WO2013191130A1 - タングステン酸及び/又はモリブデン酸と高分子との複合体 - Google Patents

タングステン酸及び/又はモリブデン酸と高分子との複合体 Download PDF

Info

Publication number
WO2013191130A1
WO2013191130A1 PCT/JP2013/066582 JP2013066582W WO2013191130A1 WO 2013191130 A1 WO2013191130 A1 WO 2013191130A1 JP 2013066582 W JP2013066582 W JP 2013066582W WO 2013191130 A1 WO2013191130 A1 WO 2013191130A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
polymer
meth
acid
composite
Prior art date
Application number
PCT/JP2013/066582
Other languages
English (en)
French (fr)
Inventor
博隆 伊原
啓邦 神徳
Original Assignee
国立大学法人熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人熊本大学 filed Critical 国立大学法人熊本大学
Priority to JP2014521454A priority Critical patent/JP6101976B2/ja
Priority to KR1020147035305A priority patent/KR101720850B1/ko
Priority to US14/408,519 priority patent/US10131777B2/en
Priority to CN201380032384.9A priority patent/CN104411774A/zh
Publication of WO2013191130A1 publication Critical patent/WO2013191130A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/20Esters of polyhydric alcohols or polyhydric phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/066Copolymers with monomers not covered by C09D133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/328Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to a method for producing a complex of tungstic acid and / or molybdic acid and a polymer, and a complex obtained by the production method.
  • Refractive index is one of the characteristics of a substance and is greatly influenced by constituent elements, molecular structure, crystal structure, and charge, and its modulation is not easy.
  • the refractive index of a polymer is limited to around 1.4 to 1.6, and lacks variations compared to 0.17 (silver) to 4.2 (silicon) of inorganic materials. This is because the main component of the polymer is mainly carbon having low atomic refraction.
  • the refractive index is increased by molecular design such as introduction of sulfur atoms or bromine atoms.
  • a composite with metal oxide fine particles for example, alumina (see, for example, Patent Document 1), titania, zirconia) having a high refractive index.
  • metal oxide fine particles for example, alumina (see, for example, Patent Document 1), titania, zirconia
  • the refractive index of the optical material used for these is important.
  • the optical device requires fine processing into a thin layer or a complicated shape, and a polymer such as a photoresist is suitable as a polymer applied to such an optical device.
  • the present invention has been made to solve the above-described problems, and is obtained by a method for easily producing a complex of tungstic acid and / or molybdic acid and a polymer, and the method.
  • a composite having high transparency and a desired refractive index is provided.
  • the polymer is mixed with metal oxide fine particles having a refractive index different from that of the polymer.
  • metal oxide fine particles having a refractive index different from that of the polymer.
  • examples thereof include a method of dispersing metal oxide fine particles therein. According to this method, the functionality of the polymer used can be maintained, and the modulation width of the refractive index can be arbitrarily adjusted.
  • this method when this method is used, it is difficult to uniformly disperse the metal oxide fine particles in the polymer, and this method cannot be applied depending on the properties of the polymer used.
  • the present invention has been made to solve the above problems, and the present inventor has proposed that phosphotungstic acid, which has been conventionally considered insoluble in organic solvents, is ethyl acetate, methanol, etc. It was found by chance that it dissolves easily in certain solvents. Then, from a solution obtained by dissolving a polymer dissolved in the same solvent together with phosphotungstic acid or the like, a complex obtained by distilling off or solidifying the solvent and a film comprising the complex have high transparency. And having an arbitrary refractive index depending on the content of tungstic acid or the like. Furthermore, the present inventor has a high transparency as well as that obtained by immersing a polymer such as a molded film in a solution such as phosphotungstic acid.
  • the present invention has been made under such circumstances, and a method for easily producing a complex of tungstic acid and / or molybdic acid and a polymer, and the function of the polymer obtained and constituted by the method are retained.
  • the high transparency referred to in the present invention means that the transmittance at a specific wavelength that the polymer originally has does not greatly decrease even after a complex with tungstic acid and / or molybdic acid is formed, that is, a decrease in transmission. It means that the rate is small. In the prior art in which the metal salt is present as fine particles, it has been difficult to achieve such a small transmission reduction rate.
  • the present invention is as follows.
  • a composite comprising a polymer having a number average molecular weight of 1,000 to 10,000,000 having at least one selected from tungstic acid and molybdic acid and at least one selected from ether bonds and ester bonds.
  • a composite in which the content of one or more selected from tungstic acid and molybdic acid in the composite is 0.01 to 95% by weight.
  • a weight ratio of the polymer, one or more total amounts selected from tungstic acid and molybdic acid in the composite is 90% by weight or more.
  • the polymer is a polymer obtained by polymerizing one or more selected from a compound represented by the following formula (I) and a polyfunctional acrylate having 2 or more functional groups, and an ester bond and an ether
  • X represents a single bond, —O—, —COO—, —OCO—, —CONR 3 — or —NHCO—
  • R 1 and R 3 are each independently
  • hydrogen an alkyl group having 1 to 18 carbon atoms in which arbitrary hydrogen may be substituted with a hydroxyl group, an alkenyl group having 1 to 18 carbon atoms, or a carbon in which arbitrary hydrogen is substituted with a methyl group
  • the compound represented by the formula (I) is methyl (meth) acrylate,
  • the polyfunctional acrylate having two or more functional groups in one molecule is methylene bisacrylamide, ethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, decandiol di (meth) acrylate, polyethylene glycol di (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythri
  • the polymer is poly (meth) acrylic acid methyl, poly (meth) acrylic acid, polyvinyl acetate, polyvinyl alcohol, polystyrene-co-polymethyl methacrylate and poly (2-hydroxyethyl methacrylate), cellulose triacetate.
  • One or more selected from tungstic acid and molybdic acid and the polymer comprising a step of obtaining a solution by dissolving in one or more solvents selected from organic compounds, and a step of distilling off the solvent from the solution
  • a method for producing a composite with a raw material comprising [10] A polymer obtained by polymerizing one or more selected from compounds represented by the following formula (I), wherein the raw material is one or more selected from an ester bond and an ether bond. The method according to [9], comprising.
  • X represents a single bond, —O—, —COO—, —OCO—, —CONR 3 — or —NHCO—
  • R 1 and R 3 are each independently
  • hydrogen an alkyl group having 1 to 18 carbon atoms in which arbitrary hydrogen may be substituted with a hydroxyl group, an alkenyl group having 1 to 18 carbon atoms, or a carbon in which arbitrary hydrogen is substituted with a methyl group
  • R 2 represents hydrogen or methyl
  • R 1 and R 3 may be bonded via an ether bond.
  • [12] The method according to any one of [9] to [11], wherein the step of distilling off the solvent from the solution is performed on a substrate coated with the solution.
  • the solvent is one or more compounds selected from ester compounds, alcohol compounds, ketone compounds, lactone compounds, glycol monoether monoester compounds and glycol diester compounds, [9] to [9] 12].
  • [14] The method according to any one of [9] to [13], wherein the solvent is one or more selected from ethyl acetate, methanol, and ethanol.
  • [15] The method according to any one of [9] to [14], comprising a step of granulating the solution between the step of obtaining the solution and the step of distilling off the solvent from the solution.
  • a raw material containing at least one selected from a heteropolyacid of tungstic acid and a salt thereof and a heteropolyacid of molybdic acid and a salt thereof and a water-soluble polymer is dissolved in at least one selected from water and an alcohol compound.
  • a method for producing a complex of at least one selected from tungstic acid and molybdic acid and a raw material containing the water-soluble polymer comprising a step of obtaining a dissolved solution and a step of distilling off the solvent from the dissolved solution .
  • the water-soluble polymer is polyvinyl alcohol.
  • a raw material containing a polymer having a number average molecular weight of 1,000 to 10,000,000 having the above is dissolved in a solvent consisting of one or more selected from alkyl halides having 1 to 3 carbon atoms and cyclic ethers. And a step of mixing the first solution and the second solution, and distilling off the solvent from the solution after mixing. Method for producing a complex of the raw material containing the polymer and one or more selected from molybdate.
  • the solvent that constitutes the first solution is one or more selected from ester compounds and alcohol compounds
  • the solvent that constitutes the second solution is one or more selected from dichloromethane and trichloromethane.
  • a step of dissolving one or more selected from a heteropolyacid of tungstic acid and a salt thereof and a heteropolyacid of molybdic acid and a salt thereof in a polymerizable compound as a solvent to obtain a solution The manufacturing method of the composite_body
  • the polymerizable compound is a compound selected from a compound represented by the following formula (I), a vinyl ketone compound, and a glycidyl ester compound.
  • X represents a single bond, —O—, —COO—, —OCO—, —CONR 3 — or —NHCO—
  • R 1 and R 3 are each independently
  • hydrogen an alkyl group having 1 to 18 carbon atoms in which arbitrary hydrogen may be substituted with a hydroxyl group, an alkenyl group having 1 to 18 carbon atoms, or a carbon in which arbitrary hydrogen is substituted with a methyl group
  • R 2 represents hydrogen or methyl
  • R 1 and R 3 may be bonded via an ether bond.
  • X represents a single bond, —O—, —COO—, —OCO—, —CONR 3 — or —NHCO—
  • R 1 and R 3 are each independently
  • hydrogen an alkyl group having 1 to 18 carbon atoms in which arbitrary hydrogen may be substituted with a hydroxyl group, an alkenyl group having 1 to 18 carbon atoms, or a carbon in which arbitrary hydrogen is substituted with a methyl group
  • R 2 represents hydrogen or methyl
  • R 1 and R 3 may be bonded via an ether bond.
  • a manufacturing method for easily obtaining a complex of tungstic acid and / or molybdic acid and a polymer is provided, and the manufacturing method provides high transparency and a desired refractive index.
  • a complex can be provided.
  • the composite of the present invention includes a polymer having a number average molecular weight of 1,000 to 10,000,000 having at least one selected from tungstic acid and molybdic acid and at least one selected from ether bonds and ester bonds.
  • the composite is characterized in that the content of one or more selected from tungstic acid and molybdic acid in the composite is 0.01 to 95% by weight.
  • at least one selected from tungstic acid and molybdic acid does not exist as particles, and the composite of the present invention forms a solid solution.
  • the solid solution means that tungstic acid or the like is present uniformly in the composite, not as particles.
  • tungstic acid and / or molybdic acid is present in an amount of 0.01 to 95% by weight based on the total amount of the composite.
  • the existence state at this time can be considered to exist in a substantially uniform ratio in the composite.
  • tungstic acid means tungsten trioxide (WO 3 )
  • molybdic acid means molybdenum trioxide MoO 3 .
  • the weight percent of tungstic acid and molybdic acid in the composite can be determined by measuring the residual weight when heated to 550 ° C. in the presence of oxygen using differential thermogravimetric analysis (TG-DTA).
  • the content of one or more selected from tungstic acid and molybdic acid in the composite of the present invention is 0.01 to 95% by weight. This weight% is more preferably 80% by weight or less from the viewpoint of light transmittance of a film obtained from the composite.
  • the refractive index can be adjusted to a desired value while obtaining good light transmittance of the composite obtained as a film.
  • the contents of tungstic acid and molybdic acid adjust the concentration of at least one heteropolyacid salt selected from tungstic acid and molybdic acid dissolved in a solvent in the composite manufacturing method described later. It can be adjusted.
  • Tungstic acid and molybdic acid may each be contained alone in the composite, or two of them may be contained.
  • the polymer contained in the raw material constituting the composite of the present invention is a polymer having a number average molecular weight of 1,000 to 10,000,000 having one or more selected from an ether bond and an ester bond.
  • the proportion of the polymer having a number average molecular weight of 1,000 to 10,000,000 having one or more selected from the ether bonds and ester bonds contained in the raw material constituting the composite of the present invention is as follows. It is usually 20% by weight or more, preferably 30% by weight or more, and particularly preferably 50% by weight or more, based on the total amount of the polymer.
  • the polymer has one or more selected from an ether bond and an ester bond, and having the number average molecular weight described above, so that it can be dissolved in the solvent, and in the formed complex, tungstic acid and / or molybdenum Transparency is exhibited by the minute and uniform presence of the acid.
  • the polymer has a number average molecular weight of 2,000 to 5 from the viewpoint of improving the solubility in a solvent to be described later and the transparency of the film made of the resulting composite, as well as the handling property at the time of preparing the composite. More preferably, it is 1,000,000,000, more preferably 5,000 to 3,000,000.
  • the polymer constituting the composite of the present invention is a polymer obtained by polymerizing one or more selected from a compound represented by the following formula (I) and a polyfunctional acrylate having 2 or more functional groups, A polymer having one or more selected from an ester bond and an ether bond is more preferable.
  • a compound represented by the following formula (I) or one or more selected from polyfunctional acrylates having 2 or more functional groups is polymerized and a polymer having an ether bond or an ester bond in the molecule is used, Since the polymer can be complexed with metal ions, the tungstic acid and the like are uniformly present in the composite.
  • the number average molecular weight as used in the field of this invention is a molecular weight of polystyrene conversion calculated
  • X represents a single bond, —O—, —COO—, —OCO—, —CONR 3 — or —NHCO—
  • R 1 and R 3 are each independently
  • hydrogen an alkyl group having 1 to 18 carbon atoms in which arbitrary hydrogen may be substituted with a hydroxyl group, an alkenyl group having 1 to 18 carbon atoms, or a carbon in which arbitrary hydrogen is substituted with a methyl group
  • R 2 represents hydrogen or methyl
  • R 1 and R 3 may be bonded via an ether bond.
  • Examples of the compound represented by the formula (I) include (meth) acrylic acid, (meth) acrylic acid ester (hereinafter collectively referred to as (meth) acrylic acid compound), vinyl ether, vinyl ester, and the like. Can be mentioned.
  • (meth) acrylic acid as used in this invention is a general term for acrylic acid and methacrylic acid, and means either one or both.
  • (Meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, (meth) N-pentyl acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- (meth) acrylic acid 2- (Meth) acrylic acid aliphatic hydrocarbons (for example, having 1 to 18 carbon atoms) such as ethylhexyl, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate Alkyl) ester; cyclohexyl
  • Examples of the vinyl ether include methyl vinyl ether, ethyl vinyl ether, cyclohexyl vinyl ether, hydroxyethyl vinyl ether, and hydroxybutyl vinyl ether.
  • Examples of the vinyl ester include vinyl acetate, vinyl propionate, and vinyl cinnamate.
  • (meth) acrylic acid or (meth) acrylic acid ester from the viewpoint of solubility of the resulting polymer in a solvent.
  • (meth) acrylic acid esters from the viewpoint of cost and availability, methyl (meth) acrylate, butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, norbornyl (meth) acrylate, Benzyl (meth) acrylate and vinyl acetate are preferred.
  • Another compound represented by the formula (I) includes a (meth) acrylamide derivative.
  • the (meth) acrylamide derivative include (meth) acrylamide, N-substituted lower alkyl (meth) acrylamide having 1 to 5 carbon atoms in alkyl, N-substituted aryl (meth) acrylamide having 6 to 18 carbon atoms in aryl, Examples thereof include N-substituted aralkyl (meth) acrylamide having 7 to 18 carbon atoms in aralkyl and N-substituted heterocyclic (meth) acrylamide having 4 to 5 carbon atoms in the heterocyclic ring.
  • N-substituted lower alkyl (meth) acrylamides include N-ethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, and N-substituted heterocyclic (meth) acrylamide as N- Examples include acryloylmorpholine. Among such (meth) acrylamide derivatives, N, N-dimethylacrylamide, N-acryloylmorpholine, and N-isopropylacrylamide are preferably used. Examples of the compound represented by the formula (I) include glycidyl (meth) acrylate in which R 1 in the formula (I) is a glycidyl group.
  • Another compound represented by the formula (I) includes a styrenic compound in which, in the formula (I), X is a single bond, and R 1 is phenyl in which any hydrogen may be substituted with methyl.
  • styrene compound include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, and p-methylstyrene. Of these, styrene is preferably used.
  • this styrenic compound is copolymerized with a compound for forming a polymer having one or more selected from the ether bond and ester bond described above, or a styrene compound homopolymer, It is preferable to use as a raw material for the composite by mixing with a polymer obtained from a compound for forming a polymer having one or more selected from the ether bonds and ester bonds described above.
  • polyfunctional acrylates containing two or more (meth) acryloyl groups in one molecule include methylene bisacrylamide, ethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, and decanediol di (meth).
  • tris ((meth) acryloxyethyl) isocyanurate, caprolactone-modified tris ((meth) acryloxyethyl) isocyanurate and the like can be mentioned.
  • ethylene glycol dimethacrylate, dipentaerythritol hexamethacrylate, and trimethylolpropane trimethacrylate are preferable.
  • a polymer obtained by polymerizing at least one selected from the compound represented by the formula (I) and a polyfunctional acrylate having 2 or more functional groups is selected from the compound represented by the formula (I) and a polyfunctional acrylate containing two or more (meth) acryloyl groups in one molecule. It can be obtained by selecting one or more compounds that generate at least an ester bond or an ether bond in the molecule from among the two or more compounds and (co) polymerizing them.
  • a polymer obtained by combining and appropriately polymerizing the above-described compounds may be used as a resist material.
  • the polymerization method known methods can be mentioned, and methods such as radical polymerization, cationic polymerization, anion polymerization and the like can be used depending on the monomer used.
  • polymers obtained by the polymerization method those particularly preferably used are poly (meth) acrylate methyl, poly (meth) acrylate butyl, poly (meth) acrylate norbornyl, poly (meth) acrylate benzyl, Polyvinyl acetate.
  • polyvinyl acetate that is obtained by polymerization and then converted to polyvinyl alcohol by saponification treatment can be preferably used.
  • polyethylene glycol having the above number average molecular weight can be used as a polymer other than the above.
  • the water-soluble polymer in the present invention refers to a polymer having a solubility in water of 0.5 g or more in 100 g of water at 40 ° C.
  • a polymer satisfying such requirements is also referred to as a water-soluble polymer.
  • polyvinyl alcohol and polyethylene glycol can be preferably exemplified as water-soluble polymers.
  • the average molecular weight of such polyvinyl alcohol include 13,000 to 440,000, and this average molecular weight can be measured by gel permeation chromatography (GPC) measurement.
  • the degree of saponification of such polyvinyl alcohol include 30 to 99.5 mol%. The saponification degree can be measured by a titration method.
  • Examples of the polymer used in the present invention include polysaccharides and derivatives thereof.
  • Examples of such polysaccharides include cellulose, amylose, ⁇ -1,4-chitosan, chitin, ⁇ -1,4-mannan, ⁇ -1,4-xylan, inulin, ⁇ -1,3-glucan, ⁇ -1, Examples include 3-glucan (curdlan, schizophyllan), pullulan, dextran, glucomannan, amylopectin, agarose, cyclodextrin (including ⁇ , ⁇ , ⁇ ), cyclosofolus and the like, but preferably high purity These are cellulose, amylose, ⁇ -1,4-xylan, ⁇ -1,3-glucan, cyclodextrin and the like from which polysaccharides can be easily obtained.
  • the carbamate derivative which formed the urethane bond, the ester derivative which formed the ester bond, and the ether derivative which formed the ether bond are mentioned.
  • an ester derivative is preferable.
  • an ester derivative of cellulose is preferable, and a fatty acid cellulose ester is particularly preferable.
  • the fatty acid cellulose ester refers to one in which some or all of the hydroxyl groups of cellulose are esterified with a fatty acid.
  • cellulose acetate hereinafter also referred to as cellulose acetate
  • cellulose acetate propionate cellulose acetate butyrate
  • cellulose esters such as acetate phthalate and cellulose nitrate.
  • cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate are preferable, and cellulose acetate is particularly useful.
  • cellulose acetates cellulose triacetate is particularly preferable.
  • those having an average of 1 to 2.9 ester bonds consisting of a fatty acid and a hydroxyl group of a glucose unit of cellulose, that is, a substitution degree of 1 to 2.9 can also be used.
  • a homopolymer using a single monomer as a monomer can be used, a copolymer using a plurality of monomers can be used, and those polymers or copolymers can be used.
  • a plurality of coalescence can be mixed and used. When using a some polymer, it can mix in the arbitrary ratios which do not impair the transparency of the produced composite_body
  • a copolymer using a plurality of monomers includes a copolymer obtained by copolymerizing methyl (meth) acrylate and styrene, or a copolymer of (meth) acrylic acid and 2-hydroxymethyl acrylic acid.
  • Examples thereof include a copolymer obtained by polymerization and a copolymer obtained by copolymerizing ethylene and vinyl acetate.
  • a copolymer obtained by polymerization and a copolymer obtained by copolymerizing ethylene and vinyl acetate.
  • a plurality of polymers specifically, a combination of polymethyl methacrylate and polyvinyl acetate, a combination of polyhydroxymethacrylate 2-hydroxyethyl and polyvinyl alcohol, a combination of polymethyl methacrylate and polystyrene, A combination of polyvinyl acetate and poly (2-hydroxyethyl methacrylate) can be mentioned.
  • additives such as a plasticizer, an antioxidant, and a light stabilizer may be added to the polymer as necessary.
  • the presence state of tungstic acid or molybdic acid in the composite is uniform without using the polymer and tungstic acid or molybdic acid without using any other special material.
  • the weight ratio of the total amount of the polymer and tungstic acid is preferably 90% by weight or more, preferably 92% by weight or more, and 95% by weight or more. Particularly preferred.
  • the first production method of the composite of the present invention is a weight average having at least one selected from a heteropolyacid salt of tungstic acid and a heteropolyacid of molybdic acid and salts thereof, and at least one selected from an ether bond and an ester bond.
  • a raw material containing a polymer having a molecular weight of 1,000 to 10,000,000, liquid at room temperature having 1 to 3 carbonyl groups, a molecular weight of 34 to 300, and a boiling point of 250 ° C. or lower under normal pressure A step of dissolving the organic compound in a solvent to obtain a solution, and a step of distilling off the solvent from the solution.
  • the polymer used in the first production method is a polymer obtained by polymerizing one or more selected from the compound represented by the formula (I) and a polyfunctional acrylate having 2 or more functional groups, It is preferably at least one selected from the group consisting of polymers having one or more selected from ester bonds and ether bonds, polysaccharides and derivatives thereof. As these polymers, those described above can be used as appropriate.
  • the compound represented by the formula (I) such as the above (meth) acrylic acid or (meth) acrylic acid ester
  • Two or more (meth) acryloyl groups such as (meth) acrylic acid compounds, (meth) acrylamide derivatives such as N, N-dimethacrylamide, styrene compounds such as styrene, and ethylene glycol di (meth) acrylate
  • examples thereof include those obtained by polymerizing one or more selected from polyfunctional acrylates to be contained (polymer of monomer alone or copolymer of monomers). Any polymer that can be dissolved in a solution in which tungstic acid or the like is dissolved is used.
  • a second production method of the composite of the present invention comprises a raw material containing at least one selected from a heteropolyacid of tungstic acid and a salt thereof and a heteropolyacid of molybdic acid and a salt thereof, and a water-soluble polymer.
  • a water-soluble polymer can be used as the polymer constituting the complex.
  • An example of the water-soluble polymer is polyvinyl alcohol.
  • the third production method of the composite of the present invention comprises at least one selected from a heteropolyacid of tungstic acid and a salt thereof and a heteropolyacid of molybdic acid and a salt thereof, one hydroxyl group and / or one carbonyl group.
  • a raw material containing a polymer having a number average molecular weight of 1,000 to 10,000,000 having at least one selected from an ether bond and an ester bond is selected from alkyl halides having 1 to 3 carbon atoms and cyclic ethers.
  • the polysaccharide forming the complex is a polysaccharide-based polymer. Can be used.
  • a fourth method for producing the composite of the present invention at least one selected from a heteropolyacid of tungstic acid and a salt thereof and a heteropolyacid of molybdic acid and a salt thereof is dissolved in a polymerizable compound as a solvent to obtain a solution. And a step of polymerizing the polymerizable compound in the solution.
  • the polymerizable compound described above can be used as a solvent, and a complex with tungstic acid or the like can be produced by polymerizing it.
  • the polymerizable compound include compounds represented by the formula (I), and among them, those exemplified in the first production method can be preferably used.
  • the fifth production method of the composite of the present invention comprises at least one selected from the heteropolyacids of tungstic acid and salts thereof and the heteropolyacids of molybdic acid and salts thereof, comprising one hydroxyl group and / or one carbonyl group.
  • the above-described excellent composite can be obtained by a simple operation of impregnating a polymer such as a preformed film with a solution such as tungstic acid. There is no particular limitation on the impregnation time, but it usually takes 0.5 to 48 hours.
  • the polymer used in the fifth method the same polymers as those used in the first to fourth production methods described above can be used.
  • a solvent that dissolves the heteropolyacid of tungstic acid and its salt and the heteropolyacid of molybdic acid and its salt and dissolves the polymer Used.
  • the solvent used in the first production method of the composite of the present invention has one hydroxyl group or 1 to 3 carbonyl groups, a molecular weight of 34 to 300, and a boiling point of 250 ° C. or less under normal pressure. It is an organic compound that is liquid at room temperature. Such organic compounds can be efficiently dissolved in accordance with the type of polymer as described above. Such organic compounds, non-polymerizable compound and the polymerizable compound.
  • Non-polymerizable compounds include ester compounds, alcohol compounds, ketone compounds, lactone compounds, glycol monoether monoester compounds, glycol diester compounds, and amide compounds.
  • the solvent used in the second production method of the complex of the present invention is one or more selected from the alcohol compounds and water used in the first production method.
  • An embodiment in which an alcohol compound or water is used alone is preferable.
  • the weight ratio is usually 1: 9 to 9: 1.
  • about water, distilled water is used preferably from a viewpoint of improving the purity.
  • the same solvent as used in the first production method can be used as the one used for the preparation of the first solution.
  • One or more selected from alkyl halides having 1 to 3 carbon atoms and cyclic ethers can be used as the preparation of the second solution.
  • the polymerizable compound described above can be used, and the compound represented by the formula (I) is more preferably used, and (meth) acrylic acid. It is particularly preferable to use a (meth) acrylic compound such as methyl, (meth) acrylic acid or 2-hydroxyethyl methacrylate, or a (meth) acrylamide derivative such as vinyl acetate or N, N-dimethylacrylamide.
  • a (meth) acrylic compound such as methyl, (meth) acrylic acid or 2-hydroxyethyl methacrylate, or a (meth) acrylamide derivative such as vinyl acetate or N, N-dimethylacrylamide.
  • the solvent used in the fifth production method of the complex of the present invention can be the solvent used in the first production method, and an embodiment using an alcohol compound is preferable.
  • ester compounds include methyl formate, ethyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, amyl acetate, benzyl acetate, ethyl propionate, isobutyl isobutyrate, ethyl isovalerate, and butyl stearate.
  • Etc. can be illustrated.
  • ethyl acetate, butyl acetate, ethyl propionate, or isobutyl isobutyrate is particularly preferable because it is inexpensive.
  • Such an ester compound is preferably used to dissolve a polymer that does not dissolve in the following alcohol compound among the above polymers. Furthermore, it is preferably used for dissolving phosphotungstic acid and phosphomolybdic acid.
  • Examples of the alcohol compound include methanol, ethanol, 1-propanol, and 2-propanol. Such an alcohol compound is preferably used for dissolving a poly (meth) acrylic acid ester among the above polymers. Furthermore, it is preferably used for dissolving phosphotungstic acid and phosphomolybdic acid.
  • Examples of the ketone compound include aliphatic ketones and alicyclic ketones.
  • Examples of aliphatic ketones include acetone, methyl ethyl ketone, methyl propyl ketone, diethyl ketone, methyl n-butyl ketone, methyl isobutyl ketone, 2-heptanone, 4- Examples include heptanone, diisobutylketone, acetonylacetone, 2-octanone, and examples of the alicyclic ketone include cyclohexanone, methylcyclohexanone, and the like.
  • Such a ketone compound is preferably used for dissolving the above-mentioned polysaccharide or a derivative thereof, particularly an ester derivative.
  • lactone compound examples include ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone and ⁇ -valerolactone.
  • glycol diester compounds examples include ethylene glycol diacetate and propylene glycol diacetate.
  • glycol ester ether compounds include ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monobutyl ether acetate, and propylene glycol monomethyl ether acetate.
  • amide compounds include dimethylacetamide and methylpyrrolidone.
  • alkyl halide having 1 to 3 carbon atoms examples include dichloromethane, trichloromethane, tetrachloromethane and the like. These alkyl halides are preferably used for dissolving the above-mentioned polysaccharides or derivatives thereof, particularly ester derivatives. Tetrahydrofuran (THF) is preferably used as the cyclic ether, and other cyclic ethers can be used in combination with THF as the main component.
  • THF Tetrahydrofuran
  • 3-membered ring ethers such as ethylene oxide, propylene oxide, isobutylene oxide, epichlorohydrin, etc.
  • 4-membered ring ethers such as oxetane, 3,3-dimethyloxetane, 3-methyloxetane, 3,3-bis (chloromethyl) oxetane, methyltetrahydrofuran
  • a 5-membered cyclic ether such as 1,3-dioxolane may be used in combination.
  • a plurality of the non-polymerizable compounds used as the solvent in the present invention may be used.
  • Examples of such mixing include an embodiment in which an ester compound and an alcohol compound are mixed, and an embodiment in which ethyl acetate is used as the ester compound and methanol or ethanol is used as the alcohol compound.
  • the weight ratio of the ester compound and the alcohol compound is preferably 9: 1 to 2: 8 from the viewpoint of reliably dissolving the polymer and the tungstic acid.
  • examples of the polymerizable compound include compounds represented by the formula (I), vinyl ketone compounds, and glycidyl ester compounds.
  • the compound represented by the formula (I) include (meth) acrylic acid, (meth) acrylic acid ester such as 2-hydroxyethyl methacrylate, vinyl ether, vinyl ester and the like. These compounds may be the same as those used when polymerizing the polymer.
  • vinyl ester compounds include vinyl acetate, vinyl benzoate, vinyl propionate, vinyl octoate, vinyl hexenoate, vinyl dodecanoate, and vinyl behenate.
  • Examples of the vinyl ketone compounds include alkyl vinyl ketones having 1 to 10 alkyl carbon atoms. Specific examples thereof include methyl vinyl ketone, ethyl vinyl ketone, isopropyl vinyl ketone, butyl vinyl ketone, and t-butyl vinyl ketone. Can be mentioned. In addition, divinyl ketone, phenyl vinyl ketone, methyl isopropenyl ketone, isopropenyl vinyl ketone, isopropenyl phenyl ketone and the like can also be mentioned. Examples of the glycidyl ester compounds include glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, and glycidyl itaconate.
  • heteropolyacids of tungstic acid and molybdic acid include phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, and silicomolybdic acid, respectively.
  • hydrates may be used, or hydrates that have been dehydrated by heat treatment may be used.
  • heteropoly acid salt include potassium, sodium and ammonium salts of the above heteropoly acid. In the method for producing a composite of the present invention, it is preferable to use phosphotungstic acid as a heteropolyacid because of its solubility in a solvent.
  • the solvent is at least one selected from the polymer, the heteropolyacids of tungstic acid and molybdic acid, and salts thereof. (Hereinafter also simply referred to as tungstic acid or the like) to obtain a solution, or a solution obtained by dissolving a raw material containing the polymer in the solvent in advance and the tungstic acid or the like in the solvent.
  • the obtained solution can be mixed to obtain a solution of the material.
  • the solution of the material can be obtained by dissolving the polymer in an ester solvent such as ethyl acetate, dissolving tungstic acid or the like in an alcohol solvent such as methanol, and mixing them.
  • complex of this invention can be obtained by distilling off the said solvent from the solution obtained through the operation.
  • the evaporation of the solvent include drying and evaporation of the solvent by reduced pressure.
  • the ratio of the polymer having a number average molecular weight of 1,000 to 10,000,000 having one or more selected from the ether bond and the ester bond in the raw material containing the polymer Is usually 70% by weight or more, preferably 80% by weight or more, and particularly preferably 90% by weight or more.
  • the raw material may contain a plurality of the polymers.
  • the material containing the polymer examples include a polymer other than a polymer having a number average molecular weight of 1,000 to 10,000,000 having at least one selected from the ether bond and the ester bond, for example, Examples thereof include styrene resins and known surfactants.
  • the above-described polymer for example, a polymer obtained from the compound represented by the formula (I) and a polycarbonate resin can be mixed and used.
  • the polycarbonate resin is a polymer obtained by a phosgene method in which various dihydroxydiaryl compounds and phosgene are reacted, or a transesterification method in which a dihydroxydiaryl compound and a carbonic ester such as diphenyl carbonate are reacted.
  • Is a polycarbonate resin produced from 2,2-bis (4-hydroxyphenyl) propane (bisphenol A).
  • Examples of the polymer to be combined with such a polycarbonate resin include a polymer obtained by polymerizing the compound represented by the formula (I), and polymerizing a (meth) acrylic acid compound. Preferred examples include the resulting polymer.
  • the ratio between the polycarbonate resin and the polymer obtained by polymerizing the compound represented by the formula (I) and the polymer obtained by polymerizing the (meth) acrylic acid compound is not particularly limited. From the viewpoint of the transparency of the composite, for example, when the polycarbonate resin is set to 1, an embodiment that is 1 or more can be mentioned.
  • the concentration of the polymer and tungstic acid or the like in the solvent is about 1 to 15 wt% and Prepare a concentration of about 0.1 to 15% by weight.
  • the polymer concentration in each solution is about 5 to 20% by weight, and the tungstic acid concentration and the like. Is prepared to be about 10 to 80% by weight.
  • the plurality of polymers can be mixed well by adding an organic amine such as dicyclohexylamine or an inorganic base such as sodium hydroxide to the polymer solution.
  • an organic amine such as dicyclohexylamine
  • an inorganic base such as sodium hydroxide
  • the solvent used for the polymer solution and the tungstic acid solution may be the same or different.
  • a solvent used in the polymer solution water, an alcohol compound, a ketone compound, a specific alkyl halide or a cyclic ether is used according to the type of the polymer, and the solvent is used in the tungstic acid solution. It is also possible to use an ester compound, an alcohol compound or water as the solvent.
  • the tungstic acid or the like is prepared by dissolving the tungstic acid or the like in the polymerizable compound and polymerizing the polymerizable compound in the dissolved solution. And a polymer obtained by polymerizing the polymerizable compound are obtained. The ratio of the tungstic acid or the like to the polymerizable compound as the solvent is adjusted so that the tungstic acid or the like in the solution is usually 10 to 95% by weight.
  • a method for polymerizing the polymerizable compound in the solution a known method can be used, and examples of such a method include radical polymerization, cationic polymerization, and anionic polymerization.
  • a photopolymerization method can be used, and in this case, a known photopolymerization initiator can be used.
  • a plasticizer, antioxidant, and a light stabilizer can be used.
  • the polymerizable compound used as a solvent is preferably a compound selected from the compounds represented by the formula (I), vinyl ketone compounds, and glycidyl ester compounds. Among them, it is more preferable to use a compound represented by the formula (I), and a (meth) acrylic acid compound such as methyl (meth) acrylate, (meth) acrylic acid, 2-hydroxyethyl methacrylate, It is particularly preferable to use a (meth) acrylamide derivative such as vinyl acetate or N, N-dimethylacrylamide.
  • the film of the present invention comprises the composite of the present invention, and can be produced by distilling off the solvent from the solution containing the composite. When the solvent is distilled off after the solution is applied on the substrate, a uniform film can be obtained, which is preferable.
  • the film thickness is usually 0.05 to 100 ⁇ m.
  • the method for applying the solution containing the composite of the present invention to the substrate is not particularly limited, but spin coating, roll coating, slit coating, dipping, spray coating, gravure coating, reverse coating, rod coating Method, bar coating method, die coating method, kiss coating method, reverse kiss coating method, air knife coating method, curtain coating method and the like.
  • substrates to be applied include transparent glass substrates such as white plate glass, blue plate glass, silica-coated blue plate glass, quartz glass, sapphire glass, single crystal sapphire; polycarbonate, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin Sheet made of synthetic resin such as polyamideimide, polyimide, film or substrate; metal substrate such as aluminum plate, copper plate, nickel plate, stainless steel plate; other ceramic plate, silicon plate, GaN plate, SiN plate, SiC plate, GaAs plate, etc. Is included.
  • Examples of the method for distilling off the solvent from the applied solution include drying. The drying can be performed in an environment of room temperature to 300 ° C., more preferably in an environment of room temperature to 250 ° C. at which the polymer is not denatured. The reaction may be performed under reduced pressure (for example, 1 ⁇ 10 ⁇ 6 to 100 kPa).
  • the composite of the present invention may be annealed after its formation.
  • annealing refers to a treatment in which a molded composite is kept at an appropriate temperature (eg, 50 to 200 ° C.) for a predetermined time (eg, 5 to 120 minutes) and then slowly cooled.
  • an appropriate temperature eg, 50 to 200 ° C.
  • a predetermined time eg, 5 to 120 minutes
  • the hardness of the composite can be increased, and water resistance and solvent resistance can be increased.
  • a water-soluble polymer or a polymer that dissolves in an alcohol compound is used as the polymer, a more remarkable effect can be obtained.
  • the composite of the present invention can be used as a film as described above.
  • a solution obtained by dissolving the complex in an appropriate solvent, or a solution in which the above-described complex is formed is used as a PET.
  • It can also be used as an adhesive for bonding a plastic substrate such as glass, a substrate made of an inorganic material such as glass, a substrate made of metal, and the like.
  • an aspect that is a spherical particle (hereinafter also referred to as a particulate form) can be exemplified. Even when the composite of the present invention is in a particulate form, it is excellent in transparency and the refractive index can be adjusted to a desired range.
  • a diameter of 0.2 to 50 ⁇ m that can be confirmed with a scanning electron microscope or a diameter of about 200 ⁇ m can be obtained by appropriately changing the conditions during granulation of the particles.
  • Examples of the method for producing the particulate composite include the following methods.
  • the solvent is distilled off from the granulated particles after the step of granulating the solution.
  • a particulate composite can be obtained.
  • An example of such a process is a suspension evaporation method.
  • a surfactant may be used.
  • the specific procedure of the suspension evaporation method is as follows.
  • Examples of the step of granulating the solution include dropping the solution into a solvent in which the solution is insoluble and stirring.
  • a method of drying under reduced pressure can be mentioned.
  • silicone oil can be used as a solvent in which a solution obtained by dissolving tungstic acid or the like and the polymer is insoluble.
  • silicone oil a commercially available product can be used, and either an unmodified product or a modified product can be used.
  • unmodified silicone oil methyl silicone oil, dimethyl silicone oil, methylphenyl silicone oil, cyclic dimethyl silicone oil and the like can be used.
  • modified silicone oil include those of a double-end type, a single-end type, a side chain type, and a side chain both end type.
  • a highly polar solvent such as water can be used as a solvent insoluble in a solution in which tungstic acid or the like and the polymer are dissolved.
  • a granulated product is polymerized through a step of granulating the solution to obtain a composite.
  • Polymerization of the granulated product can be performed by heating in a solvent in which the granulated product is dispersed. After the polymerization, the remaining solvent is distilled off by drying under reduced pressure. Examples of such a method include suspension polymerization. In the suspension polymerization method, any additive can be used.
  • the transmission reduction rate of the composite is used as a method for expressing the transparency of the composite of the present invention.
  • the transmittance reduction rate is based on the transmittance at a specific wavelength (600 nm) of a polymer alone having a content of 0% by weight of tungstic acid, etc., and the transmittance reduction rate is expressed in percent notation (the following formula) reference).
  • Transmittance reduction rate (%) (T 0 ⁇ T 1 ) / T 0 ⁇ 100
  • T 0 transmittance of polymer alone (%)
  • T 1 Transmissivity (%) of the composite containing tungstic acid, etc.
  • the transmission reduction rate at the specific wavelength is 30% or less. In a preferred embodiment, it is 10% or less.
  • an embodiment in which the transmission reduction rate at the specific wavelength is 5% or less is also included.
  • the particulate composite is dispersed in a polymer having low compatibility with the polymer forming the composite, thereby dispersing the composite.
  • the function (desired refractive index) of the composite can be imparted to the polymer.
  • a desired refractive index can be imparted to the polycarbonate resin.
  • Example 1 (Production of composite and film) A polymethyl methacrylate having a number average molecular weight of 120,000 is dissolved in ethyl acetate to prepare a 10% by weight solution of polymethyl methacrylate, and phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 NH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%) was dissolved in ethyl acetate to prepare a 40 wt% solution of phosphotungstic acid. Both the obtained solutions were mixed, and a mixed solution was prepared so that the content of phosphotungstic acid was 0 to 92% by weight based on the total amount of the formed complex.
  • Example 2 to 4> Measurement of refractive index
  • phosphotungstic acid 26.5% by weight
  • polymethyl methacrylate 8.7% by weight
  • ethyl acetate phosphotungstic acid weight fraction: 71% by weight (tungstic acid) 68.6% by weight
  • 300 ⁇ L of this solution was cast on a 2.5 ⁇ 2.5 cm glass substrate and spin-coated at a rotational speed of 500, 1000, and 2000 rpm, and three types of film thicknesses (5.75 ⁇ m: Example 2, 3. A film of 97 ⁇ m: Example 3, 2.73 ⁇ m: Example 4) was produced.
  • a refractive index was measured at a measurement wavelength of 633 nm using a prism coupler (SPA-4000: Sairon Technology, Inc) and a glass substrate refractive index of 1.52.
  • SPA-4000 Sairon Technology, Inc
  • Table 1 the theoretical value of the refractive index was calculated according to the following formula (1). The following numerical values were used for the density and refractive index of tungstic acid and polymethyl methacrylate.
  • Examples 5 to 13> Measurement of transmittance
  • the content (wt%) of phosphotungstic acid in the ethyl acetate solution and the content of phosphotungstic acid in the total amount of the complex formed were 16 wt% (Example 5). ), 27 wt% (Example 6), 42 wt% (Example 7), 66 wt% (Example 8), 70 wt% (Example 9), 76 wt% (Example 10), 80 wt% (Example 11), 90% by weight (Example 12), and 92% by weight (Example 13).
  • films having phosphotungstic acid content (% by weight) of 0 and 100 were prepared to produce films.
  • the transmittance of each film was measured using an ultraviolet-visible spectrophotometer (V-560, JASCO Corporation). The results are shown in FIG.
  • Example 14 (Example using copolymer as polymer) A polystyrene-co-polymethyl methacrylate having a number average molecular weight of 150,000 (polystyrene content 40 mol%) was dissolved in ethyl acetate to prepare a 10 wt% solution, and phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 ] ⁇ nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%) dissolved in ethyl acetate, and 40 wt% of phosphotungstic acid A solution was prepared.
  • phosphotungstic acid 30 hydrate H 3 [PW 12 O 40 ] ⁇ nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%
  • Both solutions obtained were mixed, and a mixed solution was prepared so that the content of phosphotungstic acid was 50% by weight (48.3% by weight of tungstic acid) with respect to the total amount of the formed complex. did.
  • methanol was added to make the solution transparent.
  • a composite of polystyrene-co-polymethyl methacrylate and phosphotungstic acid is formed by dropping 100 ⁇ L of the prepared mixed solution onto a white glass substrate and spin-coating under the conditions of 1000 rpm and 20 sec.
  • a film consisting of The composite obtained by spin-coating the cloudy solution without adding methanol was also transparent.
  • Example 15 (Example 1 in which a polymer is mixed as a polymer) Polymethyl methacrylate having a number average molecular weight of 120,000 and polyvinyl acetate having a number average molecular weight of 100,000 are dissolved in ethyl acetate at a weight ratio of 1: 1, and 10% by weight (polymethyl methacrylate 5% by weight, polyvinyl acetate 5 Weight%) solution, and phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 ] .nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 Content: 81 mol%) was dissolved in ethyl acetate to prepare a 40 wt% solution of phosphotungstic acid.
  • a mixed solution was prepared so that the content of phosphotungstic acid was 50% by weight (48.3% by weight of tungstic acid) with respect to the total amount of the formed complex. did.
  • a composite of polymethyl methacrylate, polyvinyl acetate, and phosphotungstic acid is formed by dropping 100 ⁇ L of the prepared mixed solution onto a white glass substrate and spin coating at 1000 rpm for 20 seconds.
  • Example 16 (Example 2 in which a polymer is mixed as a polymer) A polyhydroxy 2-hydroxyethyl methacrylate having a number average molecular weight of 300,000 is dissolved in methanol to prepare a 10% by weight solution, a polyvinyl alcohol having a number average molecular weight of 25,000 is dissolved in distilled water to prepare a 1% by weight solution, Further, phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 ] .nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%) Dissolved in methanol to prepare a 40 wt% solution of phosphotungstic acid.
  • H 3 [PW 12 O 40 ] .nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol% Dissolved in methanol to prepare a 40 wt% solution of phosphotungstic
  • the obtained three kinds of solutions were mixed, and the polyphosphoric acid 2-hydroxyethyl and polyvinyl alcohol were mixed at a weight ratio of 2: 1, and the phosphotungstic acid content was 40 wt.
  • the mixed solution was prepared so that it might become% (38.6 weight% in tungstic acid amount). 100 ⁇ L of the prepared mixed solution is dropped onto a white glass substrate and spin-coated at 1000 rpm for 20 seconds to form a composite of 2-hydroxyethyl polymethacrylate, polyvinyl alcohol, and phosphotungstic acid. A film made of the composite could be produced.
  • Example 17 (Examples using polysaccharide derivatives as polymers) Cellulose triacetate was dissolved in dichloromethane to prepare a 3% by weight solution, and phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 ] .nH 2 O n ⁇ 30, Mw: 3421 (30 hydrate The theoretical value of the product), WO 3 content: 81 mol%) was dissolved in methanol to prepare a 40 wt% solution of phosphotungstic acid. Both solutions obtained were mixed, and a mixed solution was prepared so that the content of phosphotungstic acid was 60% by weight (58.0% by weight of tungstic acid) with respect to the total amount of the formed complex. did. 300 ⁇ L of the prepared mixed solution was dropped onto a white glass substrate and allowed to dry naturally, whereby a complex of cellulose triacetate and phosphotungstic acid was formed, and a film made of the complex could be produced.
  • phosphotungstic acid 30 hydrate H 3 [PW 12 O 40 ] .n
  • Example 18 (Example 1 using water-soluble polymer as polymer) Polyvinyl alcohol having a number average molecular weight of 25,000 is dissolved in distilled water to prepare a 1% by weight solution, and phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 ] ⁇ nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%) was dissolved in distilled water to prepare a 40 wt% solution of phosphotungstic acid. Both solutions obtained were mixed, and a mixed solution was prepared so that the content of phosphotungstic acid was 50% by weight (48.3% by weight of tungstic acid) with respect to the total amount of the formed complex. did.
  • Example 19 (Example 2 using water-soluble polymer as polymer) A polyacrylic acid having a number average molecular weight of 25,000 is dissolved in methanol to prepare a 10 wt% solution, and phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 ] ⁇ nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%) was dissolved in methanol to prepare a 40 wt% solution of phosphotungstic acid. Both solutions obtained were mixed, and a mixed solution was prepared so that the content of phosphotungstic acid was 50% by weight (48.3% by weight of tungstic acid) with respect to the total amount of the formed complex. did.
  • Example 20 (Example 3 using water-soluble polymer as polymer) A polyhydroxy 2-hydroxyethyl methacrylate having a number average molecular weight of 300,000 is dissolved in methanol to prepare a 10 wt% solution, and phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 ] ⁇ nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%) was dissolved in methanol to prepare a 40 wt% solution of phosphotungstic acid (in this case, phosphotungstic acid) Or a dehydrated product obtained by subjecting the 30 hydrate to heat treatment).
  • phosphotungstic acid 30 hydrate H 3 [PW 12 O 40 ] ⁇ nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%
  • Example 21 (Example 4 using water-soluble polymer as polymer) A polyethylene glycol having a number average molecular weight of 5,000 is dissolved in methanol to prepare a 10% by weight solution, and phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 ] ⁇ nH 2 O n ⁇ 30, Mw : 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%) was dissolved in methanol to prepare a 40 wt% solution of phosphotungstic acid. Both solutions obtained were mixed, and a mixed solution was prepared so that the content of phosphotungstic acid was 60% by weight (58.0% by weight of tungstic acid) with respect to the total amount of the formed complex. did.
  • Example 22 (Resin mixed system) ⁇ Polymethyl methacrylate / polystyrene mixed system 1> Phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 ] .nH 2 O n ⁇ 30, Mw: 3,421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%) Dissolved in ethyl acetate to prepare a 40 wt% solution of phosphotungstic acid. Dicyclohexylamine was added to the ethyl acetate solution of phosphotungstic acid in a molar ratio of 1: 1 and mixed.
  • an ethyl acetate mixed solution containing 7.5% by weight of polymethyl methacrylate having a number average molecular weight of 120,000 and 2.5% by weight of polystyrene having a number average molecular weight of 400,000 is used with respect to the total amount of the formed complex.
  • a mixed solution was prepared by adding phosphotungstic acid to a content of 50% by weight (48.3% by weight of tungstic acid). By dropping 300 ⁇ L of the prepared mixed solution onto a white glass substrate and allowing it to dry naturally, a complex of polymethyl methacrylate, polystyrene, dicyclohexylamine, and phosphotungstic acid is formed, and a film made of the complex is produced. did. The obtained composite film showed transparency.
  • Example 23> System using dimethylacetamide as solvent (amide solvent)
  • WO 3 content: 81 mol% was dissolved in dimethylacetamide to prepare 5 wt% solutions. These solutions were added so that the content of phosphotungstic acid was 50% by weight (48.3% by weight of tungstic acid) with respect to the total amount of the complex formed to prepare a mixed solution. 200 ⁇ L of the prepared mixed solution was dropped onto a white glass substrate and allowed to dry naturally, whereby a complex of polymethyl methacrylate and phosphotungstic acid was formed and a film composed of the complex could be produced.
  • Example 24> System using methyl ethyl ketone as solvent (ketone solvent)
  • WO 3 content: 81 mol% was dissolved in methyl ethyl ketone to prepare 5 wt% solutions. These solutions were added so that the content of phosphotungstic acid was 50% by weight (48.3% by weight of tungstic acid) with respect to the total amount of the complex formed to prepare a mixed solution. 200 ⁇ L of the prepared mixed solution was dropped onto a white glass substrate and allowed to dry naturally, whereby a complex of polymethyl methacrylate and phosphotungstic acid was formed and a film composed of the complex could be produced.
  • Example 25> System using ⁇ -butyrolactone as a solvent (lactone solvent)
  • WO 3 content: 81 mol% was dissolved in ⁇ -butyrolactone to prepare 5 wt% solutions. These solutions were added so that the content of phosphotungstic acid was 50% by weight (48.3% by weight of tungstic acid) with respect to the total amount of the complex formed to prepare a mixed solution. 200 ⁇ L of the prepared mixed solution was dropped onto a white glass substrate and allowed to dry naturally, whereby a complex of polymethyl methacrylate and phosphotungstic acid was formed and a film composed of the complex could be produced.
  • Example 26 Poly N-isopropylacrylamide polymer system
  • PolyN-isopropylacrylamide and phosphotungstic acid 30 hydrate H 3 [PW 12 O 40 ] .nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 Mol%) was dissolved in methanol to prepare 5 wt% solutions. These solutions were added so that the content of phosphotungstic acid was 50% by weight (48.3% by weight of tungstic acid) with respect to the total amount of the complex formed to prepare a mixed solution. 200 ⁇ L of the prepared mixed solution was dropped onto a white glass substrate and allowed to dry naturally, whereby a complex of poly N-isopropylacrylamide and phosphotungstic acid was formed and a film composed of the complex could be produced. .
  • Example 27> System using 2-ethylhexyl methacrylate as a solvent: Example using a polymerizable compound as a solvent
  • Polyhydrate 2-hydroxyethyl methacrylate having a number average molecular weight of 300,000 and phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 ] .nH 2 O n ⁇ 30, Mw: 3421 (theory of 30 hydrate Value), WO 3 content: 81 mol%) were dissolved in 2-ethylhexyl methacrylate to prepare 5 wt% solutions respectively.
  • Example 28> (System polymerized with 2-hydroxyethyl methacrylate) Phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 ] .nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%) was converted to methacrylic acid.
  • a 50% by weight solution was prepared by dissolving in 2-hydroxyethyl.
  • Add 0.5% by weight of azobisisobutyronitrile as a polymerization initiator to 2-hydroxyethyl methacrylate in phosphotungstic acid solution, and heat at 60 ° C. for 6 hours.
  • Example 29> ⁇ System polymerized with N, N-dimethylacrylamide> Phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 ] .nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%) in methanol Dissolved to prepare a 40 wt% solution of phosphotungstic acid.
  • the prepared solution of phosphotungstic acid in methanol was added so that the content of tungstic acid was 50% by weight (48.3% by weight of tungstic acid) with respect to the total amount of the complex, and azobisisobutyronitrile was used as a polymerization initiator.
  • Example 30 methyl methacrylate (Example 30), methacrylic acid (Example 31), ethyl acrylate (Example 32) as a monomer, and a mixture of methyl methacrylate and 2-hydroxyethyl methacrylate ( 1: 1: weight ratio)
  • Example 33 a film composed of a composite having a phosphotungstic acid content of 50% by weight (48.3% by weight of tungstic acid) with respect to the total amount of the composite was obtained. We were able to make it.
  • Example 34 (Example of polymer / metal salt composite by impregnation) Phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40 ] .nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%) in methanol Dissolved to prepare a 40 wt% solution of phosphotungstic acid. Polymethyl methacrylate was immersed in a methanol / water (10: 1) solution of phosphotungstic acid at room temperature for 1 day.
  • the polymethyl methacrylate / phosphotungstic acid composite containing 23% by weight of phosphotungstic acid (22.2% by weight of tungstic acid) was formed by taking out and washing the surface with methanol and drying ( The composite weight was confirmed by thermogravimetric analysis).
  • Example 35> (Production of particulate composite: suspension evaporation method) 2.7 g of polymethyl methacrylate having a number average molecular weight of 120,000 and 30 hydrate of phosphotungstic acid (H 3 [PW 12 O 4 0] ⁇ nH 2 O n ⁇ 30, Mw: 3421 (30 hydrate Theoretical value), WO 3 content: 81 mol%) 2.7 g, one-end silaplane (FM-DA11, Azumax) 3.0 g, and water 0.5 g were dissolved in methanol 25 g to obtain a composite solution.
  • H 3 [PW 12 O 4 0] ⁇ nH 2 O n ⁇ 30, Mw: 3421 (30 hydrate Theoretical value), WO 3 content: 81 mol%) 2.7 g, one-end silaplane (FM-DA11, Azumax) 3.0 g, and water 0.5 g were dissolved in methanol 25 g to obtain a composite solution.
  • This composite solution was added to 300 mL of dimethyl silicone oil (Shin-Etsu Chemical KF-968-100CS) and granulated by stirring at room temperature and 300 rpm for 30 minutes. Thereafter, the mixture was stirred in an oil bath at 40 ° C. for 3 hours. The solution was collected by centrifugation (5000 rpm) and washed twice with n-hexane. By drying under reduced pressure, a complex of polymethyl methacrylate and phosphotungstic acid was formed, and colorless and transparent particles composed of the complex could be produced.
  • dimethyl silicone oil Shin-Etsu Chemical KF-968-100CS
  • Example 36 ⁇ Production of particulate composite: suspension polymerization method> 2.5 g of methyl methacrylate and 2.5 g of ethylene glycol dimethacrylate, 30 hydrate of phosphotungstic acid (H 3 [PW 12 O 4 0] ⁇ nH 2 O n ⁇ 30, Mw: 3421 (30 hydrate Theoretical value), WO 3 content: 81 mol%) 5.0 g, and 0.05 g of azobisisobutyronitrile as an initiator were mixed to obtain a composite solution. This composite solution was added to 100 mL of dimethyl silicone oil (Shin-Etsu Chemical KF-968-100CS), and the mixture was granulated by stirring at 40 ° C.
  • dimethyl silicone oil Shin-Etsu Chemical KF-968-100CS
  • Example 37 ⁇ Preparation of composite using phosphomolybdic acid> A polymethyl methacrylate having a number average molecular weight of 120,000 is dissolved in ethyl acetate to prepare a 10% by weight solution, and a phosphomolybdic acid hydrate (H 3 [PMo 12 O 40 ] ⁇ nH 2 O n ⁇ 30, Mw: 2366 (theoretical value of 30 hydrate), MoO 3 content: 73 mol%) was dissolved in methanol to prepare a 50 wt% solution of phosphomolybdic acid. Both the obtained solutions were mixed, and a mixed solution was prepared so that the concentration of phosphomolybdic acid was 50% by weight with respect to the total amount of the formed complex.
  • a phosphomolybdic acid hydrate H 3 [PMo 12 O 40 ] ⁇ nH 2 O n ⁇ 30, Mw: 2366 (theoretical value of 30 hydrate), MoO 3 content: 73 mol%
  • Example 38> ⁇ Preparation of complex using sodium phosphotungstate> A polyhydroxy 2-hydroxyethyl methacrylate having a number average molecular weight of 300,000 was dissolved in methanol to prepare a 10 wt% solution, and sodium phosphotungstate 30 hydrate (Na 3 [PW 12 O 4 0] .nH 2 O n ⁇ 30, Mw: 3486 (theoretical value of 30 hydrate), WO 3 content: 83 mol%) was dissolved in methanol to prepare a 50 wt% solution of sodium phosphotungstate. Both the obtained solutions were mixed, and a mixed solution was prepared so that the concentration of sodium phosphotungstate was 50% by weight with respect to the total amount of the formed complex. 100 ⁇ L of the prepared mixed solution is dropped onto a white glass substrate and spin-coated under the conditions of 1000 rpm and 20 sec, whereby a composite of polyhydroxy 2-methacrylic acid and sodium phosphotungstate is formed.
  • Example 39 ⁇ Production of composite using silicotungstic acid> Poly 2-hydroxyethyl methacrylate having a number average molecular weight of 300,000 to prepare a 10 wt% solution dissolved in methanol, 26 hydrate of silicotungstic acid (H 4 [SiW 12 O 4 0] ⁇ nH 2 O n ⁇ 26, Mw: 3316 (theoretical value of 26 hydrate), WO 3 content: 84 mol%) was dissolved in methanol to prepare a 50 wt% solution of silicotungstic acid. Both obtained solutions were mixed, and each mixed solution was prepared so that the concentration of silicotungstic acid was 30, 50, and 70% by weight with respect to the total amount of the formed polymer.
  • Example 40 ⁇ Example of Photopolymerization as Polymerization Method: Photopolymerization of Methyl Methacrylate> Phosphotungstic acid 30 hydrate (H 3 [PW 12 O 40] ⁇ nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%) was converted to methacrylic acid 2 -Dissolved in hydroxyethyl to prepare a 50 wt% solution.
  • Phosphotungstic acid 30 hydrate H 3 [PW 12 O 40] ⁇ nH 2 O n ⁇ 30, Mw: 3421 (theoretical value of 30 hydrate), WO 3 content: 81 mol%) was converted to methacrylic acid 2 -Dissolved in hydroxyethyl to prepare a 50 wt% solution.
  • the above-described transmission reduction rate was less than 10%.
  • the refractive index of various composites composed of commonly used polymers such as methyl poly (meth) acrylate and polyvinyl acetate can be adjusted within an arbitrary width.
  • the body is a microlens array such as a CCD or C-MOS sensor, a light scattering layer for illumination or display, a light emitting element such as an organic EL or LED, a semiconductor laser, a display, solar power generation, an antireflection layer (film) for an optical filter , Optical waveguide resists, display elements using photonic structures, light confinement materials for DBR or DFB type laser elements, or scatterers of random type laser oscillation elements, spectral filters, bandpass filters, etc. Be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

タングステン酸及び/またはモリブデン酸と高分子との複合体を容易に製造するための方法と、その方法により得られ、高い透明性と、所望の屈折率を有する複合体を提供する。タングステン酸及びモリブデン酸から選ばれる1種以上と、エーテル結合及びエステル結合から選ばれる1種以上を有する数平均分子量1,000~10,000,000の高分子を含む複合体であって、前記複合体におけるタングステン酸及びモリブデン酸から選ばれる1種以上の含有量が0.01~95重量%である、複合体。

Description

タングステン酸及び/又はモリブデン酸と高分子との複合体
 本発明は、タングステン酸及び/又はモリブデン酸と高分子との複合体の製造方法と、その製造方法により得られる複合体に関する。
 屈折率は物質の特性の一つであり、構成元素、分子構造、結晶構造、荷電に大きく影響され、その変調は容易ではない。通常、高分子の屈折率は1.4~1.6付近に限られ、無機材料の0.17(銀)~4.2(シリコン)に比べてバリエーションに欠ける。これは、高分子の主成分が原子屈折の低い炭素を主成分としているためである。しかし、高分子の成形性や軽量性を利用するため、レンズ等の用途では、硫黄原子や臭素原子を導入する等の分子設計により高屈折率化が行われている。また、機能性を有する高分子の屈折率変調は、構成元素の組み替えでは達成できないので、高屈折率を有する金属酸化物微粒子(例えばアルミナ(例えば特許文献1参照)やチタニアやジルコニア)との複合化により行われるが、透明性を高めるために数nmサイズの金属酸化物微粒子を均一に分散させる必要があり、その操作は容易ではない。
 近年活発に研究開発が進められている有機EL、LED照明、またはレーザー素子では、生成する光を効率良く取り出したり、または閉じ込めたりする必要があるため、これらに用いる光学素材の屈折率は重要な要素となる。前記の光学デバイスでは、薄層や複雑な形状に微細な加工が要求されており、このような光学デバイスに適用する高分子としては、フォトレジストのような高分子が適している。
特開平9-221598号公報
 本発明は、上記のような課題を解決するためになされたものであり、タングステン酸及び/またはモリブデン酸と高分子との複合体を容易に製造するための方法と、その方法により得られ、高い透明性と、所望の屈折率を有する複合体を提供する。
 上記のような状況の中、高分子において、その屈折率を変調する方法としては、上記のように高分子の構成元素にハロゲン原子、硫黄原子の他、芳香族環を導入する方法が挙げられる。この方法によれば、単一で透明な物質が得られ、量産化が可能である。その一方で、この方法では、その分子設計が困難であり、屈折率以外の機能化が困難であり、また、その経時劣化が大きく、屈折率異方性が生じやすいという問題がある。
 また、高分子と金属酸化物微粒子との複合体とすることで、その屈折率を変調する方法としては、高分子に、高分子と屈折率が異なる金属酸化物微粒子を混合して、高分子中に金属酸化物微粒子を分散させる方法が挙げられる。この方法によれば、用いる高分子の機能性を保持でき、その屈折率の変調幅を任意で調整することが可能である。一方、この方法による場合には、高分子中に金属酸化物微粒子を均一に分散させることが困難であり、用いる高分子の性質によっては、この方法を適用することができないという欠点がある。
 本発明は、上記のような課題を解決するためになされたものであり、本発明者は、従来有機溶媒には不溶であると考えられていたリンタングステン酸等が、酢酸エチル、メタノール等の特定の溶媒に容易に溶解することを偶然に見出した。そして、同溶媒に溶解する高分子を、リンタングステン酸等とともに溶解させて得られた溶液から、溶媒を留去または固化して得られる複合体及びその複合体からなるフィルムが、高い透明性を有するとともに、タングステン酸等の含有量に応じて、任意の屈折率を有することを見出した。
 さらに、本発明者は、リンタングステン酸等の溶解液に、成形されたフィルムのような高分子を浸漬することによって得たものも、同様に高い透明性を有するとともに、タングステン酸等の含有量に応じて、任意の屈折率を有することを見出した。
 本発明はこのような状況下なされたものであり、タングステン酸及び/またはモリブデン酸と高分子との複合体を容易に製造する方法と、その方法により得られ、構成する高分子の機能が保持され、高い透明性と所望の屈折率を有する複合体を提供する。
 なお、本発明でいう高い透明性を有するとは、高分子がもともと有する特定波長における透過率が、タングステン酸及び/またはモリブデン酸との複合体を形成した後でも、大きく減少しない、すなわち透過減少率が小さいこと意味する。金属塩が微粒子として存在していた従来技術では、このような小さい透過減少率を達成させることは困難であった。
 すなわち、本発明は以下のとおりである。
[1] タングステン酸及びモリブデン酸から選ばれる1種以上と、エーテル結合及びエステル結合から選ばれる1以上を有する数平均分子量1,000~10,000,000の高分子を含む複合体であって、前記複合体におけるタングステン酸及びモリブデン酸から選ばれる1種以上の含有量が0.01~95重量%である、複合体。
[2]前記複合体における、前記高分子とタングステン酸及びモリブデン酸から選ばれる1種以上の合計量の重量割合が、90重量%以上である、[1]に記載の複合体。
[3] 前記高分子が、下記式(I)で表される化合物及び官能基数が2以上の多官能アクリレートから選ばれる1種以上を重合して得られる重合体であって、エステル結合及びエーテル結合から選ばれる1以上を有する重合体、多糖及びその誘導体からなる群から選ばれる1種以上である、[1]または[2]に記載の複合体。
Figure JPOXMLDOC01-appb-C000005
(式(I)中、Xは単結合、-O-、-COO-、-OCO-、-CONR3-または-NHCO-で表される結合基を表し、R1及びR3は、それぞれ独立して、水素、任意の水素がヒドロキシル基で置換されていてもよい炭素数1~18のアルキル基、炭素数1~18のアルケニル基または任意の水素がメチル基で置換されていてもよい炭素数6~18のアリール基、炭素数7~18のアラルキル基、炭素数3~18の複素環基、炭素数3~18の脂環式炭化水素基、重合度2~20のポリエチレンオキサイドまたはグリシジル基を表し、R2は、水素またはメチルを表し、R1及びR3はエーテル結合を介して結合してもよい。)
[4] 前記式(I)で表される化合物が、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ノルボルニル及び(メタ)アクリル酸ベンジル、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシエチル、スチレン及びビニルアセテートから選ばれる1種以上である、[3]に記載の複合体。
[5] 前記1分子中の官能基数が2以上の多官能アクリレートが、メチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート及びトリメチロールプロパントリ(メタ)アクリレートから選ばれる1以上である、[3]に記載の複合体。
[6] 前記高分子が、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸、ポリ酢酸ビニル、ポリビニルアルコール、ポリスチレン-co-ポリメタクリル酸メチル及びポリメタクリル酸2-ヒドロキシエチル、三酢酸セルロースから選ばれる1種以上である、[1]または[2]に記載の複合体。
[7] 粒子状またはフィルム状の形態である、[1]~[6]のいずれかに記載の複合体。
[8] 前記複合体の透過減少率が10%以下である、[1]~[7]のいずれかに記載の複合体。
[9] タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上と、エーテル結合及びエステル結合から選ばれる1以上を有する数平均分子量1,000~10,000,000の高分子とを含む原料を、水酸基を1個および/またはカルボニル基を1~3個有し、分子量が34~300であり、常圧下における沸点が250℃以下である常温で液体の有機化合物から選ばれる一種以上からなる溶媒に溶解させて溶解液を得る工程と、前記溶解液から前記溶媒を留去する工程を含む、タングステン酸及びモリブデン酸から選ばれる1種以上と前記高分子を含む原料との複合体の製造方法。
[10] 前記原料が、下記式(I)で表される化合物から選ばれる1種以上を重合して得られる重合体であって、エステル結合及びエーテル結合から選ばれる1以上を有する重合体を含む、[9]に記載の方法。
Figure JPOXMLDOC01-appb-C000006
(式(I)中、Xは単結合、-O-、-COO-、-OCO-、-CONR3-または-NHCO-で表される結合基を表し、R1及びR3は、それぞれ独立して、水素、任意の水素がヒドロキシル基で置換されていてもよい炭素数1~18のアルキル基、炭素数1~18のアルケニル基または任意の水素がメチル基で置換されていてもよい炭素数6~18のアリール基、炭素数7~18のアラルキル基、炭素数3~18の複素環基、炭素数3~18の脂環式炭化水素基、重合度2~20のポリエチレンオキサイド、またはグリシジル基を表し、R2は、水素またはメチルを表し、R1及びR3はエーテル結合を介して結合してもよい。)
[11] 前記重合体が、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸、ポリ酢酸ビニルから選ばれる1種以上である、[9]または[10]に記載の方法。
[12] 前記溶解液から溶媒を留去する工程が、前記溶解液を塗布した基材上で行われる、[9]~[11]のいずれかに記載の方法。
[13] 前記溶媒がエステル系化合物、アルコール系化合物、ケトン系化合物、ラクトン系化合物、グリコールモノエーテルモノエステル系化合物及びグリコールジエステル系化合物から選ばれる1種以上の化合物である、[9]~[12]のいずれかに記載の方法。
[14] 前記溶媒が酢酸エチル、メタノール及びエタノールから選ばれる1種以上である、[9]~[13]のいずれかに記載の方法。
[15] 前記溶解液を得る工程と、前記溶解液から前記溶媒を留去する工程の間に、前記溶解液を造粒する工程を含む、[9]~[14]のいずれかに記載の方法。
[16]タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上と、水溶性高分子とを含む原料を、水およびアルコール系化合物から選ばれる1以上に溶解させて溶解液を得る工程と、前記溶解液から前記溶媒を留去する工程を含む、タングステン酸及びモリブデン酸から選ばれる1種以上と前記水溶性高分子を含む原料との複合体の製造方法。
[17] 前記水溶性高分子が、ポリビニルアルコールである、[16]に記載の製造方法。
[18] 前記溶解液を得る工程と、前記溶解液から前記溶媒を留去する工程の間に、前記溶解液を造粒する工程を含む、[16]または[17]に記載の方法。
[19]タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上を、水酸基を1個および/またはカルボニル基を1~3個有し、分子量が34~300であり、常圧下における沸点が250℃以下である常温で液体の有機化合物から選ばれる一種以上からなる溶媒に溶解させて第一の溶解液を得る工程と、エーテル結合及びエステル結合から選ばれる1以上を有する数平均分子量1,000~10,000,000の高分子とを含む原料を、炭素数1~3のハロゲン化アルキル及び環状エーテルから選ばれる1以上からなる溶媒に溶解させて第二の溶解液を得る工程と、前記第一の溶解液と第二の溶解液を混合し、混合後の溶解液から前記溶媒を留去する工程を含む、タングステン酸及びモリブデン酸から選ばれる1種以上と前記高分子を含む原料との複合体の製造方法。
[20]前記第一の溶解液を構成する溶媒がエステル系化合物およびアルコール系化合物から選ばれる1以上であり、前記第二の溶解液を構成する溶媒がジクロロメタン及びトリクロロメタンから選ばれる1以上であり、前記高分子が多糖またはその誘導体である、[19]に記載の製造方法。
[21]前記多糖またはその誘導体が、三酢酸セルロースである、[20]に記載の製造方法。
[22] 前記溶解液を得る工程と、前記第一の溶解液と第二の溶解液の混合する工程と、混合後の溶解液から前記溶媒を留去する工程の間に、前記混合後の溶解液を造粒する工程を含む、[19]~[21]のいずれかに記載の方法。
[23] タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上を、溶媒としての重合性化合物に溶解させて溶解液を得る工程と、前記溶解液中の重合性化合物を重合させる工程を含む、タングステン酸及びモリブデン酸から選ばれる1種以上と、前記重合性化合物の重合体と、からなる複合体の製造方法。
[24] 前記重合性化合物が、下記式(I)で表される化合物、ビニルケトン系化合物及びグリシジルエステル系化合物から選ばれる化合物である、[23]に記載の方法。
Figure JPOXMLDOC01-appb-C000007
(式(I)中、Xは単結合、-O-、-COO-、-OCO-、-CONR3-または-NHCO-で表される結合基を表し、R1及びR3は、それぞれ独立して、水素、任意の水素がヒドロキシル基で置換されていてもよい炭素数1~18のアルキル基、炭素数1~18のアルケニル基または任意の水素がメチル基で置換されていてもよい炭素数6~18のアリール基、炭素数7~18のアラルキル基、炭素数3~18の複素環基、炭素数3~18の脂環式炭化水素基、重合度2~20のポリエチレンオキサイド、またはグリシジル基を表し、R2は、水素またはメチルを表し、R1及びR3はエーテル結合を介して結合してもよい。)
[25] 前記重合性化合物が、前記式(I)で表される化合物である、[24]に記載の方法。
[26] 前記溶解液を得る工程と、前記溶解液中の重合性化合物を重合させる工程の間に、前記溶解液を造粒する工程を含む、[23]~[25]のいずれかに記載の方法。
[27] タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上を、水酸基を1個および/またはカルボニル基を1~3個有し、分子量が34~300であり、常圧下における沸点が250℃以下である常温で液体の有機化合物から選ばれる一種以上からなる溶媒に溶解させて溶解液を得る工程と、該溶解液に、エーテル結合及びエステル結合から選ばれる1種以上を有する数平均分子量1,000~10,000,000の高分子を浸漬する工程と、浸漬後の溶解液から前記溶媒を留去する工程を含むタングステン酸及びモリブデン酸から選ばれる1種以上と前記高分子を含む原料との複合体の製造方法。
[28] 前記高分子が、下記式(I)で表される化合物であり、前記溶媒がアルコール系化合物である、[27]に記載の製造方法。
Figure JPOXMLDOC01-appb-C000008
(式(I)中、Xは単結合、-O-、-COO-、-OCO-、-CONR3-または-NHCO-で表される結合基を表し、R1及びR3は、それぞれ独立して、水素、任意の水素がヒドロキシル基で置換されていてもよい炭素数1~18のアルキル基、炭素数1~18のアルケニル基または任意の水素がメチル基で置換されていてもよい炭素数6~18のアリール基、炭素数7~18のアラルキル基、炭素数3~18の複素環基、炭素数3~18の脂環式炭化水素基、重合度2~20のポリエチレンオキサイド、またはグリシジル基を表し、R2は、水素またはメチルを表し、R1及びR3はエーテル結合を介して結合してもよい。)
[29]
 前記高分子が、粒子状またはフィルム状の形態である、[27]または[28]に記載の製造方法。
[30] [9]~[29]のいずれかに記載の製造方法により得られる複合体。
 本発明によれば、タングステン酸及び/またはモリブデン酸と、高分子との複合体を容易に得るための製造方法が提供されるとともに、その方法により製造され、高い透明性と所望の屈折率を有する複合体を提供することができる。
複合体におけるタングステン酸の含有量と、屈折率(理論値)の関係を示す図である。 本発明の複合体(フィルム)の光透過率を表す図である。 本発明の複合体(実施例1のポリメタクリル酸メチルとリンタングステン酸の複合体(フィルム:膜厚5μm))における、タングステン酸の含有量と透過減少率の関係を示す図である。 本発明の複合体(粒子状:実施例36のポリメタクリル酸メチル、リンタングステン酸の複合体)の走査型電子顕微鏡写真(a)と、光学顕微鏡写真(b)である。
 本発明の複合体は、タングステン酸及びモリブデン酸から選ばれる1種以上と、エーテル結合及びエステル結合から選ばれる1種以上を有する数平均分子量1,000~10,000,000の高分子を含む複合体であって、前記複合体におけるタングステン酸及びモリブデン酸から選ばれる1種以上の含有量が0.01~95重量%であることを特徴とする。
 本発明の複合体では、タングステン酸及びモリブデン酸から選ばれる1種以上は粒子として存在しているものではなく、本発明の複合体は固溶体を形成しているものである。なお、本発明でいう固溶体とは、タングステン酸等が複合体において粒子としてではなく均一に存在しているものである。
<タングステン酸及びモリブデン酸>
 本発明の複合体には、タングステン酸及び/またはモリブデン酸が複合体の全量に対して0.01~95重量%存在する。
 このときの存在状態は、複合体において、ほぼ均一の割合で存在していることが考えられる。
 なお、本発明でいうタングステン酸とは、三酸化タングステン(WO3)を意味し、モリブデン酸とは、三酸化モリブデンMoO3を意味する。
 複合体中のタングステン酸とモリブデン酸の重量%は、示差熱熱重量分析(TG-DTA)を用い、酸素存在下で550℃まで加熱した際の重量残率測定によって求めることができる。
 本発明の複合体におけるタングステン酸及びモリブデン酸から選ばれる1種以上の含有量は0.01~95重量%である。この重量%は80重量%以下であることが、複合体から得られるフィルムの光透過性の観点からより好ましい。
 本発明の複合体がこのような重量%を有することで、膜として得る複合体の良好な光透過率を得つつ、屈折率を所望のものに調整できる。
 本発明の複合体において、タングステン酸及びモリブデン酸の含有量は、後述する複合体の製造方法において、溶媒に溶解させるタングステン酸及びモリブデン酸から選ばれる1種以上のヘテロポリ酸塩の濃度を調整することで、調整できる。
 タングステン酸やモリブデン酸はそれぞれ単独で複合体に含まれていてもよく、それらの2種が含まれていてもよい。
 タングステン酸とモリブデン酸の2種を複合体に含有させる場合には、それらのモル比がタングステン酸:モリブデン酸=1:9~9:1の割合で含有させる態様を挙げることができる。
<高分子>
 本発明の複合体を構成する原料に含まれる高分子は、エーテル結合及びエステル結合から選ばれる1以上を有する数平均分子量1,000~10,000,000の高分子である。
 なお、本発明の複合体を構成する原料に含まれる上記のエーテル結合及びエステル結合から選ばれる1以上を有する数平均分子量1,000~10,000,000の高分子の割合は、複合体における高分子の全量に対して通常20重量%以上であり、30重量%以上であることが好ましく、50重量%以上であることが特に好ましい。
 エーテル結合及びエステル結合から選ばれる1以上を有し、上記の数平均分子量を有する高分子であることで、前記溶媒に溶解させることができ、形成される複合体において、タングステン酸及び/またはモリブデン酸が微小かつ均一に存在することにより透明性を示すようになる。
 前記高分子は、後述する溶媒への溶解性と、得られる複合体からなるフィルムの透明性に加え、複合体作成時のハンドリング性を良好にする観点から、数平均分子量は2,000~5,000,000であるものがより好ましく、5,000~3,000,000であるものがさらに好ましい。
 本発明の複合体を構成する高分子は、下記式(I)で表される化合物及び官能基数が2以上の多官能アクリレートから選ばれる1種以上を重合して得られる重合体であって、エステル結合及びエーテル結合から選ばれる1以上を有する重合体であることがより好ましい。
 下記式(I)で表される化合物や官能基数が2以上の多官能アクリレートから選ばれる1種以上を重合して得られ、エーテル結合やエステル結合を分子中に有する重合体を用いると、この重合体は金属イオンと錯形成可能になることから、複合体中に前記タングステン酸等が均一に存在するようになる。
 本発明でいう数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)測定により求められたポリスチレン換算の分子量である。
Figure JPOXMLDOC01-appb-C000009
(式(I)中、Xは単結合、-O-、-COO-、-OCO-、-CONR3-または-NHCO-で表される結合基を表し、R1及びR3は、それぞれ独立して、水素、任意の水素がヒドロキシル基で置換されていてもよい炭素数1~18のアルキル基、炭素数1~18のアルケニル基または任意の水素がメチル基で置換されていてもよい炭素数6~18のアリール基、炭素数7~18のアラルキル基、炭素数3~18の複素環基、炭素数3~18の脂環式炭化水素基、重合度2~20のポリエチレンオキサイド、またはグリシジル基を表し、R2は、水素またはメチルを表し、R1及びR3はエーテル結合を介して結合してもよい。)
 前記式(I)で表される化合物としては、(メタ)アクリル酸、(メタ)アクリル酸エステル(以下、これらを総称して(メタ)アクリル酸系化合物ともいう)、ビニルエーテル、ビニルエステル等が挙げられる。
 なお、本発明でいう「(メタ)アクリル酸」は、アクリル酸及びメタクリル酸の総称であり、いずれか一方又は両方を意味する。
 (メタ)アクリル酸エステルとして、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリルなどの(メタ)アクリル酸脂肪族炭化水素(たとえば炭素数が1以上18以下のアルキル)エステル;(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ノルボルニル、(メタ)アクリル酸イソボルニルなどの(メタ)アクリル酸脂環式炭化水素エステル;(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイルなどの(メタ)アクリル酸芳香族炭化水素エステル;(メタ)アクリル酸ベンジルなどの(メタ)アクリル酸アラルキルエステルが挙げられる。
 ビニルエーテルとして、メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシエチルビニルエーテル、およびヒドロキシブチルビニルエーテル等が挙げられる。
 ビニルエステルとして、ビニルアセテート、ビニルプロピオネート、およびビニルシンナメート等が挙げられる。
 式(I)で表される化合物のうち、(メタ)アクリル酸や(メタ)アクリル酸エステルを用いることが、得られる高分子の溶媒への溶解性の観点から好ましい。
(メタ)アクリル酸エステルのうち、コストおよび入手しやすさの点から、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ノルボルニル、(メタ)アクリル酸ベンジル、ビニルアセテートが好ましい。
 式(I)で表される別の化合物としては、(メタ)アクリルアミド誘導体が挙げられる。
(メタ)アクリルアミド誘導体としては、(メタ)アクリルアミド、アルキルの炭素数が1~5のN置換低級アルキル(メタ)アクリルアミドや、アリールの炭素数が6~18のN置換アリール(メタ)アクリルアミドや、アラルキルの炭素数が7~18のN置換アラルキル(メタ)アクリルアミド、複素環の炭素数が4~5のN置換複素環(メタ)アクリルアミドが挙げられる。N置換低級アルキル(メタ)アクリルアミドの具体例としてN-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、前記N置換複素環(メタ)アクリルアミドとしてN-アクリロイルモルホリン等が挙げられる。
 このような(メタ)アクリルアミド誘導体のうち、好ましく用いられるのは、N,N-ジメチルアクリルアミド、N-アクリロイルモルホリン、N-イソプロピルアクリルアミドである。
 また、式(I)で表される化合物として、式(I)中のR1が、グリシジル基である(メタ)アクリル酸グリシジルを挙げることもできる。
 式(I)で表される別の化合物としては、式(I)中、Xが単結合で、R1が、任意の水素がメチルで置換されてもよいフェニルであるスチレン系化合物が挙げられる。スチレン系化合物の具体例としては、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレンが挙げられる。この中では、スチレンが好ましく用いられる。このスチレン系化合物は、単独で重合させるよりも、上述したエーテル結合やエステル結合から選ばれる1以上を有する高分子を形成するための化合物と共重合させたり、スチレン系化合物の単独重合体と、上述したエーテル結合やエステル結合から選ばれる1以上を有する高分子を形成するための化合物から得られる重合体と混合して複合体の原料として用いることが好ましい。
 1分子中に(メタ)アクリロイル基を2個以上含む多官能アクリレートとして、具体的には、メチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等が挙げられ、また上記化合物のアルキル変性(メタ)アクリレート、またはカプロラクトン変性(メタ)アクリレート、またはエチレンオキサイド変性(メタ)アクリレート、プロピレンオキサイド変性(メタ)アクリレートや、上記以外の脂肪族ポリオールの(メタ)アクリレート等が挙げられる。また、トリス((メタ)アクリロキシエチル)イソシアヌレート、カプロラクトン変性トリス((メタ)アクリロキシエチル)イソシアヌレート等が挙げられる。
 これらの中で好ましいのは、エチレングリコールジメタクリレート、ジペンタエリスリトールヘキサメタクリレート、トリメチロールプロパントリメタクリレートである。
 <重合法>
 本発明の複合体を構成する高分子のうち、前記式(I)で表される化合物及び官能基数が2以上の多官能アクリレートから選ばれる1種以上を重合して得られる重合体であって、エステル結合及びエーテル結合から選ばれる1以上を有する重合体は、前記式(I)で表される化合物及び前記1分子中に(メタ)アクリロイル基を2個以上含む多官能アクリレートから選ばれる1種以上の化合物のうち、少なくともエステル結合あるいはエーテル結合を分子中で生じさせるものを1種以上選択して、それを(共)重合することによって得ることができる。
 前述した化合物を適宜組み合わせ、重合して得られる高分子がレジスト材料として用いられるものであってもよい。
 重合方法としては、公知の方法を挙げることができ、用いるモノマーに応じて、例えばラジカル重合、カチオン重合、アニオン重合等の方法を用いることができる。
 前記重合方法で得られる高分子のうち、特に好ましく用いられるものは、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸ブチル、ポリ(メタ)アクリル酸ノルボルニル、ポリ(メタ)アクリル酸ベンジル、ポリ酢酸ビニルである。なお、上記高分子のうち、ポリ酢酸ビニルについては、重合させて得た後にケン化処理を行うことによって、ポリビニルアルコールに変換したものも好ましく用いることができる。さらに、上記以外の高分子として、上記の数平均分子量の範囲のポリエチレングリコールを用いることもできる。
 なお、本発明でいう水溶性高分子とは、水への溶解度が、40℃の水100gに0.5g以上溶解する高分子をいう。本発明ではそのような要件を満たす高分子を水溶性高分子ともいう。上記の高分子のうち、ポリビニルアルコールおよびポリエチレングリコールが水溶性高分子として好ましく例示できる。このようなポリビニルアルコールの平均分子量として13,000~440,000が例示でき、この平均分子量はゲルパーミエーションクロマトグラフィー(GPC)測定により測定することができる。また、このようなポリビニルアルコールのケン化度としては、30~99.5mol%が例示できる。ケン化度は滴定法により測定することができる。
 本発明で用いられる前記高分子として、多糖やその誘導体も挙げることができる。
 そのような多糖として、セルロース、アミロース、β-1,4-キトサン、キチン、β-1,4-マンナン、β-1,4-キシラン、イヌリン、α-1,3-グルカン、β-1,3-グルカン(カードラン、シゾフィラン)、プルラン、デキストラン、グルコマンナン、アミロペクチン、アガロース、シクロデキストリン(α、β、γを含む)、シクロソフォロース等を例示することができるが、好ましくは高純度の多糖を容易に得ることの出来るセルロース、アミロース、β-1,4-キシラン、β-1,3-グルカン、シクロデキストリン等である。
 また、これらの誘導体としては、ウレタン結合を形成したカルバメート誘導体、エステル結合を形成したエステル誘導体、エーテル結合を形成したエーテル誘導体が挙げられる。
 この中でも、後述する溶媒への溶解性の観点から、エステル誘導体であることが好ましく、その中でもセルロースのエステル誘導体であることが好ましく、脂肪酸セルロースエステルが特に好ましい。
 脂肪酸セルロースエステルとは、セルロースの水酸基の一部または全部が脂肪酸によりエステル化されたものを指し、例えば、セルロースアセテート(以下、酢酸セルロースともいう)、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、硝酸セルロース等のセルロースエステル類が挙げられる。これらの内セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートが好ましく、特にセルロースアセテートが有用である。そのセルロースアセテートのうち、特に好ましいのは三酢酸セルロースである。一方、脂肪酸とセルロースのグルコース単位の有する水酸基とからなるエステル結合が平均1~2.9個、即ち置換度1~2.9であるものも用いることができる。
 本発明で用いる高分子は、モノマーとして単一のものを用いた単独重合体を用いることもできるし、複数のものを用いた共重合体を用いることもできるし、それらの重合体あるいは共重合体を複数混合して用いることもできる。複数の重合体を用いる場合には、作製した複合体の透明性を損なわない任意の割合で混合することができる。
 具体的な組み合わせとして、複数のモノマーを用いた共重合体としては、(メタ)アクリル酸メチルとスチレンを共重合させた共重合体や、(メタ)アクリル酸と2-ヒドロキシメチルアクリル酸を共重合させた共重合体や、エチレンと酢酸ビニルを共重合させた共重合体が挙げられる。
 一方、重合体を複数用いる場合には、具体的にはポリメタクリル酸メチルとポリ酢酸ビニルの組み合わせやポリメタクリル酸2-ヒドロキシエチルとポリビニルアルコールの組み合わせや、ポリメタクリル酸メチルとポリスチレンの組み合わせや、ポリ酢酸ビニルとポリメタクリル酸2-ヒドロキシエチルの組み合わせを挙げることができる。
 なお、前記高分子は、必要に応じて可塑剤、酸化防止剤、光安定剤などの添加剤が添加されていてもよい。
 本発明の複合体では、前記高分子とタングステン酸あるいはモリブデン酸を、それら以外の特別な材料を用いなくても、複合体におけるタングステン酸あるいはモリブデン酸の存在状態が均一になっている。本発明の複合体における、高分子とタングステン酸等の合計量の重量割合については、90重量%以上であることが好ましく、92重量%以上であることが好ましく、95重量%以上であることが特に好ましい。
<複合体及びフィルムの製造方法>
 本発明の複合体の第一の製造方法は、タングステン酸のヘテロポリ酸塩及びモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上と、エーテル結合及びエステル結合から選ばれる1以上を有する重量平均分子量1,000~10,000,000の高分子とを含む原料を、カルボニル基を1~3個有し、分子量が34~300であり、常圧下における沸点が250℃以下である常温で液体の有機化合物からなる溶媒に溶解させて溶解液を得る工程と、前記溶解液から前記溶媒を留去する工程を含む。
 第一の製造方法で用いる高分子としては、前記式(I)で表される化合物及び官能基数が2以上の多官能アクリレートから選ばれる1種以上を重合して得られる重合体であって、エステル結合及びエーテル結合から選ばれる1以上を有する重合体、多糖及びその誘導体からなる群から選ばれる1種以上であることが好ましい。これらの各高分子は前述したものを適宜用いることができる。
 本発明の複合体の第一の製造方法で用いる高分子の具体例として、前記式(I)で表される化合物として、上記の(メタ)アクリル酸や(メタ)アクリル酸エステルのような(メタ)アクリル酸系化合物、N,N-ジメタクリルアミドのような(メタ)アクリルアミド誘導体、スチレンのようなスチレン系化合物、エチレングリコールジ(メタ)アクリレートのような(メタ)アクリロイル基を2個以上含む多官能アクリレートから選ばれる1以上を重合させて得られたもの(モノマー単独の重合体あるいは複数のモノマーの共重合体)を挙げることができる。いずれもの高分子もタングステン酸等を溶解させた溶解液に溶解させることができるものを用いる。
 本発明の複合体の第二の製造方法は、タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上と、水溶性高分子とを含む原料を、水およびアルコール系化合物から選ばれる1以上に溶解させて溶解液を得る工程と、前記溶解液から前記溶媒を留去する工程を含む。
 第二の方法によれば、複合体を構成する高分子として、水溶性高分子を用いることができる。
 水溶性高分子としては、ポリビニルアルコールを挙げることができる。
 本発明の複合体の第三の製造方法は、タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上を、水酸基を1個および/またはカルボニル基を1~3個有し、分子量が34~300であり、常圧下における沸点が250℃以下である常温で液体の有機化合物から選ばれる一種以上からなる溶媒に溶解させて第一の溶解液を得る工程と、エーテル結合及びエステル結合から選ばれる1以上を有する数平均分子量1,000~10,000,000の高分子とを含む原料を、炭素数1~3のハロゲン化アルキル及び環状エーテルから選ばれる1以上からなる溶媒に溶解させて第二の溶解液を得る工程と、前記第一の溶解液と第二の溶解液を混合し、混合後の溶解液から前記溶媒を留去する工程を含む。
 第三の方法によれば、第二の溶解液を作製するための溶媒として、第一の溶解液とは異なる特定の溶媒を用いることで、複合体を形成する高分子として、多糖系のものを用いることができる。
 本発明の複合体の第四の製造方法は、タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上を、溶媒としての重合性化合物に溶解させて溶解液を得る工程と、前記溶解液中の重合性化合物を重合させる工程を含む。
 第四の製造方法によれば、溶媒として前述した重合性化合物を用いることができ、それを重合させることでタングステン酸等との複合体を作製できる。
 重合性化合物としては、前記式(I)で表される化合物を挙げることができ、それらの中でも、前記第一の製造方法で挙げたものを好ましく用いることができる。
 本発明の複合体の第五の製造方法は、タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上を、水酸基を1個および/またはカルボニル基を1~3個有し、分子量が34~300であり、常圧下における沸点が250℃以下である常温で液体の有機化合物から選ばれる一種以上からなる溶媒に溶解させて溶解液を得る工程と、該溶解液に、エーテル結合及びエステル結合から選ばれる1種以上を有する数平均分子量1,000~10,000,000の高分子を浸漬する工程と、浸漬後の溶解液から前記溶媒を留去する工程を含む。
 第五の方法によれば、予め成形されたフィルム等の高分子を、タングステン酸等の溶解液に含浸させるという単純な操作で、前述した優れた複合体を得ることができる。含浸する時間については特に制限はないが、通常0.5~48時間かける。
 第五の方法に用いられる高分子は上述した第一~第四の製造方法で用いられるものと同じものを用いることができる。
<溶媒>
 本発明の複合体の第一の製造方法で用いられる溶媒としては、前記タングステン酸のヘテロポリ酸及びその塩及びモリブデン酸のヘテロポリ酸及びその塩を溶解し、かつ、前記高分子を溶解するものが用いられる。
 本発明の複合体の第一の製造方法で用いられる溶媒は、水酸基を1個あるいはカルボニル基を1~3個有し、分子量が34~300であり、常圧下における沸点が250℃以下である常温で液体の有機化合物である。このような有機化合物は、前述した高分子をその種類に応じて良好に溶解することができる。
 このような有機化合物として、非重合性化合物と重合性化合物が挙げられる。
 非重合性化合物としては、エステル系化合物、アルコール系化合物、ケトン系化合物、ラクトン系化合物、グリコールモノエーテルモノエステル系化合物、グリコールジエステル系化合物、アミド系化合物が挙げられる。
 本発明の複合体の第二の製造方法で用いられる溶媒は、上記の第一の製造方法で用いられるアルコール系化合物および水から選ばれる1以上である。アルコール系化合物や水を単独で用いる態様が好ましい。アルコール系化合物と水を混合して用いる場合には、その重量比として通常1:9~9:1が挙げられる。
 なお、水については、その純度を高める観点から蒸留水が好ましく用いられる。
 本発明の複合体の第三の製造方法で用いられる溶媒は、前記第一の溶解液の調製に用いるものとして、前記第一の製造方法で用いられる溶媒と同じものを用いることができ、前記第二の溶解液の調製に用いるものとして、炭素数1~3のハロゲン化アルキル及び環状エーテルから選ばれる1以上を挙げることができる。
 本発明の複合体の第四の製造方法で用いられる溶媒は、前述した重合性化合物を用いることができ、前記式(I)で表される化合物を用いることがより好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸、メタクリル酸2-ヒドロキシエチルのような(メタ)アクリル酸系化合物、ビニルアセテート、N,N-ジメチルアクリルアミドのような(メタ)アクリルアミド誘導体を用いることが特に好ましい。
 本発明の複合体の第五の製造方法で用いられる溶媒は、上記の第一の製造方法で用いられる溶媒を用いることができ、アルコール系化合物を用いる態様が好ましい。
 前記エステル系化合物としては、ギ酸メチル、ギ酸エチル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸アミル、酢酸ベンジル、プロピオン酸エチル、イソ酪酸イソブチル、イソ吉草酸エチル、ステアリン酸ブチル等を例示することができる。その中でも、酢酸エチル、酢酸ブチル、プロピオン酸エチル、又はイソ酪酸イソブチルが安価であるため、特に好ましい。このようなエステル系化合物、特に好ましくは酢酸エチルは、上記の高分子のうち、下記のアルコール系化合物に溶解しない高分子を溶解するのに好ましく用いられる。さらには、リンタングステン酸やリンモリブデン酸を溶解するのにも好ましく用いられる。
 前記アルコール系化合物としては、メタノール、エタノール、1-プロパノール、2-プロパノールが挙げられる。
 このようなアルコール系化合物は、上記の高分子のうち、特にポリ(メタ)アクリル酸エステルを溶解するのに好ましく用いられる。さらには、リンタングステン酸やリンモリブデン酸を溶解するのにも好ましく用いられる。
 前記ケトン系化合物としては、脂肪族ケトンまたは脂環式ケトンが挙げられ、脂肪族ケトンとして、アセトン、メチルエチルケトン、メチルプロピルケトン、ジエチルケトン、メチルn-ブチルケトン、メチルイソブチルケトン、2-ヘプタノン、4-ヘプタノン、ジイソブチルケトン、アセトニルアセトン、2-オクタノン等が挙げられ、脂環式ケトンとしては、シクロヘキサノン、メチルシクロヘキサノン等が挙げられる。
 このようなケトン系化合物は、前記の多糖またはその誘導体、特にエステル誘導体を溶解するのに好ましく用いられる。
 ラクトン系化合物としては、α-アセトラクトン、β-プロピオラクトン、γ-ブチロラクトンおよびδ-バレロラクトンが挙げられる。
 グリコールジエステル系化合物としては、エチレングリコールジアセテート、プロピレングリコールジアセテート等が挙げられる。
 グリコールエステルエーテル系化合物としては、エチレングリコールモノメチルエーテルアセテート,ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。
 アミド系化合物としては、ジメチルアセトアミド、メチルピロリドン等が挙げられる。
 前記炭素数1~3のハロゲン化アルキルとしては、ジクロロメタン、トリクロロメタン、テトラクロロメタン等が挙げられる。
 これらのハロゲン化アルキルは、前記の多糖またはその誘導体、特にエステル誘導体を溶解するのに好ましく用いられる。
 環状エーテルとしては、テトラヒドロフラン(THF)を用いることが好ましく、その他にTHFを主成分としてその他の環状エーテルを併用することもできる。例えば、エチレンオキシド、プロピレンオキシド、イソブチレンオキシド、エピクロルヒドリン等の3員環エーテル、オキセタン、3,3-ジメチルオキセタン、3-メチルオキセタン、3,3-ビス(クロルメチル)オキセタン等の4員環エーテル、メチルテトラヒドロフラン、1,3-ジオキソラン等の5員環エーテルを併用してもよい。
 本発明で溶媒として用いる前記非重合性化合物は、複数を混合して用いてもよい。そのような混合の態様として、エステル系化合物と、アルコール系化合物を混合して用いる態様が挙げられ、エステル系化合物として酢酸エチルを用い、アルコール系化合物としてメタノールやエタノールを用いる態様が挙げられる。その際、エステル系化合物とアルコール系化合物の重量比は9:1~2:8であることが、前記高分子及び前記タングステン酸等の溶解を確実に行う観点から好ましい。
 また、上記有機化合物のうち、重合性化合物としては、前記式(I)で表される化合物、ビニルケトン系化合物、グリシジルエステル系化合物が挙げられる。
 前記式(I)で表される化合物の具体例としては、(メタ)アクリル酸、メタクリル酸2-ヒドロキシエチルのような(メタ)アクリル酸エステル、ビニルエーテル、ビニルエステル等が挙げられる。
 これらの化合物は、前記高分子を重合する際に用いられるものと同様のものを用いることができる。
 ビニルエステル系化合物としては、酢酸ビニル、安息香酸ビニル、プロピオン酸ビニル、オクタン酸ビニル、ヘキセン酸ビニル、ドデカン酸ビニル、ベヘン酸ビニル等が挙げられる。
 ビニルケトン系化合物としては、アルキルの炭素数が1~10のアルキルビニルケトンが挙げられ、その具体例として、メチルビニルケトン、エチルビニルケトン、イソプロピルビニルケトン、ブチルビニルケトン、t-ブチルビニルケトン等が挙げられる。また、ジビニルケトン、フェニルビニルケトン、メチルイソプロペニルケトン、イソプロペニルビニルケトン、イソプロペニルフェニルケトン等も挙げることができる。
 グリシジルエステル系化合物としては、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル等が挙げられる。
 タングステン酸、モリブデン酸のヘテロポリ酸としては、それぞれ、リンタングステン酸、ケイタングステン酸、リンモリブデン酸、ケイモリブデン酸が挙げられる。これらのヘテロポリ酸は、水和物を用いてもよいし、水和物を加熱処理して脱水したものを用いてもよい。また、ヘテロポリ酸塩としては、上記ヘテロポリ酸のカリウム、ナトリウム、アンモニウムの塩が挙げられる。
 本発明の複合体の製造方法では、溶媒への溶解性から、ヘテロポリ酸としてリンタングステン酸を用いることが好ましい。
 本発明の複合体の製造方法のうち、前記の第一及び第二の製造方法においては、前記溶媒に、前記高分子と前記タングステン酸及びモリブデン酸のヘテロポリ酸およびその塩から選ばれる1種以上(以下、単にタングステン酸等ともいう)を同時に溶解させて溶液を得るか、予め前記溶媒に前記高分子を含む原料を溶解させて得た溶液と、前記溶媒に前記タングステン酸等を溶解させて得た溶液とを混合して前記材料の溶液を得ることができる。例えば、前記高分子を酢酸エチルなどのエステル系溶媒に溶解させ、タングステン酸等をメタノールなどのようなアルコール系溶媒に溶解させ、これらを混合することで前記材料の溶液を得ることもできる。
 そして、その操作を経て得られた溶液から前記溶媒を留去することによって、本発明の複合体を得ることができる。溶媒の留去としては、乾燥や減圧による溶媒留去が挙げられる。
 なお、前記第一、第三の製造方法において、高分子を含む原料における、前記エーテル結合及びエステル結合から選ばれる1以上を有する数平均分子量1,000~10,000,000の高分子の割合は、通常70重量%以上であり、80重量%以上であることが好ましく、90重量%以上であることが特に好ましい。ここで、前記原料には複数の前記高分子を含有させてもよい。
 また、前記高分子を含む原料に含まれるものとして、例えば、前記エーテル結合及びエステル結合から選ばれる1以上を有する数平均分子量1,000~10,000,000の高分子以外の高分子、例えばスチレン系の樹脂や、公知の界面活性剤等が挙げられる。
 複数の高分子を原料に含ませる態様として、前記の高分子、例えば式(I)で表される化合物から得られる高分子と、ポリカーボネート樹脂とを混合して用いることができる。ポリカーボネート樹脂としては、種々のジヒドロキシジアリール化合物とホスゲンとを反応させるホスゲン法、またはジヒドロキシジアリール化合物とジフェニルカーボネートなどの炭酸エステルとを反応させるエステル交換法によって得られる重合体であり、代表的なものとしては、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)から製造されたポリカーボネート樹脂が挙げられる。このようなポリカーボネート樹脂と、組み合わせる前記高分子としては、前記式(I)で表される化合物を重合させて得られる重合体を挙げることができ、(メタ)アクリル酸系の化合物を重合させて得られる高分子を好ましく挙げることができる。
 ポリカーボネート樹脂と、前記式(I)で表される化合物を重合させて得られる重合体や、(メタ)アクリル酸系の化合物を重合させて得られる高分子との割合については特に制限されないが、複合体の透明性の観点から例えばポリカーボネート樹脂を1としたときに、1以上である態様を挙げることができる。
 なお、上記の複合体の製造方法において、高分子を含む原料とタングステン酸等を、前記溶媒に同時に溶解させる場合、溶媒における高分子とタングステン酸等の濃度が、それぞれ1~15重量%程度及び0.1~15重量%程度の濃度になるように調製する。
 一方、前記高分子の溶液と、前記タングステン酸等の溶液を、予め別々の溶液として準備する場合には、それぞれの溶液において、高分子の濃度を5~20重量%程度、タングステン酸等の濃度を10~80重量%程度になるように調製する。
 高分子を複数用いる場合には、高分子の溶解液にジシクロヘキシルアミンのような有機アミンや水酸化ナトリウムのような無機塩基を加えることで、複数の高分子を良好に混合できる。例えばポリアクリル酸系の高分子とポリスチレン系の高分子を混合する場合には、このような塩基を用いることが好ましい。
 前記高分子の溶液と、前記タングステン酸等の溶液に用いる溶媒は、同一であっても異なるものであってもよい。例えば、前記高分子の溶液に用いる溶媒として、その高分子の種類に応じて、水、アルコール系化合物、ケトン系化合物、特定のハロゲン化アルキルや環状エーテルを用い、前記タングステン酸等の溶液に用いる溶媒としてエステル系化合物、アルコール系化合物や水を用いることも可能である。
 溶媒として、前記重合性化合物を用いる場合には、前記重合性化合物に前記タングステン酸等を溶解させて溶解液を作製し、その溶解液中の重合性化合物を重合させることで、前記タングステン酸等と前記重合性化合物を重合させることで得られる重合体との複合体が得られる。
 溶媒としての前記重合性化合物に対する前記タングステン酸等の割合は、溶解液におけるタングステン酸等が、通常10~95重量%となるように調製する。
 溶解液中の前記重合性化合物を重合させる方法としては、公知の方法を用いることができ、そのような方法として、ラジカル重合、カチオン重合、アニオン重合を挙げることができる。
 重合法としては、光重合法を用いるこができ、その際には公知の光重合開始剤を用いることができる。
 なお、前記重合性化合物を重合させる際には、必要に応じて可塑剤、酸化防止剤、光安定剤などの添加剤を添加してもよい。
 溶媒として用いる前記重合性化合物は、前記式(I)で表される化合物、ビニルケトン系化合物及びグリシジルエステル系化合物から選ばれる化合物であることが好ましい。
 その中でも、前記式(I)で表される化合物を用いることがより好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸、メタクリル酸2-ヒドロキシエチルのような(メタ)アクリル酸系化合物、ビニルアセテート、N,N-ジメチルアクリルアミドのような(メタ)アクリルアミド誘導体を用いることが特に好ましい。
 本発明のフィルムは、前記本発明の複合体からなるものであり、前記複合体を含む溶液から溶媒を留去することによって作製することができる。この溶媒の留去を、基板上に溶液を塗布した後に行うと、均一なフィルムを得ることができ、好ましい。
 フィルムの膜厚としては、通常0.05~100μmである。
 本発明の複合体を含む溶液を基板に塗布する方法は、特に制限されないが、スピンコート法、ロールコート法、スリットコート法、ディッピング法、スプレーコート法、グラビアコート法、リバースコート法、ロッドコート法、バーコート法、ダイコート法、キスコート法、リバースキスコート法、エアナイフコート法、カーテンコート法などがある。
 塗布される基板の例には、白板ガラス、青板ガラス、シリカコート青板ガラス、石英ガラス、サファイアガラス、単結晶サファイアなどの透明ガラス基板;ポリカーボネート、ポリエステル、アクリル樹脂、塩化ビニル樹脂、芳香族ポリアミド樹脂、ポリアミドイミド、ポリイミドなどの合成樹脂製シート、フィルムまたは基板;アルミニウム板、銅板、ニッケル板、ステンレス板などの金属基板;その他セラミック板、シリコン板、GaN板、SiN板、SiC板、GaAs板等が含まれる。
 塗布された溶液から溶媒を留去する方法としては乾燥が挙げられ、その乾燥は、室温~300℃、より好ましくは高分子が変質しない室温~250℃の環境下で行うことができ、これを減圧下(例えば1×10-6~100kPa)で行ってもよい。
 本発明の複合体は、その形成後にアニーリング処理を行ってもよい。本発明でいうアニーリングとは、成形した複合体を適当な温度(例えば50~200℃)に所定時間(例えば5~120分)保持した後に、徐冷する処理のことである。
 このようなアニーリング処理をすることで、複合体の硬度を高め、耐水、耐溶媒性を高めることができる。前記高分子として水溶性高分子やアルコール系化合物に溶解する高分子を用いた場合には、より顕著な効果が得られる。
 本発明の複合体は、上記のようにフィルムとして用いることができるほかに、複合体を適当な溶媒に溶解して得た溶解液や、前述の複合体が形成されている溶解液を、PET等のプラスチック基材、ガラス等の無機物からなる基材、金属からなる基材等を接着するための接着材として用いることもできる。
 これにより、例えば屈折率の異なる複数の透明基材を張り合わせて複数層の材料を作製する際に、その屈折率を所望のものに調整することが可能となる。
 本発明の複合体の態様としては、上記のようなフィルム状のものに加え、球状の粒子(以下、粒子状ともいう)である態様を挙げることもできる。
 本発明の複合体が粒子状の態様の場合も、透明性に優れ、屈折率を所望の範囲に調整することができる。
 粒子状の態様では、走査型電子顕微鏡で確認できる直径として0.2~50μmのものや、粒子の造粒時の条件を適宜変えることで、200μm程度の直径のものも得ることができる。
 粒子状の複合体を作製する方法としては、下記の方法を挙げることができる。
 上記の第一から第三の製造方法において、タングステン酸等と高分子が溶解された溶解液を得る工程の後に、該溶解液を造粒させる工程を経て、造粒した粒子から溶媒を留去することで粒子状の複合体を得ることができる。
 そのような工程として懸濁蒸発法を挙げることができる。懸濁蒸発法において、界面活性剤を用いてもよい。
 懸濁蒸発法の具体的な手順は以下の通りである。
 溶解液を造粒する工程としては、当該溶解液を、当該溶解液が不溶な溶媒に滴下して、撹拌することを挙げることができる。
 造粒後、溶媒を留去する工程では、減圧乾燥により行う方法を挙げることができる。
 第一、第二、第三、第四の製造方法では、タングステン酸等と前記高分子が溶解された溶解液が不溶な溶媒として、シリコーンオイルを挙げることができる。
 シリコーンオイルとしては、市販品を用いることができ、未変性のものや、変性のもののいずれを用いることができる。
 未変性のシリコーンオイルとしては、メチルシリコーンオイル、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、環状ジメチルシリコーンオイルなどを用いることができる。
 変性シリコーンオイルとしては、両末端型、片末端型、側鎖型、側鎖両末端型のものを挙げることができる。
 第三の製造方法では、タングステン酸等と前記高分子が溶解された溶解液が不溶な溶媒として、例えば水のような高極性溶媒を用いることもできる。
 第四の製造方法では、タングステン酸等と重合性化合物が溶解された溶解液を得る工程の後に、該溶解液を造粒させる工程を経て、造粒物を重合させて複合体を得る。造粒物の重合は、造粒物が分散されている溶媒中、加熱下で行う方法を挙げることができる。重合後、減圧乾燥させることで、残った溶媒等を留去する。
 そのような方法としては、懸濁重合法を挙げることができる。懸濁重合法において、任意の添加剤を用いることもできる。
 本発明の複合体の透明性を表す方法として、複合体の透過減少率を用いる。
 透過減少率はタングステン酸等の含有量が0重量%の高分子単独の特定波長(600nm)での透過率を基準とし、それからの透過率の減少率をパーセント表記で表すものである(下記式参照)。
透過率減少率(%)=(T0―T1)/T0×100
0=高分子単独の透過率(%)
1=タングステン酸等を含む複合体の透過率(%)
 本発明の複合体では、上記の特定波長における透過減少率が30%以下になる。好ましい態様では10%以下になる。さらに、本発明の複合体では、上記の特定波長における透過減少率が5%以下になる態様も挙げられる。
 本発明の複合体が粒子状の形態である場合には、当該粒子状の複合体を、当該複合体を形成する高分子と相溶性の低い高分子中に分散させることで、分散させる側の高分子に複合体が有する機能(所望の屈折率)を付与することができる。
 例えば、複合体を構成する高分子としてポリ(メタ)アクリル酸を用い、分散させる側の高分子としてポリカーボネートを用いた場合には、当該ポリカーボネート樹脂に、所望の屈折率を付与することができる。
 以下、実施例を参照して本発明を具体的に説明する。ただし、本発明は以下の実施例の態様に制限されない。
<実施例1>
(複合体及びフィルムの作製)
 数平均分子量120,000のポリメタクリル酸メチルを酢酸エチルに溶解して、ポリメタクリル酸メチルの10重量%溶液を調製し、また、リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)を酢酸エチルに溶解し、リンタングステン酸の40重量%溶液を調製した。
 得られた両方の溶液を混合し、形成される複合体全量に対して、リンタングステン酸の含有量が、0-92重量%となるように混合溶液を調製した。この際、溶液が白濁した場合には、メタノールを加えて溶液を透明にした。
 調製した混合溶液の100μLを白板ガラス基板に滴下し、1000rpm、20secの条件でスピンコートすることで、ポリメタクリル酸メチルとリンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例2~4>
(屈折率の測定)
 実施例1と同様の操作により、リンタングステン酸(26.5重量%)、ポリメタクリル酸メチル(8.7重量%)の酢酸エチル溶液(リンタングステン酸の重量分率:71重量%(タングステン酸量で68.6重量%))を調製した。この溶液の300μLを2.5×2.5cmのガラス基板にキャストし、500、1000、2000rpmの回転速度でスピンコートを行って、3種類の膜厚(5.75μ:実施例2、3.97μm:実施例3、2.73μm:実施例4)のフィルムを作製した。
 得られた各フィルムについて、プリズムカプラ(SPA-4000:Sairon Technology,Inc)を用い、ガラス基板屈折率を1.52として、測定波長633nmで屈折率を測定した。結果を表1に示す。
 なお、表1中、屈折率の理論値は、以下の式(1)に従って算出した。タングステン酸とポリメタクリル酸メチルの密度及び屈折率は、以下の数値を用いた。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-M000011
タングステン酸(WO3)の密度:7.150、屈折率:2.050
ポリメタクリル酸メチルの密度:1.190、屈折率:1.489
 表1の結果から、屈折率の理論値と実測値はほぼ一致していた。これにより、フィルムにおいて、タングステン酸は均一に存在していると推測された。
 また、理論屈折率と、タングステン酸の含有量(重量%)の関係を示すグラフを図1に示す。
<実施例5~13>
(透過率の測定)
 実施例1と同様の操作により、酢酸エチル溶液中のリンタングステン酸の含有量(重量%)を、形成される複合体全量におけるリンタングステン酸の含有量が、それぞれ、16重量%(実施例5)、27重量%(実施例6)、42重量%(実施例7)、66重量%(実施例8)、70重量%(実施例9)、76重量%(実施例10)、80重量%(実施例11)、90重量%(実施例12)、92重量%(実施例13)になるように変更して、各フィルムを作製した。
 また、参考例として、リンタングステン酸の含有量(重量%)を0のものと、100のものを調製して、フィルムを作製した。
 各フィルムについて、紫外可視分光光度計(V-560、日本分光株式会社)を用いて透過率の測定を行った。結果を図2に示す。
<実施例14>
(高分子として共重合体を用いた例)
 数平均分子量150,000のポリスチレン-co-ポリメタクリル酸メチル(ポリスチレン含有量40モル%)を酢酸エチルに溶解させ10重量%溶液を調製し、また、リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)を酢酸エチルに溶解し、リンタングステン酸の40重量%溶液を調製した。
 得られた両方の溶液を混合し、形成される複合体全量に対して、リンタングステン酸の含有量が、50重量%(タングステン酸量で48.3重量%)となるように混合溶液を調製した。この際、溶液が白濁したので、メタノールを加えて溶液を透明にした。
 調製した混合溶液の100μLを白板ガラス基板に滴下し、1000rpm、20secの条件でスピンコートすることで、ポリスチレン-co-ポリメタクリル酸メチルとリンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
 なお、白濁した溶液にメタノールを加えずそのままスピンコートして得た複合体も透明であった。
<実施例15>
(高分子として重合体を混合して用いた例1)
 数平均分子量120,000のポリメタクリル酸メチルと数平均分子量100,000のポリ酢酸ビニルを重量比1:1で酢酸エチルに溶解させ10重量%(ポリメタクリル酸メチル5重量%、ポリ酢酸ビニル5重量%)溶液を調製し、また、リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)を酢酸エチルに溶解し、リンタングステン酸の40重量%溶液を調製した。
 得られた両方の溶液を混合し、形成される複合体全量に対して、リンタングステン酸の含有量が、50重量%(タングステン酸量で48.3重量%)となるように混合溶液を調製した。
 調製した混合溶液の100μLを白板ガラス基板に滴下し、1000rpm、20secの条件でスピンコートすることで、ポリメタクリル酸メチルとポリ酢酸ビニル、リンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例16>
(高分子として重合体を混合して用いた例2)
 数平均分子量300,000のポリメタクリル酸2-ヒドロキシエチルをメタノールに溶解させ10重量%溶液を調製し、数平均分子量25,000のポリビニルアルコールを蒸留水に溶解させ1重量%溶液を調製し、また、リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をメタノールに溶解し、リンタングステン酸の40重量%溶液を調製した。
 得られた3種類の溶液を混合し、ポリメタクリル酸2-ヒドロキシエチルとポリビニルアルコールを重量比で2:1とし、形成される複合体全量に対して、リンタングステン酸の含有量が、40重量%(タングステン酸量で38.6重量%)となるように混合溶液を調製した。
 調製した混合溶液の100μLを白板ガラス基板に滴下し、1000rpm、20secの条件でスピンコートすることで、ポリメタクリル酸2-ヒドロキシエチルとポリビニルアルコール、リンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例17>
(高分子として多糖誘導体を用いた例)
 三酢酸セルロースをジクロロメタンに溶解させ3重量%溶液を調製し、また、リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をメタノールに溶解し、リンタングステン酸の40重量%溶液を調製した。
 得られた両方の溶液を混合し、形成される複合体全量に対して、リンタングステン酸の含有量が、60重量%(タングステン酸量で58.0重量%)となるように混合溶液を調製した。
 調製した混合溶液の300μLを白板ガラス基板に滴下し、自然乾燥させることで、三酢酸セルロース、リンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例18>
(高分子として水溶性高分子を用いた例1)
 数平均分子量25,000のポリビニルアルコールを蒸留水に溶解させ1重量%溶液を調製し、また、リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)を蒸留水に溶解し、リンタングステン酸の40重量%溶液を調製した。
 得られた両方の溶液を混合し、形成される複合体全量に対して、リンタングステン酸の含有量が、50重量%(タングステン酸量で48.3重量%)となるように混合溶液を調製した。
 調製した混合溶液の100μLを白板ガラス基板に滴下し、3000rpm、40secの条件でスピンコートすることで、ポリビニルアルコール、リンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例19>
(高分子として水溶性高分子を用いた例2)
 数平均分子量25,000のポリアクリル酸をメタノールに溶解させ10重量%溶液を調製し、また、リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をメタノールに溶解し、リンタングステン酸の40重量%溶液を調製した。
 得られた両方の溶液を混合し、形成される複合体全量に対して、リンタングステン酸の含有量が、50重量%(タングステン酸量で48.3重量%)となるように混合溶液を調製した。
 調製した混合溶液の100μLを白板ガラス基板に滴下し、1000rpm、20secの条件でスピンコートすることで、ポリアクリル酸、リンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例20>
(高分子として水溶性高分子を用いた例3)
 数平均分子量300,000のポリメタクリル酸2-ヒドロキシエチルをメタノールに溶解させ10重量%溶液を調製し、また、リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をメタノールに溶解し、リンタングステン酸の40重量%溶液を調製した(この際、リンタングステン酸の30水和物を加熱処理して脱水したものを用いてもよい)。
 得られた両方の溶液を混合し、形成される複合体全量に対して、リンタングステン酸の含有量が、10、25、40、50、60、75及び88重量%(タングステン酸量で、それぞれ9.7、24.2、38.6、48.3、58.0、72.5、85.0重量%)とそれぞれなるように混合溶液を調製した。
 調製した各混合溶液の100μLを白板ガラス基板に滴下し、1000rpm、20secの条件でスピンコートすることで、ポリメタクリル酸2-ヒドロキシエチル、リンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムをそれぞれ作製することができた。
<実施例21>
(高分子として水溶性高分子を用いた例4)
 数平均分子量5,000のポリエチレングリコールをメタノールに溶解させ10重量%溶液を調製し、また、リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をメタノールに溶解し、リンタングステン酸の40重量%溶液を調製した。
 得られた両方の溶液を混合し、形成される複合体全量に対して、リンタングステン酸の含有量が、60重量%(タングステン酸量で58.0重量%)となるように混合溶液を調製した。
 調製した混合溶液の100μLを白板ガラス基板に滴下し、1000rpm、20secの条件でスピンコートすることで、ポリエチレングリコール、リンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例22>
(樹脂混合系)
<ポリメタクリル酸メチル/ポリスチレン混合系1>
 リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3,421(30水和物の理論値)、WO3含有率:81モル%)を酢酸エチルに溶解し、リンタングステン酸の40重量%溶液を調製した。このリンタングステン酸の酢酸エチル溶液にジシクロヘキシルアミンをモル比が1:1となるように加え、混合した。ここに数平均分子量120,000のポリメタクリル酸メチルを7.5重量%と数平均分子量400,000のポリスチレンを2.5重量%含む酢酸エチル混合溶液を、形成される複合体全量に対してリンタングステン酸の含有量が50重量%(タングステン酸量で48.3重量%)となるように加え、混合溶液を調製した。
 調製した混合溶液の300μLを白板ガラス基板に滴下し、自然乾燥させることで、ポリメタクリル酸メチル、ポリスチレン、ジシクロヘキシルアミン、リンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製した。得られた複合体フィルムは透明性を示した。
<実施例23>
(ジメチルアセトアミドを溶媒とした系(アミド系溶媒))
 数平均分子量120,000のポリメタクリル酸メチルとリンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をジメチルアセトアミドに溶解させそれぞれ5重量%の溶液を調製した。これらの溶液を形成される複合体全量に対するリンタングステン酸の含有量が50重量%(タングステン酸量で48.3重量%)となるように加え、混合溶液を調製した。
 調製した混合溶液200μLを白板ガラス基板に滴下し、自然乾燥させることで、ポリメタクリル酸メチルとリンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例24>
(メチルエチルケトンを溶媒とした系(ケトン系溶媒))
 数平均分子量120,000のポリメタクリル酸メチルとリンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をメチルエチルケトンに溶解させそれぞれ5重量%の溶液を調製した。これらの溶液を形成される複合体全量に対するリンタングステン酸の含有量が50重量%(タングステン酸量で48.3重量%)となるように加え、混合溶液を調製した。
 調製した混合溶液200μLを白板ガラス基板に滴下し、自然乾燥させることで、ポリメタクリル酸メチルとリンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例25>
(γ-ブチロラクトンを溶媒とした系(ラクトン系溶媒))
 数平均分子量120,000のポリメタクリル酸メチルとリンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をγ-ブチロラクトンに溶解させ、それぞれ5重量%の溶液を調製した。これらの溶液を形成される複合体全量に対するリンタングステン酸の含有量が50重量%(タングステン酸量で48.3重量%)となるように加え、混合溶液を調製した。
 調製した混合溶液200μLを白板ガラス基板に滴下し、自然乾燥させることで、ポリメタクリル酸メチルとリンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例26>
(ポリN-イソプロピルアクリルアミドをポリマーとした系)
 ポリN-イソプロピルアクリルアミドとリンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をメタノールに溶解させそれぞれ5重量%の溶液を調製した。これらの溶液を形成される複合体全量に対するリンタングステン酸の含有量が50重量%(タングステン酸量で48.3重量%)となるように加え、混合溶液を調製した。
 調製した混合溶液200μLを白板ガラス基板に滴下し、自然乾燥させることで、ポリN-イソプロピルアクリルアミドとリンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例27>
(メタクリル酸2-エチルヘキシルを溶媒とした系:重合性化合物を溶媒として用いた実施例)
 数平均分子量300,000のポリメタクリル酸2-ヒドロキシエチルとリンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をメタクリル酸2-エチルヘキシルに溶解させ、それぞれ5重量%溶液を調製した。これらの溶液を形成される複合体全量に対するリンタングステン酸の含有量が50重量%(タングステン酸量で48.3重量%)となるように加え、混合溶液を調製した。
 調製した混合溶液の300μLを白板ガラス基板に滴下し、自然乾燥させることで、ポリメタクリル酸2-ヒドロキシエチルとリンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例28>
(メタクリル酸2-ヒドロキシエチルで重合した系)
 リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をメタクリル酸2-ヒドロキシエチルに溶解させ、50重量%溶液を調製した。
 調製したリンタングステン酸のメタクリル酸2-ヒドロキシエチル溶液に、重合開始剤としてアゾビスイゾブチロニトリルをメタクリル酸2-ヒドロキシエチルに対して0.5重量%加え、60℃で6時間加熱することで、ポリメタクリル酸2-ヒドロキシエチルとリンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。なお、複合体全量に対するリンタングステン酸の含有量については、30重量%、50重量%、70重量%(タングステン酸量でそれぞれ29.0、48.3、67.6重量%)の種類を作製した。
<実施例29>
<N,N-ジメチルアクリルアミドで重合した系>
 リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をメタノールに溶解し、リンタングステン酸の40重量%溶液を調製した。
 調製したリンタングステン酸のメタノール溶液を複合体全量に対してタングステン酸の含有量が50重量%(タングステン酸量で48.3重量%)となるよう加え、重合開始剤としてアゾビスイゾブチロニトリルをN,N-ジメチルアクリルアミドに対して0.5重量%加えた。60℃で6時間加熱することで、ポリN,N-ジメチルアクリルアミドとリンタングステン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例30~33>
 実施例29と同様の手順により、モノマーとしてメタクリル酸メチル(実施例30)、メタクリル酸(実施例31)、アクリル酸エチル(実施例32)、メタクリル酸メチルとメタクリル酸2-ヒドロキシエチルの混合物(1:1:重量比)(実施例33)を用いて、それぞれ複合体全量に対するリンタングステン酸の含有量が50重量%(タングステン酸量で48.3重量%)である複合体からなるフィルムを作製することができた。
<実施例34>
(含浸によるポリマー/金属塩複合化の実施例)
 リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をメタノールに溶解し、リンタングステン酸の40重量%溶液を調製した。調製したリンタングステン酸のメタノール/水(10:1)溶液にポリメタクリル酸メチルを室温下で1日浸漬させた。取り出して表面をメタノールで洗浄して乾燥させることで、リンタングステン酸が23重量%(タングステン酸量で22.2重量%)含まれたポリメタクリル酸メチル/リンタングステン酸複合体が形成された(複合重量の確認は熱重量分析によっておこなった)。
<実施例35>
(粒子状の複合体の製造:懸濁蒸発法)
 数平均分子量120,000のポリメタクリル酸メチル2.7gとリンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)2.7g、片末端サイラプレーン(FM-DA11、アズマックス)3.0g、水0.5gをメタノール25gに溶解し複合溶液を得た。この複合溶液をジメチルシリコーンオイル(信越化学 KF-968-100CS)300mLに添加し、室温、300rpmで30分間かき混ぜることで造粒させた。その後、40℃の油浴で3時間かき混ぜた。溶液を遠心分離(5000rpm)にて回収し、n-ヘキサンで2回洗浄した。減圧乾燥させることで、ポリメタクリル酸メチル、リンタングステン酸の複合体が形成されるとともに、その複合体からなる無色透明の粒子を作製することができた。
<実施例36>
<粒子状の複合体の製造:懸濁重合法>
 メタクリル酸メチル2.5gとエチレングリコールジメタクリレート2.5g、リンタングステン酸の30水和物(H3[PW1240]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)5.0g、開始剤としてアゾビスイソブチロニトリル0.05gを混合し、複合溶液を得た。この複合溶液をジメチルシリコーンオイル(信越化学 KF-968-100CS)100mLに添加し、窒素ガス通気下において40℃、250rpmで6時間かき混ぜて造粒させた後に重合させた。生成した粒子をガラスフィルターを用いて吸引ろ過して回収し、n-ヘキサンで2回洗浄した。減圧乾燥させることでメタクリル酸メチル、エチレングリコールジメタクリレート、リンタングステン酸の複合体が形成されるとともに、その複合体からなる無色透明の粒子を作製することができた。
<実施例37>
<リンモリブデン酸を用いた複合体の作製>
 数平均分子量120,000のポリメタクリル酸メチルを酢酸エチルに溶解させ10重量%溶液を調製し、リンモリブデン酸の水和物(H3[PMo1240]・nH2O n≒30、Mw:2366(30水和物の理論値)、MoO3含有率:73モル%)をメタノールに溶解し、リンモリブデン酸の50重量%溶液を調製した。
 得られた両方の溶液を混合し、形成される複合体全量に対して、リンモリブデン酸の濃度が、50重量%となるように混合溶液を調製した。
 調製した混合溶液の100μLを白板ガラス基板に滴下し、1000rpm、20secの条件でスピンコートすることで、ポリメタクリル酸メチルとリンモリブデン酸の複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例38>
<リンタングステン酸ナトリウムを用いた複合体の作製>
 数平均分子量300,000のポリメタクリル酸2-ヒドロキシエチルをメタノールに溶解させ10重量%溶液を調製し、リンタングステン酸ナトリウムの30水和物(Na3[PW1240]・nH2O n≒30、Mw:3486(30水和物の理論値)、WO3含有率:83モル%)をメタノールに溶解し、リンタングステン酸ナトリウムの50重量%溶液を調製した。
 得られた両方の溶液を混合し、形成される複合体全量に対して、リンタングステン酸ナトリウムの濃度が、50重量%となるように混合溶液を調製した。
 調製した混合溶液の100μLを白板ガラス基板に滴下し、1000rpm、20secの条件でスピンコートすることで、ポリメタクリル酸2-ヒドロキシエチルとリンタングステン酸ナトリウムの複合体が形成されるとともに、その複合体からなるフィルムを作製することができた。
<実施例39>
<ケイタングステン酸を用いた複合体の作製>
 数平均分子量300,000のポリメタクリル酸2-ヒドロキシエチルをメタノールに溶解させ10重量%溶液を調製し、ケイタングステン酸の26水和物(H4[SiW1240]・nH2O n≒26、Mw:3316(26水和物の理論値)、WO3含有率:84モル%)をメタノールに溶解し、ケイタングステン酸の50重量%溶液を調製した。
 得られた両方の溶液を混合し、形成される複合体全量ポリマーに対して、ケイタングステン酸の濃度が、30、50、70重量%となるようにそれぞれの混合溶液を調製した。
 調製した混合溶液の100μLを白板ガラス基板に滴下し、1000rpm、20secの条件でスピンコートすることで、ポリメタクリル酸2-ヒドロキシエチルとケイタングステン酸の複合体が形成されるとともに、その複合体からなるケイタングステン酸の含有量が3種類のフィルムを作製することができた。
<実施例40>
<重合法として、光重合を用いた例:メタクリル酸メチルの光重合>
 リンタングステン酸の30水和物(H3[PW12O40]・nH2O n≒30、Mw:3421(30水和物の理論値)、WO3含有率:81モル%)をメタクリル酸2-ヒドロキシエチルに溶解させ、50重量%溶液を調製した。
 調製したリンタングステン酸のメタクリル酸2-ヒドロキシエチル溶液に、重合開始剤としてIrgacure362をメタクリル酸2-ヒドロキシエチルに対して0.5重量%加え、UV光(245nm)を1時間照射することで、ポリメタクリル酸2-ヒドロキシエチルとリンタングステン酸の複合体を作製することができた。複合体全量に対するタングステン酸の濃度は50重量%であった。
 なお、本発明の複合体として作製した上記の全ての実施例において、前記した透過減少率は10%未満であった。
<複合体の加熱処理について>
 ポリメタクリル酸2-ヒドロキシエチルとリンタングステン酸の複合体(リンタングステン酸含有量:5~80重量%(タングステン酸量で4.8~77.3重量%))を130℃で10分間加熱することで、複合体の硬度が高くなり、耐水、耐溶媒性の向上が確認された。
 本発明では、一般に用いられている高分子、例えばポリ(メタ)アクリル酸メチルやポリ酢酸ビニル等からなる、様々な複合体の屈折率を任意の幅で調整することができ、このような複合体は、CCD、C-MOSセンサー等のマイクロレンズアレイ、照明やディスプレイの光散乱層、有機ELやLED、半導体レーザー等の発光素子、ディスプレイ、太陽光発電、光学フィルターの反射防止層(膜)、光導波路レジスト、フォトニック構造を利用した表示素子、DBRもしくはDFB型レーザー素子の光閉込め素材またはランダム型レーザー発振素子の散乱体、分光フィルター、バンドパスフィルター等の多層反射膜への利用が期待される。

Claims (30)

  1.  タングステン酸及びモリブデン酸から選ばれる1種以上と、エーテル結合及びエステル結合から選ばれる1以上を有する数平均分子量1,000~10,000,000の高分子を含む複合体であって、前記複合体におけるタングステン酸及びモリブデン酸から選ばれる1種以上の含有量が0.01~95重量%である、複合体。
  2.  前記複合体における、前記高分子とタングステン酸及びモリブデン酸から選ばれる1種以上の合計量の重量割合が、90重量%以上である、請求項1に記載の複合体。
  3.  前記高分子が、下記式(I)で表される化合物及び官能基数が2以上の多官能アクリレートから選ばれる1種以上を重合して得られる重合体であって、エステル結合及びエーテル結合から選ばれる1以上を有する重合体、多糖及びその誘導体からなる群から選ばれる1種以上である、請求項1または2に記載の複合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、Xは単結合、-O-、-COO-、-OCO-、-CONR3-または-NHCO-で表される結合基を表し、R1及びR3は、それぞれ独立して、水素、任意の水素がヒドロキシル基で置換されていてもよい炭素数1~18のアルキル基、炭素数1~18のアルケニル基または任意の水素がメチル基で置換されていてもよい炭素数6~18のアリール基、炭素数7~18のアラルキル基、炭素数3~18の複素環基、炭素数3~18の脂環式炭化水素基、重合度2~20のポリエチレンオキサイドまたはグリシジル基を表し、R2は、水素またはメチルを表し、R1及びR3はエーテル結合を介して結合してもよい。)
  4.  前記式(I)で表される化合物が、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ノルボルニル及び(メタ)アクリル酸ベンジル、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシエチル、スチレン及びビニルアセテートから選ばれる1種以上である、請求項3に記載の複合体。
  5.  前記1分子中の官能基数が2以上の多官能アクリレートが、メチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート及びトリメチロールプロパントリ(メタ)アクリレートから選ばれる1以上である、請求項3に記載の複合体。
  6.  前記高分子が、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸、ポリ酢酸ビニル、ポリビニルアルコール、ポリスチレン-co-ポリメタクリル酸メチル及びポリメタクリル酸2-ヒドロキシエチル、三酢酸セルロースから選ばれる1種以上である、請求項1または2記載の複合体。
  7.  粒子状またはフィルム状の形態である、請求項1~6のいずれか一項に記載の複合体。
  8.  前記複合体の透過減少率が10%以下である、請求項1~7のいずれか一項に記載の複合体。
  9.  タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上と、エーテル結合及びエステル結合から選ばれる1以上を有する数平均分子量1,000~10,000,000の高分子とを含む原料を、水酸基を1個および/またはカルボニル基を1~3個有し、分子量が34~300であり、常圧下における沸点が250℃以下である常温で液体の有機化合物から選ばれる一種以上溶からなる溶媒に溶解させて溶解液を得る工程と、前記溶解液から前記溶媒を留去する工程を含む、タングステン酸及びモリブデン酸から選ばれる1種以上と前記高分子を含む原料との複合体の製造方法。
  10.  前記原料が、下記式(I)で表される化合物から選ばれる1種以上を重合して得られる重合体であって、エステル結合及びエーテル結合から選ばれる1以上を有する重合体を含む、請求項9に記載の方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(I)中、Xは単結合、-O-、-COO-、-OCO-、-CONR3-または-NHCO-で表される結合基を表し、R1及びR3は、それぞれ独立して、水素、任意の水素がヒドロキシル基で置換されていてもよい炭素数1~18のアルキル基、炭素数1~18のアルケニル基または任意の水素がメチル基で置換されていてもよい炭素数6~18のアリール基、炭素数7~18のアラルキル基、炭素数3~18の複素環基、炭素数3~18の脂環式炭化水素基、重合度2~20のポリエチレンオキサイド、またはグリシジル基を表し、R2は、水素またはメチルを表し、R1及びR3はエーテル結合を介して結合してもよい。)
  11.  前記高分子が、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸、ポリ酢酸ビニルから選ばれる1種以上である、請求項9または10に記載の方法。
  12.  前記溶解液から溶媒を留去する工程が、前記溶解液を塗布した基材上で行われる、請求項9~11のいずれか一項に記載の方法。
  13.  前記溶媒がエステル系化合物、アルコール系化合物、ケトン系化合物、ラクトン系化合物、グリコールモノエーテルモノエステル系化合物及びグリコールジエステル系化合物から選ばれる1種以上の化合物である、請求項9~12のいずれか一項に記載の方法。
  14.  前記溶媒が酢酸エチル、メタノール及びエタノールから選ばれる1種以上である、請求項9~13のいずれか一項に記載の方法。
  15.  前記溶解液を得る工程と、前記溶解液から前記溶媒を留去する工程の間に、前記溶解液を造粒する工程を含む、請求項9~14のいずれか一項に記載の方法。
  16.  タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上と、水溶性高分子とを含む原料を、水およびアルコール系化合物から選ばれる1以上に溶解させて溶解液を得る工程と、前記溶解液から前記溶媒を留去する工程を含む、タングステン酸及びモリブデン酸から選ばれる1種以上と前記水溶性高分子を含む原料との複合体の製造方法。
  17.  前記水溶性高分子が、ポリビニルアルコールである、請求項16に記載の製造方法。
  18.  前記溶解液を得る工程と、前記溶解液から前記溶媒を留去する工程の間に、前記溶解液を造粒する工程を含む、請求項16または17に記載の方法。
  19.  タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上を、水酸基を1個および/またはカルボニル基を1~3個有し、分子量が34~300であり、常圧下における沸点が250℃以下である常温で液体の有機化合物から選ばれる一種以上からなる溶媒に溶解させて第一の溶解液を得る工程と、エーテル結合及びエステル結合から選ばれる1以上を有する数平均分子量1,000~10,000,000の高分子とを含む原料を、炭素数1~3のハロゲン化アルキル及び環状エーテルから選ばれる1以上からなる溶媒に溶解させて第二の溶解液を得る工程と、前記第一の溶解液と第二の溶解液を混合する工程と、混合後の溶解液から前記溶媒を留去する工程を含む、タングステン酸及びモリブデン酸から選ばれる1種以上と前記高分子を含む原料との複合体の製造方法。
  20.  前記第一の溶解液を構成する溶媒がエステル系化合物およびアルコール系化合物から選ばれる1以上であり、前記第二の溶解液を構成する溶媒がジクロロメタン及びトリクロロメタンから選ばれる1以上であり、前記高分子が多糖またはその誘導体である、請求項19に記載の製造方法。
  21.  前記多糖またはその誘導体が、三酢酸セルロースである、請求項20に記載の製造方法。
  22.  前記溶解液を得る工程と、前記第一の溶解液と第二の溶解液の混合する工程と、混合後の溶解液から前記溶媒を留去する工程の間に、前記混合後の溶解液を造粒する工程を含む、請求項19~21のいずれか一項に記載の方法。
  23.  タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上を、溶媒としての重合性化合物に溶解させて溶解液を得る工程と、前記溶解液中の重合性化合物を重合させる工程を含む、タングステン酸及びモリブデン酸から選ばれる1種以上と、前記重合性化合物の重合体と、からなる複合体の製造方法。
  24.  前記重合性化合物が、下記式(I)で表される化合物、ビニルケトン系化合物及びグリシジルエステル系化合物から選ばれる化合物である、請求項23に記載の方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(I)中、Xは単結合、-O-、-COO-、-OCO-、-CONR3-または-NHCO-で表される結合基を表し、R1及びR3は、それぞれ独立して、水素、任意の水素がヒドロキシル基で置換されていてもよい炭素数1~18のアルキル基、炭素数1~18のアルケニル基または任意の水素がメチル基で置換されていてもよい炭素数6~18のアリール基、炭素数7~18のアラルキル基、炭素数3~18の複素環基、炭素数3~18の脂環式炭化水素基、重合度2~20のポリエチレンオキサイド、またはグリシジル基を表し、R2は、水素またはメチルを表し、R1及びR3はエーテル結合を介して結合してもよい。)
  25.  前記重合性化合物が、前記式(I)で表される化合物である、請求項24に記載の方法。
  26.  前記溶解液を得る工程と、前記溶解液中の重合性化合物を重合させる工程の間に、前記溶解液を造粒する工程を含む、請求項23~25のいずれか一項に記載の方法。
  27.  タングステン酸のヘテロポリ酸及びその塩並びにモリブデン酸のヘテロポリ酸及びその塩から選ばれる1種以上を、水酸基を1個および/またはカルボニル基を1~3個有し、分子量が34~300であり、常圧下における沸点が250℃以下である常温で液体の有機化合物から選ばれる一種以上からなる溶媒に溶解させて溶解液を得る工程と、該溶解液に、エーテル結合及びエステル結合から選ばれる1種以上を有する数平均分子量1,000~10,000,000の高分子を浸漬する工程と、浸漬後の溶解液から前記溶媒を留去する工程を含むタングステン酸及びモリブデン酸から選ばれる1種以上と前記高分子を含む原料との複合体の製造方法。
  28.  前記高分子が、下記式(I)で表される化合物であり、前記溶媒がアルコール系化合物である、請求項27に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式(I)中、Xは単結合、-O-、-COO-、-OCO-、-CONR3-または-NHCO-で表される結合基を表し、R1及びR3は、それぞれ独立して、水素、任意の水素がヒドロキシル基で置換されていてもよい炭素数1~18のアルキル基、炭素数1~18のアルケニル基または任意の水素がメチル基で置換されていてもよい炭素数6~18のアリール基、炭素数7~18のアラルキル基、炭素数3~18の複素環基、炭素数3~18の脂環式炭化水素基、重合度2~20のポリエチレンオキサイドまたはグリシジル基を表し、R2は、水素またはメチルを表し、R1及びR3はエーテル結合を介して結合してもよい。)
  29.  前記高分子が、粒子状またはフィルム状の形態である、請求項27または28に記載の製造方法。
  30.  請求項9~29のいずれか一項に記載の製造方法により得られる複合体。
PCT/JP2013/066582 2012-06-18 2013-06-17 タングステン酸及び/又はモリブデン酸と高分子との複合体 WO2013191130A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014521454A JP6101976B2 (ja) 2012-06-18 2013-06-17 タングステン酸及び/又はモリブデン酸と高分子との複合体
KR1020147035305A KR101720850B1 (ko) 2012-06-18 2013-06-17 텅스텐산 및/또는 몰리브덴산과 고분자의 복합체
US14/408,519 US10131777B2 (en) 2012-06-18 2013-06-17 Composite of polymer and tungstic acid and/or molybdic acid
CN201380032384.9A CN104411774A (zh) 2012-06-18 2013-06-17 钨酸和/或钼酸与高分子的复合体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012137177 2012-06-18
JP2012-137177 2012-06-18
JP2013028739 2013-02-18
JP2013-028739 2013-02-18

Publications (1)

Publication Number Publication Date
WO2013191130A1 true WO2013191130A1 (ja) 2013-12-27

Family

ID=49768726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066582 WO2013191130A1 (ja) 2012-06-18 2013-06-17 タングステン酸及び/又はモリブデン酸と高分子との複合体

Country Status (6)

Country Link
US (1) US10131777B2 (ja)
JP (1) JP6101976B2 (ja)
KR (1) KR101720850B1 (ja)
CN (1) CN104411774A (ja)
TW (1) TWI503363B (ja)
WO (1) WO2013191130A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227445A (ja) * 2014-05-08 2015-12-17 熊本県 複合粒子およびその製造方法
CN105900014A (zh) * 2014-01-14 2016-08-24 Az电子材料卢森堡有限公司 多金属氧酸盐和杂多金属氧酸盐组合物及其使用方法
WO2017047585A1 (ja) * 2015-09-15 2017-03-23 株式会社リコー ポリマー、樹脂組成物、調光材料、光導波路材料、アサーマル光学素子、カラー表示素子及び光学材料
JP2017218501A (ja) * 2016-06-07 2017-12-14 凸版印刷株式会社 光硬化性組成物および硬化物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110903580B (zh) * 2019-11-27 2022-08-09 桂林理工大学 一种硅钼酸增容改性的聚乙烯醇/淀粉复合材料及其制备方法
CN112391133B (zh) * 2020-11-04 2021-12-28 吉林大学 一种杂多酸增强的聚丙烯酸酯胶黏剂及其制备方法
CN113061220B (zh) * 2021-06-03 2021-09-21 北京石油化工学院 杂多酸混合物及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035509A (ja) * 1999-07-19 2001-02-09 Agency Of Ind Science & Technol イオン伝導性膜
JP2005154710A (ja) * 2003-03-10 2005-06-16 Toray Ind Inc 高分子固体電解質とその製造方法、およびそれを用いた固体高分子型燃料電池
JP2006022291A (ja) * 2004-06-11 2006-01-26 Olympus Corp 光学材料用組成物及び光学材料

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691045A (en) 1984-12-06 1987-09-01 Nippon Shokubai Kagaku Co., Ltd. Hydroxyl group-containing (meth)acrylate oligomer, prepolymer therefrom, and method for use thereof
JPS61134350A (ja) 1984-12-06 1986-06-21 Nippon Shokubai Kagaku Kogyo Co Ltd ヒドロキシル基含有(メタ)アクリレ−トオリゴマ−およびその製法
JPS61187917A (ja) * 1985-02-18 1986-08-21 ユ−オ−ピ− インコ−ポレイテツド ポリマーブレンドされたガス分離膜並びにその製造法並びにそれを使用した水素感知装置及び水素分離装置
US5364729A (en) * 1993-06-25 1994-11-15 Xerox Corporation Toner aggregation processes
JP3909780B2 (ja) 1995-12-14 2007-04-25 旭化成ケミカルズ株式会社 高分子−金属酸化物超微粒子複合体およびその製造方法
CN1260751C (zh) * 2001-06-01 2006-06-21 松下电器产业株式会社 高分子电解质复合体和用它的电解电容器及制造方法
US7498112B2 (en) * 2005-12-20 2009-03-03 Xerox Corporation Emulsion/aggregation toners having novel dye complexes
CN100360609C (zh) * 2006-05-18 2008-01-09 吉林大学 多金属氧簇/聚合物透明杂化材料的制备方法
JP5010184B2 (ja) * 2006-06-07 2012-08-29 電気化学工業株式会社 光学用成形体
KR100843569B1 (ko) * 2007-06-26 2008-07-03 연세대학교 산학협력단 수소이온 전도성 복합 트리블록 공중합체 전해질막 및 그제조방법
CN100595958C (zh) * 2007-12-13 2010-03-24 东华大学 一种燃料电池用有机/无机复合质子交换膜的制备方法
CN101497728A (zh) * 2008-01-31 2009-08-05 中国科学院福建物质结构研究所 一种多酸-聚合物复合膜及其制备方法和用途
BRPI0905108A2 (pt) * 2009-03-26 2011-01-11 Univ Estadual Paulista Julio De Mesquita Jr Unesp materiais fotocrÈmicros de matriz polimérica e respectivos método de obtenção e uso
CN101864163B (zh) * 2010-06-08 2012-04-04 南通大学 复合质子交换膜的制备方法
CN102315463A (zh) * 2011-08-05 2012-01-11 上海交通大学 一种柔性无机/有机复合质子交换膜制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035509A (ja) * 1999-07-19 2001-02-09 Agency Of Ind Science & Technol イオン伝導性膜
JP2005154710A (ja) * 2003-03-10 2005-06-16 Toray Ind Inc 高分子固体電解質とその製造方法、およびそれを用いた固体高分子型燃料電池
JP2006022291A (ja) * 2004-06-11 2006-01-26 Olympus Corp 光学材料用組成物及び光学材料

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900014A (zh) * 2014-01-14 2016-08-24 Az电子材料卢森堡有限公司 多金属氧酸盐和杂多金属氧酸盐组合物及其使用方法
JP2017511780A (ja) * 2014-01-14 2017-04-27 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ ポリオキソメタレート及びヘテロポリオキソメタレート組成物、及びそれらの使用法
JP2015227445A (ja) * 2014-05-08 2015-12-17 熊本県 複合粒子およびその製造方法
WO2017047585A1 (ja) * 2015-09-15 2017-03-23 株式会社リコー ポリマー、樹脂組成物、調光材料、光導波路材料、アサーマル光学素子、カラー表示素子及び光学材料
JPWO2017047585A1 (ja) * 2015-09-15 2018-08-09 株式会社リコー ポリマー、樹脂組成物、調光材料、光導波路材料、アサーマル光学素子、カラー表示素子及び光学材料
US11274174B2 (en) 2015-09-15 2022-03-15 Ricoh Company, Ltd. Polymer, resin composition, light control material, optical waveguide material, athermal optical element, color display element, and optical material
JP2017218501A (ja) * 2016-06-07 2017-12-14 凸版印刷株式会社 光硬化性組成物および硬化物

Also Published As

Publication number Publication date
KR20150013811A (ko) 2015-02-05
CN104411774A (zh) 2015-03-11
KR101720850B1 (ko) 2017-03-28
US10131777B2 (en) 2018-11-20
JPWO2013191130A1 (ja) 2016-05-26
JP6101976B2 (ja) 2017-03-29
US20150197628A1 (en) 2015-07-16
TWI503363B (zh) 2015-10-11
TW201406848A (zh) 2014-02-16

Similar Documents

Publication Publication Date Title
JP6101976B2 (ja) タングステン酸及び/又はモリブデン酸と高分子との複合体
US9180486B2 (en) Method for preparing a porous anti-reflection thin film composed of hollow polymeric nanoparticles
Yoshida et al. Sol− gel-processed SiO2/TiO2/poly (vinylpyrrolidone) composite materials for optical waveguides
Gallei Functional Polymer Opals and Porous Materials by Shear‐Induced Assembly of Tailor‐Made Particles
Carter et al. Highly branched poly (N-isopropylacrylamide) s with imidazole end groups prepared by radical polymerization in the presence of a styryl monomer containing a dithioester group
Luo et al. Double hydrophilic block copolymer monolayer protected hybrid gold nanoparticles and their shell cross-linking
JP6189413B2 (ja) ハシゴ状シルセスキオキサン高分子を含む光学フィルム用樹脂組成物
KR20190042541A (ko) 반사 방지 필름 및 이의 제조 방법
KR102245476B1 (ko) 반사 방지 필름, 편광판, 및 화상 표시 장치
KR101675833B1 (ko) 광결정 습도 센서 및 이의 제조 방법
JP2007238930A (ja) 有機無機複合組成物とその製造方法、成形体および光学部品
EP3385070B1 (en) Antireflective film and manufacturing method therefor
EP2287233B1 (en) Resin particle having many recesses on surface thereof
Guo et al. Dual responsive Pickering emulsions stabilized by constructed core crosslinked polymer nanoparticles via reversible covalent bonds
JP2021524941A (ja) 反射防止フィルム、偏光板およびディスプレイ装置
TW201734056A (zh) 中空粒子及其用途
Li et al. Fabrication of silicon/polymer composite nanopost arrays and their sensing applications
Thomas et al. Core-shell based responsive colloidal photonic crystals for facile, rapid, visual detection of acetone
TW201000533A (en) Organic-inorganic hybrid composition and method for producing same, shaped article and optical component
Huang et al. Semisoft colloidal crystals in ionic liquids
JP2010031186A (ja) 有機無機複合材料、その製造方法および光学部品
CN104628975A (zh) 一种药用两亲性共聚物网络及其制备方法
JP7061756B2 (ja) フォトクロミック色素含有ナノカプセル及びその製造方法
Liu et al. Photonic bandgap of inverse opals prepared from core-shell spheres
KR101166081B1 (ko) 고분자 라텍스 입자를 포함하는 반사방지막 제조용 조성물 및 이를 이용한 다공성 단일층 반사방지막의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521454

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147035305

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14408519

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807352

Country of ref document: EP

Kind code of ref document: A1