WO2016006627A1 - 微細凹凸構造体 - Google Patents

微細凹凸構造体 Download PDF

Info

Publication number
WO2016006627A1
WO2016006627A1 PCT/JP2015/069629 JP2015069629W WO2016006627A1 WO 2016006627 A1 WO2016006627 A1 WO 2016006627A1 JP 2015069629 W JP2015069629 W JP 2015069629W WO 2016006627 A1 WO2016006627 A1 WO 2016006627A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine concavo
convex structure
meth
acrylate
convex
Prior art date
Application number
PCT/JP2015/069629
Other languages
English (en)
French (fr)
Inventor
広志 尾野本
毅 瀧原
英子 岡本
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2015537064A priority Critical patent/JPWO2016006627A1/ja
Publication of WO2016006627A1 publication Critical patent/WO2016006627A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures

Definitions

  • the present invention relates to a fine relief structure. This application claims priority on July 11, 2014 based on Japanese Patent Application No. 2014-142811 for which it applied to Japan, and uses the content here.
  • a fine concavo-convex structure body having a fine concavo-convex structure having a size of the convex or concave adjacent to the surface having a size equal to or smaller than the wavelength of visible light exhibits antireflection performance due to a continuous change in refractive index.
  • the above-mentioned fine concavo-convex structure body can also exhibit water-repellent performance by the lotus effect.
  • Patent Document 1 proposes a method of making a fine concavo-convex structure hydrophilic and removing the dirt from the resin surface by wiping with water when the dirt adheres.
  • Patent Document 2 discloses a method of scraping dirt by dry wiping by forming a fine concavo-convex structure using a cured resin having hydrophobicity and appropriate flexibility, and fluorine or A method of including silicon is described.
  • Patent Document 1 has a problem in that use in a display such as an electronic device that may cause a failure due to water is limited.
  • the method described in Patent Document 2 has found that there is a problem in that excellent antifouling properties are not necessarily developed as a result of studies by the present inventors.
  • the present invention has been made in view of the above circumstances. That is, an object of the present invention is to solve these problems and to provide a fine concavo-convex structure having both excellent antifouling properties and antireflection performance.
  • the present invention is as follows.
  • a fine uneven structure having a fine uneven structure on the surface The fine concavo-convex structure is made of a cured product of the active energy ray-curable composition, and has a plurality of convex portions having an interval between adjacent convex portions of 50 nm or more and 400 nm or less, The convex portion has an aspect ratio of 0.6 to 1.5;
  • the cured product forming the fine concavo-convex structure has an elastic modulus at 25 ° C.
  • the active energy ray-curable composition includes a polymerizable component containing an oxyalkylene group and a silicone-containing component, and when the total of the polymerizable components is 100 parts by mass,
  • the content rate Y (parts by mass) and the content rate X (parts by mass) of the oxyalkylene group in the polymerizable component are as follows: ⁇ 1.4X + 14 ⁇ Y ⁇ ⁇ 1.4X + 70
  • the fine uneven structure according to (7) comprising 0.1 to 25 parts by mass of the silicone-containing component.
  • the fine concavo-convex structure according to (7) or (8) comprising 20 to 40 parts by mass of a polymerizable component containing the oxyalkylene group.
  • the fine concavo-convex structure according to (1) wherein an interval between adjacent convex portions is 150 nm or more and 300 nm or less.
  • An antireflection article comprising the fine concavo-convex structure according to (1).
  • a display comprising the fine concavo-convex structure according to (1) and an image display device or an object.
  • An automotive member comprising the fine concavo-convex structure according to (1) and an automotive member.
  • a fine concavo-convex structure having both excellent antifouling properties and antireflection performance can be provided.
  • [Fine relief structure] 1A and 1B are schematic cross-sectional views showing an embodiment of the fine concavo-convex structure of the present invention.
  • a fine concavo-convex structure 10 shown in FIG. 1A is obtained by laminating a layer (surface layer) 12 that is a cured product of the active energy ray-curable composition of the present invention on a base material 11.
  • the surface of the layer 12 has a fine uneven structure.
  • the cured product forming the fine concavo-convex structure refers to the surface layer of the fine concavo-convex structure.
  • conical convex portions 13 and concave portions 14 are formed at equal intervals w1.
  • the shape of the convex portion is preferably a shape in which the cross-sectional area on the vertical plane continuously increases from the apex side to the base material side.
  • a refractive index can be continuously increased toward the base material side from the vertex side of a convex part.
  • the interval w1 between the convex portions is preferably not more than the shortest wavelength (380) of visible light.
  • the interval between the convex portions means the distance from the highest position of the convex portion to the highest position of the adjacent convex portion, and the interval between the concave portions means the distance from the deepest portion of the concave portion to the deepest portion of the adjacent concave portion. . If the interval w1 between the convex portions is 380 nm or less, the scattering of visible light can be suppressed, and the antireflection film can be suitably used for optical applications.
  • the interval w1 between the convex portions is 50 nm or more and 400 nm, preferably 100 nm or more and 380 nm or less, and more preferably 150 nm or more and 300 nm or less.
  • the height of the convex portion or the depth of the concave portion is preferably set to a size that can suppress the fluctuation of the reflectance depending on the wavelength. .
  • 120 nm or more is preferable, 150 nm or more is more preferable, and 180 nm or more is particularly preferable.
  • 120 nm or more and 450 nm or less are preferable, 150 nm or more and 380 nm or less are more preferable, and 180 nm or more and 300 nm or less are especially preferable.
  • w1 and d1 are arithmetic average values of measured values at arbitrary 10 points obtained by measurement in an image with an acceleration voltage of 3.00 kV using a field emission scanning electron microscope.
  • the higher the height of the convex portion the smaller the difference between the maximum reflectance and the minimum reflectance in the visible light region.
  • the convex portion is too high, the mechanical strength of the convex portion is lowered and the convex portion may be easily broken.
  • adjacent convex portions are united (the convex portions are attracted), and the reflectance of the fine concavo-convex structure may increase.
  • the vertical distance d1 to 450 nm or less, adjacent convex portions can be united, and the mechanical strength of the convex portions can be suitably maintained.
  • the aspect ratio of the convex portion of the fine concavo-convex structure of the present invention is 0.6 to 1.5.
  • the distance w1 between the protrusions is 300 nm, sufficient antireflection performance can be obtained if the height d1 of the protrusions is 180 nm, so that the aspect ratio of the protrusions is 0.6.
  • the distance w1 between the protrusions is 120 nm, sufficient antireflection performance can be obtained if the height d1 of the protrusions is 180 nm, and the aspect ratio of the protrusions is 1.5.
  • the aspect ratio of the convex portions When the aspect ratio of the convex portions is 1.5 or less, it is possible to avoid a phenomenon that the antireflection performance is lowered due to the adjacent convex portions snuggling together. Moreover, if the aspect ratio of the convex portion is 0.6 or more, sufficient antireflection performance can be obtained.
  • the aspect ratio of the convex portion is a value obtained by dividing the height d1 of the convex portion obtained as described above by the interval w1 between the convex portions.
  • the aspect ratio of the recess is a value obtained by dividing the depth d1 of the recess by the interval w1 of the recess.
  • the convex portion may have a bell shape in which the top portion 13 b of the convex portion is a curved surface, and the shape in which the cross-sectional area in the vertical plane continuously increases from the apex side to the base material side. Can be adopted.
  • the fine concavo-convex structure is not limited to the embodiment shown in FIGS. 1A and 1B, and can be formed on one surface or the entire surface of the substrate, or on the entire surface or a part thereof.
  • the tip of the projection of the convex portion is thin, and when a water droplet exists on the surface having a fine concavo-convex structure, the contact surface between the fine concavo-convex structure and the water droplet It is preferable that the area occupied by the cured product is as small as possible. Further, an intermediate layer for improving various physical properties such as scratch resistance and adhesiveness may be provided between the substrate 11 and the surface layer 12.
  • the substrate may be any material as long as it can support a cured product having a fine concavo-convex structure.
  • a transparent substrate that is, visible light is used.
  • a molded article that penetrates is preferred.
  • the material constituting the transparent substrate include methyl methacrylate (co) polymer, polycarbonate, styrene (co) polymer, methyl methacrylate-styrene copolymer, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, and polyethylene.
  • Polyester such as terephthalate, polylactic acid, polyamide, polyimide, polyether sulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polyurethane, composite of these substances (polymethyl methacrylate) And polylactic acid, polymethyl methacrylate and polyvinyl chloride, etc.) and glass.
  • the base material may contain one or more of these materials.
  • the fine concavo-convex structure according to the present invention preferably has impact resistance, and therefore, the substrate preferably contains polycarbonate.
  • the (co) polymer represents a polymer or a copolymer.
  • the shape of the base material may be any of a sheet shape, a film shape, and the like, and the production method thereof may be any one produced by any production method such as injection molding, extrusion molding, cast molding or the like.
  • the surface of the transparent substrate may be subjected to coating or corona treatment for the purpose of improving properties such as adhesion, antistatic properties, scratch resistance, and weather resistance.
  • the thickness of the substrate is not particularly limited.
  • the thickness of the substrate is preferably 38 ⁇ m or more, more preferably 80 ⁇ m or more, further preferably 125 ⁇ m or more, and particularly preferably 400 ⁇ m or more.
  • the upper limit of the thickness of the substrate is not particularly limited, but the thickness of the substrate is preferably 38 ⁇ m or more and 1 mm or less, more preferably 80 ⁇ m or more and 500 ⁇ m or less, and further preferably 125 ⁇ m or more and 300 ⁇ m or less.
  • the thickness of a base material is an average value of the measured value of the thickness of arbitrary five base materials measured using the micrometer. Such a fine concavo-convex structure can be applied as an antireflective film, and effects such as high scratch resistance and excellent fingerprint removability can be obtained.
  • the elastic modulus at 25 ° C. of the cured product forming the fine concavo-convex structure is 15 to 140 MPa.
  • the elastic modulus of the cured product can be measured according to JIS K 7161.
  • a curable composition is poured between two glass plates, cured with a spacer having a thickness of about 0.2 mm, molded into a plate shape, and punched into a predetermined dumbbell shape from this plate Is a specimen for a tensile test.
  • the tensile test is performed using a general tensile tester at a test speed of 1 mm / min.
  • the tensile elastic modulus is also called Young's modulus.
  • “elastic modulus” means tensile elastic modulus. This is a value obtained by dividing the tensile stress per unit cross-sectional area by the tensile strain, and is generally calculated at a tensile elongation of 1 to 2%.
  • the tensile strain is a value obtained by dividing the tensile elongation by the length of the sample piece. However, if the test piece has a predetermined dumbbell shape, a value obtained by dividing the distance between the marked lines is generally adopted.
  • the elastic modulus of the present invention refers to a value measured in an environment of 25 ° C.
  • the elastic modulus can also be measured using a general microindenter (for example, Fisherscope HM2000 manufactured by Fisher Instruments) or a general viscoelasticity measuring apparatus (for example, “DMS110” manufactured by Seiko Instruments Inc.).
  • a general microindenter for example, Fisherscope HM2000 manufactured by Fisher Instruments
  • a general viscoelasticity measuring apparatus for example, “DMS110” manufactured by Seiko Instruments Inc.
  • the value of the indentation elastic modulus of the surface layer portion of the fine concavo-convex structure can be obtained using a microindentation hardness tester.
  • the indentation elastic modulus obtained here is correlated with the tensile elastic modulus, that is, the Young's modulus.
  • Young's modulus see “Material Testing Technology” (Vol. 43, NO. 2, P148-152, April 1998 issue).
  • a method for measuring the indentation elastic modulus of the surface layer portion of the fine concavo-convex structure using a microindentation hardness measuring instrument is performed as follows. That is, a transparent glass plate is attached to the surface of the laminated structure on the substrate side via an optical adhesive, and this is used as a sample. The indentation elastic modulus of the sample is measured using a microindentation hardness tester. The indenter is a Vickers indenter (four-sided diamond cone), and the evaluation is performed at a temperature of 25 ° C. and a humidity of 50%.
  • the evaluation program is performed as [Indentation (100 mN / s, 5 seconds) ⁇ [Creep (100 mN, 10 seconds)] ⁇ [Unloading (100 mN / s, 5 seconds)].
  • the fine concavo-convex structure can be cut into a size that can be set on a testing machine.
  • the transparent glass plate “large slide glass, product number: S9112” manufactured by Matsunami Glass Industrial Co., Ltd., 76 mm ⁇ 52 mm size can be used.
  • a micro indentation hardness tester a device name: Fisherscope HM2000XYp, manufactured by Fisher Instruments can be used.
  • the elastic modulus is 15 MPa or more, in a fine concavo-convex structure in which the aspect ratio of the convex portions is 0.6 to 1.5, the antireflection performance is not impaired by the uniting of the convex portions. Moreover, if the elastic modulus is 140 MPa or less, fingerprint stains can be satisfactorily removed by dry wiping.
  • the elastic modulus of the fine concavo-convex structure of the present invention is 15 to 140 MPa, preferably 60 to 140 MPa, more preferably 70 to 140 MPa, still more preferably 90 to 140 MPa, and most preferably 100 to 130 MPa. is there.
  • the ratio (A1 / A2) is 0.01 to 0.35.
  • the absorption curve having an absorption maximum in the region of 3700 to 3100 cm ⁇ 1 in the infrared absorption spectrum reflects the formation state of hydrogen bonds derived from a hydroxyl group or an amide group.
  • An absorption curve having an absorption maximum in the region of 3100 to 2700 cm ⁇ 1 in the infrared absorption spectrum is a peak derived from an alkyl group such as a methyl group or an ethyl group as a molecular end other than a hydroxyl group or an amide group.
  • Most of the components of the fingerprint are moisture, but what actually remains as fingerprint marks is a fatty acid ester or a free fatty acid.
  • free fatty acids are difficult to remove by interacting with functional groups on the surface of the object. That is, if there are many functional groups that form hydrogen bonds, such as hydroxyl groups and amide groups, on the surface of the cured product, fingerprints tend to be difficult to remove.
  • A1 / A2 is 0.35 or less, there are few functional groups capable of forming hydrogen bonds on the surface, and the fingerprint component can be easily removed.
  • A1 / A2 is preferably 0.01 to 0.32, more preferably 0.05 to 0.3, and still more preferably 0.1 to 0.3. In order to make A1 / A2 0.35 or less, it is preferable to reduce the content of the monomer component containing any one of a hydroxyl group, an amide group, and a carbamate group (urethane bond).
  • the total amount of the polymerizable monomer component containing one or more functional groups of a hydroxyl group, an amide group, and a carbamate group is preferably 20 parts by mass or less when the total of the polymerizable monomer components is 100 parts by mass. More preferably, it is 10 mass parts or less, More preferably, it is 5 mass parts or less, Most preferably, it is 0 mass part. Further, it is preferable to reduce the monomer component containing a thiol group having properties similar to those of a hydroxyl group, and the polymerizable monomer component containing a thiol group has a mass of 20 masses when the total of the polymerizable monomer components is 100 mass parts.
  • the total amount of the polymerizable monomer component containing one or more functional groups of a hydroxyl group, an amide group, a carbamate group, and a thiol group is 20 parts by mass when the total of the polymerizable monomer components is 100 parts by mass. Is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and most preferably 0 parts by mass.
  • Infrared spectroscopy is known as a method for evaluating the infrared absorption spectrum of the cured product surface.
  • Infrared spectroscopy is a method of irradiating a sample with infrared rays and measuring energy absorption corresponding to molecular vibration.
  • ATR method total reflection method
  • ATR method total reflection method
  • pris high refractive index medium
  • Infrared total reflection that occurs at the interface between the medium and the sample is used. This is to measure evanescent waves generated when the infrared rays slightly penetrate into the sample during reflection, and is used for structural analysis of the surface of the sample.
  • a sample that has been allowed to stand for a day or more in a room adjusted to a temperature of 23 ° C. and a relative humidity of 50% is used.
  • the fine concavo-convex structure is cut into a size that can be set in a measuring device (for example, a test piece having a side of 50 mm), and the sample is adjusted to a temperature of 23 ° C. and a relative humidity of 50%. What has been left in the adjusted room for more than one day may be used for the measurement.
  • Any device can be used as long as it can measure an infrared absorption spectrum. Examples thereof include FT-IR Avatar 330 manufactured by Nicolet.
  • the measurement is performed using the surface of the sample on which the fine uneven structure is formed as a measurement target.
  • the measurement is performed using a diamond prism, a predetermined jig, and a measurement wave number of 4000 to 700 cm ⁇ 1 , a resolution of 4 cm ⁇ 1 , and an integration count of 64 times by the ATR method.
  • OMNIC E.I. S. P. Using the peak area tool of the software package, the ratio (SOH / SC-H) of the peak area of SC stretching vibration (SC-H) and the peak area of OH stretching vibration (SOH) is obtained.
  • Absorption curve peak area of C-H stretching vibration the area of the absorption curve with absorption maximum in the region of 3100 ⁇ 2700 cm -1, the peak area of the OH stretching vibration, which has an absorption maximum in the region of 3700 ⁇ 3100 cm -1 Area.
  • the base line is a line connecting the bottoms on both sides of each absorption curve or a valley between the absorption curves.
  • SC-H SC stretching vibration
  • SOH OH stretching vibration
  • A1 / A2 0.35 or less it is convenient not to include a hydroxyl group, an amide group, or a carbamate group (urethane bond) in the material (composition) of the cured product 12.
  • a polymerizable monomer component whose side chain ends are an alkyl group, an aromatic ring or an alicyclic ring, or a polyfunctional monomer such as polyester (meth) acrylate or polyether (meth) acrylate is used.
  • Examples of the monomer component for obtaining a polymer having an alkyl group at the end of the side chain include (meth) acrylates having an alkyl group.
  • Examples of the (meth) acrylate having an alkyl group include methyl (meth) acrylate, ethyl (meth) acrylate, 2-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t- Examples include butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, and the like.
  • benzyl (meth) acrylate As monomer components for obtaining a polymer having an aromatic ring or an alicyclic ring at the end of the side chain, benzyl (meth) acrylate, phenyl (meth) acrylate, phenoxyethyl (meth) acrylate, ethoxylated phenoxyethyl (meth) Examples include acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and dicyclopentenyl (meth) acrylate.
  • Polyfunctional monomers such as polyester (meth) acrylate and polyether (meth) acrylate include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, and trimethylolpropane.
  • Examples include tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and those obtained by ethoxylation modification and propoxy modification.
  • Examples of commercially available products include Aronix (registered trademark) series manufactured by Toagosei Co., Ltd., NK ester (registered trademark) series manufactured by Shin-Nakamura Chemical Co., Ltd., and the like.
  • the method for producing a fine concavo-convex structure according to the present invention comprises applying an active energy ray-curable composition to a substrate, and then covering the applied surface with a mold having an inverted structure of the fine concavo-convex structure, and activating the active energy ray-curable composition.
  • This is a method for producing a fine concavo-convex structure having a ratio (A1 / A2) of 0.01 to 0.35 with respect to a peak area A2 having an absorption maximum in a region of 3100 to 2700 cm ⁇ 1 .
  • the method for forming the inverted structure of the fine concavo-convex structure on the mold is not particularly limited, and specific examples thereof include an electron beam lithography method and a laser beam interference method.
  • an appropriate photoresist film is applied on an appropriate support substrate, exposed to light such as an ultraviolet laser, an electron beam, or X-ray, and developed to obtain a mold having a fine concavo-convex structure. It can also be used as it is as a mold. It is also possible to form a fine concavo-convex structure directly on the support substrate itself by selectively etching the support substrate by dry etching through the photoresist layer and removing the resist layer. Anodized porous alumina can also be used as a mold.
  • a pore structure in which a plurality of pores are formed at intervals of 20 to 200 nm formed by anodizing aluminum with oxalic acid, sulfuric acid, phosphoric acid or the like as an electrolyte at a predetermined voltage is used as a mold. May be used. According to this method, after anodizing high-purity aluminum for a long time at a constant voltage, the oxide film is once removed and then anodized again, whereby extremely highly regular pores can be formed in a self-organized manner.
  • a replica mold may be produced from an original mold having a fine concavo-convex structure by electroforming or the like and used as a mold.
  • the shape of the mold itself is not particularly limited, and may be, for example, a flat plate shape, a belt shape, or a roll shape. In particular, if a belt shape or a roll shape is used, the fine concavo-convex structure can be transferred continuously, and the productivity can be further increased.
  • the composition is disposed between such a mold and the substrate.
  • a method of arranging the composition between the mold and the substrate a method of injecting the composition into the molding cavity by pressing the mold and the substrate in a state where the composition is arranged between the mold and the substrate, etc. Can be.
  • a method of polymerizing and curing by irradiating the composition between the substrate and the mold with active energy rays polymerization curing by ultraviolet irradiation is preferable.
  • a high-pressure mercury lamp, a metal halide lamp, or a fusion lamp can be used as the lamp that irradiates ultraviolet rays.
  • the integrated light quantity is preferably 400 ⁇ 4000mJ / cm 2, more preferably 400 ⁇ 2000mJ / cm 2. If the integrated light quantity is 400 mJ / cm 2 or more, the composition can be sufficiently cured to suppress a decrease in scratch resistance due to insufficient curing. Also. If the integrated light quantity is 4000 mJ / cm 2 or less, coloring of the cured product and deterioration of the substrate can be prevented.
  • the irradiation intensity is not particularly limited, but it is preferable to suppress the output to a level that does not cause deterioration of the substrate.
  • the mold After polymerization and curing, the mold is peeled off to obtain a cured product having a fine concavo-convex structure to obtain a fine concavo-convex structure.
  • the formed fine uneven structure body can also be affixed on the three-dimensional molded object separately shape
  • the fine concavo-convex structure obtained in this way has a fine concavo-convex structure of the mold transferred to the surface in a relationship between a key and a keyhole, and also has water repellency, and has excellent antireflection performance due to a continuous change in refractive index. It can be expressed and is suitable as an antireflection film for a film or a three-dimensional molded product.
  • the active energy ray-curable composition of the present invention has a cured product having an elastic modulus at 25 ° C. of 15 to 140 MPa and an absorption maximum in the region of 3700 to 3100 cm ⁇ 1 in the infrared absorption spectrum of the cured product surface.
  • the ratio (A1 / A2) between the peak area A1 and the peak area A2 having an absorption maximum in the region of 3100 to 2700 cm ⁇ 1 is 0.01 to 0.35.
  • the active energy ray-curable composition of the present invention preferably contains a polymerizable monomer component and an active energy ray polymerization initiator.
  • Polymerizable monomer component examples include monomers, oligomers, and reactive polymers having a radical polymerizable bond and / or a cationic polymerizable bond in the molecule.
  • the monomer component having a radical polymerizable bond examples include a monofunctional monomer component and a polyfunctional monomer component, and various (meth) acrylates and derivatives thereof.
  • Monofunctional monomers having a radical polymerizable bond include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, s-butyl ( (Meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, alkyl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, Benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acryl
  • polyfunctional monomer having a radical polymerizable bond examples include ethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, triethylene glycol di (meth) acrylate, Diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, 1,3-butylene glycol di (meth) Acrylate, polybutylene glycol di (meth) acrylate, 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxyethoxyphenyl) propane 2,2-bis (4- (3- (meth) acryloxy-2-hydroxypropoxy) phenyl) propane, 1,2-bis (3- (me
  • Examples of the monomer component having a cationic polymerizable bond include monomers having an epoxy group, an oxetanyl group, an oxazolyl group, a vinyloxy group, and the like, and a monomer having an epoxy group is preferable.
  • Examples of the oligomer or reactive polymer having a radical polymerizable bond and / or a cationic polymerizable bond in the molecule include unsaturated polyesters such as a condensate of unsaturated dicarboxylic acid and polyhydric alcohol; polyester (meth) acrylate, poly Ether (meth) acrylate, polyol (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, cationic polymerization type epoxy compound, single or copolymer of the monomer having a radical polymerizable bond in the side chain, etc. It is done.
  • unsaturated polyesters such as a condensate of unsaturated dicarboxylic acid and polyhydric alcohol
  • a monomer having an alkyl group at the end of the side chain a monomer having an alicyclic structure, a monomer having a polydimethylsiloxane skeleton, and a monomer having a fluorinated alkyl chain.
  • the monomer having an alkyl group include (meth) acrylates having an alkyl group having 12 or more carbon atoms. For example, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, and the like can be given.
  • Examples of the monomer having an alicyclic structure include (meth) acrylates having an alicyclic structure such as isobornyl (meth) acrylate, adamantyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclopentanyl (meth) acrylate. It is done.
  • Examples of the monomer having a polydimethylsiloxane skeleton include a reactive silicone surfactant. Commercially available products include the Silaplane series (trade name, manufactured by Chisso Corporation).
  • Examples of the monomer having a fluorinated alkyl chain include a compound having a polyfluoroalkyl chain, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1,1,2,2-tetrafluoropropyl (meth) Acrylate, 2,2,3,3,4,4,5,5-octafluoropentyl (meth) acrylate, 1,1,2,2,3,3,4,4-octafluoropentyl (meth) acrylate, Examples thereof include (meth) acrylates having a fluorine-containing alkyl group such as 1,1,2,2,3,3,4,4,5,5,6,6-dodecafluoroheptyl (meth) acrylate.
  • the fluorinated urethane compound obtained by making the compound which has an isocyanuric group react with fluorinated alcohol can also be used.
  • a monomer containing an oxyalkylene group it is preferable to use a monomer containing an oxyalkylene group.
  • a component containing an oxyalkylene group By using a component containing an oxyalkylene group, the fine concavo-convex structure can be made flexible, and fingerprint stain removability can be suitably maintained.
  • the ratio of the mass of the oxyalkylene group in the total polymerizable monomer component is preferably 10% or more and 70% or less, more preferably 12% or more and 50% or less, and 15% or more and 40% or less. Is more preferable.
  • the ratio of the oxyalkylene group By controlling the ratio of the oxyalkylene group to 70% or less, it is possible to suppress the surface of the fine concavo-convex structure from becoming hydrophilic, and it is possible to more easily remove the hydrophilic component contained in the fingerprint stain by dry wiping. Become.
  • the oxyalkylene group By setting the oxyalkylene group to 10% or more, the flexibility of the fine concavo-convex structure can be suitably maintained, and the surface of the fine concavo-convex structure can be prevented from being scratched when removing the dirt.
  • the shape of the structure is easily elastically recovered.
  • the calculation method of the ratio of an oxyalkylene group is calculated as follows. First, calculate the oxyalkylene content, that is, the ratio of the molecular weight of the oxyalkylene group in the monomer containing the oxyalkylene group to the molecular weight of the monomer containing the oxyalkylene group (molecular weight of the oxyalkylene group / molecular weight of the monomer containing the oxyalkylene group). To do. Then, the product of the oxyalkylene content of each monomer and the ratio of the monomer containing the oxyalkylene group in the composition is the oxyalkylene group content of the monomer in the composition. The sum of the oxyalkylene group content in the composition derived from the monomers of all the oxyalkylene group-containing monomers in the composition is defined as the oxyalkylene group content in the composition.
  • polyether (meth) acrylate or polyester (meth) acrylate having a polyalkylene glycol skeleton it is preferable to use polyether (meth) acrylate or polyester (meth) acrylate having a polyalkylene glycol skeleton.
  • bifunctional monomer examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di ( Examples include meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, and bisphenol A ethylene oxide adduct di (meth) acrylate.
  • tri- or higher functional monomer examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and ethoxy modified products thereof. And propoxylation-modified products.
  • the use amount of these polyfunctional monomers should be designed as appropriate in order to set the elastic modulus of the cured resin, but when the total amount of the polymerizable monomer components is 100 parts by mass, 30 parts by mass of the bifunctional monomer is used. It is preferable to use the above.
  • a trifunctional or higher functional monomer is not necessarily a component that must be used, and is preferably used in an amount of 60 parts by mass or less. If it is used at 60 parts by mass or less, the fine concavo-convex structure is not excessively hard, and a fingerprint stain removability can be exhibited.
  • the polyfunctional monomer which comprises a composition is only a bifunctional monomer, it is preferable that the ethylene oxide adduct di (meth) acrylate of bisphenol A is included.
  • composition for forming a fine concavo-convex structure of the present invention is that 30 to 60 parts by mass of ethoxylated pentaerythritol tetraacrylate, ethoxylated when the total amount of polymerizable monomer components contained in the composition is 100 parts by mass.
  • a composition comprising 5 to 40 parts by mass of a trimethylolpropane triacrylate and 30 to 50 parts by mass of a bifunctional monomer, the total amount of ethoxylated pentaerythritol tetraacrylate, ethoxylated trimethylolpropane triacrylate, and bifunctional monomer Is 100 parts by mass.
  • composition forming the fine relief structure of the present invention is that the polymerizable monomer component contained in the composition is 1,6-hexanediol diacrylate, ethoxylated bisphenol A diacrylate, and polyethylene glycol diacrylate.
  • an acrylate having a hydrogenated polybutadiene structure or the like can be used to exhibit water repellency.
  • polybutadiene acrylate “TEAI-1000” (trade name, manufactured by Nippon Soda Co., Ltd.) can be used. These may use 1 type and may use 2 or more types together.
  • TEAI-1000 trade name, manufactured by Nippon Soda Co., Ltd.
  • a water repellency can be exhibited by depositing a fluorine compound or the like on the surface of the fine uneven structure.
  • the surface layer preferably has an appropriate flexibility. Examples of a method for imparting appropriate flexibility to the surface layer include a method of reducing the crosslinking density and a method of using a compound having high molecular mobility.
  • the polymerizable monomer component containing a hydroxyl group, an amide group, and a carbamate group (urethane bond) is preferably 20 parts by mass or less, preferably 10 parts by mass or less, when the total of the polymerizable monomer components is 100 parts by mass. More preferred is 5 parts by mass or less, and most preferred is 0 part by mass.
  • the polymerizable monomer component containing a thiol group is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and more preferably 5 parts by mass when the total of the polymerizable monomer components is 100 parts by mass. More preferably, it is more preferably 0 part by mass or less.
  • the total amount of the polymerizable monomer component containing any one or more of a hydroxyl group, an amide group, a carbamate group, and a thiol group is 20 parts by mass or less when the total of the polymerizable monomer components is 100 parts by mass. It is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and most preferably 0 parts by mass.
  • the lower limit of the content of the polymerizable monomer component containing any one of the thiol groups may be 1 part by mass.
  • active energy ray polymerization initiator a known polymerization initiator can be used, and can be appropriately selected according to the type of active energy ray used when the active energy ray curable composition is cured.
  • photoinitiators include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl, benzophenone, p-methoxybenzophenone, 2,2-diethoxyacetophenone.
  • ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone methylphenylglyoxylate, ethylphenylglyoxylate, 4,4′-bis (dimethylamino) benzophenone, 2-hydroxy-2-methyl-1-phenylpropane-1 Carbonyl compounds such as -one; sulfur compounds such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide; 2,4,6-trimethylbenzoyldiphenylphosphine oxide, benzoyldi Examples thereof include ethoxyphosphine oxide. These may be used alone or in combination of two or more.
  • polymerization initiators include benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophenone, methyl orthobenzoylbenzoate, 4-phenylbenzophenone, t-butylanthraquinone Thioxanthone such as 2-ethylanthraquinone, 2,4-diethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone; diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal 1-hydroxycyclohexyl-phenyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinopheny ) -Acetophenone such as butanone; benzoin ether such as
  • the content of the polymerization initiator in the active energy ray-curable composition is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable monomer component. When the polymerization initiator is 0.1 part by mass or more, the polymerization proceeds sufficiently. When the polymerization initiator is 10 parts by mass or less, the resin layer (fine concavo-convex structure) is not colored and sufficient mechanical strength is obtained.
  • the composition may comprise a non-reactive polymer, an active energy ray sol-gel reactive composition.
  • the non-reactive polymer include acrylic resin, styrene resin, polyurethane resin, cellulose resin, polyvinyl butyral resin, polyester resin, and thermoplastic elastomer. These may use 1 type and may use 2 or more types together.
  • the active energy ray sol-gel reactive composition include alkoxysilane compounds and alkylsilicate compounds.
  • Examples of the alkoxysilane compound include compounds represented by RxSi (OR ′) y.
  • alkyl silicate compound examples include compounds represented by R 1 O [Si (OR 3 ) (OR 4 ) O] zR 2 .
  • R 1 to R 4 each represents an alkyl group having 1 to 5 carbon atoms, and z represents an integer of 3 to 20.
  • Specific examples include methyl silicate, ethyl silicate, isopropyl silicate, n-propyl silicate, n-butyl silicate, n-pentyl silicate, acetyl silicate and the like. These may use 1 type and may use 2 or more types together.
  • Composition is UV absorber, antioxidant, mold release agent, lubricant, plasticizer, antistatic agent, light stabilizer, flame retardant, flame retardant aid, polymerization inhibitor, filler, silane cup as required
  • additives such as a ring agent, a coloring agent, a reinforcing agent, an inorganic filler, and an impact modifier.
  • a silicone compound may improve the fingerprint removability, particularly the fingerprint wiping property.
  • Silicone compounds are known to have an effect of making it difficult to leave glue such as an adhesive, but they also have an effect of making it difficult to adhere to fingerprints and an effect of facilitating wiping and removal. Although the same effect can be expected with a fluorine-based compound, a silicone compound is often superior in mixing with a polymerizable component without being separated. Many modified silicone compounds for easy mixing are also commercially available.
  • the silicone-containing component such as these silicone compounds is preferably contained in an amount of 0.1 to 25 parts by mass, more preferably 0.1 to 20 parts by mass, with respect to 100 parts by mass of the polymerizable monomer component.
  • 0.1 part by mass or more the fingerprint wiping property on the surface of the fine concavo-convex structure can be improved.
  • the silicone compound has a polydimethylsiloxane skeleton, the hydrophobic methyl group and the hydrophilic Si—O bond, the Si—O main chain is helical, and the methyl group faces outward.
  • silicone compound examples include “SH3746 FLUID” and “FZ-77” manufactured by Toray Dow Corning, “KF-355A” and “KF-6011” manufactured by Shin-Etsu Chemical Co., Ltd.
  • examples of those having a polymerization reactive site include the Silaplane series manufactured by Chisso Corporation and the silicone diacrylate “x-22-164” manufactured by Shin-Etsu Chemical Co., Ltd., “BYK” manufactured by BYK Japan, Inc. -UV3570 "and the like. These may be used alone or in combination of two or more. In order to suppress bleed-out and deterioration with time of the silicone compound, it is preferable to have a polymerization reactive site.
  • the ratio of the content of the oxyalkylene group and the content of the silicone compound is within a predetermined range.
  • the ratio of the oxyalkylene group is large, the surface of the fine concavo-convex structure is likely to be hydrophilic, but the addition of a silicone compound can suppress the surface from becoming hydrophilic.
  • the ratio of the oxyalkylene group is large, the fine concavo-convex structure is often flexible, but when more silicone compounds are added, the fine concavo-convex structure may be too soft.
  • the proportion X of the oxyalkylene group and the content Y of the silicone compound are It is preferably used at a ratio satisfying ⁇ 1.4X + 14 ⁇ Y ⁇ ⁇ 1.4X + 70.
  • the viscosity measured with a rotary B-type viscometer at 25 ° C. of the composition is preferably 10,000 mPa ⁇ s or less from the viewpoint of workability. 5000 mPa ⁇ s or less is more preferable, and 2000 mPa ⁇ s or less is more preferable. However, even if the viscosity of the composition exceeds 10,000 mPa ⁇ s, it can be used without impairing workability if the composition can be preliminarily heated to lower the viscosity when poured into a stamper.
  • the viscosity of the composition measured by a rotary B-type viscometer at 70 ° C. is preferably 5000 mPa ⁇ s or less, and more preferably 2000 mPa ⁇ s or less.
  • the viscosity of the composition measured with a rotary B-type viscometer at 25 ° C. is 100 mPa ⁇ S or more is preferable, 150 mPa ⁇ s or more is more preferable, and 200 mPa ⁇ s or more is more preferable.
  • the viscosity of the composition measured at 25 ° C. with a rotary B-type viscometer is preferably 100 mPa ⁇ s or more and 10,000 mPa ⁇ s or less, more preferably 150 mPa ⁇ s or more and 5000 mPa ⁇ s or less, and 200 mPa ⁇ s or more and 2000 mPa ⁇ s or less. Further preferred.
  • the viscosity of a composition can be adjusted by adjusting the kind and content of a polymerizable monomer component. Specifically, when a large amount of a monomer containing a functional group having a molecular interaction such as a hydrogen bond or a chemical structure is used, the viscosity of the composition increases. On the other hand, when a large amount of a low molecular weight monomer having a low intermolecular interaction is used, the viscosity of the composition becomes low.
  • the cured product after curing of the active energy ray-curable composition of the present invention has an elastic modulus at 25 ° C. of 15 to 140 MPa, preferably 60 to 140 MPa, more preferably 80 to 130 MPa, more preferably 100 to 100 MPa. It is particularly preferable that the pressure be 130 MPa.
  • the composition after curing is 15 MPa or more, a phenomenon in which nano-sized protrusions are close to each other does not easily occur when peeling from the stamper or after peeling. In the nano region, surface tension that does not become a problem in the macro region is prominent. Therefore, in order to reduce the surface free energy, nano-sized protrusions come close to each other and force to reduce the surface area acts.
  • the protrusions When this force exceeds the hardness of the composition, the protrusions cling to each other. Such a fine concavo-convex structure may not provide desired antireflection performance or water repellency.
  • the elastic modulus is 15 MPa or more, the protrusions can be prevented from snuggling.
  • the surface layer contains a flexible resin, and even if it has a fine concavo-convex structure, the attached fingerprint stains, etc. Is easily removed by dry wiping, and also has good scratch resistance due to moderate flexibility.
  • cured material is the value measured by the method mentioned later.
  • the water contact angle of the surface layer is preferably 60 ° or more, more preferably 90 to 160 °, and even more preferably 110 to 150 °.
  • the water contact angle can be calculated by the ⁇ / 2 method using an automatic contact angle measuring device by dropping 1 ⁇ L of ion exchange water onto the fine concavo-convex structure at 25 ° C.
  • the automatic contact angle measuring device for example, an automatic contact angle measuring device manufactured by Kyowa Interface Science Co., Ltd. can be used.
  • the fine uneven structure according to the present invention is preferably used as a functional article having a fine uneven structure on the surface layer.
  • functional articles include antireflection articles and water-repellent articles provided with the fine concavo-convex structure according to the present invention.
  • a display or a member for an automobile provided with the fine concavo-convex structure according to the present invention is preferable.
  • the display according to the present invention includes the fine concavo-convex structure according to the present invention.
  • the display provided with the fine concavo-convex structure according to the present invention has high antifouling property (particularly fingerprint removability) and good antireflection performance.
  • the present invention can be applied to the surface of an object such as a liquid crystal display device, a plasma display panel, an electroluminescence display or the like, an image display device such as a cathode ray tube display device, a lens, a show window, or a spectacle lens.
  • the member for motor vehicles concerning the present invention is provided with the fine concavo-convex structure concerning the present invention.
  • the automotive member provided with the fine concavo-convex structure according to the present invention has high antifouling property (particularly fingerprint removability) and good water repellency, and also has excellent antireflection performance.
  • the fine concavo-convex structure according to the present invention can be applied to the surface of automobile members such as vehicle interior and exterior, lighting, vehicle windows, and vehicle mirrors.
  • the fine concavo-convex structure body of each target article is a three-dimensional shape
  • a surface layer is formed on the base material using a base material having a shape corresponding to the shape, and the fine concavo-convex structure body is formed.
  • the fine concavo-convex structure can be attached to a predetermined portion of the target article.
  • the target article is an image display device
  • the fine uneven structure according to the present invention may be attached to the front plate, not limited to the surface thereof, and the front plate itself may be attached to the fine plate according to the present invention. It can also be composed of a concavo-convex structure.
  • the fine concavo-convex structure according to the present invention can be applied to, for example, optical uses such as optical waveguides, relief holograms, lenses, and polarization separation elements, and uses of cell culture sheets in addition to the uses described above.
  • stamper pores A vertical section of a part of a stamper made of anodized porous alumina was deposited by Pt for 1 minute, and an acceleration voltage of 3.00 kV with a field emission scanning electron microscope (product name: “JSM-7400F”, manufactured by JEOL Ltd.) Observed and measured the spacing between adjacent pores and the depth of the pores. Each of these measurements was performed at 10 points, and the average value was taken as the measured value.
  • a sheet made of a cured product of the active energy ray-curable composition is taken out from the glass cell, punched into a dumbbell shape with a distance between marked lines of 10 mm, and subjected to a tensile test in an environment at a test speed of 1 mm / min 25 ° C. The rate was measured.
  • the tensile elastic modulus can also be calculated by measuring the indentation elastic modulus.
  • the infrared absorption spectrum of the surface having a plurality of convex portions of the fine concavo-convex structure is measured by an ATR method using a FT-IR Avatar 330 manufactured by Nicolet, and a wave number of 4000 to 700 cm ⁇ 1 , a resolution of 4 cm ⁇ 1 , and an integration count of 64 times. Measured under conditions. As the sample, a sample that was left standing for a day or more in a room adjusted to a temperature of 23 ° C. and a relative humidity of 50% was used. From the obtained infrared absorption spectrum, OMNIC E.I. S. P.
  • the ratio (SOH / SC-H) of the peak area of the ester bond C—H stretching vibration (SC—H) and the peak area of the OH stretching vibration (SOH) was determined.
  • the peak area of the OH stretching vibration is the area A1 of the absorption curve having an absorption maximum in the region of 3700 to 3100 cm ⁇ 1
  • the peak area of the CH stretching vibration is the absorption curve having an absorption maximum in the region of 3100 to 2700 cm ⁇ 1 .
  • the area was A2.
  • the baseline was a line connecting the skirts on either side of each absorption curve or a valley between another absorption curve.
  • Cannot be discriminated from any angle ⁇ : Cannot be discriminated from the front, but can be seen from an angle ⁇ : Can be seen from the front ⁇ :
  • the visual evaluation result was ⁇ , that is, dirt
  • the reflectance of the fine concavo-convex structure was measured in the same manner as in the above (5) for the sample that was difficult to adhere and the drop mark could not be confirmed.
  • the fingerprint dry wiping removal performance was evaluated using the square root value as an evaluation criterion.
  • Example 1 Preparation of active energy ray-curable composition 1 50 parts of ethoxylated pentaerythritol tetraacrylate (trade name: “NK Ester ATM-35E”, Shin-Nakamura Chemical Co., Ltd.), ethoxylated trimethylolpropane triacrylate (trade name: “NK Ester A-TMPT-3EO”) 10 parts by Shin-Nakamura Chemical Co., Ltd., 40 parts 1,6-hexanediol diacrylate, 1-hydroxycyclohexylphenylmethanone (trade name: “Irgacure 184”, manufactured by BASF) as an active energy ray polymerization initiator ) 0.5 part, 0.2 part of 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (trade name: “Lucirin TPO”, manufactured by BASF) and mixed with active energy ray-curable composition 1 (Hereinafter referred to as Composition 1).
  • the elastic modulus at 25 ° C. of the cured product obtained by curing the composition 1 was 75 MPa.
  • the content of the silicone compound was 0%, and the proportion of oxyalkylene groups in the total polymerizable monomer was 44%.
  • composition 1 was poured onto the pore surface of a stamper having a fine concavo-convex structure in which the interval between adjacent concave portions was 180 nm and the depth of the concave portions was 200 nm, and the base material was spread and coated thereon.
  • Composition 1 was cured by irradiating ultraviolet rays from the substrate side with an energy of 1000 mJ / cm 2 using a fusion lamp. Thereafter, the stamper was peeled off to form a surface layer having a fine concavo-convex structure, thereby obtaining a fine concavo-convex structure.
  • the fine concavo-convex structure of the stamper is transferred, and as shown in FIG. 1A, the interval w1 between the adjacent convex portions 13 is 180 nm, and the height d1 of the convex portions 13 is approximately 200 nm.
  • a conical fine concavo-convex structure was formed. Table 1 shows each evaluation result of the obtained fine uneven structure.
  • Examples 2 to 7, Comparative Examples 1 to 6 A fine concavo-convex structure was produced in the same manner as in Example 1 except that the composition shown in Table 1 was employed. The evaluation results are shown in Table 1.
  • Table 1 shows the content of the silicone compound and the ratio of oxyalkylene groups in each composition.
  • ATM-35E Ethoxylated pentaerythritol tetraacrylate (trade name: “NK Ester ATM-35E”, manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • ATM-4E Ethoxylated pentaerythritol tetraacrylate (trade name: “NK Ester ATM-4E”, Shin-Nakamura Chemical Co., Ltd.)
  • TMPT-3EO Ethoxylated trimethylolpropane triacrylate (trade name: “NK Ester A-TMPT-3EO”, manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • TMPT-9EO Ethoxylated trimethylolpropane triacrylate (trade name: “A-TMPT-9EO”, manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • C6DA 1,6-hexanediol diacrylate
  • A-BPE-4 Ethoxylated bisphenol A diacrylate (trade name: “NK ester)
  • Comparative Example 1 preferably has a structure in which alkyl groups are arranged on the surface of the cured product.
  • Comparative Example 2 although the cured product was soft, the functional group on the surface was easily combined with the fingerprint component, and it was difficult to remove the fingerprint by dry wiping.
  • Comparative Examples 3 and 4 although the cured product was relatively soft, the functional group on the surface was easily combined with the fingerprint component, and it was difficult to remove the fingerprint by dry wiping.
  • Comparative Examples 5 and 6 are preferable because the surface has few functional groups that easily bind to the fingerprint component, but the cured product is not sufficiently soft, and thus the fingerprint could not be removed sufficiently.
  • the fine concavo-convex structure according to the present invention has excellent antifouling properties and excellent antireflection performance, is used for building materials such as walls and roofs, window materials and mirrors for houses, automobiles, trains, ships, etc. It can be used for a display that can be touched on the screen, and is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

微細凹凸構造を表面に有する微細凹凸構造体であって、前記微細凹凸構造は、活性エネルギー線硬化性組成物の硬化物からなり、隣接する凸部の間隔が50nm以上400nm以下の複数の凸部を有し、前記凸部のアスペクト比が0.6~1.5であり、前記微細凹凸構造を形成する硬化物の25℃における弾性率が15~140MPaであり、前記硬化物の前記複数の凸部を有する表面の赤外線吸収スペクトルにおける3700~3100cm-1の領域に吸収極大を有するピーク面積A1と、3100~2700cm-1の領域に吸収極大を有するピーク面積A2との比(A1/A2)が0.01~0.35である、微細凹凸構造体。

Description

微細凹凸構造体
 本発明は、微細凹凸構造体に関する。
 本願は、2014年7月11日に、日本に出願された特願2014-142811号に基づき優先権を主張し、その内容をここに援用する。
 表面に隣り合う凸部または凹部の間隔が可視光の波長以下のサイズの微細凹凸構造を有する微細凹凸構造体は、連続的な屈折率の変化によって反射防止性能を発現することが知られている。また、上述の微細凹凸構造体は、ロータス効果により撥水性能を発現することも可能である。
このような微細凹凸構造体を、人の手に触れるディスプレイ表面に用いた場合、指紋(皮脂汚れ)が微細凹凸構造体に付着し、容易に除去できなくなる。これは、微細な凹凸間に汚れが入り、表面を拭くだけでは凹凸間の汚れを除去できないためである。微細な凹凸間に汚れが詰まった結果、本来の反射防止性能は損なわれる。
 そこで、このような問題を解決するため、例えば特許文献1には、微細凹凸構造体を親水性にすることで、汚れ付着時に水拭きすることで汚れを樹脂表面から浮かせて取り除く方法が提案されている。また、特許文献2には、疎水性であって適度な柔軟性を有する硬化樹脂を用いて微細凹凸構造体を形成することで、乾拭きで汚れを掻き出す方法や、微細凹凸構造体表面にフッ素またはケイ素を含ませる方法が記載されている。
国際公開第2011/115162号 特開2011-76072号公報
 しかしながら、特許文献1に記載の方法では、電子機器のディスプレイなど、水により故障等を引き起こす可能性がある用途への使用が制限される、という問題があった。また、特許文献2記載の方法では、本発明者らが検討した結果必ずしも優れた防汚性を発現するわけではない、という問題があることを見出した。
 本発明は上記の各事情に鑑みてなされたものである。すなわち、本発明の目的は、これら問題点を解決し、優れた防汚性と反射防止性能とを両立した微細凹凸構造体を提供することである。
 すなわち、本発明は、以下のとおりである。
(1)微細凹凸構造を表面に有する微細凹凸構造体であって、
 前記微細凹凸構造は、活性エネルギー線硬化性組成物の硬化物からなり、隣接する凸部の間隔が50nm以上400nm以下の複数の凸部を有し、
 前記凸部のアスペクト比が0.6~1.5であり、
 前記微細凹凸構造を形成する硬化物の25℃における弾性率が15~140MPaであり、
 前記硬化物の前記複数の凸部を有する表面の赤外線吸収スペクトルにおける3700~3100cm-1の領域に吸収極大を有するピーク面積A1と、3100~2700cm-1の領域に吸収極大を有するピーク面積A2との比(A1/A2)が0.01~0.35である、微細凹凸構造体。
(2)前記ピーク面積A1と、前記ピーク面積A2との比(A1/A2)が0.32以下である、(1)に記載の微細凹凸構造体。
(3)前記ピーク面積A1と、前記ピーク面積A2との比(A1/A2)が0.30以下である、(2)に記載の微細凹凸構造体。
(4)前記微細凹凸構造を形成する前記硬化物の25℃における弾性率が70~140MPaである、(1)~(3)のいずれかに記載の微細凹凸構造体。
(5)前記微細凹凸構造を形成する前記硬化物の25℃における弾性率が90~140MPaである、(4)に記載の微細凹凸構造体。
(6)前記活性エネルギー線硬化性組成物に含まれる重合性成分の合計を100質量部としたときに、側鎖の末端に水酸基、アミド基、およびカルバメート基の少なくともひとつを有する重合性モノマー成分の含有量が30質量部以下である、(1)~(4)のいずれかに記載の微細凹凸構造体。
(7)前記活性エネルギー線硬化性組成物は、オキシアルキレン基を含有する重合性成分と、シリコーン含有成分とを含み、重合性成分の合計を100質量部としたときに、前記シリコーン含有成分の含有率Y(質量部)と、重合性成分中のオキシアルキレン基の含有率X(質量部)とが、
 -1.4X+14 ≦Y≦ -1.4X+70
を満たす、(1)~(6)のいずれかに記載の微細凹凸構造体。
(8)前記シリコーン含有成分を0.1~25質量部含む、(7)に記載の微細凹凸構造体。
(9)前記オキシアルキレン基を含有する重合性成分を20~40質量部含む、(7)または(8)に記載の微細凹凸構造体。
(10)隣接する凸部の間隔が150nm以上300nm以下である、(1)記載の微細凹凸構造体。
(11)(1)記載の微細凹凸構造体を備える反射防止物品。
(12)(1)記載の微細凹凸構造体と画像表示装置又は対象物とを備えるディスプレイ。
(13)(1)記載の微細凹凸構造体及び自動車用部材を備える自動車用部材。
 本発明によれば、優れた防汚性と反射防止性能とを両立した微細凹凸構造体を提供することができる。
本発明に係る微細凹凸構造体の実施形態の一例を示す模式的断面図である。 本発明に係る微細凹凸構造体の実施形態の一例を示す模式的断面図である。 本発明の微細凹凸構造体を備える物品の断面図である。
 [微細凹凸構造体]
 図1A及び図1Bは、本発明の微細凹凸構造体の実施形態を示す模式的断面図である。図1Aに示す微細凹凸構造体10は、基材11上に本発明の活性エネルギー線硬化性組成物の硬化物である層(表層)12が積層されたものである。層12の表面は、微細凹凸構造を有する。微細凹凸構造体において、微細凹凸構造を形成する硬化物とは、微細凹凸構造体の表層のことをいう。微細凹凸構造は、円錐状の凸部13と、凹部14とがそれぞれ等間隔w1で形成される。凸部の形状は、垂直面における断面積が、頂点側から基材側に、連続的に増大する形状であることが好ましい。このような形状とすることで、凸部の頂点側から基材側に向かって屈折率を連続的に増大させることができる。その結果、波長による反射率の変動(波長依存性)を抑制し、可視光の散乱を抑制して、微細凹凸構造体を低反射率にすることができる。
 凸部の間隔w1(または凹部の間隔)は、可視光の最短波長(380)以下が好ましい。凸部の間隔とは、凸部の最も高い位置から隣り合う凸部の最も高い位置までの距離をいい、凹部の間隔とは、凹部の最深部から隣り合う凹部の最深部までの距離をいう。凸部の間隔w1が380nm以下であれば、可視光の散乱を抑制でき、反射防止膜として光学用途に好適に使用できる。凸部の間隔w1は、50nm以上400nmであり、100nm以上380nm以下であることが好ましく、150nm以上300nm以下であることがより好ましい。
 また、凸部の高さまたは凹部の深さ、すなわち、凹部の最深部14aと凸部の頂部13aとの垂直距離d1は、波長により反射率が変動するのを抑制できる大きさとすることが好ましい。具体的には、120nm以上が好ましく、150nm以上がより好ましく、180nm以上が特に好ましい。また、120nm以上450nm以下が好ましく、150nm以上380nm以下がより好ましく、180nm以上300nm以下が特に好ましい。ここでw1およびd1は、電界放出形走査電子顕微鏡により加速電圧3.00kVの画像における測定により得られる任意の10点の測定値の算術平均値である。
 凸部の高さが高いほど、可視光域における最高反射率と最低反射率の差が小さくなる。しかし、凸部の高さを高くしすぎると、凸部の機械的強度が低下し、凸部が容易に折れてしまう恐れがある。また、凸部を高くしすぎると、隣接する凸部が合一(凸部同士が引っ付く)してしまい、微細凹凸構造体の反射率が上昇してしまう場合がある。垂直距離d1を450nm以下とすることで、隣り合う凸部同士が合一することや、凸部の機械的強度を好適に維持することができる。
 本発明の微細凹凸構造体の凸部のアスペクト比は0.6~1.5である。凸部の間隔w1が300nmの場合、凸部の高さd1が180nmあれば十分な反射防止性能を得ることができるので、凸部のアスペクト比は0.6となる。凸部の間隔w1が120nmの場合、凸部の高さd1が180nmあれば十分な反射防止性能を得ることができるので、凸部のアスペクト比は1.5となる。凸部のアスペクト比が1.5以下であれば、隣り合う凸部同士が寄り添うことで、反射防止性能が低下するといった現象を回避することができる。また凸部のアスペクト比が0.6以上であれば、十分な反射防止性能を得ることができる。
 また、凸部のアスペクト比は、上述のようにして求められた凸部の高さd1を、凸部の間隔w1で除した値である。凹部のアスペクト比も同様に、凹部の深さd1を凹部の間隔w1で除した値である。
 凸部は、図1Bに示すような、凸部の頂部13bが曲面である釣鐘状であってもよく、その他、垂直面における断面積が、頂点側から基材側に連続的に増大する形状を採用することができる。
 微細凹凸構造は、図1A、図1Bに示す実施形態に限定されず、基材の片面または全面、もしくは、全体または一部に形成することができる。また、撥水性能を効果的に発現させるには、凸部の突起の先端が細いことが好ましく、微細凹凸構造を有する表面状に水滴が存在する場合に、微細凹凸構造体と水滴の接触面における硬化物の占有する面積ができるだけ少ない形状であることが好ましい。
 また、基材11と表層12の間に、耐擦傷性や接着性などの諸物性を向上させる為の中間層を設けてもよい。
 基材としては、微細凹凸構造を有する硬化物を支持可能なものであれば、いずれであってもよいが、微細凹凸構造体をディスプレイ部材に適用する場合は、透明基材、すなわち可視光を透過する成形体が好ましい。透明基材を構成する材料としては、例えば、メチルメタクリレート(共)重合体、ポリカーボネート、スチレン(共)重合体、メチルメタクリレート-スチレン共重合体、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、ポリエチレンテレフタラート、ポリ乳酸等のポリエステル、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリウレタン、これら物質の複合物(ポリメチルメタクリレートとポリ乳酸の複合物、ポリメチルメタクリレートとポリ塩化ビニルの複合物等)、ガラスが挙げられる。基材はこれらの材料を一種含んでもよく、二種以上含んでもよい。本発明に係る微細凹凸構造体をディスプレイや自動車用部材に用いる場合には、微細凹凸構造体は耐衝撃性を有していることが好ましいため、基材がポリカーボネートを含むことが好ましい。ここで、(共)重合体とは、重合体又は共重合体を表す。
 基材の形状はシート状、フィルム状等いずれであってもよく、その製造方法も、例えば、射出成形、押し出し成形、キャスト成形等、いずれの製法により製造されたものを使用することができる。更に、密着性、帯電防止性、耐擦傷性、耐候性等の特性の改良を目的として、透明基材の表面に、コーティングやコロナ処理が施されていてもよい。
 基材の厚さは特に限定されない。基材の厚みは38μm以上が好ましく、80μm以上がより好ましく、125μm以上が更に好ましく、400μm以上が特に好ましい。基材の厚みの上限は特に限定されないが、基材の厚みは38μm以上1mm以下が好ましく、80μm以上500μ以下がより好ましく、125μm以上300μm以下が更に好ましい。なお、基材の厚みはマイクロメータを用いて測定した任意の5箇所の基材の厚みの測定値の平均値である。
 このような微細凹凸構造体は、反射防止膜として適用することができ、高い耐擦傷性と、優れた指紋除去性等の効果が得られる。
 (弾性率)
 本発明の微細凹凸構造体は、微細凹凸構造を形成する硬化物の25℃における弾性率が15~140MPaである。
 硬化物の弾性率はJIS K 7161に準じて測定することができる。一例として、硬化性組成物を2枚のガラス板の間に流し込み、厚さ約0.2mmのスペーサーを挟んだ状態で、硬化させて板状に成形し、この板から所定のダンベル形状に打ち抜いたものを引張試験用の試験片とする。
 前記引張試験は、一般的な引張試験機を用い、試験速度1mm/分の速度で行われる。引張弾性率はヤング率とも呼ばれる。本願において、「弾性率」とは引張弾性率のことをいう。単位断面積当たりの引っ張り応力を、引張歪で除した値であり、引張伸び1~2%において算出するのが一般的である。引張歪とは引張伸びを試料片の長さで除した値であるが、所定のダンベル形状の試験片であれば、標線間距離で除した値を採用するのが一般的である。本発明の弾性率は、25℃の環境下で測定した値のことを指す。
 弾性率は一般的なマイクロインデンター(例えばフィッシャーインストルメンツ社製フィッシャースコープHM2000など)や、一般的な粘弾性測定装置(例えばセイコーインスツルメンツ社製「DMS110」など)を用いて測定することもできる。
 また、微小押し込み硬さ試験機を用いて、微細凹凸構造体の表層部分の押し込み弾性率の値を得ることができる。ここで得られる押し込み弾性率は引張弾性率、すなわちヤング率と相関がある。押し込み弾性率とヤング率との相関に関する説明は、「材料試験技術」(Vol.43,NO.2,P148-152,1998年4月号)に掲載の「ユニバーサル硬さ試験による材料特性値の評価」(Cornelia Heermant,Dieter Dengel)共著, 片山繁雄, 佐藤茂夫 共訳)に記載されている。
 微小押し込み硬さ測定器を用いて、微細凹凸構造体の表層部分の押し込み弾性率を測定する方法は、以下のようにして行われる。すなわち、積層構造体の基材側の表面に、光学粘着剤を介して透明なガラス板を貼り付け、これをサンプルとする。微小押し込み硬さ試験機を用いて、サンプルの押し込み弾性率を測定する。圧子はビッカース圧子(四面ダイアモンド錐体)を用い、評価は温度25℃、湿度50%にて行う。評価プログラムは[押し込み(100mN/s、5s秒]→[クリープ(100mN、10秒)]→[徐荷(100mN/s、5秒)]として行う。
 微細凹凸構造体を試料として測定に用いる際には、微細凹凸構造体を試験機にセット可能な大きさにカットして用いることができる。透明なガラス板としては、松浪硝子工業株式会社製、「大型スライドグラス、品番:S9112」、76mm×52mmサイズを用いることができある。微小押し込み硬さ試験機としては、装置名:フィッシャースコープHM2000XYp、フィッシャーインスツルメンツ製をもちいることができる。また、解析ソフトとしては、WIN-HCU、フィッシャーインスツルメンツ製を用いることができる。
 弾性率が15MPa以上であれば、凸部のアスペクト比が0.6~1.5の微細凹凸構造において、凸部同士の合一によって反射防止性能が損なわれることがない。また、弾性率が140MPa以下であれば、乾拭きによって指紋汚れが良好に除去できる。本発明の微細凹凸構造体の弾性率は15~140MPaであり、好ましくは60~140MPaであり、より好ましくは70~140MPaであり、さらに好ましくは90~140MPaであり、最も好ましくは100~130MPaである。
 (赤外線吸収スペクトル)
 本発明の微細凹凸構造体は、硬化物表面の赤外線吸収スペクトルにおける3700~3100cm-1の領域に吸収極大を有するピーク面積A1と3100~2700cm-1の領域に吸収極大を有するピーク面積A2との比(A1/A2)が0.01~0.35である。
 赤外線吸収スペクトルにおける3700~3100cm-1の領域に吸収極大を有する吸収曲線は、水酸基やアミド基に由来する水素結合の形成状態を反映するものである。
 赤外線吸収スペクトルにおける3100~2700cm-1の領域に吸収極大を有する吸収曲線は、水酸基やアミド基以外の分子末端としてのメチル基やエチル基などのアルキル基に由来するピークである。
 指紋の成分はほとんどが水分であるが、実際に指紋痕として残るものは、脂肪酸エステルや遊離脂肪酸である。特に遊離脂肪酸が対象物表面の官能基と相互作用することで、除去しにくくなる。すなわち、水酸基、アミド基等の、水素結合を形成する官能基が硬化物の表面に多く存在すると、指紋除去しにくくなる傾向にある。
 A1/A2が0.35以下であれば、表面に水素結合を形成できる官能基が少ないことになり、指紋成分が除去しやすくなる。A1/A2は、0.01~0.32が好ましく、0.05~0.3がより好ましく、0.1~0.3がさらに好ましい。
 A1/A2を0.35以下にするためには、水酸基、アミド基、カルバメート基(ウレタン結合)のいずれかを含むモノマー成分の含有量を少なくすることが好ましい。水酸基、アミド基、カルバメート基のいずれか一つ以上の官能基を含む重合性モノマー成分の総量は、重合性モノマー成分の合計を100質量部とした場合に、20質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることがさらに好ましく、0質量部であることが最も好ましい。また、水酸基と類似の性質を示すチオール基を含有するモノマー成分も少なくすることが好ましく、チオール基を含む重合性モノマー成分は、重合性モノマー成分の合計を100質量部とした場合に、20質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることがさらに好ましく、0質量部であることが最も好ましい。また、水酸基、アミド基、カルバメート基、及びチオール基のいずれか一つ以上の官能基を含む重合性モノマー成分の総量は、重合性モノマー成分の合計を100質量部とした場合に、20質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることがさらに好ましく、0質量部であることが最も好ましい。
 硬化物表面の赤外線吸収スペクトルを評価する方法としては、赤外分光法が知られている。
 赤外分光法は、試料に赤外線を照射し、分子の振動に相当するエネルギー吸収を測定する方法であり、ATR法(全反射法)は、高屈折率媒質(プリズム)に試料を密着させ、媒質と試料の界面で起こる赤外線の全反射を利用している。これは、反射時に赤外線がわずかに試料内部へ染み込むことで生じるエバネッセント波を測定するものであり、試料の表面の構造解析等に用いられる。
 試料としては、温度23℃、相対湿度50%に調整された部屋に一昼夜以上静置したものを用いる。微細凹凸構造体を試料として測定に用いる場合、微細凹凸構造体を測定装置にセット可能な大きさにカットし(例えば、一辺50mmの試験片)、この試料を温度23℃、相対湿度50%に調整された部屋に一昼夜以上静置したものを測定に用いればよい。
 装置としては、赤外線吸収スペクトルを測定できる装置であればよく、例えば、Nicolet社のFT-IR Avater330が挙げられる。
 測定は、試料の微細凹凸構造が形成された面を測定の対象として行う。
 測定は、ダイヤモンド製プリズムを用い、所定の治具を据え付け、ATR法にて測定波数4000~700cm-1、分解能4cm-1、積算回数64回という条件で行われる。
 得られた赤外線吸収スペクトルから、OMNIC E.S.P.ソフトウェアパッケージのピーク面積ツールを用いて、C-H伸縮振動のピーク面積(SC-H)とOH伸縮振動のピーク面積(SOH)の比(SOH/SC-H)を求める。C-H伸縮振動のピーク面積は、3100~2700cm-1の領域に吸収極大を有する吸収曲線の面積とし、OH伸縮振動のピーク面積は、3700~3100cm-1の領域に吸収極大を有する吸収曲線の面積とする。ベースラインは、それぞれの吸収曲線の両側の裾または別の吸収曲線との間の谷を結ぶ線とする。
 ここで、C-H伸縮振動のピーク面積(SC-H)とOH伸縮振動由来のピーク面積(SOH)の比(SOH/SC-H)は、表面の水素結合形成能を定量的に反映した値となる。
 A1/A2を0.35以下にするためには、硬化物12の材料(組成物)に水酸基やアミド基、カルバメート基(ウレタン結合)を含ませないことが簡便である。例えば、側鎖の末端がアルキル基や芳香環、脂肪環である重合性モノマー成分、ポリエステル(メタ)アクリレートやポリエーテル(メタ)アクリレートなどの多官能モノマーを用いる。
 側鎖の末端にアルキル基を有する重合体を得るためのモノマー成分としては、例えばアルキル基を有する(メタ)アクリレートが挙げられる。アルキル基を有する(メタ)アクリレートとしては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、2-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート等が挙げられる。側鎖の末端に芳香環や、脂肪環を有する重合体を得るためのモノマー成分としては、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、エトキシ化フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート等が挙げられる。
 またポリエステル(メタ)アクリレートやポリエーテル(メタ)アクリレートなどの多官能モノマーとしては、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、またこれらのエトキシ化変性したものやプロポキシ化変性したものが挙げられる。
 市販品としては、東亞合成(株)製のアロニックス(登録商標)シリーズ、新中村化学工業(株)製のNKエステル(登録商標)シリーズ等が挙げられる。
 [微細凹凸構造体の製造方法]
 本発明の微細凹凸構造体の製造方法は、活性エネルギー線硬化性組成物を、基材に塗布した後、塗布した面に微細凹凸構造の反転構造を有する型を被せ、活性エネルギー線硬化性組成物を硬化させ、その後に型から離型する、隣接する凸部または凹部の間隔が可視光の波長以下であり、凸部又は凹部のアスペクト比が0.6~1.5である微細凹凸構造体であって、微細凹凸構造を形成する硬化物の25℃における弾性率が15~140MPaであり、硬化物表面の赤外線吸収スペクトルにおける3700~3100cm-1の領域に吸収極大を有するピーク面積A1と3100~2700cm-1の領域に吸収極大を有するピーク面積A2との比(A1/A2)が0.01~0.35である微細凹凸構造体の製造方法である。
 モールドに微細凹凸構造の反転構造を形成する方法は、特に限定されず、その具体例としては、電子ビームリソグラフィー法、レーザー光干渉法が挙げられる。例えば、適当な支持基板上に適当なフォトレジスト膜を塗布し、紫外線レーザー、電子線、X線等の光で露光し、現像することによって微細凹凸構造を形成した型を得て、この型をそのままモールドとして使用することもできる。また、フォトレジスト層を介して支持基板をドライエッチングにより選択的にエッチングして、レジスト層を除去することで支持基板そのものに直接微細凹凸構造を形成することも可能である。
 また、陽極酸化ポーラスアルミナを、モールドとして利用することも可能である。例えば、アルミニウムをシュウ酸、硫酸、リン酸等を電解液として所定の電圧にて陽極酸化することにより形成される20~200nmの間隔で複数の細孔が形成された、細孔構造をモールドとして利用してもよい。この方法によれば、高純度アルミニウムを定電圧で長時間陽極酸化した後、一旦酸化皮膜を除去し、再び陽極酸化することで非常に高規則性の細孔が自己組織化的に形成できる。さらに、二回目に陽極酸化する工程で、陽極酸化処理と孔径拡大処理を組み合わせることで、断面が矩形でなく三角形や釣鐘型である微細凹凸構造も形成可能となる。また、陽極酸化処理と孔径拡大処理の時間や条件を適宜調節することで、細孔最奥部の角度を鋭くすることも可能である。
 さらに、微細凹凸構造を有する原型から電鋳法等で複製型を作製し、これをモールドとして使用してもよい。
 モールドそのものの形状は特に限定されず、例えば、平板状、ベルト状、ロール状のいずれでもよい。特に、ベルト状やロール状にすれば、連続的に微細凹凸構造を転写でき、生産性をより高めることができる。
 このようなモールドと、基材間に、上記組成物を配する。モールドと基材間に組成物を配置する方法としては、モールドと基材間に組成物を配置した状態でモールドと基材とを押圧することで、成型キャビティーへ組成物を注入する方法などによることができる。
 基材とモールド間の組成物に活性エネルギー線を照射して重合硬化する方法としては、紫外線照射による重合硬化が好ましい。紫外線を照射するランプとしては、例えば、高圧水銀灯、メタルハライドランプ、フュージョンランプを用いることができる。
 紫外線の照射量は、重合開始剤の吸収波長や含有量に応じて決定すればよい。通常、その積算光量は、400~4000mJ/cmが好ましく、400~2000mJ/cmがより好ましい。積算光量が400mJ/cm以上であれば、組成物を十分硬化させて硬化不足に因る耐擦傷性低下を抑制することができる。また。積算光量が4000mJ/cm以下であれば、硬化物の着色や基材の劣化を防止することができる。照射強度も特に制限されないが、基材の劣化等を招かない程度の出力に抑えることが好ましい。
 重合・硬化後、モールドを剥離して、微細凹凸構造を有する硬化物を得て、微細凹凸構造体を得る。
 また、上記基材が立体形状の成形体等の場合は、形成した微細凹凸構造体を、別途成形した立体形状の成形体に貼り付けることもできる。
 このようにして得られる微細凹凸構造体は、その表面にモールドの微細凹凸構造が鍵と鍵穴の関係で転写され、撥水性を兼ね備えると共に、連続的な屈折率の変化によって優れた反射防止性能を発現でき、フィルムや、立体形状の成形品の反射防止膜として好適である。
 [活性エネルギー線硬化性組成物]
 本発明の活性エネルギー線硬化性組成物は、硬化後の硬化物の25℃における弾性率が15~140MPaであり、硬化物表面の赤外線吸収スペクトルにおける3700~3100cm-1の領域に吸収極大を有するピーク面積A1と、3100~2700cm-1の領域に吸収極大を有するピーク面積A2との比(A1/A2)が0.01~0.35である。
 上述のように、硬化後の硬化物が上記範囲であれば、優れた防汚性、特に指紋除去性や、耐擦傷性等の効果を有する微細凹凸構造を形成するのに適する。
 本発明の活性エネルギー線硬化性組成物は、重合性モノマー成分と活性エネルギー線重合開始剤を含むことが好ましい。
 <重合性モノマー成分>
 重合性モノマー成分としては、分子中にラジカル重合性結合および/またはカチオン重合性結合を有するモノマー、オリゴマー、反応性ポリマー等が挙げられる。
ラジカル重合性結合を有するモノマー成分は単官能のモノマー成分及び多官能のモノマー成分が挙げられ、各種の(メタ)アクリレートおよびその誘導体が挙げられる。
 ラジカル重合性結合を有する単官能モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、アルキル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート等の(メタ)アクリレート誘導体;(メタ)アクリル酸、(メタ)アクリロニトリル;スチレン、α-メチルスチレン等のスチレン誘導体;(メタ)アクリルアミド、N-ジメチル(メタ)アクリルアミド、N-ジエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミドなどの(メタ)アクリルアミド誘導体等が挙げられる。これらは1種を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 ラジカル重合性結合を有する多官能モノマーとしては、エチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、イソシアヌール酸エチレンオキサイド変性ジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル)プロパン、1,2-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)エタン、1,4-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)ブタン、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAのプロピレンオキサイド付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジビニルベンゼン、メチレンビスアクリルアミド等の二官能性モノマー;ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシド変性トリアクリレート、トリメチロールプロパンエチレンオキシド変性トリアクリレート、イソシアヌール酸エチレンオキサイド変性トリ(メタ)アクリレート等の三官能モノマー;コハク酸/トリメチロールエタン/アクリル酸の縮合反応混合物、ジペンタエリストールヘキサ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等の四官能以上のモノマー;二官能以上のウレタンアクリレート、二官能以上のポリエステルアクリレート等が挙げられる。これらは1種を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
カチオン重合性結合を有するモノマー成分としては、エポキシ基、オキセタニル基、オキサゾリル基、ビニルオキシ基等を有するモノマーが挙げられ、エポキシ基を有するモノマーが好ましい。
 分子中にラジカル重合性結合および/またはカチオン重合性結合を有するオリゴマーまたは反応性ポリマーとしては、不飽和ジカルボン酸と多価アルコールとの縮合物等の不飽和ポリエステル類;ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリオール(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、カチオン重合型エポキシ化合物、側鎖にラジカル重合性結合を有する前記モノマーの単独または共重合ポリマー等が挙げられる。
 特に、指紋除去性の観点からは、側鎖末端にアルキル基を有するモノマー、脂肪環構造を有するモノマー、ポリジメチルシロキサン骨格を有するモノマー、フッ素化アルキル鎖を有するモノマーを使用することが好ましい。
 アルキル基を有するモノマーとしては、炭素数12以上のアルキル基を有する(メタ)アクリレートが挙げられる。例えば、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレートなどが挙げられる。
 脂肪環構造を有するモノマーとしては、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートなどの脂肪環構造を有する(メタ)アクリレートが挙げられる。
 ポリジメチルシロキサン骨格を有するモノマーとしては、例えば反応性シリコーン系界面活性剤などが挙げられる。市販品では、サイラプレーンシリーズ(商品名、チッソ(株)製)等が挙げられる。
 フッ素化アルキル鎖を有するモノマーとしては、例えば、ポリフルオロアルキル鎖を有する化合物、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1,1,2,2-テトラフルオロプロピル(メタ)アクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチル(メタ)アクリレート、1,1,2,2,3,3,4,4-オクタフルオロペンチル(メタ)アクリレート、1,1,2,2,3,3,4,4,5,5,6,6-ドデカフルオロヘプチル(メタ)アクリレート等のフッ素含有アルキル基を有する(メタ)アクリレート等が挙げられる。また、フッ素系化合物として、フッ素化アルコールにイソシアヌル基を有する化合物を反応させて得られるフッ素化ウレタン化合物を用いることもできる。
また、指紋除去性の観点から、オキシアルキレン基を含有するモノマーを用いることが好ましい。オキシアルキレン基を含有する成分を用いることで、微細凹凸構造体を柔軟にすることができ、指紋汚れの除去性を好適に保つことができる。全重合性モノマー成分に占めるオキシアルキレン基の質量の割合は、10%以上70%以下であることが好ましく、12%以上50%以下であることがより好ましく、15%以上40%以下であることがさらに好ましい。オキシアルキレン基の割合が70%以下とすることで、微細凹凸構造体の表面が親水性になることを抑制し、指紋汚れに含まれる親水性成分を乾拭きでより容易に除去することが可能になる。オキシアルキレン基が10%以上とすることで、微細凹凸構造体の柔軟性を好適に維持でき、汚れを除去する際に微細凹凸構造体表面にキズが付くことを抑制でき、ふき取った後に微細凹凸構造体の形状が弾性回復しやすくなる。
オキシアルキレン基の割合の算出方法は以下のように計算する。まず、オキシアルキレン含有率、すなわちオキシアルキレン基を含むモノマーの分子量に対するオキシアルキレン基を含むモノマー中のオキシアルキレン基の分子量の割合(オキシアルキレン基の分子量/オキシアルキレン基を含むモノマーの分子量)を算出する。ついで各モノマーのオキシアルキレン含有率と、組成中のそのオキシアルキレン基を含むモノマーを含む割合との積を、組成中のそのモノマー由来するオキシアルキレン基含有率とする。組成中のすべてのオキシアルキレン基を含むモノマーの、モノマーに由来する組成中のオキシアルキレン基含有率の和を、その組成物のオキシアルキレン基含有率とする。
 本発明の微細凹凸構造を形成する組成物を構成する多官能モノマーとしては、ポリアルキレングリコール骨格を有するポリエーテル(メタ)アクリレートやポリエステル(メタ)アクリレートを用いることが好ましい。2官能モノマーとしては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレートなどが挙げられる。3官能以上のモノマーとしては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、また、それらのエトキシ変性化物やプロポキシ化変性物などが挙げられる。
これら多官能モノマーの使用量は、硬化樹脂の弾性率を設定するために、適宜設計されるべきものであるが、重合性モノマー成分全量を100質量部としたときに2官能モノマーを30質量部以上用いることが好ましい。
3官能以上のモノマーは必ずしも用いなくてはならない成分ではなく、60質量部以下の使用が望ましい。60質量部以下で用いれば、微細凹凸構造体が過度に硬くならず、指紋汚れの除去性を発現することができる。
組成物を構成する多官能モノマーが2官能モノマーのみである場合には、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレートを含むことが好ましい。
本発明の微細凹凸構造を形成する組成物の一つの側面は、組成物中に含まれる重合性モノマー成分全量を100質量部としたときにエトキシ化ペンタエリスリトールテトラアクリレートを30~60質量部、エトキシ化トリメチロールプロパントリアクリレートを5~40質量部、2官能モノマーを30~50質量部含む組成物であって、エトキシ化ペンタエリスリトールテトラアクリレート、エトキシ化トリメチロールプロパントリアクリレート、及び2官能モノマーの総量が100質量部である組成物である。
本発明の微細凹凸構造を形成する組成物の一つの側面は、組成物中に含まれる重合性モノマー成分が、1、6-ヘキサンジオールジアクリレート、エトキシ化ビスフェノールAジアクリレート、及びポリエチレングリコールジアクリレートからなる群より選ばれる一種以上の化合物である組成物である。
 また、上述した化合物以外にも、撥水性を発現させるために水添ポリブタジエン構造を有するアクリレート等を用いることができる。市販品では、例えばポリブタジエンアクリレート「TEAI-1000」(商品名、日本曹達(株)製)等を用いることができる。これらは一種を用いてもよく、二種以上を併用してもよい。
 また、微細凹凸構造の表面にフッ素化合物などを蒸着させて、撥水性を発現させることもできる。さらに、表層は適度な柔軟性を有することが好ましい。表層に適度な柔軟性を持たせる方法としては、架橋密度を低くする方法、分子の運動性が高い化合物を用いる方法が挙げられる。
また、前述したようにA1/A2を0.35以下にするためには、水酸基、アミド基、カルバメート基(ウレタン結合)のいずれかを含む重合性モノマー成分の含有量を少なくすることが好ましい。また、水酸基と類似の性質を示すチオール基を含有するモノマー成分も少なくすることが好ましい。水酸基、アミド基、カルバメート基(ウレタン結合)を含む重合性モノマー成分は、重合性モノマー成分の合計を100質量部とした場合に、20質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることがさらに好ましく、0質量部であることが最も好ましい。また、チオール基を含む重合性モノマー成分は、重合性モノマー成分の合計を100質量部とした場合に、20質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることがさらに好ましく、0質量部であることが最も好ましい。また、水酸基、アミド基、カルバメート基、及びチオール基のいずれか一つ以上を含む重合性モノマー成分の総量は、重合性モノマー成分の合計を100質量部とした場合に、20質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることがさらに好ましく、0質量部であることが最も好ましい。水酸基、アミド基、カルバメート基(ウレタン結合)、及びチオール基のいずれかを含む重合性モノマー成分の含有量を0質量部とすることが難しい場合は、水酸基、アミド基、カルバメート基(ウレタン結合)、及びチオール基のいずれかを含む重合性モノマー成分の含有量の下限を1質量部としてもよい。
 <活性エネルギー線重合開始剤>
 活性エネルギー線重合開始剤としては、公知の重合開始剤を用いることができ、活性エネルギー線硬化性組成物を硬化させる際に用いる活性エネルギー線の種類に応じて適宜選択することができる。
 例えば光硬化反応を利用する場合、光重合開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジル、ベンゾフェノン、p-メトキシベンゾフェノン、2,2-ジエトキシアセトフェノン、α,α-ジメトキシ-α-フェニルアセトフェノン、メチルフェニルグリオキシレート、エチルフェニルグリオキシレート、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のカルボニル化合物;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等の硫黄化合物;2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ベンゾイルジエトキシフォスフィンオキサイド等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 電子線硬化反応を利用する場合、重合開始剤としては、ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、メチルオルソベンゾイルベンゾエート、4-フェニルベンゾフェノン、t-ブチルアントラキノン、2-エチルアントラキノン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン;ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルホスフィンオキサイド;メチルベンゾイルホルメート、1,7-ビスアクリジニルヘプタン、9-フェニルアクリジン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 活性エネルギー線硬化性組成物における重合開始剤の含有量は、重合性モノマー成分100質量部に対して、0.1~10質量部が好ましい。重合開始剤が0.1質量部以上であることにより、重合が十分に進行する。重合開始剤が10質量部以下であることにより、樹脂層(微細凹凸構造)が着色せず、十分な機械強度が得られる。
 <その他の成分>
 組成物は、非反応性のポリマー、活性エネルギー線ゾルゲル反応性組成物を含んでもよい。非反応性のポリマーとしては、アクリル樹脂、スチレン樹脂、ポリウレタン樹脂、セルロース樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、熱可塑性エラストマー等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。
 活性エネルギー線ゾルゲル反応性組成物としては、例えばアルコキシシラン化合物、アルキルシリケート化合物等が挙げられる。アルコキシシラン化合物としては、RxSi(OR’)yで表される化合物が挙げられる。RおよびR’は炭素数1~10のアルキル基を表し、xおよびyはx+y=4の関係を満たす整数である。具体的には、テトラメトキシシラン、テトラ-iso-プロポキシシラン、テトラ-n-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、トリメチルプロポキシシラン、トリメチルブトキシシランなどが挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。
 アルキルシリケート化合物としては、RO[Si(OR)(OR)O]zRで表される化合物が挙げられる。R~Rはそれぞれ炭素数1~5のアルキル基を表し、zは3~20の整数を表す。具体的にはメチルシリケート、エチルシリケート、イソプロピルシリケート、n-プロピルシリケート、n-ブチルシリケート、n-ペンチルシリケート、アセチルシリケートなどが挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。
 組成物は、必要に応じて紫外線吸収剤、酸化防止剤、離型剤、滑剤、可塑剤、帯電防止剤、光安定剤、難燃剤、難燃助剤、重合禁止剤、充填剤、シランカップリング剤、着色剤、強化剤、無機フィラー、耐衝撃性改質剤等の添加剤を含有してもよい。
 特に、シリコーン化合物を添加することが指紋除去性、特に指紋乾拭き性をより優れたものにする場合がある。シリコーン化合物は粘着剤などの糊を残りにくくする効果も知られているが、指紋に対しても付着をしにくくさせる効果、また拭き取り除去を容易にする効果がある。フッ素系の化合物でも同様の効果が期待できるが、重合性成分と分離することなく混和させるにあたり、シリコーン化合物の方が優れている場合が多い。また、混和しやすくするための変性シリコーン化合物も多く市販されていて入手しやすい。
 これらのシリコーン化合物などのシリコーン含有成分を、重合性モノマー成分100質量部に対して、0.1~25質量部含むことが好ましく、より好ましくは、0.1~20質量である。0.1質量部以上含むことで、微細凹凸構造の表面における指紋乾拭き性を良好にできる。25質量部以下にすることで、微細凹凸構造が過度に柔らかくなる事を回避でき、また製造コストの点でも好ましい。
 シリコーン化合物は、ポリジメチルシロキサン骨格を有し、疎水性であるメチル基と、親水性であるSi-Oの結合とが、Si-Oの主鎖がらせん状になり、メチル基を外側に向けたコンフォメーションをとること化合物が挙げられる。
 シリコーン化合物として、例えば東レ・ダウコーニング社製「SH3746FLUID」、「FZ-77」、信越化学工業(株)製「KF-355A」、「KF-6011」等を挙げることができる。また、重合反応性部位を有するものとしては、チッソ(株)製のサイラプレーンシリーズや信越化学工業(株)製のシリコーンジアクリレート「x-22-164」など、ビックケミー・ジャパン社製の「BYK-UV3570」などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。シリコーン化合物のブリードアウトや経時劣化を押さえる上では、重合反応性部位を有することが好ましい。
シリコーン化合物を添加する場合、前述したオキシアルキレン基の含有量とシリコーン化合物の含有量とを割合を所定範囲とすることが好ましい。オキシアルキレン基の割合が多い場合、微細凹凸構造体の表面が親水性になりやすいが、シリコーン化合物を加えることで表面が親水性になることを抑制することができる。一方で、オキシアルキレン基の割合が多い場合には、微細凹凸構造体が柔軟になる場合が多いが、さらに多くのシリコーン化合物を添加すると微細凹凸構造体が柔軟になり過ぎてしまう場合がある。微細凹凸構造体が柔らかくなりすぎると、指紋汚れをふき取った後に微細凹凸構造体の形状が弾性回復しにくくなったり、指紋汚れをふき取る際に微細凹凸構造体の表面に傷がつきやすくなる場合がある。そのため、オキシアルキレン基の占める割合Xとシリコーン化合物の含有量Yは、
―1.4X+14 ≦Y≦ ―1.4X+70を満たす割合で用いられることが好ましい。
 <組成物の物性>
 表層を形成する工程において、組成物をスタンパへ流し込んで硬化させる場合、作業性の観点から、組成物の25℃における回転式B型粘度計で測定される粘度は、10000mPa・s以下が好ましく、5000mPa・s以下がより好ましく、2000mPa・s以下がさらに好ましい。但し、組成物の粘度が10000mPa・sを超える場合であっても、スタンパへ流し込む際に予め組成物を加温して粘度を下げることができるのであれば、作業性を損なうことなく使用できる。組成物の70℃における回転式B型粘度計で測定される粘度は、5000mPa・s以下が好ましく、2000mPa・s以下がより好ましい。
 また、表層を形成する工程において、ベルト状やロール状のスタンパを用いて連続生産する場合、作業性の観点から、組成物の25℃における回転式B型粘度計で測定される粘度は、100mPa・s以上が好ましく、150mPa・s以上がより好ましく、200mPa・s以上がさらに好ましい。該粘度が前記範囲内であることにより、スタンパを押し当てる工程で組成物がスタンパの幅を超えて脇へ漏れにくくなり、硬化物の厚みを任意に調整し易くなる。
組成物の25℃における回転式B型粘度計で測定される粘度は100mPa・s以上10000mPa・s以下が好ましく、150mPa・s以上5000mPa・s以下がより好ましく、200mPa・s以上2000mPa・s以下がさらに好ましい。
 なお、組成物の粘度は、重合性モノマー成分の種類や含有量を調節することで調整できる。具体的には、水素結合などの分子間相互作用を有する官能基や化学構造を含むモノマーを多量に用いる場合、組成物の粘度は高くなる。一方、分子間相互作用の低い低分子量のモノマーを多量に用いる場合、組成物の粘度は低くなる。
 <硬化後の組成物の物性>
 本発明の活性エネルギー線硬化性組成物の硬化後の硬化物の25℃における弾性率は15~140MPaであり、60~140MPaであることが好ましく、80~130MPaであることがより好ましく、100~130MPaであることが特に好ましい。硬化後の組成物が15MPa以上であれば、スタンパから剥離する際または剥離した後にナノサイズの突起同士が寄り添う現象が起こりにくい。ナノの領域ではマクロの領域では問題にならないような表面張力が顕著に働くため、表面自由エネルギーを下げようと、ナノサイズの突起同士が寄り添い、表面積を小さくしようとする力が働く。この力が組成物の硬さを上回ると、突起同士が寄り添いくっつく。そのような微細凹凸構造は、所望の反射防止性能や撥水性などが得られない場合がある。前記弾性率が15MPa以上であることにより、突起同士が寄り添うことを抑制できる。
 また、活性エネルギー線硬化性組成物の硬化後の硬化物の25℃における弾性率が140MPa以下であれば、表層は柔軟な樹脂を含むこととなり、微細凹凸構造であっても付着した指紋汚れ等を乾拭きで除去しやすく、また適度な柔軟性から耐擦傷性も良好である。なお、硬化物の弾性率の測定は後述する方法により測定した値である。
 硬化後の組成物を疎水性にする場合、表層の水接触角は60°以上であることが好ましく、90~160°であることがより好ましく、110~150°であることが更に好ましい。水接触角が60°以上であることにより、汚れが付着しにくい。一方、水接触角が160°以下であることにより、基材との十分な密着性が得られる。
 水接触角は25℃において微細凹凸構造体に1μLのイオン交換水を滴下し、自動接触角測定器を用いて、θ/2法にて算出することができる。自動接触角測定器としては、例えば協和界面科学社製の自動接触角測定器を用いることができる。
 本発明に係る微細凹凸構造体は、表層に微細凹凸構造を有する機能性物品として用いることが好ましい。そのような機能性物品としては、例えば、本発明に係る微細凹凸構造体を備える反射防止物品や撥水性物品が挙げられる。特に、本発明に係る微細凹凸構造体を備えるディスプレイや自動車用部材が好ましい。
 [ディスプレイ]
 本発明に係るディスプレイは、本発明に係る微細凹凸構造体を備える。本発明に係る微細凹凸構造を備えたディスプレイは高い防汚性(特に指紋除去性)と良好な反射防止性能を有する。例えば、液晶表示装置、プラズマディスプレイパネル、エレクトロルミネッセンスディスプレイ等のディスプレイ、陰極管表示装置のような画像表示装置、レンズ、ショーウィンドー、眼鏡レンズ等の対象物の表面に適用することができる。
 [自動車用部材]
 本発明に係る自動車用部材は、本発明に係る微細凹凸構造体を備える。本発明に係る微細凹凸構造を備えた自動車用部材は高い防汚性(特に指紋除去性)と良好な撥水性を有すると共に、優れた反射防止性能を有する。例えば、車両内外装、照明、車両用窓、車両用ミラー等の自動車用部材の表面に、本発明に係る微細凹凸構造体を適用することができる。
 前記各対象物品の微細凹凸構造体を貼り付ける部分が立体形状である場合には、その形状に応じた形状の基材を使用して、基材上に表層を形成して微細凹凸構造体を得て、微細凹凸構造体を対象物品の所定部分に貼り付けることができる。また、対象物品が画像表示装置である場合には、その表面に限らず、その前面板に対して本発明に係る微細凹凸構造体を貼り付けてもよく、前面板そのものを本発明に係る微細凹凸構造体で構成することもできる。さらに、本発明に係る微細凹凸構造体は、上述した用途以外にも、例えば、光導波路、レリーフホログラム、レンズ、偏光分離素子などの光学用途や、細胞培養シートの用途にも適用できる。
 以下、本発明について実施例を挙げて具体的に説明する。ただし、本発明はこれらに限定されない。以下の記載において、特に断りがない限り「部」は「質量部」を意味する。また、各種測定および評価方法は以下の通りである。
 (1)スタンパの細孔の測定:
 陽極酸化ポーラスアルミナからなるスタンパの一部の縦断面を1分間Pt蒸着し、電界放出形走査電子顕微鏡(製品名:「JSM-7400F」、日本電子(株)製)により加速電圧3.00kVで観察し、隣り合う細孔の間隔および細孔の深さを測定した。これらの測定をそれぞれ10点ずつ行い、その平均値を測定値とした。
 (2)微細凹凸構造の凹凸の測定:
 微細凹凸構造の縦断面を10分間Pt蒸着し、前記(1)と同じ装置および条件にて、隣り合う凸部または凹部の間隔、および凸部の高さを測定した。これらの測定をそれぞれ10点ずつ行い、その平均値を測定値とした。
 (3)弾性率の測定:
 2枚のガラスの間に厚さ200μmのスペーサーを挟んだガラスセルに活性エネルギー線硬化性組成物を注入し、ガラス越しにフュージョンランプを用いて1000mJ/cm2のエネルギーで紫外線を照射し、活性エネルギー線硬化性組成物を硬化させた。活性エネルギー線硬化性組成物の硬化物からなるシートをガラスセルから取り出し、標線間距離が10mmであるダンベル形状に打ち抜き、試験速度1mm/分25℃の環境下で引張試験を行い、引張弾性率を測定した。
 なお、押し込み弾性率を測定して引張弾性率を算出することもできる。
 (4)赤外線吸収スペクトル:
 微細凹凸構造体の複数の凸部を有する表面の赤外線吸収スペクトルを、Nicolet社のFT-IR Avater330を用い、ATR法にて測定波数4000~700cm-1、分解能4cm-1、積算回数64回の条件にて測定した。試料としては、温度23℃、相対湿度50%に調整された部屋に一昼夜以上静置したものを用いた。
 得られた赤外吸収スペクトルから、OMNIC E.S.P.ソフトウェアパッケージのピーク面積ツールを用いて、エステル結合のC-H伸縮振動のピーク面積(SC-H)とOH伸縮振動のピーク面積(SOH)の比(SOH/SC-H)を求めた。OH伸縮振動のピーク面積は3700~3100cm-1の領域に吸収極大を有する吸収曲線の面積A1とし、C-H伸縮振動のピーク面積は3100~2700cm-1の領域に吸収極大を有する吸収曲線の面積A2とした。ベースラインは、それぞれの吸収曲線の両側の裾または別の吸収曲線との間の谷を結ぶ線とした。
 (5)反射率の測定:
 一方の表面に微細凹凸構造を有する微細凹凸構造体の、微細凹凸構造を有する表面とは反対側の表面を、光学接着剤(パナック製)を用いて黒色アクリル板(三菱レイヨン製)に貼合せ、試料とした。該試料を、分光光度計((島津製作所製、UV-2450)を用いて、入射角5°の条件で波長380nm~780nmの間の相対反射率を測定した。
 (6)防汚性:
 ヘキサデカン0.8部、オレイン酸0.2部をエタノール99部に溶解させた人工指紋液を1μl滴下させ、エタノールが乾いた状態で、日本製紙クレシア製ケイドライにて乾拭きを実施し、蛍光灯(1000ルクス)の下で多方向に傾けて観察し、滴下させた部位と、滴下させなかった部位の差が目視確認できるか否かを判定した。
 ○:どの角度からも判別できないもの
 △:正面からは判別できないが、斜めから観察すると痕が分かるもの
 ×:正面からでも痕が分かるもの
 次いで、目視評価結果が○であったもの、すなわち汚れが付着しにくく滴下痕が確認できなかった試料について、上記(5)と同様にして微細凹凸構造体の反射率を測定した。
 400nm、550nm、700nmの波長における、人工指紋液付着前の微細凹凸構造体の反射率と、人工指紋液を付着、乾拭きした後の微細凹凸構造体の反射率との差の二乗を平均し、その平方根の値を評価基準にして指紋乾拭き除去性能を評価した。
 A:差の平均値が±0.06%以内である。
 B:差の平均値が±0.06超±0.1%以内である。
 C:差の平均値が±0.1%超である。または、反射率のカーブが変化している。
 [実施例1]
 (活性エネルギー線硬化性組成物1の調製)
 エトキシ化ペンタエリスリトールテトラアクリレート(商品名:「NKエステル ATM-35E」、新中村化学工業(株)製)50部、エトキシ化トリメチロールプロパントリアクリレート(商品名:「NKエステルA-TMPT-3EO」、新中村化学工業(株)製)10部、1,6-ヘキサンジオールジアクリレート40部、活性エネルギー線重合開始剤としての1-ヒドロキシシクロヘキシルフェニルメタノン(商品名:「Irgacure184」、BASF社製)0.5部、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(商品名:「Lucirin TPO」、BASF社製)0.2部を混合して、活性エネルギー線硬化性組成物1(以下、組成物1という。)を得た。組成物1を硬化させた硬化物の25℃における弾性率は75MPaであった。また、表1に示すように、シリコーン化合物の含有量は0%であり、全重合性モノマーに占めるオキシアルキレン基の割合は44%であった。
 (微細凹凸構造を表面に有する微細凹凸構造体の形成)
 隣り合う凹部の間隔が180nm、凹部の深さが200nmである微細凹凸構造を有するスタンパの細孔面上に組成物1を流し込み、その上に基材を押し広げながら被覆した。基材側からフュージョンランプを用いて1000mJ/cmのエネルギーで紫外線を照射し、組成物1を硬化した。その後スタンパを剥離して、微細凹凸構造を有する表層を形成することで、微細凹凸構造体を得た。微細凹凸構造体の表面には、スタンパの微細凹凸構造が転写されており、図1Aに示すような、隣り合う凸部13の間隔w1が180nm、凸部13の高さd1が200nmである略円錐形状の微細凹凸構造が形成されていた。得られた微細凹凸構造体の各評価結果を表1に示す。
 [実施例2~7、比較例1~6]
 表1に示す組成物を採用したこと以外は、実施例1と同様に微細凹凸構造体を作製した。評価結果を表1に示す。また、それぞれの組成物のシリコーン化合物の含有量、オキシアルキレン基の割合を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1中の略号は下記の通りである。
 ATM-35E:エトキシ化ペンタエリスリトールテトラアクリレート(商品名:「NKエステル ATM-35E」、新中村化学工業(株)製)
 ATM-4E:エトキシ化ペンタエリスリトールテトラアクリレート(商品名:「NKエステルATM-4E」、新中村化学工業(株)製)
 TMPT-3EO:エトキシ化トリメチロールプロパントリアクリレート(商品名:「NKエステルA-TMPT-3EO」、新中村化学工業(株)製)
 TMPT-9EO:エトキシ化トリメチロールプロパントリアクリレート(商品名:「A-TMPT-9EO」、新中村化学工業(株)製)
 C6DA:1,6-ヘキサンジオールジアクリレート
 A-BPE-4:エトキシ化ビスフェノールAジアクリレート(商品名:「NKエステルA-BPE-4」、新中村化学工業(株)製、)
 A-BPE-30:エトキシ化ビスフェノールAジアクリレート(商品名:「NKエステルA-BPE-30」、新中村化学工業(株)製)
 M240:ポリエチレングリコールジアクリレート(「アロニックスM-240」、東亜合成(株)製)
 M-260:ポリエチレングリコールジアクリレート(「アロニックスM-260」、東亜合成(株)製)
 CN2271E:ポリエステルアクリレートオリゴマー(サートマー社製)
 3PGDA:トリプロピレンジアクリレート
 LA:ラウリルアクリレート
 MA:メチルアクリレート
 CN152:モノアクリレートオリゴマー(サートマー社製)
 BYK-UV3570:シリコーンアクリレート プロピレンオキサイド変性ネオペンチルグリコールジアクリレート希釈品(ビッグケミー・ジャパン社製)
 IRG184:1-ヒドロキシシクロヘキシルフェニルメタノン(商品名:「Irgacure184」、BASF社製)
 TPO:2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(商品名:「Lucirin TPO」、BASF社製)
 1173:2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(商品名:「DAROCURE 1173」、BASF社製)
 表1の結果から明らかなように、実施例1~7の微細凹凸構造体は付着した指紋を乾拭きで除去することができた。
 一方、比較例1は、硬化物の表面にアルキル基が並んだ構造になって好ましいが、硬化物が硬かったために、乾拭きでの指紋除去はできなかった。
 比較例2は、硬化物は柔らかかったものの、表面の官能基が指紋成分と結びつきやすく、乾拭きでの指紋除去は困難であった。
 比較例3および4は、硬化物は比較的柔らかかったものの、表面の官能基が指紋成分と結びつきやすく、乾拭きでの指紋除去は困難であった。
 比較例5および6は、表面は指紋成分と結びつきやすい官能基が少なく好ましいのだが、硬化物が十分に柔らかくないために、指紋が十分には除去できなかった。
 本発明に係る微細凹凸構造体は、優れた防汚性および優れた反射防止性能を有し、壁、屋根などの建材用途、家屋、自動車、電車、船舶などの窓材や鏡、人が手で触れうるディスプレイなどに利用可能であり、工業的に有用である。
10  微細凹凸構造体
11  基材
12  表層
13  凸部
13a 凸部の頂点
14  凹部
14a 凹部の最深部
w1  隣り合う凸部の間隔
d1  凹部の最深部から凸部の頂点までの垂直距離
15  画像表示装置、対象物又は自動車用部材

Claims (13)

  1. 微細凹凸構造を表面に有する微細凹凸構造体であって、
     前記微細凹凸構造は、活性エネルギー線硬化性組成物の硬化物からなり、隣接する凸部の間隔が50nm以上400nm以下の複数の凸部を有し、
     前記凸部のアスペクト比が0.6~1.5であり、
     前記微細凹凸構造を形成する硬化物の25℃における弾性率が15~140MPaであり、
    前記硬化物の前記複数の凸部を有する表面の赤外線吸収スペクトルにおける3700~3100cm-1の領域に吸収極大を有するピーク面積A1と、3100~2700cm-1の領域に吸収極大を有するピーク面積A2との比(A1/A2)が0.01~0.35である、微細凹凸構造体。
  2.  前記ピーク面積A1と、前記ピーク面積A2との比(A1/A2)が0.32以下である、請求項1に記載の微細凹凸構造体。
  3.  前記ピーク面積A1と、前記ピーク面積A2との比(A1/A2)が0.30以下である、請求項2に記載の微細凹凸構造体。
  4.  前記微細凹凸構造を形成する前記硬化物の25℃における弾性率が70~140MPaである、請求項1~3のいずれか一項に記載の微細凹凸構造体。
  5.  前記微細凹凸構造を形成する前記硬化物の25℃における弾性率が90~140MPaである、請求項4に記載の微細凹凸構造体。
  6.  前記活性エネルギー線硬化性組成物に含まれる重合性成分の合計を100質量部としたときに、側鎖の末端に水酸基、アミド基、およびカルバメート基の少なくともひとつを有する重合性モノマー成分の含有量が30質量部以下である、請求項1~4のいずれか一項に記載の微細凹凸構造体。
  7.  前記活性エネルギー線硬化性組成物は、オキシアルキレン基を含有する重合性成分と、シリコーン含有成分とを含み、重合性成分の合計を100質量部としたときに、前記シリコーン含有成分の含有率Y(質量部)と、重合性成分中のオキシアルキレン基の含有率X(質量部)とが、
     -1.4X+14 ≦Y≦ -1.4X+70
    を満たす、請求項1~6のいずれか一項に記載の微細凹凸構造体。
  8.  前記シリコーン含有成分を0.1~25質量部含む、請求項7に記載の微細凹凸構造体。
  9.  前記オキシアルキレン基を含有する重合性成分を20~40質量部含む、請求項7または8に記載の微細凹凸構造体。
  10. 隣接する凸部の間隔が150nm以上300nm以下である、請求項1記載の微細凹凸構造体。
  11.  請求項1記載の微細凹凸構造体を備える反射防止物品。
  12.  請求項1記載の微細凹凸構造体と画像表示装置又は対象物とを備えるディスプレイ。
  13.  請求項1記載の微細凹凸構造体及び自動車用部材を備える自動車用部材。
PCT/JP2015/069629 2014-07-11 2015-07-08 微細凹凸構造体 WO2016006627A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015537064A JPWO2016006627A1 (ja) 2014-07-11 2015-07-08 微細凹凸構造体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-142811 2014-07-11
JP2014142811 2014-07-11

Publications (1)

Publication Number Publication Date
WO2016006627A1 true WO2016006627A1 (ja) 2016-01-14

Family

ID=55064256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069629 WO2016006627A1 (ja) 2014-07-11 2015-07-08 微細凹凸構造体

Country Status (3)

Country Link
JP (1) JPWO2016006627A1 (ja)
TW (1) TW201606339A (ja)
WO (1) WO2016006627A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071132A (ja) * 2014-09-30 2016-05-09 富士フイルム株式会社 反射防止フィルム、反射防止フィルムの製造方法、反射防止フィルムと清掃用布を含むキット

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139899A (ja) * 2010-12-28 2012-07-26 Dnp Fine Chemicals Co Ltd (メタ)アクリレート系重合性組成物、それを用いた反射防止フィルム積層体及びその製造方法
JP2013160954A (ja) * 2012-02-06 2013-08-19 Lintec Corp 光学用フィルム、並びにディスプレイ装置
JP2013228729A (ja) * 2012-03-30 2013-11-07 Sanyo Chem Ind Ltd 光学部品用活性エネルギー線硬化性組成物
WO2013187528A1 (ja) * 2012-06-15 2013-12-19 三菱レイヨン株式会社 物品および活性エネルギー線硬化性樹脂組成物
WO2013187506A1 (ja) * 2012-06-15 2013-12-19 三菱レイヨン株式会社 積層体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139899A (ja) * 2010-12-28 2012-07-26 Dnp Fine Chemicals Co Ltd (メタ)アクリレート系重合性組成物、それを用いた反射防止フィルム積層体及びその製造方法
JP2013160954A (ja) * 2012-02-06 2013-08-19 Lintec Corp 光学用フィルム、並びにディスプレイ装置
JP2013228729A (ja) * 2012-03-30 2013-11-07 Sanyo Chem Ind Ltd 光学部品用活性エネルギー線硬化性組成物
WO2013187528A1 (ja) * 2012-06-15 2013-12-19 三菱レイヨン株式会社 物品および活性エネルギー線硬化性樹脂組成物
WO2013187506A1 (ja) * 2012-06-15 2013-12-19 三菱レイヨン株式会社 積層体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071132A (ja) * 2014-09-30 2016-05-09 富士フイルム株式会社 反射防止フィルム、反射防止フィルムの製造方法、反射防止フィルムと清掃用布を含むキット

Also Published As

Publication number Publication date
JPWO2016006627A1 (ja) 2017-04-27
TW201606339A (zh) 2016-02-16

Similar Documents

Publication Publication Date Title
JP4990414B2 (ja) 微細凹凸構造を表面に有する物品の製造方法、金型の離型処理方法、および金型表面離型処理用活性エネルギー線硬化性樹脂組成物
JP5260790B2 (ja) 活性エネルギー線硬化性樹脂組成物、微細凹凸構造体及び微細凹凸構造体の製造方法
JP6451321B2 (ja) 光学物品及びその製造方法
JP5725184B2 (ja) 積層体
JP5958338B2 (ja) 微細凹凸構造体、撥水性物品、モールド、及び微細凹凸構造体の製造方法
JP5648632B2 (ja) 活性エネルギー線硬化性樹脂組成物、及びそれを用いたナノ凹凸構造体とその製造方法、及びナノ凹凸構造体を備えた撥水性物品
JP5744641B2 (ja) ナノ凹凸構造用樹脂組成物、およびそれを用いた自動車メータカバー用透明部材とカーナビゲーション用透明部材
KR20120049232A (ko) 반사 방지 물품 및 디스플레이 장치
JP6686284B2 (ja) 活性エネルギー線硬化性樹脂組成物の硬化物を含む物品
JP2009271782A (ja) 導電性透明基材およびタッチパネル
JP5876977B2 (ja) 活性エネルギー線硬化性樹脂組成物、及びそれを用いたナノ凹凸構造体とその製造方法、及びナノ凹凸構造体を備えた撥水性物品
JP2009258487A (ja) 交通安全施設
JP2009271298A (ja) 防曇性透明部材、およびこれを具備した物品
JP6455127B2 (ja) 透明フィルムの製造方法
JP2013241503A (ja) 多官能ウレタン(メタ)アクリレート、活性エネルギー線硬化性樹脂組成物及び微細凹凸構造を表面に有する物品
WO2016006627A1 (ja) 微細凹凸構造体
JP2014077040A (ja) 活性エネルギー線硬化性組成物、およびそれを用いた微細凹凸構造体
JP5879939B2 (ja) 微細凹凸構造体、ディスプレイ及び微細凹凸構造体の製造方法
WO2014192709A1 (ja) 積層体及びその製造方法
WO2016158979A1 (ja) 活性エネルギー線硬化性樹脂組成物及び物品
JP2009270327A (ja) 壁材、およびこれを具備した壁構造物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015537064

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818325

Country of ref document: EP

Kind code of ref document: A1