WO2013187506A1 - 積層体 - Google Patents

積層体 Download PDF

Info

Publication number
WO2013187506A1
WO2013187506A1 PCT/JP2013/066480 JP2013066480W WO2013187506A1 WO 2013187506 A1 WO2013187506 A1 WO 2013187506A1 JP 2013066480 W JP2013066480 W JP 2013066480W WO 2013187506 A1 WO2013187506 A1 WO 2013187506A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
mass
active energy
parts
Prior art date
Application number
PCT/JP2013/066480
Other languages
English (en)
French (fr)
Inventor
恒祐 藤山
誠一朗 守
大谷 剛
雅資 井川
祐介 中井
哲哉 地紙
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to BR112014031311A priority Critical patent/BR112014031311A2/pt
Priority to US14/407,790 priority patent/US20150125659A1/en
Priority to KR1020157000951A priority patent/KR101755955B1/ko
Priority to JP2013529484A priority patent/JP5725184B2/ja
Priority to CN201380030398.7A priority patent/CN104349892B/zh
Priority to EP13803571.2A priority patent/EP2862706B1/en
Publication of WO2013187506A1 publication Critical patent/WO2013187506A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/728Hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present embodiment relates to a laminate having a fine concavo-convex structure, an antireflection article, an image display device, and a touch panel using the same.
  • the present application includes Japanese Patent Application Nos. 2012-135981 and 2012-135983 filed in Japan on June 15, 2012, Japanese Patent Application No. 2012-201734 filed in Japan on September 13, 2012, and 2012. Claims priority based on Japanese Patent Application No. 2012-244931 filed in Japan on November 13, 2000, the contents of which are incorporated herein by reference.
  • the refractive index of the material In order to lower the refractive index of the material, it is effective to introduce air into the material by some method.
  • a method of reducing the refractive index of the film surface for example, a method of forming a fine concavo-convex structure on the film surface is widely known. According to these methods, since the refractive index of the entire surface layer on which the fine concavo-convex structure is formed is determined by the volume ratio between air and the material forming the fine concavo-convex structure, the refractive index can be significantly reduced. It becomes possible. As a result, the reflectance can be reduced even when the number of stacked layers is small.
  • an antireflection film in which pyramidal convex portions are continuously formed on the entire film in an antireflection film formed on a glass substrate has been proposed (for example, see Patent Document 1).
  • the cross-sectional area of the antireflection film in which pyramid-shaped convex portions (fine concavo-convex structure) are formed changes continuously when the fine concavo-convex structure is cut along a plane parallel to the film surface.
  • the refractive index gradually increases from the air side toward the substrate side, it becomes an effective antireflection means.
  • the antireflection film exhibits excellent optical performance.
  • the antireflection film having the fine concavo-convex structure as described above has antifouling property because it is in contact with air.
  • a method for imparting antifouling properties a method of forming a film made of polytetrafluoroethylene on the surface of a fine concavo-convex structure (see, for example, Patent Document 2) or a resin composition containing a fluorine-containing compound is used.
  • a method of pressing a stamper having a fine concavo-convex structure on a layer for example, see Patent Document 3.
  • antifouling properties are imparted by lowering the surface energy and repelling dirt.
  • a method of coating a photocatalyst layer (such as titanium oxide) having a fine concavo-convex structure on the substrate surface see, for example, Patent Document 4
  • a hydrophilic film made of an inorganic oxide such as a silicon acid compound on the substrate surface
  • a method of forming a film by sputtering for example, see Patent Document 5
  • a method of spin-coating an inorganic fine particle solution on the surface of soda glass and then heating and curing
  • the attached dirt is floated with water to facilitate wiping.
  • Patent Document 7 discloses a photocurable composition comprising a specific fluorine-based surfactant and a polymerizable compound having a specific composition as a coating material for optical disks.
  • Patent Document 8 there has been proposed a method of extruding dirt that has entered the recess by lowering the elastic modulus of the material forming the fine uneven structure.
  • JP-A-63-75702 Japanese Patent Laid-Open No. 2003-172808 JP 2005-97371 A JP 2001-183506 A JP 2001-315247 A JP 11-217560 A JP 7-316468 A JP 2011-76072 A
  • the surface layer may be inferior in scratch resistance, for example, building materials and display applications. There was room for improvement from the viewpoint of practicality as an antireflection article.
  • This embodiment is intended to provide a laminate including a surface layer excellent in antifouling properties and scratch resistance that can easily remove dirt.
  • One embodiment of the present invention is a laminate including a surface layer having a surface on which a fine concavo-convex structure is formed, wherein the elastic modulus of the surface layer is less than 250 MPa, and the gradient of the friction coefficient of the surface layer is 1. It is a laminate that is 8 ⁇ 10 ⁇ 3 or less.
  • One aspect of the present invention is the laminate according to (1), wherein the slope of the friction coefficient of the surface layer is ⁇ 2.0 ⁇ 10 ⁇ 3 or more.
  • One embodiment of the present invention is the laminate according to (1) or (2), wherein the slope of the friction coefficient of the surface layer is ⁇ 1.8 ⁇ 10 ⁇ 3 or more and 1.0 ⁇ 10 ⁇ 3 or less. It is.
  • One embodiment of the present invention is the laminate according to any one of (1) to (3), wherein the elastic modulus of the surface layer is less than 160 MPa.
  • One form of the present invention is the laminate according to any one of (1) to (4), wherein the elastic modulus of the surface layer is less than 100 MPa.
  • One embodiment of the present invention is the laminate according to any one of (1) to (5), wherein the water contact angle of the surface layer is 25 ° or less, or 130 ° or more.
  • One form of the present invention is the laminate according to any one of (1) to (6), wherein the surface layer includes a layer made of a cured product of the active energy ray-curable resin composition.
  • the active energy ray-curable resin composition is a trifunctional or higher polyfunctional (meth) acrylate (A) 1 to 55 parts by mass, a bifunctional (meth) acrylate (B).
  • the content of the trifunctional or higher polyfunctional (meth) acrylate (A) is 5 to 40 parts by mass
  • the content of the bifunctional (meth) acrylate (B) Is a laminate according to (8), in which is 20 to 80 parts by mass.
  • the content of the trifunctional or higher polyfunctional (meth) acrylate (A) is 10 to 30 parts by mass
  • the content of the bifunctional (meth) acrylate (B) Is 30 to 70 parts by mass of the laminate according to (8).
  • the active energy ray-curable resin composition further contains 3 to 85 parts by mass of silicone (meth) acrylate (C) (provided that the active energy ray-curable resin composition is The total of the polymerizable components is 100 parts by mass, and (A) and (B) are the laminates described in (8) and (8), respectively).
  • the active energy ray-curable resin composition further contains 7 to 70 parts by mass of silicone (meth) acrylate (C) (provided that the active energy ray-curable resin composition is The total of the polymerizable components is 100 parts by mass, and (A) and (B) are the laminates described in (9) and (9), respectively.
  • One embodiment of the present invention is the laminate according to (7), wherein the active energy ray-curable resin composition includes a compound (D) having an SH group.
  • the active energy ray-curable resin composition comprises 0 to 95 parts by mass of a bifunctional or higher polyfunctional (meth) acrylate (E) and a silicone (meth) acrylate (C). 0 to 75 parts by mass, 1 to 60 parts by mass of the SH group-containing compound (D) (provided that the total amount of polymerizable components is 100 parts by mass), and the laminate according to (13).
  • One aspect of the present invention is the laminate according to any one of (7) to (14), wherein the surface layer is formed of a layer made of a cured product of the active energy ray-curable resin composition. .
  • the surface layer is formed on a layer made of a cured product of the active energy ray-curable resin composition and a layer made of a cured product of the active energy ray-curable resin composition.
  • One embodiment of the present invention is the laminate according to any one of (1) to (15), wherein the pitch of the fine uneven structure is 100 nm or more and 250 nm or less.
  • One aspect of the present invention is an antireflection article including the laminate according to any one of (1) to (17).
  • One embodiment of the present invention is an image display device including the laminate according to any one of (1) to (17).
  • One embodiment of the present invention is a touch panel including the laminate according to any one of (1) to (17).
  • a laminate including a surface layer excellent in antifouling property and scratch resistance that can easily remove dirt.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the laminate 10 according to the present embodiment.
  • the surface layer 12 which consists of hardened
  • a fine uneven structure is formed on the surface of the surface layer 12.
  • the fine uneven structure is formed on the entire surface of the surface layer, but the fine uneven structure may be formed on a part of the surface of the surface layer. Moreover, when the laminated body 10 has a film shape, fine concavo-convex structures may be formed on both surfaces of the laminated body 10.
  • the elastic modulus of the fine uneven structure region that is, the elastic modulus of the surface layer is less than 250 MPa. Further, the elastic modulus of the surface layer is preferably less than 160 MPa, and more preferably 50 MPa or more and 100 MPa or less.
  • the elastic modulus of the surface layer is less than 250 MPa, the fine uneven structure is soft, so that the dirt that has entered the recess can be easily pushed out.
  • the fine concavo-convex structure is softer when the elastic modulus of the surface layer is less than 160 MPa, it is possible to more easily extrude dirt that has entered the recess.
  • the fine concavo-convex structure When the elastic modulus of the surface layer is 50 MPa or more, the fine concavo-convex structure has sufficient hardness, and thus it is possible to effectively prevent the protrusions from being united. When the elastic modulus of the surface layer is 100 MPa or less, the fine concavo-convex structure is sufficiently soft, so that the fine concavo-convex structure can be freely deformed, and dirt entering the concave portions can be further easily removed.
  • the gradient of the friction coefficient of the fine concavo-convex structure region that is, the gradient of the friction coefficient of the surface layer is 1.8 ⁇ 10 ⁇ 3 or less.
  • the slope of the friction coefficient of the surface layer is preferably ⁇ 2.0 ⁇ 10 ⁇ 3 or more, and preferably ⁇ 1.8 ⁇ 10 ⁇ 3 or more and 1.0 ⁇ 10 ⁇ 3 or less.
  • the slope of the friction coefficient of the surface layer is 0.0018 or less, the increase in the friction coefficient is small when the surface layer is rubbed with a cloth or the like, so that the surface layer does not break.
  • the slope of the friction coefficient of the surface layer is ⁇ 1.8 ⁇ 10 ⁇ 3 or more, when the surface layer is rubbed with a cloth or the like, the projections of the fine concavo-convex structure do not occur, and the same as before the scratch even after the scratch Antireflection performance can be maintained.
  • the slope of the friction coefficient of the surface layer is 1.0 ⁇ 10 ⁇ 3 or less, the increase in the friction coefficient is even smaller when the surface layer is rubbed with a cloth or the like, so that the surface layer is not damaged.
  • the water contact angle of the fine uneven structure region that is, the water contact angle of the surface layer is not particularly limited, but is preferably 25 ° or less, or 130 ° or more, and more preferably 15 ° or less, or 135 ° or more.
  • the water contact angle of the surface layer is 25 ° or less, since the surface is hydrophilic, dirt can be easily wiped off.
  • the water contact angle of the surface layer is 130 ° or more, since the surface energy of the surface layer is small, the dirt can be easily wiped off.
  • the water contact angle of the surface layer is 15 ° or less, the surface has high hydrophilicity, so that dirt can be wiped off more easily.
  • the surface energy of the surface layer is sufficiently small, so that adhesion of dirt can be suppressed.
  • the lower limit of the water contact angle of the surface layer is not particularly limited, but the water contact angle of the surface layer is preferably 5 ° or more, and more preferably 7 ° or more.
  • the upper limit of the water contact angle of the surface layer is not particularly limited, but the water contact angle of the surface layer is preferably 150 ° or less, and more preferably 145 ° or less.
  • the surface layer can be composed of a cured product of the active energy ray-curable resin composition.
  • the outermost surface layer was formed on a layer made of a cured product of the active energy ray-curable resin composition and a layer made of the cured product of the active energy ray-curable resin composition. And a surface treatment layer as a layer.
  • the active energy ray-curable resin composition contains 1 to 55 parts by mass of a trifunctional or higher polyfunctional (meth) acrylate (A) and 10 to 95 parts by mass of a bifunctional (meth) acrylate (B) (provided that The total of the polymerizable components in the active energy ray-curable resin composition is preferably 100 parts by mass).
  • the active energy ray-curable resin composition preferably further contains 3 to 85 parts by mass of silicone (meth) acrylate (C). That is, the active energy ray-curable resin composition is, for example, 1 to 55 parts by mass of a trifunctional or higher polyfunctional (meth) acrylate (A) and 10 to 95 parts by mass of a bifunctional (meth) acrylate (B). It is preferable to contain 3 to 85 parts by mass of silicone (meth) acrylate (C) (provided that the total amount of polymerizable components in the active energy ray-curable resin composition is 100 parts by mass). Silicon (meth) acrylate (C) is excluded from trifunctional or higher polyfunctional (meth) acrylate (A) and bifunctional (meth) acrylate (B).
  • the trifunctional or higher polyfunctional (meth) acrylate is a group selected from an acryloyl group (CH 2 ⁇ CHCO—) and a methacryloyl group (CH 2 ⁇ C (CH 3 ) CO—) in the molecule. It means a compound having two or more.
  • the bifunctional (meth) acrylate means a compound having two groups selected from an acryloyl group (CH 2 ⁇ CHCO—) and a methacryloyl group (CH 2 ⁇ C (CH 3 ) CO—) in the molecule. To do.
  • the polyfunctional (meth) acrylate (A) having 3 or more functions is preferably 4 or more and more preferably 5 or more.
  • Examples of the trifunctional or higher polyfunctional (meth) acrylate (A) include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, dipentaerythritol hydroxypenta ( (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, succinic acid / trimethylolethane / acrylic acid 1: 2: 4 condensation reaction product, urethane acrylate, polyether acrylate, modified epoxy acrylate, polyester Examples include acrylates.
  • urethane acrylates examples include “EBECRYL220”, “EBECRYL1290”, “EBECRYL1290K”, “EBECRYL5129”, “EBECRYL8210”, “EBECRYL8301”, and “KRM8200” manufactured by Daicel Cytec.
  • polyether acrylates examples include “EBECRYL81” manufactured by Daicel-Cytec.
  • modified epoxy acrylates examples include “EBECRYL3416” manufactured by Daicel-Cytec.
  • polyester acrylates examples include “EBECRYL450”, “EBECRYL657”, “EBECRYL800”, “EBECRYL810”, “EBECRYL812”, “EBECRYLEC”, “EBECRYL8830”, “EBECRYLEC”, and “EBECRYLEC”. ".
  • examples of the trifunctional or more polyfunctional (meth) acrylate (A) include a monomer obtained by adding ethylene oxide or propylene oxide to the monomer. These polyfunctional (meth) acrylates (A) may be used alone or in combination of two or more.
  • the trifunctional or higher polyfunctional (meth) acrylate (A) is preferably 1 to 55 parts by mass when the total of the polymerizable components in the active energy ray-curable resin composition is 100 parts by mass.
  • the amount is more preferably 40 to 40 parts by mass, and further preferably 10 to 30 parts by mass.
  • bifunctional (meth) acrylate (B) examples include bifunctional acrylates having polyalkylene glycol such as bifunctional acrylates having polyethylene glycol, bifunctional acrylates having polypropylene glycol, and bifunctional acrylates having polybutylene glycol. preferable.
  • bifunctional acrylates having polyethylene glycol include Aronix M-240, Aronix M-260 (manufactured by Toagosei Co., Ltd.), NK ester AT-20E, NK ester ATM-35E (manufactured by Shin-Nakamura Chemical Co., Ltd.), and the like. Can be mentioned.
  • bifunctional acrylates having polypropylene glycol examples include APG-400 and APG-700 (manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • Specific examples of the bifunctional acrylate having polybutylene glycol include A-PTMG-650 (manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • polyethylene glycol diacrylate is preferably used from the viewpoint that better antifouling properties can be obtained.
  • polyethylene glycol diacrylate as the bifunctional (meth) acrylate (B), the molecular mobility of the resin on the surface layer is improved, the dirt entering the recesses is more easily pushed out, and good antifouling properties are expressed.
  • the total of the average repeating units of polyethylene glycol chains present in one molecule of polyethylene glycol diacrylate is preferably 6 to 40, more preferably 9 to 30, and still more preferably 12 to 20. If the average repeating unit of the polyethylene glycol chain is 6 or more, the mobility of the molecule is maintained and good antifouling properties are exhibited. If the average repeating unit of the polyethylene glycol chain is 40 or less, the compatibility with the trifunctional or higher polyfunctional (meth) acrylate (A) is good.
  • bifunctional acrylates having polyalkylene glycol polypropylene glycol diacrylate and polybutylene glycol diacrylate are also preferably used from the viewpoint of compatibility.
  • silicone (meth) acrylate (C) such as silicone di (meth) acrylate having low hydrophilicity by using polypropylene glycol diacrylate or polybutylene glycol diacrylate as the bifunctional (meth) acrylate (B) Is improved, and a transparent active energy ray-curable resin composition can be obtained.
  • These bifunctional (meth) acrylates (B) may be used alone or in combination of two or more.
  • the bifunctional (meth) acrylate (B) is preferably 10 to 95 parts by mass, and 20 to 80 parts by mass when the total of the polymerizable components in the active energy ray-curable resin composition is 100 parts by mass. More preferably, it is more preferably 30 to 70 parts by mass.
  • a mobility can be provided to a convex part and antifouling property is expressed effectively.
  • 80 mass parts or less the fall of an elasticity modulus is suppressed and the protrusion unity of a convex part can be suppressed.
  • the silicone (meth) acrylate (C) is selected from an acryloyl group (CH 2 ⁇ CHCO—) and a methacryloyl group (CH 2 ⁇ C (CH 3 ) CO—) at the side chain and / or terminal of the compound having an organosiloxane structure.
  • the compound is not particularly limited as long as it has at least one group.
  • the silicone (meth) acrylate (C) is preferably selected from the viewpoint of the compatibility between the trifunctional or higher polyfunctional (meth) acrylate (A) and the bifunctional (meth) acrylate (C).
  • the compatible segment examples include a polyalkylene oxide structure, a polyester structure, and a polyamide structure.
  • One of these compatible segments may be contained alone in the silicone (meth) acrylate (C), or two or more thereof may be contained.
  • Silicone (meth) acrylate (C) may be used after being diluted from the aspect of handling. As the diluent, those having reactivity in terms of bleeding out from a cured product are preferable. Handling of silicone (meth) acrylate (C) by mixing trifunctional or higher polyfunctional (meth) acrylate (A) or bifunctional (meth) acrylate (B) with silicone (meth) acrylate (C) Can also be improved.
  • silicone (meth) acrylate (C) examples include the Silaplane series manufactured by Chisso Corporation, and the silicone diacrylates “X-22-164” and “X-22” manufactured by Shin-Etsu Chemical Co., Ltd. -1602 ",” BYK-UV3500 “,” BYK-UV3570 “manufactured by Big Chemie Japan, and the TEGO Rad series manufactured by Evonik Degussa Japan are preferred. These silicone (meth) acrylates (C) may be used alone or in combination of two or more.
  • the silicone (meth) acrylate (C) is preferably 3 to 85 parts by mass, preferably 7 to 70 parts by mass, when the total amount of the polymerizable components in the active energy ray-curable resin composition is 100 parts by mass. More preferably, it is more preferably 20 to 70 parts by mass.
  • the content of silicone (meth) acrylate (C) is 3 parts by mass or more, the water contact angle of the surface layer having a fine concavo-convex structure tends to be 130 ° or more, and the laminate is imparted with antifouling properties.
  • the elasticity modulus of the grade which can transfer a fine uneven structure to a surface layer can be provided by content of silicone (meth) acrylate (C) being 85 mass parts or less.
  • the water contact angle of a surface layer becomes easy to become 135 degrees or more, and the antifouling property of a laminated body improves.
  • the viscosity of an active energy ray curable resin composition is suppressed, and handling improves.
  • the compatibility with the component in an active energy ray-curable resin composition, especially (A) and (B) becomes favorable, and the water repellency of the surface layer and the flexibility of the projections are improved. In order to improve, the outstanding antifouling property is expressed.
  • the active energy ray-curable resin composition may contain a monofunctional monomer.
  • the monofunctional monomer is preferably selected in consideration of the compatibility with the trifunctional or higher polyfunctional (meth) acrylate (A) and the bifunctional (meth) acrylate (B).
  • monofunctional (meth) acrylates having a polyethylene glycol chain in the ester group monofunctional (meth) acrylates having a hydroxyl group in the ester group such as hydroxyalkyl (meth) acrylate, monofunctional acrylamides, methacrylamide propyl
  • hydrophilic monofunctional monomers such as cationic monomers such as trimethylammonium methyl sulfate or methacryloyloxyethyl trimethylammonium methyl sulfate.
  • monofunctional monomer specifically, monofunctional (meth) acrylates “M-20G”, “M-90G”, “M-230G” (manufactured by Shin-Nakamura Chemical Co., Ltd.), etc. may be used. it can.
  • the active energy ray-curable resin composition may be added with viscosity modifiers such as acryloylmorpholine and vinylpyrrolidone, and adhesion improvers such as acryloyl isocyanates that improve adhesion to transparent substrates. it can.
  • viscosity modifiers such as acryloylmorpholine and vinylpyrrolidone
  • adhesion improvers such as acryloyl isocyanates that improve adhesion to transparent substrates. it can.
  • the content of the monofunctional monomer in the active energy ray-curable resin composition is, for example, 0.1 to 20 when the total of the polymerizable components in the active energy ray-curable resin composition is 100 parts by mass.
  • the amount is preferably part by mass, and more preferably 5 to 15 parts by mass.
  • a polymer (oligomer) having a low degree of polymerization obtained by polymerizing one or more monofunctional monomers may be added to the active energy ray-curable resin composition.
  • a polymer having a low degree of polymerization include monofunctional (meth) acrylates having a polyethylene glycol chain in an ester group (for example, “M-230G”, manufactured by Shin-Nakamura Chemical Co., Ltd.) And 40/60 copolymer oligomers of methacrylamidopropyltrimethylammonium methyl sulfate (for example, “MG polymer” manufactured by MRC Unitech).
  • the active energy ray-curable resin composition contains fine particles such as an antistatic agent, a release agent, an ultraviolet absorber, and colloidal silica in addition to the above-mentioned various monomers and polymers having a low polymerization degree. It may be.
  • the active energy ray-curable resin composition may contain a release agent.
  • a release agent When a release agent is contained in the active energy ray-curable resin composition, good release properties can be maintained when the laminate is continuously produced.
  • the mold release agent include (poly) oxyalkylene alkyl phosphate compounds. In particular, when an anodized alumina mold is used, the release agent is easily adsorbed on the surface of the mold due to the interaction between the (poly) oxyalkylene alkyl phosphate compound and alumina.
  • Examples of commercially available (poly) oxyalkylene alkyl phosphate compounds include “JP-506H” (trade name) manufactured by Johoku Chemical Industry Co., Ltd., “Mold With INT-1856” (trade name) manufactured by Accel Corporation, “TDP-10”, “TDP-8”, “TDP-6”, “TDP-2”, “DDP-10”, “DDP-8”, “DDP-6”, “DDP” manufactured by Nikko Chemicals Co., Ltd. -4 ",” DDP-2 “,” TLP-4 “,” TCP-5 ",” DLP-10 “(trade name), and the like.
  • the release agent contained in the active energy ray-curable resin composition may be used alone or in combination of two or more.
  • the content of the release agent contained in the active energy ray-curable resin composition is preferably 0.01 to 2.0 parts by mass, and 0.05 to 0. 0 parts by mass with respect to 100 parts by mass of the polymerizable component. More preferably, it is 2 parts by mass. If content of a mold release agent is 0.01 mass part or more, the mold release property from the mold of the articles
  • the distance w1 (pitch) between adjacent convex portions of the fine concavo-convex structure is preferably not more than the wavelength of visible light, more preferably 100 nm or more and 300 nm or less, and 150 nm or more and 250 nm or less. More preferably, it is more preferably 170 nm or more and 230 nm or less.
  • the thickness is sufficiently smaller than the wavelength of visible light, so that the scattering of visible light is effectively suppressed, and excellent antireflection properties are easily imparted.
  • the “visible wavelength” means a wavelength of 400 nm.
  • the height d1 of the convex portion 13 is preferably 100 nm or more, and more preferably 150 nm or more. By setting the height d1 to be 100 nm or more, it is possible to prevent an increase in the minimum reflectance and an increase in the reflectance at a specific wavelength, and it becomes easy to impart good antireflection properties.
  • the aspect ratio (height of the protrusions 13 / interval between adjacent protrusions) is preferably 0.5 to 5.0, more preferably 0.6 to 2.0, and 0.8 More preferably, it is -1.2.
  • the aspect ratio is 0.5 or more, an increase in the minimum reflectance and an increase in the reflectance at a specific wavelength can be suppressed, and good antireflection properties are exhibited.
  • the aspect ratio is 5 or less, the convex portions of the fine concavo-convex structure are not easily broken when the surface layer is rubbed, so that good scratch resistance and antireflection properties are exhibited.
  • the “height of the convex portion” is a vertical distance from the tip 13a of the convex portion 13 to the bottom portion 14a of the adjacent concave portion 14 as shown in FIG.
  • the shape of the convex portion 13 of the fine concavo-convex structure is not particularly limited, but in order to obtain an antireflection function that continuously increases the refractive index and achieves both low reflectance and low wavelength dependence, FIG.
  • the occupancy of the cross-sectional area continuously increases toward the substrate side when cut by a plane parallel to the film surface, such as a substantially conical shape as shown or a bell shape as shown in FIG.
  • a structure is preferred.
  • a plurality of finer convex portions may be combined to form the fine concavo-convex structure.
  • the method for forming the fine concavo-convex structure on the surface of the laminate is not particularly limited, and examples thereof include a method of injection molding or press molding using a stamper on which the fine concavo-convex structure is formed.
  • a method for forming a fine concavo-convex structure for example, an active energy ray curable resin composition is filled between a stamper on which a fine concavo-convex structure is formed and a transparent substrate, and active energy ray curing is performed by active energy ray irradiation.
  • active energy ray curing is performed by active energy ray irradiation.
  • an active energy ray curable resin composition is filled between a stamper on which a fine concavo-convex structure is formed and a transparent substrate, and the active energy ray curable resin composition is filled with the unevenness of the stamper.
  • a method of releasing the mold after transferring the shape and then irradiating an active energy ray to cure the active energy ray-curable resin composition is also included.
  • the active energy ray-curable resin composition is filled between the stamper on which the fine concavo-convex structure is formed and the transparent substrate, and the active energy ray is irradiated.
  • a method of releasing the mold after curing the active energy ray-curable resin composition to transfer the uneven shape of the stamper is preferably used.
  • the substrate is not particularly limited, but is preferably a transparent substrate.
  • the transparent substrate is not particularly limited as long as it transmits light.
  • the transparent substrate material include methyl methacrylate (co) polymer, polycarbonate, styrene (co) polymer, methyl methacrylate-styrene copolymer, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, polyester, polyamide , Polyimide, polyether sulfone, polysulfone, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polyurethane, glass, crystal and the like.
  • the transparent substrate may be produced by any method of injection molding, extrusion molding, and cast molding.
  • the shape of the transparent substrate is not particularly limited and can be appropriately selected depending on the application.
  • the application is an antireflection film, a sheet or film is preferable.
  • the surface of the transparent substrate is subjected to various coatings and corona discharge treatment, for example. It may be.
  • the method for producing the stamper on which the fine concavo-convex structure is formed is not particularly limited, and examples thereof include an electron beam lithography method and a laser beam interference method.
  • an appropriate photoresist film on an appropriate support substrate After applying an appropriate photoresist film on an appropriate support substrate, exposure is performed using light such as an ultraviolet laser, an electron beam, or X-ray, followed by development to form a mold having a fine concavo-convex structure. .
  • This mold can also be used as a stamper. It is also possible to form a fine concavo-convex structure directly on the support substrate itself by selectively etching the support substrate through dry etching through the photoresist layer and then removing the photoresist layer.
  • anodized porous alumina can be used as a stamper.
  • an alumina nanohole array obtained by a method of anodizing aluminum at a predetermined voltage in an electrolyte such as oxalic acid, sulfuric acid, phosphoric acid, etc. is used as a stamper. May be. According to this method, after anodizing high-purity aluminum for a long time at a constant voltage, pores having very high regularity can be formed in a self-organizing manner by once removing the oxide film and anodizing again. .
  • a replica mold may be produced from an original mold having a fine concavo-convex structure by electroforming or the like and used as a stamper.
  • the shape of the stamper thus produced is not particularly limited, but may be a flat plate shape or a roll shape, but from the viewpoint of continuously transferring the fine concavo-convex structure to the active energy ray-curable resin composition.
  • a roll shape is preferred.
  • the active energy ray-curable resin composition in the present embodiment can appropriately contain a monomer having a radical polymerizable and / or cationic polymerizable bond in the molecule, a polymer having a low polymerization degree, and a reactive polymer. It is cured by a polymerization initiator described later. Moreover, the active energy ray-curable resin composition may include a non-reactive polymer.
  • active energy ray used for curing the active energy ray-curable resin composition include visible light, ultraviolet light, electron beam, plasma, and infrared light.
  • the irradiation of the active energy ray is performed using, for example, a high-pressure mercury lamp.
  • Cumulative irradiation energy amount is cured with an active energy ray curable resin composition is not particularly limited as long as the amount of energy proceeds, for example, preferably 100 ⁇ 5000mJ / cm 2, more preferably 200 ⁇ 4000mJ / cm 2 400 to 3200 mJ / cm 2 is more preferable. Since the integrated light irradiation amount of the active energy ray may affect the degree of cure of the active energy ray-curable resin composition, it is desirable to appropriately select and irradiate the light.
  • the polymerization initiator (photopolymerization initiator) used for curing (photocuring) the active energy ray-curable resin composition is not particularly limited, and examples thereof include 2,2-diethoxyacetoxyphenone and p-dimethylacetophenone.
  • the active energy ray-curable resin composition may be cured using a combination of photocuring and heat curing.
  • the thermal polymerization initiator to be added when thermosetting is used is not particularly limited.
  • the laminated body of the present embodiment includes, for example, an antireflection article such as an antireflection film (including an antireflection film) and an antireflection body, an image display device, a touch panel, an optical waveguide, a relief hologram, a solar cell, a lens, and a polarization separation element. Further, it can be used for optical articles such as a member for improving the light extraction rate of organic electroluminescence, and cell culture sheets.
  • the laminate of the present embodiment is particularly suitable for use as an antireflection article such as an antireflection film (including an antireflection film) or an antireflection body.
  • the laminate of this embodiment is a laminate comprising a surface layer excellent in antifouling properties and scratch resistance that can easily remove dirt
  • the laminate of this embodiment is used as an antireflection article, an image display device, a touch panel, etc. If it is installed on the outermost surface, dirt such as sebum that adheres at the time of use is difficult to adhere and easy to remove, and good antireflection performance can be exhibited. Furthermore, since dirt can be easily removed without using water or alcohol on the surface, an article excellent in practical use can be obtained.
  • an image display device such as a liquid crystal display device, a plasma display panel, an electroluminescence display, a cathode tube display device, a lens, a show window, an automobile meter cover, an eyeglass lens, etc. Used by sticking to the surface of the object.
  • a laminate can be produced in advance using a transparent substrate having a shape suitable for the application, and this can be used as a member constituting the surface of the object.
  • the object is an image display device
  • an antireflection article may be attached to the front plate, or the front plate itself is formed from the laminate of the present embodiment. You can also.
  • the surface layer can be composed of a cured product of the active energy ray-curable resin composition.
  • the active energy ray-curable resin composition has a compound having an SH group (D ) Is preferably included.
  • the SH group is a thiol group, a hydroxyl group, a mercapto group, or a sulfhydryl group.
  • the elastic modulus can be lowered while maintaining the crosslinking density of the cured product, so that the flexibility can be imparted to the protrusions while maintaining the shape of the protrusions, and dirt accumulated in the recesses can be removed. Will improve.
  • the active energy ray-curable fat composition has 0 to 95 parts by mass of a bifunctional or higher polyfunctional (meth) acrylate (E) and 0 to the above-mentioned silicone (meth) acrylate (C). It is preferable to contain 1 to 60 parts by weight of the compound (D) having SH group and 75 parts by weight (however, the total of the polymerizable components is 100 parts by weight). Silicone (meth) acrylate (C) is excluded from bifunctional or higher polyfunctional (meth) acrylate (E).
  • the polyfunctional (meth) acrylate (E) having two or more functions means a group selected from an acryloyl group (CH 2 ⁇ CHCO—) and a methacryloyl group (CH 2 ⁇ C (CH 3 ) CO—) in the molecule.
  • the polyfunctional (meth) acrylate (E) having two or more functions includes ethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, isocyanuric acid ethylene oxide-modified di (meth) acrylate, triethylene glycol di ( (Meth) acrylate, diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, 1,3-butylene glycol Di (meth) acrylate, polybutylene glycol di (meth) acrylate, 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxyethoxyphenyl) Professional 2,2-bis (4- (3- (meth) acryloxy-2-hydroxypropoxy) phenyl) propane,
  • the bifunctional or higher polyfunctional (meth) acrylate (E) is preferably 0 to 95 parts by mass when the total of the polymerizable components in the active energy ray-curable resin composition is 100 parts by mass, More preferably, it is -90 parts by mass, and particularly preferably 40-90 parts by mass. If content of bifunctional or more polyfunctional (meth) acrylate (E) is 0 mass part or more and 95 mass parts or less, the excessive fall of an elasticity modulus can be suppressed and the shape of arium
  • a bifunctional or higher polyfunctional (meth) acrylate (E) to the composition, that is, if its content exceeds 0 parts by mass, the elastic modulus can be easily suppressed, and the shape of the protrusions can be reduced. Easy to maintain.
  • content of polyfunctional (meth) acrylate (E) more than bifunctional is 40 mass parts or more, the fall of an elasticity modulus can be suppressed and coalescence of a proceedings
  • content of bifunctional or more polyfunctional (meth) acrylate (E) is 95 mass parts or less, an elastic modulus falls and a stain
  • the silicone (meth) acrylate (C) is preferably 0 to 75 parts by mass when the total of the polymerizable components in the active energy ray-curable resin composition is 100 parts by mass. More preferably, it is ⁇ 70 parts by mass.
  • the content of the silicone (meth) acrylate (C) is 0 part by mass or more and 75 parts by mass or less, water repellency is imparted and the antifouling property is further improved.
  • the silicone (meth) acrylate (C) is added to the composition, that is, if its content exceeds 0 parts by mass, water repellency is more effectively imparted and antifouling properties are improved.
  • silicone (meth) acrylate (C) when content of silicone (meth) acrylate (C) is 5 mass parts or more, since the surface energy of a surface layer falls and the contact angle with respect to water will be 130 degrees or more, antifouling property improves further. Moreover, when content of silicone (meth) acrylate (C) is 75 mass parts or less, since compatibility with another component becomes good, transparency improves. Moreover, when content of silicone (meth) acrylate (C) is 70 mass parts or less, the viscosity of an active energy ray-curable resin composition is suppressed, and handling improves.
  • the compound (D) containing an SH group is not particularly limited as long as it is a compound containing an SH group, but is a compound containing two or more SH groups in order to increase the crosslinking density of the surface layer and maintain the strength. It is preferable that the SH group is a secondary thiol from the viewpoint of storage stability of the active energy ray-curable resin composition.
  • Examples of the compound having two or more SH groups include 1,2-ethanedithiol, 1,2-propanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 1,6-hexanedithiol, 1, 7-heptanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, 1,10-decanedithiol, 1,12-dodecanedithiol, 2,2-dimethyl-1,3-propanedithiol, 3-methyl- 1,5-pentanedithiol, 2-methyl-1,8-octanedithiol, 1,4-cyclohexanedithiol, 1,4-bis (mercaptomethyl) cyclohexane, 1,1-cyclohexanedithiol, 1,2-cyclohexanedithiol, Bicyclo [2,2,1] hepta-exo-cis-2,3-
  • Examples of the compound having secondary thiol include Karenz MT PE1, Karenz MT NR1, Karenz MT BD1 (trade name, manufactured by Showa Denko KK).
  • the SH group-containing compound (D) is preferably 1 to 60 parts by mass, preferably 1 to 15 parts by mass, when the total amount of polymerizable components in the active energy ray-curable resin composition is 100 parts by mass. It is more preferable that If the content of the SH group-containing compound (D) is 1 part by mass or more, the elastic modulus of the surface layer can be lowered while maintaining the cross-linking density, so that it becomes easy to extrude dirt from the recess, resulting in lamination Sufficient antifouling property can be imparted to the body, and the restoring force of the shape of the convex portion can be maintained.
  • content of the compound (D) containing SH group is 60 mass parts or less, the storage stability of an active energy ray-curable resin composition can be maintained. Moreover, when content of the compound (D) containing SH group is 15 mass parts or less, the fall of the elasticity modulus of a surface layer can be suppressed more effectively, and coalescence of a convex part can be prevented.
  • the active energy ray-curable resin composition may contain a monofunctional monomer.
  • the monofunctional monomer is desirably selected in consideration of compatibility with the bifunctional or higher polyfunctional (meth) acrylate (E) and the silicone (meth) acrylate (C).
  • monofunctional monomers include monofunctional (meth) acrylates having a polyethylene glycol chain in the ester group, monofunctional (meth) acrylates having a hydroxyl group in the ester group such as hydroxyalkyl (meth) acrylate, and monofunctional Preferred examples include hydrophilic monofunctional monomers such as cationic monomers such as acrylamides, methacrylamidopropyltrimethylammonium methyl sulfate or methacryloyloxyethyltrimethylammonium methyl sulfate.
  • monofunctional monomers include monofunctional (meth) acrylates “M-20G”, “M-90G”, and “M-230G” (manufactured by Shin-Nakamura Chemical Co., Ltd., all trade names). Etc. can be used. From the viewpoint of improving antifouling properties, alkyl mono (meth) acrylate, silicone (meth) acrylate, and fluorinated alkyl (meth) acrylate are preferably used.
  • monofunctional monomer include “Blemmer LA”, “Blemmer CA”, “Blemmer SA” (all trade names) manufactured by NOF Corporation, and “X” manufactured by Shin-Etsu Chemical Co., Ltd. -24-2401 ",” X-22-174DX "(both trade names),” C10GACRY "(trade name) manufactured by Ex Floor Research, etc. can be used.
  • the surface layer is a surface treatment as the outermost layer formed on the layer made of the cured product of the above-mentioned active energy ray-curable resin composition and the layer made of the cured product of the active energy ray-curable resin composition. It can also consist of layers.
  • FIG. 3 is a schematic cross-sectional view showing an example of the configuration of the laminate 110 according to the present embodiment.
  • a layer (hereinafter also referred to as a cured product layer) 112 made of a cured product of the active energy ray-curable resin composition is formed on a transparent substrate 111, and the cured product layer 112 is formed on the cured product layer 112.
  • a surface treatment layer 113 is formed as the outermost surface layer.
  • the cured product layer 112 has a fine uneven structure on the surface side, and the surface treatment layer 113 is formed along the fine uneven structure.
  • the surface layer 104 includes a cured product layer 112 and a surface treatment layer 113.
  • the shape of the fine concavo-convex structure is not limited to the shape shown in FIG. 3, and may be a shape as shown in FIG. 4 or another shape.
  • the water contact angle of the fine relief structure region that is, the water contact angle of the surface treatment layer is preferably 130 ° or more, and more preferably 135 ° or more.
  • the surface energy is sufficiently small so that the dirt can be easily wiped off.
  • the water contact angle of the surface treatment layer is 135 ° or more, the surface energy is sufficiently small, so that the adhesion of dirt can be suppressed.
  • the upper limit of the water contact angle of the surface treatment layer is not particularly limited, but is preferably 150 ° or less, and more preferably 145 ° or less.
  • a compound having an alkyl group, a polydimethylsiloxane structure or a fluorinated alkyl group is preferably used.
  • the material for the surface treatment layer is preferably a compound having a reactive group such as silane, alkoxysilane, silazane, and (meth) acrylate, from the viewpoint of adhesion to the fine concavo-convex structure.
  • Such compounds include “KBM” series, “KBE” series, “X” series manufactured by Shin-Etsu Chemical Co., Ltd., “BYK” series manufactured by Big Chemie Japan, and “ Preferable examples include TEGO Rad series, “FG” series, “FS” series manufactured by Fluoro Technology.
  • the material of the surface treatment layer can be applied on the cured product by a general method such as dipping, spraying, brushing, spin coating or the like.
  • a pretreatment of the fine relief structure region examples include introduction of a functional group on the surface of the fine concavo-convex structure by silica vapor deposition or plasma, coating of a primer containing a compound having good reactivity with the surface treatment layer, and the like.
  • the thickness of the surface treatment layer is preferably 100 nm or less from the viewpoint of maintaining the antireflection performance of the fine concavo-convex structure.
  • the presence of the surface treatment layer can be confirmed from the fact that the spectrum changes depending on the incident angle in the angle variable ATR measurement, or from the cross-sectional observation by TEM.
  • the laminate according to the present embodiment is a laminate comprising a surface layer having a fine concavo-convex structure on the surface, wherein the elastic modulus of the surface layer is less than 200 MPa, and the water contact angle of the surface layer is 25 ° or less.
  • the surface layer contains a cured product of an active energy ray-curable resin composition
  • the cured product of the active energy ray-curable resin composition is a polyfunctional (meth) acrylate of 5 to 55 parts by mass and a polyethylene glycol having a functionality of 3 or more. It is preferable to contain a polymer of a polymerizable component containing 45 to 95 parts by mass of diacrylate (the average repeating unit of ethylene glycol is 6 to 40) (provided that the total of the polymerizable components is 100 parts by mass).
  • the laminate according to the present embodiment can easily remove dirt without using water or alcohol on the surface, and is excellent in antifouling property.
  • FIG. 1 is a longitudinal sectional view showing an example of a laminate according to this embodiment.
  • the laminated body 10 shown in FIG. 1 has a surface layer 12 formed on a transparent base material 11 described later.
  • a fine relief structure is formed on the surface of the surface layer 12.
  • the surface layer 12 contains the hardened
  • the interval (pitch) w1 between adjacent convex portions 13 in FIG. 1 is preferably not more than the wavelength of visible light, more preferably not less than 100 nm and not more than 300 nm, and more preferably 150 nm.
  • the thickness is more preferably 250 nm or less, and particularly preferably 170 nm or more and 230 nm or less.
  • the pitch is 150 nm or more, even if the elastic modulus of the surface layer is less than 200 MPa, it is possible to further prevent the protrusions 13 from protruding together.
  • wavelength of visible light means a wavelength of 400 nm.
  • the interval between adjacent convex portions indicates the interval w ⁇ b> 1 from the front end 13 a of the convex portion to the front end 13 a of the adjacent convex portion.
  • the height d1 of the convex portion 13 in FIG. 1 is preferably 100 nm or more, more preferably 120 nm or more, further preferably 150 nm or more, and 170 nm or more. It is particularly preferred.
  • the height d1 of the convex portion 13 is 100 nm or more, the minimum reflectance does not increase or the reflectance at a specific wavelength does not increase, and it is sufficient even when the laminate is used as an antireflection article. Antireflection property can be obtained.
  • the upper limit of the height d1 of the convex part 13 is not specifically limited, For example, it can be 1 micrometer or less.
  • the height of a convex part shows the perpendicular distance d1 from the front-end
  • the aspect ratio (height d1 / convex portion 13 / interval w1 between adjacent convex portions 13) is preferably 0.5 to 5.0, more preferably 0.6 to 2.0, It is more preferably 0.7 to 1.5, and particularly preferably 0.8 to 1.2.
  • the aspect ratio is greater than 0.5, the minimum reflectance does not increase or the reflectance at a specific wavelength does not increase. Even when the laminate is used as an antireflection article, sufficient antireflection Sex is obtained. Further, when the aspect ratio is smaller than 5.0, the convex portion is not easily broken even when rubbed, so that the scratch resistance is improved and sufficient antireflection property is exhibited.
  • the distance between adjacent protrusions and the height of the protrusions were determined by depositing platinum on the fine uneven structure for 10 minutes, and then using a scanning electron microscope (trade name: “JSM-7400F”, manufactured by JEOL Ltd.). It is the average value measured 10 points each by using and observing on the conditions of the acceleration voltage 3.00kv.
  • the elastic modulus of the surface layer according to this embodiment is less than 200 MPa.
  • the elastic modulus of the surface layer is preferably 40 MPa or more and 180 MPa or less, more preferably 60 MPa or more and 170 MPa or less, further preferably 90 MPa or more and 160 MPa or less, and 100 MPa or more and 150 MPa or less. Particularly preferred.
  • the elastic modulus of the surface layer is 40 MPa or more, it is possible to prevent the protrusions of the convex portions of the fine concavo-convex structure from being united.
  • the elastic modulus of the surface layer is 90 MPa or more, the fine concavo-convex structure is sufficiently hard, so that it is possible to further prevent the protrusions from being united.
  • the elastic modulus of the surface layer is 150 MPa or less, the fine concavo-convex structure is sufficiently soft, so that the fine concavo-convex structure can be freely deformed, dirt entering the concave portions can be removed more easily, and antifouling properties can be obtained. It becomes good.
  • the elastic modulus of the surface layer is a value measured by the following method.
  • the irradiation surface of the surface layer was applied while increasing the load under the condition of 50 mN / 10 seconds using “FISCHERSCOPE® HM2000” (trade name, manufactured by Fischer), and held at 50 mN for 60 seconds. Unload under the same conditions as the increase.
  • the elastic modulus is calculated by extrapolation using points at which 65% and 95% of the load is applied.
  • the active energy ray-curable resin composition as a surface layer material is sandwiched between two sheets of glass, and activated by irradiating ultraviolet rays with an energy of an integrated light irradiation amount of 3000 mJ / cm 2.
  • the energy ray curable resin composition may be photocured to prepare a cured product of an active energy ray curable resin composition having a thickness of 500 ⁇ m, and the elastic modulus may be calculated by measuring the irradiated surface of the cured product in the same manner as described above. .
  • the water contact angle of the surface layer according to this embodiment is 25 ° or less, preferably 20 ° or less, more preferably 15 ° or less, and further preferably 10 ° or less.
  • the water contact angle of the surface layer is 25 ° or less, the surface of the laminate is hydrophilized, and the attached dirt can be wiped off with water as described in Japanese Patent No. 4687718.
  • the lower the water contact angle of the surface layer the better.
  • the lower limit is not particularly limited, but can be, for example, 1 ° or more, and preferably 3% or more.
  • the water contact angle of the surface layer is a value obtained by dropping 1 ⁇ l of water onto the surface of the surface layer using an automatic contact angle measuring device (manufactured by KRUSS) and calculating the contact angle after 7 seconds by the ⁇ / 2 method. It is.
  • the laminate according to the present embodiment can include a base material.
  • the base material 11 can be provided adjacent to the surface layer 12 like the laminated body 10 shown in FIG.
  • the active energy ray-curable resin composition according to the present embodiment appropriately includes a monomer having a radical polymerizable and / or cationic polymerizable bond in the molecule, a polymer having a low polymerization degree, and a reactive polymer. It can be cured by a polymerization initiator. Moreover, the active energy ray-curable resin composition according to the present embodiment may include a non-reactive polymer.
  • the active energy ray-curable resin composition according to the present embodiment comprises 5 to 55 parts by weight of a trifunctional or higher polyfunctional (meth) acrylate and polyethylene glycol diacrylate (average repeating unit of ethylene glycol is 6 to 40) 45 to 45 parts. It is preferable to contain a polymerizable component containing 95 parts by mass (provided that the total of the polymerizable components is 100 parts by mass). Thereby, the elastic modulus of the surface layer can be less than 200 MPa.
  • (meth) acrylate shows an acrylate or a methacrylate.
  • the polymerizable component refers to a compound having a polymerizable functional group.
  • the trifunctional or higher polyfunctional (meth) acrylate is not particularly limited, but is preferably a tetrafunctional or higher polyfunctional (meth) acrylate, more preferably a pentafunctional or higher polyfunctional (meth) acrylate. .
  • the trifunctional or higher polyfunctional (meth) acrylate contained in the polymerizable component is preferably 5 to 55 parts by mass, preferably 10 to 50 parts by mass when the total of the polymerizable components is 100 parts by mass. Is more preferably 20 to 45 parts by mass, and particularly preferably 25 to 40 parts by mass.
  • the amount is less than 5 parts by mass, it may not be possible to impart an elastic modulus that can transfer the fine concavo-convex structure to the surface layer.
  • the elasticity modulus of a surface layer cannot be made less than 200 Mpa, and it may become hard and cannot extrude dirt.
  • the amount is 25 parts by mass or more, a sufficient elastic modulus is imparted to the surface layer, and the protrusions of the protrusions of the fine uneven structure can be further suppressed. Moreover, especially when it is 45 mass parts or less, the mobility reduction of a convex part is suppressed more, and high antifouling property is expressed.
  • Polyethylene glycol diacrylate which is a bifunctional (meth) acrylate (average repeating unit of ethylene glycol is 6 to 40) includes Aronix M-260 (manufactured by Toagosei Co., Ltd., average repeating unit of ethylene glycol: 13), A -400 (average repeating unit of ethylene glycol: 9), A-600 (average repeating unit of ethylene glycol: 14), A-1000 (average repeating unit of ethylene glycol: 23) (above, trade name, Shin-Nakamura Chemical Co., Ltd.) Etc.). These may be used alone or in combination of two or more. When the polymer contains a polyethylene glycol diacrylate unit, the molecular mobility of the cured product contained in the surface layer can be increased and the dirt that has entered the recess can be pushed out.
  • the average repeating unit of ethylene glycol present in the polyethylene glycol diacrylate is preferably 6 to 40, more preferably 9 to 30, further preferably 10 to 25, and more preferably 12 to 20. Is particularly preferred. When the average repeating unit of ethylene glycol is less than 6, the water contact angle of the surface layer cannot be made 25 ° or less, and sufficient antifouling properties may not be obtained. On the other hand, when the average repeating unit of ethylene glycol exceeds 40, the compatibility with a trifunctional or higher polyfunctional (meth) acrylate may be insufficient.
  • the polyethylene glycol diacrylate contained in the polymerizable component is preferably 45 to 95 parts by mass, more preferably 50 to 85 parts by mass, when the total amount of the polymerizable components is 100 parts by mass.
  • the amount is more preferably from ⁇ 80 parts by mass, particularly preferably from 55 to 75 parts by mass. If it is less than 45 parts by mass, the elastic modulus of the surface layer may not be less than 200 MPa. Moreover, when it exceeds 95 mass parts, the elasticity modulus of the grade which can transfer a fine concavo-convex structure to a surface layer may not be able to be hold
  • the polymerizable component may further contain a monofunctional monomer.
  • the monofunctional monomer is not particularly limited as long as it is compatible with the trifunctional or higher polyfunctional (meth) acrylate and the polyethylene glycol diacrylate.
  • Examples of the monofunctional monomer include monofunctional (M-20G, M-90G, M-230G (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.)) having a polyethylene glycol chain in the ester group.
  • Cations such as mono-functional (meth) acrylates having a hydroxyl group in the ester group such as meth) acrylates and hydroxyalkyl (meth) acrylates, monofunctional acrylamides, methacrylamidepropyltrimethylammonium methylsulfate, methacryloyloxyethyltrimethylammonium methylsulfate Hydrophilic monofunctional monomers such as hydrophilic monomers are preferred. These may use only 1 type and may use 2 or more types together.
  • the monofunctional monomer contained in the polymerizable component is preferably 0 to 20 parts by mass, more preferably 5 to 15 parts by mass when the total amount of the polymerizable components is 100 parts by mass.
  • a monofunctional monomer unit By introducing a monofunctional monomer unit into the polymer, the adhesion between the substrate and the surface layer is improved.
  • the content of the monofunctional monomer By setting the content of the monofunctional monomer to 20 parts by mass or less, the content of the trifunctional or higher polyfunctional (meth) acrylate unit and the polyethylene glycol diacrylate unit in the polymer is not insufficient, Sufficient antifouling property is expressed.
  • a polymer having a low polymerization degree obtained by (co) polymerizing one or more of the monofunctional monomers may be added to the active energy ray-curable resin composition.
  • the polymer having a low polymerization degree can be blended in the active energy ray-curable resin composition, for example, 0 to 35 parts by mass.
  • the polymer having a low degree of polymerization include a 40/60 copolymer oligomer (trade name: “MG” of monofunctional (meth) acrylates having a polyethylene glycol chain in an ester group and methacrylamidopropyltrimethylammonium methyl sulfate. Polymer ", manufactured by MRC Unitech Co., Ltd.) and the like.
  • the active energy ray-curable resin composition may contain fine particles such as an antistatic agent, a release agent, an ultraviolet absorber, and colloidal silica in addition to the above-described various monomers and polymers having a low polymerization degree.
  • the active energy ray-curable resin composition may contain a viscosity modifier such as acryloylmorpholine and vinylpyrrolidone, an adhesion improver such as acryloyl isocyanate that improves adhesion to the substrate, and the like.
  • a release agent When a release agent is contained in the active energy ray-curable resin composition, good release properties can be maintained when the laminate according to this embodiment is continuously produced.
  • the release agent when an anodized alumina mold is used, the release agent is easily adsorbed on the surface of the mold due to the interaction between the (poly) oxyalkylene alkyl phosphate compound and alumina.
  • Examples of commercially available (poly) oxyalkylene alkyl phosphate compounds include “JP-506H” manufactured by Johoku Chemical Industry Co., Ltd., “Mold With INT-1856” manufactured by Accel Corporation, and “TDP manufactured by Nikko Chemicals Co., Ltd. -10, TDP-8, TDP-6, TDP-2, DDP-10, DDP-8, DDP-6, DDP-4, DDP-2 ”,“ TLP-4 ”,“ TCP-5 ”,“ DLP-10 ”(above, trade names), and the like.
  • the release agent contained in the active energy ray-curable resin composition may be used alone or in combination of two or more.
  • the ratio of the release agent contained in the active energy ray-curable resin composition is preferably 0.01 to 2.0 parts by mass, and 0.05 to 0.2 parts by mass with respect to 100 parts by mass of the polymerizable component. More preferred. If the ratio of a mold release agent is 0.01 mass part or more, the mold release property from the mold of the article
  • active energy ray used for curing the active energy ray-curable resin composition include visible rays, ultraviolet rays, electron beams, plasma, infrared rays, and the like.
  • the active energy ray-curable resin composition may be cured using a combination of photocuring and heat curing.
  • the laminate according to the present embodiment includes a surface layer containing a cured product of the active energy ray-curable resin composition having a fine concavo-convex structure on the surface, and the elastic modulus of the surface layer is less than 200 MPa. Is made of a specific resin composition and therefore has excellent antifouling properties.
  • the laminate according to the present embodiment is particularly suitable for an antireflection article because it has better antireflection properties. it can.
  • the height of a convex part is 100 nm or more, it is excellent by antireflection property.
  • the antireflection article, the video apparatus, and the touch panel according to the present embodiment include the laminate according to the present embodiment, the antireflection performance and the antifouling property are excellent.
  • the laminate according to this embodiment is installed on the outermost surface of an antireflection article, a video device, and a touch panel, dirt such as sebum that adheres during use is less likely to be attached and easily removed, so that it exhibits good antireflection performance. Can do.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the laminate 10 according to the present embodiment.
  • the surface layer 12 which consists of hardened
  • a fine uneven structure is formed on the surface of the surface layer 12.
  • the water contact angle of the surface layer of the portion where the fine concavo-convex structure is formed is 130 ° or more, and preferably 135 ° or more.
  • the water contact angle of the surface layer is 130 ° or more, since the surface energy is sufficiently small, the dirt can be easily wiped off. Further, when the water contact angle of the surface layer is 135 ° or more, the surface energy is sufficiently small, so that the adhesion of dirt can be suppressed.
  • the upper limit of the water contact angle of the surface layer is not particularly limited, but is preferably 150 ° or less, and more preferably 145 ° or less.
  • the elastic modulus of the surface of the fine concavo-convex structure that is, the elastic modulus of the surface layer is less than 200 MPa, and preferably 50 to 100 MPa.
  • the elastic modulus of the surface layer is less than 200 MPa, the fine concavo-convex structure is soft, so that dirt that has entered the recess can be pushed out.
  • the fine concavo-convex structure is sufficiently hard when the elastic modulus of the surface layer is 50 MPa or more, it is possible to effectively prevent the protrusions from being united.
  • the elastic modulus of the surface layer is 100 MPa or less, the fine concavo-convex structure is sufficiently soft, so that the fine concavo-convex structure can be freely deformed, and dirt that has entered the concave portions can be easily removed.
  • the surface layer is composed of a cured product of the active energy ray curable resin composition.
  • the active energy ray-curable resin composition comprises 1 to 55 parts by mass of a trifunctional or higher polyfunctional (meth) acrylate (A), 10 to 95 parts by mass of a bifunctional (meth) acrylate (B), silicone. It is preferable to contain 3 to 85 parts by mass of (meth) acrylate (C). Silicon (meth) acrylate (C) is excluded from trifunctional or higher polyfunctional (meth) acrylate (A) and bifunctional (meth) acrylate (B).
  • the trifunctional or higher polyfunctional (meth) acrylate is a group selected from an acryloyl group (CH 2 ⁇ CHCO—) and a methacryloyl group (CH 2 ⁇ C (CH 3 ) CO—) in the molecule. It means a compound having two or more.
  • the bifunctional (meth) acrylate means a compound having two groups selected from an acryloyl group (CH 2 ⁇ CHCO—) and a methacryloyl group (CH 2 ⁇ C (CH 3 ) CO—) in the molecule. To do.
  • the polyfunctional (meth) acrylate (A) having 3 or more functions is preferably 4 or more and more preferably 5 or more.
  • Examples of the trifunctional or higher polyfunctional (meth) acrylate (A) include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, dipentaerythritol hydroxypenta ( (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, succinic acid / trimethylolethane / acrylic acid 1: 2: 4 condensation reaction product, urethane acrylate, polyether acrylate, modified epoxy acrylate, polyester Examples include acrylates.
  • urethane acrylates examples include “EBECRYL220”, “EBECRYL1290”, “EBECRYL1290K”, “EBECRYL5129”, “EBECRYL8210”, “EBECRYL8301”, and “KRM8200” manufactured by Daicel Cytec.
  • polyether acrylates examples include “EBECRYL81” manufactured by Daicel-Cytec.
  • modified epoxy acrylates examples include “EBECRYL3416” manufactured by Daicel-Cytec.
  • polyester acrylates examples include “EBECRYL450”, “EBECRYL657”, “EBECRYL800”, “EBECRYL810”, “EBECRYL812”, “EBECRYLEC”, “EBECRYL8830”, “EBECRYLEC”, and “EBECRYLEC”. ".
  • examples of the trifunctional or more polyfunctional (meth) acrylate (A) include a monomer obtained by adding ethylene oxide or propylene oxide to the monomer. These polyfunctional (meth) acrylates (A) may be used alone or in combination of two or more.
  • the trifunctional or higher polyfunctional (meth) acrylate (A) is preferably 1 to 55 parts by mass when the total of the polymerizable components in the active energy ray-curable resin composition is 100 parts by mass, More preferred is 30 parts by mass.
  • an elastic modulus capable of transferring the fine uneven structure to the surface layer can be imparted.
  • the increase in the elastic modulus of a surface layer can be suppressed by making content of polyfunctional (meth) acrylate (A) more than trifunctional into 55 mass parts or less.
  • the laminate As a result, it becomes easy to extrude dirt from the recess, and sufficient antifouling property can be imparted to the laminate. Moreover, by setting it as 11 mass parts or more, a favorable elastic modulus can be provided to a surface layer and the protrusion unity of the convex part in a fine concavo-convex structure can be suppressed. Moreover, by setting it as 30 mass parts or less, the fall of the mobility of a convex part is suppressed and the antifouling property which can remove a stain
  • bifunctional (meth) acrylate (B) examples include bifunctional acrylates having polyalkylene glycol such as bifunctional acrylates having polyethylene glycol, bifunctional acrylates having polypropylene glycol, and bifunctional acrylates having polybutylene glycol. preferable.
  • bifunctional acrylates having polyethylene glycol include Aronix M-240, Aronix M-260 (manufactured by Toagosei Co., Ltd.), NK ester AT-20E, NK ester ATM-35E (manufactured by Shin-Nakamura Chemical Co., Ltd.), and the like. Can be mentioned.
  • bifunctional acrylates having polypropylene glycol examples include APG-400 and APG-700 (manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • Specific examples of the bifunctional acrylate having polybutylene glycol include A-PTMG-650 (manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • polyethylene glycol diacrylate is preferably used from the viewpoint that better antifouling properties can be obtained.
  • polyethylene glycol diacrylate as the bifunctional (meth) acrylate (B), the molecular mobility of the resin on the surface layer is improved, the dirt entering the recesses is more easily pushed out, and good antifouling properties are expressed.
  • the total of the average repeating units of polyethylene glycol chains present in one molecule of polyethylene glycol diacrylate is preferably 6 to 40, more preferably 9 to 30, and still more preferably 12 to 20. If the average repeating unit of the polyethylene glycol chain is 6 or more, the mobility of the molecule is maintained and good antifouling properties are exhibited. If the average repeating unit of the polyethylene glycol chain is 40 or less, the compatibility with the trifunctional or higher polyfunctional (meth) acrylate (A) is good.
  • bifunctional acrylates having polyalkylene glycol polypropylene glycol diacrylate and polybutylene glycol diacrylate are also preferably used from the viewpoint of compatibility.
  • silicone (meth) acrylate (C) such as silicone di (meth) acrylate having low hydrophilicity by using polypropylene glycol diacrylate or polybutylene glycol diacrylate as the bifunctional (meth) acrylate (B) Is improved, and a transparent active energy ray-curable resin composition can be obtained.
  • These bifunctional (meth) acrylates (B) may be used alone or in combination of two or more.
  • the bifunctional (meth) acrylate (B) is preferably 10 to 95 parts by mass, preferably 20 to 70 parts by mass, when the total amount of polymerizable components in the active energy ray-curable resin composition is 100 parts by mass. More preferably, it is a part.
  • the bifunctional (meth) acrylate (B) is preferably 10 to 95 parts by mass, preferably 20 to 70 parts by mass, when the total amount of polymerizable components in the active energy ray-curable resin composition is 100 parts by mass. More preferably, it is a part.
  • a mobility can be provided to a convex part and antifouling property is expressed effectively.
  • the fall of an elasticity modulus is suppressed and the protrusion unity of a convex part can be suppressed.
  • the silicone (meth) acrylate (C) is selected from an acryloyl group (CH 2 ⁇ CHCO—) and a methacryloyl group (CH 2 ⁇ C (CH 3 ) CO—) at the side chain and / or terminal of the compound having an organosiloxane structure.
  • the compound is not particularly limited as long as it has at least one group.
  • the silicone (meth) acrylate (C) is preferably selected from the viewpoint of the compatibility between the trifunctional or higher polyfunctional (meth) acrylate (A) and the bifunctional (meth) acrylate (C).
  • compatible segment examples include a polyalkylene oxide structure, a polyester structure, and a polyamide structure. These compatible segments may be contained alone in the silicone (meth) acrylate (C), or two or more of them may be contained. Silicone (meth) acrylate (C) may be used after being diluted from the aspect of handling. As the diluent, those having reactivity in terms of bleeding out from a cured product are preferable. Handling of silicone (meth) acrylate (C) by mixing trifunctional or higher polyfunctional (meth) acrylate (A) or bifunctional (meth) acrylate (B) with silicone (meth) acrylate (C) Can also be improved.
  • silicone (meth) acrylate (C) examples include the Silaplane series manufactured by Chisso Corporation, and the silicone diacrylates “X-22-164” and “X-22” manufactured by Shin-Etsu Chemical Co., Ltd. Preferred examples include “1602”, “BYK-3500” and “BYK-3570” manufactured by Big Chemie Japan, and the TEGO Rad series manufactured by Evonik Degussa Japan. These silicone (meth) acrylates (C) may be used alone or in combination of two or more.
  • the silicone (meth) acrylate (C) is preferably 3 to 85 parts by mass, preferably 5 to 70 parts by mass, when the total amount of the polymerizable components in the active energy ray-curable resin composition is 100 parts by mass. More preferably, it is more preferably 45 to 70 parts by mass, and particularly preferably 45 to 65 parts by mass.
  • the elasticity modulus of the grade which can transfer a fine uneven structure to a surface layer can be provided by content of silicone (meth) acrylate (C) being 85 mass parts or less. Moreover, by setting it as 5 mass parts or more, the water contact angle of a surface layer becomes easy to become 135 degrees or more, and the antifouling property of a laminated body improves. Moreover, by setting it as 70 mass parts or less, the viscosity of an active energy ray curable resin composition is suppressed, and handling improves.
  • the compatibility with the component in an active energy ray curable resin composition, especially (A) and (B) becomes favorable, and the water repellency of a surface layer and the softness
  • the outstanding antifouling property is expressed.
  • the fall of the elasticity modulus of a surface layer can be suppressed and the protrusion unity of the convex part of a fine concavo-convex structure can be suppressed.
  • the active energy ray-curable resin composition may contain a monofunctional monomer.
  • the monofunctional monomer is preferably selected in consideration of the compatibility with the trifunctional or higher polyfunctional (meth) acrylate (A) and the bifunctional (meth) acrylate (B).
  • monofunctional (meth) acrylates having a polyethylene glycol chain in the ester group monofunctional (meth) acrylates having a hydroxyl group in the ester group such as hydroxyalkyl (meth) acrylate, monofunctional acrylamides, methacrylamide propyl
  • hydrophilic monofunctional monomers such as cationic monomers such as trimethylammonium methyl sulfate or methacryloyloxyethyl trimethylammonium methyl sulfate.
  • monofunctional monomer specifically, monofunctional (meth) acrylates “M-20G”, “M-90G”, “M-230G” (manufactured by Shin-Nakamura Chemical Co., Ltd.), etc. may be used. it can.
  • the active energy ray-curable resin composition may be added with viscosity modifiers such as acryloylmorpholine and vinylpyrrolidone, and adhesion improvers such as acryloyl isocyanates that improve adhesion to transparent substrates. it can.
  • viscosity modifiers such as acryloylmorpholine and vinylpyrrolidone
  • adhesion improvers such as acryloyl isocyanates that improve adhesion to transparent substrates. it can.
  • the content of the monofunctional monomer in the active energy ray-curable resin composition is, for example, 0.1 to 20 when the total of the polymerizable components in the active energy ray-curable resin composition is 100 parts by mass.
  • the amount is preferably part by mass, and more preferably 5 to 15 parts by mass.
  • a polymer (oligomer) having a low degree of polymerization obtained by polymerizing one or more monofunctional monomers may be added to the active energy ray-curable resin composition.
  • a polymer having a low degree of polymerization include monofunctional (meth) acrylates having a polyethylene glycol chain in an ester group (for example, “M-230G”, manufactured by Shin-Nakamura Chemical Co., Ltd.) And 40/60 copolymer oligomers of methacrylamidopropyltrimethylammonium methyl sulfate (for example, “MG polymer” manufactured by MRC Unitech).
  • the active energy ray-curable composition contains fine particles such as an antistatic agent, a release agent, an ultraviolet absorber, and colloidal silica in addition to the above-described various monomers and polymers having a low polymerization degree. May be.
  • the active energy ray-curable resin composition may contain a release agent.
  • a release agent When a release agent is contained in the active energy ray-curable resin composition, good release properties can be maintained when the laminate is continuously produced.
  • the mold release agent include (poly) oxyalkylene alkyl phosphate compounds. In particular, when an anodized alumina mold is used, the release agent is easily adsorbed on the surface of the mold due to the interaction between the (poly) oxyalkylene alkyl phosphate compound and alumina.
  • Examples of commercially available (poly) oxyalkylene alkyl phosphate compounds include “JP-506H” (trade name) manufactured by Johoku Chemical Industry Co., Ltd., “Mold With INT-1856” (trade name) manufactured by Accel Corporation, “TDP-10”, “TDP-8”, “TDP-6”, “TDP-2”, “DDP-10”, “DDP-8”, “DDP-6”, “DDP” manufactured by Nikko Chemicals Co., Ltd. -4 ",” DDP-2 “,” TLP-4 “,” TCP-5 ",” DLP-10 “(trade name), and the like.
  • the release agent contained in the active energy ray-curable resin composition may be used alone or in combination of two or more.
  • the content of the release agent contained in the active energy ray-curable resin composition is preferably 0.01 to 2.0 parts by mass, and 0.05 to 0. 0 parts by mass with respect to 100 parts by mass of the polymerizable component. More preferably, it is 2 parts by mass. If content of a mold release agent is 0.01 mass part or more, the mold release property from the mold of the articles
  • the active energy ray-curable resin composition in the present embodiment can appropriately contain a monomer having a radical polymerizable and / or cationic polymerizable bond in the molecule, a polymer having a low polymerization degree, and a reactive polymer. It is cured by a polymerization initiator described later. Moreover, the active energy ray-curable resin composition may include a non-reactive polymer.
  • the laminate of this embodiment is a laminate having a surface layer with excellent antifouling properties that can easily remove dirt
  • the laminate of this embodiment is used as the outermost surface of an antireflection article, an image display device, a touch panel, etc. If it is installed, it is difficult to get dirt such as sebum adhering at the time of use, and it can be easily removed, and good antireflection performance can be exhibited. Furthermore, since dirt can be easily removed without using water or alcohol on the surface, an article excellent in practical use can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the laminate 10 according to the present embodiment.
  • a surface layer 12 made of a cured product of an active energy ray-curable resin composition is formed on the surface of a substrate 11 having transparency, and a surface treatment layer 13 is provided on the surface of the surface layer 12.
  • the elastic modulus of the surface of the laminate that is, the elastic modulus of the fine concavo-convex structure layer including the surface treatment layer and the surface layer is 2000 MPa or less, preferably 200 MPa or less, preferably 50 to 100 MPa. It is more preferable that When the elastic modulus of the fine concavo-convex structure layer is 2000 MPa or less, the fine concavo-convex structure is soft, so that the dirt that has entered the dent can be moved with a small external force. When the elastic modulus of the fine concavo-convex structure layer is 200 MPa or less, since the fine concavo-convex structure is further soft, the dirt that has entered the dents can be pushed out with very little external force.
  • the elastic modulus of the fine concavo-convex structure layer is 50 MPa or more, coalescence of the convex portions of the fine concavo-convex structure can be effectively prevented.
  • the elastic modulus of the surface layer is 100 MPa or less, the fine concavo-convex structure is sufficiently soft, so that the fine concavo-convex structure can be freely deformed with very little external force, and the dirt that has entered the recess can be easily removed.
  • the unity of protrusions or protrusions means that adjacent protrusions or protrusions are combined to form one.
  • the surface layer is composed of a cured product of the active energy ray curable resin composition.
  • the active energy ray-curable resin composition contains 25 to 70 parts by mass of a trifunctional or higher polyfunctional (meth) acrylate (A) and 30 to 75 parts by mass of a bifunctional (meth) acrylate (B) ( However, the total of the polymerizable components is 100 parts by mass.)
  • the trifunctional or higher polyfunctional (meth) acrylate is a group selected from an acryloyl group (CH 2 ⁇ CHCO—) and a methacryloyl group (CH 2 ⁇ C (CH 3 ) CO—) in the molecule. It means a compound having two or more.
  • the bifunctional (meth) acrylate means a compound having two groups selected from an acryloyl group (CH 2 ⁇ CHCO—) and a methacryloyl group (CH 2 ⁇ C (CH 3) CO—) in the molecule.
  • the polyfunctional (meth) acrylate (A) having 3 or more functions is preferably 4 or more and more preferably 5 or more.
  • Examples of the trifunctional or higher polyfunctional (meth) acrylate (A) include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, dipentaerythritol hydroxypenta ( (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, succinic acid / trimethylolethane / (meth) acrylic acid, 1: 2: 4 condensation reaction product, urethane (meth) acrylates, polyether (meth) Examples include acrylates, modified epoxy (meth) acrylates, polyester (meth) acrylates, and silicone (meth) acrylates.
  • Examples of urethane (meth) acrylates include “EBECRYL220”, “EBECRYL1290”, “EBECRYL1290K”, “EBECRYL5129”, “EBECRYL8210”, “EBECRYL8301”, and “KRM8200” manufactured by Daicel-Cytec.
  • Examples of the polyether (meth) acrylates include “EBECRYL81” manufactured by Daicel-Cytec.
  • Examples of the modified epoxy (meth) acrylates include “EBECRYL3416” manufactured by Daicel-Cytec.
  • polyester (meth) acrylates examples include “EBECRYL450”, “EBECRYL657”, “EBECRYL800”, “EBECRYL8101”, “EBECRYL812”, “EBECRYL812”, “EBECRYL1830”, “EBECRYL1830”, “EB45R”, and “EBECRYL1830”. , “EBECRYL1870”.
  • Preferred examples of silicone (meth) acrylates include “BYK-3570” manufactured by Big Chemie Japan, and TEGO Rad series manufactured by Evonik Degussa Japan.
  • examples of the trifunctional or more polyfunctional (meth) acrylate (A) examples include a monomer obtained by adding ethylene oxide or propylene oxide to the monomer. These polyfunctional (meth) acrylates (A) may be used alone or in combination of two or more.
  • the trifunctional or higher polyfunctional (meth) acrylate (A) is 25 to 70 parts by mass when the total amount of polymerizable components in the active energy ray-curable resin composition is 100 parts by mass.
  • the content of the trifunctional or higher polyfunctional (meth) acrylate (A) is 25 parts by mass or more, it is possible to impart an elastic modulus to the extent that the fine uneven structure can be transferred to the surface layer.
  • the increase in the elastic modulus of a surface layer can be suppressed by making content of polyfunctional (meth) acrylate (A) more than trifunctional into 70 mass parts or less. As a result, it becomes easy to extrude dirt from the recess, and sufficient antifouling property can be imparted to the laminate.
  • bifunctional (meth) acrylate (B) examples include bifunctional acrylates having polyalkylene glycol such as bifunctional acrylates having polyethylene glycol, bifunctional acrylates having polypropylene glycol, and bifunctional acrylates having polybutylene glycol. preferable.
  • bifunctional acrylates having polyethylene glycol include Aronix M-240, Aronix M260 (Toagosei Co., Ltd.), NK Ester AT-20E, NK Ester ATM-35E (Shin Nakamura Chemical Co., Ltd.) .
  • Specific examples of the bifunctional acrylates having polypropylene glycol include APG-400, APG700 (manufactured by Shin-Nakamura Chemical Co., Ltd.) and the like.
  • bifunctional acrylate having polybutylene glycol examples include A-PTMG-650 (manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • a bifunctional acrylate having a polyalkylene glycol as the bifunctional (meth) acrylate (B)
  • the elastic modulus of the surface layer is suppressed, and it becomes easy to push out dirt from the recesses, effectively exhibiting antifouling properties.
  • polyethylene glycol diacrylate is preferably used from the viewpoint that better antifouling properties can be obtained.
  • polyethylene glycol diacrylate as the bifunctional (meth) acrylate (B)
  • the molecular mobility of the resin on the surface layer is improved, the dirt entering the recesses is more easily pushed out, and good antifouling properties are expressed.
  • the total of the average repeating units of polyethylene glycol chains present in one molecule of polyethylene glycol diacrylate is preferably 6 to 40, more preferably 9 to 30, and still more preferably 12 to 20. If the average repeating unit of the polyethylene glycol chain is 6 or more, the mobility of the molecule is maintained and good antifouling properties are exhibited. If the average repeating unit of the polyethylene glycol chain is 40 or less, the compatibility with the trifunctional or higher polyfunctional (meth) acrylate (A) is good.
  • bifunctional acrylates having polyalkylene glycol polypropylene glycol diacrylate and polybutylene glycol diacrylate are also preferably used from the viewpoint of compatibility.
  • bifunctional (meth) acrylate (B) By using polypropylene glycol diacrylate or polybutylene glycol diacrylate as the bifunctional (meth) acrylate (B), compatibility with silicone (meth) acrylates such as silicone di (meth) acrylate having low hydrophilicity described later can be achieved. And a transparent active energy ray-curable resin composition can be obtained.
  • These bifunctional (meth) acrylates (B) may be used alone or in combination of two or more.
  • silicone (meth) acrylate is preferably used from the viewpoint of low surface free energy and an effect of improving antifouling properties.
  • Specific examples of silicone (meth) acrylates include, for example, Silaplane series manufactured by Chisso Corporation, silicone diacrylates “X-22-164” and “X-22-1602” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Preferred examples include “BYK-3500” manufactured by Japan, and TEGO Rad series manufactured by Evonik Degussa Japan.
  • These bifunctional (meth) acrylates (B) may be used alone or in combination of two or more.
  • the bifunctional (meth) acrylate (B) is 30 to 75 parts by mass when the total amount of polymerizable components in the active energy ray-curable resin composition is 100 parts by mass.
  • the content of the bifunctional (meth) acrylate (B) is set to 30 parts by mass or more, an increase in the elastic modulus of the surface layer is suppressed, and it becomes easy to extrude dirt from the recess, and sufficient antifouling properties are exhibited. .
  • content of bifunctional (meth) acrylate (B) into 75 mass parts or less the fall of an elasticity modulus is suppressed and coalescence of a convex part can be suppressed.
  • the active energy ray-curable resin composition may contain a monofunctional monomer.
  • the monofunctional monomer is preferably selected in consideration of the compatibility with the trifunctional or higher polyfunctional (meth) acrylate (A) and the bifunctional (meth) acrylate (B).
  • monofunctional (meth) acrylates having a polyethylene glycol chain in the ester group monofunctional (meth) acrylates having a hydroxyl group in the ester group such as hydroxyalkyl (meth) acrylate, monofunctional acrylamides, methacrylamide propyl
  • hydrophilic monofunctional monomers such as cationic monomers such as trimethylammonium methyl sulfate or methacryloyloxyethyl trimethylammonium methyl sulfate.
  • monofunctional monomer specifically, “M-20G”, “M-90G”, “M-230G” (manufactured by Shin-Nakamura Chemical Co., Ltd.) and the like can be used.
  • alkyl mono (meth) acrylate, silicone (meth) acrylate, and fluorinated alkyl (meth) acrylate are preferably used.
  • monofunctional monomers specifically, “Blemmer LA”, “Blemmer CA”, “Blemmer SA” manufactured by NOF Corporation, “X-24-8201” manufactured by Shin-Etsu Chemical Co., Ltd., “X-22-174DX”, “C10GACRY” manufactured by Exfloor Research, etc. can be used.
  • the active energy ray-curable resin composition may be added with viscosity modifiers such as acryloylmorpholine and vinylpyrrolidone, and adhesion improvers such as acryloyl isocyanates that improve adhesion to transparent substrates. it can.
  • viscosity modifiers such as acryloylmorpholine and vinylpyrrolidone
  • adhesion improvers such as acryloyl isocyanates that improve adhesion to transparent substrates. it can.
  • the content of the monofunctional monomer in the active energy ray-curable resin composition is, for example, 0.1 to 20 when the total of the polymerizable components in the active energy ray-curable resin composition is 100 parts by mass.
  • the amount is preferably part by mass, and more preferably 5 to 15 parts by mass.
  • a polymer (oligomer) having a low degree of polymerization obtained by polymerizing one or more monofunctional monomers may be added to the active energy ray-curable resin composition.
  • a polymer having a low degree of polymerization include monofunctional (meth) acrylates having a polyethylene glycol chain in an ester group (for example, “M-230G”, manufactured by Shin-Nakamura Chemical Co., Ltd.) And 40/60 copolymer oligomers of methacrylamidopropyltrimethylammonium methyl sulfate (for example, “MG polymer” manufactured by MRC Unitech).
  • the active energy ray-curable composition contains fine particles such as an antistatic agent, a release agent, an ultraviolet absorber, and colloidal silica in addition to the above-described various monomers and polymers having a low polymerization degree. May be.
  • the active energy ray-curable resin composition may contain a release agent.
  • a release agent When a release agent is contained in the active energy ray-curable resin composition, good release properties can be maintained when the laminate is continuously produced.
  • the mold release agent include (poly) oxyalkylene alkyl phosphate compounds. In particular, when an anodized alumina mold is used, the release agent is easily adsorbed on the surface of the mold due to the interaction between the (poly) oxyalkylene alkyl phosphate compound and alumina.
  • the release agent contained in the active energy ray-curable resin composition may be used alone or in combination of two or more.
  • the content of the release agent contained in the active energy ray-curable resin composition is preferably 0.01 to 2.0 parts by mass, and 0.05 to 0. 0 parts by mass with respect to 100 parts by mass of the polymerizable component. More preferably, it is 2 parts by mass. If content of a mold release agent is 0.01 mass part or more, the mold release property from the mold of the articles
  • the water contact angle of the surface treatment layer is preferably 120 ° or more, and more preferably 130 ° or more.
  • the surface energy is sufficiently small so that the dirt can be easily wiped off.
  • the water contact angle of the surface treatment layer is 130 ° or more, the surface energy is sufficiently small, so that adhesion of dirt can be suppressed.
  • the upper limit of the water contact angle of the surface treatment layer is not particularly limited, but is preferably 150 ° or less, and more preferably 145 ° or less.
  • a compound having an alkyl group, a polydimethylsiloxane structure or a fluorinated alkyl group is preferably used, and silane, alkoxysilane, silazane from the viewpoint of adhesion to a fine uneven structure. It is preferable to have a reactive group such as (meth) acrylate. Specific examples of such compounds include “KBM” series, “KBE” series, “X” series manufactured by Shin-Etsu Chemical Co., Ltd., “BYK” series manufactured by Big Chemie Japan, and “ Preferable examples include TEGO Rad series, “FG” series, “FS” series manufactured by Fluoro Technology.
  • the surface treatment layer can be applied by a general method such as dipping, spraying, brushing or spin coating.
  • a general method such as dipping, spraying, brushing or spin coating.
  • the pretreatment include silica vapor deposition, introduction of functional groups on the surface by plasma, coating of a primer containing a compound having good reactivity with the surface treatment layer, and the like.
  • the thickness of the surface treatment layer is preferably 100 nm or less from the viewpoint of maintaining the antireflection performance of the fine uneven shape.
  • the presence of the surface treatment layer can be confirmed by a variable angle ATR measurement, the spectrum changing with the incident angle, or the cross-sectional observation by TEM.
  • the active energy ray-curable resin composition in the present embodiment can appropriately contain a monomer having a radical polymerizable and / or cationic polymerizable bond in the molecule, a polymer having a low polymerization degree, and a reactive polymer. It is cured by a polymerization initiator described later. Moreover, the active energy ray-curable resin composition may include a non-reactive polymer.
  • the laminate of this embodiment is a laminate having a surface layer with excellent antifouling properties that can easily remove dirt
  • the laminate of this embodiment is used as the outermost surface of an antireflection article, an image display device, a touch panel, etc. If it is installed, it is difficult to get dirt such as sebum adhering at the time of use, and it can be easily removed, and good antireflection performance can be exhibited. Furthermore, since dirt can be easily removed without using water or alcohol on the surface, an article excellent in practical use can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the laminate 10 according to the present embodiment.
  • the surface layer 12 which consists of hardened
  • a fine uneven structure is formed on the surface of the surface layer 12.
  • the surface layer is a cured product of an active energy ray curable composition
  • the active energy ray curable composition contains a compound (D) having an SH group.
  • the SH group is a thiol group, a hydroxyl group, a mercapto group, or a sulfhydryl group.
  • the elastic modulus can be lowered while maintaining the crosslinking density of the cured product, so that the flexibility can be imparted to the protrusions while maintaining the shape of the protrusions, and dirt accumulated in the recesses can be removed. Will improve.
  • the surface layer is a cured product of the active energy ray-curable line composition
  • the active energy ray-curable fat composition contains 0 or more polyfunctional (meth) acrylate (A) of 0 or more. -95 parts by mass, preferably 0-75 parts by mass of silicone (meth) acrylate (C), and 1-60 parts by mass of SH group-containing compound (D) (however, the total of the polymerizable components is 100 parts by mass) And).
  • Silicone (meth) acrylate (C) is excluded from bifunctional or higher polyfunctional (meth) acrylate (A).
  • the polyfunctional (meth) acrylate (A) having two or more functions means a group selected from an acryloyl group (CH 2 ⁇ CHCO—) and a methacryloyl group (CH 2 ⁇ C (CH 3 ) CO—) in the molecule.
  • polyfunctional (meth) acrylate (A) having two or more functions ethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, isocyanuric acid ethylene oxide-modified di (meth) acrylate, triethylene glycol di ( (Meth) acrylate, diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, 1,3-butylene glycol Di (meth) acrylate, polybutylene glycol di (meth) acrylate, 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxyethoxyphenyl) Professional 2,2-bis (4- (3- (meth) acryloxy-2-hydroxypropoxy) phenyl) propane,
  • the bifunctional or higher polyfunctional (meth) acrylate (A) is preferably 0 to 95 parts by mass, when the total of the polymerizable components in the active energy ray-curable composition is 100 parts by mass, The amount is more preferably 90 parts by weight, and particularly preferably 40 to 90 parts by weight. If content of bifunctional or more polyfunctional (meth) acrylate (A) is 0 mass part or more and 95 mass parts or less, the excessive fall of an elasticity modulus can be suppressed and the shape of arium
  • a bifunctional or higher polyfunctional (meth) acrylate (A) to the composition, that is, if its content exceeds 0 part by mass, it becomes easy to suppress the elastic modulus, and the shape of the protrusion Easy to maintain.
  • content of bifunctional or more polyfunctional (meth) acrylate (A) is 40 mass parts or more, the fall of an elasticity modulus can be suppressed and coalescence of a proceedings
  • content of bifunctional or more polyfunctional (meth) acrylate (A) is 95 mass parts or less, an elasticity modulus falls and a stain
  • the silicone (meth) acrylate (C) is selected from an acryloyl group (CH 2 ⁇ CHCO—) and a methacryloyl group (CH 2 ⁇ C (CH 3 ) CO—) at the side chain and / or terminal of the compound having an organosiloxane structure.
  • the silicone (meth) acrylate (C) is preferably selected from the viewpoint of compatibility with a bifunctional or higher polyfunctional (meth) acrylate (A).
  • A It is preferable to use a compound having a compatible segment that contributes to compatibility. Examples of the compatible segment include a polyalkylene oxide structure, a polyester structure, and a polyamide structure.
  • Silicone (meth) acrylate (C) may be used after being diluted from the aspect of handling. As the diluent, those having reactivity in terms of bleeding out from a cured product are preferable. Moreover, handling of a silicone (meth) acrylate (C) can also be improved by mixing polyfunctional (meth) acrylate (A) more than bifunctional with silicone (meth) acrylate (C).
  • silicone (meth) acrylate (C) specifically, for example, Silaplane series (trade name) manufactured by Chisso Corporation, silicone diacrylate “X-22-164” manufactured by Shin-Etsu Chemical Co., Ltd., “X-22-1602” (all trade names), “BYK-3500” and “BYK-3570” (all trade names) manufactured by Big Chemie Japan, TEGO Rad series (trade names) manufactured by Evonik Degussa Japan Are preferable.
  • These silicone (meth) acrylates (C) may be used alone or in combination of two or more.
  • the silicone (meth) acrylate (C) is preferably 0 to 75 parts by mass, preferably 5 to 70 parts by mass, when the total amount of the polymerizable components in the active energy ray-curable composition is 100 parts by mass. It is more preferable.
  • the content of the silicone (meth) acrylate (C) is 0 part by mass or more and 75 parts by mass or less, water repellency is imparted and the antifouling property is further improved.
  • the silicone (meth) acrylate (C) is added to the composition, that is, if its content exceeds 0 parts by mass, water repellency is more effectively imparted and antifouling properties are improved.
  • silicone (meth) acrylate (C) when content of silicone (meth) acrylate (C) is 5 mass parts or more, since the surface energy of a surface layer falls and the contact angle with respect to water will be 130 degrees or more, antifouling property improves further. Moreover, when content of silicone (meth) acrylate (C) is 75 mass parts or less, since compatibility with another component becomes good, transparency improves. Moreover, when content of a silicone (meth) acrylate (C) is 70 mass parts or less, the viscosity of an active energy ray curable composition is suppressed and handling improves.
  • the compound (D) containing an SH group is not particularly limited as long as it is a compound containing an SH group, but is a compound containing two or more SH groups in order to increase the crosslinking density of the surface layer and maintain the strength. It is preferable that the SH group is a secondary thiol from the viewpoint of storage stability of the active energy ray-curable composition.
  • Examples of the compound having two or more SH groups include 1,2-ethanedithiol, 1,2-propanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 1,6-hexanedithiol, 1,7- Heptanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, 1,10-decanedithiol, 1,12-dodecanedithiol, 2,2-dimethyl-1,3-propanedithiol, 3-methyl-1, 5-pentanedithiol, 2-methyl-1,8-octanedithiol, 1,4-cyclohexanedithiol, 1,4-bis (mercaptomethyl) cyclohexane, 1,1-cyclohexanedithiol, 1,2-cyclohexanedithiol, bicyclo [ 2,2,1] hepta-exo-cis-2,3-
  • Examples of the compound having secondary thiol include Karenz MT PE1, Karenz MT NR1, Karenz MT BD1 (trade name, manufactured by Showa Denko KK).
  • the SH group-containing compound (D) is preferably 1 to 60 parts by mass, preferably 1 to 15 parts by mass, when the total amount of polymerizable components in the active energy ray-curable composition is 100 parts by mass. More preferably. If the content of the SH group-containing compound (D) is 1 part by mass or more, the elastic modulus of the surface layer can be lowered while maintaining the cross-linking density, so that it becomes easy to extrude dirt from the recess, resulting in lamination Sufficient antifouling property can be imparted to the body, and the restoring force of the shape of the convex portion can be maintained.
  • content of the compound (D) containing SH group is 60 mass parts or less, the storage stability of an active energy ray-curable composition can be maintained. Moreover, when content of the compound (D) containing SH group is 15 mass parts or less, the fall of the elasticity modulus of a surface layer can be suppressed more effectively, and coalescence of a convex part can be prevented.
  • the active energy ray-curable composition may contain a monofunctional monomer.
  • the monofunctional monomer is preferably selected in consideration of the compatibility with the bifunctional or higher polyfunctional (meth) acrylate (A) and the silicone (meth) acrylate (C).
  • monofunctional monomers include monofunctional (meth) acrylates having a polyethylene glycol chain in the ester group, monofunctional (meth) acrylates having a hydroxyl group in the ester group such as hydroxyalkyl (meth) acrylate, and monofunctional Preferred examples include hydrophilic monofunctional monomers such as cationic monomers such as acrylamides, methacrylamidopropyltrimethylammonium methyl sulfate or methacryloyloxyethyltrimethylammonium methyl sulfate.
  • monofunctional monomers include monofunctional (meth) acrylates “M-20G”, “M-90G”, and “M-230G” (manufactured by Shin-Nakamura Chemical Co., Ltd., all trade names). Etc. can be used. From the viewpoint of improving antifouling properties, alkyl mono (meth) acrylate, silicone (meth) acrylate, and fluorinated alkyl (meth) acrylate are preferably used.
  • monofunctional monomer include “Blemmer LA”, “Blemmer CA”, “Blemmer SA” (all trade names) manufactured by NOF Corporation, and “X” manufactured by Shin-Etsu Chemical Co., Ltd. -24-2401 ",” X-22-174DX "(both trade names),” C10GACRY "(trade name) manufactured by Ex Floor Research, etc. can be used.
  • the active energy ray-curable composition may also contain viscosity modifiers such as acryloylmorpholine and vinylpyrrolidone, and adhesion improvers such as acryloyl isocyanates that improve adhesion to transparent substrates. .
  • the content when the total amount of the polymerizable components in the active energy ray-curable composition is 100 parts by mass, for example, the content is preferably 0.1 to 20 parts by mass. More preferably, it is 15 parts by mass.
  • the adhesion between the substrate and the surface layer active energy ray-curable composition
  • the content of the monofunctional monomer is 20 parts by mass or less, a bifunctional or higher polyfunctional (meth) acrylate (A), a silicone (meth) acrylate (C), and a compound containing an SH group (D)
  • the antifouling property can be sufficiently expressed by adjusting the content of.
  • Monofunctional monomers may be used alone or in combination of two or more.
  • a polymer (oligomer) having a low polymerization degree obtained by polymerizing one or more monofunctional monomers may be added to the active energy ray-curable composition.
  • a polymer having a low degree of polymerization include monofunctional (meth) acrylates having a polyethylene glycol chain in an ester group (for example, “M-230G” (trade name), Shin-Nakamura Chemical Co., Ltd. And 40/60 copolymerized oligomers of methacrylamidopropyltrimethylammonium methyl sulfate (for example, “MG polymer” (trade name) manufactured by MRC Unitech Co., Ltd.).
  • the active energy ray-curable composition contains fine particles such as an antistatic agent, a release agent, an ultraviolet absorber, and colloidal silica in addition to the above-described various monomers and polymers having a low polymerization degree. May be.
  • the active energy ray-curable composition may contain a release agent.
  • a release agent When a release agent is contained in the active energy ray curable composition, good release properties can be maintained when the laminate is continuously produced.
  • the mold release agent include (poly) oxyalkylene alkyl phosphate compounds.
  • the release agent is easily adsorbed on the surface of the mold due to the interaction between the (poly) oxyalkylene alkyl phosphate compound and alumina.
  • Examples of commercially available (poly) oxyalkylene alkyl phosphate compounds include “JP-506H” (trade name) manufactured by Johoku Chemical Industry Co., Ltd., “Mold With INT-1856” (trade name) manufactured by Accel Corporation, “TDP-10”, “TDP-8”, “TDP-6”, “TDP-2”, “DDP-10”, “DDP-8”, “DDP-6”, “DDP” manufactured by Nikko Chemicals Co., Ltd. -4 ",” DDP-2 “,” TLP-4 “,” TCP-5 ",” DLP-10 "(all trade names).
  • the release agent contained in the active energy ray-curable composition may be used alone or in combination of two or more.
  • the content of the release agent contained in the active energy ray-curable composition is preferably 0.01 to 2.0 parts by mass, and 0.05 to 0.2 parts per 100 parts by mass of the polymerizable component. More preferably, it is part by mass. If content of a mold release agent is 0.01 mass part or more, the mold release property from the mold of the articles
  • the elastic modulus of the surface of the fine concavo-convex structure is preferably 500 MPa or less, and more preferably 50 to 100 MPa. If the elastic modulus of the surface layer is 50 MPa or more, the fine concavo-convex structure is sufficiently hard, so that it is possible to effectively prevent the protrusions from projecting together. When the elastic modulus of the surface layer is 500 MPa or less, the fine concavo-convex structure is soft, so that the dirt that has entered the recess can be pushed out. When the elastic modulus of the surface layer is 100 MPa or less, the fine concavo-convex structure is sufficiently soft, so that the fine concavo-convex structure can be freely deformed, and dirt that has entered the concave portions can be easily removed.
  • the water contact angle of the surface layer where the fine concavo-convex structure is formed is not particularly limited, but is preferably 130 ° or more.
  • the upper limit of the water contact angle of the surface layer is not particularly limited, but is preferably 150 ° or less, and more preferably 145 ° or less.
  • the active energy ray-curable composition of the present embodiment can appropriately contain a monomer having a radical polymerizable and / or cationic polymerizable bond in the molecule, a polymer having a low polymerization degree, and a reactive polymer.
  • the active energy ray-curable composition can be cured by a polymerization initiator described later.
  • the active energy ray-curable composition may contain a non-reactive polymer.
  • the laminate of this embodiment is a laminate having a surface layer with excellent antifouling properties that can easily remove dirt
  • the laminate of this embodiment is used as the outermost surface of an antireflection article, an image display device, a touch panel, etc. If it is installed, it is difficult to get dirt such as sebum adhering at the time of use, and it can be easily removed, and good antireflection performance can be exhibited. Furthermore, since dirt can be easily removed without using water or alcohol on the surface, an article excellent in practical use can be obtained.
  • Example A Hereinafter, the present embodiment will be specifically described with reference to Example A, but the present invention is not limited thereto.
  • the surface of the surface layer was applied using “FISCHERSCOPE® HM2000” (trade name, manufactured by Fischer) while increasing the load under the condition of 50 mN / 10 seconds, held at 50 mN for 60 seconds, and then 50 mN / Unloading while reducing the load for 10 seconds.
  • the elastic modulus was calculated by extrapolation using points at which 65% and 95% loads were applied.
  • a Teflon sheet having a thickness of 500 ⁇ m is used as a spacer, the active energy ray-curable resin composition is sandwiched between two glass plates, and the active energy ray-curing property is irradiated by irradiating ultraviolet rays with an energy of an integrated light irradiation amount of 3000 mJ / cm 2 .
  • the resin composition may be photocured to produce an active energy ray curable resin having a thickness of 500 ⁇ m, and the elastic modulus may be calculated by measuring the irradiated surface (surface) of the cured resin in the same manner as described above.
  • a silicone rubber plug of No. 1 having a smaller end face (diameter: 12 mm) uniformly polished with # 240 polishing paper was used as a pseudo-fingerprint transfer material, and this polished end face was applied to the original plate at a load of 29 N for 10 seconds.
  • the pseudo fingerprint component was transferred to the end face of the transfer material by pressing.
  • the pseudo fingerprint component was transferred by pressing the end face of the transfer material with a load of 29 N for 10 seconds on the surface of the translucent substrate of each sample.
  • the fingerprint pattern was transferred to a position near the radius of 40 mm of the medium.
  • the artificial fingerprint solution was wiped off by rubbing 6 reciprocations at a pressure of 39 KPa, and the laminate remained dirty under a fluorescent lamp. It was visually observed. Evaluation was performed according to the following criteria.
  • a friction tester (trade name: HEIDON TRIBOGEAR HHS-2000, manufactured by Osmosis Science Co., Ltd.) was used to measure the friction coefficient.
  • a load of 1000 g was applied to a 2 cm square BEMCOT M-3II (trade name, manufactured by Asahi Kasei Fibers) placed on the surface of the laminate, and a reciprocating wear was performed 50 times at a reciprocating distance of 30 mm and a head speed of 30 mm / sec. It was.
  • the value of the dynamic friction coefficient at the first friction was ⁇ 1
  • the value of the friction coefficient at the 50th friction was ⁇ 50
  • the slope of the friction coefficient was calculated from the following equation.
  • ⁇ s ( ⁇ 50 - ⁇ 1 ) / (50-1) (Abrasion resistance)
  • ⁇ s ( ⁇ 50 - ⁇ 1 ) / (50-1) (Abrasion resistance)
  • the transparent article was affixed to one side of a transparent 2.0 mm thick black acrylic plate (trade name: Acrylite, manufactured by Mitsubishi Rayon Co.), and was visually evaluated by holding it over a fluorescent lamp indoors. . Evaluation was performed according to the following criteria.
  • aqueous solution in which 6% by mass of phosphoric acid and 1.8% by mass of chromic acid were mixed to dissolve and remove the oxide film.
  • the aluminum base material from which the oxide film was dissolved and removed was immersed in a 0.05 M oxalic acid aqueous solution adjusted to 16 ° C. and anodized at 80 V for 7 seconds. Subsequently, the aluminum substrate was immersed in a 5% by mass phosphoric acid aqueous solution adjusted to 32 ° C. for 20 minutes, and subjected to a pore diameter enlargement treatment for enlarging the pores of the oxide film. In this way, the anodizing treatment and the pore size enlargement treatment were repeated alternately.
  • the anodization treatment and the pore diameter enlargement treatment were each performed 5 times.
  • the obtained stamper was immersed in a 0.1% by weight aqueous solution of TDP-8 (manufactured by Nikko Chemicals Co., Ltd.) for 10 minutes, and then pulled up and dried overnight to perform a mold release treatment.
  • the active energy ray-curable resin composition was photocured by irradiating ultraviolet rays from the film side with an energy of an integrated light irradiation amount of 1000 mJ / cm 2 . Thereafter, the film and the stamper were peeled off to obtain a laminate having a fine concavo-convex structure having a distance w1 between adjacent convex portions of 180 nm and a convex portion height d1 of 180 nm as shown in FIG.
  • DPHA Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., “Kayarad DPHA”)
  • M-260 Polyethylene glycol diacrylate (“Aronix M-260”, manufactured by Toa Gosei Co., Ltd., average repeating unit of polyethylene glycol chain is 13)
  • APG-700 Polypropylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., average repeat
  • Example 184 Hydroxycyclohexyl phenyl ketone ("Irgacure 184", manufactured by Ciba Specialty Chemicals) IRG. 819: Phenylbis (2,4,6-trimethylbenzoyl) -phosphine oxide (“Irgacure 819”, manufactured by Ciba Specialty Chemicals) TDP-2: Polyoxyethylene alkyl ether phosphoric acid (trade name, manufactured by Nikko Chemicals Co., Ltd.) [Examples A2 to A19] A laminate was obtained in the same manner as in Example A1, except that the active energy ray-curable resin composition having the composition shown in Table 1 was used. The results are shown in Table 2.
  • Example A20 A laminate having a cured product layer was obtained in the same manner as in Example A1, except that the active energy ray-curable resin composition having the composition shown in Table 1 was used.
  • PC-3B (trade name, manufactured by Fluoro Technology Co., Ltd.) was applied as a primer to the obtained cured product layer having a fine concavo-convex structure by spin coating. Thereafter, after drying at room temperature for 90 minutes, FG5070S135-0.1 (trade name, manufactured by Fluoro Technology) was spin-coated and dried at 60 ° C. for 3 hours to obtain a laminate having a surface treatment layer. The results are shown in Table 2.
  • Example A3 A laminate was obtained in the same manner as in Example A1, except that the active energy ray-curable resin composition having the composition shown in Table 1 was used. The results are shown in Table 2.
  • the laminates obtained in Examples A11 to A13 and A19 having a surface layer elastic modulus of 45 to 65 MPa and a surface layer water contact angle of 135 ° or more were particularly excellent in compatibility and antifouling property. .
  • the laminates obtained in Examples A12 and A20 in which the elastic modulus of the surface layer is 50 to 65 MPa and the water contact angle of the surface layer is 140 ° or more are extremely excellent in compatibility, antifouling property and scratch resistance. An excellent laminate was obtained.
  • Comparative Example A3 was inferior in scratch resistance, so that many scratches were generated on the surface layer during evaluation, and the surface layer was destroyed and peeled off, so the evaluation was interrupted.
  • Example B Hereinafter, although this embodiment is concretely demonstrated by Example B, this invention is not limited to these.
  • the active energy ray-curable resin composition was sandwiched between two glasses and irradiated with ultraviolet rays with an energy of 3000 mJ / cm 2 . Thereby, the active energy ray-curable resin composition was photocured to prepare a cured product of the active energy ray-curable resin composition having a thickness of 500 ⁇ m.
  • FISCHERSCOPE® HM2000 trade name, manufactured by Fischer
  • the surface of the cured product was increased in load under the condition of 50 mN / 10 seconds, held for 60 seconds, and then under the same conditions as the increase in load. Unloaded.
  • the elastic modulus was calculated by extrapolation using points at which 65% and 95% loads were applied.
  • the artificial fingerprint liquid (JIS K2246 made by Isekyu Corporation) was attached by the method described in JP-A-2006-147149, and the pseudo fingerprint was transferred onto the surface of the laminate. Specifically, about 1 mL of pseudo-fingerprint component was sampled with good stirring with a magnetic stirrer and applied to a polycarbonate substrate (diameter 120 mm, thickness 1.2 mm) by spin coating. The substrate was heated at 60 ° C. for 3 minutes to completely remove methoxypropanol, which is an unnecessary diluent. This was used as a master plate for pseudo-fingerprint transfer. Subsequently, NO. A silicone rubber plug of No.
  • stamper> A ⁇ 65 mm aluminum disk having a purity of 99.99% by mass and an electropolished thickness of 2 mm was used as the aluminum substrate.
  • the 0.3 M oxalic acid aqueous solution was adjusted to 15 ° C., the aluminum base material was immersed, and the power supply of the direct current stabilizing device was repeatedly turned on / off. Thereby, an electric current was intermittently passed through the aluminum base material to perform anodization.
  • the operation of applying a constant voltage of 80 V every 30 seconds for 5 seconds was repeated 60 times to form an oxide film having pores. Subsequently, the aluminum base material on which the oxide film was formed was immersed in a 70 ° C.
  • aqueous solution in which 6% by mass phosphoric acid and 1.8% by mass chromic acid were mixed to dissolve and remove the oxide film.
  • the aluminum base material from which the oxide film was dissolved and removed was immersed in a 0.05 M oxalic acid aqueous solution adjusted to 16 ° C. and anodized at 80 V for 7 seconds. Subsequently, this was immersed in a 5% by mass phosphoric acid aqueous solution adjusted to 32 ° C. for 20 minutes, and subjected to a pore diameter enlargement treatment for enlarging the pores of the oxide film. As described above, the anodization and the pore diameter enlargement treatment were alternately repeated, and the treatment was performed five times in total.
  • the obtained stamper was immersed in a 0.1% by weight aqueous solution of TDP-8 (trade name, manufactured by Nikko Chemicals Co., Ltd.) for 10 minutes, and then pulled up and air-dried overnight for release treatment.
  • Aronix M-260 trade name, Toa Gosei Co., Ltd., ethylene glycol average repeating unit 13
  • the polymerizable component includes 1 part by weight of Irgacure 184 (trade name, manufactured by BASF), 0.5 part of Irgacure 819 (trade name, manufactured by BASF), TDP-2 (trade name, manufactured by Nikko Chemicals) 0 .1 part by mass was dissolved. Thereby, an active energy ray-curable resin composition was obtained. While dropping a few drops of the active energy ray-curable resin composition on the stamper and spreading it with a triacetyl cellulose film (trade name: FTTD80ULM, manufactured by Fuji Film Co., Ltd., hereinafter also referred to as a film), the active energy is applied to the film. The wire curable resin composition was coated.
  • the active energy ray-curable resin composition was photocured by irradiating ultraviolet rays with an energy of 1000 mJ / cm 2 from the film side.
  • the stamper is peeled from the cured product of the active energy ray-curable resin composition, and the surface of the surface layer 12 has a fine concavo-convex structure shown in FIG. 1 in which the distance between adjacent convex portions is 180 nm and the height d1 of the convex portions is 180 nm.
  • the laminate 10 is obtained.
  • Examples B2 to B6 Comparative Examples B1 to B3
  • a laminate was produced in the same manner as in Example B1, except that the types and blending amounts of the polymerizable component and polymerization initiator used were changed as shown in Table 1. The results are shown in Table 3.
  • DPHA Dipentaerythritol hexaacrylate (trade name: Kayarad DPHA, manufactured by Nippon Kayaku Co., Ltd.)
  • M-260 Polyethylene glycol diacrylate (manufactured by Toa Gosei Co., Ltd., the average repeating unit of ethylene glycol is 13)
  • APG700 Polypropylene glycol diacrylate (manufactured by Toa Gos
  • Irgacure 184 (trade name, manufactured by BASF, hydroxycyclohexyl phenyl ketone) IRG. 819: Irgacure 819 (trade name, manufactured by BASF, phenylbis (2,4,6-trimethylbenzoyl) -phosphine oxide)
  • TDP-2 TDP-2 (trade name, manufactured by Nikko Chemicals Co., Ltd., polyoxyethylene alkyl ether phosphoric acid).
  • Examples 1 to 6 and Comparative Examples 1 to 3 represent Examples B1 to B6 and Comparative Examples B1 to B3, respectively.
  • Examples B1 to B6 since the elastic modulus was less than 200 MPa, the antifouling property was excellent, and dirt could be easily removed without using water or alcohol.
  • the elastic modulus was in the range of 90 to 150 MPa.
  • Comparative Examples B1 and B2 since the elastic modulus was 200 MPa or more, the antifouling property was insufficient, and the dirt could not be easily removed without using water or alcohol.
  • Comparative Example B3 polypropylene glycol diacrylate was used instead of polyethylene glycol diacrylate, so the molecular mobility was low, antifouling property was insufficient, and dirt was easily removed without using water or alcohol. I could't.
  • Example C Hereinafter, the present embodiment will be specifically described with reference to Example C, but the present invention is not limited thereto.
  • Transparent (good compatibility)
  • Although cloudy at room temperature, it becomes transparent when the active energy ray-curable resin composition is heated to 50 degrees.
  • the irradiation surface of the surface layer was applied with increasing load under the condition of 50 mN / 10 seconds using “FISCHERSCOPE® HM2000” (trade name, manufactured by Fischer), held at 50 mN for 60 seconds, and then 50 mN Unload while reducing the load under the condition of / 10 seconds.
  • the elastic modulus was calculated by extrapolation using points at which 65% and 95% loads were applied.
  • An active energy ray-curable resin is obtained by using a Teflon sheet having a thickness of 500 ⁇ m as a spacer, sandwiching the active energy ray-curable composition between two glass plates, and irradiating ultraviolet rays with an energy of an integrated light irradiation amount of 3000 mJ / cm 2.
  • the composition may be photocured to produce an active energy ray-cured resin having a thickness of 500 ⁇ m, and the elastic modulus may be calculated by measuring the irradiated surface of the cured resin in the same manner as described above.
  • the smaller end face (diameter 12 mm) uniformly polished with # 240 polishing paper is used as a pseudo-fingerprint transfer material, and this polished end face is pressed against the original plate with a load of 29 N for 10 seconds to produce a pseudo-fingerprint component.
  • the end face of the transfer material was pressed against the surface of the translucent substrate of each sample with a load of 29 N for 10 seconds. Transferring the pseudo fingerprint components.
  • a fingerprint pattern, to transfer the pseudo-fingerprint on the surface laminate is adhered population fingerprint solution (JIS K2246 Isekyu Co.) with and transferred to the position of the radius 40mm near the medium.).
  • No white spots are observed when observed from an oblique direction.
  • White spots are observed when observed from an oblique direction, but no white spots are observed when observed from the front.
  • aqueous solution in which 6% by mass of phosphoric acid and 1.8% by mass of chromic acid were mixed to dissolve and remove the oxide film.
  • the aluminum base material from which the oxide film was dissolved and removed was immersed in a 0.05 M oxalic acid aqueous solution adjusted to 16 ° C. and anodized at 80 V for 7 seconds. Subsequently, the aluminum substrate was immersed in a 5% by mass phosphoric acid aqueous solution adjusted to 32 ° C. for 20 minutes, and subjected to a pore diameter enlargement treatment for enlarging the pores of the oxide film. In this way, the anodizing treatment and the pore size enlargement treatment were repeated alternately.
  • the anodization treatment and the pore diameter enlargement treatment were each performed 5 times.
  • the obtained stamper was immersed in a 0.1% by weight aqueous solution of TDP-8 (manufactured by Nikko Chemicals Co., Ltd.) for 10 minutes, and then pulled up and dried overnight to perform a mold release treatment.
  • the active energy ray-curable resin composition was photocured by irradiating ultraviolet rays from the film side with an energy of an integrated light irradiation amount of 1000 mJ / cm 2 . Thereafter, the film and the stamper were peeled off to obtain a laminate having a fine concavo-convex structure having a distance w1 between adjacent convex portions of 180 nm and a convex portion height d1 of 180 nm as shown in FIG.
  • M-260 Polyethylene glycol diacrylate (“Aronix M-260”, manufactured by Toa Gosei Co., Ltd., average repeating unit of polyethylene glycol chain is 13)
  • APG-700 Polypropylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., average repeating unit of polypropylene glycol chain is 12)
  • BYK-3570 Diluted product of silicone acrylate, propylene oxide-modified neopentyl glycol diacrylate (manufactured by Big Chemie Japan) IRG.
  • Examples C2 to C8 A laminate was obtained in the same manner as in Example C1 except that the composition was changed to the composition shown in Table 4. The results are shown in Table 4.
  • Example C1 A laminate was obtained in the same manner as in Example C1 except that the composition was changed to the composition shown in Table 4. The results are shown in Table 4.
  • the water contact angle of the surface layer was 130 ° or more, and the antifouling property was able to be easily removed without using water or alcohol.
  • the laminates obtained in Examples C5 to C7 exhibited very good antifouling properties because the silicone acrylate was 45 parts by mass or more. Further, in the laminate obtained in Examples C5 and C6, the silicone acrylate was 45 to 65 parts by mass, so the compatibility of the active energy ray-curable resin composition was good, and the coalescence of protrusions was suppressed. And showed very good antifouling properties.
  • Example D Hereinafter, although this embodiment is concretely demonstrated by Example D, this invention is not limited to these.
  • the elastic modulus (indentation elastic modulus) of the cured resin was calculated by extrapolation using points at which 65% and 95% loads were applied.
  • a sheet coated with Teflon (registered trademark) having a thickness of 500 ⁇ m was used as a spacer, the active energy ray-curable composition was sandwiched between two glass plates, and ultraviolet rays were irradiated with an energy of an integrated light irradiation amount of 3000 mJ / cm 2.
  • the active energy ray-curable resin composition may be photocured to produce an active energy ray-curable resin having a thickness of 500 ⁇ m, and the elastic modulus may be calculated by measuring the irradiated surface of the cured resin in the same manner as described above.
  • the smaller end face (diameter 12 mm) uniformly polished with # 240 polishing paper is used as a pseudo-fingerprint transfer material, and this polished end face is pressed against the original plate with a load of 29 N for 10 seconds to produce a pseudo-fingerprint component.
  • the end face of the transfer material was pressed against the surface of the translucent substrate of each sample with a load of 29 N for 10 seconds. Transferring the pseudo fingerprint components.
  • a fingerprint pattern, to transfer the pseudo-fingerprint on the surface laminate is adhered population fingerprint solution (JIS K2246 Isekyu Co.) with and transferred to the position of the radius 40mm near the medium.).
  • the artificial fingerprint liquid is wiped off by rubbing 6 reciprocations at a pressure of 98 KPa. It was observed visually. Evaluation was performed according to the following criteria.
  • aqueous solution in which 6% by mass of phosphoric acid and 1.8% by mass of chromic acid were mixed to dissolve and remove the oxide film.
  • the aluminum base material from which the oxide film was dissolved and removed was immersed in a 0.05 M oxalic acid aqueous solution adjusted to 16 ° C. and anodized at 80 V for 7 seconds. Subsequently, the aluminum substrate was immersed in a 5% by mass phosphoric acid aqueous solution adjusted to 32 ° C. for 20 minutes, and subjected to a pore diameter enlargement treatment for enlarging the pores of the oxide film. In this way, the anodizing treatment and the pore size enlargement treatment were repeated alternately.
  • the anodization treatment and the pore diameter enlargement treatment were each performed 5 times.
  • the obtained stamper was immersed in a 0.1% by weight aqueous solution of TDP-8 (manufactured by Nikko Chemicals) for 10 minutes, and then pulled up and dried overnight to perform a mold release treatment.
  • the active energy ray-curable resin composition was dropped on a stamper and covered with a triacetyl cellulose film (FT
  • the active energy ray-curable resin composition was photocured by irradiating ultraviolet rays with an energy of 1000 mJ / cm 2 from the film side.
  • the film and the stamper were peeled off, and PC-3B (trade name, manufactured by Fluoro Technology Co., Ltd.) was used as a primer on the surface layer having the fine concavo-convex structure obtained with Bencott M-3II (manufactured by Asahi Kasei Fibers)
  • Bencott M-3II manufactured by Asahi Kasei Fibers
  • FG5070S135-0.1 (trade name, manufactured by Fluoro Technology) was brushed with Bencott and dried at 60 ° C. for 3 hours.
  • the active energy ray-curable resin composition was photocured by irradiating ultraviolet rays from the film side with an energy of an integrated light irradiation amount of 1000 mJ / cm 2 to form a surface treatment layer.
  • the film and the stamper were peeled off to obtain a laminate having a fine concavo-convex structure having a distance w1 between adjacent convex portions of 180 nm and a convex portion height d1 of 180 nm as shown in FIG.
  • BYK-3570 Diluted product of silicone acrylate, propylene oxide-modified neopentyl glycol diacrylate (manufactured by Big Chemie Japan)
  • TAS Mixture obtained by condensation reaction of trimethylolethane / acrylic acid / succinic anhydride at 2/4/1 (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
  • M-260 Polyethylene glycol diacrylate (“Aronix M-260”, manufactured by Toa Gosei Co., Ltd., average repeating unit of polyethylene glycol chain is 13)
  • X-22-1602 Silicone acrylate (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • C6DA
  • Example D2 A laminate was obtained in the same manner as in Example D1 except that the composition was changed to the composition shown in Table 5. The results are shown in Table 5.
  • the water contact angle of the surface layer was 120 ° or more, and the antifouling property was able to be easily removed without using water or alcohol.
  • the elastic modulus was 100 MPa or less, and the water contact angle was 130 ° or more, and thus very good antifouling property was exhibited.
  • Example E Hereinafter, the present embodiment will be specifically described with reference to Example E, but the present invention is not limited thereto.
  • An active energy ray-curable composition is obtained by using a Teflon sheet having a thickness of 500 ⁇ m as a spacer, sandwiching the active energy ray-curable composition between two glass plates, and irradiating ultraviolet rays with an energy of an integrated light irradiation amount of 3000 mJ / cm 2.
  • the product can be photocured to produce an active energy ray curable resin having a thickness of 500 ⁇ m, and the elastic modulus can be calculated by measuring the irradiated surface of the cured resin in the same manner as described above.
  • An antifouling test was conducted according to the method described in JP-A-2006-147149. First, about 1 mL of the pseudo-fingerprint component was collected while stirring well with a magnetic stirrer, and applied to a polycarbonate substrate (diameter 120 mm, thickness 1.2 mm) by spin coating. The substrate was heated at 60 ° C. for 3 minutes to completely remove methoxypropanol, which is an unnecessary diluent. This was used as a master plate for pseudo-fingerprint transfer.
  • the smaller end face (diameter 12 mm) of the silicone rubber plug of No. 1 was uniformly polished with # 240 polishing paper as a pseudo-fingerprint transfer material.
  • the pseudo fingerprint component was transferred to the end face of the transfer material by pressing with a load of 29 N for 10 seconds.
  • the pseudo-fingerprint component was transferred to the surface of the laminate of each sample by pressing the transfer material end face with a load of 29 N for 10 seconds.
  • the fingerprint pattern was transferred to a position near the radius of 40 mm of the medium.
  • the pseudo-fingerprint component was wiped off by rubbing 6 reciprocations at a pressure of 98 KPa. It was observed visually. Evaluation was performed according to the following criteria.
  • No white spots are observed when observed from an oblique direction.
  • White spots are observed when observed from an oblique direction, but no white spots are observed when observed from the front.
  • aqueous solution in which 6% by mass of phosphoric acid and 1.8% by mass of chromic acid were mixed to dissolve and remove the oxide film.
  • the aluminum base material from which the oxide film was dissolved and removed was immersed in a 0.05 M oxalic acid aqueous solution adjusted to 16 ° C. and anodized at 80 V for 5 seconds. Subsequently, the aluminum substrate was immersed in a 5% by mass phosphoric acid aqueous solution adjusted to 32 ° C. for 20 minutes, and subjected to a pore diameter enlargement treatment for enlarging the pores of the oxide film. In this way, the anodizing treatment and the pore size enlargement treatment were repeated alternately.
  • the anodization treatment and the pore diameter enlargement treatment were each performed 5 times.
  • the obtained stamper was immersed in a 0.1% by weight aqueous solution of TDP-8 (manufactured by Nikko Chemicals Co., Ltd.) for 10 minutes, and then pulled up and dried overnight to perform a mold release treatment.
  • Example E1 ⁇ Manufacture of laminates> The following materials were mixed to prepare an active energy ray-curable composition. ⁇ Ethylene oxide-modified dipentaerythritol hexaacrylate (“Kayarad DPEA-12”, 22 parts by mass of ethylene oxide structural unit in one molecule, manufactured by Nippon Kayaku Co., Ltd.) ⁇ Aronix M-260 (trade name, Toa Gosei) The average repeating unit of polyethylene glycol chain is 13) 32 parts by mass APG-700 (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd., the average repeating unit of polypropylene glycol chain is 12) 32 parts by mass.
  • BYK-3570 (trade name) , Manufactured by Big Chemie Japan Co., Ltd., silicone acrylate, propylene oxide modified neopentyl glycol diacrylate diluted product) 9 parts by mass, Karenz MT PE1 (trade name, Showa Denko KK, compound having four SH groups) 5 parts by mass, Irgacure 184 (Product name, Ciba Specialty 1 part by mass of Micals Co., Ltd.
  • DPHA Dipentaerythritol hexaacrylate (Daiichi Kogyo Seiyaku Co., Ltd.)
  • M-260 Polyethylene glycol diacrylate (“Aronix M-260”, manufactured by Toa Gosei Co., Ltd., average repeating unit of polyethylene glycol chain is 13)
  • APG-700 (trade name, manufactured by Shin-Nakamura Chemical Co.,
  • Examples E2 to E13, Comparative Example E1 A laminate was obtained in the same manner as in Example E1 except that the composition was changed to the composition shown in Table 6. The results are shown in Table 7.
  • the laminates obtained in Examples E2 to E13 exhibited antifouling properties that can easily remove dirt without using water or alcohol.
  • Examples E2 to E11 exhibited good antifouling properties because the indentation elastic modulus was 500 MPa or less and the water contact angle was 130 ° or more. Among them, Examples 1 to 6, 8, and 10 exhibited particularly good antifouling properties because the indentation elastic modulus was 100 MPa or less. In Examples E12 and E13, since the amount of the SH group-containing compound was large, good antifouling properties were exhibited even though the water contact angle was 130 ° or less.
  • the laminate of this embodiment can easily remove dirt while maintaining excellent optical performance, it can be used for various displays such as TVs, mobile phones, and portable game machines, touch panels, showcases, exterior covers, etc. It is possible and is very useful industrially.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

 本実施形態は、容易に汚れを除去できる防汚性と耐擦傷性に優れた表層を備える積層体を提供することを目的とする。 本実施形態は、微細凹凸構造が形成された表面を有する表層を備える積層体であって、前記表層の弾性率が250MPa未満であり、且つ前記表層の摩擦係数の傾きが0.0018以下である積層体である。

Description

積層体
 本実施形態は、微細凹凸構造を有する積層体およびこれを用いた反射防止物品、画像表示装置、タッチパネルに関する。
 本願は、2012年6月15日に日本に出願された特願2012-135981号および特願2012-135983号、2012年9月13日に日本に出願された特願2012-201734号、ならびに2012年11月13日に日本に出願された特願2012-249312号に基づき優先権を主張し、その内容をここに援用する。
 各種ディスプレイ、レンズ、ショーウィンドーなどの空気と接する界面(表面)では、太陽光や照明等が表面で反射することによる視認性の低下が問題点となっている。反射を減らすための方法としては、フィルム表面での反射光と、フィルムと基材の界面での反射光とが干渉によって打ち消し合うように、屈折率の異なる数層のフィルムを積層する方法が知られている。これらのフィルムは、通常、スパッタリング、蒸着、コーティング等の方法で製造される。しかし、このような方法では、フィルムの積層数を増やしても反射率及び反射率の波長依存性を低下させるには限界があった。また、製造コストを削減すべく積層数を減らすためには、より低い屈折率を有する材料が求められていた。
 材料の屈折率を下げるためには、何らかの方法で材料中に空気を導入することが有効である。また、フィルム表面の屈折率を下げる方法の一つとして、例えばフィルムの表面に微細凹凸構造を形成する方法が広く知られている。これらの方法によれば、微細凹凸構造が形成された表面の層全体の屈折率が、空気と微細凹凸構造を形成する材料との体積比により決定されるため、大幅に屈折率を下げることが可能になる。その結果、積層数が少なくても反射率を低下させることができる。
 また、ガラス基板上に形成された反射防止膜において、角錐状の凸部が膜全体に連続的に形成された反射防止膜が提案されている(例えば、特許文献1参照)。特許文献1に記載のように、角錐状の凸部(微細凹凸構造)が形成された反射防止膜は、膜面と平行な面で微細凹凸構造を切断した時の断面積が連続的に変化し、空気側から基板側に向かって徐々に屈折率が増大していくため、有効な反射防止の手段となる。また、該反射防止膜は優れた光学性能を示す。
 上記のような微細凹凸構造による反射防止膜は、空気と接するため、防汚性を有することが好ましい。
 防汚性を付与する方法としては、微細凹凸構造の表面上にポリテトラフルオロエチレンからなる皮膜を成膜する方法(例えば、特許文献2参照)や、フッ素含有化合物を含む樹脂組成物から形成される層に微細凹凸構造を有するスタンパを圧接する方法(例えば、特許文献3参照)などが挙げられる。これらの方法では、表面エネルギーを低下させて汚れをはじくことにより、防汚性を付与している。
 また、基材表面に微細な凹凸構造をもつ光触媒層(酸化チタンなど)をコーティングする方法(例えば、特許文献4参照)や、基材表面にケイ素酸化合物などの無機酸化物からなる親水性皮膜をスパッタリングにより形成する方法(例えば、特許文献5参照)、無機微粒子溶液をソーダガラスの表面にスピンコートした後、加熱し硬化させる方法(例えば、特許文献6参照)なども提案されている。これらの方法では、表面を親水化することにより、付着した汚れを水で浮かせて拭き取り易くしている。
 また、特許文献7には、光ディスク用コーティング材として、特定のフッ素系界面活性剤と特定組成の重合性化合物からなる光硬化性組成物が開示されている。
 また、特許文献8に記載のように、微細凹凸構造を形成する材料の弾性率を下げることで凹部に入り込んだ汚れを押し出すという方法が提案されている。
特開昭63-75702号公報 特開2003-172808号公報 特開2005-97371号公報 特開2001-183506号公報 特開2001-315247号公報 特開平11-217560号公報 特開平7-316468号公報 特開2011-76072号公報
 特許文献2および3に記載のように表面エネルギーを低下させると汚れは付着しにくくなる。しかし、使用時に凹部に汚れが入り込む場合があり、一旦汚れが付着するとその汚れを取り除くことが困難になる場合があった。
 また、特許文献4に記載のように光触媒を用いた場合、室内の光では汚れの分解が進行し難い場合があった。また、樹脂フィルム等を基材として用いてその表面に光触媒層をコーティングすると、樹脂フィルムも分解されてしまう場合があった。
 また、特許文献5、6に記載のスパッタリングによる製造方法で得られる微細凹凸構造を有する防汚性物品は、隣り合う凸部同士の距離や、凸部の高さを調節することが難しい場合があり、反射防止性が十分に得られない場合があった。
 また、特許文献7に記載のフッ素系界面活性剤をブレンドする方法を微細凹凸構造に適用しても、十分に防汚性が付与されない場合があった。
 また、特許文献8に記載の方法の効果は、微細凹凸構造のピッチが250nm以上の積層体では確認されているが、その表層は耐擦傷性に劣る場合があり、例えば、建材やディスプレイ用途などの反射防止物品としての実用性の観点から改善の余地があった。
 本実施形態は、容易に汚れを除去できる防汚性と耐擦傷性に優れた表層を備える積層体を提供することを目的とする。
 (1)本発明の一形態は、微細凹凸構造が形成された表面を有する表層を備える積層体であって、前記表層の弾性率が250MPa未満であり、且つ前記表層の摩擦係数の傾きが1.8×10-3以下である、積層体である。
 (2)本発明の一形態は、前記表層の摩擦係数の傾きが-2.0×10-3以上である、(1)に記載の積層体である。
 (3)本発明の一形態は、前記表層の摩擦係数の傾きが-1.8×10-3以上1.0×10-3以下である、(1)又は(2)に記載の積層体である。
 (4)本発明の一形態は、前記表層の弾性率が160MPa未満である、(1)~(3)のいずれかに記載の積層体である。
 (5)本発明の一形態は、前記表層の弾性率が100MPa未満である、(1)~(4)のいずれかに記載の積層体である。
 (6)本発明の一形態は、前記表層の水接触角が25°以下、または130°以上である、(1)~(5)のいずれかに記載の積層体である。
 (7)本発明の一形態は、前記表層が活性エネルギー線硬化性樹脂組成物の硬化物からなる層を含む(1)~(6)のいずれかに記載の積層体である。
 (8)本発明の一形態は、前記活性エネルギー線硬化性樹脂組成物が、3官能以上の多官能(メタ)アクリレート(A)1~55質量部、2官能の(メタ)アクリレート(B)10~95質量部を含む(但し、前記活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とする)、(7)に記載の積層体である。
 (9)本発明の一形態は、前記3官能以上の多官能(メタ)アクリレート(A)の含有量が5~40質量部であり、前記2官能の(メタ)アクリレート(B)の含有量が20~80質量部である(8)に記載の積層体である。
 (10)本発明の一形態は、前記3官能以上の多官能(メタ)アクリレート(A)の含有量が10~30質量部であり、前記2官能の(メタ)アクリレート(B)の含有量が30~70質量部である(8)に記載の積層体である。
 (11)本発明の一形態は、前記活性エネルギー線硬化性樹脂組成物が、さらにシリコーン(メタ)アクリレート(C)3~85質量部を含む(但し、前記活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とし、(A)及び(B)はそれぞれ(C)を除く)、(8)に記載の積層体である。
 (12)本発明の一形態は、前記活性エネルギー線硬化性樹脂組成物が、さらにシリコーン(メタ)アクリレート(C)7~70質量部を含む(但し、前記活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とし、(A)及び(B)はそれぞれ(C)を除く)、(9)に記載の積層体である。
 (13)本発明の一形態は、前記活性エネルギー線硬化性樹脂組成物が、SH基を有する化合物(D)を含む(7)に記載の積層体である。
 (14)本発明の一形態は、前記活性エネルギー線硬化性樹脂組成物は、2官能以上の多官能(メタ)アクリレート(E)を0~95質量部、シリコーン(メタ)アクリレート(C)を0~75質量部、前記SH基を有する化合物(D)を1~60質量部含む(但し、重合性成分の合計を100質量部とする。)、(13)に記載の積層体である。
 (15)本発明の一形態は、前記表層は、前記活性エネルギー線硬化性樹脂組成物の硬化物からなる層から構成される(7)~(14)のいずれかに記載の積層体である。
 (16)本発明の一形態は、前記表層が、前記活性エネルギー線硬化性樹脂組成物の硬化物からなる層と、該活性エネルギー線硬化性樹脂組成物の硬化物からなる層の上に形成された、最表面層としての表面処理層とから構成される、(7)~(14)のいずれかに記載の積層体である。
 (17)本発明の一形態は、前記微細凹凸構造のピッチが100nm以上250nm以下である、(1)~(15)のいずれかに記載の積層体である。
 (18)本発明の一形態は、(1)~(17)のいずれかに記載の積層体を備えた反射防止物品である。
 (19)本発明の一形態は、(1)~(17)のいずれかに記載の積層体を備えた画像表示装置である。
 (20)本発明の一形態は、(1)~(17)のいずれかに記載の積層体を備えたタッチパネルである。
 本実施形態によれば、容易に汚れを除去できる防汚性と耐擦傷性に優れた表層を備える積層体を提供することができる。また、本実施形態によれば、好ましくは、表面に水やアルコールを用いなくても容易に汚れを除去できる、防汚性が良好な積層体を得ることができる。また、本実施形態によれば、好ましくは、布等で汚れを拭取る際に表層が傷つかない、耐擦傷性が良好な積層体を得ることができる。
本実施形態に係る積層体の構成の一例を示す模式的断面図である。 本実施形態に係る積層体の構成の一例を示す模式的断面図である。 本実施形態に係る積層体の構成の一例を示す模式的断面図である。 本実施形態に係る積層体の構成の一例を示す模式的断面図である。
 以下、本実施形態について詳細に説明する。
 (実施形態1)
 図1は、本実施形態に係る積層体10の構成の一例を示す模式的断面図である。図1において、透明性を有する基材11の表面に活性エネルギー線硬化性樹脂組成物の硬化物からなる表層12が形成されている。積層体10において、表層12の表面に微細凹凸構造が形成されている。
 積層体10においては、表層の表面全体に微細凹凸構造が形成されていることが好ましいが、表層の表面の一部に微細凹凸構造が形成されていてもよい。また、積層体10が膜形状を有する場合は、積層体10の両面に微細凹凸構造が形成されていてもよい。
 本実施形態の積層体において、微細凹凸構造領域の弾性率、つまり表層の弾性率は、250MPa未満である。また、表層の弾性率は、160MPa未満であることが好ましく、50MPa以上100MPa以下であることがより好ましい。表層の弾性率が250MPa未満であると、微細凹凸構造が柔らかいため凹部に入り込んだ汚れを容易に押し出すことができる。また、表層の弾性率が160MPa未満であると微細凹凸構造がより柔らかいため凹部に入り込んだ汚れをより容易に押し出すことができる。表層の弾性率が50MPa以上であると、微細凹凸構造が十分な硬さを有するため、凸部の突起合一を効果的に防ぐことができる。表層の弾性率が100MPa以下であると、微細凹凸構造が十分に柔らかいため、微細凹凸構造を自由に変形することができ、凹部に入り込んだ汚れをさらに容易に除去できる。
 本実施形態の積層体において、微細凹凸構造領域の摩擦係数の傾き、つまり表層の摩擦係数の傾きは、1.8×10-3以下である。また、表層の摩擦係数の傾きは、-2.0×10-3以上であることが好ましく、-1.8×10-3以上1.0×10-3以下であることが好ましい。表層の摩擦係数の傾きが0.0018以下であると、表層を布等で擦った際に摩擦係数の増加が小さいため、表層の破壊が起きない。表層の摩擦係数の傾きが-1.8×10-3以上であると、表層を布等で擦った際に微細凹凸構造の凸部の合一が生じず、擦傷後にも擦傷前と同等の反射防止性能を保つことができる。表層の摩擦係数の傾きが1.0×10-3以下であると、表層を布等で擦った際に摩擦係数の増加がさらに小さいため、表層に傷が付かない。
 微細凹凸構造領域の水接触角、つまり表層の水接触角は特に限定されないが、25°以下、または130°以上であることが好ましく、15°以下、または135°以上であることがより好ましい。表層の水接触角が25°以下である場合、表面が親水性であるため、汚れを容易に拭取ることができる。表層の水接触角が130°以上である場合、表層の表面エネルギーが小さいため、汚れを容易に拭き取ることができる。表層の水接触角が15°以下である場合、表面の親水性が高いため、汚れをより容易に拭取ることができる。表層の水接触角が135°以上である場合、表層の表面エネルギーが十分に小さいため、汚れの付着を抑制することができる。表層の水接触角の下限は特に制限されるものではないが、表層の水接触角は5°以上であることが好ましく、7°以上であることがより好ましい。表層の水接触角の上限は特に制限されるものではないが、表層の水接触角は150°以下であることが好ましく、145°以下であることがより好ましい。
 本実施形態の積層体において、表層は、活性エネルギー線硬化性樹脂組成物の硬化物から構成されることができる。また、後述のように、表層が、活性エネルギー線硬化性樹脂組成物の硬化物からなる層と、該活性エネルギー線硬化性樹脂組成物の硬化物からなる層の上に形成された、最表面層としての表面処理層と、からなることもできる。
 活性エネルギー線硬化性樹脂組成物は、3官能以上の多官能(メタ)アクリレート(A)を1~55質量部、2官能の(メタ)アクリレート(B)を10~95質量部を含む(但し、前記活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とする)ことが好ましい。
 活性エネルギー線硬化性樹脂組成物は、さらに、シリコーン(メタ)アクリレート(C)を3~85質量部含むことが好ましい。すなわち、活性エネルギー線硬化性樹脂組成物は、例えば、3官能以上の多官能(メタ)アクリレート(A)を1~55質量部、2官能の(メタ)アクリレート(B)を10~95質量部、シリコーン(メタ)アクリレート(C)を3~85質量部含む(但し、前記活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とする)ことが好ましい。なお、3官能以上の多官能(メタ)アクリレート(A)及び2官能の(メタ)アクリレート(B)からシリコン(メタ)アクリレート(C)は除かれる。
 ここで、3官能以上の多官能(メタ)アクリレートとは、アクリロイル基(CH2=CHCO-)及びメタクリロイル基(CH2=C(CH3)CO-)から選ばれる基を分子内に少なくとも3つ以上有する化合物を意味する。また、2官能の(メタ)アクリレートとは、アクリロイル基(CH2=CHCO-)及びメタクリロイル基(CH2=C(CH3)CO-)から選ばれる基を分子内に2つ有する化合物を意味する。
 3官能以上の多官能(メタ)アクリレート(A)は、4官能以上であることが好ましく、5官能以上であることがより好ましい。3官能以上の多官能(メタ)アクリレート(A)としては、例えば、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、コハク酸/トリメチロールエタン/アクリル酸のモル比1:2:4の縮合反応物、ウレタンアクリレート類、ポリエーテルアクリレート類、変性エポキシアクリレート類、ポリエステルアクリレート類等が挙げられる。ウレタンアクリレート類としては、例えば、ダイセル・サイテック社製の「EBECRYL220」、「EBECRYL1290」、「EBECRYL1290K」、「EBECRYL5129」、「EBECRYL8210」、「EBECRYL8301」、「KRM8200」が挙げられる。ポリエーテルアクリレート類としては、例えば、ダイセル・サイテック社製の「EBECRYL81」が挙げられる。変性エポキシアクリレート類としては、ダイセル・サイテック社製の「EBECRYL3416」が挙げられる。ポリエステルアクリレート類としては、ダイセル・サイテック社製の「EBECRYL450」、「EBECRYL657」、「EBECRYL800」、「EBECRYL810」、「EBECRYL811」、「EBECRYL812」、「EBECRYL1830」、「EBECRYL845」、「EBECRYL846」、「EBECRYL1870」が挙げられる。また、3官能以上の多官能(メタ)アクリレート(A)としては、他にも、例えば、前記モノマーにエチレンオキサイドやプロピレンオキサイドを付加したモノマーが挙げられる。これらの多官能(メタ)アクリレート(A)は、1種を単独で用いても、2種以上を併用してもよい。
 3官能以上の多官能(メタ)アクリレート(A)は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、1~55質量部であることが好ましく、5~40質量部であることがより好ましく、10~30質量部とすることがさらに好ましい。3官能以上の多官能(メタ)アクリレート(A)の含有量を1質量部以上とすることで、表層に微細凹凸構造を転写できる程度の弾性率を付与することができる。また、3官能以上の多官能(メタ)アクリレート(A)の含有量を55質量部以下とすることで、表層の弾性率の増加を抑制することができる。その結果、凹部から汚れを押し出し易くなり、積層体に十分な防汚性を付与することができる。また、5質量部以上とすることで、表層に良好な弾性率を付与することができ、微細凹凸構造における凸部の突起合一を抑制することができる。また、40質量部以下とすることで、凸部の運動性の低下が抑制され、水やアルコールを用いなくても容易に汚れを除去できる防汚性が効果的に発現される。なお、本明細書において、突起若しくは凸部の突起合一とは、隣接する突起や凸部が合わさって一つに形成されることを言う。
 2官能の(メタ)アクリレート(B)としては、ポリエチレングリコールを有する2官能アクリレート類、ポリプロピレングリコールを有する2官能アクリレート類、ポリブチレングリコールを有する2官能アクリレートなどのポリアルキレングリコールを有する2官能アクリレートが好ましい。ポリエチレングリコールを有する2官能アクリレート類の具体例としては、アロニックスM-240、アロニックスM-260(東亞合成社製)、NKエステルAT-20E、NKエステルATM-35E(新中村化学社製)などが挙げられる。ポリプロピレングリコールを有する2官能アクリレート類の具体例としては、APG-400、APG-700(新中村化学社製)などが挙げられる。ポリブチレングリコールを有する2官能アクリレートの具体例としては、A-PTMG-650(新中村化学社製)などが挙げられる。2官能の(メタ)アクリレート(B)として、ポリアルキレングリコールを有する2官能アクリレートを用いることで、表層の弾性率が抑制され、凹部から汚れを押し出しやすくなり、効果的に防汚性が発現される。ポリアルキレングリコールを有する2官能アクリレートの中でも、さらに良好な防汚性が得られるという点から、ポリエチレングリコールジアクリレートが好適に用いられる。2官能の(メタ)アクリレート(B)としてポリエチレングリコールジアクリレートを用いることで、表層の樹脂の分子運動性が向上し、凹部に入り込んだ汚れをより押し出しやくなり、良好な防汚性が発現される。
 ポリエチレングリコールジアクリレートの一分子内に存在するポリエチレングリコール鎖の平均繰り返し単位の合計は6~40であることが好ましく、9~30であることがより好ましく、12~20であることがさらに好ましい。ポリエチレングリコール鎖の平均繰り返し単位が6以上であれば分子の運動性が保たれ、良好な防汚性が発現される。ポリエチレングリコール鎖の平均繰り返し単位が40以下であれば、3官能以上の多官能(メタ)アクリレート(A)との相溶性が良好となる。また、ポリアルキレングリコールを有する2官能アクリレートの中でも、相溶性の点から、ポリプロピレングリコールジアクリレート、ポリブチレングリコールジアクリレートも好適に用いられる。2官能の(メタ)アクリレート(B)としてポリプロピレングリコールジアクリレート又はポリブチレングリコールジアクリレートを用いることで、親水性が低いシリコーンジ(メタ)アクリレート等のシリコーン(メタ)アクリレート(C)との相溶性が向上し、透明な活性エネルギー線硬化性樹脂組成物を得ることができる。これらの2官能の(メタ)アクリレート(B)は、1種を単独で用いても、2種以上を併用してもよい。また、防汚性と相溶性を両立する点から、ポリエチレングリコールとポリプロピレングリコールジアクリレート及び/又はポリブチレングリコールジアクリレートとを併用するこが好ましい。
 2官能の(メタ)アクリレート(B)は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、10~95質量部であることが好ましく、20~80質量部であることがより好ましく、30~70質量部であることがさらに好ましい。2官能の(メタ)アクリレート(B)の含有量を10質量部以上とすることにより、表層の弾性率の増加が抑制され、凹部から汚れを押し出し易くなり、十分な防汚性が発現される。2官能の(メタ)アクリレート(B)の含有量を95質量部以下とすることにより、表層に微細凹凸構造を転写できる程度の弾性率を保持することができる。また、20質量部以上とすることにより、凸部に運動性を付与することができ、効果的に防汚性が発現される。また、80質量部以下とすることにより、弾性率の低下が抑制され、凸部の突起合一を抑制することができる。
 シリコーン(メタ)アクリレート(C)は、オルガノシロキサン構造を有する化合物の側鎖及び/又は末端にアクリロイル基(CH2=CHCO-)及びメタクリロイル基(CH2=C(CH3)CO-)から選ばれる基を少なくとも一つ以上有する化合物であれば特に限定されない。シリコーン(メタ)アクリレート(C)は、3官能以上の多官能(メタ)アクリレート(A)と2官能の(メタ)アクリレート(C)との相溶性の観点から選ばれることが望ましく、シリコーン(メタ)アクリレート(C)としては、(A)及び(B)との相溶性に寄与する相溶性セグメントを有する化合物を用いることが好ましい。相溶性セグメントとしては、例えば、ポリアルキレンオキサイド構造、ポリエステル構造及びポリアミド構造などが挙げられる。これら相溶性セグメントはシリコーン(メタ)アクリレート(C)中に1種が単独で含まれていてもよく、また2種以上が含まれていても良い。また、シリコーン(メタ)アクリレート(C)はハンドリングの面から希釈されて用いられても良い。希釈剤としては硬化物からのブリードアウトなどの面から反応性を有するものが好ましい。また、3官能以上の多官能(メタ)アクリレート(A)又は2官能の(メタ)アクリレート(B)をシリコーン(メタ)アクリレート(C)に混ぜることにより、シリコーン(メタ)アクリレート(C)のハンドリングを向上することもできる。
 このようなシリコーン(メタ)アクリレート(C)としては、具体的には、例えば、チッソ社製のサイラプレーンシリーズ、信越化学工業社製のシリコーンジアクリレート「X-22-164」、「X-22-1602」、ビックケミー・ジャパン社製の「BYK-UV3500」、「BYK-UV3570」、エボニックデグサジャパン社製TEGO Radシリーズが好適に挙げられる。これらのシリコーン(メタ)アクリレート(C)は1種を単独で用いても、2種以上を併用してもよい。
 シリコーン(メタ)アクリレート(C)は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、3~85質量部であることが好ましく、7~70質量部であることがより好ましく、20~70質量部であることがさらに好ましい。シリコーン(メタ)アクリレート(C)の含有量を3質量部以上とすることにより、微細凹凸構造を有する表層の水接触角が130°以上となり易く、積層体に防汚性が付与される。また、シリコーン(メタ)アクリレート(C)の含有量を85質量部以下とすることにより、表層に微細凹凸構造を転写できる程度の弾性率を付与することができる。また、7質量部以上とすることにより、表層の水接触角が135°以上となり易く、積層体の防汚性が向上する。また、70質量部以下とすることにより、活性エネルギー線硬化性樹脂組成物の粘度が抑制され、ハンドリングが向上する。また、20質量部以上とすることにより、活性エネルギー線硬化性樹脂組成物中の成分、特に(A)及び(B)に対する相溶性が良好となり、かつ、表層の撥水性と突起の柔軟性が向上するため、優れた防汚性が発現される。
 活性エネルギー線硬化性樹脂組成物には、その他にも、単官能単量体が含まれていても良い。単官能単量体は、3官能以上の多官能(メタ)アクリレート(A)および2官能の(メタ)アクリレート(B)との相溶性を考慮して選択されることが望ましく、このような観点から、例えば、エステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類、ヒドロキシアルキル(メタ)アクリレートなどのエステル基に水酸基を有する単官能(メタ)アクリレート類、単官能アクリルアミド類、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェート若しくはメタクリロイルオキシエチルトリメチルアンモニウムメチルサルフェートなどのカチオン性単量体類などの親水性単官能単量体が好ましく挙げられる。単官能単量体としては、具体的には、単官能(メタ)アクリレート類の「M-20G」、「M-90G」、「M-230G」(新中村化学社製)等を用いることができる。
 また、活性エネルギー線硬化性樹脂組成物には、アクリロイルモルホリンやビニルピロリドンなどの粘度調整剤や、透明基材への密着性を向上させるアクリロイルイソシアネート類などの密着性向上剤なども添加することができる。
 活性エネルギー線硬化性樹脂組成物中の単官能単量体の含有量は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、例えば、0.1~20質量部であることが好ましく、5~15質量部であることがより好ましい。単官能単量体を含有させることにより、基材と表層(活性エネルギー線硬化樹脂)との密着性が向上する。単官能単量体の含有量を20質量部以下とすることにより、3官能以上の多官能(メタ)アクリレート(A)及び2官能の(メタ)アクリレート(B)の含有量を調整して、防汚性を十分に発現させ易くなる。単官能単量体は、1種を単独でまたは2種以上を混合して用いてもよい。
 また、活性エネルギー線硬化性樹脂組成物には、単官能単量体の1種又は2種以上を重合した低重合度の重合体(オリゴマー)を添加してもよい。このような低重合度の重合体としては、具体的には、例えば、エステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類(例えば、「M-230G」、新中村化学社製)や、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェートの40/60共重合オリゴマー(例えば、MRCユニテック社製、「MGポリマー」)などが挙げられる。
 さらに、活性エネルギー線硬化性樹脂組成物には、上述した各種単量体や低重合度の重合体以外にも、帯電防止剤、離型剤、紫外線吸収剤、コロイダルシリカなどの微粒子が含まれていてもよい。
 活性エネルギー線硬化性樹脂組成物は離型剤を含んでもよい。活性エネルギー線硬化性樹脂組成物に離型剤が含まれると、積層体を連続して製造する際に良好な離型性を維持することができる。離型剤としては、例えば、(ポリ)オキシアルキレンアルキルリン酸化合物が挙げられる。特に、陽極酸化アルミナのモールドを用いた場合には、(ポリ)オキシアルキレンアルキルリン酸化合物とアルミナとが相互作用することで、離型剤がモールドの表面に吸着しやすい。
 (ポリ)オキシアルキレンアルキルリン酸化合物の市販品としては、例えば、城北化学工業株式会社製の「JP-506H」(商品名)、アクセル社製の「モールドウイズINT-1856」(商品名)、日光ケミカルズ株式会社製の「TDP-10」、「TDP-8」、「TDP-6」、「TDP-2」、「DDP-10」、「DDP-8」、「DDP-6」、「DDP-4」、「DDP-2」、「TLP-4」、「TCP-5」、「DLP-10」(商品名)などが挙げられる。
 活性エネルギー線硬化性樹脂組成物に含まれる離型剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 活性エネルギー線硬化性樹脂組成物に含まれる離型剤の含有量は、重合性成分100質量部に対して、0.01~2.0質量部であることが好ましく、0.05~0.2質量部であることがより好ましい。離型剤の含有量が0.01質量部以上であれば、微細凹凸構造を表面に有する物品のモールドからの離型性が良好である。一方、離型剤の割合が2.0質量部以下であれば、活性エネルギー線硬化性樹脂組成物の硬化物と基材との密着性が良好であり、また、硬化物の硬さが適当であり、微細凹凸構造を十分維持できる。
 微細凹凸構造は、微細凹凸構造の隣り合う凸部同士の距離w1(ピッチ)が可視光の波長以下であることが好ましく、100nm以上、300nm以下であることがより好ましく、150nm以上、250nm以下であることがさらに好ましく、170nm以上、230nm以下であることが特に好ましい。100nm以上とすることにより、凸部同士の突起合一を効果的に防ぐことができる。300nm以下とすることにより、可視光の波長よりも十分に小さくなるため、可視光の散乱が効果的に抑制され、優れた反射防止性を付与し易くなる。
 なお、本実施形態において「可視光の波長」とは400nmの波長を意味する。
 凸部13の高さd1は100nm以上であることが好ましく、150nm以上であることがより好ましい。高さd1を100nm以上とすることにより、最低反射率の上昇や特定波長の反射率の上昇を防ぐことができ、良好な反射防止性を付与し易くなる。
 アスペクト比(凸部13の高さ/隣り合う凸部同士の間隔)は、0.5~5.0であることが好ましく、0.6~2.0であることがより好ましく、0.8~1.2であることがさらに好ましい。アスペクト比が0.5以上の場合、最低反射率が上昇や特定波長の反射率の上昇を抑制することができ、良好な反射防止性が発現される。また、アスペクト比が5以下の場合、表層が擦れた際に微細凹凸構造の凸部が折れ難くなるため、良好な耐擦傷性や反射防止性が発現される。
 なお、本実施形態において「凸部の高さ」とは、図1に示すように、凸部13の先端13aから隣接する凹部14の底部14aまでの垂直方向の距離のことである。また、微細凹凸構造の凸部13の形状は、特に限定されないが、連続的に屈折率を増大させて低反射率と低波長依存性を両立させた反射防止機能を得るために、図1に示すような略円錐形状や図2に示すような釣鐘形状などのような、膜面と平行な面で切断した時の断面積の占有率が基材側に向かって連続的に増大するような構造であることが好ましい。また、より微細な凸部が複数突起合一して上記の微細凹凸構造を形成していてもよい。
 積層体の表面に微細凹凸構造を形成する方法としては、特に限定されるものではないが、例えば、微細凹凸構造が形成されたスタンパを用いて、射出成形若しくはプレス成形する方法が挙げられる。また、微細凹凸構造の形成方法としては、例えば、微細凹凸構造が形成されたスタンパと透明基材の間に活性エネルギー線硬化性樹脂組成物を充填し、活性エネルギー線照射にて活性エネルギー線硬化性樹脂組成物を硬化してスタンパの凹凸形状を転写した後、離型する方法も挙げられる。また、微細凹凸構造の形成方法としては、微細凹凸構造が形成されたスタンパと透明基材の間に活性エネルギー線硬化性樹脂組成物を充填し、活性エネルギー線硬化性樹脂組成物にスタンパの凹凸形状を転写した後離型し、その後に活性エネルギー線を照射して活性エネルギー線硬化性樹脂組成物を硬化させる方法も挙げられる。これらの中でも、凹凸構造の転写性、表面組成の自由度を考慮すると、微細凹凸構造が形成されたスタンパと透明基材の間に活性エネルギー線硬化性樹脂組成物を充填し、活性エネルギー線照射にて活性エネルギー線硬化性樹脂組成物を硬化してスタンパの凹凸形状を転写した後、離型する方法が好ましく用いられる。
 基材は、特に限定されないが、透明基材であることが好ましい。透明基材としては、光を透過するものであれば特に限定されない。透明基材の材料としては、例えば、メチルメタクリレート(共)重合体、ポリカーボネート、スチレン(共)重合体、メチルメタクリレート-スチレン共重合体、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、ポリエステル、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリウレタン、ガラス、水晶などが挙げられる。透明基材は、射出成形、押し出し成形、キャスト成形のいずれの方法によって作製してもよい。
 透明基材の形状は、特に制限されるものではなく、用途に応じて適宜選択できるが、例えば、用途が反射防止膜である場合には、シート状またはフィルム状であることが好ましい。また、活性エネルギー線硬化性樹脂組成物との密着性や、帯電防止性、耐擦傷性、耐候性等の改良のために、透明基材の表面には例えば各種コーティングやコロナ放電処理が施されていてもよい。
 微細凹凸構造が形成されたスタンパを作製する方法は、特に限定されるものではないが、例えば、電子ビームリソグラフィー法やレーザー光干渉法などが挙げられる。例えば、適当な支持基板上に適当なフォトレジスト膜を塗布した後に、紫外線レーザー、電子線、X線等の光を用いて露光し、続いて現像することによって微細凹凸構造を有する型を形成する。この型をそのままスタンパとして使用することもできる。また、フォトレジスト層を介して支持基板をドライエッチングにより選択的にエッチングした後、フォトレジスト層を除去することで支持基板そのものに直接微細凹凸構造を形成することも可能である。
 また、陽極酸化ポーラスアルミナをスタンパとして利用することもできる。例えば、特開2005-156695号に開示されているように、アルミニウムをシュウ酸、硫酸、リン酸等の電解液中で所定の電圧にて陽極酸化する方法によって得られるアルミナナノホールアレイをスタンパとして利用してもよい。この方法によれば、高純度アルミニウムを定電圧で長時間陽極酸化した後、一旦酸化皮膜を除去し、再び陽極酸化することで非常に高規則性を有する細孔を自己組織化的に形成できる。さらに、再び陽極酸化する際に陽極酸化処理と孔径拡大処理を組み合わせることで、略円錐状以外にも、凹部が釣鐘形状の微細凹凸構造を形成することも可能である。また、微細凹凸構造を有する原型から電鋳法等で複製型を作製し、これをスタンパとして使用してもよい。
 このようにして作製されるスタンパの形状は、特に限定されるものではないが、平板状でもロール状でもよいが、連続的に微細凹凸構造を活性エネルギー線硬化性樹脂組成物に転写できる観点から、ロール状が好ましい。
 本実施形態における活性エネルギー線硬化性樹脂組成物は、分子中にラジカル重合性および/またはカチオン重合性結合を有する単量体、低重合度の重合体、反応性重合体を適宜含むことができ、後述する重合開始剤によって硬化されるものである。また、活性エネルギー線硬化性樹脂組成物は、非反応性重合体を含んでもよい。
 活性エネルギー線硬化性樹脂組成物を硬化させる際に使用する活性エネルギー線としては、具体的には、例えば、可視光線、紫外線、電子線、プラズマ、赤外線などが挙げられる。
 活性エネルギー線の光照射は、例えば、高圧水銀ランプを用いて行われる。積算光照射エネルギー量は、活性エネルギー線硬化性樹脂組成物の硬化が進行するエネルギー量であれば特に限定はされないが、例えば100~5000mJ/cm2が好ましく、200~4000mJ/cm2がより好ましく、400~3200mJ/cm2がさらに好ましい。活性エネルギー線の積算光照射量は、活性エネルギー線硬化性樹脂組成物の硬化度に影響する場合があるため、適宜選択して光を照射することが望ましい。
 活性エネルギー線硬化性樹脂組成物の硬化(光硬化)に使用される重合開始剤(光重合開始剤)としては、特に限定されないが、例えば、2,2-ジエトキシアセトキシフェノン、p-ジメチルアセトフェノン、1-ヒドロキシジメチルフェニルケトン、1-ヒドロキシシクロへキシルフェニルケトン、2-メチル-4-メチルチオ-2-モルフォリノプロピオフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン等のアセトフェノン類;ベンゾインメチルエーテル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;ベンゾフェノン、2,4-ジクロロベンゾフェノン、4,4-ジクロロベンゾフェノン、p-クロロベンゾフェノン等のベンゾフェノン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド等のホスフィンオキシド類;ケタール類;アントラキノン類;チオキサントン類;アゾ化合物;過酸化物;2,3-ジアルキルジオン化合物;ジスルフィド化合物;フルオロアミン化合物;芳香族スルホニウム類等が挙げられる。これらの光重合開始剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 また、活性エネルギー線硬化性樹脂組成物は、光硬化と熱硬化を併用して硬化させてもよい。熱硬化を併用する場合に添加する熱重合開始剤は特に限定されないが、例えば、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、ジメチル2,2’-アゾビス(2-メチルプロピオネート)などのアゾ化合物;過酸化ベンゾイル、t-ヘキシルパーオキシネオデカノエート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、t-ブチルパーオキシネオデカノエート、2,4-ジクロロベンゾイルパーオキサイド、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、クミルパーオキシオクタエート、サクシン酸パーオキサイド、アセチルパーオキサイド、t-ブチルパーオキシイソブチレート、1,1’-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1’-ビス(t-ブチルパーオキシ)シクロヘキサン、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイドなどの過酸化物などが挙げられる。これら熱重合開始剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 本実施形態の積層体は、例えば、反射防止膜(反射防止フィルムを含む)や反射防止体などの反射防止物品、画像表示装置、タッチパネル、光導波路、レリーフホログラム、太陽電池、レンズ、偏光分離素子、有機エレクトロルミネッセンスの光取り出し率の向上部材などの光学物品、細胞培養シートなどの用途に用いることができる。本実施形態の積層体は、特に反射防止膜(反射防止フィルムを含む)や反射防止体などの反射防止物品としての用途に適している。
 本実施形態の積層体は、容易に汚れを除去できる防汚性と耐擦傷性に優れた表層を備える積層体であるため、本実施形態の積層体を反射防止物品、画像表示装置、タッチパネル等の最表面に設置すれば、使用時に付着する皮脂等の汚れが付き難くかつ落ちやすく、良好な反射防止性能を発揮することができる。さらに、表面に水やアルコールを用いなくても容易に汚れを除去できるため、実用面においても優れた物品が得られる。
 反射防止物品が膜形状である場合には、例えば、液晶表示装置、プラズマディスプレイパネル、エレクトロルミネッセンスディスプレイ、陰極管表示装置のような画像表示装置、レンズ、ショーウィンドー、自動車メーターカバー、眼鏡レンズ等の対象物の表面に貼り付けて使用される。
 反射防止物品が立体形状を有する場合には、予め用途に応じた形状の透明基材を用いて積層体を製造し、これを上記対象物の表面を構成する部材として使用することもできる。
 また、対象物が画像表示装置である場合には、その表面に限らず、その前面板に対して反射防止物品を貼り付けてもよいし、前面板そのものを本実施形態の積層体から構成することもできる。
 (実施形態2)
 上述のように、表層は活性エネルギー線硬化性樹脂組成物の硬化物から構成されることができ、本実施形態の積層体において、活性エネルギー線硬化性樹脂組成物がSH基を有する化合物(D)を含むことが好ましい。SH基とはチオール基、水硫基、メルカプト基、又はスルフヒドリル基のことである。SH基を有する化合物が活性エネルギー線硬化性樹脂組成物中に含まれることにより、硫黄原子と硫黄原子または炭素原子との化学結合が得られる。そうすると、硬化物の架橋密度を維持したまま弾性率を下げることができるため、突起の形状を維持しつつ突起にフレキシビリティを付与でき、凹部に溜まった汚れを除去できるようになるため防汚性が向上する。
 本実施形態の積層体において、活性エネルギー線硬化性脂組成物は、2官能以上の多官能(メタ)アクリレート(E)を0~95質量部、上述のシリコーン(メタ)アクリレート(C)を0~75質量部、SH基を有する化合物(D)を1~60質量部含むことが好ましい(但し、重合性成分の合計を100質量部とする。)。なお、2官能以上の多官能(メタ)アクリレート(E)からシリコーン(メタ)アクリレート(C)は除かれる。
 ここで、2官能以上の多官能(メタ)アクリレート(E)とは、アクリロイル基(CH2=CHCO-)及びメタクリロイル基(CH2=C(CH3)CO-)から選ばれる基を分子内に少なくとも2つ以上有する化合物を意味する。
 2官能以上の多官能(メタ)アクリレート(E)としては、エチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、イソシアヌール酸エチレンオキサイド変性ジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル)プロパン、1,2-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)エタン、1,4-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)ブタン、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAのプロピレンオキサイド付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジビニルベンゼン、メチレンビスアクリルアミド等の2官能性モノマー、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシド変性トリアクリレート、トリメチロールプロパンエチレンオキシド変性トリアクリレート、イソシアヌール酸エチレンオキサイド変性トリ(メタ)アクリレート、等の3官能モノマー、コハク酸/トリメチロールエタン/アクリル酸の縮合反応混合物、ジペンタエリストールヘキサ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等の多官能のモノマー、2官能以上のウレタンアクリレート、2官能以上のポリエステルアクリレートなどが挙げられる。これらは、1種を単独で用いても良く、2種類以上を組み合わせて使用しても良い。
 2官能以上の多官能(メタ)アクリレート(E)は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、0~95質量部であることが好ましく、25~90質量部であることがより好ましく、40~90質量部であることが特に好ましい。2官能以上の多官能(メタ)アクリレート(E)の含有量が0質量部以上95質量部以下であれば、弾性率の過度の低下を抑制し、突起の形状を維持することができる。また、2官能以上の多官能(メタ)アクリレート(E)を組成物中に添加することにより、つまりその含有量が0質量部超であれば、弾性率を抑制し易くなり、突起の形状を維持し易くなる。また、2官能以上の多官能(メタ)アクリレート(E)の含有量が40質量部以上である場合、弾性率の低下を抑制し、突起の合一をより効果的に防ぐことができる。また、2官能以上の多官能(メタ)アクリレート(E)の含有量が95質量部以下である場合、弾性率が低下し、汚れをより効果的に除去することができる。また、含有量が90質量部以下の場合、弾性率が十分に低下し、凹部に溜まった汚れをより効果的に除去できる。その結果、凹部から汚れを押し出し易くなり、積層体に十分な防汚性を付与することができる。
 本実施形態において、シリコーン(メタ)アクリレート(C)は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、0~75質量部であることが好ましく、5~70質量部であることがより好ましい。シリコーン(メタ)アクリレート(C)の含有量が0質量部以上75質量部以下であれば、撥水性が付与され、防汚性がより向上する。また、シリコーン(メタ)アクリレート(C)を組成物中に添加することにより、つまりその含有量が0質量部超であれば、撥水性がより効果的に付与され、防汚性が向上する。また、シリコーン(メタ)アクリレート(C)の含有量が5質量部以上の場合、表層の表面エネルギーが下がり、水に対する接触角が130°以上となるため、防汚性がより一層向上する。また、シリコーン(メタ)アクリレート(C)の含有量が75質量部以下である場合、その他の成分との相溶性が良くなるため、透明性が向上する。また、シリコーン(メタ)アクリレート(C)の含有量が70質量部以下である場合、活性エネルギー線硬化性樹脂組成物の粘度が抑制され、ハンドリングが向上する。
 SH基を含有する化合物(D)は、SH基を含有する化合物であれば、特に限定されないが、表層の架橋密度を上げ、強度を維持するために、SH基を2つ以上含有する化合物であることが好ましく、活性エネルギー線硬化性樹脂組成物の貯蔵安定性の観点から、SH基は2級チオールであることがより好ましい。
 SH基を二つ以上有する化合物としては、例えば、1,2-エタンジチオール、1,2-プロパンジチオール、1,3-プロパンジチオール、1,4-ブタンジチオール、1,6-ヘキサンジチオール、1,7-ヘプタンジチオール、1,8-オクタンジチオール、1,9-ノナンジチオール、1,10-デカンジチオール、1,12-ドデカンジチオール、2,2-ジメチル-1,3-プロパンジチオール、3-メチル-1,5-ペンタンジチオール、2-メチル-1,8-オクタンジチオール、1,4-シクロヘキサンジチオール、1,4-ビス(メルカプトメチル)シクロヘキサン、1,1-シクロヘキサンジチオール、1,2-シクロヘキサンジチオール、ビシクロ〔2,2,1〕ヘプタ-exo-cis-2,3-ジチオール、1,1-ビス(メルカプトメチル)シクロヘキサン、ビス(2-メルカプトエチル)エーテル、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)等のジチオール化合物;1,1,1-トリス(メルカプトメチル)エタン、2-エチル-2-メルカプトメチル-1,3-プロパンジチオール、1,2,3-プロパントリチオール、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス((メルカプトプロピオニルオキシ)-エチル)イソシアヌレート等のトリチオール化合物;ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブタネート)、ジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等のSH基を4個以上有するチオール化合物が挙げられる。
 2級チオールを有する化合物としては、カレンズMT PE1、カレンズMT NR1、カレンズMT BD1(商品名 昭和電工社製)が挙げられる。
 このようなSH基を含有する化合物(D)は、具体的には、昭和電工社製の「カレンズMT PE1」、「カレンズMT BD1」、「カレンズMT NR1」(いずれも商品名)が好適に挙げられる。
 SH基を含有する化合物(D)は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、1~60質量部であることが好ましく、1~15質量部であることがより好ましい。SH基を含有する化合物(D)の含有量が1質量部以上であれば、架橋密度を維持したまま表層の弾性率を下げることができるため、凹部から汚れを押し出し易くなり、結果として、積層体に十分な防汚性を付与することができ、かつ、凸部の形状の復元力を維持することができる。また、SH基を含有する化合物(D)の含有量が60質量部以下であれば、活性エネルギー線硬化性樹脂組成物の貯蔵安定性を維持することができる。また、SH基を含有する化合物(D)の含有量が15質量部以下である場合、表層の弾性率の低下をより効果的に抑制し、凸部の合一を防ぐことができる。
 活性エネルギー線硬化性樹脂組成物には、その他にも、単官能単量体が含まれていても良い。単官能単量体は、2官能以上の多官能(メタ)アクリレート(E)およびシリコーン(メタ)アクリレート(C)との相溶性を考慮して選択されることが望ましく、このような観点から、単官能単量体としては、例えば、エステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類、ヒドロキシアルキル(メタ)アクリレートなどのエステル基に水酸基を有する単官能(メタ)アクリレート類、単官能アクリルアミド類、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェート若しくはメタクリロイルオキシエチルトリメチルアンモニウムメチルサルフェートなどのカチオン性単量体類などの親水性単官能単量体が好ましく挙げられる。単官能単量体としては、具体的には、単官能(メタ)アクリレート類の「M-20G」、「M-90G」、「M-230G」(新中村化学社製、いずれも商品名)等を用いることができる。また、防汚性向上の観点から、アルキルモノ(メタ)アクリレート、シリコーン(メタ)アクリレート、フッ化アルキル(メタ)アクリレートが好適に用いられる。このような単官能単量体としては、具体的には、日油社製の「ブレンマーLA」、「ブレンマーCA」、「ブレンマーSA」(いずれも商品名)、信越化学工業社製の「X-24-8201」、「X-22-174DX」(いずれも商品名)、エクスフロアー・リサーチ社製の「C10GACRY」(商品名)等を用いることができる。
 (実施形態3)
 表層は、上述の活性エネルギー線硬化性樹脂組成物の硬化物からなる層と、該活性エネルギー線硬化性樹脂組成物の硬化物からなる層の上に形成された、最表面層としての表面処理層とから構成されることもできる。
 図3は、本実施形態に係る積層体110の構成の一例を示す模式的断面図である。図3において、透明性を有する基材111の上に活性エネルギー線硬化性樹脂組成物の硬化物からなる層(以下、硬化物層とも称す)112が形成され、該硬化物層112の上に最表面層として表面処理層113が形成されている。積層体110において、硬化物層112は表面側に微細凹凸構造が形成されており、表面処理層113はその微細凹凸構造に沿って形成されている。表層104は、硬化物層112と表面処理層113とから構成される。微細凹凸構造の形状は、図3に示す形状に限られるものではなく、図4に示すような形状であってもよいし、他の形状であってもよい。
 本実施形態の積層体において、微細凹凸構造領域の水接触角、つまり表面処理層の水接触角が130°以上であることが好ましく、135°以上であることがより好ましい。表面処理層の水接触角が130°以上である場合、十分に表面エネルギーが小さいため汚れを容易に拭き取ることができる。また、表面処理層の水接触角が135°以上である場合、十分に表面エネルギーが小さいため汚れの付着を抑制することができる。表面処理層の水接触角の上限は特に制限されるものではないが、150°以下であることが好ましく、145°以下であることがより好ましい。このような撥水性を示す表面処理層の材料としては、アルキル基、ポリジメチルシロキサン構造又はフッ化アルキル基を有する化合物が好適に用いられる。また、表面処理層の材料は、微細凹凸構造への密着性の観点から、シラン、アルコキシシラン、シラザン、(メタ)アクリレート等の反応性基を有する化合物であることが好ましい。このような化合物としては、具体的には、信越化学工業社製の「KBM」シリーズ、「KBE」シリーズ、「X」シリーズ、ビックケミー・ジャパン社製の「BYK」シリーズ、エボニックデグサジャパン社製「TEGO Rad」シリーズ、フロロテクノロジー社製の「FG」シリーズ、「FS」シリーズ等が好適に挙げられる。
 表面処理層の材料は、ディップ、スプレー、ハケ塗り、スピンコート等の一般的な方法により硬化物上に塗布できる。また、表面処理層と微細凹凸構造を有する硬化物層との密着性を向上させるために、微細凹凸構造領域の前処理を行うことが好ましい。前処理としては、シリカ蒸着やプラズマ等による微細凹凸構造表面への官能基の導入、表面処理層との反応性が良好な化合物を含有するプライマーのコーティング等が挙げられる。表面処理層の厚みは、微細凹凸構造の反射防止性能を維持する観点から、100nm以下であることが好ましい。表面処理層の存在は、角度可変ATR測定において入射角によってスペクトルが変化すること、または、TEMによる断面観察から確認できる。
 (実施形態4)
 以下、本実施形態を詳細に説明する。
 本実施形態に係る積層体は、表面に微細凹凸構造を有する表層を備える積層体であって、前記表層の弾性率が200MPa未満であり、前記表層の水接触角が25°以下である。
 前記表層が活性エネルギー線硬化性樹脂組成物の硬化物を含み、前記活性エネルギー線硬化性樹脂組成物の硬化物が、3官能以上の多官能(メタ)アクリレート5~55質量部と、ポリエチレングリコールジアクリレート(エチレングリコールの平均繰り返し単位が6~40)45~95質量部とを含む重合性成分(但し、重合性成分の合計を100質量部とする)の重合体を含むことが好ましい。本実施形態に係る積層体は、表面に水やアルコールなどを用いなくても容易に汚れを除去でき、防汚性に優れる。
 図1は、本実施形態に係る積層体の一例を示す縦断面図である。図1に示す積層体10は、後述する透明基材11上に、表層12が形成されている。表層12の表面には微細凹凸構造が形成されている。また、表層12は活性エネルギー線硬化性樹脂組成物の硬化物を含む。
 本実施形態に係る微細凹凸構造において、図1における隣り合う凸部13同士の間隔(ピッチ)w1は可視光の波長以下であることが好ましく、100nm以上、300nm以下であることがより好ましく、150nm以上、250nm以下であることがさらに好ましく、170nm以上、230nm以下であることが特に好ましい。特に、前記ピッチが150nm以上の場合には、表層の弾性率が200MPa未満であっても凸部13同士の突起合一をより防ぐことができる。また、特に前記ピッチが250nm以下の場合には、可視光の波長よりも十分に小さいため、可視光の散乱がより抑制され反射防止物品として好適に使用できる。なお、本実施形態において「可視光の波長」とは400nmの波長を意味する。また、隣り合う凸部同士の間隔とは、図1において、凸部の先端13aから、隣接する凸部の先端13aまでの間隔w1を示す。
 本実施形態に係る微細凹凸構造において、図1における凸部13の高さd1は100nm以上であることが好ましく、120nm以上であることがより好ましく、150nm以上であることがさらに好ましく、170nm以上であることが特に好ましい。凸部13の高さd1が100nm以上であることにより、最低反射率が上昇したり、特定波長の反射率が上昇したりすることがなく、積層体を反射防止物品として用いる場合にも、十分な反射防止性が得られる。凸部13の高さd1の上限は特に限定されないが、例えば1μm以下とすることができる。なお、凸部の高さとは、図1において、凸部の先端13aから、隣接する凹部の底部14aまでの垂直距離d1を示す。
 アスペクト比(凸部13の高さd1/隣り合う凸部13同士の間隔w1)は、0.5~5.0であることが好ましく、0.6~2.0であることがより好ましく、0.7~1.5であることがさらに好ましく、0.8~1.2であることが特に好ましい。アスペクト比が0.5より大きい場合には、最低反射率が上昇したり、特定波長の反射率が上昇したりすることがなく、積層体を反射防止物品として用いる場合にも、十分な反射防止性が得られる。また、アスペクト比が5.0より小さい場合には、擦った際にも凸部が折れにくいため、耐擦傷性が向上し、十分な反射防止性を示す。
 なお、隣り合う凸部同士の間隔および凸部の高さは、微細凹凸構造にプラチナを10分間蒸着した後、走査電子顕微鏡(商品名:「JSM-7400F」、日本電子(株)製)を用いて、加速電圧3.00kvの条件で観察することにより、それぞれ10点ずつ測定した平均値である。
 本実施形態に係る表層の弾性率は200MPa未満である。弾性率が200MPa以上であると、表層の微細凹凸構造が硬くなり、凹部に入り込んだ汚れを十分に押し出すことができず、防汚性に劣る。表層の弾性率は、40MPa以上、180MPa以下であることが好ましく、60MPa以上、170MPa以下であることがより好ましく、90MPa以上、160MPa以下であることがさらに好ましく、100MPa以上、150MPa以下であることが特に好ましい。表層の弾性率が40MPa以上であれば微細凹凸構造の凸部の突起合一を防ぐことができる。特に、表層の弾性率が90MPa以上である場合、微細凹凸構造が十分に硬いため凸部の突起合一をより防ぐことができる。また、特に表層の弾性率が150MPa以下である場合、微細凹凸構造が十分に柔らかいため微細凹凸構造を自由に変形することができ、凹部に入り込んだ汚れをより簡便に除去でき、防汚性が良好となる。
 なお、表層の弾性率は、以下の方法により測定した値である。表層の照射面を、「FISCHERSCOPE(R) HM2000」(商品名、フィッシャー社製)を用いて、50mN/10秒の条件で荷重を増加させながら荷重を加え、50mNで60秒間保持した後、荷重増加と同条件で除荷する。その際の65%と95%の荷重がかかった点を用いて、外挿法により弾性率を計算する。または、厚み500μmのテフロンシートをスペーサーとして用い、表層の材料である活性エネルギー線硬化性樹脂組成物を2枚のガラスで挟み込み、積算光照射量3000mJ/cm2のエネルギーで紫外線を照射して活性エネルギー線硬化性樹脂組成物を光硬化させ、厚み500μmの活性エネルギー線硬化性樹脂組成物の硬化物を作製し、該硬化物の照射面について前記同様に測定し弾性率を計算してもよい。
 本実施形態に係る表層の水接触角は25°以下であり、20°以下であることが好ましく、15°以下であることがより好ましく、10°以下であることがさらに好ましい。表層の水接触角が25°以下である場合、積層体の表面が親水化され、特許4689718号に記載されているように付着した汚れを水で浮かせて拭き取ることができる。表層の水接触角は低ければ低いほど好ましく、その下限は特に限定されないが、例えば1°以上とすることができ、3%以上が好ましい。
 なお、表層の水接触角は、自動接触角測定装置(KRUSS社製)を用いて、1μlの水を表層の表面に滴下し、7秒後の接触角をθ/2法にて算出した値である。
 本実施形態に係る積層体は、基材を備えることができる。例えば、図1に示す積層体10のように、表層12に隣接して基材11を備えることができる。
 本実施形態に係る活性エネルギー線硬化性樹脂組成物は、分子内にラジカル重合性および/またはカチオン重合性結合を有する単量体、低重合度の重合体、反応性重合体を適宜含み、後述する重合開始剤によって硬化されるものであることができる。また、本実施形態に係る活性エネルギー線硬化性樹脂組成物は非反応性重合体を含んでもよい。
 本実施形態に係る活性エネルギー線硬化性樹脂組成物は、3官能以上の多官能(メタ)アクリレート5~55質量部と、ポリエチレングリコールジアクリレート(エチレングリコールの平均繰り返し単位が6~40)45~95質量部とを含む重合性成分(但し、重合性成分の合計を100質量部とする)を含むことが好ましい。これにより、表層の弾性率を200MPa未満とすることができる。なお、本明細書において、(メタ)アクリレートとは、アクリレートまたはメタクリレートを示す。また、重合性成分とは、重合性の官能基を有する化合物を示す。
 3官能以上の多官能(メタ)アクリレートとしては、特に限定されないが、4官能以上の多官能(メタ)アクリレートであることが好ましく、5官能以上の多官能(メタ)アクリレートであることがより好ましい。例えば、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート(例えば、カヤラッドDPEA(商品名、日本化薬(株)製))、コハク酸/トリメチロールエタン/アクリル酸のモル比1:2:4の縮合反応混合物、ウレタンアクリレート類(例えば、EBECRYL220、EBECRYL1290、EBECRYL1290K、EBECRYL5129、EBECRYL8210、EBECRYL8301、KRM8200(以上、商品名、ダイセル・サイテック(株)製))、ポリエーテルアクリレート類(例えば、EBECRYL81(商品名、ダイセル・サイテック(株)製))、変性エポキシアクリレート類(例えば、EBECRYL3416(商品名、ダイセル・サイテック(株)製))、ポリエステルアクリレート類(例えば、EBECRYL450、EBECRYL657、EBECRYL800、EBECRYL810、EBECRYL811、EBECRYL812、EBECRYL1830、EBECRYL845、EBECRYL846、EBECRYL1870(以上、商品名、ダイセル・サイテック(株)製))、エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(例えば、カヤラッドDPEA-12(商品名、日本化薬(株)製)、DPEA-18(商品名、第一工業製薬(株)製))などの、前記モノマーにエチレンオキサイドやプロピレンオキサイドを付加したモノマーなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 重合性成分に含まれる3官能以上の多官能(メタ)アクリレートは、重合性成分の合計を100質量部とする場合、5~55質量部であることが好ましく、10~50質量部であることがより好ましく、20~45質量部であることがさらに好ましく、25~40質量部であることが特に好ましい。5質量部未満の場合、表層に微細凹凸構造を転写できる程度の弾性率を付与することができない場合がある。また、55質量部をこえる場合、表層の弾性率を200MPa未満にすることができず、硬くなり汚れを押し出すことができない場合がある。一方、特に25質量部以上である場合、表層に十分な弾性率が付与され、微細凹凸構造の凸部の突起合一をより抑制することができる。また、特に45質量部以下である場合、凸部の運動性低下がより抑制され、高い防汚性が発現される。
 2官能(メタ)アクリレートであるポリエチレングリコールジアクリレート(エチレングリコールの平均繰り返し単位が6~40)としては、アロニックスM-260(東亞合成(株)製、エチレングリコールの平均繰り返し単位:13)、A-400(エチレングリコールの平均繰り返し単位:9)、A-600(エチレングリコールの平均繰り返し単位:14)、A-1000(エチレングリコールの平均繰り返し単位:23)(以上、商品名、新中村化学工業(株)製)などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。重合体がポリエチレングリコールジアクリレート単位を含むことで、表層に含まれる硬化物の分子運動性を高め、凹部に入り込んだ汚れを押し出すことができる。
 ポリエチレングリコールジアクリレート内に存在するエチレングリコールの平均繰り返し単位は6~40であることが好ましく、9~30であることがより好ましく、10~25であることがさらに好ましく、12~20であることが特に好ましい。エチレングリコールの平均繰り返し単位が6未満の場合、表層の水接触角を25°以下とすることができず、十分な防汚性が得られない場合がある。一方、エチレングリコールの平均繰り返し単位が40をこえる場合、3官能以上の多官能(メタ)アクリレートとの相溶性が不十分である場合がある。
 重合性成分に含まれる前記ポリエチレングリコールジアクリレートは、重合性成分の合計を100質量部とする場合、45~95質量部であることが好ましく、50~85質量部であることがより好ましく、53~80質量部であることがさらに好ましく、55~75質量部であることが特に好ましい。45質量部未満の場合、表層の弾性率を200MPa未満にすることができない場合がある。また、95質量部をこえる場合、表層に微細凹凸構造を転写できる程度の弾性率を保持することができない場合がある。一方、特に55質量部以上の場合、凸部に十分な運動性が付与され、十分な防汚性が発現される。また、特に75質量部以下の場合、弾性率低下がより抑制され、凸部の突起合一をより抑制することができる。
 重合性成分には、さらに単官能単量体が含まれていても良い。単官能単量体としては、前記3官能以上の多官能(メタ)アクリレートおよび前記ポリエチレングリコールジアクリレートと相溶するものであれば特に限定されない。単官能単量体としては、例えば、M-20G、M-90G、M-230G(以上、商品名、新中村化学工業(株)製)などの、エステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類、ヒドロキシアルキル(メタ)アクリレートなどのエステル基に水酸基を有する単官能(メタ)アクリレート類、単官能アクリルアミド類、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェート、メタクリロイルオキシエチルトリメチルアンモニウムメチルサルフェートなどのカチオン性単量体類などの親水性単官能単量体が好ましい。これらは一種のみを用いてもよく、二種以上を併用してもよい。
 重合性成分に含まれる前記単官能単量体は、重合性成分の合計を100質量部とする場合、0~20質量部であることが好ましく、5~15質量部であることがより好ましい。重合体に単官能単量体単位を導入することにより、基材と表層との密着性が向上する。前記単官能単量体の含有量を20質量部以下とすることにより、重合体中の前記3官能以上の多官能(メタ)アクリレート単位および前記ポリエチレングリコールジアクリレート単位の含有量が不足せず、十分な防汚性が発現される。
 また、前記単官能単量体の1種または2種以上を(共)重合した低重合度の重合体を、活性エネルギー線硬化性樹脂組成物に配合してもよい。重合性成分の合計を100質量部とする場合、該低重合度の重合体を、活性エネルギー線硬化性樹脂組成物中に例えば0~35質量部配合することができる。該低重合度の重合体としては、例えば、エステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類と、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェートとの40/60共重合オリゴマー(商品名:「MGポリマー」、MRCユニテック(株)製)などが挙げられる。
 また、活性エネルギー線硬化性樹脂組成物は、上述した各種単量体や低重合度の重合体以外に帯電防止剤、離型剤、紫外線吸収剤、コロイダルシリカなどの微粒子を含んでも良い。さらに、活性エネルギー線硬化性樹脂組成物は、アクリロイルモルホリンやビニルピロリドンなどの粘度調整剤、基材への密着性を向上させるアクリロイルイソシアネート類などの密着性向上剤などを含んでも良い。
 活性エネルギー線硬化性樹脂組成物に離型剤が含まれると、本実施形態に係る積層体を連続して製造する際に良好な離型性を維持することができる。特に、陽極酸化アルミナのモールドを用いた場合には、(ポリ)オキシアルキレンアルキルリン酸化合物とアルミナとが相互作用することで、離型剤がモールドの表面に吸着しやすい。
 (ポリ)オキシアルキレンアルキルリン酸化合物の市販品としては、例えば、城北化学工業株式会社製の「JP-506H」、アクセル社製の「モールドウイズINT-1856」、日光ケミカルズ株式会社製の「TDP-10」、「TDP-8」、「TDP-6」、「TDP-2」、「DDP-10」、「DDP-8」、「DDP-6」、「DDP-4」、「DDP-2」、「TLP-4」、「TCP-5」、「DLP-10」(以上、商品名)などが挙げられる。活性エネルギー線硬化性樹脂組成物に含まれる離型剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 活性エネルギー線硬化性樹脂組成物に含まれる離型剤の割合は、重合性成分100質量部に対して、0.01~2.0質量部が好ましく、0.05~0.2質量部がより好ましい。離型剤の割合が0.01質量部以上であれば、微細凹凸構造を表面に有する物品のモールドからの離型性が良好である。一方、離型剤の割合が2.0質量%以下であれば、活性エネルギー線硬化性樹脂組成物の硬化物と基材との密着性が良好であり、また、硬化物の硬さが適当であり、微細凹凸構造を十分維持できる。
 活性エネルギー線硬化性樹脂組成物を硬化させる際に使用する活性エネルギー線としては、具体的には可視光線、紫外線、電子線、プラズマ、赤外線などの熱線などが挙げられる。
 また、活性エネルギー線硬化性樹脂組成物は、光硬化と熱硬化とを併用して硬化させてもよい。
 このように、本実施形態に係る積層体は、表面に微細凹凸構造を有する活性エネルギー線硬化性樹脂組成物の硬化物を含む表層を備え、該表層の弾性率は200MPa未満であり、該表層は特定の樹脂組成からなるため、防汚性に優れる。また、微細凹凸構造の隣り合う凸部同士の間隔が可視光の波長(400nm)以下である場合、より反射防止性に優れるため、本実施形態に係る積層体は特に反射防止物品に好適に使用できる。また、凸部の高さが100nm以上である場合、反射防止性により優れる。
 さらに、本実施形態に係る反射防止物品、映像装置およびタッチパネルは、本実施形態に係る積層体を備えるため、反射防止性能と防汚性に優れる。特に、本実施形態に係る積層体を反射防止物品、映像装置およびタッチパネルの最表面に設置すれば、使用時に付着する皮脂等の汚れが付き難く落ちやすいため、良好な反射防止性能を発揮することができる。
 (実施形態5)
 以下、本実施形態について詳細に説明する。
 図1は、本実施形態に係る積層体10の構成の一例を示す模式的断面図である。図1において、透明性を有する基材11の表面に活性エネルギー線硬化性樹脂組成物の硬化物からなる表層12が形成されている。積層体10において、表層12の表面に微細凹凸構造が形成されている。
 本実施形態の積層体において、微細凹凸構造が形成された部分の表層の水接触角は130°以上であり、135°以上であることが好ましい。表層の水接触角が130°以上である場合、十分に表面エネルギーが小さいため汚れを容易に拭き取ることができる。また、表層の水接触角がさらに135°以上である場合、十分に表面エネルギーが小さいため汚れの付着を抑制することができる。表層の水接触角の上限は特に制限されるものではないが、150°以下であることが好ましく、145°以下であることがより好ましい。
 本実施形態の積層体において、微細凹凸構造の表面の弾性率、つまり表層の弾性率は、200MPa未満であり、50~100MPaであることが好ましい。表層の弾性率が200MPa未満であると、微細凹凸構造が柔らかいため凹部に入り込んだ汚れを押し出すことができる。また、表層の弾性率が50MPa以上であると、微細凹凸構造が十分に硬いため凸部の突起合一を効果的に防ぐことができる。表層の弾性率が100MPa以下であると、微細凹凸構造が十分に柔らかいため、微細凹凸構造を自由に変形することができ、凹部に入り込んだ汚れを容易に除去できる。
 本実施形態の積層体において、表層は、活性エネルギー線硬化性樹脂組成物の硬化物から構成される。また、活性エネルギー線硬化性樹脂組成物は、3官能以上の多官能(メタ)アクリレート(A)を1~55質量部、2官能の(メタ)アクリレート(B)を10~95質量部、シリコーン(メタ)アクリレート(C)を3~85質量部含むことが好ましい。なお、3官能以上の多官能(メタ)アクリレート(A)及び2官能の(メタ)アクリレート(B)からシリコン(メタ)アクリレート(C)は除かれる。
 ここで、3官能以上の多官能(メタ)アクリレートとは、アクリロイル基(CH2=CHCO-)及びメタクリロイル基(CH2=C(CH3)CO-)から選ばれる基を分子内に少なくとも3つ以上有する化合物を意味する。また、2官能の(メタ)アクリレートとは、アクリロイル基(CH2=CHCO-)及びメタクリロイル基(CH2=C(CH3)CO-)から選ばれる基を分子内に2つ有する化合物を意味する。
 3官能以上の多官能(メタ)アクリレート(A)は、4官能以上であることが好ましく、5官能以上であることがより好ましい。3官能以上の多官能(メタ)アクリレート(A)としては、例えば、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、コハク酸/トリメチロールエタン/アクリル酸のモル比1:2:4の縮合反応物、ウレタンアクリレート類、ポリエーテルアクリレート類、変性エポキシアクリレート類、ポリエステルアクリレート類等が挙げられる。ウレタンアクリレート類としては、例えば、ダイセル・サイテック社製の「EBECRYL220」、「EBECRYL1290」、「EBECRYL1290K」、「EBECRYL5129」、「EBECRYL8210」、「EBECRYL8301」、「KRM8200」が挙げられる。ポリエーテルアクリレート類としては、例えば、ダイセル・サイテック社製の「EBECRYL81」が挙げられる。変性エポキシアクリレート類としては、ダイセル・サイテック社製の「EBECRYL3416」が挙げられる。ポリエステルアクリレート類としては、ダイセル・サイテック社製の「EBECRYL450」、「EBECRYL657」、「EBECRYL800」、「EBECRYL810」、「EBECRYL811」、「EBECRYL812」、「EBECRYL1830」、「EBECRYL845」、「EBECRYL846」、「EBECRYL1870」が挙げられる。また、3官能以上の多官能(メタ)アクリレート(A)としては、他にも、例えば、前記モノマーにエチレンオキサイドやプロピレンオキサイドを付加したモノマーが挙げられる。これらの多官能(メタ)アクリレート(A)は、単独で用いても、2種以上を併用してもよい。
 3官能以上の多官能(メタ)アクリレート(A)は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、1~55質量部であることが好ましく、11~30質量部であることがより好ましい。3官能以上の多官能(メタ)アクリレート(A)の含有量を1質量部以上とすることで、表層に微細凹凸構造を転写できる程度の弾性率を付与することができる。また、3官能以上の多官能(メタ)アクリレート(A)の含有量を55質量部以下とすることで、表層の弾性率の増加を抑制することができる。その結果、凹部から汚れを押し出し易くなり、積層体に十分な防汚性を付与することができる。また、11質量部以上とすることで、表層に良好な弾性率を付与することができ、微細凹凸構造における凸部の突起合一を抑制することができる。また、30質量部以下とすることで、凸部の運動性の低下が抑制され、水やアルコールを用いなくても容易に汚れを除去できる防汚性が効果的に発現される。なお、本明細書において、突起若しくは凸部の突起合一とは、隣接する突起や凸部が合わさって一つに形成されることを言う。
 2官能の(メタ)アクリレート(B)としては、ポリエチレングリコールを有する2官能アクリレート類、ポリプロピレングリコールを有する2官能アクリレート類、ポリブチレングリコールを有する2官能アクリレートなどのポリアルキレングリコールを有する2官能アクリレートが好ましい。ポリエチレングリコールを有する2官能アクリレート類の具体例としては、アロニックスM-240、アロニックスM-260(東亞合成社製)、NKエステルAT-20E、NKエステルATM-35E(新中村化学社製)などが挙げられる。ポリプロピレングリコールを有する2官能アクリレート類の具体例としては、APG-400、APG-700(新中村化学社製)などが挙げられる。ポリブチレングリコールを有する2官能アクリレートの具体例としては、A-PTMG-650(新中村化学社製)などが挙げられる。2官能の(メタ)アクリレート(B)として、ポリアルキレングリコールを有する2官能アクリレートを用いることで、表層の弾性率が抑制され、凹部から汚れを押し出しやすくなり、効果的に防汚性が発現される。ポリアルキレングリコールを有する2官能アクリレートの中でも、さらに良好な防汚性が得られるという点から、ポリエチレングリコールジアクリレートが好適に用いられる。2官能の(メタ)アクリレート(B)としてポリエチレングリコールジアクリレートを用いることで、表層の樹脂の分子運動性が向上し、凹部に入り込んだ汚れをより押し出しやくなり、良好な防汚性が発現される。
 ポリエチレングリコールジアクリレートの一分子内に存在するポリエチレングリコール鎖の平均繰り返し単位の合計は6~40であることが好ましく、9~30であることがより好ましく、12~20であることがさらに好ましい。ポリエチレングリコール鎖の平均繰り返し単位が6以上であれば分子の運動性が保たれ、良好な防汚性が発現される。ポリエチレングリコール鎖の平均繰り返し単位が40以下であれば、3官能以上の多官能(メタ)アクリレート(A)との相溶性が良好となる。また、ポリアルキレングリコールを有する2官能アクリレートの中でも、相溶性の点から、ポリプロピレングリコールジアクリレート、ポリブチレングリコールジアクリレートも好適に用いられる。2官能の(メタ)アクリレート(B)としてポリプロピレングリコールジアクリレート又はポリブチレングリコールジアクリレートを用いることで、親水性が低いシリコーンジ(メタ)アクリレート等のシリコーン(メタ)アクリレート(C)との相溶性が向上し、透明な活性エネルギー線硬化性樹脂組成物を得ることができる。これらの2官能の(メタ)アクリレート(B)は、単独で用いても、2種以上を併用してもよい。また、防汚性と相溶性を両立する点から、ポリエチレングリコールとポリプロピレングリコールジアクリレート及び/又はポリブチレングリコールジアクリレートとを併用するこが好ましい。
 2官能の(メタ)アクリレート(B)は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、10~95質量部であることが好ましく、20~70質量部であることがより好ましい。2官能の(メタ)アクリレート(B)の含有量を10質量部以上とすることにより、表層の弾性率の増加が抑制され、凹部から汚れを押し出し易くなり、十分な防汚性が発現される。2官能の(メタ)アクリレート(B)の含有量を95質量部以下とすることにより、表層に微細凹凸構造を転写できる程度の弾性率を保持することができる。また、20質量部以上とすることにより、凸部に運動性を付与することができ、効果的に防汚性が発現される。また、70質量部以下とすることにより、弾性率の低下が抑制され、凸部の突起合一を抑制することができる。
 シリコーン(メタ)アクリレート(C)は、オルガノシロキサン構造を有する化合物の側鎖及び/又は末端にアクリロイル基(CH2=CHCO-)及びメタクリロイル基(CH2=C(CH3)CO-)から選ばれる基を少なくとも一つ以上有する化合物であれば特に限定されない。シリコーン(メタ)アクリレート(C)は、3官能以上の多官能(メタ)アクリレート(A)と2官能の(メタ)アクリレート(C)との相溶性の観点から選ばれることが望ましく、シリコーン(メタ)アクリレート(C)としては、(A)及び(B)との相溶性に寄与する相溶性セグメントを有する化合物を用いることが好ましい。相溶性セグメントとしては、例えば、ポリアルキレンオキサイド構造、ポリエステル構造及びポリアミド構造などが挙げられる。これら相溶性セグメントはシリコーン(メタ)アクリレート(C)中に単独で含まれていてもよく、また2種以上が含まれていても良い。また、シリコーン(メタ)アクリレート(C)はハンドリングの面から希釈されて用いられても良い。希釈剤としては硬化物からのブリードアウトなどの面から反応性を有するものが好ましい。また、3官能以上の多官能(メタ)アクリレート(A)又は2官能の(メタ)アクリレート(B)をシリコーン(メタ)アクリレート(C)に混ぜることにより、シリコーン(メタ)アクリレート(C)のハンドリングを向上することもできる。
 このようなシリコーン(メタ)アクリレート(C)としては、具体的には、例えば、チッソ社製のサイラプレーンシリーズ、信越化学工業社製のシリコーンジアクリレート「X-22-164」、「X-22-1602」、ビックケミー・ジャパン社製の「BYK-3500」、「BYK-3570」、エボニックデグサジャパン社製TEGO Radシリーズが好適に挙げられる。これらのシリコーン(メタ)アクリレート(C)は単独で用いても、2種以上を併用してもよい。
 シリコーン(メタ)アクリレート(C)は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、3~85質量部であることが好ましく、5~70質量部であることがより好ましく、45~70質量部であることがさらに好ましく、45~65質量部であることが特に好ましい。シリコーン(メタ)アクリレート(C)の含有量を3質量部以上とすることにより、微細凹凸構造を有する表層の水接触角が130°以上となり易く、積層体に防汚性が付与される。また、シリコーン(メタ)アクリレート(C)の含有量を85質量部以下とすることにより、表層に微細凹凸構造を転写できる程度の弾性率を付与することができる。また、5質量部以上とすることにより、表層の水接触角が135°以上となり易く、積層体の防汚性が向上する。また、70質量部以下とすることにより、活性エネルギー線硬化性樹脂組成物の粘度が抑制され、ハンドリングが向上する。また、45質量部以上とすることにより、活性エネルギー線硬化性樹脂組成物中の成分、特に(A)及び(B)に対する相溶性が良好となり、かつ、表層の撥水性と突起の柔軟性が向上するため、優れた防汚性が発現される。また、65質量部以下とすることにより、表層の弾性率の低下を抑制し、微細凹凸構造の凸部の突起合一を抑制することができる。
 活性エネルギー線硬化性樹脂組成物には、その他にも、単官能単量体が含まれていても良い。単官能単量体は、3官能以上の多官能(メタ)アクリレート(A)および2官能の(メタ)アクリレート(B)との相溶性を考慮して選択されることが望ましく、このような観点から、例えば、エステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類、ヒドロキシアルキル(メタ)アクリレートなどのエステル基に水酸基を有する単官能(メタ)アクリレート類、単官能アクリルアミド類、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェート若しくはメタクリロイルオキシエチルトリメチルアンモニウムメチルサルフェートなどのカチオン性単量体類などの親水性単官能単量体が好ましく挙げられる。単官能単量体としては、具体的には、単官能(メタ)アクリレート類の「M-20G」、「M-90G」、「M-230G」(新中村化学社製)等を用いることができる。
 また、活性エネルギー線硬化性樹脂組成物には、アクリロイルモルホリンやビニルピロリドンなどの粘度調整剤や、透明基材への密着性を向上させるアクリロイルイソシアネート類などの密着性向上剤なども添加することができる。
 活性エネルギー線硬化性樹脂組成物中の単官能単量体の含有量は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、例えば、0.1~20質量部であることが好ましく、5~15質量部であることがより好ましい。単官能単量体を含有させることにより、基材と表層(活性エネルギー線硬化樹脂)との密着性が向上する。単官能単量体の含有量を20質量部以下とすることにより、3官能以上の多官能(メタ)アクリレート(A)及び2官能の(メタ)アクリレート(B)の含有量を調整して、防汚性を十分に発現させ易くなる。単官能単量体は、1種を単独でまたは2種以上を混合して用いてもよい。
 また、活性エネルギー線硬化性樹脂組成物には、単官能単量体の1種又は2種以上を重合した低重合度の重合体(オリゴマー)を添加してもよい。このような低重合度の重合体としては、具体的には、例えば、エステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類(例えば、「M-230G」、新中村化学社製)や、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェートの40/60共重合オリゴマー(例えば、MRCユニテック社製、「MGポリマー」)などが挙げられる。
 さらに、活性エネルギー線硬化性組成物には、上述した各種単量体や低重合度の重合体以外にも、帯電防止剤、離型剤、紫外線吸収剤、コロイダルシリカなどの微粒子が含まれていてもよい。
 活性エネルギー線硬化性樹脂組成物は離型剤を含んでもよい。活性エネルギー線硬化性樹脂組成物に離型剤が含まれると、積層体を連続して製造する際に良好な離型性を維持することができる。離型剤としては、例えば、(ポリ)オキシアルキレンアルキルリン酸化合物が挙げられる。特に、陽極酸化アルミナのモールドを用いた場合には、(ポリ)オキシアルキレンアルキルリン酸化合物とアルミナとが相互作用することで、離型剤がモールドの表面に吸着しやすい。
 (ポリ)オキシアルキレンアルキルリン酸化合物の市販品としては、例えば、城北化学工業株式会社製の「JP-506H」(商品名)、アクセル社製の「モールドウイズINT-1856」(商品名)、日光ケミカルズ株式会社製の「TDP-10」、「TDP-8」、「TDP-6」、「TDP-2」、「DDP-10」、「DDP-8」、「DDP-6」、「DDP-4」、「DDP-2」、「TLP-4」、「TCP-5」、「DLP-10」(商品名)などが挙げられる。
 活性エネルギー線硬化性樹脂組成物に含まれる離型剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 活性エネルギー線硬化性樹脂組成物に含まれる離型剤の含有量は、重合性成分100質量部に対して、0.01~2.0質量部であることが好ましく、0.05~0.2質量部であることがより好ましい。離型剤の含有量が0.01質量部以上であれば、微細凹凸構造を表面に有する物品のモールドからの離型性が良好である。一方、離型剤の割合が2.0質量部以下であれば、活性エネルギー線硬化性樹脂組成物の硬化物と基材との密着性が良好であり、また、硬化物の硬さが適当であり、微細凹凸構造を十分維持できる。
 本実施形態における活性エネルギー線硬化性樹脂組成物は、分子中にラジカル重合性および/またはカチオン重合性結合を有する単量体、低重合度の重合体、反応性重合体を適宜含むことができ、後述する重合開始剤によって硬化されるものである。また、活性エネルギー線硬化性樹脂組成物は、非反応性重合体を含んでもよい。
 本実施形態の積層体は、容易に汚れを除去できる、防汚性に優れた表層を備える積層体であるため、本実施形態の積層体を反射防止物品、画像表示装置、タッチパネル等の最表面に設置すれば、使用時に付着する皮脂等の汚れが付き難くかつ落ちやすく、良好な反射防止性能を発揮することができる。さらに、表面に水やアルコールを用いなくても容易に汚れを除去できるため、実用面においても優れた物品が得られる。
 (実施形態6)
 以下、本実施形態について詳細に説明する。
 図1は、本実施形態に係る積層体10の構成の一例を示す模式的断面図である。図1において、透明性を有する基材11の表面に活性エネルギー線硬化性樹脂組成物の硬化物からなる表層12が形成され、表層12の表面に表面処理層13を有する。
 本実施形態の積層体において、積層体の表面の弾性率、つまり表面処理層と表層とを含む微細凹凸構造層の弾性率は、2000MPa以下であり、200MPa以下であることが好ましく、50~100MPaであることがより好ましい。微細凹凸構造層の弾性率が2000MPa以下であると、微細凹凸構造が柔らかいため、凹部に入り込んだ汚れを少ない外力で移動させることができる。微細凹凸構造層の弾性率が200MPa以下であると、微細凹凸構造がさらに柔らかいため凹部に入り込んだ汚れをごく少ない外力で押し出すことができる。また、微細凹凸構造層の弾性率が50MPa以上であると、微細凹凸構造の凸部の合一を効果的に防ぐことができる。表層の弾性率が100MPa以下であると、微細凹凸構造が十分に柔らかいため、微細凹凸構造をごく少ない外力で自由に変形することができ、凹部に入り込んだ汚れを容易に除去できる。なお、本明細書において、突起若しくは凸部の合一とは、隣接する突起や凸部が合わさって一つに形成されることを言う。
 本実施形態の積層体において、表層は、活性エネルギー線硬化性樹脂組成物の硬化物から構成される。また、活性エネルギー線硬化性樹脂組成物は、3官能以上の多官能(メタ)アクリレート(A)を25~70質量部、2官能の(メタ)アクリレート(B)を30~75質量部含む(但し、重合性成分の合計を100質量部とする。)。
 ここで、3官能以上の多官能(メタ)アクリレートとは、アクリロイル基(CH2=CHCO-)及びメタクリロイル基(CH2=C(CH3)CO-)から選ばれる基を分子内に少なくとも3つ以上有する化合物を意味する。また、2官能の(メタ)アクリレートとは、アクリロイル基(CH2=CHCO-)及びメタクリロイル基(CH2=C(CH3)CO-)から選ばれる基を分子内に2つ有する化合物を意味する。
 3官能以上の多官能(メタ)アクリレート(A)は、4官能以上であることが好ましく、5官能以上であることがより好ましい。3官能以上の多官能(メタ)アクリレート(A)としては、例えば、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、コハク酸/トリメチロールエタン/(メタ)アクリル酸のモル比1:2:4の縮合反応物、ウレタン(メタ)アクリレート類、ポリエーテル(メタ)アクリレート類、変性エポキシ(メタ)アクリレート類、ポリエステル(メタ)アクリレート類、シリコーン(メタ)アクリレート類等が挙げられる。ウレタン(メタ)アクリレート類としては、例えば、ダイセル・サイテック社製の「EBECRYL220」、「EBECRYL1290」、「EBECRYL1290K」、「EBECRYL5129」、「EBECRYL8210」、「EBECRYL8301」、「KRM8200」が挙げられる。ポリエーテル(メタ)アクリレート類としては、例えば、ダイセル・サイテック社製の「EBECRYL81」が挙げられる。変性エポキシ(メタ)アクリレート類としては、ダイセル・サイテック社製の「EBECRYL3416」が挙げられる。ポリエステル(メタ)アクリレート類としては、ダイセル・サイテック社製の「EBECRYL450」、「EBECRYL657」、「EBECRYL800」、「EBECRYL810」、「EBECRYL811」、「EBECRYL812」、「EBECRYL1830」、「EBECRYL845」、「EBECRYL846」、「EBECRYL1870」が挙げられる。シリコーン(メタ)アクリレート類としては、ビックケミー・ジャパン社製の「BYK-3570」、エボニックデグサジャパン社製TEGO Radシリーズが好適に挙げられる。また、3官能以上の多官能(メタ)アクリレート(A)としては、他にも、例えば、前記モノマーにエチレンオキサイドやプロピレンオキサイドを付加したモノマーが挙げられる。これらの多官能(メタ)アクリレート(A)は、単独で用いても、2種以上を併用してもよい。
 3官能以上の多官能(メタ)アクリレート(A)は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、25~70質量部である。3官能以上の多官能(メタ)アクリレート(A)の含有量を25質量部以上とすることで、表層に微細凹凸構造を転写できる程度の弾性率を付与することができる。また、3官能以上の多官能(メタ)アクリレート(A)の含有量を70質量部以下とすることで、表層の弾性率の増加を抑制することができる。その結果、凹部から汚れを押し出し易くなり、積層体に十分な防汚性を付与することができる。
 2官能の(メタ)アクリレート(B)としては、ポリエチレングリコールを有する2官能アクリレート類、ポリプロピレングリコールを有する2官能アクリレート類、ポリブチレングリコールを有する2官能アクリレートなどのポリアルキレングリコールを有する2官能アクリレートが好ましい。ポリエチレングリコールを有する2官能アクリレート類の具体例としては、アロニックスM-240、アロニックスM260(東亞合成社製)、NKエステルAT-20E、NKエステルATM-35E(新中村化学社製)などが挙げられる。ポリプロピレングリコールを有する2官能アクリレート類の具体例としては、APG-400、APG700(新中村化学社製)などが挙げられる。ポリブチレングリコールを有する2官能アクリレートの具体例としては、A-PTMG-650(新中村化学社製)などが挙げられる。2官能の(メタ)アクリレート(B)として、ポリアルキレングリコールを有する2官能アクリレートを用いることで、表層の弾性率が抑制され、凹部から汚れを押し出しやすくなり、効果的に防汚性が発現される。ポリアルキレングリコールを有する2官能アクリレートの中でも、さらに良好な防汚性が得られるという点から、ポリエチレングリコールジアクリレートが好適に用いられる。2官能の(メタ)アクリレート(B)としてポリエチレングリコールジアクリレートを用いることで、表層の樹脂の分子運動性が向上し、凹部に入り込んだ汚れをより押し出しやくなり、良好な防汚性が発現される。
 ポリエチレングリコールジアクリレートの一分子内に存在するポリエチレングリコール鎖の平均繰り返し単位の合計は6~40であることが好ましく、9~30であることがより好ましく、12~20であることがさらに好ましい。ポリエチレングリコール鎖の平均繰り返し単位が6以上であれば分子の運動性が保たれ、良好な防汚性が発現される。ポリエチレングリコール鎖の平均繰り返し単位が40以下であれば、3官能以上の多官能(メタ)アクリレート(A)との相溶性が良好となる。また、ポリアルキレングリコールを有する2官能アクリレートの中でも、相溶性の点から、ポリプロピレングリコールジアクリレート、ポリブチレングリコールジアクリレートも好適に用いられる。2官能の(メタ)アクリレート(B)としてポリプロピレングリコールジアクリレート又はポリブチレングリコールジアクリレートを用いることで、後述の親水性が低いシリコーンジ(メタ)アクリレート等のシリコーン(メタ)アクリレートとの相溶性が向上し、透明な活性エネルギー線硬化性樹脂組成物を得ることができる。これらの2官能の(メタ)アクリレート(B)は、単独で用いても、2種以上を併用してもよい。また、防汚性と相溶性を両立する点から、ポリエチレングリコールとポリプロピレングリコールジアクリレート及び/又はポリブチレングリコールジアクリレートとを併用することが好ましい。
 また、2官能の(メタ)アクリレート(B)としては、表面自由エネルギーが小さく防汚性向上効果がある観点から、シリコーン(メタ)アクリレートが好適に用いられる。シリコーン(メタ)アクリレートとしては、具体的には、例えば、チッソ社製のサイラプレーンシリーズ、信越化学工業社製のシリコーンジアクリレート「X-22-164」、「X-22-1602」、ビックケミー・ジャパン社製の「BYK-3500」、エボニックデグサジャパン社製TEGO Radシリーズが好適に挙げられる。これらの2官能(メタ)アクリレート(B)は、単独で用いても、2種以上を併用してもよい。
 2官能の(メタ)アクリレート(B)は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、30~75質量部である。2官能の(メタ)アクリレート(B)の含有量を30質量部以上とすることにより、表層の弾性率の増加が抑制され、凹部から汚れを押し出し易くなり、十分な防汚性が発現される。2官能の(メタ)アクリレート(B)の含有量を75質量部以下とすることにより、弾性率の低下が抑制され、凸部の合一を抑制することができる。
 活性エネルギー線硬化性樹脂組成物には、その他にも、単官能単量体が含まれていても良い。単官能単量体は、3官能以上の多官能(メタ)アクリレート(A)および2官能の(メタ)アクリレート(B)との相溶性を考慮して選択されることが望ましく、このような観点から、例えば、エステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類、ヒドロキシアルキル(メタ)アクリレートなどのエステル基に水酸基を有する単官能(メタ)アクリレート類、単官能アクリルアミド類、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェート若しくはメタクリロイルオキシエチルトリメチルアンモニウムメチルサルフェートなどのカチオン性単量体類などの親水性単官能単量体が好ましく挙げられる。単官能単量体としては、具体的には、「M-20G」、「M-90G」、「M-230G」(新中村化学社製)等を用いることができる。また、防汚性向上の観点から、アルキルモノ(メタ)アクリレート、シリコーン(メタ)アクリレート、フッ化アルキル(メタ)アクリレートが好適に用いられる。このような単官能単量体としては、具体的には、日油社製の「ブレンマーLA」、「ブレンマーCA」、「ブレンマーSA」、信越化学工業社製の「X-24-8201」、「X-22-174DX」、エクスフロアー・リサーチ社製の「C10GACRY」等を用いることができる。
 また、活性エネルギー線硬化性樹脂組成物には、アクリロイルモルホリンやビニルピロリドンなどの粘度調整剤や、透明基材への密着性を向上させるアクリロイルイソシアネート類などの密着性向上剤なども添加することができる。
 活性エネルギー線硬化性樹脂組成物中の単官能単量体の含有量は、活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とした場合、例えば、0.1~20質量部であることが好ましく、5~15質量部であることがより好ましい。単官能単量体を含有させることにより、基材と表層(活性エネルギー線硬化樹脂)との密着性が向上する。単官能単量体の含有量を20質量部以下とすることにより、3官能以上の多官能(メタ)アクリレート(A)及び2官能の(メタ)アクリレート(B)の含有量を調整して、防汚性を十分に発現させ易くなる。単官能単量体は、1種を単独でまたは2種以上を混合して用いてもよい。
 また、活性エネルギー線硬化性樹脂組成物には、単官能単量体の1種又は2種以上を重合した低重合度の重合体(オリゴマー)を添加してもよい。このような低重合度の重合体としては、具体的には、例えば、エステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類(例えば、「M-230G」、新中村化学社製)や、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェートの40/60共重合オリゴマー(例えば、MRCユニテック社製、「MGポリマー」)などが挙げられる。
 さらに、活性エネルギー線硬化性組成物には、上述した各種単量体や低重合度の重合体以外にも、帯電防止剤、離型剤、紫外線吸収剤、コロイダルシリカなどの微粒子が含まれていてもよい。
 活性エネルギー線硬化性樹脂組成物は離型剤を含んでもよい。活性エネルギー線硬化性樹脂組成物に離型剤が含まれると、積層体を連続して製造する際に良好な離型性を維持することができる。離型剤としては、例えば、(ポリ)オキシアルキレンアルキルリン酸化合物が挙げられる。特に、陽極酸化アルミナのモールドを用いた場合には、(ポリ)オキシアルキレンアルキルリン酸化合物とアルミナとが相互作用することで、離型剤がモールドの表面に吸着しやすい。
 (ポリ)オキシアルキレンアルキルリン酸化合物の市販品としては、例えば、城北化学工業社製の「JP-506H」(商品名)、アクセル社製の「モールドウイズINT-1856」(商品名)、日光ケミカルズ社製の「TDP-10」、「TDP-8」、「TDP-6」、「TDP-2」、「DDP-10」、「DDP-8」、「DDP-6」、「DDP-4」、「DDP-2」、「TLP-4」、「TCP-5」、「DLP-10」(商品名)などが挙げられる。
 活性エネルギー線硬化性樹脂組成物に含まれる離型剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 活性エネルギー線硬化性樹脂組成物に含まれる離型剤の含有量は、重合性成分100質量部に対して、0.01~2.0質量部であることが好ましく、0.05~0.2質量部であることがより好ましい。離型剤の含有量が0.01質量部以上であれば、微細凹凸構造を表面に有する物品のモールドからの離型性が良好である。一方、離型剤の割合が2.0質量部以下であれば、活性エネルギー線硬化性樹脂組成物の硬化物と基材との密着性が良好であり、また、硬化物の硬さが適当であり、微細凹凸構造を十分維持できる。
 本実施形態の積層体において、表面処理層の水接触角が120°以上であることが好ましく、130°以上であることがより好ましい。表面処理層の水接触角が120°以上である場合、十分に表面エネルギーが小さいため汚れを容易に拭き取ることができる。また、表面処理層の水接触角が130°以上である場合、十分に表面エネルギーが小さいため汚れの付着を抑制することができる。表面処理層の水接触角の上限は特に制限されるものではないが、150°以下であることが好ましく、145°以下であることがより好ましい。このような撥水性を示す表面処理層としては、アルキル基、ポリジメチルシロキサン構造、フッ化アルキル基を有する化合物が好適に用いられ、微細凹凸構造への密着性の観点からシラン、アルコキシシラン、シラザン、(メタ)アクリレート等の反応性基を有することが好ましい。このような化合物としては、具体的には、信越化学工業社製の「KBM」シリーズ、「KBE」シリーズ、「X」シリーズ、ビックケミー・ジャパン社製の「BYK」シリーズ、エボニックデグサジャパン社製「TEGO Rad」シリーズ、フロロテクノロジー社製の「FG」シリーズ、「FS」シリーズ等が好適に挙げられる。
 表面処理層はディップ、スプレイ、ハケ、スピンコート等の一般的な方法により塗工できる。また表面処理層と微細凹凸構造表面の密着性を向上するために、微細凹凸構造に前処理を行うことが好ましい。前処理としては、シリカ蒸着や、プラズマ等による表面への官能基の導入、表面処理層との反応性が良好な化合物を含有するプライマーのコーティング等が挙げられる。表面処理層の厚みとしては、微細凹凸形状の反射防止性能を維持する観点から、100nm以下であることが好ましい。表面処理層は角度可変ATR測定により、入射角と伴にスペクトルが変化すること、または、TEMによる断面観察から、その存在を確認できる。
 本実施形態における活性エネルギー線硬化性樹脂組成物は、分子中にラジカル重合性および/またはカチオン重合性結合を有する単量体、低重合度の重合体、反応性重合体を適宜含むことができ、後述する重合開始剤によって硬化されるものである。また、活性エネルギー線硬化性樹脂組成物は、非反応性重合体を含んでもよい。
 本実施形態の積層体は、容易に汚れを除去できる、防汚性に優れた表層を備える積層体であるため、本実施形態の積層体を反射防止物品、画像表示装置、タッチパネル等の最表面に設置すれば、使用時に付着する皮脂等の汚れが付き難くかつ落ちやすく、良好な反射防止性能を発揮することができる。さらに、表面に水やアルコールを用いなくても容易に汚れを除去できるため、実用面においても優れた物品が得られる。
 (実施形態7)
 以下、本実施形態について詳細に説明する。
 図1は、本実施形態に係る積層体10の構成の一例を示す模式的断面図である。図1において、透明性を有する基材11の表面に活性エネルギー線硬化性組成物の硬化物からなる表層12が形成されている。積層体10において、表層12の表面に微細凹凸構造が形成されている。
 本実施形態の積層体は、表層が活性エネルギー線硬化性組成物の硬化物であり、前記活性エネルギー線硬化性組成物がSH基を有する化合物(D)を含む。SH基とはチオール基、水硫基、メルカプト基、又はスルフヒドリル基のことである。SH基を有する化合物(D)が活性エネルギー線硬化性組成物中に含まれることにより、硫黄原子と硫黄原子または炭素原子との化学結合が得られる。そうすると、硬化物の架橋密度を維持したまま弾性率を下げることができるため、突起の形状を維持しつつ突起にフレキシビリティを付与でき、凹部に溜まった汚れを除去できるようになるため防汚性が向上する。
 本実施形態の積層体において、表層は活性エネルギー線硬化性線組成物の硬化物であり、前記活性エネルギー線硬化性脂組成物は、2官能以上の多官能(メタ)アクリレート(A)を0~95質量部、シリコーン(メタ)アクリレート(C)を0~75質量部、SH基を有する化合物(D)を1~60質量部含むことが好ましい(但し、重合性成分の合計を100質量部とする。)。なお、2官能以上の多官能(メタ)アクリレート(A)からシリコーン(メタ)アクリレート(C)は除かれる。
 ここで、2官能以上の多官能(メタ)アクリレート(A)とは、アクリロイル基(CH2=CHCO-)及びメタクリロイル基(CH2=C(CH3)CO-)から選ばれる基を分子内に少なくとも2つ以上有する化合物を意味する。
 2官能以上の多官能(メタ)アクリレート(A)としては、エチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、イソシアヌール酸エチレンオキサイド変性ジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル)プロパン、1,2-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)エタン、1,4-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)ブタン、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAのプロピレンオキサイド付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジビニルベンゼン、メチレンビスアクリルアミド等の2官能性モノマー、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシド変性トリアクリレート、トリメチロールプロパンエチレンオキシド変性トリアクリレート、イソシアヌール酸エチレンオキサイド変性トリ(メタ)アクリレート、等の3官能モノマー、コハク酸/トリメチロールエタン/アクリル酸の縮合反応混合物、ジペンタエリストールヘキサ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等の多官能のモノマー、2官能以上のウレタンアクリレート、2官能以上のポリエステルアクリレートなどが挙げられる。これらは、単独で用いても良く、2種類以上を組み合わせて使用しても良い。
 2官能以上の多官能(メタ)アクリレート(A)は、活性エネルギー線硬化性組成物中の重合性成分の合計を100質量部とした場合、0~95質量部であることが好ましく、25~90質量部であることがより好ましく、40~90質量部であることが特に好ましい。2官能以上の多官能(メタ)アクリレート(A)の含有量が0質量部以上95質量部以下であれば、弾性率の過度の低下を抑制し、突起の形状を維持することができる。また、2官能以上の多官能(メタ)アクリレート(A)を組成物中に添加することにより、つまりその含有量が0質量部超であれば、弾性率を抑制し易くなり、突起の形状を維持し易くなる。また、2官能以上の多官能(メタ)アクリレート(A)の含有量が40質量部以上である場合、弾性率の低下を抑制し、突起の合一をより効果的に防ぐことができる。また、2官能以上の多官能(メタ)アクリレート(A)の含有量が95質量部以下である場合、弾性率が低下し、汚れをより効果的に除去することができる。また、含有量が90質量部以下の場合、弾性率が十分に低下し、凹部に溜まった汚れをより効果的に除去できる。その結果、凹部から汚れを押し出し易くなり、積層体に十分な防汚性を付与することができる。
 シリコーン(メタ)アクリレート(C)は、オルガノシロキサン構造を有する化合物の側鎖及び/又は末端にアクリロイル基(CH2=CHCO-)及びメタクリロイル基(CH2=C(CH3)CO-)から選ばれる基を少なくとも一つ以上有する化合物である。シリコーン(メタ)アクリレート(C)は、2官能以上の多官能(メタ)アクリレート(A)との相溶性の観点から選ばれることが望ましく、シリコーン(メタ)アクリレート(C)としては、(A)との相溶性に寄与する相溶性セグメントを有する化合物を用いることが好ましい。相溶性セグメントとしては、例えば、ポリアルキレンオキサイド構造、ポリエステル構造及びポリアミド構造などが挙げられる。これら相溶性セグメントはシリコーン(メタ)アクリレート(C)中に単独で含まれていてもよく、また2種以上が含まれていても良い。また、シリコーン(メタ)アクリレート(C)はハンドリングの面から希釈されて用いられても良い。希釈剤としては硬化物からのブリードアウトなどの面から反応性を有するものが好ましい。また、2官能以上の多官能(メタ)アクリレート(A)をシリコーン(メタ)アクリレート(C)に混ぜることにより、シリコーン(メタ)アクリレート(C)のハンドリングを向上することもできる。
 このようなシリコーン(メタ)アクリレート(C)としては、具体的には、例えば、チッソ社製のサイラプレーンシリーズ(商品名)、信越化学工業社製のシリコーンジアクリレート「X-22-164」、「X-22-1602」(いずれも商品名)、ビックケミー・ジャパン社製の「BYK-3500」、「BYK-3570」(いずれも商品名)、エボニックデグサジャパン社製TEGO Radシリーズ(商品名)が好適に挙げられる。これらのシリコーン(メタ)アクリレート(C)は単独で用いても、2種以上を併用してもよい。
 シリコーン(メタ)アクリレート(C)は、活性エネルギー線硬化性組成物中の重合性成分の合計を100質量部とした場合、0~75質量部であることが好ましく、5~70質量部であることがより好ましい。シリコーン(メタ)アクリレート(C)の含有量が0質量部以上75質量部以下であれば、撥水性が付与され、防汚性がより向上する。また、シリコーン(メタ)アクリレート(C)を組成物中に添加することにより、つまりその含有量が0質量部超であれば、撥水性がより効果的に付与され、防汚性が向上する。また、シリコーン(メタ)アクリレート(C)の含有量が5質量部以上の場合、表層の表面エネルギーが下がり、水に対する接触角が130°以上となるため、防汚性がより一層向上する。また、シリコーン(メタ)アクリレート(C)の含有量が75質量部以下である場合、その他の成分との相溶性が良くなるため、透明性が向上する。また、シリコーン(メタ)アクリレート(C)の含有量が70質量部以下である場合、活性エネルギー線硬化性組成物の粘度が抑制され、ハンドリングが向上する。
 SH基を含有する化合物(D)は、SH基を含有する化合物であれば、特に限定されないが、表層の架橋密度を上げ、強度を維持するために、SH基を2つ以上含有する化合物であることが好ましく、活性エネルギー線硬化性組成物の貯蔵安定性の観点から、SH基は2級チオールであることがより好ましい。
 SH基を二つ以上有する化合物としては、1,2-エタンジチオール、1,2-プロパンジチオール、1,3-プロパンジチオール、1,4-ブタンジチオール、1,6-ヘキサンジチオール、1,7-ヘプタンジチオール、1,8-オクタンジチオール、1,9-ノナンジチオール、1,10-デカンジチオール、1,12-ドデカンジチオール、2,2-ジメチル-1,3-プロパンジチオール、3-メチル-1,5-ペンタンジチオール、2-メチル-1,8-オクタンジチオール、1,4-シクロヘキサンジチオール、1,4-ビス(メルカプトメチル)シクロヘキサン、1,1-シクロヘキサンジチオール、1,2-シクロヘキサンジチオール、ビシクロ〔2,2,1〕ヘプタ-exo-cis-2,3-ジチオール、1,1-ビス(メルカプトメチル)シクロヘキサン、ビス(2-メルカプトエチル)エーテル、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)等のジチオール化合物;1,1,1-トリス(メルカプトメチル)エタン、2-エチル-2-メルカプトメチル-1,3-プロパンジチオール、1,2,3-プロパントリチオール、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス((メルカプトプロピオニルオキシ)-エチル)イソシアヌレート等のトリチオール化合物;ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブタネート)、ジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等のSH基を4個以上有するチオール化合物が挙げられる。
 2級チオールを有する化合物としては、カレンズMT PE1、カレンズMT NR1、カレンズMT BD1(商品名 昭和電工社製)が挙げられる。
 このようなSH基を含有する化合物(D)は、具体的には、昭和電工社製の「カレンズMT PE1」、「カレンズMT BD1」、「カレンズMT NR1」(いずれも商品名)が好適に挙げられる。
 SH基を含有する化合物(D)は、活性エネルギー線硬化性組成物中の重合性成分の合計を100質量部とした場合、1~60質量部であることが好ましく、1~15質量部であることがより好ましい。SH基を含有する化合物(D)の含有量が1質量部以上であれば、架橋密度を維持したまま表層の弾性率を下げることができるため、凹部から汚れを押し出し易くなり、結果として、積層体に十分な防汚性を付与することができ、かつ、凸部の形状の復元力を維持することができる。また、SH基を含有する化合物(D)の含有量が60質量部以下であれば、活性エネルギー線硬化性組成物の貯蔵安定性を維持することができる。また、SH基を含有する化合物(D)の含有量が15質量部以下である場合、表層の弾性率の低下をより効果的に抑制し、凸部の合一を防ぐことができる。
 活性エネルギー線硬化性組成物には、その他にも、単官能単量体が含まれていても良い。単官能単量体は、2官能以上の多官能(メタ)アクリレート(A)およびシリコーン(メタ)アクリレート(C)との相溶性を考慮して選択されることが望ましく、このような観点から、単官能単量体としては、例えば、エステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類、ヒドロキシアルキル(メタ)アクリレートなどのエステル基に水酸基を有する単官能(メタ)アクリレート類、単官能アクリルアミド類、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェート若しくはメタクリロイルオキシエチルトリメチルアンモニウムメチルサルフェートなどのカチオン性単量体類などの親水性単官能単量体が好ましく挙げられる。単官能単量体としては、具体的には、単官能(メタ)アクリレート類の「M-20G」、「M-90G」、「M-230G」(新中村化学社製、いずれも商品名)等を用いることができる。また、防汚性向上の観点から、アルキルモノ(メタ)アクリレート、シリコーン(メタ)アクリレート、フッ化アルキル(メタ)アクリレートが好適に用いられる。このような単官能単量体としては、具体的には、日油社製の「ブレンマーLA」、「ブレンマーCA」、「ブレンマーSA」(いずれも商品名)、信越化学工業社製の「X-24-8201」、「X-22-174DX」(いずれも商品名)、エクスフロアー・リサーチ社製の「C10GACRY」(商品名)等を用いることができる。
 また、活性エネルギー線硬化性組成物には、アクリロイルモルホリンやビニルピロリドンなどの粘度調整剤や、透明基材への密着性を向上させるアクリロイルイソシアネート類などの密着性向上剤なども添加することができる。
 単官能単量体を含有させる場合は、活性エネルギー線硬化性組成物中の重合性成分の合計を100質量部とした場合、例えば、0.1~20質量部であることが好ましく、5~15質量部であることがより好ましい。単官能単量体を含有させることにより、基材と表層(活性エネルギー線硬化性組成物)との密着性が向上することができる。単官能単量体の含有量が20質量部以下である場合、2官能以上の多官能(メタ)アクリレート(A)、シリコーン(メタ)アクリレート(C)、及びSH基を含有する化合物(D)の含有量を調整して、防汚性を十分に発現させ易くなる。単官能単量体は、1種を単独でまたは2種以上を混合して用いてもよい。
 また、活性エネルギー線硬化性組成物には、単官能単量体の1種又は2種以上を重合した低重合度の重合体(オリゴマー)を添加してもよい。このような低重合度の重合体としては、具体的には、例えば、エステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類(例えば、「M-230G」(商品名)、新中村化学社製)や、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェートの40/60共重合オリゴマー(例えば、MRCユニテック社製、「MGポリマー」(商品名))などが挙げられる。
 さらに、活性エネルギー線硬化性組成物には、上述した各種単量体や低重合度の重合体以外にも、帯電防止剤、離型剤、紫外線吸収剤、コロイダルシリカなどの微粒子が含まれていてもよい。
 活性エネルギー線硬化性組成物は離型剤を含んでもよい。活性エネルギー線硬化性組成物に離型剤が含まれると、積層体を連続して製造する際に良好な離型性を維持することができる。離型剤としては、例えば、(ポリ)オキシアルキレンアルキルリン酸化合物が挙げられる。特に、陽極酸化アルミナのモールドを用いた場合には、(ポリ)オキシアルキレンアルキルリン酸化合物とアルミナとが相互作用することで、離型剤がモールドの表面に吸着しやすい。
 (ポリ)オキシアルキレンアルキルリン酸化合物の市販品としては、例えば、城北化学工業株式会社製の「JP-506H」(商品名)、アクセル社製の「モールドウイズINT-1856」(商品名)、日光ケミカルズ株式会社製の「TDP-10」、「TDP-8」、「TDP-6」、「TDP-2」、「DDP-10」、「DDP-8」、「DDP-6」、「DDP-4」、「DDP-2」、「TLP-4」、「TCP-5」、「DLP-10」(いずれも商品名)などが挙げられる。
 活性エネルギー線硬化性組成物に含まれる離型剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 活性エネルギー線硬化性組成物に含まれる離型剤の含有量は、重合性成分100質量部に対して、0.01~2.0質量部であることが好ましく、0.05~0.2質量部であることがより好ましい。離型剤の含有量が0.01質量部以上であれば、微細凹凸構造を表面に有する物品のモールドからの離型性が良好である。一方、離型剤の割合が2.0質量部以下であれば、活性エネルギー線硬化性組成物の硬化物と基材との密着性が良好であり、また、硬化物の硬さが適当であり、微細凹凸構造を十分維持できる。
 本実施形態の積層体において、微細凹凸構造の表面の弾性率、つまり表層の押込弾性率は、500MPa以下であることが好ましく、50~100MPaであることがより好ましい。表層の弾性率が50MPa以上であると、微細凹凸構造が十分に硬いため凸部の突起合一を効果的に防ぐことができる。表層の弾性率が500MPa以下であると、微細凹凸構造が柔らかいため凹部に入り込んだ汚れを押し出すことができる。表層の弾性率が100MPa以下であると、微細凹凸構造が十分に柔らかいため、微細凹凸構造を自由に変形することができ、凹部に入り込んだ汚れを容易に除去できる。
 本実施形態の積層体において、微細凹凸構造が形成された部分の表層の水接触角は特に限定されないが、130°以上であることが好ましい。表層の水接触角が130°以上である場合、十分に表面エネルギーが小さいため汚れを容易に拭き取ることができる。表層の水接触角の上限は特に制限されるものではないが、150°以下であることが好ましく、145°以下であることがより好ましい。
 本実施形態の活性エネルギー線硬化性組成物は、分子中にラジカル重合性および/またはカチオン重合性結合を有する単量体、低重合度の重合体、反応性重合体を適宜含むことができる。また、活性エネルギー線硬化性組成物は、後述する重合開始剤によって硬化されることができる。また、活性エネルギー線硬化性組成物は、非反応性重合体を含んでもよい。
 本実施形態の積層体は、容易に汚れを除去できる、防汚性に優れた表層を備える積層体であるため、本実施形態の積層体を反射防止物品、画像表示装置、タッチパネル等の最表面に設置すれば、使用時に付着する皮脂等の汚れが付き難くかつ落ちやすく、良好な反射防止性能を発揮することができる。さらに、表面に水やアルコールを用いなくても容易に汚れを除去できるため、実用面においても優れた物品が得られる。
 (実施例A)
 以下、本実施形態を実施例Aにより具体的に説明するが、本発明はこれらに限定されるものではない。
 <各種評価および測定方法>
 (硬化液相溶性の判定)
 相溶性の評価として、活性エネルギー線硬化性樹脂組成物(硬化させる前の状態)の透明性を蛍光灯下で目視観察した。
 A:透明(相溶性良好)
 B:室温では白濁しているが活性エネルギー線硬化性樹脂組成物を50度に加熱すると透明になる。
 C:室温及び50度下で白濁(相溶性不良)
 (水接触角の判定)
 自動接触角測定装置(KRUSS社製)を用いて、後述する実施例Aおよび比較例Aにおいて作製した活性エネルギー線硬化性樹脂組成物の硬化樹脂(活性エネルギー線硬化樹脂)の表面に1μLの水を滴下し、滴下してから7秒後の水滴の接触角をθ/2法にて算出した。
 (弾性率の測定)
 表層の表面を、「FISCHERSCOPE(R) HM2000」(商品名、フィッシャー社製)を用いて、50mN/10秒の条件で荷重を増加させながら荷重を加え、50mNで60秒間保持した後、50mN/10秒の条件で荷重を減少させながら除荷する。その際の65%と95%の荷重がかかった点を用いて、外挿法により弾性率を計算した。なお、厚み500μmのテフロンシートをスペーサーとして用い、活性エネルギー線硬化性樹脂組成物を2枚のガラス板で挟み込み、積算光照射量3000mJ/cm2のエネルギーで紫外線を照射して活性エネルギー線硬化性樹脂組成物を光硬化させ、厚み500μmの活性エネルギー線硬化樹脂を作製し、該硬化樹脂の照射面(表面)について前記同様に測定し弾性率を計算してもよい。
 (防汚性試験)
 まず、特開2006-147149号公報に記載の方法で人工指紋液(JIS K2246 伊勢久社製)を付着させ積層体に表面に疑似指紋を転写した。この方法において、まず、擬似指紋成分をマグネティックスターラーでよく攪拌しながら約1mL採取し、この擬似指紋成分をポリカーボネート製基板(直径120mm、厚さ1.2mm)上にスピンコート法により塗布した。この基板を60℃で3分間加熱することにより、不要な希釈剤であるメトキシプロパノールを完全に除去した。これを擬似指紋転写用の原版とした。続いて、NO.1のシリコーンゴム栓の、小さい方の端面(直径12mm)を、#240の研磨紙で一様に研磨したものを擬似指紋転写材とし、この研磨した端面を、上記原版に荷重29Nで10秒間押し当てて擬似指紋成分を転写材の端面に移行させた。次いで、上記各サンプルの透光性基体表面に、上記転写材端面を荷重29Nで10秒間押し当てて擬似指紋成分を転写した。なお、指紋パターンは、媒体の半径40mm近傍の位置に転写した。
 次に、プロワイプ(商品名:ソフトスーパーワイパーS132 大王製紙(株)製)を用いて39KPaの圧力で6往復擦ることにより人口指紋液を拭き取った後、蛍光灯下で積層体に汚れが残っているかを目視で観察した。評価は以下の基準で行った。
 A:汚れが目視では確認されない。
 B:目視で若干の汚れが確認される。
 C:疑似指紋がのび広がり、汚れが拭き取れない。
 (突起合一の評価)
 LED光をフィルム端面側(側面側)から入射し、入射方向から観測した際に、白い斑が見えるかを目視で観察した。評価は以下の基準で行った。
 A:斜めから観察した際に白い斑がみられない。
 B:斜めから観察した際には白い斑がみられるが、正面から観察した際に白い斑がみられない。
 C:斜め及び正面から観察した際に白い斑がみられる。
 (摩擦係数の傾き)
 摩擦係数の測定には、摩擦試験機(商品名:HEIDON TRIBOGEAR HHS-2000、浸透科学社製)を用いた。積層体の表面に置かれた2cm四方のBEMCOT M-3II(商品名、旭化成せんい社製)に1000gの荷重を加え、往復距離:30mm、ヘッドスピード:30mm/秒にて50回往復磨耗を行った。1回目の摩擦時の動摩擦係数の値をμ1、50回目の摩擦時の同摩擦係数の値をμ50とし、下記式より摩擦係数の傾きを算出した。
 μs=(μ50-μ1)/(50-1)
 (耐擦傷性)
 耐擦傷性の評価には、前述の方法を用いて1000回往復磨耗を行った。外観評価に際しては、透明な2.0mm厚の黒色アクリル板(商品名:アクリライト、三菱レイヨン社製)mp片面に該光透過性物品を貼り付け、屋内で蛍光灯にかざして目視で評価した。評価は以下の基準で行った。
 A:目視で傷が確認されない
 B:目視で数本の傷が確認される。
 C:目視で傷が多数確認される。
 (電子顕微鏡によるサンプル表面の観察)
 走査電子顕微鏡(日本電子社製、「JSM‐7400F」)を用いて、加速電圧3.00kVの条件で、スタンパおよび積層体の表面に形成された微細凹凸構造を観察した。なお、積層体の観察に関しては、プラチナを10分間蒸着した後に観察を行った。得られた画像から、隣り合う凸部同士の距離と凸部の高さを測定した。それぞれ10点ずつ測定し、平均値を求めた。
 <スタンパの作製>
 電解研磨されたアルミニウム円盤(純度99.99質量%、厚さ2mm、φ65mm)をアルミニウム基材として用いた。15℃に調整した0.3Mシュウ酸水溶液にアルミニウム基材を浸漬させて、直流安定化装置の電源のON/OFFを繰り返すことでアルミニウム基材に間欠的に電流を流すことにより、アルミニウム基材を陽極酸化させた。次に、30秒おきに80Vの定電圧を5秒間印加する操作を60回繰り返し、細孔を有する酸化皮膜を形成した。続いて、酸化皮膜を形成したアルミニウム基材を6質量%のリン酸と1.8質量%のクロム酸を混合した70℃の水溶液中に6時間浸漬させて、酸化皮膜を溶解除去した。酸化皮膜を溶解除去したアルミニウム基材を16℃に調整した0.05Mのシュウ酸水溶液に浸漬させて80Vで7秒間陽極酸化を施した。続いて、アルミニウム基材を32℃に調整した5質量%リン酸水溶液中に20分間浸漬させて、酸化皮膜の細孔を拡大する孔径拡大処理を施した。このように陽極酸化処理と孔径拡大処理を交互に繰り返した。陽極酸化処理と孔径拡大処理はそれぞれ5回ずつ行った。得られたスタンパをTDP-8(日光ケミカルズ株式会社製)の0.1質量%水溶液に10分間浸漬させた後、引き上げて一晩乾燥させることにより、離型処理を施した。
 得られたポーラスアルミナの表面を電子顕微鏡で観察したところ、隣り合う凹部同士の距離が180nm、深さが180nmの略円錐状のテーパー状凹部からなる微細凹凸構造が形成されていた。
 [実施例A1]
 <積層体の製造>
 以下の材料を混合して活性エネルギー線硬化性樹脂組成物を調製した。
・エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(「カヤラッドDPEA-12」、1分子内のエチレンオキサイド構造単位数n=12、日本化薬社製)40質量部
・アロニックスM-260(商品名、東亜合成社製、ポリエチレングリコール鎖の平均繰り返し単位は13)60質量部
・イルガキュア184(商品名、チバ・スペシャリティーケミカルズ社製)1質量部
・イルガキュア819(商品名、チバ・スペシャリティーケミカルズ社製)0.5部
・TDP-2(商品名、日光ケミカルズ株式会社製)0.1質量部
 該活性エネルギー線硬化性樹脂組成物をスタンパ上に数滴垂らし、トリアセチルセルロースフィルム(FTTD80ULM(商品名)、富士フィルム社製)で押し広げながらスタンパを被覆した。続いて、フィルム側から積算光照射量1000mJ/cm2のエネルギーで紫外線を照射して活性エネルギー線硬化性樹脂組成物を光硬化させた。その後、フィルムとスタンパを剥離して、図1に示すような、隣り合う凸部同士の距離w1が180nm、凸部の高さd1が180nmの微細凹凸構造を有する積層体を得た。
 <評価>
 活性エネルギー線硬化性樹脂組成物における成分の相溶性及び得られた積層体に関する水接触角、弾性率、防汚性、摩擦係数の傾き(μs)、耐擦傷性、突起合一の各評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1中の略号は下記の通りである。
 DPHA:ジペンタエリスリトールヘキサアクリレート(日本化薬社製、「カヤラッドDPHA」)
 DPEA-12:エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(日本化薬社製、「カヤラッドDPEA-12」、1分子内のエチレンオキサイド構造単位数n=12)
 DPEA-18(第一工業製薬社製、「商品名DPHA-18EO変性」、1分子内のエチレンオキサイド構造単位数n=18)
 M-260:ポリエチレングリコールジアクリレート(「アロニックスM-260」、東亜合成社製、ポリエチレングリコール鎖の平均繰り返し単位は13)
 APG-700:ポリプロピレングリコールジアクリレート(新中村化学社製、ポリプロピレングリコール鎖の平均繰り返し単位は12)
 BYK-UV3570:シリコーンアクリレート プロピレンオキサイド変性ネオペンチルグリコールジアクリレート希釈品(ビッグケミー・ジャパン社製)
 PE1:カレンズMT PE1(商品名、昭和電工社製、SH基を4つ有する化合物)
 IRG.184:ヒドロキシシクロヘキシルフェニルケトン(「イルガキュア184」、チバ・スペシャリティーケミカルズ社製)
 IRG.819:フェニルビス(2,4,6-トリメチルベンゾイル)-ホスフィンオキシド(「イルガキュア819」、チバ・スペシャリティーケミカルズ社製)
 TDP-2:ポリオキシエチレンアルキルエーテルリン酸(商品名、日光ケミカルズ株式会社製)
 [実施例A2~A19]
 表1に示す組成の活性エネルギー線硬化性樹脂組成物を用いた以外は、実施例A1と同様にして積層体を得た。結果を表2に示す。
 [実施例A20]
 表1に示す組成の活性エネルギー線硬化性樹脂組成物を用いた以外は、実施例A1と同様にして、硬化物層を有する積層体を得た。得られた微細凹凸構造を有する硬化物層にプライマーとしてPC-3B(商品名、フロロテクノロジー社製)をスピンコートによって塗布した。その後、常温で90分乾燥した後、FG5070S135-0.1(商品名、フロロテクノロジー社製)をスピンコーティングし、60℃で3時間乾燥し、表面処理層を有する積層体を得た。結果を表2に示す。
 [比較例A1~A3]
 表1に示す組成の活性エネルギー線硬化性樹脂組成物を用いた以外は、実施例A1と同様にして積層体を得た。結果を表2に示す。
 実施例A1~A20で得られた積層体においては、表層の弾性率が250MPa未満であり、且つ摩擦係数の傾きが1.8×10-3以下であるため、容易に汚れを除去できる防汚性と優れた耐擦傷性を示した。
 表層の弾性率が45~65MPa、且つ表層の水接触角が135°以上である実施例A11~A13、およびA19で得られた積層体は、相溶性および防汚性に特に優れるものであった。
 特に、表層の弾性率が50~65MPa、且つ表層の水接触角が140°以上である実施例A12およびA20で得られた積層体においては、相溶性、防汚性および耐擦傷性に非常に優れた積層体が得られた。
 比較例A1~A3で得られた積層体においては防汚性が十分ではなかった。
 比較例A3は、耐擦傷性に劣るため、評価途中で表層に傷が多数発生して表層が破壊され剥がれたため、評価を中断した。
 (実施例B)
 以下、本実施形態を実施例Bにより具体的に説明するが、本発明はこれらに限定されない。
 <各種評価および測定方法>
 (水接触角の測定)
 自動接触角測定装置(KRUSS社製)を用いて、1μlの水を後述する実施例Bおよび比較例Bにおいて作製した積層体の表層の表面に滴下した。7秒後の接触角をθ/2法にて算出した。
 (弾性率の測定)
 厚み500μmのテフロンシートをスペーサーとして用い、活性エネルギー線硬化性樹脂組成物を2枚のガラスで挟み込み、3000mJ/cm2のエネルギーで紫外線を照射した。これにより、活性エネルギー線硬化性樹脂組成物を光硬化し、厚み500μmの活性エネルギー線硬化性樹脂組成物の硬化物を作製した。該硬化物の照射面を、「FISCHERSCOPE(R) HM2000」(商品名、フィッシャー社製)を用いて、50mN/10秒の条件で荷重増加し、60秒間保持した後、荷重増加と同条件で除荷した。その際の65%と95%の荷重がかかった点を使用して、外挿法により弾性率を計算した。
 (防汚性試験)
 特開2006-147149号公報に記載の方法で人口指紋液(JIS K2246 伊勢久社製)を付着させ、積層体の表面に疑似指紋を転写した。具体的には、擬似指紋成分について、マグネティックスターラーでよく攪拌しながら約1mL採取し、ポリカーボネート製基板(直径120mm、厚さ1.2mm)上にスピンコート法により塗布した。この基板を60℃で3分間加熱することにより、不要な希釈剤であるメトキシプロパノールを完全に除去した。これを擬似指紋転写用の原版とした。続いて、NO.1のシリコーンゴム栓の、小さい方の端面(直径12mm)を、#240の研磨紙で一様に研磨したものを擬似指紋転写材とし、この研磨した端面を、前記原版に荷重29Nで10秒間押し当てて擬似指紋成分を転写材の端面に移行させた。次いで、前記各サンプルの透光性基体表面に、前記転写材端面を荷重29Nで10秒間押し当てて擬似指紋成分を転写した。なお、指紋パターンは、媒体の半径40mm近傍の位置に転写した。次に、プロワイプ(商品名:ソフトスーパーワイパーS132 大王製紙(株)製)を用いて98KPaの圧力で6往復擦ることにより人口指紋液を拭き取った後、蛍光灯下で積層体に汚れが残っているかを目視で観察した。評価は以下の基準で行った。
○:汚れが目視では確認されない。
×:疑似指紋がのび広がり、汚れが拭き取れない。
 (電子顕微鏡によるサンプル表面の観察)
 走査電子顕微鏡(商品名:「JSM-7400F」、日本電子(株)製)を用いて、加速電圧3.00kvの条件で、スタンパおよび積層体の表層の表面に形成された微細凹凸構造を観察した。なお、積層体の表層の観察に関しては、プラチナを10分間蒸着した後に観察を行った。得られた画像から、隣り合う凸部同士の距離と凸部の高さを測定した。
 (突起合一の評価)
 LED光を積層体のフィルム端面側(側面側)から入射し、入射方向から観測した際に、白い斑が見えるか否かを目視で観察した。評価は以下の基準で行った。
○:斜めから観察した際に白い斑がみられない。
△:正面から観察した際に白い斑がみられない。
×:正面から観察した際に白い斑がみられる。
 <スタンパの作製>
 純度99.99質量%、電解研磨した厚さ2mmのφ65mmアルミニウム円盤をアルミニウム基材として用いた。0.3Mシュウ酸水溶液を15℃に調整し、該アルミニウム基材を浸漬して、直流安定化装置の電源のON/OFFを繰り返した。これにより、アルミニウム基材に間欠的に電流を流し、陽極酸化を行った。30秒おきに80Vの定電圧を5秒間印加する操作を60回繰り返し、細孔を有する酸化皮膜を形成した。続いて、酸化皮膜を形成したアルミニウム基材を、6質量%リン酸と、1.8質量%クロム酸とを混合した70℃の水溶液中に6時間浸漬して、酸化皮膜を溶解除去した。酸化皮膜を溶解除去したアルミニウム基材を、16℃に調整した0.05Mのシュウ酸水溶液に浸漬して80Vで7秒間陽極酸化を施した。続いて、これを32℃に調整した5質量%リン酸水溶液中に20分間浸漬して、酸化皮膜の細孔を拡大する孔径拡大処理を施した。このように、陽極酸化と孔径拡大処理とを交互に繰り返し、合計5回ずつ施した。得られたスタンパを、TDP-8(商品名、日光ケミカルズ(株)製)の0.1質量%水溶液に10分間浸漬し、引き上げて一晩風乾することにより離型処理を施した。
 得られたスタンパの表面を電子顕微鏡で観察したところ、隣り合う凹部同士の間隔が180nm、深さが180nmの略円錐状のテーパー状凹部により構成された微細凹凸構造が形成されていた。
 [実施例B1]
 <積層体の製造>
 エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(商品名:カヤラッドDPEA-12、日本化薬(株)製、1分子内のエチレンオキサイド構造単位数n=12)40質量部、アロニックスM-260(商品名、東亜合成(株)製、エチレングリコールの平均繰り返し単位は13)60質量部を重合性成分として用いた。該重合性成分に、イルガキュア184(商品名、BASF社製)1質量部、イルガキュア819(商品名、BASF社製)0.5部、TDP-2(商品名、日光ケミカルズ(株)製)0.1質量部を溶解させた。これにより、活性エネルギー線硬化性樹脂組成物を得た。該活性エネルギー線硬化性樹脂組成物を前記スタンパ上に数滴垂らし、トリアセチルセルロースフィルム(商品名:FTTD80ULM、富士フィルム(株)製、以下フィルムとも示す)で押し広げながら、フィルムに該活性エネルギー線硬化性樹脂組成物を被覆した。その後、フィルム側から1000mJ/cm2のエネルギーで紫外線を照射して活性エネルギー線硬化性樹脂組成物を光硬化させた。活性エネルギー線硬化性樹脂組成物の硬化物からスタンパを剥離して、図1に示す、隣り合う凸部同士の間隔が180nm、凸部の高さd1が180nmの微細凹凸構造を表層12の表面に有する積層体10を得た。
 <評価>
 前述した各種評価および測定方法に基づき、水接触角、弾性率、防汚性および突起合一の各評価を行った。結果を表3に示す。
 [実施例B2~B6、比較例B1~B3]
 活性エネルギー線硬化性樹脂組成物の調製において、用いる重合性成分、重合開始剤などの種類および配合量を表1に示すように変更した以外は、実施例B1と同様に積層体を製造した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3中の略号は下記の通りである。
DPHA:ジペンタエリスリトールヘキサアクリレート(商品名:カヤラッドDPHA、日本化薬(株)製)
DPEA-12:エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(商品名:カヤラッドDPEA-12、日本化薬(株)製、1分子内のエチレンオキサイド構造単位数n=12)
DPEA-18:エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(商品名:DPEA-18、第一工業製薬(株)製、1分子内のエチレンオキサイド構造単位数n=18)
M-260:ポリエチレングリコールジアクリレート(東亜合成(株)製、エチレングリコールの平均繰り返し単位は13)
APG700:ポリプロピレングリコールジアクリレート(新中村化学工業(株)製、プロピレングリコールの平均繰り返し単位は12)
IRG.184:イルガキュア184(商品名、BASF社製、ヒドロキシシクロヘキシルフェニルケトン)
IRG.819:イルガキュア819(商品名、BASF社製、フェニルビス(2,4,6-トリメチルベンゾイル)-ホスフィンオキシド)
TDP-2:TDP-2(商品名、日光ケミカルズ(株)製、ポリオキシエチレンアルキルエーテルリン酸)。
 なお、表3において、実施例1~6及び比較例1~3はそれぞれ実施例B1~B6及び比較例B1~B3を示す。
 実施例B1~B6では弾性率が200MPa未満であるため、防汚性に優れており、水やアルコールを用いなくても容易に汚れを除去できた。特に、実施例B1、B2およびB5では弾性率が90~150MPaの範囲であるため、微細凹凸構造の凸部の突起合一もなく、かつ、防汚性に優れていた。
 一方、比較例B1およびB2では弾性率が200MPa以上であるため防汚性が不十分であり、水やアルコールを用いずに容易に汚れを除去することはできなかった。また、比較例B3ではポリエチレングリコールジアクリレートの代わりにポリプロピレングリコールジアクリレートが用いられたため、分子の運動性が低く、防汚性が不十分であり、水やアルコールを用いずに容易に汚れを除去することはできなかった。
 (実施例C)
 以下、本実施形態を実施例Cにより具体的に説明するが、本発明はこれらに限定されるものではない。
 <各種評価および測定方法>
 (硬化液相溶性の判定)
 相溶性の評価として、活性エネルギー線硬化性樹脂組成物(硬化させる前の状態)の透明性を蛍光灯下で目視観察した。
 ○:透明(相溶性良好)
 △:室温では白濁しているが活性エネルギー線硬化性樹脂組成物を50度に加熱すると透明になる。
 ×:室温及び50度下で白濁(相溶性不良)
 (水接触角の判定)
 自動接触角測定装置(KRUSS社製)を用いて、1μlの水を後述する実施例Cおよび比較例Cにおいて作製した活性エネルギー線硬化性樹脂組成物の硬化樹脂(活性エネルギー線硬化樹脂)の表面に水を滴下し、滴下してから7秒後の水滴の接触角をθ/2法にて算出した。
 (弾性率の測定)
 表層の照射面を、「FISCHERSCOPE(R) HM2000」(商品名、フィッシャー社製)を用いて、50mN/10秒の条件で荷重を増加させながら荷重を加え、50mNで60秒間保持した後、50mN/10秒の条件で荷重を減少させながら除荷する。その際の65%と95%の荷重がかかった点を用いて、外挿法により弾性率を計算した。なお、厚み500μmのテフロンシートをスペーサーとして用い、活性エネルギー線硬化性組成物を2枚のガラス板で挟み込み、積算光照射量3000mJ/cm2のエネルギーで紫外線を照射して活性エネルギー線硬化性樹脂組成物を光硬化させ、厚み500μmの活性エネルギー線硬化樹脂を作製し、該硬化樹脂の照射面について前記同様に測定し弾性率を計算してもよい。
 (防汚性試験)
 特開2006-147149号公報に記載の方法(擬似指紋成分について、マグネティックスターラーでよく攪拌しながら約1mL採取し、ポリカーボネート製基板(直径120mm、厚さ1.2mm)上にスピンコート法により塗布した。この基板を60℃で3分間加熱することにより、不要な希釈剤であるメトキシプロパノールを完全に除去した。これを擬似指紋転写用の原版とした。続いて、NO.1のシリコーンゴム栓の、小さい方の端面(直径12mm)を、#240の研磨紙で一様に研磨したものを擬似指紋転写材とし、この研磨した端面を、上記原版に荷重29Nで10秒間押し当てて擬似指紋成分を転写材の端面に移行させた。次いで、上記各サンプルの透光性基体表面に、上記転写材端面を荷重29Nで10秒間押し当てて擬似指紋成分を転写した。なお、指紋パターンは、媒体の半径40mm近傍の位置に転写した。)で人口指紋液(JIS K2246 伊勢久社製)を付着させ積層体に表面に疑似指紋を転写した。次に、プロワイプ(商品名:ソフトスーパーワイパーS132 大王製紙(株)製)を用いて98KPaの圧力で6往復擦ることにより人口指紋液を拭き取った後、蛍光灯下で積層体に汚れが残っているかを目視で観察した。評価は以下の基準で行った。
 ◎:汚れが目視では確認されない。
 ○:目視で若干の汚れが確認される。
 ×:疑似指紋がのび広がり、汚れが拭き取れない。
 (突起合一の評価)
 LED光をフィルム端面側(側面側)から入射し、入射方向から観測した際に、白い斑が見えるかを目視で観察した。評価は以下の基準で行った。
 ○:斜めから観察した際に白い斑がみられない。
 △:斜めから観察した際には白い斑がみられるが、正面から観察した際に白い斑がみられない。
 ×:斜め及び正面から観察した際に白い斑がみられる。
 (電子顕微鏡によるサンプル表面の観察)
 走査電子顕微鏡(日本電子社製、「JSM‐7400F」)を用いて、加速電圧3.00kVの条件で、スタンパおよび積層体の表面に形成された微細凹凸構造を観察した。なお、積層体の観察に関しては、プラチナを10分間蒸着した後に観察を行った。得られた画像から、隣り合う凸部同士の距離と凸部の高さを測定した。それぞれ10点ずつ測定し、平均値を求めた。
 <スタンパの作製>
 電解研磨されたアルミニウム円盤(純度99.99質量%、厚さ2mm、φ65mm)をアルミニウム基材として用いた。15℃に調整した0.3Mシュウ酸水溶液にアルミニウム基材を浸漬させて、直流安定化装置の電源のON/OFFを繰り返すことでアルミニウム基材に間欠的に電流を流すことにより、アルミニウム基材を陽極酸化させた。次に、30秒おきに80Vの定電圧を5秒間印加する操作を60回繰り返し、細孔を有する酸化皮膜を形成した。続いて、酸化皮膜を形成したアルミニウム基材を6質量%のリン酸と1.8質量%のクロム酸を混合した70℃の水溶液中に6時間浸漬させて、酸化皮膜を溶解除去した。酸化皮膜を溶解除去したアルミニウム基材を16℃に調整した0.05Mのシュウ酸水溶液に浸漬させて80Vで7秒間陽極酸化を施した。続いて、アルミニウム基材を32℃に調整した5質量%リン酸水溶液中に20分間浸漬させて、酸化皮膜の細孔を拡大する孔径拡大処理を施した。このように陽極酸化処理と孔径拡大処理を交互に繰り返した。陽極酸化処理と孔径拡大処理はそれぞれ5回ずつ行った。得られたスタンパをTDP-8(日光ケミカルズ株式会社製)の0.1質量%水溶液に10分間浸漬させた後、引き上げて一晩乾燥させることにより、離型処理を施した。
 得られたポーラスアルミナの表面を電子顕微鏡で観察したところ、隣り合う凹部同士の距離が180nm、深さが180nmの略円錐状のテーパー状凹部からなる微細凹凸構造が形成されていた。
 [実施例C1]
 <積層体の製造>
 以下の材料を混合して活性エネルギー線硬化性樹脂組成物を調製した。
・エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(「カヤラッドDPEA-12」、1分子内のエチレンオキサイド構造単位数n=12、日本化薬社製)27質量部、
・アロニックスM-260(商品名、東亜合成社製、ポリエチレングリコール鎖の平均繰り返し単位は13)64質量部
・BYK-3570(商品名、ビッグケミー・ジャパン社製、4官能シリコーンアクリレート/プロピレンオキサイド変性ネオペンチルグリコールジアクリレート=7/3)9質量部
・イルガキュア184(商品名、チバ・スペシャリティーケミカルズ社製)1質量部
・イルガキュア819(商品名、チバ・スペシャリティーケミカルズ社製)0.5部
・TDP-2(商品名、日光ケミカルズ株式会社製)0.1質量部
 該活性エネルギー線硬化性樹脂組成物をスタンパ上に数滴垂らし、トリアセチルセルロースフィルム(FTTD80ULM(商品名)、富士フィルム社製)で押し広げながら被覆した。続いて、フィルム側から積算光照射量1000mJ/cm2のエネルギーで紫外線を照射して活性エネルギー線硬化性樹脂組成物を光硬化させた。その後、フィルムとスタンパを剥離して、図1に示すような、隣り合う凸部同士の距離w1が180nm、凸部の高さd1が180nmの微細凹凸構造を有する積層体を得た。
 <評価>
 活性エネルギー線硬化性樹脂組成物における成分の相溶性及び得られた積層体に関する水接触角、弾性率、防汚性、突起の合一性の各評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4中の略号は下記の通りである。
 DPEA-12:エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(日本化薬社製、「カヤラッドDPEA-12」、1分子内のエチレンオキサイド構造単位数n=12)
 M-260:ポリエチレングリコールジアクリレート(「アロニックスM-260」、東亜合成社製、ポリエチレングリコール鎖の平均繰り返し単位は13)
 APG-700:ポリプロピレングリコールジアクリレート(新中村化学社製、ポリプロピレングリコール鎖の平均繰り返し単位は12)
 BYK-3570:シリコーンアクリレート プロピレンオキサイド変性ネオペンチルグリコールジアクリレート希釈品(ビッグケミー・ジャパン社製)
 IRG.184:ヒドロキシシクロヘキシルフェニルケトン(「イルガキュア184」、チバ・スペシャリティーケミカルズ社製)
 IRG.819:フェニルビス(2,4,6-トリメチルベンゾイル)-ホスフィンオキシド(「イルガキュア819」、チバ・スペシャリティーケミカルズ社製)
 TDP-2:ポリオキシエチレンアルキルエーテルリン酸(商品名、日光ケミカルズ株式会社製)
 なお、表4において、実施例1~8及び比較例1はそれぞれ実施例C1~C8及び比較例C1を示す。
 [実施例C2~C8]
 表4に示す組成に変更した以外は実施例C1と同様にして積層体を得た。結果を表4に示す。
 [比較例C1]
 表4に示す組成に変更した以外は実施例C1と同様にして積層体を得た。結果を表4に示す。
 実施例C1~C8で得られた積層体においては、表層の水接触角が130°以上であり、水やアルコールを用いなくても容易に汚れを除去できる防汚性を示した。実施例C5~C7で得られた積層体においては、シリコーンアクリレートが45質量部以上であるため非常に良好な防汚性を示した。さらに、実施例C5,C6で得られた積層体においては、シリコーンアクリレートが45~65質量部であるため、活性エネルギー線硬化性樹脂組成物の相溶性が良好であり、突起の合一が抑制され、かつ、非常に良好な防汚性を示した。
 比較例C1で得られた積層体においては防汚性が十分ではなかった。
 (実施例D)
 以下、本実施形態を実施例Dにより具体的に説明するが、本発明はこれらに限定されるものではない。
 <各種評価および測定方法>
 (水接触角の判定)
 自動接触角測定装置(KRUSS社製)を用いて、1μlの水を後述する実施例Dおよび比較例Dにおいて作製した積層体の表面に水を滴下し、滴下してから7秒後の水滴の接触角をθ/2法にて算出した。
 (弾性率の測定)
 厚み500μmのテフロン(登録商標)でコーティングしたシートをスペーサーとして用い、活性エネルギー線硬化性組成物を2枚のガラス板で挟み込み、3000mJ/cm2のエネルギーで紫外線を照射して活性エネルギー線硬化性樹脂組成物を光硬化させ、厚み500μmの活性エネルギー線硬化樹脂を作製し、照射面側に表面処理層をコーティングし積層体を得た。作製した積層の表面処理層面をフィッシャー社製「FISCHERSCOPE(R) HM2000」を用いて、50mN/10秒の条件で荷重を増加させながら荷重を加え、50mNで60秒間保持した後、50mN/10秒の条件で荷重を減少させながら除荷した。その際の65%と95%の荷重がかかった点を用いて外挿法により硬化樹脂の弾性率(押込み弾性率)を計算した。なお、厚み500μmのテフロン(登録商標)でコーティングしたシートをスペーサーとして用い、活性エネルギー線硬化性組成物を2枚のガラス板で挟み込み、積算光照射量3000mJ/cm2のエネルギーで紫外線を照射して活性エネルギー線硬化性樹脂組成物を光硬化させ、厚み500μmの活性エネルギー線硬化樹脂を作製し、該硬化樹脂の照射面について前記同様に測定し弾性率を計算してもよい。
 (防汚性試験)
 特開2006-147149号公報に記載の方法(擬似指紋成分について、マグネティックスターラーでよく攪拌しながら約1mL採取し、ポリカーボネート製基板(直径120mm、厚さ1.2mm)上にスピンコート法により塗布した。この基板を60℃で3分間加熱することにより、不要な希釈剤であるメトキシプロパノールを完全に除去した。これを擬似指紋転写用の原版とした。続いて、NO.1のシリコーンゴム栓の、小さい方の端面(直径12mm)を、#240の研磨紙で一様に研磨したものを擬似指紋転写材とし、この研磨した端面を、上記原版に荷重29Nで10秒間押し当てて擬似指紋成分を転写材の端面に移行させた。次いで、上記各サンプルの透光性基体表面に、上記転写材端面を荷重29Nで10秒間押し当てて擬似指紋成分を転写した。なお、指紋パターンは、媒体の半径40mm近傍の位置に転写した。)で人口指紋液(JIS K2246 伊勢久社製)を付着させ積層体に表面に疑似指紋を転写した。次に、プロワイプ(商品名:ソフトスーパーワイパーS132 大王製紙社製)を用いて98KPaの圧力で6往復擦ることにより人口指紋液を拭き取った後、蛍光灯下で積層体に汚れが残っているかを目視で観察した。評価は以下の基準で行った。
 ◎:汚れが目視では確認されない。
 ○:目視で若干の汚れが確認される。
 ×:疑似指紋がのび広がり、汚れが拭き取れない。
 (電子顕微鏡による積層体表面の観察)
 走査電子顕微鏡(日本電子社製、「JSM‐7400F」)を用いて、加速電圧3.00kVの条件で、スタンパおよび積層体の表面に形成された微細凹凸構造を観察した。なお、積層体の観察に関しては、プラチナを10分間蒸着した後に観察を行った。得られた画像から、隣り合う凸部同士の距離と凸部の高さを測定した。それぞれ10点ずつ測定し、平均値を求めた。
 <スタンパの作製>
 電解研磨されたアルミニウム円盤(純度99.99質量%、厚さ2mm、φ65mm)をアルミニウム基材として用いた。15℃に調整した0.3Mシュウ酸水溶液にアルミニウム基材を浸漬させて、直流安定化装置の電源のON/OFFを繰り返すことでアルミニウム基材に間欠的に電流を流すことにより、アルミニウム基材を陽極酸化させた。次に、30秒おきに80Vの定電圧を5秒間印加する操作を60回繰り返し、細孔を有する酸化皮膜を形成した。続いて、酸化皮膜を形成したアルミニウム基材を6質量%のリン酸と1.8質量%のクロム酸を混合した70℃の水溶液中に6時間浸漬させて、酸化皮膜を溶解除去した。酸化皮膜を溶解除去したアルミニウム基材を16℃に調整した0.05Mのシュウ酸水溶液に浸漬させて80Vで7秒間陽極酸化を施した。続いて、アルミニウム基材を32℃に調整した5質量%リン酸水溶液中に20分間浸漬させて、酸化皮膜の細孔を拡大する孔径拡大処理を施した。このように陽極酸化処理と孔径拡大処理を交互に繰り返した。陽極酸化処理と孔径拡大処理はそれぞれ5回ずつ行った。得られたスタンパをTDP-8(日光ケミカルズ社製)の0.1質量%水溶液に10分間浸漬させた後、引き上げて一晩乾燥させることにより、離型処理を施した。
 得られたポーラスアルミナの表面を電子顕微鏡で観察したところ、隣り合う凹部同士の距離が180nm、深さが180nmの略円錐状のテーパー状凹部からなる微細凹凸構造が形成されていた。
 [実施例D1]
 <積層体の製造>
 以下の材料を混合して活性エネルギー線硬化性樹脂組成物を調製した。
・エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(「カヤラッドDPEA-12」、1分子内のエチレンオキサイド構造単位数n=12、日本化薬社製)30質量部、
・アロニックスM-260(商品名、東亜合成社製、ポリエチレングリコール鎖の平均繰り返し単位は13)70質量部、
・イルガキュア184(商品名、チバ・スペシャリティーケミカルズ社製)1質量部
・イルガキュア819(商品名、チバ・スペシャリティーケミカルズ社製)0.5部
・TDP-2(商品名、日光ケミカルズ社製)0.1質量部
 該活性エネルギー線硬化性樹脂組成物をスタンパ上に数滴垂らし、トリアセチルセルロースフィルム(FTTD80ULM(商品名)、富士フィルム社製)で押し広げながら被覆した。続いて、フィルム側から1000mJ/cm2のエネルギーで紫外線を照射して活性エネルギー線硬化性樹脂組成物を光硬化させた。その後、フィルムとスタンパを剥離し、得られた微細凹凸構造を有する表層にプライマーとしてPC-3B(商品名、フロロテクノロジー社製)を微細凹凸構造表面にベンコットM-3II(旭化成せんい社製)でハケ塗りし、常温で90分乾燥した後、FG5070S135-0.1(商品名、フロロテクノロジー社製)をベンコットでハケ塗りし、60℃で3時間乾燥した。続いて、フィルム側から積算光照射量1000mJ/cm2のエネルギーで紫外線を照射して活性エネルギー線硬化性樹脂組成物を光硬化させ、表面処理層を形成した。その後、フィルムとスタンパを剥離して、図3に示すような、隣り合う凸部同士の距離w1が180nm、凸部の高さd1が180nmの微細凹凸構造を有する積層体を得た。
 <評価>
 得られた積層体に関する水接触角、弾性率、防汚性の各評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005

 表5中の略号は下記の通りである。
 DPEA-12:エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(日本化薬社製、「カヤラッドDPEA-12」、1分子内のエチレンオキサイド構造単位数n=12)
 BYK-3570:シリコーンアクリレート プロピレンオキサイド変性ネオペンチルグリコールジアクリレート希釈品(ビッグケミー・ジャパン社製)
 TAS:トリメチロールエタン/アクリル酸/無水コハク酸を2/4/1で縮合反応させた混合物(大阪有機化学工業社製)
 M-260:ポリエチレングリコールジアクリレート(「アロニックスM-260」、東亜合成社製、ポリエチレングリコール鎖の平均繰り返し単位は13)
 X-22-1602:シリコーンアクリレート(信越化学工業社製)
 C6DA:1,6-ヘキサンジオールジアクリレート(大阪有機化学工業社製)
 IRG.184:ヒドロキシシクロヘキシルフェニルケトン(「イルガキュア184」、チバ・スペシャリティーケミカルズ社製)
 IRG.819:フェニルビス(2,4,6-トリメチルベンゾイル)-ホスフィンオキシド(「イルガキュア819」、チバ・スペシャリティーケミカルズ社製)
 TDP-2:ポリオキシエチレンアルキルエーテルリン酸(商品名、日光ケミカルズ株式会社製)
 PC-3B:プライマー(商品名、フロロテクノロジー社製)
 FG5070S135:フッ素コーティング剤(商品名、フロロテクノロジー社製)
 なお、表5において、実施例1~2及び比較例1~2はそれぞれ実施例D1~D2及び比較例D1~D2を示す。
 [実施例D2]
 表5に示す組成に変更した以外は実施例D1と同様にして積層体を得た。結果を表5に示す。
 [比較例D1~D2]
 表5に示す組成に変更した以外は実施例D1と同様にして積層体を得た。結果を表5に示す。
 実施例D1~D2で得られた積層体においては、表層の水接触角が120°以上であり、水やアルコールを用いなくても容易に汚れを除去できる防汚性を示した。実施例D2で得られた積層体においては、弾性率が100MPa以下でかつ、水接触角が130°以上であったため非常に良好な防汚性を示した。
 比較例D1~D2で得られた積層体においては防汚性が十分ではなかった。
 (実施例E)
 以下、本実施形態を実施例Eにより具体的に説明するが、本発明はこれらに限定されるものではない。
 <各種評価および測定方法>
 (水接触角の判定)
 自動接触角測定装置(KRUSS社製)を用いて、後述する実施例Eおよび比較例Eにおいて作製した活性エネルギー線硬化性組成物の硬化物(活性エネルギー線硬化樹脂)の表面に1μlの水を滴下し、滴下してから7秒後の水滴の接触角をθ/2法にて算出した。
 (押込弾性率の測定)
 積層体の表層の照射面を、「FISCHERSCOPE(R) HM2000」(商品名、フィッシャー社製)を用いて、100mN/10秒の条件で荷重を増加させながら荷重を加え、100mNで60秒間保持した後、100mN/10秒の条件で荷重を減少させながら除荷する。その際の65%と95%の荷重がかかった点を用いて、外挿法により弾性率を計算した。なお、厚み500μmのテフロンシートをスペーサーとして用い、活性エネルギー線硬化性組成物を2枚のガラス板で挟み込み、積算光照射量3000mJ/cm2のエネルギーで紫外線を照射して活性エネルギー線硬化性組成物を光硬化させ、厚み500μmの活性エネルギー線硬化樹脂を作製し、該硬化樹脂の照射面について前記同様に測定することで、弾性率を計算することもできる。
 (防汚性試験)
 特開2006-147149号公報に記載の方法に従って防汚性試験を行った。まず、擬似指紋成分について、マグネティックスターラーでよく攪拌しながら約1mL採取し、ポリカーボネート製基板(直径120mm、厚さ1.2mm)上にスピンコート法により塗布した。この基板を60℃で3分間加熱することにより、不要な希釈剤であるメトキシプロパノールを完全に除去した。これを擬似指紋転写用の原版とした。
 続いて、No. 1のシリコーンゴム栓の、小さい方の端面(直径12mm)を、#240の研磨紙で一様に研磨したものを擬似指紋転写材とし、この研磨した端面を、上記原版に荷重29Nで10秒間押し当てて擬似指紋成分を転写材の端面に移行させた。次いで、上記各サンプルの積層体表面に、上記転写材端面を荷重29Nで10秒間押し当てて擬似指紋成分を転写した。なお、指紋パターンは、媒体の半径40mm近傍の位置に転写した。
 次に、プロワイプ(商品名:ソフトスーパーワイパーS132 大王製紙社製)を用いて98KPaの圧力で6往復擦ることにより擬似指紋成分を拭き取った後、蛍光灯下で積層体に汚れが残っているかを目視で観察した。評価は以下の基準で行った。
 ◎:汚れが目視では確認されない。
 ○:目視で若干の汚れが確認される。
 ×:疑似指紋がのび広がり、汚れが拭き取れない。
 (突起合一の評価)
 LED光をフィルム端面側(側面側)から入射し、入射方向から観測した際に、白い斑が見えるかを目視で観察した。評価は以下の基準で行った。
 ○:斜めから観察した際に白い斑がみられない。
 △:斜めから観察した際には白い斑がみられるが、正面から観察した際に白い斑がみられない。
 ×:斜め及び正面から観察した際に白い斑がみられる。
 (電子顕微鏡によるサンプル表面の観察)
 走査電子顕微鏡(日本電子社製、「JSM‐7400F」)を用いて、加速電圧3.00kVの条件で、スタンパおよび積層体の表面に形成された微細凹凸構造を観察した。なお、積層体の観察に関しては、プラチナを10分間蒸着した後に観察を行った。得られた画像から、隣り合う凸部同士の距離と凸部の高さを測定した。それぞれ10点ずつ測定し、平均値を求めた。
 <スタンパの作製>
 電解研磨されたアルミニウム円盤(純度99.99質量%、厚さ2mm、φ65mm)をアルミニウム基材として用いた。15℃に調整した0.3Mシュウ酸水溶液にアルミニウム基材を浸漬させて、直流安定化装置の電源のON/OFFを繰り返すことでアルミニウム基材に間欠的に電流を流すことにより、アルミニウム基材を陽極酸化させた。次に、30秒おきに80Vの定電圧を5秒間印加する操作を60回繰り返し、細孔を有する酸化皮膜を形成した。続いて、酸化皮膜を形成したアルミニウム基材を6質量%のリン酸と1.8質量%のクロム酸を混合した70℃の水溶液中に6時間浸漬させて、酸化皮膜を溶解除去した。酸化皮膜を溶解除去したアルミニウム基材を16℃に調整した0.05Mのシュウ酸水溶液に浸漬させて80Vで5秒間陽極酸化を施した。続いて、アルミニウム基材を32℃に調整した5質量%リン酸水溶液中に20分間浸漬させて、酸化皮膜の細孔を拡大する孔径拡大処理を施した。このように陽極酸化処理と孔径拡大処理を交互に繰り返した。陽極酸化処理と孔径拡大処理はそれぞれ5回ずつ行った。得られたスタンパをTDP-8(日光ケミカルズ株式会社製)の0.1質量%水溶液に10分間浸漬させた後、引き上げて一晩乾燥させることにより、離型処理を施した。
 得られたポーラスアルミナの表面を電子顕微鏡で観察したところ、隣り合う凹部同士の距離が180nm、深さが150nmの略円錐状のテーパー状凹部からなる微細凹凸構造が形成されていた。
 [実施例E1]
 <積層体の製造>
 以下の材料を混合して活性エネルギー線硬化性組成物を調製した。
・エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(「カヤラッドDPEA-12」、1分子内のエチレンオキサイド構造単位数n=12、日本化薬社製)22質量部
・アロニックスM-260(商品名、東亜合成社製、ポリエチレングリコール鎖の平均繰り返し単位は13)32質量部
・APG-700(商品名、新中村化学社製、ポリプロピレングリコール鎖の平均繰り返し単位は12)32質量部
・BYK-3570(商品名、ビッグケミー・ジャパン社製、シリコーンアクリレート プロピレンオキサイド変性ネオペンチルグリコールジアクリレート希釈品)9質量部
・カレンズMT PE1(商品名、昭和電工社製、SH基を4つ有する化合物)5質量部
・イルガキュア184(商品名、チバ・スペシャリティーケミカルズ社製)1質量部
・イルガキュア819(商品名、チバ・スペシャリティーケミカルズ社製)0.5部
・TDP-2(商品名、日光ケミカルズ株式会社製)0.1質量部
 該活性エネルギー線硬化性組成物をスタンパ上に数滴垂らし、トリアセチルセルロースフィルム(FTTD80ULM(商品名)、富士フィルム社製)で押し広げながら被覆した。続いて、フィルム側から積算光照射量1000mJ/cm2のエネルギーで紫外線を照射して活性エネルギー線硬化性組成物を光硬化させた。図1に示すような、隣り合う凸部同士の距離w1が180nm、凸部の高さd1が150nmの微細凹凸構造を有する積層体を得た。
 <評価>
 得られた積層体に関する水接触角、弾性率、防汚性、突起合一の各評価を行った。得られた積層体は弾性率が60MPaと十分に低く、水接触角も130°以上であるため、乾拭きで十分に汚れを除去することができ、突起合一も無く防汚性に優れたものであった。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表6中の略号は下記の通りである。
DPHA:ジペンタエリスリトールヘキサアクリレート(第一工業製薬社製)
DPEA-12:エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(日本化薬社製、「カヤラッドDPEA-12」、1分子内のエチレンオキサイド構造単位数n=12)
DPHA-30EO:エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート(第一工業製薬社製、1分子内のエチレンオキサイド構造単位数n=30)
M-260:ポリエチレングリコールジアクリレート(「アロニックスM-260」、東亜合成社製、ポリエチレングリコール鎖の平均繰り返し単位は13)
APG-700(商品名、新中村化学社製、ポリプロピレングリコール鎖の平均繰り返し単位は12)
C6DA:1,6-ヘキサンジオールジアクリレート(大阪有機化学工業社製)
BYK-3570:シリコーンアクリレート プロピレンオキサイド変性ネオペンチルグリコールジアクリレート希釈品(ビッグケミー・ジャパン社製)
X-22-1602:シリコーンアクリレート(信越化学工業社製)
PE1:カレンズMT PE1(商品名、昭和電工社製、SH基を4つ有する化合物)
NR1:カレンズMT NR1(商品名、昭和電工社製、SH基を3つ有する化合物)
BD1:カレンズMT BD1(商品名、昭和電工社製、SH基を2つ有する化合物)
nOM:n-オクチルメルカプタン(エルファトムケムジャパン社製、SH基を1つ有する化合物)
IRG184:ヒドロキシシクロヘキシルフェニルケトン(「イルガキュア184」、チバ・スペシャリティーケミカルズ社製)
IRG819:フェニルビス(2,4,6-トリメチルベンゾイル)-ホスフィンオキシド(「イルガキュア819」、チバ・スペシャリティーケミカルズ社製)
TDP-2:ポリオキシエチレンアルキルエーテルリン酸(商品名、日光ケミカルズ株式会社製)
 なお、表6及び7において、実施例1~13及び比較例1はそれぞれ実施例E1~E13及び比較例E1を示す。
 [実施例E2~E13、比較例E1]
 表6に示す組成に変更した以外は実施例E1と同様にして積層体を得た。結果を表7に示す。
 実施例E2~E13で得られた積層体においては、水やアルコールを用いなくても容易に汚れを除去できる防汚性を示した。
 実施例E2~E11は押し込み弾性率が500MPa以下であり、水接触角が130°以上であるため良好な防汚性を示した。中でも実施例1~6、8、10は押し込み弾性率が100MPa以下であるため特に良好な防汚性を示した。実施例E12、E13はSH基を有する化合物の添加量が多いため、水接触角が130°以下にも関わらず良好な防汚性を示した。
 本実施形態の積層体は、優れた光学性能を維持しながら、容易に汚れが除去できることから、テレビ、携帯電話、携帯ゲ-ム機等の各種ディスプレイ、タッチパネル、ショーケース、外装カバー等に利用可能であり、工業的に極めて有用である。
10:積層体
11:基材
12:表層
13:凸部
14:凹部

Claims (20)

  1.  微細凹凸構造が形成された表面を有する表層を備える積層体であって、
     前記表層の弾性率が250MPa未満であり、且つ前記表層の摩擦係数の傾きが1.8×10-3以下である、積層体。
  2.  前記表層の摩擦係数の傾きが-2.0×10-3以上である、請求項1に記載の積層体。
  3.  前記表層の摩擦係数の傾きが-1.8×10-3以上1.0×10-3以下である、請求項1又は2に記載の積層体。
  4.  前記表層の弾性率が160MPa未満である、請求項1~3のいずれかに記載の積層体。
  5.  前記表層の弾性率が100MPa未満である、請求項1~4のいずれかに記載の積層体。
  6.  前記表層の水接触角が25°以下、または130°以上である、請求項1~5のいずれかに記載の積層体。
  7.  前記表層が活性エネルギー線硬化性樹脂組成物の硬化物からなる層を含む請求項1~6のいずれかに記載の積層体。
  8.  前記活性エネルギー線硬化性樹脂組成物が、3官能以上の多官能(メタ)アクリレート(A)1~55質量部、2官能の(メタ)アクリレート(B)10~95質量部を含む(但し、前記活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とする)、請求項7に記載の積層体。
  9.  前記3官能以上の多官能(メタ)アクリレート(A)の含有量が5~40質量部であり、前記2官能の(メタ)アクリレート(B)の含有量が20~80質量部である請求項8に記載の積層体。
  10.  前記3官能以上の多官能(メタ)アクリレート(A)の含有量が10~30質量部であり、前記2官能の(メタ)アクリレート(B)の含有量が30~70質量部である請求項8に記載の積層体。
  11.  前記活性エネルギー線硬化性樹脂組成物が、さらにシリコーン(メタ)アクリレート(C)3~85質量部を含む(但し、前記活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とし、(A)及び(B)はそれぞれ(C)を除く)、請求項8に記載の積層体。
  12.  前記活性エネルギー線硬化性樹脂組成物が、さらにシリコーン(メタ)アクリレート(C)7~70質量部を含む(但し、前記活性エネルギー線硬化性樹脂組成物中の重合性成分の合計を100質量部とし、(A)及び(B)はそれぞれ(C)を除く)、請求項9に記載の積層体。
  13.  前記活性エネルギー線硬化性樹脂組成物が、SH基を有する化合物(D)を含む請求項7に記載の積層体。
  14.  前記活性エネルギー線硬化性樹脂組成物は、2官能以上の多官能(メタ)アクリレート(E)を0~95質量部、シリコーン(メタ)アクリレート(C)を0~75質量部、前記SH基を有する化合物(D)を1~60質量部含む(但し、重合性成分の合計を100質量部とする。)、請求項13に記載の積層体。
  15.  前記表層は、前記活性エネルギー線硬化性樹脂組成物の硬化物からなる層から構成される請求項7~14のいずれかに記載の積層体。
  16.  前記表層が、前記活性エネルギー線硬化性樹脂組成物の硬化物からなる層と、該活性エネルギー線硬化性樹脂組成物の硬化物からなる層の上に形成された、最表面層としての表面処理層とから構成される、請求項7~14のいずれかに記載の積層体。
  17.  前記微細凹凸構造のピッチが100nm以上250nm以下である、請求項1~15のいずれかに記載の積層体。
  18.  請求項1~17のいずれかに記載の積層体を備えた反射防止物品。
  19.  請求項1~17のいずれかに記載の積層体を備えた画像表示装置。
  20.  請求項1~17のいずれかに記載の積層体を備えたタッチパネル。
PCT/JP2013/066480 2012-06-15 2013-06-14 積層体 WO2013187506A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112014031311A BR112014031311A2 (pt) 2012-06-15 2013-06-14 laminado
US14/407,790 US20150125659A1 (en) 2012-06-15 2013-06-14 Laminate
KR1020157000951A KR101755955B1 (ko) 2012-06-15 2013-06-14 적층체
JP2013529484A JP5725184B2 (ja) 2012-06-15 2013-06-14 積層体
CN201380030398.7A CN104349892B (zh) 2012-06-15 2013-06-14 层积体
EP13803571.2A EP2862706B1 (en) 2012-06-15 2013-06-14 Laminate

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012135983 2012-06-15
JP2012-135983 2012-06-15
JP2012-135981 2012-06-15
JP2012135981 2012-06-15
JP2012-201734 2012-09-13
JP2012201734 2012-09-13
JP2012249312 2012-11-13
JP2012-249312 2012-11-13

Publications (1)

Publication Number Publication Date
WO2013187506A1 true WO2013187506A1 (ja) 2013-12-19

Family

ID=49758324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066480 WO2013187506A1 (ja) 2012-06-15 2013-06-14 積層体

Country Status (8)

Country Link
US (1) US20150125659A1 (ja)
EP (1) EP2862706B1 (ja)
JP (1) JP5725184B2 (ja)
KR (1) KR101755955B1 (ja)
CN (1) CN104349892B (ja)
BR (1) BR112014031311A2 (ja)
TW (1) TWI500954B (ja)
WO (1) WO2013187506A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006627A1 (ja) * 2014-07-11 2016-01-14 三菱レイヨン株式会社 微細凹凸構造体
JP2016015134A (ja) * 2014-07-01 2016-01-28 ハネウェル・インターナショナル・インコーポレーテッド 自浄式防汚性構造体および関連する製造方法
CN105319614A (zh) * 2014-08-05 2016-02-10 群创光电股份有限公司 抗反射结构及电子装置
WO2017164046A1 (ja) * 2016-03-23 2017-09-28 シャープ株式会社 光学フィルムの製造方法、及び、金型
WO2018079525A1 (ja) * 2016-10-25 2018-05-03 ダイキン工業株式会社 機能性膜
JPWO2017110472A1 (ja) * 2015-12-22 2018-10-11 日油株式会社 剥離シート用硬化性樹脂組成物、剥離シート、これを用いた工程基材、及び基材を保護する方法
KR102060872B1 (ko) 2015-04-30 2019-12-30 샤프 가부시키가이샤 광학 필름의 제조 방법 및 광학 필름

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6165127B2 (ja) * 2014-12-22 2017-07-19 三菱重工工作機械株式会社 半導体装置及び半導体装置の製造方法
KR102253424B1 (ko) * 2016-03-14 2021-05-18 덴카 주식회사 발액성 수지 시트 및 그것을 사용한 물품
WO2018173867A1 (ja) * 2017-03-21 2018-09-27 シャープ株式会社 防汚性フィルム
CN107718729A (zh) * 2017-11-10 2018-02-23 江苏瑞和磨料磨具有限公司 一种柔软耐水强力磨砂布
CN108921075B (zh) * 2018-06-26 2021-02-23 业成科技(成都)有限公司 导光元件
KR102132728B1 (ko) * 2019-04-16 2020-07-10 울산과학기술원 방오성을 가지는 방오 표면 구조
KR102168854B1 (ko) * 2019-04-16 2020-10-22 울산과학기술원 자기 회복성을 가지는 방오 장치
CN110444568A (zh) * 2019-07-31 2019-11-12 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及其制作方法、显示装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375702A (ja) 1986-09-19 1988-04-06 Hitachi Ltd 反射防止膜
JPH07316468A (ja) 1994-05-20 1995-12-05 Mitsubishi Rayon Co Ltd 光ディスク用コーティング材および光ディスク
JPH11217560A (ja) 1998-02-03 1999-08-10 Sumitomo Osaka Cement Co Ltd 防曇性膜
JP2001183506A (ja) 1999-12-24 2001-07-06 Sony Corp 光学素子及び表示装置
JP2001315247A (ja) 2000-05-12 2001-11-13 Nikon Corp 親水性被膜を具えた物品
JP2003172808A (ja) 2001-12-06 2003-06-20 Hitachi Maxell Ltd 超撥水性プラスチック基板及び反射防止膜
JP2005097371A (ja) 2003-09-22 2005-04-14 Fuji Photo Film Co Ltd フッ素含有樹脂組成物及び光学物品、並びにそれを用いた画像表示装置
JP2005156695A (ja) 2003-11-21 2005-06-16 Kanagawa Acad Of Sci & Technol 反射防止膜及びその製造方法、並びに反射防止膜作製用スタンパ及びその製造方法
JP2006147149A (ja) 2001-09-19 2006-06-08 Tdk Corp 光情報媒体の試験方法
WO2008096872A1 (ja) * 2007-02-09 2008-08-14 Mitsubishi Rayon Co., Ltd. 透明成形体およびこれを用いた反射防止物品
JP2011076072A (ja) 2009-09-02 2011-04-14 Sony Corp 光学素子、およびその製造方法
JP2012163723A (ja) * 2011-02-04 2012-08-30 Sony Corp 光学素子およびその製造方法、表示装置、情報入力装置、ならびに写真
WO2012133943A1 (ja) * 2011-03-31 2012-10-04 ソニー株式会社 印刷物および印画物
JP2013018910A (ja) * 2011-07-13 2013-01-31 Asahi Kasei E-Materials Corp 樹脂硬化物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201230A (ja) * 2000-11-02 2002-07-19 Mitsubishi Chemicals Corp 光硬化性樹脂組成物、低複屈折光学部材及びその製造方法
EP1520688B1 (en) * 2002-06-27 2013-05-01 TDK Corporation Object with composite hard coating layer and method of forming composite hard coating layer
EP2219051A1 (en) * 2002-08-15 2010-08-18 Fujifilm Corporation Antireflection film, polarizing plate and image display device
KR101139267B1 (ko) * 2003-09-16 2012-05-22 후지필름 가부시키가이샤 광학 기능 필름, 반사 방지 필름, 편광판, 및 화상 표시 장치
US7897243B2 (en) * 2005-10-04 2011-03-01 The Inctec Inc. Structure having specific surface shape and properties and (meth)acrylic polymerizable composition for formation of the structure
KR20080029922A (ko) * 2006-09-29 2008-04-03 후지필름 가부시키가이샤 투명 보호 필름, 광학 보상 필름, 편광판 및 액정 표시장치
WO2009001629A1 (ja) * 2007-06-26 2008-12-31 Konica Minolta Opto, Inc. クリアーハードコートフィルム、これを用いた反射防止フィルム、偏光板、及び表示装置
JP5264113B2 (ja) * 2007-07-13 2013-08-14 旭化成イーマテリアルズ株式会社 光硬化性樹脂組成物及び、成型体及び、成型体の製造方法
KR101598729B1 (ko) * 2009-06-23 2016-02-29 미츠비시 레이온 가부시키가이샤 반사 방지 물품 및 디스플레이 장치
EP2404739A1 (en) * 2010-07-09 2012-01-11 3M Innovative Properties Co. Durable hyrophobic structured surface

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375702A (ja) 1986-09-19 1988-04-06 Hitachi Ltd 反射防止膜
JPH07316468A (ja) 1994-05-20 1995-12-05 Mitsubishi Rayon Co Ltd 光ディスク用コーティング材および光ディスク
JPH11217560A (ja) 1998-02-03 1999-08-10 Sumitomo Osaka Cement Co Ltd 防曇性膜
JP2001183506A (ja) 1999-12-24 2001-07-06 Sony Corp 光学素子及び表示装置
JP2001315247A (ja) 2000-05-12 2001-11-13 Nikon Corp 親水性被膜を具えた物品
JP2006147149A (ja) 2001-09-19 2006-06-08 Tdk Corp 光情報媒体の試験方法
JP2003172808A (ja) 2001-12-06 2003-06-20 Hitachi Maxell Ltd 超撥水性プラスチック基板及び反射防止膜
JP2005097371A (ja) 2003-09-22 2005-04-14 Fuji Photo Film Co Ltd フッ素含有樹脂組成物及び光学物品、並びにそれを用いた画像表示装置
JP2005156695A (ja) 2003-11-21 2005-06-16 Kanagawa Acad Of Sci & Technol 反射防止膜及びその製造方法、並びに反射防止膜作製用スタンパ及びその製造方法
WO2008096872A1 (ja) * 2007-02-09 2008-08-14 Mitsubishi Rayon Co., Ltd. 透明成形体およびこれを用いた反射防止物品
JP4689718B2 (ja) 2007-02-09 2011-05-25 三菱レイヨン株式会社 透明成形体およびこれを用いた反射防止物品
JP2011076072A (ja) 2009-09-02 2011-04-14 Sony Corp 光学素子、およびその製造方法
JP2012163723A (ja) * 2011-02-04 2012-08-30 Sony Corp 光学素子およびその製造方法、表示装置、情報入力装置、ならびに写真
WO2012133943A1 (ja) * 2011-03-31 2012-10-04 ソニー株式会社 印刷物および印画物
JP2013018910A (ja) * 2011-07-13 2013-01-31 Asahi Kasei E-Materials Corp 樹脂硬化物

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015134A (ja) * 2014-07-01 2016-01-28 ハネウェル・インターナショナル・インコーポレーテッド 自浄式防汚性構造体および関連する製造方法
US10317578B2 (en) 2014-07-01 2019-06-11 Honeywell International Inc. Self-cleaning smudge-resistant structure and related fabrication methods
WO2016006627A1 (ja) * 2014-07-11 2016-01-14 三菱レイヨン株式会社 微細凹凸構造体
CN105319614A (zh) * 2014-08-05 2016-02-10 群创光电股份有限公司 抗反射结构及电子装置
KR102060872B1 (ko) 2015-04-30 2019-12-30 샤프 가부시키가이샤 광학 필름의 제조 방법 및 광학 필름
JPWO2017110472A1 (ja) * 2015-12-22 2018-10-11 日油株式会社 剥離シート用硬化性樹脂組成物、剥離シート、これを用いた工程基材、及び基材を保護する方法
CN108780162A (zh) * 2016-03-23 2018-11-09 夏普株式会社 光学薄膜的制造方法以及模具
CN108780162B (zh) * 2016-03-23 2019-09-03 夏普株式会社 光学薄膜的制造方法以及模具
WO2017164046A1 (ja) * 2016-03-23 2017-09-28 シャープ株式会社 光学フィルムの製造方法、及び、金型
WO2018079525A1 (ja) * 2016-10-25 2018-05-03 ダイキン工業株式会社 機能性膜
JPWO2018079525A1 (ja) * 2016-10-25 2019-07-25 ダイキン工業株式会社 機能性膜
EP3514580A4 (en) * 2016-10-25 2020-06-10 Daikin Industries, Ltd. FUNCTIONAL FILM
US10781335B2 (en) 2016-10-25 2020-09-22 Daikin Industries, Ltd. Functional film

Also Published As

Publication number Publication date
BR112014031311A2 (pt) 2017-06-27
EP2862706A1 (en) 2015-04-22
KR20150023757A (ko) 2015-03-05
EP2862706A4 (en) 2015-07-01
TW201405159A (zh) 2014-02-01
JPWO2013187506A1 (ja) 2016-02-08
JP5725184B2 (ja) 2015-05-27
KR101755955B1 (ko) 2017-07-07
US20150125659A1 (en) 2015-05-07
TWI500954B (zh) 2015-09-21
CN104349892B (zh) 2017-06-09
CN104349892A (zh) 2015-02-11
EP2862706B1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP5725184B2 (ja) 積層体
EP2128659B1 (en) Transparent molded body and antireflective member using the same
EP2664636B1 (en) Active energy ray-curable resin composition, microrelief structure, and method for producing microrelief structure
JP5605223B2 (ja) 反射防止物品およびディスプレイ装置
JP5648632B2 (ja) 活性エネルギー線硬化性樹脂組成物、及びそれを用いたナノ凹凸構造体とその製造方法、及びナノ凹凸構造体を備えた撥水性物品
WO2013191169A1 (ja) 積層体の製造方法、積層体、および物品
WO2011155499A1 (ja) 微細凹凸構造を表面に有する物品の製造方法、金型の離型処理方法、および金型表面離型処理用活性エネルギー線硬化性樹脂組成物
TWI569947B (zh) 活性能線硬化性樹脂組合物及表面具有微細凹凸結構 的物品的製造方法
KR20140037092A (ko) 특정 표면 형상을 갖는 구조체 및 그 구조체의 제조 방법
JP6686284B2 (ja) 活性エネルギー線硬化性樹脂組成物の硬化物を含む物品
WO2014189075A1 (ja) 積層体
JP2009271298A (ja) 防曇性透明部材、およびこれを具備した物品
JP2014077040A (ja) 活性エネルギー線硬化性組成物、およびそれを用いた微細凹凸構造体
WO2016158979A1 (ja) 活性エネルギー線硬化性樹脂組成物及び物品
WO2014192709A1 (ja) 積層体及びその製造方法
WO2016006627A1 (ja) 微細凹凸構造体
JP2013033136A (ja) 微細凹凸構造体、およびこれを有する反射防止物品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013529484

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803571

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14407790

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157000951

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013803571

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014031311

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014031311

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141215