WO2014006942A1 - 露光装置 - Google Patents

露光装置 Download PDF

Info

Publication number
WO2014006942A1
WO2014006942A1 PCT/JP2013/059575 JP2013059575W WO2014006942A1 WO 2014006942 A1 WO2014006942 A1 WO 2014006942A1 JP 2013059575 W JP2013059575 W JP 2013059575W WO 2014006942 A1 WO2014006942 A1 WO 2014006942A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
exposed
light source
light irradiation
unit
Prior art date
Application number
PCT/JP2013/059575
Other languages
English (en)
French (fr)
Inventor
和重 橋本
敏成 新井
吉博 冨塚
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to KR1020147036737A priority Critical patent/KR102080211B1/ko
Priority to CN201380034890.1A priority patent/CN104395831B/zh
Publication of WO2014006942A1 publication Critical patent/WO2014006942A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/201Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by an oblique exposure; characterised by the use of plural sources; characterised by the rotation of the optical device; characterised by a relative movement of the optical device, the light source, the sensitive system or the mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • G03F7/2006Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light using coherent light; using polarised light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like

Definitions

  • the present invention relates to an exposure apparatus that exposes an object to be exposed with polarized light.
  • Polarizing exposure equipment that performs exposure using linearly polarized light and elliptically polarized light (including circularly polarized light) for production of alignment films for liquid crystal panels, optical films such as retardation films, and antireflection film films used for touch panel screens. are known.
  • Patent Document 1 a polarized light irradiation device that polarizes light emitted from a rod-shaped light source longer than the width of a substrate (workpiece) to be irradiated by a polarizing element and irradiates the irradiation target with the polarized light.
  • a rod-shaped light source that is longer than the width of the substrate to be irradiated for example, a long lamp such as a long arc mercury lamp, may be bent by the center of the lamp tube due to its own weight, resulting in uneven illumination.
  • a general exposure apparatus using a long lamp requires a structure for supporting the central portion of the lamp tube.
  • a general exposure apparatus uses a relatively long lamp in advance in order to secure an irradiation area necessary for exposure even when used for a long time. Further, when replacing a long lamp housed in the lamp house, a relatively wide replacement space is required. Further, when a long lamp is used as the light source of the exposure apparatus, the long lamp is expensive, so that high cost is required for lamp replacement.
  • the present invention is an example of a problem to deal with such a problem. That is, the present invention provides an exposure apparatus that can perform exposure with a simple structure and low illuminance unevenness using a plurality of short lamps as a light source, and provide an exposure apparatus that allows easy lamp replacement. It is an object of the invention.
  • the exposure apparatus according to the present invention has at least the following configuration.
  • An exposure apparatus that irradiates a body to be exposed with polarized light, a transport section that transports the body to be exposed in a transport direction, a rod-shaped light source having a length in the longitudinal direction shorter than that of the body to be exposed, and the light source
  • a plurality of light irradiation units each having a polarizer disposed between the object to be exposed and a light irradiation unit arranged in a horizontal plane at a predetermined interval, and the light irradiation unit includes the light source
  • the polarizer is arranged in parallel to the exposed surface of the object to be exposed, and the direction of the polarization axis of each polarizer is set to a prescribed direction with respect to the transport direction, and each of the light irradiation units
  • the light source is disposed such that the longitudinal direction of the light source is parallel to the transport direction, or is disposed such that the longitudinal direction of the light source is oblique to the transport direction.
  • a plurality of short lamps can be used as the light source of the exposure apparatus, and exposure with low illuminance unevenness can be performed with a simple structure. Further, according to the present invention, it is easy to replace a short lamp as a light source.
  • FIG. 1 It is a figure which shows an example of the light irradiation unit of the exposure apparatus which concerns on embodiment of this invention, (a) is a perspective view of a rod-shaped light source and a polarizer, (b) is a side view of a rod-shaped light source and a polarizer. . It is a figure which shows an example of the light irradiation part of the exposure apparatus which concerns on embodiment of this invention. It is a top view which shows an example of the polarizer of the exposure apparatus which concerns on embodiment of this invention. It is a figure which shows an example of a structure of the exposure apparatus which concerns on embodiment of this invention.
  • FIG. 1 It is a figure which shows an example of the illumination intensity distribution at the time of exposing while exposing a to-be-exposed body to a conveyance direction, and rocking
  • FIG. 1 is a view showing an example of an exposure apparatus 100 according to an embodiment of the present invention.
  • FIG. 1 (a) is a plan view of the exposure apparatus 100
  • FIG. 1 (b) is a side view of the exposure apparatus 100.
  • 2A and 2B are diagrams showing an example of the light irradiation unit 31 of the light irradiation unit 3 of the exposure apparatus 100.
  • FIG. 2A is a plan view of the light irradiation unit 31, and
  • FIG. FIG. FIG. 3 is a view showing an example of the light irradiation unit 31 of the exposure apparatus 100 according to the embodiment of the present invention.
  • FIG. 1 is a view showing an example of an exposure apparatus 100 according to an embodiment of the present invention.
  • FIG. 3A is a perspective view of the rod-shaped light source 32 and the polarizer 34
  • FIG. b) is a side view of the rod-shaped light source 32 and the polarizer 34.
  • the filter 33 is not shown.
  • FIG. 4 is a view showing an example of the light irradiation unit 3 of the exposure apparatus 100.
  • FIG. 5 is a plan view showing an example of the polarizer 34 of the exposure apparatus 100.
  • FIG. 6 is a view showing an example of the configuration of the exposure apparatus 100 according to the embodiment of the present invention.
  • an exposure apparatus 100 that exposes a substrate will be described as an example.
  • the present invention is not limited to this embodiment, and can be applied to any exposure apparatus.
  • the exposure apparatus 100 uses a plurality of short lights as the light source 32 for exposure.
  • the exposure apparatus 100 includes a transport unit 2, a light irradiation unit 3, a control unit 51, and the like.
  • the transport unit 2 transports, for example, a glass substrate 1 or a film in the transport direction.
  • An object to be exposed 11 such as an alignment film is formed on the substrate 1 and the film.
  • the substrate 1 is formed in a rectangular shape having a length of about 1800 mm and a width of about 1500 mm.
  • the transport unit 2 may be an XY movable stage or the like, or may be a so-called airflow transport device that transports the substrate 1 while the substrate 1 is levitated by air.
  • the transport direction is shown as the Y-axis direction
  • the direction orthogonal to the Y-axis direction in the horizontal plane is shown as the X-axis direction
  • the direction perpendicular to the X-axis and Y-axis is shown as the Z-axis direction.
  • the light irradiation unit 3 includes a plurality of light irradiation units 31 including a short rod-shaped light source 32 and a polarizer 34, and the light irradiation units 31 are arranged in a horizontal plane at regular intervals.
  • the light source 32 is formed in a rod shape whose length in the longitudinal direction is shorter than that of the object to be exposed 11 formed on the substrate 1.
  • the light source 32 is defined to have a length in the longitudinal direction of about 100 mm.
  • a mercury lamp, LED, LD, or the like can be employed as the light source 32.
  • the light source 32 is arranged in parallel to the surface to be exposed of the object to be exposed 11 and is arranged so that the longitudinal direction of the light source 32 is parallel to the transport direction (Y axis).
  • the light source 32 is arrange
  • a reflector (light reflecting portion 36) that emits light emitted from the rod-like light source 32 downward is provided in the lamp house 35 near the upper portion of the light source 32.
  • the polarizer 34 is disposed between the light source 32 and the exposed object 11.
  • the polarizer 34 is arranged in parallel to the surface to be exposed of the body 11 to be exposed.
  • the polarizer 34 emits linearly polarized light having a specified polarization axis.
  • the polarization axis of the polarizer 34 is set parallel to the Y axis.
  • the polarizer 34 can be composed of a wire grid, a polarization beam splitter (PBS), or the like.
  • PBS polarization beam splitter
  • a wire grid is adopted as the polarizer 34, and the direction of the grid is configured to be parallel to the X axis.
  • the polarizer 34 is defined in a rectangular shape having a side length of about 100 mm.
  • an optical filter 33 is disposed between the light source 32 and the polarizer.
  • the optical filter 33 transmits only light having a predetermined wavelength. Specifically, the optical filter 33 cuts light having a wavelength longer than the light having a predetermined wavelength emitted from the light source 32 to prevent heating, and damages light having a wavelength shorter than the predetermined wavelength to the object 11 to be exposed. Cut to prevent.
  • the angle ⁇ b of light incident on the polarizer 34 from the light source 32 is 0 (when light enters the polarizer 34 perpendicularly). °), about 45 °, or within a range of about 45 ° ⁇ 10 °.
  • the incident angle ⁇ b to the polarizer 34 when the incident angle ⁇ b to the polarizer 34 is larger than approximately 45 °, the intensity of light emitted from the polarizer 34 is reduced, and the angle of the polarization axis of polarized light emitted from the polarizer 34 is the reference (incident angle).
  • the amount of deviation (rotation amount) is larger than the angle of the polarization axis when 0 is 0 °.
  • the incident angle to the polarizer 34 is larger than approximately 45 °, the variation in the amount of deviation of the polarization axis of the polarized light on the exposed surface of the object to be exposed 11 increases.
  • the length of the light source 32 in the longitudinal direction is substantially the same as the length of the polarizer 34, and between the light source 32 and the polarizer 34.
  • the distance Lz is set to be substantially the same as the length 32L in the longitudinal direction of the light source 32, or to be within the range of the predetermined width Lzc with reference to the length.
  • the distance Lz between the light source 32 and the polarizer 34 is preferably within the distance Lza toward the light source or within the distance Lzb toward the exposed object 11.
  • the distances Lza and Lzb are about 1 ⁇ 2 of the distance Lzc. The longer the distance Lz between the light source 32 and the polarizer 34, the larger the component of the parallel light in the light incident on the polarizer 34, but the intensity of the light to the polarizer 34 decreases and the apparatus becomes larger. .
  • light having an incident angle ⁇ b from the rod-shaped light source 32 to the polarizer 34 larger than approximately 45 ° is not incident on the polarizer 34, and is approximately parallel to the polarizer 34 from the rod-shaped light source 32.
  • the light emitted from the rod-shaped light source 32 has an emission angle ⁇ a of 0 ° ⁇ 45 °.
  • Light having an incident angle ⁇ b to the polarizer 34 larger than approximately 45 ° is not incident on the polarizer 34, and substantially parallel light is incident on the polarizer 34 from the rod-shaped light source 32. That is, the intensity of light emitted from the polarizer 34 is high, and variations in the polarization axis of the polarized light on the exposed surface from the reference can be reduced.
  • the light irradiation unit 3 includes a plurality of light irradiation units 31 arranged at a predetermined interval 31 r in a direction (X-axis direction) orthogonal to the transport direction (Y-axis direction). Are arranged in multiple stages along the transport direction (Y-axis direction).
  • the several light irradiation unit 31 is arrange
  • each light source 32 is arranged parallel to the transport direction, and the light source 32 of the light irradiation unit 31 of each stage is disposed in the transport direction. It is installed so as not to overlap each other.
  • each stage DA can be obtained by performing exposure while moving the object 11 in the transport direction. Irradiance unevenness can be reduced by superimposing irradiation intensities by the light irradiation units 31 of DB and DC.
  • each light source 32 of each light irradiation unit 31 is a lamp in which a pair of electrodes are arranged opposite to each other in the vicinity of both end portions 32a and 32b in an elongated discharge vessel.
  • This rod-shaped light source 32 (lamp) has a high luminance at the central portion 32c and a low luminance at both end portions 32a and 32b.
  • the longitudinal direction of each light source 32 is arranged in parallel with the transport direction, and the exposed object 11 on the substrate 1 is transported along the transport direction (Y-axis direction), so that each of the rod-shaped light sources 32 (lamps). Irradiance unevenness to the exposed object 11 due to is reduced.
  • FIG. 7 is a view showing an example of replacement of a short rod-shaped light source of the exposure apparatus 100 according to the embodiment of the present invention.
  • FIG. 8 is a view showing replacement of a long rod-shaped light source of the exposure apparatus 100 according to the comparative example.
  • the transport unit 2 of the exposure apparatus 100 shown in FIG. 6 includes a fixed stage 21 and a movable stage 22 as a moving unit that is movable on the fixed stage 21 in the horizontal direction.
  • the object to be exposed 11 is placed on the movable stage 22.
  • the movable stage 22 is formed with a detection unit 53 that detects the intensity of light emitted from each light irradiation unit 31 of the light irradiation unit 3.
  • light detection elements 53a such as photodiodes are arranged in the X-axis direction at regular intervals in the vicinity of the downstream end of the movable stage 22, and the like.
  • the movable stage 22 includes a Y-axis direction drive unit 56a that drives the movable stage 22 in the transport direction (Y-axis direction), and an X that drives the movable stage 22 in a direction orthogonal to the transport direction (X-axis direction).
  • An axial drive part (swinging means) 56b is provided.
  • FIG. 9 is a view showing an example of the electrical configuration of the control device of the exposure apparatus 100 according to the embodiment of the present invention.
  • the control device of the exposure apparatus 100 includes a control unit 51, a storage unit 52, a detection unit 53, an input unit 54, a display unit 55, a stage drive unit 56, and the like. .
  • the control unit 51 comprehensively controls each component by executing a control program, and realizes the function according to the present invention in the exposure apparatus 100. Specifically, the control unit 51 performs control of the light irradiation unit 3, control of the transport unit 2 by the stage driving unit 56, and the like.
  • the storage unit 52 includes a storage device such as a RAM or a ROM, and stores a control program, various data, and the like.
  • the detection unit 53 is provided on the movable stage 22 or the like, detects the intensity of light emitted from each light irradiation unit 31 of the light irradiation unit 3, and outputs a detection signal to the control unit 51.
  • the input unit 54 is an input operation device such as a keyboard or a touch panel, and outputs a signal corresponding to a user operation to the control unit 51.
  • the display unit 55 displays various information related to the exposure apparatus 100 under the control of the control unit 51.
  • the stage drive unit 56 has a Y-axis direction drive unit 56a that drives the movable stage 22 in the transport direction (Y-axis direction) and an X-axis direction that drives the movable stage 22 in a direction (X-axis direction) orthogonal to the transport direction. And a drive unit (swinging means) 56b.
  • the control unit 51 is a movable stage as a moving unit so as to reduce illuminance unevenness of light irradiated from the plurality of light irradiation units 31 to the object to be exposed 11.
  • the Y-axis direction driving unit 56a that drives the motor 22 and the X-axis direction driving unit (swinging means) 56b control the movement of the object 11 to be exposed to the light irradiation unit 3. Further, the control unit 51 appropriately controls the width and speed of the swing along the X-axis direction by the X-axis direction drive unit (swing means) 56b based on the light intensity detected by the detection unit 53. .
  • control unit 51 swings along the X-axis direction by the X-axis direction drive unit (swinging means) 56b. Controls such as increasing the width of the screen and increasing the speed.
  • FIG. 10 is a diagram illustrating an example of luminance unevenness of each light irradiation unit 31 of the light irradiation unit 3.
  • FIG. 11 is a diagram illustrating an example of an illuminance distribution when the object to be exposed 11 is transported in the transport direction and exposed while being swung in a direction orthogonal to the transport direction.
  • FIG. 12 is a diagram illustrating an example of the illuminance distribution when the object to be exposed is exposed while being conveyed in the conveyance direction. 11 and 12, the horizontal axis indicates the distance in the X-axis direction, and the vertical axis indicates the illuminance.
  • FIG. 11 is a diagram illustrating an example of luminance unevenness of each light irradiation unit 31 of the light irradiation unit 3.
  • FIG. 11 is a diagram illustrating an example of an illuminance distribution when the object to be exposed 11 is transported in the transport direction and exposed while being swung in a direction orthogonal to the transport direction.
  • FIG. 11 shows a case where the transport speed in the transport direction (Y-axis direction) is the same as the speed (reciprocating speed) for swinging in the direction orthogonal to the transport direction (X-axis direction).
  • the width of the swing in the direction orthogonal to the transport direction (X-axis direction) is defined to be the same as the interval between each light irradiation unit 31 adjacent in the X-axis direction.
  • the inventor of the present application for example, as shown in FIG. 10, among the plurality of light irradiation units 31, the light intensity of some of the light sources 32 is + 10% and ⁇ 10% compared to the other light sources 32. Irradiation light was measured for the exposure apparatus 100 having the light irradiation unit 3.
  • the illuminance of the light irradiation unit 31 at each stage has illuminance unevenness in the X-axis direction.
  • unevenness in illuminance from the light irradiation unit 3 to the object to be exposed 11 is reduced.
  • each stage By superimposing the illuminance from the light irradiation unit 31, the illuminance unevenness from the light irradiation unit 3 to the object to be exposed 11 is further reduced. This is because, even when the intensity of light emitted from each light irradiation unit 31 varies, the exposure apparatus 100 according to the present invention greatly reduces the illuminance unevenness from the light irradiation unit 3 to the object to be exposed 11. Indicates.
  • FIG. 13 is a plan view showing an example of an exposure apparatus 100 according to another embodiment of the present invention.
  • FIG. 14 is a plan view showing an example of the polarizer of the exposure apparatus 100 shown in FIG.
  • FIG. 15 is a view showing an example of the arrangement of a plurality of rod-shaped light sources 32 of the exposure apparatus 100.
  • FIG. 15A shows an example of a case where there is a large overlap in the transport direction of the bar-shaped light sources of each stage arranged in multiple stages.
  • FIG. 15B is a diagram showing an example in which the overlap in the transport direction of the bar-shaped light sources at each stage arranged in multiple stages is small. The description of the same configuration as that of the embodiment shown in FIGS. 1 to 6 is omitted.
  • each light source 32 of the light irradiation unit 31 is arranged so that the longitudinal direction of the light source 32 is parallel to the transport direction (Y-axis direction), but the exposure apparatus shown in FIG. 100 may be arranged such that the longitudinal direction of each light source 32 of the light irradiation unit 31 is oblique with respect to the transport direction (Y-axis direction).
  • the polarization direction of the polarizer 34 is set to be a prescribed direction such as the Y-axis direction as shown in FIG.
  • the light source 32 of the light irradiation unit 31 of each stage is partially along the transport direction (Y-axis direction) with respect to the light source of the light irradiation unit 31 closest to the adjacent stage.
  • the transport direction Y-axis direction
  • the light source 32 of the light irradiation unit 31 of each stage is partially along the transport direction (Y-axis direction) with respect to the light source of the light irradiation unit 31 closest to the adjacent stage.
  • the degree of this overlap is set as appropriate so as to reduce illuminance unevenness. Also good.
  • the rod-shaped light source 32 (lamp) has high luminance at the central portion 32c and low luminance at both end portions 32a and 32b. For this reason, for example, as shown in FIG. 15A, on the center line along the transport direction (Y axis) passing through the central portion 32c of the rod-shaped light source 32 of the step DB on the downstream side in the transport direction, the upstream side in the transport direction
  • the end 32a of the rod-shaped light source 32 of the stage DA is positioned on the line along the transport direction (Y-axis) passing through the end 32b of the rod-shaped light source 32 of the stage DB on the downstream side in the transport direction, upstream in the transport direction.
  • the central part 32c of the rod-shaped light source 32 of the stage DA may be disposed.
  • the rod-shaped light source 32 of the stage DB on the downstream side in the transport direction
  • the illuminance unevenness of each of the rod-shaped light sources 32 of the stage DA on the upstream side in the transport direction is superposed, and the illuminance unevenness is reduced as a whole.
  • the light source 32 of the stage DA on the upstream side in the transport direction is moved in the X-axis direction (right direction in FIG. 15) with respect to the rod-shaped light source 32 of the stage DB on the downstream side in the transport direction.
  • position to. Specifically, the end 32a of the rod-shaped light source 32 of the stage DA on the upstream side in the transport direction is on a line along the transport direction (Y axis) passing through the end 32b of the rod-shaped light source 32 of the stage DB on the downstream side in the transport direction. You may arrange
  • a line along the transport direction (Y axis) passing through the central portion 32c of the rod-shaped light source 32 of the step DB on the downstream side in the transport direction, and a transport direction (Y axis) passing through the end portion 32b of the rod-shaped light source 32 of the step DB. ) May be arranged so that the end portion 32a of the rod-shaped light source 32 of the stage DA on the upstream side in the transport direction is located within the range between the line along the line).
  • the exposure apparatus 100 arranged so that the longitudinal direction of the light source 32 is oblique with respect to the transport direction transports the exposure target 11 only in the transport direction.
  • exposure may be performed while the object to be exposed 11 is swung in a direction intersecting the transport direction by the swinging unit 56b while the object to be exposed 11 is transported in the transport direction.
  • the exposure apparatus 100 includes the transport unit 2 that transports the object to be exposed 11 in the transport direction, and the object to be exposed 11 provided on a plate-like substrate or film.
  • a plurality of light irradiation units 31 each having a rod-shaped light source 32 having a shorter length in the longitudinal direction and a polarizer disposed between the light source 32 and the object to be exposed are arranged at regular intervals in a horizontal plane.
  • the light irradiation unit 31 includes a light source 32 and a polarizer 34 arranged in parallel to the surface to be exposed of the object to be exposed 11 and the polarization axis of each polarizer 34.
  • the direction is set to a specified direction with respect to the transport direction.
  • Each light source of the light irradiation unit 31 is arranged so that the longitudinal direction of the light source 32 is parallel to the transport direction, or the longitudinal direction of the light source 32 is oblique to the transport direction. Has been placed.
  • an exposure apparatus 100 that uses a plurality of short lamps as the light source 32 and can perform exposure with a simple structure and low illuminance unevenness. Further, it is possible to provide the exposure apparatus 100 that allows easy lamp replacement.
  • the exposure apparatus 100 includes a swinging unit 56b that swings the exposure target 11 transported by the transport unit 2 or the light irradiation unit 3 in a direction intersecting the transport direction.
  • the swinging means 56b moves the object 11 to be exposed in the transport direction with respect to the light irradiation unit 3 and swings with a specified width in a direction perpendicular to the transport direction.
  • the form to which the to-be-exposed body 11 draws a triangular wave, a sine wave, a sawtooth wave, etc. in the horizontal surface with respect to the light irradiation part 3 may be sufficient. That is, since the exposure apparatus 100 includes the swinging means 56b, even if each light source 32 of the light irradiation unit 31 has uneven luminance, exposure with low uneven irradiation can be performed.
  • the transport unit 2 includes the movable stage 22 as a moving unit that makes the object to be exposed 11 movable in the horizontal direction with respect to the light irradiation unit 3, and each of the light irradiation unit 3. Based on the intensity of light detected by the detection unit 53 and the intensity of light detected by the detection unit 53, the illuminance unevenness of the light emitted from the plurality of light irradiation units to the object to be exposed is detected. And a control unit 51 that controls the movement of the object to be exposed 11 with respect to the light irradiation unit 3 by the movable stage 22 that is a moving unit.
  • control unit 51 constantly detects the intensity of light emitted from each light source 32 by the detection unit 53, and sequentially controls the movement of the exposure target 11 placed on the movable stage 22, thereby exposing the exposure target. 11 can reduce unevenness in the illuminance of the light applied to the light 11.
  • control unit 51 stores the light intensity detected by the detection unit 53 in the storage unit 52, and stores the light intensity history read from the storage unit 52. Based on this, the movement of the light irradiation unit 3 may be controlled so as to reduce the illuminance unevenness of the light irradiated on the object to be exposed 11.
  • a plurality of light irradiation units in which the light irradiation unit 3 is arranged at a specified interval in a direction orthogonal to the conveyance direction are arranged in multiple stages along the conveyance direction. Yes. For this reason, it is possible to reduce uneven brightness on the object to be exposed 11 as compared with an exposure apparatus in which only one stage of light irradiation unit is provided in a direction orthogonal to the transport direction. Further, in the exposure apparatus 100, a plurality of light irradiation units in which the light irradiation units 3 are arranged at regular intervals in a direction orthogonal to the conveyance direction are arranged in multiple stages along the conveyance direction.
  • the illumination intensity to the to-be-exposed body 11 Unevenness can be reduced.
  • each light source 32 of the plurality of light irradiation units 31 is arranged in parallel to the transport direction, and the light source 32 of each stage of the light irradiation unit 31 is in the transport direction. Installed so as not to overlap each other. As described above, even when there is uneven illuminance due to irradiation of the exposed object 11 by the plurality of light irradiation units 31 at each stage, by performing exposure while moving the exposed object 11 in the transport direction, Irradiance unevenness can be reduced by superimposing the irradiation intensity by the light irradiation unit 31.
  • the light irradiation unit 3 includes a plurality of light irradiation units 31 arranged at regular intervals in a direction orthogonal to the conveyance direction, and arranged in multiple stages along the conveyance direction.
  • the longitudinal direction of each light source 32 of the irradiation unit 31 is arranged obliquely with respect to the transport direction.
  • the light source 32 of the light irradiation unit 31 of each stage is installed so that a part overlaps with the light source of the light irradiation unit nearest to the adjacent stage along the conveyance direction.
  • the angle of light incident on the polarizer 34 from the light source 32 (0 ° when light enters the polarizer 34 perpendicularly) is about 45 °, or 45 It is preferably within the range of about ⁇ 10 °.
  • the length of the light source 32 in the longitudinal direction is substantially the same as the length of the polarizer 34, and the distance between the light source 32 and the polarizer 34 is the same as the length of the light source 32. It is preferable that the length is substantially the same as the length, or is set to be within a predetermined width range than the length.
  • the exposure apparatus 100 irradiates the object to be exposed 11 on the substrate 1 with polarized light, but is not limited to this form.
  • the exposure apparatus of the present invention may be applied to a roll-to-roll film production line.
  • 1 substrate (film, etc.), 2: transport unit, 3: light irradiation unit, 11: exposure object (alignment film, etc.), 21: fixed stage, 22: movable stage, 31: light irradiation unit, 32: light source ( Lamp), 33: filter (optical filter), 34: polarizer, 35: lamp house, 36: reflector (light reflection unit), 51: control unit, 52: storage unit, 53: detection unit, 54: input unit, 55: Display unit, 56: Stage drive unit, 56a: Y-axis direction drive unit, 56b: X-axis direction drive unit (swinging means), 100: Exposure apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Polarising Elements (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 光源として複数の短寸のランプを用い、簡単な構造で、照度ムラの低い露光を行うことができる露光装置を提供する。ランプ交換が容易な露光装置を提供する。 露光装置100は、被露光体11を搬送方向に搬送する搬送部2と、被露光体11よりも、長手方向の長さが短い棒状の光源32、及び、光源32と被露光体11との間に配置される偏光子34を備えた複数の光照射ユニット31を、水平面内で規定間隔に並べて配置した光照射部3とを有し、光照射ユニット31は、光源32および偏光子34が被露光体11に対して平行に配置され、且つ、各偏光子34の偏光軸の方向が搬送方向に対して規定方向に設定され、各光源32は、光源32の長手方向が搬送方向に対して平行、または、斜め方向となるように配置されている。露光装置100は、被露光体11または光照射部3を搬送方向に対して交差する方向に揺動させる揺動手段56bを有する。

Description

露光装置
 本発明は、偏光光により被露光体を露光する露光装置に関するものである。
 液晶パネル用配向膜、位相差フィルムなどの光学フィルム、タッチパネルの画面に用いられる反射防止膜フィルムなどの生産に、直線偏光や楕円偏光(円偏光を含む)を使った露光を行う偏光露光装置が知られている。
 また、照射対象の基板(ワーク)などの幅よりも長い棒状の光源から出射した光を偏光素子により偏光し、その偏光光を照射対象に照射する偏光光照射装置が知られている(例えば、特許文献1参照)。
特開2006-133498号公報
 しかしながら、照射対象の基板の幅よりも長い棒状の光源、例えば、ロングアーク水銀ランプなどの長寸のランプは、自重でランプ管の中央部がたわみ、照度ムラが生じる場合がある。このため、長寸のランプを用いた一般的な露光装置では、そのランプ管の中央部を支持する構造を要する。
 また、ランプを長時間使用すると、ガラス管内の両端部付近に設けられた電極近傍が黒ずみ、有効照射部分が小さくなる場合がある。このため、一般的な露光装置は、長時間使用時であっても、露光に必要な照射領域を確保するために、予め比較的長いランプを用いていた。
 また、ランプハウス内に収容された長寸のランプを交換する場合、比較的広い交換用スペースを要する。
 また、露光装置の光源として長寸のランプを用いた場合、長寸のランプが高価であるので、ランプ交換に高い費用を要する。
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、光源として複数の短寸のランプを用い、簡単な構造で、照度ムラの低い露光を行うことができる露光装置を提供すること、ランプ交換が容易な露光装置を提供すること、等が本発明の目的である。
 このような目的を達成するために、本発明による露光装置は、以下の構成を少なくとも具備するものである。
 偏光光を被露光体に照射する露光装置であって、被露光体を搬送方向に搬送する搬送部と、前記被露光体よりも、長手方向の長さが短い棒状の光源、および、前記光源と前記被露光体との間に配置される偏光子を備えた複数の光照射ユニットを、水平面内で規定間隔に並べて配置した光照射部と、を有し、前記光照射ユニットは、前記光源および前記偏光子が前記被露光体の被露光面に対して平行に配置され、且つ、各偏光子の偏光軸の方向が前記搬送方向に対して規定方向に設定され、前記光照射ユニットの各光源は、該光源の長手方向が前記搬送方向に対して平行となるように配置されている、または、該光源の長手方向が前記搬送方向に対して斜め方向となるように配置されていることを特徴とする露光装置。
 このような構成を有する本発明によると、露光装置の光源として複数の短寸のランプを用い、簡単な構造で、照度ムラの低い露光を行うことができる。また、本発明によると、光源としての短寸のランプの交換が容易である。
本発明の実施形態に係る露光装置の一例を示す図であり、(a)は露光装置の平面図であり、(b)は露光装置の側面図である。 本発明の実施形態に係る露光装置の光照射部の光照射ユニットの一例を示す図であり、(a)は光照射ユニットの平面図、(b)は光照射ユニットの正面図である。 本発明の実施形態に係る露光装置の光照射ユニットの一例を示す図であり、(a)は棒状の光源と偏光子の斜視図、(b)は棒状の光源と偏光子の側面図である。 本発明の実施形態に係る露光装置の光照射部の一例を示す図である。 本発明の実施形態に係る露光装置の偏光子の一例を示す平面図である。 本発明の実施形態に係る露光装置の構成の一例を示す図である。 本発明の実施形態に係る露光装置の短寸の棒状光源の交換の一例を示す図である。 比較例に係る露光装置の長寸の棒状光源の交換を示す図である。 本発明の実施形態に係る露光装置の制御装置の電気的な構成の一例を示す図である。 光照射部の各光照射ユニットの輝度ムラの一例を示す図である。 被露光体を搬送方向に搬送し、且つ、搬送方向に直交する方向に揺動させながら露光した場合の照度分布の一例を示す図である。 被露光体を搬送方向に搬送させながら露光した場合の照度分布の一例を示す図である。 本発明の他の実施形態に係る露光装置の一例を示す平面図である。 図13に示した露光装置の偏光子の一例を示す平面図である。 本発明の他の実施形態に係る露光装置の複数の棒状光源の配置の一例を示す図であり、(a)は多段配置された各段の棒状光源の搬送方向への重なりが大きい場合の一例を示す図、(b)は多段配置された各段の棒状光源の搬送方向への重なりが小さい場合の一例を示す図である。
 以下、図面を参照しながら本発明の実施形態を説明する。
 図1は、本発明の実施形態に係る露光装置100の一例を示す図であり、図1(a)は露光装置100の平面図であり、図1(b)は露光装置100の側面図である。
 図2は露光装置100の光照射部3の光照射ユニット31の一例を示す図であり、図2(a)は光照射ユニット31の平面図、図2(b)は光照射ユニット31の正面図である。
 図3は、本発明の実施形態に係る露光装置100の光照射ユニット31の一例を示す図であり、図3(a)は棒状の光源32と偏光子34の斜視図であり、図3(b)は棒状の光源32と偏光子34の側面図である。尚、図3(a)、図3(b)において、フィルタ33は図示していない。
 図4は露光装置100の光照射部3の一例を示す図である。図5は露光装置100の偏光子34の一例を示す平面図である。図6は本発明の実施形態に係る露光装置100の構成の一例を示す図である。
 尚、本実施形態においては、一例として、基板に露光を行う露光装置100について説明するが、この形態に限らず、あらゆる露光装置に適用することができる。
 本発明の実施形態に係る露光装置100は、露光用の光源32として複数の短寸のライトを用いている。
 露光装置100は、詳細には、搬送部2と、光照射部3と、制御部51と、などを有する。
 搬送部2は、例えば、ガラス製の基板1やフィルムなどを搬送方向に搬送する。この基板1やフィルム上には配向膜などの被露光体11が形成されている。本実施形態では、基板1は、縦1800mm、横1500mm程度の矩形状に形成されている。
 搬送部2は、XY可動ステージなどであってもよいし、基板1をエアで浮上させながら基板1を搬送する、いわゆるエアフロー搬送装置であってもよい。尚、以下の図示においては、搬送方向をY軸方向、水平面内でY軸方向に直交する方向をX軸方向、X軸およびY軸に垂直な方向をZ軸方向として示している。
 光照射部3は、短寸の棒状の光源32と、偏光子34とを備える複数の光照射ユニット31を有し、光照射ユニット31が水平面内で規定間隔に並べて配置されている。
 光源32は、基板1上に形成された被露光体11よりも、長手方向の長さが短い棒状に形成されている。本実施形態では、光源32は、長手方向の長さが100mm程度に規定されている。光源32としては、例えば、水銀ランプ、LED、LDなどを採用することができる。光源32としては、水銀ランプを採用する。本実施形態では、光源32は、被露光体11の被露光面に対して平行に配置され、光源32の長手方向が搬送方向(Y軸)に平行となるように配置されている。
 また、本実施形態では、図1、図2、図3に示したように、光源32は、下方に開口部が形成されたランプハウス35内に配置されている。
 また、ランプハウス35内で光源32の上部付近には、棒状の光源32から出射された光を下方へ出射するするリフレクタ(光反射部36)が設けられている。
 偏光子34は、光源32と被露光体11との間に配置されている。この偏光子34は被露光体11の被露光面に対して平行に配置されている。偏光子34は、光源32から無偏光の光が入射されると、規定された偏光軸を有する直線偏光を出射する。図3、図5に示したように、偏光子34は、Y軸と平行に偏光軸が設定されている。この偏光子34は、ワイヤーグリッド、偏光ビームスプリッタ(PBS)などで構成することができる。本実施形態では、偏光子34として、ワイヤーグリッドを採用し、グリッドの方向がX軸と平行となるように構成されている。偏光子34は、例えば、一辺の長さが100mm程度の矩形状に規定されている。
 本実施形態では、図1(b)、図2(b)に示したように、光源32と偏光子34との間に光学フィルタ33が配置されている。光学フィルタ33は、所定の波長の光のみを透過させる。詳細には、光学フィルタ33は、光源32から出射した所定の波長の光より長い波長の光を加熱防止のためにカットし、所定の波長よりも短い波長の光を被露光体11へのダメージ防止のためにカットする。
 本発明の実施形態に係る露光装置100は、図3(b)に示したように、光源32から偏光子34に入射する光の角度θbが(偏光子34に垂直に光が入射するとき0°)、45°程度、または、45°±10°程度の範囲内であることが好ましい。
 例えば、偏光子34への入射角度θbが略45°より大きいと、偏光子34から出射される光の強度が低減し、偏光子34から射出される偏光の偏光軸の角度が基準(入射角度が0°の場合の偏光軸の角度を0°とする)と比べて、ずれ量(回転量)が大きい。偏光子34への入射角度が略45°より大きいと、被露光体11の被露光面での偏光の偏光軸のずれ量のばらつきが大きくなる。
 このため、本実施形態では、図3(b)に示したように、光源32の長手方向の長さが、偏光子34の長さと略同じであり、光源32と偏光子34との間の距離Lzが、光源32の長手方向の長さ32Lと略同じ長さ、または、その長さを基準として所定幅Lzcの範囲内となるように設定されることが好ましい。詳細には、偏光子34は、例えば、光源32と偏光子34との間の距離Lzが、光源側へ距離Lza、または、被露光体11側へ距離Lzb内であることが好ましい。この距離Lza、Lzbは、距離Lzcの1/2程度である。
 光源32と偏光子34との間の距離Lzが長いほど、偏光子34へ入射する光は平行光の成分が大きくなるが、偏光子34への光の強度は小さくなり、装置が大型となる。
 本実施形態では、上述したように、棒状の光源32から偏光子34への入射角度θbが略45°より大きい光が偏光子34に入射されず、棒状の光源32から偏光子34へ略平行光が入射する。
 棒状の光源32から出射される光は出射角度θaが0°±45°となっている。偏光子34への入射角度θbが略45°より大きい光が偏光子34に入射されず、棒状の光源32から偏光子34へ略平行光が入射する。
 すなわち、偏光子34から出射される光強度が大きく、且つ、被露光面での偏光の偏光軸の基準からのばらつきを低減することができる。
 また、図1、図4に示したように、光照射部3は、搬送方向(Y軸方向)に直交する方向(X軸方向)に規定間隔31rで配置された複数の光照射ユニット31が、搬送方向(Y軸方向)に沿って多段に配置されている。
 本実施形態では、複数の光照射ユニット31が、搬送方向(Y軸方向)に沿って2段、または3段に配置されている。第1段目DA、第2段目DB、第3段目DCそれぞれでは、各光源32の長手方向が搬送方向に平行に配置され、各段の光照射ユニット31の光源32は、搬送方向に対して互いに重ならないように設置されている。
 このように、各段の複数の光照射ユニット31による被露光体11への照射で、照度ムラがある場合でも、被露光体11を搬送方向に移動させながら露光を行うことで、各段DA、DB、DCの光照射ユニット31による照射強度の重ね合わせにより、照度ムラを低減することができる。
 また、図4に示したように、各光照射ユニット31の各光源32が、細長形状の放電容器内の両端部32a、32b付近に一対の電極を対向配置されたランプである。この棒状の光源32(ランプ)は、中央部32cで高い輝度、両端部32a,32bで低い輝度となっている。各光源32の長手方向は搬送方向に平行に配置されており、基板1上の被露光体11が搬送方向(Y軸方向)に沿って搬送されるので、上記各棒状の光源32(ランプ)による被露光体11への照度ムラが低減する。
 図7は、本発明の実施形態に係る露光装置100の短寸の棒状光源の交換の一例を示す図である。図8は、比較例に係る露光装置100の長寸の棒状光源の交換を示す図である。
 図7に示したように、上記短寸の棒状の光源32を用いることにより、光源32としての短寸のランプを、ランプハウス35からランプ長手方向に容易に取り外して交換することができる。
 図8に示したように、比較例に係る露光装置では、長寸の棒状の光源32Pをランプハウス35Pからランプ長手方向に取り外して交換する場合、比較的大きなランプ交換用のスペースが必要となる。
 図6に示した露光装置100の搬送部2は、固定ステージ21と、固定ステージ21上に水平方向に移動自在とする移動手段としての可動ステージ22と、を有する。
 可動ステージ22上には、被露光体11が載置されている。また、可動ステージ22には、光照射部3の各光照射ユニット31から出射される光の強度を検出する検出部53が形成されている。
 検出部53は、例えば、フォトダイオードなどの光検出素子53aが、可動ステージ22の下流側端部付近などに、X軸方向に規定間隔で並べて配置されている。
 また、可動ステージ22には、この可動ステージ22を搬送方向(Y軸方向)に駆動するY軸方向駆動部56aと、可動ステージ22を搬送方向と直交する方向(X軸方向)に駆動するX軸方向駆動部(揺動手段)56bとが設けられている。
 図9は、本発明の実施形態に係る露光装置100の制御装置の電気的な構成の一例を示す図である。
 図9に示したように、露光装置100の制御装置は、制御部51と、記憶部52と、検出部53と、入力部54と、表示部55と、ステージ駆動部56と、などを有する。
 制御部51は、制御用のプログラムを実行することにより、各構成要素を統括的に制御し、露光装置100に本発明に係る機能を実現する。制御部51は、詳細には、光照射部3の制御や、ステージ駆動部56による搬送部2の制御などを行う。
 記憶部52は、RAMやROMなどの記憶装置で構成され、制御用のプログラムや、各種データなどを記憶する。
 検出部53は、可動ステージ22などに設けられ、光照射部3の各光照射ユニット31から出射される光の強度を検出し、検出信号を制御部51に出力する。
 入力部54は、キーボードやタッチパネルなどの入力操作装置であり、ユーザーの操作に応じた信号を制御部51に出力する。
 表示部55は、制御部51の制御により、露光装置100に関する各種情報を表示する。
 ステージ駆動部56は、この可動ステージ22を搬送方向(Y軸方向)に駆動するY軸方向駆動部56aと、可動ステージ22を搬送方向と直交する方向(X軸方向)に駆動するX軸方向駆動部(揺動手段)56bとを有する。
 制御部51は、検出部53により検出された光の強度に基づいて、複数の光照射ユニット31から被露光体11に照射される光の照度ムラを低減するように、移動手段としての可動ステージ22を駆動するY軸方向駆動部56aやX軸方向駆動部(揺動手段)56bにより、光照射部3に対して被露光体11を移動制御を行う。
 また、制御部51は、検出部53により検出された光の強度に基づいて、X軸方向駆動部(揺動手段)56bによるX軸方向に沿った揺動の幅、速度などを適宜制御する。
 具体的には、制御部51は、検出部53により検出された光の強度分布に比較的大きいムラがある場合、X軸方向駆動部(揺動手段)56bによるX軸方向に沿った揺動の幅を大きくする、速度を大きくするなどの制御を行う。
 図10は、光照射部3の各光照射ユニット31の輝度ムラの一例を示す図である。図11は、被露光体11を搬送方向に搬送し、且つ、搬送方向に直交する方向に揺動させながら露光した場合の照度分布の一例を示す図である。図12は、被露光体を搬送方向に搬送させながら露光した場合の照度分布の一例を示す図である。図11、図12において、横軸はX軸方向の距離を示し、縦軸は照度を示す。
 図11において、搬送方向(Y軸方向)への搬送速度と、搬送方向に直交する方向(X軸方向)へ揺動させる速度(往復速度)が同じ場合を示している。図11において、搬送方向に直交する方向(X軸方向)への揺動の幅は、X軸方向へ隣接する各光照射ユニット31間の間隔と同じに規定している。
 本願発明者は、例えば、図10に示したように、複数の光照射ユニット31のうち、一部の光源32の光の強度が、他の光源32と比べて+10%、-10%である光照射部3を有する露光装置100について、照射光の測定を行った。
 図12に示したように、被露光体11を搬送方向(Y軸方向)にのみ搬送させながら露光した場合、各段の光照射ユニット31の照度はそれぞれX軸方向に照度ムラがあるが、各段の光照射ユニット31からの照度を重ね合わせると、光照射部3から被露光体11への照度ムラが低減される。
 図11に示したように、さらに、被露光体11を搬送方向(Y軸方向)に搬送し、且つ、搬送方向に直交する方向(X軸方向)に揺動させながら露光した場合、各段の光照射ユニット31からの照度の重ね合わせにより、光照射部3から被露光体11への照度ムラがさらに低減される。
 これは、各光照射ユニット31から出射される光の強度にばらつきがある場合でも、本発明に係る露光装置100では、光照射部3から被露光体11への照度ムラを非常に低減することを示す。
 図13は、本発明の他の実施形態に係る露光装置100の一例を示す平面図である。図14は、図13に示した露光装置100の偏光子の一例を示す平面図である。図15は露光装置100の複数の棒状の光源32の配置の一例を示す図であり、図15(a)は多段配置された各段の棒状光源の搬送方向への重なりが大きい場合の一例を示す図、図15(b)は多段配置された各段の棒状光源の搬送方向への重なりが小さい場合の一例を示す図である。図1から図6などに示した実施形態と同じ構成などについては、説明を省略する。
 上述した実施形態では、光照射ユニット31の各光源32は、光源32の長手方向が搬送方向(Y軸方向)に対して平行となるように配置されていたが、図13に示した露光装置100は、光照射ユニット31の各光源32の長手方向が搬送方向(Y軸方向)に対して斜め方向となるように配置されていてもよい。
 この場合、偏光子34の偏光方向は、図14に示したように、Y軸方向などの規定方向となるように設定されている。
 図13、図15に示したように、各段の光照射ユニット31の光源32は、隣接する段の最も近い光照射ユニット31の光源に対して、搬送方向(Y軸方向)に沿って一部分が重なるように設置されている。
 こうすることで、各段の複数の光照射ユニット31による被露光体11への照射で、照度ムラがある場合でも、被露光体11を搬送方向に移動させながら露光を行うことで、各段の光照射ユニット31による照射強度の重ね合わせにより、照度ムラを低減することができる。
 光照射ユニット31の搬送方向(Y軸方向)に沿って一部分が重なるように各段の光照射ユニット31を配置した場合、この重なりの程度は、照度ムラを低減するように、適宜設定してもよい。
 上述したように、棒状の光源32(ランプ)は、中央部32cで高い輝度、両端部32a,32bで低い輝度となっている。
 このため、例えば、図15(a)に示すように、搬送方向下流側の段DBの棒状の光源32の中央部32cを通る搬送方向(Y軸)に沿った中心線上に、搬送方向上流側の段DAの棒状の光源32の端部32aが位置し、搬送方向下流側の段DBの棒状の光源32の端部32bを通る搬送方向(Y軸)に沿った線上に、搬送方向上流側の段DAの棒状の光源32の中央部32cが位置するように配置してもよい。
 このように、図15(a)に示した光源32の配置では、露光時、被露光体11を搬送方向(Y軸方向)に搬送すると、搬送方向下流側の段DBの棒状の光源32と、搬送方向上流側の段DAの棒状の光源32それぞれの照度ムラが重ね合わせとなり、全体として照度ムラが低減される。
 また、図15(b)に示したように、搬送方向下流側の段DBの棒状の光源32に対して、搬送方向上流側の段DAの光源32をX軸方向(図15の右方向)にずらして配置してもよい。詳細には、搬送方向下流側の段DBの棒状の光源32の端部32bを通る搬送方向(Y軸)に沿った線上に、搬送方向上流側の段DAの棒状の光源32の端部32aが位置するように配置してもよい。
 また、搬送方向下流側の段DBの棒状の光源32の中央部32cを通る搬送方向(Y軸)に沿った線と、段DBの棒状の光源32の端部32bを通る搬送方向(Y軸)に沿った線との間の範囲内に、搬送方向上流側の段DAの棒状の光源32の端部32aが位置するように配置してもよい。
 図13、図14、図15に示したように、光源32の長手方向が搬送方向に対して斜め方向となるように配置された露光装置100は、被露光体11を搬送方向にのみ搬送してもよいし、被露光体11を搬送方向に搬送しつつ、揺動手段56bにより、被露光体11を搬送方向に対して交差する方向に揺動させながら、露光を行ってもよい。
 以上、説明したように、本発明の実施形態に係る露光装置100は、被露光体11を搬送方向に搬送する搬送部2と、板状の基板上やフィルム上に設けられた被露光体11よりも、長手方向の長さが短い棒状の光源32、および、光源32と被露光体との間に配置される偏光子を備えた複数の光照射ユニット31を、水平面内で規定間隔に並べて配置した光照射部3とを有し、光照射ユニット31は、光源32および偏光子34が被露光体11の被露光面に対して平行に配置され、且つ、各偏光子34の偏光軸の方向が搬送方向に対して規定方向に設定されている。
 この光照射ユニット31の各光源は、光源32の長手方向が搬送方向に対して平行となるように配置されている、または、光源32の長手方向が搬送方向に対して斜め方向となるように配置されている。
 このため、光源32として複数の短寸のランプを用い、簡単な構造で、照度ムラの低い露光を行うことができる露光装置100を提供することができる。また、ランプ交換が容易な露光装置100を提供することができる。
 また、本発明の実施形態の露光装置100は、搬送部2により搬送される被露光体11、または、光照射部3を搬送方向に対して交差する方向に揺動させる揺動手段56bを有する。
 本実施形態では、揺動手段56bは、被露光体11が光照射部3に対して搬送方向に移動させるとともに、搬送方向に直交する方向に規定幅で揺動しながら移動させる。具体的には、被露光体11が光照射部3に対して、水平面内で三角波、正弦波、ノコギリ波などを描く形態であってもよい。
 すなわち、露光装置100は、上記揺動手段56bを有するので、光照射ユニット31の各光源32に輝度むらがある場合であっても、照射むらの低い露光を行うことができる。
 また、本発明の実施形態によれば、搬送部2は、被露光体11を光照射部3に対して水平方向に移動自在とする移動手段としての可動ステージ22と、光照射部3の各光照射ユニット31から出射される光の強度を検出する検出部53と、検出部53により検出された光の強度に基づいて、複数の光照射ユニットから被露光体に照射される光の照度ムラを低減するように、移動手段である可動ステージ22により、光照射部3に対して被露光体11を移動制御を行う制御部51と、を有する。
 このため、制御部51が、各光源32から照射される光の強度を検出部53により常時検出し、可動ステージ22に載置された被露光体11を逐次移動制御することで、被露光体11に照射される光の照度ムラを低減することができる。
 また、複数の被露光体11を順次露光する場合、制御部51は、検出部53により検出した光の強度を記憶部52に記憶しておき、記憶部52から読み出した光の強度の履歴に基づいて、被露光体11に照射される光の照度ムラを低減するように光照射部3に対して移動制御してもよい。
 また、本発明の実施形態に係る露光装置100は、光照射部3が、搬送方向に直交する方向に規定間隔で配置された複数の光照射ユニットが、搬送方向に沿って多段に配置されている。このため、搬送方向に直交する方向に、1段だけ光照射ユニットを設けた露光装置と比較して、被露光体11への輝度むらを低減することができる。
 また、露光装置100は、光照射部3が、搬送方向に直交する方向に規定間隔で配置された複数の光照射ユニットが、搬送方向に沿って多段に配置されている。
 このため、被露光体11の搬送方向に沿って多段に、複数の光照射ユニットを配置することで、1段だけ光照射ユニットを設けた露光装置と比較して、被露光体11への照度ムラを低減することができる。
 また、図1に示した露光装置100では、複数の光照射ユニット31の各光源32の長手方向が搬送方向に平行に配置され、各段の光照射ユニット31の光源32は、搬送方向に対して互いに重ならないように設置されている。
 このように、各段の複数の光照射ユニット31による被露光体11への照射で、照度ムラがある場合でも、被露光体11を搬送方向に移動させながら露光を行うことで、各段の光照射ユニット31による照射強度の重ね合わせにより、照度ムラを低減することができる。
 また、図13に示した露光装置100では、光照射部3が、搬送方向に直交する方向に規定間隔で配置された複数の光照射ユニット31が、搬送方向に沿って多段に配置され、光照射ユニット31の各光源32の長手方向が搬送方向に対して斜め方向に配置されている。
 各段の光照射ユニット31の光源32は、隣接する段の最も近い光照射ユニットの光源に対して、搬送方向に沿って一部分が重なるように設置されている。
 こうすることで、各段の複数の光照射ユニット31による被露光体11への照射で、照度ムラがある場合でも、被露光体11を搬送方向に移動させながら露光を行うことで、各段の光照射ユニット31による照射強度の重ね合わせにより、照度ムラを低減することができる。
 また、本発明の実施形態に係る露光装置100は、光源32から偏光子34に入射する光の角度が(偏光子34に垂直に光が入射するとき0°)、45°程度、または、45°±10°程度の範囲内であることが好ましい。
 具体的には、露光装置100は、光源32の長手方向の長さが、偏光子34の長さと略同じであり、光源32と偏光子34との間の距離が、光源32の長手方向の長さと略同じ長さ、または、その長さよりも所定幅の範囲内となるように設定されることが好ましい。
 本発明の実施形態では、上述したように、棒状の光源32から偏光子34への入射角度が略45°より大きい光が偏光子34に入射されず、棒状の光源32から偏光子34へ略平行光が入射する。すなわち、偏光子34から出射される光強度が大きく、且つ、被露光面での偏光の偏光軸の基準からのばらつきを低減することができる。
 尚、上述した実施形態では、露光装置100は、基板1上の被露光体11に偏光光を照射したが、この形態に限られるものではない。例えば、ロールトゥロール方式のフィルム製造ラインに本発明の露光装置を適用してもよい。
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
 また、上述の各図で示した実施形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの記載内容を組み合わせることが可能である。
 また、各図の記載内容はそれぞれ独立した実施形態になり得るものであり、本発明の実施形態は各図を組み合わせた一つの実施形態に限定されるものではない。
 1:基板(フィルムなど)、2:搬送部,3:光照射部,11:被露光体(配向膜など),21:固定ステージ,22:可動ステージ,31:光照射ユニット,32:光源(ランプ),33:フィルタ(光学フィルタ),34:偏光子,35:ランプハウス,36:リフレクタ(光反射部),51:制御部,52:記憶部,53:検出部,54:入力部,55:表示部,56:ステージ駆動部,56a:Y軸方向駆動部,56b:X軸方向駆動部(揺動手段),100:露光装置

Claims (5)

  1.  偏光光を被露光体に照射する露光装置であって、
     被露光体を搬送方向に搬送する搬送部と、
     前記被露光体よりも、長手方向の長さが短い棒状の光源、および、前記光源と前記被露光体との間に配置される偏光子を備えた複数の光照射ユニットを、水平面内で規定間隔に並べて配置した光照射部と、を有し、
     前記光照射ユニットは、前記光源および前記偏光子が前記被露光体の被露光面に対して平行に配置され、且つ、各偏光子の偏光軸の方向が前記搬送方向に対して規定方向に設定され、
     前記光照射ユニットの各光源は、該光源の長手方向が前記搬送方向に対して平行となるように配置されている、または、斜め方向となるように配置されていることを特徴とする露光装置。
  2.  前記搬送部により搬送される前記被露光体、または、前記光照射部を前記搬送方向に対して交差する方向に揺動させる揺動手段を有することを特徴とする請求項1に記載の露光装置。
  3.  前記搬送部は、前記被露光体を前記光照射部に対して水平方向に移動自在とする移動手段と、
     前記光照射部の各光照射ユニットから出射される光の強度を検出する検出部と、
     前記検出部により検出された光の強度に基づいて、前記複数の光照射ユニットから前記被露光体に照射される光の照度ムラを低減するように、前記移動手段により、前記光照射部に対して前記被露光体を移動制御を行う制御部と、
     を有することを特徴とする請求項1または請求項2に記載の露光装置。
  4.  前記光照射部は、搬送方向に直交する方向に規定間隔で配置された複数の光照射ユニットが、前記搬送方向に沿って多段に配置されていることを特徴とする請求項1から請求項3のいずれかに記載の露光装置。
  5.  前記光源の長手方向の長さが、前記偏光子の長さと略同じであり、
     前記光源と前記偏光子との間の距離が、前記光源の長手方向の長さと略同じとなるように設定されていることを特徴とする請求項1から請求項4のいずれかに記載の露光装置。
PCT/JP2013/059575 2012-07-03 2013-03-29 露光装置 WO2014006942A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147036737A KR102080211B1 (ko) 2012-07-03 2013-03-29 노광장치
CN201380034890.1A CN104395831B (zh) 2012-07-03 2013-03-29 曝光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012149960A JP6119035B2 (ja) 2012-07-03 2012-07-03 露光装置
JP2012-149960 2012-07-03

Publications (1)

Publication Number Publication Date
WO2014006942A1 true WO2014006942A1 (ja) 2014-01-09

Family

ID=49881707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059575 WO2014006942A1 (ja) 2012-07-03 2013-03-29 露光装置

Country Status (5)

Country Link
JP (1) JP6119035B2 (ja)
KR (1) KR102080211B1 (ja)
CN (1) CN104395831B (ja)
TW (1) TWI588619B (ja)
WO (1) WO2014006942A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207566A (ja) * 2015-07-23 2015-11-19 ウシオ電機株式会社 光配向用偏光光照射方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884776B2 (ja) * 2013-06-22 2016-03-15 ウシオ電機株式会社 光配向用偏光光照射装置
JP2016122120A (ja) * 2014-12-25 2016-07-07 株式会社ブイ・テクノロジー 露光装置
JP6500543B2 (ja) * 2015-03-24 2019-04-17 大日本印刷株式会社 偏光子、光配向装置、および光配向方法
JP6601128B2 (ja) * 2015-10-08 2019-11-06 ウシオ電機株式会社 光照射装置及び光照射方法
JP6597149B2 (ja) * 2015-10-08 2019-10-30 ウシオ電機株式会社 光照射装置
JP2018004946A (ja) * 2016-07-01 2018-01-11 株式会社ブイ・テクノロジー 偏光光照射装置
JP6870391B2 (ja) * 2017-03-06 2021-05-12 ウシオ電機株式会社 光照射装置
TW201921131A (zh) * 2017-08-09 2019-06-01 日商V科技股份有限公司 光配向用曝光裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182128A (ja) * 1990-11-16 1992-06-29 Canon Inc 画像形成装置
JPH065496A (ja) * 1992-06-17 1994-01-14 Sumitomo Heavy Ind Ltd 露光均一性向上膜
JPH10288842A (ja) * 1997-02-12 1998-10-27 Dainippon Printing Co Ltd 露光装置及び蛍光面形成方法
JP2005049461A (ja) * 2003-07-30 2005-02-24 Ricoh Co Ltd 光ビーム記録装置
JP2006323060A (ja) * 2005-05-18 2006-11-30 Ushio Inc 偏光光照射装置
JP2007503612A (ja) * 2003-08-27 2007-02-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光学画像を形成する方法、当該方法における使用のための集束素子の配列及び光弁の配列、当該方法を実施するための装置、並びに、当該方法を用いるデバイスを製造するためのプロセス。

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840451A (en) * 1996-12-04 1998-11-24 Advanced Micro Devices, Inc. Individually controllable radiation sources for providing an image pattern in a photolithographic system
JP4728536B2 (ja) * 2001-07-05 2011-07-20 株式会社オーク製作所 多重露光描画方法及び多重露光描画装置
JP2011134491A (ja) * 2009-12-22 2011-07-07 Sharp Corp 照射装置及び照射装置の電力回収システム
JP2012130831A (ja) * 2010-12-20 2012-07-12 Harison Toshiba Lighting Corp 紫外線照射モジュールおよび紫外線照射装置
JP2013094737A (ja) * 2011-11-01 2013-05-20 Harison Toshiba Lighting Corp 紫外線照射装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182128A (ja) * 1990-11-16 1992-06-29 Canon Inc 画像形成装置
JPH065496A (ja) * 1992-06-17 1994-01-14 Sumitomo Heavy Ind Ltd 露光均一性向上膜
JPH10288842A (ja) * 1997-02-12 1998-10-27 Dainippon Printing Co Ltd 露光装置及び蛍光面形成方法
JP2005049461A (ja) * 2003-07-30 2005-02-24 Ricoh Co Ltd 光ビーム記録装置
JP2007503612A (ja) * 2003-08-27 2007-02-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光学画像を形成する方法、当該方法における使用のための集束素子の配列及び光弁の配列、当該方法を実施するための装置、並びに、当該方法を用いるデバイスを製造するためのプロセス。
JP2006323060A (ja) * 2005-05-18 2006-11-30 Ushio Inc 偏光光照射装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207566A (ja) * 2015-07-23 2015-11-19 ウシオ電機株式会社 光配向用偏光光照射方法

Also Published As

Publication number Publication date
CN104395831B (zh) 2018-07-06
KR20150035789A (ko) 2015-04-07
TW201403256A (zh) 2014-01-16
CN104395831A (zh) 2015-03-04
JP6119035B2 (ja) 2017-04-26
TWI588619B (zh) 2017-06-21
JP2014013277A (ja) 2014-01-23
KR102080211B1 (ko) 2020-02-24

Similar Documents

Publication Publication Date Title
JP6119035B2 (ja) 露光装置
KR100954897B1 (ko) 편광 소자 유닛 및 편광 광 조사 장치
KR101288661B1 (ko) 편광 광 조사 장치
JP5177266B2 (ja) 偏光素子ユニットおよびこの偏光素子ユニットを用いた光照射装置並びに偏光素子ユニットの透過率設定方法
TWI613460B (zh) 偏光光線照射裝置
TWI553355B (zh) 光配向用偏振光照射裝置
JP4706255B2 (ja) 偏光光照射装置
CN106125407B (zh) 光配向装置
KR102064875B1 (ko) 자외선 조사장치
JP2015106015A (ja) 偏光光照射装置、偏光光照射方法および偏光光照射プログラム
JP2017015887A (ja) 光配向照射装置
JP2016197140A (ja) 光照射装置
JP6597149B2 (ja) 光照射装置
JP2017215353A (ja) 偏光光照射装置及び光配向装置
TW201643529A (zh) 光配向用偏振光照射裝置
JP2011203669A (ja) 偏光露光装置
JP6613949B2 (ja) 偏光素子ユニットおよび偏光光照射装置
JP2009092481A (ja) 外観検査用照明装置及び外観検査装置
JP6534567B2 (ja) 光照射装置
TWI666428B (zh) 偏光光測定裝置、及偏光光照射裝置
WO2019130851A1 (ja) 光照射装置、および、光照射方法
JP2016040582A (ja) 光照射装置
JP2014232238A (ja) 光配向用偏光光照射装置
TW201921061A (zh) 偏振光照射裝置及偏振光照射方法
JP2014170145A (ja) 偏光光照射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147036737

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13812512

Country of ref document: EP

Kind code of ref document: A1