- setzte homogene Lösung. Als besonders wirksame Lösungsmittel haben sich die höher siedenden Kondensationsverbindungen der herzustellenden Aldehyde, insbesondere die Trimeren der herzustellenden Aldehyde, erwiesen, die als Nebenprodukte bei der Hydroformylierung anfallen, sowie ihre
Mischungen mit dem herzustellenden Isononanal, so dass ein weiterer Lösungsmittelzusatz nicht unbedingt erforderlich ist. In einigen Fällen kann sich jedoch ein Lösungsmittelzusatz als zweckmäßig erweisen. Als
Lösungsmittel werden organische Verbindungen eingesetzt, in denen Ausgangsmaterial, Reaktionsprodukt und Katalysator löslich sind. Beispiele für solche Verbindungen sind aromatische Kohlenwasserstoffe, wie Benzol und Toluol oder die isomeren Xylole und Mesitylen. Andere gebräuchliche
Lösungsmittel sind Paraffinöl, Cyclohexan, n-Hexan, n-Heptan oder n-Octan, Ether, wie Tetrahydrofuran, Ketone oder Texanol® der Firma Eastman. Der Anteil des Lösungsmittels im Reaktionsmedium kann über einen weiten Bereich variiert werden und beträgt üblicherweise zwischen 20 und 90 Gew.- %, vorzugsweise 50 bis 80 Gew.-% bezogen auf das Reaktionsgemisch. Die Hydroformylierung des Octens kann aber auch ohne Lösungsmittelzusatz erfolgen.
Die Hydroformylierungsreaktion wird typischerweise in homogener orga- nischer Phase in Gegenwart mindestens einer Übergangsmetallverbindung der Gruppe VIII des Periodensystems der Elemente durchgeführt. Die Umsetzung kann sowohl in Gegenwart sowie in Abwesenheit von komplexbildenden Organoelementverbindungen, die als Komplexliganden wirken, durchgeführt werden.
Wird die Hydroformylierungsreaktion in Gegenwart von Komplexliganden durchgeführt, eignet sich die Verwendung von Organophosphorverbindungen als Organoelementverbindungen. Derartige Komplexverbindungen und ihre Herstellung sind bekannt (US 3 527 809 A, US 4 148 830 A, US 4 247 486 A, US 4 283 562 A). Sie können als einheitliche Komplexverbindungen oder auch als Gemisch unterschiedlicher Komplexverbindungen eingesetzt wer- den. Die Übergangsmetallkonzentration im Reaktionsmedium erstreckt sich über einen breiten Bereich von etwa 1 bis etwa 1000 Gew.-ppm und beträgt vorzugsweise 10 bis 700 Gew.-ppm und insbesondere 25 bis 500 Gew.-ppm, jeweils bezogen auf das homogene Reaktionsgemisch. Als Katalysator kann die stöchiometrisch zusammengesetzte Übergangsmetall-Komplexverbin- dung Anwendung finden. Es hat sich jedoch als zweckmäßig erwiesen, die Hydroformylierung in Gegenwart eines Katalysatorsystems aus Übergangsmetall-Komplexverbindung und freiem Komplexliganden durchzuführen, der mit dem Übergangsmetall keine Komplexverbindung mehr eingeht. Der freie Komplexligand kann der Gleiche sein wie in der Übergangsmetall-Komplex- Verbindung, es können aber auch von diesem verschiedene Komplexliganden eingesetzt werden. Zu den bevorzugten Komplexliganden zählen Tria- rylphosphine wie Triphenylphosphin, Trialkylphosphine wie Tri(cyclohexyl) phosphin, Alkylphenylphosphine, organische Phosphite oder Diphosphite. Das molare Verhältnis von Übergangsmetall zu Komplexligand beträgt im Allgemeinen 1 :1 bis 1 :1000, es kann aber auch noch höher liegen. Bevorzugt setzt man das Übergangsmetall und den Komplexliganden in einem molaren Verhältnis von 1 :3 bis 1 :500 und insbesondere von 1 :50 bis 1 :300 ein.
Die Hydroformylierungsreaktion in Gegenwart von Komplexliganden be- zeichnet man häufig auch als modifizierte Variante, die üblicherweise bei Temperaturen von 50 bis 180°C, vorzugsweise von 100 bis 160°C und Gesamtdrücken von 0,2 bis 30 MPa, vorzugsweise von 1 bis 20 MPa durchgeführt wird. Die Hydroformylierungsreaktion kann ebenfalls in Abwesenheit von Komplexliganden nach der unmodifizierten Variante durchgeführt werden. Solche, beispielsweise nicht mit Phosphinen oder Phosphiten modifizierte Über- gangsmetallkatalysatoren und ihre Eignung als Katalysator zur Hydroformy- lierung sind aus der Literatur her bekannt und sie werden als unmodifizierte Übergangsmetallkatalysatoren bezeichnet. Es wird in der Fachliteratur angenommen, dass die Übergangsmetallverbindung HM(CO)4 die katalytisch aktive Übergangsmetallspezies bei der unmodifizierten Übergangsmetallkatalyse ist, obgleich dies aufgrund der vielen in der Reaktionszone nebeneinander ablaufenden Chemismen nicht eindeutig bewiesen ist.
Vorzugsweise verwendet man als Übergangsmetalle der Gruppe VIII des Periodensystems der Elemente Kobalt, Rhodium, Iridium, Nickel, Palladium, Platin, Eisen oder Ruthenium und insbesondere Kobalt oder Rhodium. Der modifizierte oder unmodifizierte Übergangsmetallkatalysator bildet sich unter den Bedingungen der Hydroformylierungsreaktion aus den eingesetzten Übergangsmetallverbindungen, wie deren Salzen, wie Chloriden, Nitraten, Sulfaten, Acetaten, Pentanoaten, 2-Ethylhexanoaten oder Isononanoaten, deren Chalkogeniden, wie Oxiden oder Sulfiden, deren Carbonylverbindun- gen, wie M2(CO)8, M4(CO)i2, M6(CO)i6, M2(CO)9, M3(CO)i2, deren Organo- übergangsmetallverbindungen, wie Carbonylacetylacetonaten oder Cyclo- octadienylacetaten oder -Chloriden, in Gegenwart von Kohlenmonoxid/ Wasserstoffgemischen. Dabei kann die Übergangsmetallverbindung als Feststoff oder zweckmäßigerweise in Lösung eingesetzt werden. Als Übergangsmetallverbindung, die als Katalysatorvorstufe verwendet wird, eignet sich insbesondere Rhodiumisononanoat, Rhodiumacetat, Rhodium-2-ethyl- hexanoat oder Kobaltisononanoat, Kobaltacetat oder Kobalt-2-ethylhexanoat, oder Co2(CO)8, Co4(CO)i2, Rh2(CO)8, Rh (CO)i2 oder Rh6(CO)16 oder Cyclo- pentadienylrhodiumverbindungen, Rhodiumacetylacetonat, oder Rhodium- dicarbonylacetylacetonat. Bevorzugt werden Rhodiumoxid und insbesondere Rhodiumacetat, Rhodium-2-ethylhexanoat und Rhodiumisononanoat eingesetzt. Es ist aber auch möglich, den Übergangsmetallkatalysator in einer Vorcar- bonylierungsstufe zunächst zu präformieren und ihn anschließend der eigentlichen Hydroformylierungsstufe zuzuführen. Die Bedingungen der Präformierung entsprechen dabei im Allgemeinen den Hydroformylierungs- bedingungen.
Da im Allgemeinen die Verwendung von nicht mit Komplexliganden modifi- zierten Übergangsmetallkatalysatoren einen geringeren Übergangsmetallgehalt erfordert, arbeitet man bei der unmodifizierten Variante im Allgemeinen mit einer Übergangsmetallmenge von 1 bis 100 ppm, vorzugsweise 2 bis 30 ppm, bezogen auf das eingesetzt Octen. Ganz besonders wird Rhodium oder Kobalt in einer Menge von 2 bis 30 ppm, vorzugsweise von 5 bis 10 ppm, jeweils bezogen auf das eingesetzte Octen, verwendet.
Bei der Umsetzung des Octens mit Wasserstoff und Kohlenmonoxid zu Iso- nonanal nach der unmodifizierten Variante arbeitet man zweckmäßigerweise bei höheren Drücken im Bereich von 5 bis 70 MPa, vorzugsweise von 5 bis 60 MPa und insbesondere von 10 bis 30 MPa. Geeignete Reaktionstemperaturen bewegen sich im Bereich von 50 bis 180°C, bevorzugt von 50 bis 150°C und insbesondere von 100 bis 150°C.
Die Zusammensetzung des Synthesegases, d. h. die Anteile von Kohlen- monoxid und Wasserstoff im Gasgemisch, kann in weiten Grenzen variiert werden. Im Allgemeinen setzt man Gemische ein, in denen das Molverhältnis von Kohlenmonoxid zu Wasserstoff 5 : 1 bis 1 : 5 beträgt. Üblicherweise ist dieses Verhältnis 1 : 1 oder weicht von diesem Wert nur wenig ab. Die olefi- nische Verbindung kann als solche oder in Lösung der Reaktionszone zuge- führt werden. Geeignete Lösungsmittel sind Ketone wie Aceton, Methylethyl- keton, Acetophenon, niedrigere aliphatische Nitrile wie Acetonitril, Propionitril oder Benzonitril, Dimethylformamid, lineare oder verzweigte gesättigte aliphatische Monohydroxyverbindungen wie Methanol, Ethanol, Propanol und Isopropanol, aromatische Kohlenwasserstoffe wie Benzol oder Toluol und gesättigte cycloaliphatische Kohlenwasserstoffe wie Cyclopentan oder Cyclohexan. Die Hydroformylierungsstufe kann sowohl diskontinuierlich als auch kontinuierlich durchgeführt werden. Die Gewinnung der gewünschten Aldehyde aus dem rohen Hydroformylierungsprodukt erfolgt nach konventionellen Verfahren, beispielsweise durch Destillation. Isononanal und weitere flüchtige Kom- ponenten werden als Kopfprodukte abgezogen und, bei Bedarf, einer weiteren Feinreinigung unterzogen.
Die eingesetzten Übergangsmetallmengen fallen im Destillationsrückstand an und werden gegebenenfalls nach Zusatz von frischer Übergangsmetall- Verbindung und Entnahme eines Teils der im Verlauf der Reaktion gebildeten Aldehydkondensationsprodukte in die Reaktionszone zurückgeführt.
Das erhaltene Gemisch isomerer Isononanale wird aufgereinigt, zweckmäßigerweise durch Destillation, und anschließend über die reduktive Aminierung in Isononylamine umgewandelt. Unter reduktiver Aminierung im Sinne der vorliegenden Erfindung wird nicht nur die Reaktion des Isononanals mit Ammoniak, einem primären oder sekundären Amin mit Wasserstoff in Gegenwart eines gängigen Aminierungskatalysators verstanden, bei dem primäre, sekundäre und tertiäre Isononylamine gebildet werden, sondern auch die entsprechende Reaktion des Isononanols, obwohl bei der
Alkoholaminierung oder Ammonolyse kein Wasserstoff verbraucht wird. Wird Isononanol als Ausgangsprodukt für die Aminsynthese eingesetzt, wird zunächst Isononanal in Gegenwart gängiger Hydrierkatalysatoren nach an sich bekannten Gasphasen- oder Flüssigphasenverfahren zum Isononanol hydriert. Als Hydrierkatalysatoren eignen sich beispielsweise Nickel- oder Kupferkatalysatoren, bevorzugt Nickelkatalysatoren. Die Hydrierungen erfolgen im Allgemeinen bei Wasserstoffdrücken von 6 bis 15 MPa und bei Temperaturen von 90 bis 150°C. In einer geeigneten Verfahrensführung wird in einer ersten Hydrierstufe am Kupferkatalysator in der Gasphase hydriert und nachfolgend in einer zweiten Hydrierstufe am Nickelkontakt in der Flüssigphase. Die reduktive Aminierung sowohl des Isononanals als auch des Isononanols wird in fachüblichen Reaktoren, vorzugsweise an fest angeordneten Amini- mierungskatalysatoren durchgeführt. Geeignet sind beispielsweise Rohrreaktoren, unter denen man auch ein Bündel von mehreren eng parallel ge- schalteten Rohren versteht. Die eingesetzten Rohrreaktoren können ebenfalls Füllkörper oder Einbauten enthalten, beispielsweise Raschigringe, Sättel, Pallringe, Filterplatten oder Kolonnenböden, sowie gegebenenfalls Rührvorrichtungen. Die Suspensionshydrierung ist weniger geeignet. Sowohl die kontinuierliche Reaktionsführung als auch die absatzweise Verfahrens- führung ist möglich.
Das Einsatzprodukt Isononanal oder Isononanol kann in Abhängigkeit vom gewünschten Aminierungsgrad im Über- oder Unterschuss an Ammoniak und Wasserstoff zur Reaktion gebracht werden. Im Allgemeinen werden je mol Einsatzprodukt wenigstens 0,2 mol, vorzugsweise von 0,3 bis 40 mol Ammoniak verwendet. Die Produktverteilung zwischen Isononylamin, Di- isononylamin und Tri-isononylamin kann durch den Ammoniakeinsatz gesteuert werden, wobei ein hoher Ammoniaküberschuss die Bildung des primären Isononylamins begünstigt. Neben Ammoniak können auch primäre oder sekundäre Amine wie Propylamin, n-Butylamin, 2-Ethylhexylamin, Di-n- propylamin, Di-n-butylamin oder Di-(2-ethylhexyl)amin eingesetzt werden, so dass gemischte Di-isononylamine und gemischte Tri-isononylamine erhalten werden. Die reduktive Aminierung kann lösungsmittelfrei ohne Zusatz eines Lösungs- oder Verdünnungsmittels oder unter Zusatz von Lösungsmitteln, wie beispielsweise Methanol oder Ethanol (DE 199 35 448 A1 ), durchgeführt werden.
Die der reduktiven Aminierung zugeführten Reaktionskomponenten können sich unter Reaktionsbedingungen in einem gasförmigen oder komprimierten Zustand befinden, wobei einzelne Reaktionskomponenten oder die Mischung selbst unterschiedliche Aggregatzustände einnehmen können. Im Allgemeinen wird die reduktive Aminierung bei Temperaturen im Bereich von 100 bis 200°C, vorzugsweise von 110 bis 150°C und bei Drücken im Bereich von 0,1 bis 40 MPa, vorzugsweise von 0,5 bis 30 MPa durchgeführt.
Für die reduktive Aminierung des Isononanals und des Isononanols verwen- det man übliche Aminierungskatalysatoren, die mindestens ein Metall der Nebengruppe 8 bis 11 des Periodensystems der Elemente enthalten, wie Nickel, Kobalt, Platin, Palladium, Eisen, Rhodium oder Kupfer. Bevorzugt sind Nickel- oder Kobaltkatalysatoren. Neben trägerfreien Katalysatoren, wie Raney-Nickel oder Raney-Kobalt können auch geträgerte Katalysatoren ein- gesetzt werden. Als Katalysatorträger eignen sich alle herkömmlichen Trägermaterialien, zum Beispiel Aluminiumoxid, Aluminiumoxidhydrate in ihren verschiedenen Erscheinungsformen, Siliziumdioxid, Polykieselsäuren (Kieselgele) einschließlich Kieselgur, Kieselxerogele, Magnesiumoxid, Zinkoxid, Zirkoniumoxid und Aktivkohle. Neben den Hauptkomponenten katalytisch aktives Metall und Trägermaterial können die Aminierungskatalysatoren noch Zusatzstoffe in untergeordneten Mengen enthalten, die zum Beispiel der Verbesserung ihrer Aktivität und/oder ihrer Standzeit und/oder ihrer Selektivität dienen. Derartige Zusatzstoffe sind bekannt, zu ihnen gehören zum Beispiel die Oxide des Calciums, Bariums, Zinks, Aluminiums, Zirkoniums und Chroms. Als bevorzugtes katalytisch aktives Metall hat sich Nickel erwiesen. Insbesondere sind Nickelkatalysatoren auf Kieselgur als Trägermaterial und mit Chrom als Zusatzstoff für die reduktive Aminierung geeignet.
Das dem Reaktor entnommene Reaktionsgemisch wird über einen Hoch- druckabscheider und nachfolgende Entspannungseinrichtungen auf Normaldruck entspannt und die erhaltenen rohen Isononylamine nach an sich bekannten Verfahren, beispielsweise durch Destillation, zu spezifikationsgerechter Ware aufgereinigt. Bei den nach dem erfindungsgemäßen Verfahren hergestellten Isononyl- aminen ausgehend von 2-Ethylhexanol handelt es sich, je nach Aminie- rungsbedingungen, um das primäre Isononylamin, Di-isononylamin oder Tri- isononylamin sowie um gemischte sekundäre oder tertiäre Amine, die mindestens einen Isononylrest auf Basis von 2-Ethylhexanol enthalten. Für den Isononylrest steht ein C9-Kohlenwasserstoffrest, der im Wesentlichen in a- Position unverzweigt oder einfachverzweigt ist.
Die erhaltenen Isononylamine eignen sich besonders zur Verwendung als Korrosionsschutzmittel in Schmiermitteln.
Ebenfalls können die erhaltenen Isononylamine als Hilfsmittel in Gummi- formulierungen sowie als Vulkanisationsbeschleuniger verwendet werden. Ebenfalls finden sie Verwendung als Additive in Schmiermitteln, beispielsweise in Form ihrer Dithiocarbamate oder entsprechender Salze, wie Molybdän-, Zink- oder Natriumdithiocarbamate, zur Verbesserung der Abriebsbeständigkeit mechanischer Apparaturen, die unter hohem Druck betrieben werden.
In den folgenden Beispielen wird die Herstellung von Isononylaminen ausgehend von 2-Ethylhexanol beschrieben.
Beispiele
I. Dehvdratisierunq von 2-Ethylhexanol Zur Dehydratisierung wurde ein Quarzrohr mit einer Länge von 1 ,3 Meter und einem Durchmesser von 0,03 Meter verwendet, bei dem sich die beheizte Zone über 1,1 Meter erstreckte. Das Quarzrohr wurde mit 250 ml des sauren Katalysators AI 3996 der Firma BASF SE in Form von 3x3 Millimeter großen Tabletten bestückt. Das Totvolumen wurde mit Glasringen aufgefüllt.
2-Ethylhexanol wurde in einem vorgeschalteten Verdampfer verdampft und mit Hilfe eines Stickstoffstromes als Trägergas bei Normaldruck über die Katalysatorschüttung bei einer Temperatur von 350°C und mit einer
Belastung von 0,5 Liter je Liter Katalysatorvolumen und Stunde gefahren. Das erhaltene Reaktionsgemisch wurde in einem nachgeschalteten Auffang- gefäß kondensiert und die wässrige Phase wurde abgetrennt. Die angefallene organische Phase wies folgende gaschromatographisch ermittelte Zusammensetzung auf (FI.-%, gemäß DIN 51 05):
Figure imgf000018_0001
II. Hvdroformylierung des gemäß Schritt I. erhaltenen Octens
Das nach Schritt I erhaltene rohe Octen wurde in Gegenwart von 5 ppm Rhodium, zugegeben in Form einer Lösung von Rhodium-2-ethylhexanoat 2-Ethylhexanol und bezogen auf Octeneinsatz, bei einer Temperatur von 140°C und bei einem Synthesegasdruck von 19 MPa über einen Zeitraum von drei Stunden h droformyliert. Die molare Zusammensetzung des Synthesegases betrug 1 Mol Wasserstoff zu 1 Mol Kohlenmonoxid. Das erhaltene rohe Hydroformylierungsprodukt wies folgende gaschromatographisch ermittelte Zusammensetzung (FI.-%, gemäß DIN 51405) auf:
Figure imgf000019_0001
Die Ergebnisse weiterer Hydroformylierungsversuche mit einem über die Dehydratisierung von 2-Ethylhexanol erhaltenen Octen sind in der nachfol- genden Tabelle 1 zusammengestellt. Vor Einsatz wurde das rohe Octen an einer Ciaisenbrücke zur Nachlaufabtrennung bei einer Kopftemperatur von 119-122°C und bei Normaldruck destilliert. Die Einsatzoctene sowie die erhaltenen Reaktionsprodukte wurden gaschromatographisch analysiert (Angabe in FI.-%, gemäß DIN 51405).
Tabelle 1 : Hydroformylierung von Octenen, erhalten durch die
2-Ethylhexanoldehydratisierung
Figure imgf000020_0001
Die unter Verwendung von Triphenylphosphin als Komplexligand durchgeführten Hydroformylierungsversuche mit dem über die Dehydratisierung von 2-Ethylhexanol erhaltenen Octen sind in der nachfolgenden Tabelle 2 zusammengestellt. Es kam undesti liierte Ware zum Einsatz. Die Einsatz- octene sowie die erhaltenen Reaktionsprodukte wurden gaschromato- graphisch analysiert (Angaben in FI.-%, gemäß DIN 51405). Hydroformylierung von Octenen, erhalten durch die 2-Ethyl- hexanoldehydratisierung, Zusatz von Triphenylphosphin
Figure imgf000021_0001
Aus dem nach Beispiel IIa erhaltenen Isononanal wurden zunächst Leicht- sieder und unumgesetztes Olefin als Kopfprodukt an einer 24 Bödenkolonne bei 200 hPa, einer Sumpftemperatur von 120°C und einem Rücklaufverhältnis von 2:1 abgetrennt. Nach Leichtsiederabtrennung wurde die Sumpftemperatur auf 140-150°C angezogen und das Isononanal über Kopf abgezogen (Siedepunkt bei 100 hPa: 110-114°C), während Hochsieder im
Destillationssumpf verblieben. Das erhaltene Isononanal wies folgende gaschromatographisch ermittelte Zusammensetzung auf und wurde für die nachfolgende Hydrierung eingesetzt. Tabelle 3: Gaschromatographische Analyse (FI.-%, gemäß DIN 51405) des Isononanals ausgehend von 2-Ethylhexanol
Figure imgf000022_0001
III. Hydrierung des nach Schritt II. erhaltenen Isononanals zu Isononanol
Das nach Schritt IIa erhaltene und aufgereinigte Isononanal wurde
zusammen mit dem kommerziell verfügbaren Nickelkatalysator Ni 55/5 von Johnson Matthey, der in einer Menge von 6 Gew.-%, bezogen auf den Reaktionsansatz, eingesetzt wurde, in einem Autoklaven vorgelegt und bei einem Wasserstoffdruck von 10 MPa und bei einer Temperatur von 100-130°C über zwei Stunden hydriert. Das nach Filtration des Katalysators erhaltene Rohprodukt wies folgende gaschromatographisch ermittelte Zusammensetzung auf (FI.-%, gemäß DIN 51405): Vorlauf 1 ,3
Zwischenlauf 5,0
Isononanol 87,7
n-Nonanal 0,6
Nachlauf 5,4
IV. Ammonolvse des nach Schritt III, erhaltenen Isononanols zu
Isononylamin
Das nach Schritt III. erhaltene Isononanol wurde zusammen mit dem kommerziell verfügbaren Nickelkatalysator Ni 52/35 von Johnson Matthey, der in einer Menge von 10 Gew.-%, bezogen auf den Reaktionsansatz ein- gesetzt wurde, in einem Autoklaven vorgelegt. Anschließend wurde ein Wasserstoffdruck von 1 ,5 MPa eingestellt und Ammoniak in einem Molverhältnis von 8 zu 1 , bezogen auf Isononanol, zudosiert.
Das Reaktionsgemisch wurde auf 250°C aufgeheizt und durch Wasserstoff- dosierung auf einen Druck von 29 MPa gebracht. Nach acht Stunden Reaktionszeit wurde das Reaktionsgemisch entspannt und von Katalysator abfiltriert.
Das erhaltene Rohprodukt wies folgende gaschromatographisch ermittelte Zusammensetzung auf (FI.-%, gemäß DIN 5 05): Vorlauf 7,6
Isononanol 13,3
Isononylamin 30,3
Zwischenlauf 8,5
Di-isononylamin* 35,1
Zwischenlauf 1 ,6
Tri-isononylamin 3,5
Nachlauf/Höhersieder 0,1
*einschließlich Schiffsche Base enthaltend den Isononylrest
V. Aminierung des nach Schritt II. erhaltenen Isononanals zu
Isononylamin
Das nach Schritt IIa erhaltene und aufgereinigte Isononanal wurde
zusammen mit dem kommerziell verfügbaren Nickelkatalysator Ni 52/35 von Johnson Matthey, der in einer Menge von 5 Gew.-%, bezogen auf den Reaktionsansatz, eingesetzt wurde, in einem Autoklaven vorgelegt und bei einem Wasserstoffdruck von 10,2 MPa und bei einer Temperatur von 120°C in Gegenwart von 10 mol Ammoniak pro mol Isononanal über einen Zeitraum von vier Stunden aminierend hydriert.
Nach Entspannung des Reaktionsansatzes filtrierte man vom Nickelkatalysator und gab das Reaktionsgemisch in einen Phasentrenner, in dem sich das gebildete Reaktionswasser von der organischen Phase separierte. Das organische Rohprodukt wies folgende gaschromatographisch ermittelte Zusammensetzung auf (FI.-%, gemäß DIN 51 05): Vorlauf 1 ,2
Isononanol 28,3
Isononylamin 59,8
Zwischenlauf 0,6
Di-isononylamin* 5,6
Zwischenlauf 0,4
Tri-isononylamin 2,5
Nachlauf/Höhersieder 1 ,6
einschließlich Schiffsche Base enthaltend den Isononylrest
VI. Herstellung von Di-isononylamin über die entsprechende Schiffsche Base durch Umsetzung des nach Schritt V. erhaltenen Isononylamins mit dem nach Schritt IIa erhaltenen und aufgereinigten Isononanal Zur Herstellung der Schiffschen Base wurde das gemäß Schritt V. erhaltene Isononylamin in einem Reaktionsgefäß vorgelegt und mit dem gemäß Schritt IIa erhaltenen und aufgereinigten Isononanal bis zu einem Molverhältnis von 1 mol Isononylamin zu 1 ,1 mol Isononanal tropfenweise versetzt. Nach einer Reaktionszeit von dreieinhalb Stunden bei Raumtemperatur gab man das Reaktionsgemisch in einen Phasentrenner, in dem sich das gebildete Reaktionswasser von der organischen Phase separierte. Die organische Phase enthaltend die Schiffsche Base wurde zusammen mit dem kommerziell verfügbaren Nickelkatalysator Ni 52/35 von Johnson Matthey, der in einer Menge von 5 Gew.-%, bezogen auf den Reaktionsansatz, eingesetzt wurde, in einem Autoklaven vorgelegt und bei einem Wasserstoffdruck von 0 MPa und bei einer Temperatur von 120°C über einen Zeitraum von sechs Stunden hydriert. Das nach Filtration des Katalysators erhaltene Rohprodukt wies fol- gende gaschromatographisch ermittelte Zusammensetzung auf (FI.-%, gemäß DIN 51405):
Figure imgf000026_0001
*einschließlich Schiffsche Base enthaltend den Isononylrest
VII. Herstellung von Tri-isononylamin durch Ammonolvse des nach
Schritt III erhaltenen Isononanols Das nach Schritt III. erhaltene Isononanol wurde zusammen mit dem konventionell verfügbaren Nickelkatalysator Ni 55/5 von Johnson Matthey, der in einer Menge von 5 Gew.-%, bezogen auf den Reaktionsansatz, eingesetzt wurde, in einem Rührbehälter vorgelegt. Anschließend wurde unter Normaldruck Wasserstoff in einer Menge von 5 Normliter pro Stunde durch die Re- aktionslösung geleitet und parallel dazu Ammoniak in einer Menge von 0,9 mol Ammoniak pro mol Isononanol über einen Zeitraum von drei Stunden zudosiert. Das entstehende Reaktionswasser wurde azeotrop ausgekreist. Nach drei Stunden beendete man die Reaktion und filtrierte den Katalysator ab. Das erhaltene Rohprodukt wies folgende gaschromatographisch ermittelte Zusammensetzung auf (FI.-%, gemäß DIN 51405): Vorlauf 1 ,5
Isononanol 6,8
Isononylamin 1 ,4
Di-isononylamin* 1 ,1
Zwischenlauf 0,1
Tri-isononylamin 89,0
Nachlauf/Höhersieder 0,1
*einschließlich Schiffsche Base enthaltend den Isononylrest

Claims

Patentansprüche
Verfahren zur Herstellung von Isononylaminen ausgehend von 2-Ethyl- hexanol, dadurch gekennzeichnet, dass man
(a) 2-Ethylhexanol in Gegenwart eines Katalysators zu Octen
dehydratisiert;
(b) das nach Schritt a) erhaltene Octen in Gegenwart einer Übergangsmetallverbindung der Gruppe VIII des Periodensystems der Elemente mit Kohlenmonoxid und Wasserstoff zu Isono- nanal umsetzt; und
(c) das nach Schritt b) erhaltene Isononanal in Isononylamine
überführt.
Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass man in Schritt a) als Katalysator Aluminiumoxid, Nickel niedergeschlagen auf Aluminiumoxid, oder Phosphorsäure niedergeschlagen auf Siliziumdioxid oder Aluminiumoxid verwendet.
Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass man in Schritt a) 2-Ethylhexanol in der Gasphase dehydratisiert.
Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man in Schritt b) als Übergangsmetallverbindung der Gruppe VIII des Periodensystems der Elemente eine Kobalt- oder Rhodiumverbindung verwendet.
Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Umsetzung gemäß Schritt b) in Abwesenheit von komplexbildenden Organoelementverbindungen durchgeführt wird.
6. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man das nach Schritt b) erhaltene Isononanal destilliert.
7. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man in Schritt c) das nach Schritt b) erhaltene Isononanal mit Ammoniak, einem primären oder sekundären Amin und Wasserstoff in Gegenwart eines Aminierungskatalysators zu Isononyl- aminen umsetzt.
8. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man in Schritt c) das nach Schritt b) erhaltene Isononanal mit Wasserstoff in Gegenwart eines Hydrierkatalysators zu Isononanol hydriert und anschließend mit Ammoniak, einem primären oder sekundären Amin und Wasserstoff in Gegenwart eines Aminierungskatalysators zu Isononylaminen umsetzt.
9. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man als Aminierungskatalysator einen Nickeloder Kobaltkatalysator verwendet.
10. Isononylamine, dadurch erhältlich, dass man
(a) 2-Ethylhexanol in Gegenwart eines Katalysators zu Octen
dehydratisiert;
(b) das nach Schritt a) erhaltene Octen in Gegenwart einer Übergangsmetallverbindung der Gruppe VIII des Periodensystems der Elemente mit Kohlenmonoxid und Wasserstoff zu Isononanal umsetzt, und
(c) das nach Schritt b) erhaltene Isononanal in Isononylamine
überführt.
11. Verwendung der Isononylamine gemäß den Ansprüchen 1 bis 9 als Korrosionsschutzmittel in Schmiermitteln.
12. Verwendung der Isononylamine gemäß den Ansprüchen 1 bis 9 als Hilfsmittel in Gummiformulierungen.
13. Verwendung der Isononylamine gemäß den Ansprüchen 1 bis 9 als Vulkanisationsbeschleuniger.
14. Verwendung der Isononylamine gemäß den Ansprüchen 1 bis 9 als Additiv in Schmiermitteln zur Verbesserung der Abriebsbeständigkeit unter erhöhtem Druck betriebener mechanischer Apparaturen 5. Verwendung gemäß Anspruch 14, dadurch gekennzeichnet, dass die Isononylamine gemäß den Ansprüchen 1 bis 9 in Form ihrer
Dithiocarbamate oder entsprechender Salze verwendet werden.
16. Verwendung gemäß Anspruch 15, dadurch gekennzeichnet, dass man die Isononylamine gemäß den Ansprüchen 1 bis 9 in Form ihrer Molybdän-, Zink- oder Natriumdithiocarbamate verwendet.
PCT/EP2013/001812 2012-07-13 2013-06-19 Isononylamine ausgehend von 2-ethylhexanol, verfahren zu ihrer herstellung sowie ihre verwendung WO2014008979A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380034507.2A CN104395264B (zh) 2012-07-13 2013-06-19 由2-乙基己醇制备的异壬胺、其制备方法及其用途
JP2015520838A JP6263530B2 (ja) 2012-07-13 2013-06-19 2−エチルヘキサノール由来のイソノニルアミン、それの製造方法並びにそれの使用
EP13731294.8A EP2872467B1 (de) 2012-07-13 2013-06-19 Isononylamine ausgehend von 2-ethylhexanol, verfahren zu ihrer herstellung
KR1020157000764A KR20150030238A (ko) 2012-07-13 2013-06-19 2-에틸헥산올로부터의 이소노닐아민, 이의 제조 방법 및 이의 용도
US14/413,444 US9714201B2 (en) 2012-07-13 2013-06-19 Isononylamines from 2-ethylhexanol, processes for their preparation, and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012014395A DE102012014395B3 (de) 2012-07-13 2012-07-13 Isononylamine ausgehend von 2-Ethylhexanol, Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE102012014395.8 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014008979A1 true WO2014008979A1 (de) 2014-01-16

Family

ID=48698990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/001812 WO2014008979A1 (de) 2012-07-13 2013-06-19 Isononylamine ausgehend von 2-ethylhexanol, verfahren zu ihrer herstellung sowie ihre verwendung

Country Status (8)

Country Link
US (1) US9714201B2 (de)
EP (1) EP2872467B1 (de)
JP (1) JP6263530B2 (de)
KR (1) KR20150030238A (de)
CN (1) CN104395264B (de)
DE (1) DE102012014395B3 (de)
TW (1) TWI464134B (de)
WO (1) WO2014008979A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012013968A1 (de) * 2012-07-13 2014-04-03 Oxea Gmbh Carbonsäureester der Isononansäure ausgehend von 2-Ethylhexanol, Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE102012014396B4 (de) * 2012-07-13 2018-01-11 Oxea Gmbh Verfahren zur Herstellung eines Vinylestergemisches aus einem Gemisch stellungsisomerer aliphatischer Isononansäuren ausgehend von 2-Ethylhexanol
DE102013020322B4 (de) 2013-12-05 2019-04-18 Oxea Gmbh Verfahren zur Gewinnung von 2-Methylbutanal aus den bei der Herstellung von Gemischen isomerer a,ß-ungesättigter Decenale anfallenden Nebenströmen
DE102013113719A1 (de) 2013-12-09 2015-06-11 Oxea Gmbh Verfahren zur Herstellung von Pentanderivaten und Derivaten α,β-ungesättigter Decenale
DE102013113724A1 (de) 2013-12-09 2015-06-11 Oxea Gmbh Verfahren zur Herstellung von Pentanderivaten und Derivaten alpha, beta-ungesättigter Decenale aus Propylen
CN110981692A (zh) * 2019-12-25 2020-04-10 中国科学院兰州化学物理研究所 一种联产异壬醇和碳八烷烃的方法及系统
CN112657510B (zh) * 2020-12-31 2022-10-25 华南理工大学 一种催化氧化异壬醇制异壬酸的催化剂及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1518118A1 (de) * 1964-10-22 1969-11-27 Ruhrchemie Ag Verfahren zur Hydrierung von Nitrilen
WO2009146988A2 (de) * 2008-06-04 2009-12-10 Evonik Oxeno Gmbh Verfahren zur herstellung von alkoholen aus hydroformylierungsgemischen
US20110230342A1 (en) * 2010-03-17 2011-09-22 Basf Se Composition Comprising a Pesticide and an Alkoxylate of Iso-nonylamine

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB313426A (en) 1928-03-08 1929-06-10 Ig Farbenindustrie Ag Improvements in carrying out organic dehydration reactions
US2468764A (en) 1941-05-26 1949-05-03 Laurent Pierre Alfred Method for dehydrating amyl alcohols
US2919973A (en) * 1956-10-18 1960-01-05 William D Stillwell Method of preparing catalytically active alumina
DE1257782B (de) * 1965-02-17 1968-01-04 Basf Ag Verfahren zur Herstellung von Aminen
US3527809A (en) 1967-08-03 1970-09-08 Union Carbide Corp Hydroformylation process
DE2048750C2 (de) * 1970-10-03 1983-12-22 Ruhrchemie Ag, 4200 Oberhausen Verfahren zur Herstellung von primären Aminen
US4148830A (en) 1975-03-07 1979-04-10 Union Carbide Corporation Hydroformylation of olefins
US4247486A (en) 1977-03-11 1981-01-27 Union Carbide Corporation Cyclic hydroformylation process
DE2737633C2 (de) 1977-08-20 1979-09-27 Ruhrchemie Ag, 4200 Oberhausen Verfahren zur Herstellung von Aldehyden
DE2804535C2 (de) * 1978-02-03 1984-04-26 Alfred Teves Gmbh, 6000 Frankfurt Hydraulische Flüssigkeiten
US4283562A (en) 1979-10-26 1981-08-11 Union Carbide Corporation Hydroformylation process using stable rhodium catalyst
DE3211352A1 (de) * 1982-03-27 1983-09-29 Hoechst Ag, 6230 Frankfurt Wasserhaltiges schmiermittel fuer saegeketten
DE3530839A1 (de) * 1985-08-29 1987-03-05 Ruhrchemie Ag Verfahren zur herstellung von 2-ethylhexanol
DE4428004A1 (de) * 1994-08-08 1996-02-15 Basf Ag Verfahren zur Herstellung von Aminen
AU1035601A (en) * 1999-11-05 2001-05-14 Castrol Limited A process for producing bismuth dithiocarbamates and dithiophosphorates
JP2002088015A (ja) * 2000-09-18 2002-03-27 Denki Kagaku Kogyo Kk 1級アミン塩化合物
BR0212835B1 (pt) 2001-09-26 2014-02-11 Processos para preparação de misturas de ésteres dialquílicos de ácido ftálico isômeros
US7112558B2 (en) * 2002-02-08 2006-09-26 Afton Chemical Intangibles Llc Lubricant composition containing phosphorous, molybdenum, and hydroxy-substituted dithiocarbamates
DE10211101A1 (de) * 2002-03-14 2003-09-25 Basf Ag Katalysatoren und Verfahren zur Herstellung von Aminen
DE10316375A1 (de) * 2003-04-10 2004-11-04 Celanese Chemicals Europe Gmbh Verfahren zur Herstellung von N-Methyl-dialkylaminen aus sekundären Dialkylaminen und Formaldehyd
JP5502349B2 (ja) * 2009-03-13 2014-05-28 出光興産株式会社 水系潤滑剤
CN102802410B (zh) * 2010-03-17 2015-07-22 巴斯夫欧洲公司 包含农药和支化壬基胺的烷氧基化物的组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1518118A1 (de) * 1964-10-22 1969-11-27 Ruhrchemie Ag Verfahren zur Hydrierung von Nitrilen
WO2009146988A2 (de) * 2008-06-04 2009-12-10 Evonik Oxeno Gmbh Verfahren zur herstellung von alkoholen aus hydroformylierungsgemischen
US20110230342A1 (en) * 2010-03-17 2011-09-22 Basf Se Composition Comprising a Pesticide and an Alkoxylate of Iso-nonylamine

Also Published As

Publication number Publication date
US9714201B2 (en) 2017-07-25
TWI464134B (zh) 2014-12-11
EP2872467A1 (de) 2015-05-20
JP2015523371A (ja) 2015-08-13
CN104395264A (zh) 2015-03-04
KR20150030238A (ko) 2015-03-19
CN104395264B (zh) 2016-05-25
US20150152023A1 (en) 2015-06-04
JP6263530B2 (ja) 2018-01-17
TW201404767A (zh) 2014-02-01
DE102012014395B3 (de) 2013-08-22
EP2872467B1 (de) 2018-01-03

Similar Documents

Publication Publication Date Title
EP2872467B1 (de) Isononylamine ausgehend von 2-ethylhexanol, verfahren zu ihrer herstellung
EP1219584B1 (de) Verfahren zur Hydrierung von Hydroformylierungsgemischen
DE102008007081B4 (de) Verfahren zur Herstellung von n-Buten-Oligomeren und 1-Buten aus technischen Mischungen I von C4-Kohlenwasserstoffen
EP2567949B1 (de) Verfahren zur Abtrennung von 1-Buten aus C4-haltigen Kohlenwasserstoffströmen durch Hydroformylierung
EP2041049A1 (de) Verfahren zur herstellung von 3-methylbut-1-en
EP2872466A1 (de) Verfahren zur herstellung von isononansäuren aus 2-ethylhexanol
DE102013009323B4 (de) Verfahren zur Herstellung von Gemischen enthaltend tertiäre Isononansäuren ausgehend von 2-Ethylhexanol
EP1257518B1 (de) Verfahren zur herstellung von c 9-alkoholen und verfahren zur integrierten herstellung von c 9-alkoholen und c 10-alkoholen
EP2614044B1 (de) Verfahren zur herstellung primärer aliphatischer amine aus aldehyden
DE102008007080A1 (de) Verfahren zur Herstellung von C9-Alkohol aus C8-Olefinen
EP1641731B1 (de) Verfahren zur herstellung von 1-octen aus crack-c4
EP3693356B1 (de) Flexible herstellung von mtbe oder etbe und isononanol
EP0435072B1 (de) Verfahren zur Herstellung von N,N-Dimethylaminen
DE102008002201A1 (de) Verfahren zur Herstellung von Alkoholen aus Hydroformylierungsgemischen
EP3693355A1 (de) Flexible herstellung von mtbe oder etbe und isononanol
EP1813595A1 (de) "3(4),7(8)-Bis (aminomethyl)-bicyclo[4.3.0] nonan und ein Verfahren zu seiner Herstellung
EP1498408A1 (de) Verfahren zur Herstellung von n-Butenylaminen
EP2885269B1 (de) Kontinuierliches verfahren zur herstellung primärer aliphatischer amine aus aldehyden
DE2137710A1 (de) Verfahren zur hydrierenden nmethylierung von aminen
DE1078107B (de) Verfahren zur Reinigung von Aldehyden aus der Oxo-Synthese
DE10326237A1 (de) Verfahren zur Gewinnung von Alkoholen
DE102006004316A1 (de) Gemisch enthaltend 7(8)-Formyl-bicyclo[4.3.0]non-3-en und 3(4)-Formyl-bicyclo[4.3.0]non-7-en sowie ein Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13731294

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013731294

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14413444

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015520838

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157000764

Country of ref document: KR

Kind code of ref document: A