WO2013176033A1 - 微細繊維の製造方法と微細繊維及び不織布並びに微細繊維状セルロース - Google Patents
微細繊維の製造方法と微細繊維及び不織布並びに微細繊維状セルロース Download PDFInfo
- Publication number
- WO2013176033A1 WO2013176033A1 PCT/JP2013/063664 JP2013063664W WO2013176033A1 WO 2013176033 A1 WO2013176033 A1 WO 2013176033A1 JP 2013063664 W JP2013063664 W JP 2013063664W WO 2013176033 A1 WO2013176033 A1 WO 2013176033A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- enzyme
- cellulose
- fine
- activity
- pulp
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43838—Ultrafine fibres, e.g. microfibres
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F2/00—Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01C—CHEMICAL OR BIOLOGICAL TREATMENT OF NATURAL FILAMENTARY OR FIBROUS MATERIAL TO OBTAIN FILAMENTS OR FIBRES FOR SPINNING; CARBONISING RAGS TO RECOVER ANIMAL FIBRES
- D01C1/00—Treatment of vegetable material
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/425—Cellulose series
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M16/00—Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
- D06M16/003—Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic with enzymes or microorganisms
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C5/00—Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
- D21C5/005—Treatment of cellulose-containing material with microorganisms or enzymes
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H11/00—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
- D21H11/16—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
- D21H11/18—Highly hydrated, swollen or fibrillatable fibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H11/00—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
- D21H11/16—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
- D21H11/20—Chemically or biochemically modified fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43835—Mixed fibres, e.g. at least two chemically different fibres or fibre blends
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/02—Natural fibres, other than mineral fibres
- D06M2101/04—Vegetal fibres
- D06M2101/06—Vegetal fibres cellulosic
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/01—Natural vegetable fibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/298—Physical dimension
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
Definitions
- the present invention relates to a method for producing fine fibers using an enzyme, fine fibers and nonwoven fabrics obtained by the production method, and fine fibrous cellulose.
- cellulose fibers having a fiber diameter of 10 to 50 ⁇ m, particularly cellulose fibers (pulp) derived from wood have been widely used mainly as paper products so far.
- fine fibers having a fiber diameter of 1 ⁇ m or less are also known as cellulose fibers, and sheets containing the fine fibers have advantages such as high mechanical strength, and their application to various applications has been studied. ing. For example, it is known that fine fibers are made into a non-woven fabric and used as a high-strength sheet.
- Such a composite body can be used for various structural members, and very high expectations are placed on it as a flexible transparent substrate for organic EL or liquid crystal displays.
- Patent Document 1 and Patent Document 2 have a function of selectively cutting an amorphous region of a cellulose fiber of a cellulase enzyme, an adhesive role between microfibrils of xylanase or hemicellulase. Fibers were refined by utilizing the function of selectively cutting xylogelcan or hemicellulose components.
- Patent Document 3 an attempt was made to refine fibers using an endoglucanase-type cellulase enzyme.
- Patent Documents 5, 6, and 7 describe fine fibrous cellulose having a fiber diameter of nanometer order.
- Patent Document 5 describes fine fibrous cellulose having a polymerization degree of 500 or more obtained by defibrating beaten pulp.
- Patent Document 6 describes fine fibrous cellulose having a polymerization degree of 600 or more obtained by defibrating a cellulose raw material in an ionic liquid.
- Patent Document 7 describes fine fibrous cellulose obtained by treating a cellulose raw material with a co-oxidant such as N-oxyl and sodium hypochlorite and defibrating.
- the fine fibrous cellulose is obtained in the form of a slurry.
- the fine fibrous celluloses described in Patent Documents 5 and 6 have low fluidity and high viscosity when slurried.
- the fine fibrous cellulose described in Patent Document 7 has low drainage, and when the fine fibrous cellulose is formed into a sheet, the productivity is low and it is difficult to form the sheet. Even when a sheet was obtained, it was easy to yellow over time.
- the slurry of the fine fibrous cellulose described in Patent Document 7 has a high viscosity, and it is difficult to obtain a high-concentration product.
- the fine fibrous celluloses described in Patent Documents 5 to 7 were easy to form aggregates when mixed with the emulsion resin.
- An object of this invention is to provide the manufacturing method of the fine fiber which solved the said problem, and the fine fiber obtained by the manufacturing method.
- the present invention provides a fine fibrous cellulose that has high fluidity when slurried, low viscosity, excellent drainage, hardly yellows, and does not easily form aggregates when mixed with an emulsion resin. The purpose is to do.
- the yield of fine fibers is remarkably improved and the fiber length is increased by using an enzyme having both the endo-type glucanase and cellobiohydrolase having a function of selectively cleaving a crystalline region during enzyme treatment. It has been found that fine fibers that are long and have a relatively large aspect ratio can be obtained.
- the present invention includes, for example, the following inventions.
- a method for producing fine fibers comprising: (a) a step of treating a cellulose raw material with an enzyme; and (b) a step of defibrating the cellulose raw material after the treatment, and the step of treating with the enzyme.
- the method of manufacturing a fine fiber characterized by including the process of processing on the conditions whose ratio of EG activity of an enzyme and CBHI activity is 0.06 or more at least.
- the fine fibrous cellulose of the present invention has an average fiber width of 1 to 1000 nm, a degree of polymerization of 50 or more and less than 500, and an acid group content of 0.1 mmol / g or less.
- the average aspect ratio is preferably 10 to 1,000.
- a method for producing fine fibers comprising: (a) treating a cellulose raw material with an enzyme; and (b) defibrating the cellulose raw material after the treatment; Treatment with a process comprising producing at least a ratio of the activity of endo-glucanase to the activity of cellobiohydrolase contained in said enzyme under a condition of 0.06 or more, [2] Treating the cellulose raw material (a) with an enzyme includes treating the cellulose raw material under a condition where the ratio of the activity of ⁇ -glucosidase to the activity of cellobiohydrolase contained in the enzyme is 0.30 or less [ 1], the method for producing fine fibers according to [3] The method for producing fine fibers according to [1], wherein the cellulose raw material is selected from plant fibers.
- the EG activity (activity of endo-type glucanase) of the present invention was measured and defined as follows.
- the activity of the endo-type glucanase of the present invention means the activity of hydrolyzing the ⁇ -1,4-glucan glycosidic bond in the amorphous region of ⁇ -1,4-glucan.
- a substrate solution of carboxymethylcellulose (CMCNa High viscosity; CatNo 150561, MP Biomedicals, Inc.) at a concentration of 1% (W / V) (containing 100 mM concentration, pH 5.0 acetate-sodium acetate buffer) was prepared.
- the enzyme for measurement was diluted in advance with a buffer solution (same as above) (dilution ratio is such that the absorbance of the enzyme solution shown below falls within a calibration curve obtained from the glucose standard solution below). 10 ⁇ l of the enzyme solution obtained by the dilution was added to 90 ⁇ l of the substrate solution and reacted at 37 ° C. for 30 minutes. In order to prepare a calibration curve, ion-exchanged water (blank) and glucose standard solution (4 standard solutions with different concentrations at least from 0.5 to 5.6 mM) were selected, and 100 ⁇ l each was prepared at 37 ° C., Incubated for 30 minutes.
- a calibration curve was prepared using the absorbance and glucose concentration of each glucose standard solution obtained by subtracting the absorbance of the blank.
- the amount of glucose equivalent in the enzyme solution was calculated using a calibration curve after subtracting the absorbance of the blank from the absorbance of the enzyme solution (if the absorbance of the enzyme solution does not fall within the calibration curve, Measure again by changing the dilution ratio.
- the amount of enzyme that produces a reducing sugar equivalent to 1 ⁇ mol of glucose per minute was defined as one unit, and the EG activity of the present invention was determined from the following formula.
- the CBHI activity (cellobiohydrolase activity) of the present invention was measured and defined as follows.
- the activity of the cellobiohydrolase of the present invention means the activity of hydrolyzing the ⁇ -1,4-glucan glycosidic bond from at least one of the reducing end and the non-reducing end.
- the CBHI activity of the present invention was determined from the following formula, assuming that the amount of enzyme that produces 1 ⁇ mol of 4-methyl-umiferiferon per minute is 1 unit.
- CBHI activity [production amount of 4-methyl-umiferiferon in 1 ml of enzyme solution after dilution ( ⁇ mole) / 30 minutes] ⁇ dilution rate
- the activity (BGL activity) of ⁇ -glucosidase of the present invention was measured by the following method.
- the activity of ⁇ -glucosidase of the present invention means an activity of hydrolyzing a ⁇ -glycoside bond of a sugar.
- ⁇ -Glucosidase activity was measured by adding 4 ⁇ l of enzyme solution to 16 ⁇ l of 125 mM acetate buffer (pH 5.0) containing 1.25 mM 4-methyl-mberiferyl-glucoside, followed by reaction at 37 ° C. for 10 minutes, and then 500 mM glycine. The reaction was stopped by adding 100 ⁇ l of NaOH buffer (pH 10.0), and the fluorescence intensity at 460 nm with 350 nm excitation light was measured.
- the cellulose raw material can be sufficiently refined, and the yield of fine fibers is high, so that the production efficiency of fine fibers from the cellulose raw material is high.
- the fine fiber obtained by the production method of the present invention has a long fiber length and a relatively large aspect ratio, and the nonwoven fabric containing the fine fiber has high strength. Further, the production method of the present invention is low in cost and has a small environmental load.
- the fine fibers and fine fibrous cellulose of the present invention have high fluidity when slurried, low viscosity, excellent drainage, hardly yellowing, and form aggregates when mixed with an emulsion resin. Hateful.
- FIG. 2 is a transmission electron micrograph of the fine fibers obtained in Example 1.
- FIG. 6 is a transmission electron micrograph of fine fibers obtained in Example 5.
- FIG. 4 is a transmission electron micrograph of fine fibers obtained in Comparative Example 2.
- the fine fiber of the present invention is typically a fine fibrous cellulose in which the fiber is composed of cellulose, the maximum fiber width when the short diameter of the fine fiber is taken as the width is 1 nm to 1500 nm, and the long diameter of the fine fiber The fiber length is 0.03 ⁇ m to 5 ⁇ m.
- the fine fibers according to one aspect of the present invention are cellulose fibers or cellulose rod-like particles that are much thinner than pulp fibers usually used in papermaking applications.
- the average fiber width of the fine fibers and fine fibrous cellulose is measured as follows by observation with an electron microscope.
- a slurry containing fine cellulose fibers is prepared, and the slurry is cast on a carbon film-coated grid subjected to a hydrophilic treatment to obtain a sample for observation with a transmission electron microscope (TEM).
- TEM transmission electron microscope
- SEM operation electron microscope
- Observation by an electron microscope image is performed at any magnification of 1000 times, 5000 times, 10000 times, 20000 times, 40000 times, 50000 times, or 100000 times depending on the width of the constituent fibers.
- the sample, observation conditions, and magnification are adjusted to satisfy the following conditions (1) and (2).
- One straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
- a straight line Y perpendicularly intersecting the straight line X is drawn in the same image, and 20 or more fibers intersect the straight line Y.
- the fiber width (minor axis of the fiber) of at least 20 fibers that is, a total of at least 40 fibers) for each of the fibers intersecting with the straight line X and the fibers intersecting with the straight line Y ).
- the fiber width of at least 40 ⁇ 3 sets that is, at least 120 sets
- the average fiber width is determined by dividing the fiber width read in this way by the number of read fibers. This average fiber width is equal to the number average fiber diameter.
- the average fiber width of the fine fibers is preferably 1 nm to 1000 nm, more preferably 2 nm to 500 nm, still more preferably 4 nm to 100 nm as observed with an electron microscope.
- the maximum fiber width is preferably 1500 nm or less, more preferably 1000 nm or less, and even more preferably 200 nm or less when the minor axis of the fine fiber is defined as the width.
- the fiber width of the fine fibers is less than 1 nm, the physical properties (strength, rigidity, or dimensional stability) as the fine fibers are not expressed because cellulose molecules are dissolved in water.
- the average fiber width exceeds 1000 nm, the physical properties (strength, rigidity, or dimensional stability) as fine fibers cannot be obtained because the fibers are merely fibers contained in normal pulp.
- the average fiber width is preferably 2 nm to 30 nm, more preferably 2 nm to 20 nm, because it tends to be easy and the transparency tends to decrease.
- the composite obtained from the fine fibers as described above generally has a high density because it becomes a dense structure, and a high elastic modulus derived from the cellulose crystal is obtained. High transparency is also obtained.
- the fine fibrous cellulose according to another aspect of the present invention is a cellulose fiber or cellulose rod-like particle having a type I crystal structure that is much finer and shorter than pulp fibers usually used in papermaking applications.
- the fine fibrous cellulose according to another aspect of the present invention is cellulose having an average fiber width (average fiber diameter) of 1 to 1000 nm determined by observation with an electron microscope.
- the average fiber width of the fine fibrous cellulose is preferably 150 nm or less, more preferably 100 nm or less, further preferably 50 nm or less, and most preferably 20 nm or less.
- the average fiber width of the fine fibrous cellulose exceeds 1000 nm, it becomes difficult to obtain characteristics (high strength, high rigidity, high dimensional stability) as the fine fibrous cellulose.
- the average fiber width of the fine fibrous cellulose is preferably 1 nm or more, and more preferably 2 nm or more.
- the average fiber width of the fine fibrous cellulose is less than 1 nm, it is dissolved in water as cellulose molecules, so that characteristics (high strength, high rigidity, or high dimensional stability) as fine fibrous cellulose can be obtained. It becomes difficult.
- the average fiber width of fine fibrous cellulose is preferably 1 to 1000 nm, more preferably 1 to 150 nm, still more preferably 1 to 100 nm, particularly preferably 1 to 50 nm. Most preferred is 20 nm.
- Measurement of the fiber width by observation with an electron microscope of fine fibers is performed as follows. A fine fiber-containing slurry having a concentration of 0.05 to 0.1% by mass is prepared, and the slurry is cast on a carbon film-coated grid subjected to a hydrophilization treatment to obtain a sample for TEM observation. When wide fibers are included, an SEM image of the surface cast on glass may be observed. Observation with an electron microscope image is performed at a magnification of 1000 to 100,000 times according to the width of the constituent fibers.
- the measurement of the average fiber width by electron microscope observation of fine fibrous cellulose is performed as follows.
- a fine fibrous cellulose-containing slurry is prepared, and the slurry is cast on a carbon film-coated grid subjected to a hydrophilization treatment to obtain a transmission electron microscope (TEM) observation sample.
- TEM transmission electron microscope
- SEM operation electron microscope
- Observation by an electron microscope image is performed at a magnification of 1000 times, 5000 times, 10000 times, 20000 times, 50000 times, or 100000 times depending on the width of the constituting fiber.
- the sample, observation conditions, and magnification are adjusted to satisfy the following conditions (1) and (2).
- One straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
- a straight line Y perpendicularly intersecting the straight line X is drawn in the same image, and 20 or more fibers intersect the straight line Y.
- the width (minor diameter of the fiber) is at least 20 (that is, the total is at least 40). read.
- the fiber width of at least 40 ⁇ 3 sets (that is, at least 120 sets) is read.
- the average fiber width is determined by dividing the fiber width read in this way by the number of read fibers.
- the fiber length is preferably 0.03 ⁇ m or more, and more preferably 0.03 ⁇ m to 5 ⁇ m.
- the fiber length can be determined by TEM, SEM, or AFM image analysis.
- the maximum fiber width is preferably 1 nm or more and 1000 nm or less, more preferably 1 nm or more and 500 nm or less, and most preferably 1 nm or more and 200 nm or less when the minor axis of fine fibrous cellulose is defined as the width. If the maximum fiber width of the fine fibrous cellulose is 1000 nm or less, the strength of the composite resin obtained by mixing with the emulsion resin is high, and it is easy to ensure the transparency of the composite resin.
- the degree of polymerization of fine fibrous cellulose means the number of glucose molecules contained in one cellulose molecule.
- the degree of polymerization of the fine fibrous cellulose is from 50 to less than 500, preferably from 100 to 450, and more preferably from 150 to 300. If the degree of polymerization of the fine fibrous cellulose is less than 50, it cannot be said to be “fibrous” and is difficult to use as a reinforcing agent.
- the polymerization degree of the fine fibrous cellulose is 500 or more, the fluidity when the fine fibrous cellulose is slurried is lowered, the slurry viscosity becomes too high, and the dispersion stability is lowered.
- aggregates may be formed when mixed with the emulsion resin.
- the degree of polymerization of fine fibrous cellulose is measured by the following method. Fine fibrous cellulose (supernatant liquid after centrifugation, concentration of about 0.1% by mass) is developed on a polytetrafluoroethylene petri dish and dried at 60 ° C. to obtain a dry sheet. The obtained dry sheet is dispersed in a dispersion medium, and the pulp viscosity is measured according to Tappi T230. Moreover, a blank test is performed by measuring the viscosity only with the dispersion medium, and the blank viscosity is measured.
- the specific viscosity ( ⁇ sp) is obtained, and the intrinsic viscosity ([ ⁇ ]) is calculated using the following formula.
- [ ⁇ ] ⁇ sp / (c (1 + 0.28 ⁇ ⁇ sp)) C in a formula shows the cellulose concentration at the time of a viscosity measurement.
- the average fiber length is preferably 0.03 to 5 ⁇ m, more preferably 0.1 to 2 ⁇ m. If average fiber length is 0.03 micrometer or more, the strength improvement effect at the time of mix
- the fiber length can be determined by analyzing the electron microscope observation image used when measuring the average fiber width.
- the fiber length of at least 20 fibers (that is, at least 40 in total) is read for each of the fibers intersecting with the straight line X and the fibers intersecting with the straight line Y.
- the fiber length of at least 40 ⁇ 3 sets (that is, at least 120 sets) is read.
- the average fiber length is determined by dividing the fiber length read in this way by the number of read fibers.
- the aspect ratio of the fine fiber according to the present invention may be expressed as an axial ratio in the present specification, for example, and is represented by fiber length / fiber width.
- the aspect ratio of the fine fiber according to the present invention is preferably in the range of 10 to 10,000, and more preferably in the range of 25 to 1,000. If the axial ratio is less than 20, it may be difficult to form a fine fiber-containing nonwoven fabric. When the axial ratio exceeds 10,000, the slurry viscosity becomes high, which is not preferable.
- the average aspect ratio of the fine fibrous cellulose is preferably in the range of 10 to 10,000, more preferably in the range of 25 to 1,000, and in the range of 10 to 300. More preferably, the range of 50 to 200 is most preferable. If the average aspect ratio is 10 or more, it is more suitable as a reinforcing agent for resin or rubber. When the average aspect ratio is 10,000 or less, the viscosity when slurried becomes lower.
- the average aspect ratio is obtained by the following method. That is, 40 fibers are randomly selected for each fiber observed from the electron microscope image, and the aspect ratio, that is, the fiber length / fiber width, is obtained.
- the average aspect ratio of the present invention is an average value of the 40 aspect ratios.
- the content of acid groups in the fine fibrous cellulose of the present invention means the content of acid groups relative to the unit mass of the fine fibrous cellulose.
- the content of acid groups in the fine fibrous cellulose of the present invention is 0.0001 mmol / g or more and 0.1 mmol / g or less, and preferably 0.0001 mmol / g or more and 0.06 mmol / g or less.
- the acid group is a functional group showing acidity such as a carboxylic acid group, a phosphoric acid group, or a sulfonic acid group.
- Cellulose has a small amount (specifically, 0.1 mmol / g or less) of carboxy groups even without a treatment for introducing carboxy groups. Therefore, the content of acid groups in the fine fibrous cellulose of the present invention of 0.1 mmol / g or less means that substantially no new acid groups have been introduced into the cellulose.
- the phosphoric acid group is introduced by allowing a phosphorus oxoacid having at least (HPO 4 ) 2 ⁇ or a salt thereof to act on cellulose.
- the sulfonic acid group is introduced by allowing a sulfur oxo acid having at least (HSO 3 ) ⁇ or a salt thereof to act on cellulose.
- the content of the acid group is determined using a method of “Test Method T237 cm-08 (2008): Carboxyl Content of Pull” of TAPPI, USA.
- sodium hydrogen carbonate (NaHCO 3 ) / sodium chloride (NaCl) 0.84 g / 5 among the test solutions used in the test method in order to make it possible to measure the content of acid groups over a wider range.
- TAPPI T237 cm-08 (2008) except that the test solution obtained by dissolving and diluting .85 g in 1000 ml with distilled water was changed to 1.60 g of sodium hydroxide so that the concentration of the test solution was substantially 4-fold. ).
- the difference between the measured values of cellulose fibers before and after the introduction of the acid group is regarded as a substantial acid group content.
- the absolutely dry cellulose fiber used as a measurement sample is one obtained by freeze-drying in order to avoid alteration of cellulose that may occur due to heating during heat drying. Since the acid group content measurement method is a measurement method for a monovalent acidic group (carboxy group), when the acid group to be quantified is multivalent, it is obtained as the monovalent acid group content. The value obtained by dividing the obtained value by the acid value is defined as the acid group content.
- the degree of crystallinity obtained by the X-ray diffraction method is preferably 60% or more and 99% or less, and 65% or more and 99% or less. More preferably, it is 70% or more and 99% or less.
- the degree of crystallinity is high, excellent performance can be expected in terms of the heat resistance and the low coefficient of thermal expansion of a composite in which fine fibers are combined with a resin.
- the degree of crystallinity of the fine fibrous cellulose of the present invention determined by the X-ray diffraction method is preferably 65% or more and 99% or less, more preferably 70% or more and 99% or less, More preferably, it is 75% or more and 99% or less, and most preferably more than 80% and 99% or less. If the degree of crystallinity is 65% or more, further excellent performance can be expected in terms of elastic modulus, heat resistance, or low linear thermal expansion.
- the degree of crystallinity can be obtained by measuring an X-ray diffraction profile and determining the crystallinity by a conventional method (Segal et al., Textile Research Journal, 29, 786, 1959).
- cellulose raw material As a raw material of cellulose for obtaining fine fibers, or a raw material of fine fibrous cellulose (hereinafter referred to as “cellulose raw material”), pulp for papermaking, cotton pulp such as cotton linter or cotton lint, hemp, straw, or Non-wood pulp such as bagasse or cellulose isolated from sea squirts or seaweeds can be used. Among these, paper pulp is preferable in terms of availability.
- Paper pulp includes hardwood kraft pulp (bleached kraft pulp (LBKP), unbleached kraft pulp (LUKP), oxygen bleached kraft pulp (LOKP), etc.), softwood kraft pulp (bleached kraft pulp (NBKP), unbleached kraft pulp) (NUKKP, oxygen bleached kraft pulp (NOKP), etc.), sulfite pulp (SP), soda pulp (AP) and other chemical pulp, semi-chemical pulp (SCP), semi-chemical pulp (CGP), etc.
- Mechanical pulp such as chemical pulp, groundwood pulp (GP), or thermomechanical pulp (TMP, or BCTMP), non-wood pulp made from straw, cocoon, hemp or kenaf, etc., deinked pulp made from matyaa waste paper Is mentioned.
- kraft pulp, deinked pulp, or sulfite pulp is preferable because it is more easily available.
- a cellulose raw material may be used individually by 1 type, and may be used in mixture of 2 or more types.
- the cellulose raw material for obtaining fine fibers may be selected from plant fibers, and is preferably selected from lignocellulose raw materials.
- the lignocellulose raw material include paper pulp, cotton pulp such as cotton linter and cotton lint, non-wood pulp such as hemp, straw, or pagas, or cellulose isolated from sea squirt or seaweed.
- paper pulp is preferable in terms of availability.
- Paper pulp includes hardwood kraft pulp (bleached kraft pulp (LBKP), unbleached kraft pulp (LUKP), oxygen bleached kraft pulp (LOKP), etc.), softwood kraft pulp (bleached kraft pulp (NBKP), unbleached kraft pulp) (NUKKP, oxygen bleached kraft pulp (NOKP), etc.), sulfite pulp (SP), soda pulp (AP) and other chemical pulp, semi-chemical pulp (SCP), semi-chemical pulp (CGP), etc.
- Mechanical pulp such as chemical pulp, groundwood pulp (GP), or thermomechanical pulp (TMP, or BCTMP), non-wood pulp made from straw, cocoon, hemp, kenaf, etc., or deinked pulp made from waste paper Is mentioned.
- kraft pulp, deinked pulp, or sulfite pulp is preferable because it is more easily available.
- a cellulose raw material may be used individually by 1 type, and may be used in mixture of 2 or more types.
- the cellulose raw material may be used as it is. However, in order to improve the enzyme reaction efficiency, it is desirable to use the cellulose raw material after the mechanical crushing treatment.
- the pulverization method may be either dry or wet. A disintegrator that disaggregates pulp or a refiner that beats pulp can be used.
- the crusher includes a grinder, a pressure homogenizer, a shredder, a shearing crusher such as a cutter mill, a compression crusher such as a juicer crusher and a cone crusher, an impact crusher such as an impact crusher, or a roll mill, stamp mill, and edge runner.
- a mill or rod mill can be selected as appropriate from the viewpoint of final use and cost.
- the cellulose raw material is adjusted to a dispersion containing 0.2 to 20% by mass of the cellulose raw material, preferably 1 to 10% by mass, based on the total mass of the cellulose raw material and the solvent, using a solvent, preferably water.
- a solvent preferably water.
- the temperature and pH of the dispersion are appropriately adjusted before and after the enzyme is added to the dispersion.
- the reaction efficiency is better when the enzyme is added after adjusting the temperature and pH in advance.
- some or all of the enzyme may be added to the solvent in advance.
- the enzyme used in the present invention is a cellulase enzyme, and is classified into a carbohydrate hydrolase family based on a higher-order structure of a catalytic domain having a cellulose hydrolysis reaction function.
- Cellulase enzymes are classified into endo-glucanase and cellobiohydrolase according to their cellulolytic properties.
- Endo-type glucanase is highly hydrolyzable to an amorphous part of cellulose, a soluble cellooligosaccharide, or a cellulose derivative such as carboxymethyl cellulose, and randomly cleaves the molecular chain from the inside to reduce the degree of polymerization.
- endo-type glucanase has low hydrolysis reactivity to cellulose microfibrils having crystallinity.
- cellobiohydrolase decomposes the crystalline part of cellulose to give cellobiose.
- Cellobiohydrolase hydrolyzes from the end of the cellulose molecule and is also called an exo-type or processive enzyme.
- the method for producing fine fibers includes treating a cellulose raw material with an enzyme, and treating the cellulose raw material with an enzyme is at least an endo of the activity of cellobiohydrolase contained in the enzyme.
- Treating a cellulose raw material with an enzyme means adding the enzyme to a dispersion containing the cellulose raw material and reacting the cellulose raw material with the enzyme.
- the EG activity of the present invention shows the activity of endo-type glucanase and has a function of selectively cleaving the amorphous region of the cellulose fiber.
- the CBHI activity indicates the activity of cellobiohydrolase, and has a function of selectively cutting the crystalline region of the cellulose fiber.
- an enzyme or an enzyme mixture (for example, a mixture of two or more kinds of enzymes) containing endo glucanase and cellobiohydrolase is used as at least a cellulase enzyme.
- the ratio of EG activity to CBHI activity (EG activity / CBHI activity) of the added enzyme or enzyme mixture is 0.06 or more, preferably 0.8. 1 or more, more preferably 1 or more.
- the ratio of EG activity to CBHI activity is preferably 20 or less, more preferably 10 or less, and most preferably 6 or less.
- the range of the ratio of the EG activity to the CBHI activity is preferably 0.06 to 20, more preferably 0.1 to 10, and further preferably 1 to 6.
- the ratio of the EG activity to the CBHI activity is less than 0.06, the aspect ratio of the cellulose fiber after the enzyme treatment is small, and the yield of the cellulose fiber is low.
- the EG activity is 0.0001 unit or more and 100 unit or less, more preferably 0.001 unit or more and 10 unit or less with respect to 1 g of the substrate.
- the amount added may not always be appropriate.
- the yield of cellulose fibers decreases due to saccharification, and the amount of enzyme added is 60% after the enzyme treatment. It is preferable to adjust so that it may exceed. More preferably, the amount of enzyme added is adjusted so that the yield of cellulose fibers exceeds 70%.
- the ratio of ⁇ -glucosidase activity (BGL activity) and cellobiohydrolase activity (CBHI activity) contained in the enzyme used in the enzyme treatment of the present invention is 0.000001 or more. 0.30 or less is preferable, 0.000001 or more and 0.20 or less is more preferable, and 0.000001 or more and 0.10 or less is particularly preferable. If the ratio of the activity of ⁇ -glucosidase and the activity of cellobiohydrolase contained in the enzyme used in the enzyme treatment of the present invention exceeds 0.30, the sugar released from cellulose is decomposed into monosaccharides, which is not preferable.
- the enzyme or enzyme mixture used may contain a hemicellulase enzyme in addition to endo-type glucanase and cellobiohydrolase.
- a hemicellulase enzyme in addition to endo-type glucanase and cellobiohydrolase.
- hemicellulase-based enzymes xylanase that is an enzyme that degrades xylan, mannanase that is an enzyme that degrades mannan, or arabanase that is an enzyme that degrades araban is given.
- pectinase which is an enzyme that degrades pectin, can also be used as a hemicellulase-based enzyme.
- Microorganisms that produce hemicellulase enzymes often also produce cellulase enzymes.
- Hemicellulose is a polysaccharide excluding pectins between cellulose microfibrils on the plant cell wall. Hemicelluloses are diverse and differ between plant types and cell wall layers. In wood, glucomannan is the main component in the secondary wall of conifers, and 4-O-methylglucuronoxylan is the main component in the secondary walls of hardwood. Therefore, in order to obtain fine fibers from coniferous trees, it is preferable to use mannase, and in the case of hardwoods, it is preferable to use xylanase.
- the pH of the cellulose raw material-containing dispersion during the enzyme treatment of the present invention is preferably maintained at the optimum pH of the enzyme to be used.
- the pH is preferably between 4 and 8.
- the temperature of the cellulose raw material-containing dispersion during the enzyme treatment of the present invention is preferably maintained at the optimum temperature of the enzyme used during the enzyme treatment step.
- 40 ° C. to 50 ° C. is preferred.
- enzymes derived from molds are generally preferably maintained at 30 to 50 ° C.
- the temperature of the cellulose raw material-containing dispersion at the time of the enzyme treatment is less than 30 ° C., the enzyme activity decreases and the treatment time becomes longer, which is not preferable. If the temperature of the cellulose raw material-containing dispersion during the enzyme treatment exceeds 70 ° C, the enzyme may be deactivated.
- the treatment time of the enzyme treatment step of the present invention is preferably in the range of 10 minutes to 24 hours. If it is less than 10 minutes, the effect of the enzyme treatment is hardly exhibited. If it exceeds 24 hours, the decomposition of cellulose fibers proceeds too much by the enzyme, and the weighted average fiber length of the resulting fine fibers may be too short.
- the enzyme remains active for longer than the desired time, decomposition of the cellulose fiber proceeds too much as described above, so it is better not to leave the enzyme by washing the cellulose raw material-containing dispersion after reacting with the enzyme. preferable. It is preferable to wash with 2 to 20 times the weight of cellulose fiber because the enzyme hardly remains.
- 20% caustic soda is added to the cellulose raw material-containing dispersion after the reaction with the enzyme so that the pH is about 12 to deactivate the enzyme, or after the reaction with the enzyme.
- a method may be used in which the temperature of the cellulose raw material-containing dispersion is increased to 90 ° C. at which the enzyme is deactivated to deactivate.
- ⁇ Step (b)> The cellulose raw material-containing dispersion after the reaction with the enzyme is adjusted to 0.1 to 10% by mass with a solvent, preferably water, and is subjected to a refinement (defibration) treatment.
- the concentration of cellulose contained in the dispersion is preferably 0.2 to 5% by mass, and more preferably 0.3 to 3% by mass. When the concentration is less than 0.1% by mass, the processing efficiency is low. On the other hand, when the concentration exceeds 10% by mass, the viscosity is excessively increased during the miniaturization treatment, and the handling may be very difficult.
- a wet milling apparatus such as a refiner, a twin-screw kneader, a vibration mill, a homomixer under high-speed rotation, an ultrasonic disperser, or a beater can be used as appropriate.
- a high-pressure homogenizer, a high-speed rotation type defibrator, or a combination of both is preferable.
- the high-pressure homogenizer treatment is easy to refine because the cellulose fiber-containing dispersion accelerated at high speed by pressurization is refined by rapid decompression. By repeating the high-pressure homogenizer treatment twice or more, the degree of refinement can be further increased to obtain fine fibers having a desired fiber width. As the number of passes increases, the degree of miniaturization can be increased. However, an excessively large number of passes is not preferable because the cost increases.
- Specific examples of high-pressure homogenizers include “Starburst” manufactured by Sugino Machine, “High-Pressure Homogenizer” manufactured by Izumi Food Machinery, or a homovalve-type high-pressure homogenizer typified by “Minilab 8.3H type” manufactured by Rannie.
- Microfluidizer manufactured by Microfluidics
- Nonomizer manufactured by Yoshida Kikai Kogyo Co., Ltd.
- Ultimizer manufactured by Sugino Machine Co.
- Gene PY manufactured by Shiramizu Chemical Co., Ltd.
- DeBEE2000 manufactured by BB Japan
- a high pressure homogenizer of the chamber type such as “Ariete series” of Niro Soavi.
- the high-speed rotation type defibrating machine is a type that disperses the cellulose fiber to be treated by passing it through the gap between the rotating body and the fixed part, or the outer rotation that rotates the outside of the inner rotating body that rotates in a certain direction.
- the type is a type in which pulp fibers to be treated are passed through and dispersed in a gap between the inner rotating body and the outer rotating body.
- a high-speed rotation type defibrator examples include “Clairemix” manufactured by M Technique, “TK Robotics” manufactured by Primics, or “Filmix”, or “Milder” and “Cabitron” manufactured by Taiyo Koki Co., Ltd. Or “Sharp Flow Mill” or the like.
- the fine fibrous cellulose and fibers other than the fine fibrous cellulose can be mixed and used.
- fibers other than fine fibrous cellulose include inorganic fibers, organic fibers, synthetic fibers, semi-synthetic fibers, and regenerated fibers.
- inorganic fibers include, but are not limited to, glass fibers, rock fibers, or metal fibers.
- organic fiber include, but are not limited to, fibers derived from natural products such as carbon fiber, chitin, and chitosan.
- synthetic fibers include, but are not limited to, nylon, pinilone, vinylidene, polyester, polyolefin (for example, polyethylene or polypropylene), polyurethane, acrylic, polyvinyl chloride, or aramid.
- Semi-synthetic fibers include, but are not limited to, acetate, triacetate, or promix.
- the recycled fiber include, but are not limited to, rayon, cupra, polynosic rayon, lyocell, or tencel.
- fibers other than fine fibrous cellulose are subjected to chemical treatment, fibrillation treatment, etc.
- fibers other than fine fibrous cellulose are mixed with fine fibrous cellulose before chemical treatment, fibrillation treatment, etc.
- a treatment can be applied, or a fiber other than the fine fibrous cellulose can be subjected to a treatment such as a chemical treatment or a fibrillation treatment and then mixed with the fine fibrous cellulose.
- the addition amount of fibers other than fine fibrous cellulose in the total amount of fine fibrous cellulose and fibers other than fine fibrous cellulose is not particularly limited, but preferably 1% by mass or more. It is 50 mass% or less, More preferably, it is 1 to 40 mass%, More preferably, it is 1 to 30 mass%, Most preferably, it is 1 to 20 mass%.
- the fine fiber-containing dispersion obtained by the above-mentioned refinement treatment can be obtained by centrifugation or the like.
- a fine fiber-containing nonwoven fabric can be produced using the fine fibers obtained as described above.
- the obtained non-woven fabric can be impregnated with a polymer or sandwiched between polymer sheets to form a fine fiber-containing composite.
- the concentration of fine fibers contained in the dispersion used for filtration is preferably 0.05 to 5% by mass. . If the concentration is too low, it takes an enormous amount of time for filtration. Conversely, if the concentration is too high, a uniform sheet cannot be obtained.
- Such a filter cloth is preferably a sheet made of an organic polymer, a woven fabric, or a porous membrane.
- the organic polymer is preferably a non-cellulosic organic polymer such as polyethylene terephthalate, polyethylene, polypropylene, or polytetrafluoroethylene (PTFE).
- Specific examples include a porous film of polytetrafluoroethylene having a pore size of 0.1 to 20 ⁇ m, for example, 1 ⁇ m, or polyethylene terephthalate or polyethylene woven fabric having a pore size of 0.1 to 20 ⁇ m, for example, 1 ⁇ m.
- a dispersion containing fine fibers described in WO2011 / 013567 is discharged onto the upper surface of an endless belt, and a dispersion medium is squeezed from the discharged dispersion.
- a method using a manufacturing apparatus in which the web is conveyed to the drying section while being placed on the endless belt.
- examples of the dehydration method that can be used include a dehydration method that is usually used in the manufacture of paper, and a method of dehydrating with a long net, circular net, or inclined wire and then dehydrating with a roll press is preferable.
- Examples of the drying method include methods used in the production of paper. For example, a method such as a cylinder dryer, a Yankee dryer, hot air drying, or an infrared heater is preferable.
- the fine fiber-containing non-woven fabric can maintain various porosity depending on the manufacturing method.
- Examples of a method for obtaining a sheet having a large porosity include a method in which water in the nonwoven fabric is finally replaced with an organic solvent such as alcohol in a film forming process by filtration. In this method, water is removed by filtration, and an organic solvent such as alcohol is added when the content of fine fibers is 5 to 99% by mass with respect to the total mass of the solvent containing fine fibers.
- the replacement can also be performed by putting the fine fiber-containing dispersion into the filtration device and then gently putting an organic solvent such as alcohol into the upper part of the dispersion.
- the organic solvent such as alcohol used here is not particularly limited, but alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, ethylene glycol, and ethylene glycol mono-t-butyl ether are used.
- one or more organic solvents such as acetone, methyl ethyl ketone, tetrahydrofuran, cyclohexane, toluene, or carbon tetrachloride can be used.
- a water-insoluble organic solvent is used as the organic solvent, it is preferable to use a mixed solvent with the water-soluble organic solvent, or replace with a water-soluble organic solvent and then replace with a water-insoluble organic solvent.
- the porosity here refers to the volume ratio of the voids in the nonwoven fabric, and the porosity can be determined from the area, thickness, and mass of the nonwoven fabric according to the following formula.
- Porosity (vol%) ⁇ 1-B / (M ⁇ A ⁇ t) ⁇ ⁇ 100
- A is the area (cm 2 ) of the nonwoven fabric
- t (cm) is the thickness
- B is the mass (g) of the nonwoven fabric
- M 1.5 g / cm 3 is assumed in the present invention.
- the film thickness of the nonwoven fabric is measured at 10 points at various positions of the nonwoven fabric using a film thickness meter (PDN-20 manufactured by PEACOK), and the average value is adopted.
- the thickness of the fine fiber-containing nonwoven fabric is not particularly limited, but is preferably 1 ⁇ m or more, and more preferably 5 ⁇ m or more.
- the thickness is usually 1000 ⁇ m or less, preferably 5 to 250 ⁇ m.
- the thickness range of the fine fiber-containing nonwoven fabric is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 5 ⁇ m to 250 ⁇ m.
- a resin can be mixed into the fine fiber or sheet (nonwoven fabric or the like).
- a thermoplastic resin a thermosetting resin, a photocurable resin, or the like can be used.
- thermoplastic resins styrene resins, acrylic resins, aromatic polycarbonate resins, aliphatic polycarbonate resins, aromatic polyester resins, aliphatic polyester resins, aliphatic polyolefin resins, cyclic olefin resins, polyamides Resin, polyphenylene ether resin, thermoplastic polyimide resin, polyacetal resin, polysulfone resin, amorphous fluorine resin, and the like, but are not limited thereto.
- thermosetting resin examples include, but are not limited to, epoxy resin, acrylic resin, oxetane resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, silicon resin, polyurethane resin, or diallyl phthalate resin.
- photocurable resin examples include, but are not limited to, a (meth) acrylate polymer or copolymer obtained by polymerizing or copolymerizing a radical polymerizable compound.
- the resin may be used alone or two or more different resins may be used.
- thermosetting resin examples include, but are not limited to, polyfunctional amines, polyamides, acid anhydrides, or phenol resins.
- curing catalyst for the thermosetting resin examples include imidazole and the like, but are not particularly limited thereto.
- curing agent or a curing catalyst can also be used independently, and can also use 2 or more types.
- a method of curing by heat, or radiation irradiation for example, a method of curing by heat, or radiation irradiation
- the method is not limited thereto.
- radiation include, but are not limited to, infrared light, visible light, and ultraviolet light.
- a thermal polymerization initiator may be used, and any method that can cure the resin can be used without particular limitation.
- Examples of the method for producing fine fibrous cellulose according to another aspect of the present invention include a production method having a decomposition step and a defibration step.
- the order of the decomposition step and the defibration step is not limited, but it is preferable to perform the defibration step after the decomposition step.
- the method for producing the fine fibrous cellulose of the present invention can also be applied to the production of the fine fibers of the present invention. Hereinafter, each step will be described in detail.
- the decomposition step is a step of decomposing cellulose contained in the cellulose raw material.
- the decomposition step it is preferable to perform an enzyme treatment for decomposing cellulose using an enzyme or a sulfuric acid treatment for decomposing cellulose using sulfuric acid because the desired degree of polymerization can be easily obtained.
- the enzyme treatment is more preferable because the fine fibrous cellulose can be easily obtained.
- Cellulose can also be decomposed by treatments other than enzyme treatment and sulfuric acid treatment. Examples of the treatment other than the enzyme treatment and the sulfuric acid treatment include a blasting treatment that instantaneously changes from a heat-pressed state to a non-pressurized state.
- the pulverization method may be either dry or wet.
- Examples of the pulverizer used for the pulverization treatment include the same ones as described above, and can be appropriately selected from these in view of the final application and cost. Further, as the pulverizer, a disintegrator that disaggregates pulp or a refiner that beats pulp can also be used.
- the enzyme treatment it is preferable to dilute the cellulose raw material with a dispersion medium to obtain a dispersion containing 0.2 to 20% by mass of the cellulose raw material.
- a dispersion medium either water or an organic solvent can be used, but water is preferred.
- the cellulolytic enzyme used in the enzyme treatment of the present invention is an enzyme generically called so-called cellulase having cellobiohydrolase activity, endoglucanase activity, or ⁇ -glucosidase activity.
- the cellulolytic enzyme used in the enzyme treatment of the present invention may be prepared by mixing various cellulolytic enzymes with enzymes having respective activities in appropriate amounts, but commercially available cellulase preparations may also be used. Many commercially available cellulase preparations have the above-mentioned various cellulase activities and also have hemicellulase activity.
- cellulase preparations include Trichoderma, Acremonium, Aspergillus, Phanerochaete, Trametes, Humicola, and Humicola.
- cellulase preparations derived from genera and the like are all trade names, for example, cellulosin T2 (manufactured by HIPI), mecerase (manufactured by Meiji Seika Co., Ltd.), Novozyme 188 (manufactured by Novozyme), or multifect CX10L (Genencore) Manufactured) and the like.
- the activity of endo-glucanase (hereinafter referred to as “EG activity”; degradation activity for amorphous part) of the enzyme or enzyme mixture used in the enzyme treatment of the present invention and the activity of cellobiohydrolase ( Hereinafter, it is referred to as “CBHI activity.”
- the ratio (EG activity / CBHI activity) of cellulose to the crystal part is preferably 0.06 or more, more preferably 0.1 or more, and 1 or more. More preferably it is. If the ratio of EG activity to CBHI activity is 0.06 or more, the aspect ratio of the cellulose fiber after the enzyme treatment is increased, and the yield of fine fibrous cellulose is increased.
- the ratio of the EG activity to the CBHI activity is preferably 20 or less, more preferably 10 or less, and even more preferably 6 or less.
- the range of the ratio of the EG activity to the CBHI activity is preferably 0.06 to 20, more preferably 0.1 to 10, and further preferably 1 to 6.
- the ratio of ⁇ -glucosidase activity (BGL activity) and cellobiohydrolase activity (CBHI activity) contained in the enzyme used in the enzyme treatment of the present invention is 0.000001 or more and 0.00. 30 or less is preferable, 0.000001 or more and 0.20 or less is more preferable, and 0.000001 or more and 0.10 or less is particularly preferable. If the ratio of the activity of ⁇ -glucosidase and the activity of cellobiohydrolase contained in the enzyme used in the enzyme treatment of the present invention exceeds 0.30, the sugar released from cellulose is decomposed into monosaccharides, which is not preferable.
- a hemicellulase-based enzyme may be used alone or in admixture as an enzyme in addition to cellulase.
- hemicellulase enzymes it is preferable to use xylanase, which is an enzyme that degrades xylan, mannanase, which is an enzyme that degrades mannan, or arabanase, which is an enzyme that degrades araban.
- pectinase which is an enzyme that degrades pectin, can also be used as a hemicellulase-based enzyme.
- the pH of the dispersion during the enzyme treatment is preferably maintained in a range where the activity of the enzyme used is high.
- the pH is preferably between 4-8.
- the temperature of the dispersion during the enzyme treatment in the method for producing fine fibrous cellulose is preferably maintained within a range in which the activity of the enzyme used is increased.
- the temperature is preferably 40 ° C. to 60 ° C. If the temperature is less than 40 ° C., the enzyme activity decreases and the treatment time becomes longer, and if it exceeds 60 ° C., the enzyme may be deactivated.
- the treatment time for the enzyme treatment is preferably in the range of 10 minutes to 24 hours. If it is less than 10 minutes, the effect of the enzyme treatment is hardly exhibited. If it exceeds 24 hours, the decomposition of the cellulose fiber is too advanced by the enzyme, and the average fiber length of the resulting fine fiber may be too short.
- the enzyme reaction is preferably stopped.
- the enzyme reaction is stopped by washing the enzyme-treated dispersion with water, removing the enzyme, adding sodium hydroxide to the enzyme-treated dispersion to a pH of about 12, and then adding the enzyme. Examples thereof include a method of inactivating, or a method of inactivating the enzyme by raising the temperature of the dispersion treated with the enzyme to 90 ° C.
- a cellulose raw material is added to a sulfuric acid aqueous solution and heated.
- the concentration of the sulfuric acid aqueous solution is preferably 0.01 to 20% by mass, more preferably 0.1 to 10% by mass with respect to the total mass of sulfuric acid and water. If the concentration of the sulfuric acid aqueous solution is 0.01% by mass or more with respect to the total mass of acid and water, the cellulose can be sufficiently decomposed, and if it is 20% by mass or less, the handleability is excellent.
- the heating temperature during the sulfuric acid treatment is preferably 10 to 120 ° C., more preferably 20 to 80 ° C. If heating temperature is 10 degreeC or more, the decomposition reaction of a cellulose can be controlled easily. In heating, in order to prevent the disappearance of water in the sulfuric acid aqueous solution, it is preferable to condense and reflux the evaporated water.
- the defibrating step is a step of refining the cellulose that has been decomposed in the decomposing step.
- the cellulose before being refined is preferably diluted with water to obtain a dispersion having a cellulose concentration of 0.1 to 10% by mass.
- the cellulose concentration is more preferably 0.2 to 5% by mass, and further preferably 0.3 to 3% by mass. If the cellulose concentration is 0.1% by mass or more, the defibrating efficiency is increased, and if it is 10% by mass or less, an increase in viscosity during the defibrating process can be prevented.
- the miniaturization method a method using various crushing apparatuses can be mentioned.
- the pulverizer the same ones as described above can be used as appropriate.
- a high-pressure homogenizer, a high-speed rotation type defibrator, or a combination of both is particularly preferable.
- a high-pressure homogenizer is a device that pressurizes an enzyme-treated dispersion and refines it by rapidly depressurizing the pressurized dispersion.
- the high-pressure homogenizer treatment may be performed once, but by repeating it twice or more, the degree of refinement can be further increased and fine fibers having a desired fiber width can be easily obtained. As the number of repetitions increases, the degree of miniaturization can be increased. However, when the number of repetitions is too large, the cost increases.
- Specific examples of the high-pressure homogenizer include those described above.
- the high-speed rotating defibrator is a device that generates a high shear rate by passing a narrow gap while rotating the enzyme-treated dispersion at high speed.
- Examples of the high-speed rotation type defibrator include a type that allows the dispersion liquid to be processed to pass through the gap between the rotating body and the fixed part.
- the high-speed rotation type defibrator includes an inner rotating body that rotates in a fixed direction, and an outer rotating body that rotates the outer side of the inner rotating body opposite to the inner rotating body, and the inner rotating body and the outer rotating body.
- the pulp fiber to be treated is passed through and dispersed in the gaps between them.
- Specific examples of the high-speed rotation type defibrator include those described above.
- fine fibrous cellulose having a small average fiber diameter and a maximum fiber diameter can be easily obtained, so that the defibrated dispersion liquid is preferably centrifuged.
- the fine fibrous cellulose and fibers other than the fine fibrous cellulose can be mixed and used.
- the fibers other than the fine fibrous cellulose include those described above, but are not limited thereto.
- the fibers other than the fine fibrous cellulose can be subjected to treatments such as chemical treatment and defibrating treatment as desired.
- a fiber other than fine fibrous cellulose is subjected to chemical treatment, fibrillation treatment, etc.
- fibers other than fine fibrous cellulose are mixed with fine fibrous cellulose before chemical treatment, defibration treatment, etc.
- the fibers other than the fine fibrous cellulose can be subjected to treatment such as chemical treatment and defibration treatment, and then mixed with the fine fibrous cellulose.
- treatment such as chemical treatment and defibration treatment
- the addition amount of fibers other than fine fibrous cellulose in the total amount of fine fibrous cellulose and fibers other than fine fibrous cellulose is not particularly limited, but is preferably 50% by mass or less. More preferably, it is 40 mass% or less, More preferably, it is 30 mass% or less, Most preferably, it is 20 mass% or less.
- a resin can be mixed with the fine fibrous cellulose.
- a thermoplastic resin a thermosetting resin, a photocurable resin, or the like can be used.
- thermoplastic resin examples include those described above, but are not limited thereto.
- thermosetting resin examples include those described above, but are not limited thereto.
- Examples of the photocurable resin include those described above, but are not limited thereto.
- the resin may be used alone or two or more different resins may be used.
- thermosetting resin examples include those described above, but are not particularly limited thereto.
- curing agent and a curing catalyst can also be used independently, and can also use 2 or more types.
- the method for curing when the cellulose fine fiber-containing sheet and the resin are mixed and cured to produce a cellulose fine fiber-containing resin composite includes the same methods as described above, but is not limited thereto.
- Examples of the radiation include those described above, but are not limited thereto.
- a thermal polymerization initiator may be used, and any method that can be cured can be used without particular limitation.
- fine fibers having a long fiber length and a relatively large aspect ratio can be obtained.
- a sheet (nonwoven fabric) or the like high-strength fine fibers can be obtained.
- the fine fibrous cellulose of the present invention has an acid group content of 0.1 mmol / g or less, it becomes difficult to retain water and the drainage is improved. Therefore, when making a fine fibrous cellulose into a sheet, productivity becomes high and can be easily formed into a sheet. Moreover, yellowing is suppressed because content of an acid group is 0.1 mmol / g or less.
- the fine fibrous cellulose described in Patent Document 7 since the content of carboxy groups is large, it is considered that the freeness is low and it is difficult to form a sheet.
- the method for producing a fine fiber according to another aspect of the present invention includes: (A) treating the cellulose raw material with an enzyme, and (b) defibrating the cellulose raw material after the treatment, (A) treating the cellulose raw material with an enzyme includes treating at least a ratio of the activity of endo-glucanase to the activity of cellobiohydrolase contained in the enzyme of 0.06 to 20; (A) treating the cellulose raw material with an enzyme includes treating the cellulose raw material under a condition where the ratio of the activity of ⁇ -glucosidase to the activity of cellobiohydrolase contained in the enzyme is 0.000001 to 0.30.
- the cellulose raw material is preferably at least one vegetable fiber selected from the group consisting of kraft pulp, deinked pulp, and sulfite pulp.
- the fine fibrous cellulose of still another aspect of the present invention is
- the average fiber width is 1-1000 nm
- the degree of polymerization is 50 or more and less than 500
- the content of acid groups is 0.0001 or more and 0.1 mmol / g or less
- the average aspect ratio is preferably 10 to 10,000.
- NBKP manufactured by Oji Paper Co., Ltd., Bay Pine
- Niagara Beater capacity 23 liters, manufactured by Tozai Seiki Co., Ltd.
- pulp dispersion (A) pulp concentration 2%, after beating Weighted average fiber length: 1.61 mm
- the pulp dispersion (B) was heated at 95 ° C. or more for 20 minutes to obtain a pulp dispersion (C) in which the enzyme was deactivated.
- the pulp dispersion (C) was filtered under reduced pressure while washing the pulp liquid with ion-exchanged water until the electrical conductivity of the 1% pulp liquid was below a predetermined value (10 ⁇ S / cm) (using No. 2 filter paper, Advantech).
- the obtained sheet is put into ion-exchanged water and stirred to prepare a 0.5% dispersion, which is fined at 21,500 rpm for 30 minutes using a high-speed rotary type defibrator (“CLEARMIX” manufactured by M Technique Co., Ltd.).
- Chemical treatment was performed to obtain a fine fiber-containing dispersion (D).
- Fine fiber yield (%) (Concentration of supernatant (E) /0.2) ⁇ 100 Furthermore, the total yield of fine fibers was determined by the following formula.
- Total yield of fine fiber (%) Pulp yield after enzyme treatment x Fine fiber yield
- the supernatant (E) was suction filtered on a membrane filter (T050A090C, manufactured by ADVANTEC) having a pore size of 0.5 ⁇ m to prepare a wet sheet. Thereafter, drying was performed in two stages using a cylinder dryer (90 ° C., 10 minutes) and an oven (130 ° C., 1 minute) to produce a 100 g / m 2 nonwoven fabric. After adjusting the humidity of the sheet (23 ° C., humidity 50%, 4 hours), the thickness was measured, and then the tensile properties were measured using a constant speed extension type tensile tester based on JISP8113. However, the tensile speed was 5 mm / min. The load was 250 N, the sheet specimen width was 5.0 ⁇ 0.1 mm, and the span length was 30 ⁇ 0.1 mm.
- Example 2 In the refinement treatment step, the pulp dispersion (C) was filtered under reduced pressure while washing the pulp liquid with ion-exchanged water until the electrical conductivity of the 1% pulp liquid was below a predetermined value (10 ⁇ S / cm) ( No. 2 filter paper, Advantech). The obtained sheet was put into water and stirred to prepare a 1.5% dispersion, and subjected to a 120 MPa ⁇ 2 pass treatment with a high-pressure homogenizer (Niro Soavi “Panda Plus 2000”). The experiment was performed in the same manner as in Example 1 except for the above.
- Example 3 In the miniaturization process, 120 MPa x 1 pass treatment was performed with a high-pressure homogenizer (NiroSoavi "Panda Plus 2000"), and then 21,500 rotations with a high-speed rotation type defibrator ("Claremix” manufactured by MTechnic Co., Ltd.) The experiment was performed in the same manner as in Example 1 except that the fine processing (defibration) was performed for 30 minutes.
- Example 4 In the refinement treatment, the pulp dispersion (C) was filtered under reduced pressure while washing the pulp liquid with ion-exchanged water until the conductivity of the 1% pulp liquid was below a predetermined value (10 ⁇ S / cm) (No .2 Use filter paper, Advantech). The obtained sheet was put into water and stirred to prepare a 10% dispersion, and subjected to a 20-pass refining treatment with a single disc refiner (Raffinator, manufactured by Andritz). The experiment was performed in the same manner as in Example 1 except for the above.
- Example 1 The pulp dispersion liquid (A) of Example 1 was diluted to 0.5%, and refined (disentangled) for 21,500 rotations for 30 minutes using a high-speed rotation type defibrator (“CLEARMIX” manufactured by M Technique Co., Ltd.). As a result, a fine fiber-containing dispersion (F) was obtained. Subsequently, the dispersion liquid (F) was diluted to 0.2% and centrifuged (“H-200NR” manufactured by Kokusan Co., Ltd.) for 12,000 G ⁇ 10 minutes to obtain a supernatant liquid (G). The yield of fine fibers was determined by the same principle and method as in Example 1.
- NBKP made by Oji Paper Co., Ltd., moisture 50%, Canadian standard freeness (CSF) 600 ml measured according to JIS P8121
- a chemical pulp is used with a Niagara beater (capacity 23 liters, manufactured by Tozai Seiki Co., Ltd.). And beaten for 200 minutes to obtain a pulp dispersion (K) (pulp concentration: 2%, weighted average fiber length after beating: 1.61 mm).
- the enzyme-treated dispersion liquid (L) was filtered under reduced pressure while washing the enzyme-treated dispersion liquid with ion-exchanged water until the conductivity of the 1% pulp liquid became a predetermined value or less (10 ⁇ S / cm) (No. 2).
- Using filter paper, ADVANTEC The residue on the filter paper was stirred in ion exchange water to prepare a 0.5% dispersion.
- the dispersion liquid is subjected to a finening treatment (defibration) for 21,500 rotations for 30 minutes using a high-speed rotation type defibrating machine ("CLEAMIX" manufactured by M Technique Co., Ltd.) to obtain a defibrated pulp dispersion liquid (M )
- a defibrated pulp dispersion liquid M
- the solution is suction filtered on a membrane filter (T050A090C, manufactured by ADVANTEC) having a pore size of 0.5 ⁇ m.
- T050A090C manufactured by ADVANTEC
- Example 14 The defibrated pulp dispersion (M) in Example 13 was diluted so that the cellulose concentration was 0.2%, and centrifuged at 12,000 G ⁇ 10 minutes (centrifuge: “H-200NR” manufactured by Kokusan Co., Ltd.) A supernatant (N) was obtained. And the sheet
- Example 15 In the miniaturization process in Example 13, 120 MPa ⁇ 1 pass treatment was performed with a high-pressure homogenizer (NiroSoavi “Panda Plus 2000”), and a high-speed rotation type defibrator (“CLEAMIX” manufactured by MTechnic Co., Ltd.) was used. It processed on the conditions, and the defibrated pulp dispersion liquid (O) was obtained. And the sheet
- Example 16 The defibrated pulp dispersion (O) in Example 15 was adjusted so that the cellulose concentration was 0.2%, and centrifuged at 12,000 G ⁇ 10 minutes (centrifuge: “H-200NR” manufactured by Kokusan Co., Ltd.). A supernatant liquid (P) was obtained. And the sheet
- phosphorylation reagent 1.69 g of sodium dihydrogen phosphate dihydrate and 1.21 g of disodium hydrogen phosphate are dissolved in 3.39 g of water, and an aqueous solution of a phosphoric acid compound (hereinafter referred to as “phosphorylation reagent”). Obtained.
- the pH of this phosphorylating reagent was 6.0 at 25 ° C.
- NBKP manufactured by Oji Paper Co., Ltd., moisture 50%, Canadian standard freeness (CSF) 600 ml measured according to JIS P8121
- the obtained sulfuric acid-treated pulp was diluted with ion-exchanged water so as to have a water content of 80% to obtain a pulp slurry.
- 6.29 g of the phosphorylating reagent (20 parts by mass as the amount of phosphorus element with respect to 100 parts by mass of dry pulp) is added to 15 g of this pulp slurry, and 15 minutes using a 105 ° C. blow dryer (Yamato Scientific Co., Ltd. DKM400). It was dried until the mass reached a constant weight while kneading every other time.
- Ion exchange water was added to the pulp obtained after washing and dewatering, and the mixture was stirred to make a slurry of 0.5% by mass.
- This pulp slurry was defibrated for 30 minutes at 21500 rpm using a defibrating apparatus (Cleamix-2.2S, manufactured by M Technique Co., Ltd.) to obtain a defibrated pulp dispersion. .
- 300 mL of the resulting defibrated pulp dispersion was dispensed in a pressure vessel made of SUS304 and hydrolyzed by heating at 120 ° C. for 2 hours in an autoclave to remove phosphate groups.
- ion-exchange resin 1/10 by volume of ion-exchange resin is added to the hydrolyzed dispersion, and the mixture is shaken for 1 hour, and then poured onto a mesh having an opening of 90 ⁇ m. Was removed from the dispersion. Thereby, a phosphate group elimination defibrated pulp dispersion was obtained.
- a series of steps of the ion exchange resin addition, shaking treatment, and ion exchange resin removal treatment was performed three times. In the first and third times, a conditioned strongly acidic ion exchange resin (for example, Amberjet 1024; Organo Corporation) was used. In the second time, a conditioned strong basic ion exchange resin (for example, Amberjet 4400; Organo Corporation) was used.
- the obtained phosphate group-desorbed defibrated pulp dispersion was diluted to a cellulose concentration of 0.2% and centrifuged at 12,000 G ⁇ 10 minutes (centrifuge: “H-200NR” manufactured by Kokusan). As a result, a supernatant (Q) was obtained. And the sheet
- ⁇ Comparative Example 4> A 0.5% dispersion of NBKP (manufactured by Oji Paper Co., Ltd., moisture 50%, Canadian standard freeness (CSF) 600 ml measured according to JIS P8121) was prepared. The dispersion was defibrated for 15 minutes using Cleamix 2.2S manufactured by M Technique, and the average fiber diameter was measured. The defibrating treatment was repeated until the average fiber diameter reached 190 nm to obtain a defibrated pulp dispersion (R). And the sheet
- Example 17 a sheet was produced in the same manner as in Example 17 except that NBKP was not treated with an aqueous sulfuric acid solution.
- ozone-containing oxygen gas gas flow rate 2 L / L
- ozone concentration 30 g / m 3 , ozone generation amount 3.6 g / hour was introduced for 0.5 hour to perform ozone treatment.
- the temperature during the ozone treatment was room temperature (about 25 ° C.).
- the ozone-treated pulp was taken out from the separable flask, suspended and washed in ion exchange water repeatedly, and the washing was terminated when the pH of the washing water became 4.5 or more.
- the washed pulp was filtered under reduced pressure with a filter paper to obtain ozone-treated cellulose fibers (solid content concentration 20%).
- ozone-treated cellulose fiber 10 g as an absolutely dry cellulose fiber
- 150 g of 2% aqueous sodium chlorite solution adjusted to pH 4 was poured, stirred, and allowed to stand at room temperature for 48 hours for further oxidation treatment. Went. The temperature during the additional oxidation treatment was room temperature (about 25 ° C.).
- the pulp subjected to the additional oxidation treatment was repeatedly suspended and washed with ion-exchanged water, and the washing was terminated when the pH of the washing water became 8 or less. Then, it filtered under reduced pressure using a filter paper, and after adding ion-exchange water to the obtained pulp, it stirred and obtained 0.5% slurry.
- This pulp slurry was defibrated for 30 minutes at 21500 rpm using a defibrating apparatus (Cleamix-2.2S, manufactured by M Technique Co., Ltd.) to obtain a defibrated pulp dispersion. .
- the obtained defibrated pulp dispersion was diluted to a cellulose concentration of 0.2%, centrifuged at 12,000 G ⁇ 10 minutes (centrifuge: “H-200NR” manufactured by Kokusan Co., Ltd.), and the supernatant ( S) was obtained.
- seat was tried like Example 13 except having used the supernatant liquid (S) instead of the defibrated pulp dispersion liquid (M).
- Ion exchange water was added to the pulp obtained after washing and dewatering, and the mixture was stirred to make a slurry of 0.5% by mass.
- This pulp slurry was defibrated for 30 minutes at 21500 rpm using a defibrating apparatus (Cleamix-2.2S, manufactured by M Technique Co., Ltd.) to obtain a defibrated pulp dispersion. .
- the obtained defibrated pulp dispersion was diluted to a cellulose concentration of 0.2%, centrifuged at 12,000 G ⁇ 10 minutes (centrifuge: “H-200NR” manufactured by Kokusan Co., Ltd.), and the supernatant ( T) was obtained.
- seat was tried like Example 13 except having used the supernatant liquid (T) instead of the defibrated pulp dispersion liquid (M). However, drainage was difficult and could not be made into a sheet.
- the average fiber width was measured by the method described in “Measurement of average fiber width by electron microscope observation of fine fibrous cellulose” above.
- the degree of polymerization was measured by the method described in “Measurement of degree of polymerization” above.
- the fiber length and fiber width were measured by image analysis of a TEM photograph, and the aspect ratio was determined from (fiber length / fiber width).
- the acid group content was measured by the method described in “Measurement of Acid Group Content” above.
- This deposit was dried with a cylinder dryer heated to 120 ° C. for 5 minutes, and then further dried with a blow dryer at 130 ° C. for 2 minutes to obtain a porous sheet. After the obtained sheet was heated at 200 ° C. under vacuum for 4 hours, the E313 yellow index was measured using a handy spectrophotometer (Spectro Eye) manufactured by GretagMacbeth in accordance with ASTM standards.
- the gel tendency of the dispersion is strong and the fluidity is remarkably inferior. Further, the viscosity of the dispersion having a concentration of 0.1% was measured. The viscosity was measured according to JIS K7117-1 using a B-type viscometer.
- the fine fibrous cellulose of Examples 13 to 21 having an average fiber width of 150 nm or less, a degree of polymerization of 50 or more and less than 500, and an acid group content of 0.1 mmol / g or less has a short drainage time and is easily a sheet.
- the resulting sheet had high tensile strength and low yellowness. Further, the fluidity of the dispersion was high and the viscosity was low.
- the fine fibrous cellulose of Comparative Example 4 having an average fiber width of 190 nm and a polymerization degree of 1100 had a low tensile strength when formed into a sheet. Further, the fluidity of the dispersion was low.
- the fine fibrous cellulose of Comparative Example 5 having a degree of polymerization of 780 had low dispersion fluidity and high viscosity.
- the fine fibrous cellulose of Comparative Example 6 having an acid group content of 0.13 mmol / g and the fine fibrous cellulose of Comparative Example 7 having an acid group content of 0.25 mmol / g had a long drainage time, and were formed into a sheet. The tensile strength was low.
- the fine fibrous cellulose of Comparative Example 7 having a degree of polymerization of 890 and an acid group content of 0.71 mmol / g could not be formed into a sheet due to its high water retention. Further, the fluidity of the dispersion was low, and the viscosity was slightly high.
- the fine fibers and fine fibrous cellulose obtained by the production method of the present invention can be used for nonwoven fabrics, foods, medicines, various reinforcing materials, and the like.
- the nonwoven fabric of this invention can be utilized for a composite with a filter or a matrix material.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Textile Engineering (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Paper (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Description
本願は2012年5月21日に日本に出願された特願2012-115411号、及び2012年8月10日に日本に出願された特願2012-178344号に基づき優先権を主張し、その内容をここに援用する。
微細繊維状セルロースにおいては、近年、様々な用途に対して使用が検討されている。例えば、微細繊維状セルロースをエマルション樹脂と混合した後、脱水することにより、繊維強化複合樹脂を得ることが検討されている。
特許文献7に記載の微細繊維状セルロースは、濾水性が低く、微細繊維状セルロースをシート化する場合には、生産性が低く、しかもシート化が困難であった。シートが得られた場合でも経時的に黄変しやすかった。また、特許文献7に記載の微細繊維状セルロースのスラリーは粘度が高く、高濃度品が得られにくかった。
さらに、特許文献5~7に記載の微細繊維状セルロースは、エマルション樹脂と混ぜ合わされた際に凝集物を形成しやすかった。
また本発明は、スラリー化した際の流動性が高く、低粘度であり、濾水性に優れ、黄変しにくく、エマルション樹脂と混ぜ合わされた際に凝集物を形成しにくい微細繊維状セルロースを提供することを目的とする。
(1) 微細繊維の製造方法であって、(a)セルロース原料を酵素で処理する工程と、(b)前記処理後のセルロース原料を解繊する工程とを含有し、前記酵素で処理する工程において、少なくとも酵素のEG活性とCBHI活性の比が0.06以上の条件下で処理する工程を含むことを特徴とする微細繊維の製造方法。
(3) (1)、(2)のいずれか1項に記載の製造方法で得られた微細繊維。
(4) (3)記載の微細繊維を含有する不織布。
本発明の微細繊維状セルロースにおいては、平均アスペクト比が10~1000であることが好ましい。
〔1〕微細繊維の製造方法であって、(a)セルロース原料を酵素で処理すること、及び(b)前記処理後のセルロース原料を解繊することを含み、前記(a)セルロース原料を酵素で処理することは、少なくとも前記酵素に含まれるセロビオヒドロラーゼの活性に対するエンド型グルカナーゼの活性の比が0.06以上の条件下で処理することを含む微細繊維の製造方法、
〔2〕前記(a)セルロース原料を酵素で処理することは、前記酵素に含まれるセロビオヒドロラーゼの活性に対するβ-グルコシダーゼの活性の比が0.30以下の条件下で処理することを含む〔1〕に記載の微細繊維の製造方法、
〔3〕前記セルロース原料は植物繊維から選ばれる〔1〕に記載の微細繊維の製造方法、
〔4〕〔1〕~〔3〕のいずれか1項に記載の製造方法で得られた微細繊維、
〔5〕〔4〕に記載の微細繊維を含有する不織布、
〔6〕平均繊維幅が1~1000nm、重合度が50以上500未満、及び酸基の含有量が0.1mmol/g以下である、微細繊維状セルロース、及び
〔7〕平均アスペクト比が10~10000である、〔6〕に記載の微細繊維状セルロース。
濃度1%(W/V)のカルボキシルメチルセルロース(CMCNa High viscosity; CatNo 150561, MP Biomedicals, Inc.)の基質溶液(濃度100mM、pH5.0の酢酸-酢酸ナトリウム緩衝液含有)を調製した。測定用酵素を予め緩衝液(前記同様)で希釈(希釈倍率は下記酵素溶液の吸光度が下記グルコース標準液から得られた検量線に入ればよい)した。90μlの前記基質溶液に前記希釈して得られた酵素溶液10μlを添加し、37℃、30分間反応させた。
検量線を作成するために、イオン交換水(ブランク)、グルコース標準液(濃度0.5~5.6mMから少なくとも濃度が異なる標準液4点)を選択し、それぞれ100μlを用意し、37℃、30分間保温した。
前記反応後の酵素含有溶液、検量線用ブランク及びグルコース標準液に、それぞれ300μlのDNS発色液(1.6質量%のNaOH、1質量%の3,5-ジニトロサリチル酸、30質量%の酒石酸カリウムナトリウム)を加えて、5分間煮沸し発色させた。発色後直ちに氷冷し、2mlのイオン交換水を加えてよく混合した。30分間静置した後、1時間以内に吸光度を測定した。
吸光度の測定は96穴マイクロウェルプレート(269620、NUNC社製)に200μlを分注し、マイクロプレートリーダー(infiniteM200、TECAN社製)を用い、540nmの吸光度を測定した。
ブランクの吸光度を差し引いた各グルコース標準液の吸光度とグルコース濃度を用い検量線を作成した。酵素溶液中のグルコース相当生成量は酵素溶液の吸光度からブランクの吸光度を引いてから検量線を用いて算出した(酵素溶液の吸光度が検量線に入らない場合は前記緩衝液で酵素を希釈する際の希釈倍率を変えて再測定を行う)。1分間に1μmolのグルコース等量の還元糖を生成する酵素量を1単位と定義し、下記式から本発明のEG活性を求めた。
EG活性=[緩衝液で希釈して得られた酵素溶液1mlのグルコース相当生成量(μmol)/30分]×希釈倍率[福井作蔵,“生物化学実験法(還元糖の定量法)第二版”,学会出版センター、p23~24(1990年)参照]
96穴マイクロウェルプレート(269620、NUNC社製)に1.25mMの 4-Methyl-umberiferyl-cellobioside(濃度125mM、pH5.0の酢酸-酢酸ナトリウム緩衝液に溶解した)32μlを分注し、100mMのGlucono-1,5-Lactone4μlを添加し、さらに、前記同様の緩衝液で希釈(希釈倍率は下記酵素溶液の蛍光発光度が下記標準液から得られた検量線に入ればよい)した測定用酵素液4μlを加え、37℃、30分間反応させた後、500mMのglycine-NaOH緩衝液(pH10.5)200μlを添加し、反応を停止させた。
前記同様の96穴マイクロウェルプレートに検量線の標準液として4-Methyl-umberiferon標準溶液40μl(濃度0~50μMの少なくとも濃度が異なる標準液4点)を分注し、37℃、30分間加温した後、500mMのglycine-NaOH緩衝液(pH10.5)200μlを添加した。
マイクロプレートリーダー(FluoroskanAscentFL、Thermo-Labsystems社製)を用い、350nm(励起光460nm)における蛍光発光度を測定した。標準液のデータから作成した検量線を用い、酵素溶液中の4-Methyl-umberiferon生成量を算出した(酵素溶液の蛍光発光度が検量線に入らない場合は希釈率を変えて再測定を行う)。1分間に1μmolの4-Methyl-umberiferonを生成する酵素の量を1単位とし、下記式から本発明のCBHI活性を求めた。
CBHI活性=[希釈後酵素溶液1mlの4-Methyl-umberiferon生成量(μmole)/30分]×希釈倍率
β-グルコシダーゼ活性の測定は、1.25mM 4-Methyl-umberiferyl-glucosideを含む125mM酢酸緩衝液(pH5.0)16μlに、酵素液4μl加え、37℃、10分間反応を行った後、500mM glycine-NaOH緩衝液(pH10.0)100μlを添加して反応を停止させ、350nmの励起光での460nmの蛍光強度を測定することで行った。
本発明の1つの側面の微細繊維は、通常製紙用途で用いるパルプ繊維よりもはるかに細いセルロース繊維或いはセルロースの棒状粒子である。
(1)観察画像内の任意箇所に一本の直線Xを引き、前記直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で前記直線Xと垂直に交差する直線Yを引き、前記直線Yに対し、20本以上の繊維が交差する。
本発明の1つの側面としては、微細繊維の平均繊維幅は電子顕微鏡で観察して1nm~1000nmが好ましく、より好ましくは2nm~500nm、さらに好ましくは4nm~100nmである。
本発明の別の側面としては、微細繊維の短径を幅とした場合、最大繊維幅は1500nm以下が好ましく、より好ましくは1000nm以下、さらに好ましくは200nm以下である。
微細繊維の繊維幅が1nm未満であると、セルロース分子として水に溶解しているため、微細繊維としての物性(強度や剛性、又は寸法安定性)が発現しなくなる。平均繊維幅が1000nmを超えると、通常のパルプに含まれる繊維にすぎないため、微細繊維としての物性(強度や剛性、又は寸法安定性)が得られない。
本発明の微細繊維と微細繊維状セルロースは、同一の物質であることを意味する。
本発明のまた別の側面の微細繊維状セルロースは、通常製紙用途で用いるパルプ繊維よりもはるかに細く且つ短いI型結晶構造のセルロース繊維或いはセルロースの棒状粒子である。
微細繊維状セルロースがI型結晶構造を有していることは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて、2θ=14~17°付近と2θ=22~23°付近の2箇所の位置に典型的なピークを有することで同定することができる。
本発明のまた別の側面の微細繊維状セルロースは、電子顕微鏡で観察して求めた平均繊維幅(平均繊維径)が1~1000nmのセルロースである。微細繊維状セルロースの平均繊維幅は150nm以下が好ましく、100nm以下がより好ましく、50nm以下がさらに好ましく、20nm以下が最も好ましい。微細繊維状セルロースの平均繊維幅が1000nmを超えると、微細繊維状セルロースとしての特性(高強度や高剛性、高寸法安定性)を得ることが困難になる。
一方、本発明のまた別の側面としては、微細繊維状セルロースの平均繊維幅は1nm以上であることが好ましく、2nm以上であることがより好ましい。微細繊維状セルロースの平均繊維幅が1nm未満であると、セルロース分子として水に溶解してしまうため、微細繊維状セルロースとしての特性(高強度や高剛性、又は高寸法安定性)を得ることが困難になる。
本発明のまた別の側面としては、微細繊維状セルロースの平均繊維幅の範囲は1~1000nmが好ましく、1~150nmがより好ましく、1~100nmがさらに好ましく、1~50nmが特に好ましく、1~20nmが最も好ましい。
また、微細繊維状セルロースの電子顕微鏡観察による平均繊維幅の測定は以下のようにして行う。微細繊維状セルロース含有スラリーを調製し、前記スラリーを親水化処理したカーボン膜被覆グリッド上にキャストして透過型電子顕微鏡(TEM)観察用試料とする。幅広の繊維を含む場合には、ガラス上にキャストした表面の操作型電子顕微鏡(SEM)像を観察してもよい。構成する繊維の幅に応じて1000倍、5000倍、10000倍、20000倍、50000倍或いは100000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。
但し、試料、観察条件や倍率は下記の条件(1)及び(2)を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、前記直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で前記直線Xと垂直に交差する直線Yを引き、前記直線Yに対し、20本以上の繊維が交差する。
上記のような電子顕微鏡観察画像に対して、直線Xに交錯する繊維、及び直線Yに交錯する繊維の各々について少なくとも20本(すなわち、合計が少なくとも40本)の幅(繊維の短径)を読み取る。こうして上記のような電子顕微鏡画像を少なくとも3組以上観察し、少なくとも40本×3組(すなわち、少なくとも120本)の繊維幅を読み取る。このように読み取った繊維幅を読み取った繊維の本数で割ることで平均して平均繊維幅を求める。
微細繊維状セルロースの重合度とは、セルロース1分子に含まれるグルコース1分子の数を意味する。
本発明のまた別の側面としては、微細繊維状セルロースの重合度は50以上500未満であり、100~450であることが好ましく、150~300であることがより好ましい。微細繊維状セルロースの重合度が50未満であると、「繊維状」とはいえず、補強剤として使用することが困難になる。一方、微細繊維状セルロースの重合度が500以上であると、微細繊維状セルロースをスラリー化したときの流動性が低下し、スラリー粘度が高くなりすぎて分散安定性が低くなる。また、エマルション樹脂と混合した際に凝集物を形成することもある。
微細繊維状セルロースの重合度は、以下の方法により測定する。
微細繊維状セルロース(遠心分離後の上澄み液、濃度約0.1質量%)をポリ四フッ化エチレン製シャーレ上に展開し、60℃にて乾燥して、ドライシートを得る。得られたドライシートを分散媒に分散させて、Tappi T230に従い、パルプ粘度を測定する。また、前記分散媒のみで粘度を測定してブランクテストを行い、ブランク粘度を測定する。パルプ粘度をブランク粘度で割った数値から1を引いて比粘度(ηsp)とし、下記式を用いて、固有粘度([η])を算出する。
[η]=ηsp/(c(1+0.28×ηsp))
式中のcは、粘度測定時のセルロース濃度を示す。
そして、下記式から本発明における重合度(DP)を算出する。
DP=1.75×[η]
この重合度は、粘度法によって測定された平均重合度であることから、「粘度平均重合度」と称されることもある。
本発明のまた別の側面としては、微細繊維状セルロースの長径を長さとした場合、平均繊維長は、0.03~5μmが好ましく、0.1~2μmがさらに好ましい。平均繊維長が0.03μm以上であれば、微細繊維状セルロースを樹脂に配合した際の強度向上効果が得られる。平均繊維長が5μm以下であれば、微細繊維状セルロースを樹脂に配合した際の分散性が良好となる。繊維長は、前記平均繊維幅を測定する際に使用した電子顕微鏡観察画像を解析することにより求めることができる。すなわち、上記のような電子顕微鏡観察画像に対して、直線Xに交錯する繊維、及び直線Yに交錯する繊維の各々について少なくとも20本(すなわち、合計が少なくとも40本)の繊維長を読み取る。こうして上記のような電子顕微鏡画像を少なくとも3組以上観察し、少なくとも40本×3組(すなわち、少なくとも120本)の繊維長を読み取る。このように読み取った繊維長を読み取った繊維の本数で割ることで平均して平均繊維長を求める。
本発明のまた別の側面としては、微細繊維状セルロースの平均アスペクト比は10~10000の範囲内であることが好ましく、25~1000の範囲内であることがより好ましく、10~300の範囲がさらに好ましく、50~200の範囲が最も好ましい。平均アスペクト比が10以上であれば、樹脂やゴムの補強剤として、より好適になる。平均アスペクト比が10000以下であれば、スラリー化したときの粘度がより低くなる。
平均アスペクト比は、以下の方法により求める。
すなわち、前記電子顕微鏡画像から観察された各々の繊維についてランダムに40本を選んで、各々のアスペクト比、つまり繊維長/繊維幅を求める。本発明の平均アスペクト比は、前記40本のアスペクト比の平均値である。
本発明のまた別の側面としては、本発明の微細繊維状セルロースにおける酸基の含有量は、微細繊維状セルロースの単位質量に対する酸基の含有量を意味する。
本発明の微細繊維状セルロースにおける酸基の含有量は0.0001mmol/g以上0.1mmol/g以下であり、0.0001mmol/g以上0.06mmol/g以下であることが好ましい。酸基の含有量が0.1mmol/gを超えると、水を保持しやすくなり、濾水性が不充分になり、微細繊維状セルロースをシート化する場合には生産性が低くなり、シート化が困難になる。また、酸基の含有量が0.1mmol/gを超えると、黄変が生じやすくなる。
酸基の含有量は、米国TAPPIの「Test Method T237 cm-08(2008):Carboxyl Content of pulp」の方法を用いて求める。本発明においては、酸基の含有量をより広範囲まで測定可能にするために、前記試験方法に用いる試験液のうち、炭酸水素ナトリウム(NaHCO3)/塩化ナトリウム(NaCl)=0.84g/5.85gを蒸留水で1000mlに溶解希釈した試験液について、前記試験液の濃度が実質的に4倍となるように、水酸化ナトリウム1.60gに変更した以外は、TAPPI T237 cm-08(2008)に準じる。また、酸基を導入した場合には、酸基導入前後のセルロース繊維における測定値の差を実質的な酸基含有量とする。測定試料とする絶乾セルロース繊維は、加熱乾燥の際の加熱によって起こる可能性があるセルロースの変質を避けるため、凍結乾燥により得たものを使用する。
当該酸基含有量測定方法は、1価の酸性基(カルボキシ基)についての測定方法であることから、定量対象の酸基が多価の場合には、前記1価の酸基含有量として得られた値を、酸価数で除した数値を酸基含有量とする。
結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求めることができる(Segalら、Textile Research Journal、29巻、786ページ、1959年)。
微細繊維を得るためのセルロースの原料、又は微細繊維状セルロースの原料(以下、「セルロース原料」という。)としては、製紙用パルプ、コットンリンターやコットンリントなどの綿系パルプ、麻、麦わら、若しくはバガスなどの非木材系パルプ、又はホヤや海草などから単離されるセルロースなどが挙げられる。これらの中でも、入手のしやすさという点で、製紙用パルプが好ましい。製紙用パルプとしては、広葉樹クラフトパルプ(晒クラフトパルプ(LBKP)、未晒クラフトパルプ(LUKP)、酸素漂白クラフトパルプ(LOKP)など)、針葉樹クラフトパルプ(晒クラフトパルプ(NBKP)、未晒クラフトパルプ(NUKP)、酸素漂白クラフトパルプ(NOKP)など)、サルファイトパルプ(SP)、若しくはソーダパルプ(AP)等の化学パルプ、セミケミカルパルプ(SCP)、若しくはケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)、若しくはサーモメカニカルパルプ(TMP、又はBCTMP)等の機械パルプ、楮、三椏、麻、若しくはケナフ等を原料とする非木材パルプ、マテャア古紙を原料とする脱墨パルプが挙げられる。これらの中でも、より入手しやすいことから、クラフトパルプ、脱墨パルプ、又はサルファイトパルプが好ましい。
セルロース原料は1種を単独で用いてもよいし、2種以上混合して用いてもよい。
リグノセルロース原料としては、製紙用パルプ、コットンリンターやコットンリントなどの綿系パルプ、麻、麦わら、若しくはパガスなどの非木材系パルプ、又はホヤや海草などから単離されるセルロースなどが挙げられる。これらの中でも、入手のしやすさという点で、製紙用パルプが好ましい。製紙用パルプとしては、広葉樹クラフトパルプ(晒クラフトパルプ(LBKP)、未晒クラフトパルプ(LUKP)、酸素漂白クラフトパルプ(LOKP)など)、針葉樹クラフトパルプ(晒クラフトパルプ(NBKP)、未晒クラフトパルプ(NUKP)、酸素漂白クラフトパルプ(NOKP)など)、サルファイトパルプ(SP)、若しくはソーダパルプ(AP)等の化学パルプ、セミケミカルパルプ(SCP)、若しくはケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)、若しくはサーモメカニカルパルプ(TMP、又はBCTMP)等の機械パルプ、楮、三椏、麻、若しくはケナフ等を原料とする非木材パルプ、又は古紙を原料とする脱墨パルプが挙げられる。これらの中でも、より入手しやすいことから、クラフトパルプ、脱墨パルプ、又はサルファイトパルプが好ましい。セルロース原料は1種を単独で用いてもよいし、2種以上混合して用いてもよい。
本発明のまた別の側面の微細繊維の製造工程について詳述する。
<工程(a)>
本発明では、セルロース原料をそのまま用いてもよいが、酵素反応効率を向上させるためには、機械的破砕処理を経てから酵素処理工程に供することが望ましい。粉砕方法は乾式、又は湿式のいずれでもよい。パルプを離解する離解機或いは、パルプを叩解するリファイナーが使用できる。粉砕機にはグラインダー、圧力ホモジナイザー、シュレッダー、若しくはカッターミルなどのせん断式粉砕機、ジュークラッシャーやコーンクラッシャーなどの圧縮式粉砕機、インパクトクラッシャーなどの衝撃式粉砕機、或いはロールミル、スタンプミル、エッジランナーミル、若しくはロッドミルなどの中砕機の中から、最終の用途やコストの点から適宜選択することができる。
セルロース原料を酵素で処理することとは、セルロース原料を含む分散液に酵素を添加し、セルロース原料と酵素を反応させることを意味する。
本発明のEG活性はエンド型グルカナーゼの活性を示し、セルロース繊維の非晶質領域を選択的に切断する機能を有する。CBHI活性はセロビオヒドロラーゼの活性を示し、セルロース繊維の結晶領域を選択的に切断する機能を有する。本発明においては、少なくともセルラーゼ系酵素としてエンド型グルカナーゼ及びセロビオヒドロラーゼを含有する酵素又は酵素混合物(例えば、2種類以上の酵素の混合物)を使用する。本発明のまた別の側面としては、セルロース原料に酵素を添加する際、添加した酵素又は酵素混合物のEG活性とCBHI活性の比(EG活性/CBHI活性)は0.06以上、好ましくは0.1以上、さらに好ましくは1以上である。EG活性とCBHI活性の比は20以下が好ましく、10以下がより好ましく、6以下が最も好ましい。
前記EG活性とCBHI活性の比の範囲は、0.06~20が好ましく、0.1~10がより好ましく、1~6がさらに好ましい。
前記EG活性とCBHI活性の比が0.06未満では酵素処理後のセルロース繊維のアスペクト比が小さく、セルロース繊維の収率が低い。また、酵素の使用量は、経済性のある範囲で行うことが好ましい。具体的には、基質1gに対して、EG活性で0.0001単位以上、100単位以下、更に好ましくは0.001単位以上、10単位以下である。しかしながら、酵素によって特性が異なるため、必ずしも、この添加量が適切でない場合もあるが、糖化によりセルロース繊維の収率が低下するため、酵素添加量は酵素処理後のセルロース繊維の収率が60%を越えるように調整することが好ましい。更に好ましくはセルロース繊維の収率70%を越えるように酵素添加量を調整する。
前記酵素で反応させた後のセルロース原料含有分散液を溶媒、好ましくは水で0.1~10質量%に調整し、微細化(解繊)処理に供される。前記分散液に含まれるセルロースの濃度としては0.2~5質量%であることが好ましく、0.3~3質量%であることがより好ましい。前記濃度が0.1質量%未満では処理効率が低い。一方、前記濃度が10質量%を超えると、微細化処理中に粘度が上昇し過ぎ、取扱いが非常に困難になるおそれがある。
前記のようにして得られた微細繊維を用いて、微細繊維含有不織布を作製することができる。得られた不織布に高分子を含浸、或いは高分子シートで挟んで微細繊維含有複合体とすることができる。前記不織布が解繊後の微細繊維含有分散液を濾過することによって製造される場合、濾過に供される分散液に含まれる微細繊維の濃度は、0.05~5質量%であることが好ましい。前記濃度が低すぎると濾過に膨大な時間がかかり、逆に濃度が高すぎると均一なシートが得られないため好ましくない。分散液を濾過する場合、濾過時の濾布としては、微細化したセルロース繊維が通過せず、かつ濾過速度が遅くなりすぎないことが重要である。このような濾布としては、有機ポリマーからなるシート、織物、又は多孔膜が好ましい。有機ポリマーとしてはポリエチレンテレフタレートやポリエチレン、ポリプロピレン、又はポリテトラフルオロエチレン(PTFE)等のような非セルロース系の有機ポリマーが好ましい。具体的には孔径0.1~20μm、例えば1μmのポリテトラフルオロエチレンの多孔膜、又は孔径0.1~20μm、例えば1μmのポリエチレンテレフタレートやポリエチレンの織物等が挙げられる。
ここでいう空隙率とは、不織布中における空隙の体積率を示し、空隙率は、不織布の面積、厚み、及び質量から、下記式によって求めることができる。
空隙率(vol%)={1-B/(M×A×t)}×100
ここで、Aは不織布の面積(cm2)、t(cm)は厚み、Bは不織布の質量(g)、Mはセルロースの密度であり、本発明ではM=1.5g/cm3と仮定する。不織布の膜厚は、膜厚計(PEACOK社製 PDN-20)を用いて、不織布の種々な位置について10点の測定を行い、その平均値を採用する。
前記微細繊維含有不織布の厚みの範囲は、1μm~1000μmが好ましく、5μm~250μmがより好ましい。
本発明のまた別の側面の微細繊維状セルロースを製造する方法としては、分解工程と解繊工程とを有する製造方法が挙げられる。分解工程と解繊工程の順序は限定されないが、分解工程の後に解繊工程を行うことが好ましい。
本発明の微細繊維状セルロースを製造する方法は、本発明の微細繊維の製造にも適用することができる。
以下、各工程について詳細に説明する。
分解工程は、セルロース原料に含まれるセルロースを分解する工程である。分解工程としては、目的の重合度が得られやすいことから、酵素を用いてセルロースを分解する酵素処理、又は、硫酸を用いてセルロースを分解する硫酸処理を施すことが好ましい。特に、上記微細繊維状セルロースが容易に得られることから、酵素処理がより好ましい。酵素処理及び硫酸処理以外の処理でセルロースを分解することもできる。酵素処理及び硫酸処理以外の処理としては、加熱加圧状態から瞬時に非加圧状態とする爆砕処理などが挙げられる。
粉砕処理に用いる粉砕機としては、前記と同様のものが挙げられ、これらの中から、最終の用途やコストの点から適宜選択することができる。
また、粉砕機として、パルプを離解する離解機或いは、パルプを叩解するリファイナーを使用することもできる。
本発明の酵素処理で使用するセルロース分解酵素は、各種セルロース分解酵素を、夫々の活性を有する酵素と適宜の量で混合して調製してもよいが、市販のセルラーゼ製剤を用いてもよい。市販されているセルラーゼ製剤には、上記した各種のセルラーゼ活性を有すると同時に、ヘミセルラーゼ活性も有しているものが多い。
市販のセルラーゼ製剤としては、トリコデルマ(Trichoderma)属、アクレモニウム属(Acremonium)属、アスペルギルス(Aspergillus)属、ファネロケエテ(Phanerochaete)属、トラメテス属(Trametes)、フーミコラ(Humicola)属、又はバチルス(Bacillus)属などに由来するセルラーゼ製剤がある。このようなセルラーゼ製剤の市販品としては、全て商品名で、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラーゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、又はマルティフェクトCX10L(ジェネンコア社製)等が挙げられる。
前記EG活性とCBHI活性の比は20以下が好ましく、10以下がより好ましく、6以下がさらに好ましい。
前記EG活性とCBHI活性の比の範囲は、0.06~20が好ましく、0.1~10がより好ましく、1~6がさらに好ましい。
また、本発明のまた別の側面としては、微細繊維状セルロースの製造方法における酵素処理の際の分散液の温度は、使用する酵素の活性が高くなる範囲に保つことが好ましい。例えば、トリコデルマ起源の市販の酵素の場合、温度は40℃~60℃が好ましい。温度が40℃未満では酵素活性が低下して処理時間が長くなり、60℃を超えると酵素が失活するおそれがある。
酵素処理の処理時間は10分間~24時間の範囲が好ましい。10分未満では酵素処理の効果が発現しにくい。24時間を超えると酵素によりセルロース繊維の分解が進みすぎて、得られる微細繊維の平均繊維長が短くなりすぎるおそれがある。
硫酸水溶液の濃度としては、硫酸と水の合計質量に対して硫酸が0.01~20質量%であることが好ましく、0.1~10質量%であることがより好ましい。硫酸水溶液の濃度が酸と水の合計質量に対して硫酸が0.01質量%以上であれば、充分にセルロースを分解でき、20質量%以下であれば、取り扱い性に優れる。
硫酸処理の際の加熱温度は、10~120℃であることが好ましく、20~80℃であることがより好ましい。加熱温度が10℃以上であれば、セルロースの分解反応を容易に制御できる。加熱においては、硫酸水溶液における水の消失を防ぐために、蒸発した水分を凝縮させて還流することが好ましい。
解繊工程は、分解工程にて分解したセルロースを微細化して解繊する工程である。
微細化する前のセルロースは、水で希釈されて、セルロース濃度が0.1~10質量%の分散液にされることが好ましい。セルロース濃度は、0.2~5質量%であることがより好ましく、0.3~3質量%であることがさらに好ましい。セルロース濃度が0.1質量%以上であれば、解繊効率が高くなり、10質量%以下であれば、解繊処理中の粘度の上昇を防ぐことができる。
高圧ホモジナイザーの具体例としては、前記と同様のものが挙げられる。
高速回転型解繊機の具体例としては、前記と同様のものが挙げられる。
前記微細繊維状セルロースと微細繊維状セルロース以外の繊維を混合して用いる場合、微細繊維状セルロース以外の繊維は、所望により化学的処理、解繊処理等の処理を施すことができる。微細繊維状セルロース以外の繊維に化学的処理、解繊処理等の処理を施す場合、微細繊維状セルロース以外の繊維は、微細繊維状セルロースと混合してから化学的処理、解繊処理等の処理を施すこともできるし、微細繊維状セルロース以外の繊維に化学的処理、解繊処理等の処理を施してから微細繊維状セルロースと混合することもできる。微細繊維状セルロース以外の繊維を混合する場合、微細繊維状セルロースと微細繊維状セルロース以外の繊維の合計量における微細繊維状セルロース以外の繊維の添加量は特に限定されないが、好ましくは50質量%以下であり、より好ましくは40質量%以下であり、さらに好ましくは30質量%以下であり、特に好ましくは20質量%以下である。
本発明により繊維長が長く、アスペクト比も比較的大きい微細繊維が得られる。本発明で得られた微細繊維をシート(不織布)等に含有させることにより高強度の微細繊維が得られる。
本発明の微細繊維状セルロースは、酸基の含有量が0.1mmol/g以下であるため、水を保持しにくくなり、濾水性が向上する。そのため、微細繊維状セルロースをシート化する場合には生産性が高くなり、容易にシート化できる。また、酸基の含有量が0.1mmol/g以下であることにより、黄変が抑制される。
特許文献7に記載の微細繊維状セルロースでは、カルボキシ基の含有量が多いため、濾水性が低く、シート化が困難になったと思われる。
(a)セルロース原料を酵素で処理すること、及び
(b)前記処理後のセルロース原料を解繊することを含み、
前記(a)セルロース原料を酵素で処理することは、少なくとも前記酵素に含まれるセロビオヒドロラーゼの活性に対するエンド型グルカナーゼの活性の比が0.06~20の条件下で処理することを含み、
前記(a)セルロース原料を酵素で処理することは、前記酵素に含まれるセロビオヒドロラーゼの活性に対するβ-グルコシダーゼの活性の比が0.000001以上0.30以下の条件下で処理することを含み、
前記セルロース原料は、クラフトパルプ、脱墨パルプ、及びサルファイトパルプからなる群から選択される少なくとも1の植物繊維であることが好ましい。
平均繊維幅が1~1000nm、重合度が50以上500未満、及び酸基の含有量が0.0001以上0.1mmol/g以下であり、
平均アスペクト比が10~10000であることが好ましい。
化学パルプとしてNBKP(王子製紙社製、ベイマツ品)を用い、ナイアガラビーター(容量23リットル、東西精器社製)で200分間叩解し、パルプ分散液(A)(パルプ濃度2%、叩解後の加重平均繊維長:1.61mm)を得た。パルプ分散液(A)を脱水して濃度3%にし、0.1%硫酸でpH6までに調整し、50℃になるまで水浴で温めた後、酵素optimaseCX7L(EG活性/CBHI活性=3、Genencor社製)をパルプ(固形分換算)に対して3%添加し、50℃、1時間撹拌しながら反応させて、パルプ分散液(B)を得た。
パルプ分散液(B)を95℃以上、20分間加熱し、酵素を失活させたパルプ分散液(C)が得られた。酵素処理後のパルプ収率は下記式から求めた。
酵素処理後パルプ収率(%)=(パルプ分散液(C)の質量/パルプ分散液(A)の質量)×100
パルプ分散液(C)を1%パルプ液の電導度を所定値以下(10μS/cm)になるまで、前記パルプ液をイオン交換水で洗浄しながら減圧濾過を行った(No.2濾紙使用、アドバンテック社)。得られたシートをイオン交換水に入れて攪拌し、0.5%の分散液を作製し、高速回転型解繊機(エムテクニック社製「クレアミックス」)により、21,500回転、30分間微細化処理(解繊)し、微細繊維含有分散液(D)を得た。続いて、分散液(D)を0.2%に薄め、12,000G×10分間遠心分離(コクサン社製「H-200NR」)し、上澄み液(E)を得た。微細繊維の収率を下記式で求めた。
微細繊維収率(%)=(上澄み液(E)の濃度/0.2)×100
さらに、微細繊維のトータル収率は下記式で求めた。
微細繊維トータル収率(%)=酵素処理後パルプ収率×微細繊維収率
上澄み液(E)を孔径0.5μmのメンブレンフィルター(T050A090C、ADVANTEC社製)上で吸引濾過し、ウェットシートを作成した。その後、シリンダードライヤー(90℃、10分)、オーブン(130℃、1分)で2段階の乾燥を行い、100g/m2の不織布を作製した。
シートを調湿後(23℃、湿度50%、4時間)、厚みを測定した後、JISP8113に基づき、定速伸張形引張試験機を用いて引張り特性を測定した、但し引張り速度5mm/分、荷重250N、シート試験片幅5.0±0.1mm、スパン長30±0.1mmにした。
微細化処理工程において、パルプ分散液(C)を1%パルプ液の電導度が所定値以下(10μS/cm)になるまで、前記パルプ液をイオン交換水で洗浄しながら減圧濾過を行った(No.2濾紙使用、アドバンテック社)。得られたシートを水に入れて攪拌し、1.5%の分散液を作製し、高圧ホモジナイザー(NiroSoavi社「Panda Plus 2000」)で、120MPa×2パス処理を行った。上記以外は実施例1と同様に実験を行った。
微細化処理工程において、高圧ホモジナイザー(NiroSoavi社「Panda Plus 2000」)で、120MPa×1パス処理を行った後、高速回転型解繊機(エムテクニック社製「クレアミックス」)により、21,500回転、30分間微細化処理(解繊)をした以外は、実施例1と同様に実験を行った。
微細化処理において、パルプ分散液(C)を1%パルプ液の電導度を所定値以下(10μS/cm)になるまで、前記パルプ液をイオン交換水で洗浄しながら減圧濾過を行った(No.2濾紙使用、アドバンテック社)。得られたシートを水に入れて攪拌し、10%の分散液を作製し、シングルディスクリファイナー(ラフィネーター、アンドリッツ社製)で20パスリファイニング処理を行った。上記以外は実施例1と同様に実験を行った。
酵素をエンチロン(EG活性/CBHI活性=0.12、洛東化成社製)を使用し、パルプ(固形分換算)に対して20%を添加した以外は、実施例1と同様に実験を行った。
酵素をEcopulpR(EG活性/CBHI活性=1.2、ABenzyme社製)を使用し、パルプ(固形分換算)に対して2%を添加した以外は、実施例1と同様に実験を行った。
実施例1のパルプ分散液(A)を0.5%に希釈し、高速回転型解繊機(エムテクニック社製「クレアミックス」)により、21,500回転、30分間微細化処理(解繊)し、微細繊維含有分散液(F)を得た。続いて、分散液(F)を0.2%に薄め、12,000G×10分間遠心分離(コクサン社製「H-200NR」)し、上澄み液(G)を得た。微細繊維の収率を実施例1と同じ原理と方法で求めた。
酵素をGC220(EG活性/CBHI活性=0.05、Genencor社製)を使用し、パルプ(固形分換算)に対して1%を添加した以外は、実施例1と同様に実験を行った。
酵素をアクセレラーゼDuet(EG活性/CBHI活性=0.03、Genencor社製)対パルプ(固形分換算)に対して6%を添加した以外は、実施例1と同様に実験を行った。
実施例1において、酵素処理でEG活性/CBHI活性=2.7、かつBGL活性/CBHI活性=0.06の酵素液を用いた以外はと実施例1と同様の方法で試験した。結果を表2に示す。
実施例1において、酵素処理でEG活性/CBHI活性=2.7、かつBGL活性/CBHI活性=0.11の酵素液を用いた以外はと実施例1と同様の方法で試験した。結果を表2に示す。
実施例1において、酵素処理でEG活性/CBHI活性=2.7、かつBGL活性/CBHI活性=0.22の酵素液を用いた以外はと実施例1と同様の方法で試験した。結果を表2に示す。
実施例1において、酵素処理でEG活性/CBHI活性=2.7、かつBGL活性/CBHI活性=0.30の酵素液を用いた以外はと実施例1と同様の方法で試験した。結果を表2に示す。
実施例1において、酵素処理でEG活性/CBHI活性=2.7、かつBGL活性/CBHI活性=0.45の酵素液を用いた以外はと実施例1と同様の方法で試験した。結果を表2に示す。
実施例1において、酵素処理でEG活性/CBHI活性=2.7、かつBGL活性/CBHI活性=0.74の酵素液を用いた以外はと実施例1と同様の方法で試験した。結果を表2に示す。
化学パルプであるNBKP(王子製紙社製、水分50%、JIS P8121に準じて測定されるカナダ標準濾水度(CSF)600ml)を、ナイアガラビーター(容量23リットル、東西精器社製)を用いて200分間叩解し、パルプ分散液(K)(パルプ濃度2%、叩解後の加重平均繊維長:1.61mm)を得た。
パルプ分散液(K)を脱水して濃度3%にし、0.1%硫酸でpH6に調整し、50℃になるまで水浴で温めた後、酵素optimaseCX7L(EG活性/CBHI活性=3、Genencor社製)をパルプ(固形分換算)に対して3%添加し、50℃、1時間撹拌しながら反応させて、酵素処理を施した。その後、パルプ分散液(K)を95℃以上、20分間加熱して、酵素を失活させて、酵素処理分散液(L)を得た。
酵素処理分散液(L)を1%パルプ液の電導度を所定値以下(10μS/cm)になるまで、前記酵素処理分散液をイオン交換水で洗浄しながら減圧濾過を行った(No.2濾紙使用、ADVANTEC社)。濾紙上の残留物をイオン交換水に入れて攪拌し、0.5%の分散液を調製した。その分散液を、高速回転型解繊機(エム・テクニック社製「クレアミックス」)を用いて、21,500回転、30分間微細化処理(解繊)を施して、解繊パルプ分散液(M)を得た。
解繊パルプ分散液(M)を、セルロース濃度が0.1%になるように濃度調整してから、孔径0.5μmのメンブレンフィルター(T050A090C、ADVANTEC社製)上で吸引濾過し、ウェットシートを作製した。そのウェットシートを、シリンダードライヤー(90℃、10分間)、オーブン(130℃、1分間)の2段階で乾燥して、100g/m2の不織布状のシートを作製した。
実施例13における解繊パルプ分散液(M)をセルロース濃度が0.2%になるように薄め、12,000G×10分間遠心分離(遠心分離機:コクサン社製「H-200NR」)し、上澄み液(N)を得た。そして、解繊パルプ分散液(M)の代わりに上澄み液(N)を用いた以外は実施例13と同様にしてシートを作製した。
実施例13における微細化処理において、高圧ホモジナイザー(NiroSoavi社「Panda Plus 2000」)で、120MPa×1パス処理を行い、高速回転型解繊機(エムテクニック社製「クレアミックス」)で実施例13と同条件で処理し、解繊パルプ分散液(O)を得た。そして、解繊パルプ分散液(M)の代わりに解繊パルプ分散液(O)を用いた以外は実施例13と同様にしてシートを得た。
実施例15における解繊パルプ分散液(O)をセルロース濃度が0.2%になるように調整し、12,000G×10分間遠心分離(遠心分離機:コクサン社製「H-200NR」)し、上澄み液(P)を得た。そして、解繊パルプ分散液(M)の代わりに上澄み液(P)を用いた以外は実施例13と同様にしてシートを作製した。
リン酸二水素ナトリウム二水和物1.69g、及びリン酸水素二ナトリウム1.21gを3.39gの水に溶解させ、リン酸系化合物の水溶液(以下、「リン酸化試薬」という。)を得た。このリン酸化試薬のpHは25℃で6.0であった。
NBKP(王子製紙社製、水分50%、JIS P8121に準じて測定されるカナダ標準濾水度(CSF)600ml)を、50℃の5%の硫酸水溶液中で15分間還流しながら加熱した後、イオン交換水で充分に洗浄して、硫酸処理パルプを得た。得られた硫酸処理パルプを含水率80%になるようイオン交換水で希釈し、パルプスラリーを得た。このパルプスラリー15gに前記リン酸化試薬6.29g(乾燥パルプ100質量部に対してリン元素量として20質量部)を加え、105℃の送風乾燥機(ヤマト科学株式会社DKM400)を用い、15分おきに混練しながら質量が恒量となるまで乾燥させた。ついで150℃の送風乾燥機で1時間加熱処理して、セルロースにリン酸基を導入した。
次いで、リン酸基を導入したセルロースに300mlのイオン交換水を加え、攪拌洗浄後、脱水した。脱水後のパルプを300mlのイオン交換水で希釈し、攪拌しながら、1Nの水酸化ナトリウム水溶液5mlを少しずつ添加し、pHが12~13のパルプスラリーを得た。その後、このパルプスラリーを脱水し、300mlのイオン交換水を加えて洗浄を行った。この脱水洗浄をさらに2回繰り返した。
洗浄脱水後に得られたパルプにイオン交換水を添加後、攪拌し、0.5質量%のスラリーにした。このパルプスラリーを、解繊処理装置(エム・テクニック社製、クレアミックス-2.2S)を用いて、21500回転/分の条件で30分間解繊処理して、解繊パルプ分散液を得た。
得られた解繊パルプ分散液をSUS304製耐圧容器に300mL分取し、オートクレーブで120℃、2時間加熱して加水分解処理してリン酸基を脱離させた。その後、加水分解処理した分散液に、前記分散液に対し体積で1/10のイオン交換樹脂を添加し、1時間振とう処理を行った後、目開き90μmのメッシュ上に注ぎ、イオン交換樹脂を分散液から除去する処理を行った。これにより、リン酸基脱離解繊パルプ分散液を得た。前記イオン交換樹脂添加、振とう処理及びイオン交換樹脂除去処理の一連の工程は3回行った。1回目及び3回目ではコンディショニング済みの強酸性イオン交換樹脂(例えば、アンバージェット1024;オルガノ株式会社)を用いた。2回目ではコンディショニング済みの強塩基性イオン交換樹脂(例えば、アンバージェット4400;オルガノ株式会社)を用いた。
得られたリン酸基脱離解繊パルプ分散液を、セルロース濃度が0.2%になるように薄め、12,000G×10分間遠心分離(遠心分離機:コクサン社製「H-200NR」)して、上澄み液(Q)を得た。
そして、解繊パルプ分散液(M)の代わりに上澄み液(Q)を用いた以外は実施例13と同様にしてシートを作製した。
NBKP(王子製紙社製、水分50%、JIS P8121に準じて測定されるカナダ標準濾水度(CSF)600ml)の0.5%分散液を調製した。その分散液を、エム・テクニック社製クレアミックス2.2Sを用いて、15分間解繊処理し、平均繊維径を測定した。平均繊維径が190nmになるまで解繊処理を繰り返して、解繊パルプ分散液(R)を得た。
そして、解繊パルプ分散液(M)の代わりに解繊パルプ分散液(R)を用いた以外は実施例13と同様にしてシートを作製した。
実施例17において、NBKPを硫酸水溶液で処理しなかった以外は実施例17と同様にしてシートを作製した。
NBKP(王子製紙社製、水分50%、JIS P8121に準じて測定されるカナダ標準濾水度(CSF)600ml)40g(絶乾セルロース換算)を、0.1mol/L硫酸500mlに添加し、撹拌して懸濁液を得た。その懸濁液を、濾紙を用いて減圧濾過して、希硫酸で湿潤したパルプを得た。得られたパルプをセパラブルフラスコ内に収め、そのセパラブルフラスコ内に、オゾンガス発生機(エコデザイン(株)製ED-OG-A10型)にて発生させたオゾン含有酸素ガス(ガス流速2L/min、オゾン濃度30g/m3、オゾン発生量3.6g/時間)を0.5時間導入してオゾン処理を施した。オゾン処理時の温度は室温(約25℃)とした。
次いで、セパラブルフラスコよりオゾン処理パルプを取り出し、イオン交換水への懸濁・洗浄を繰り返し、洗浄水のpHが4.5以上になった時点で洗浄を終了した。次いで、洗浄後のパルプを、濾紙で減圧濾過して、オゾン処理セルロース繊維(固形分濃度20%)を得た。
得られたオゾン処理セルロース繊維を50g(絶乾セルロース繊維として10g)に、pH4に調整された2%亜塩素酸ナトリウム水溶液150gを注ぎ、撹拌した後、室温で48時間静置して追酸化処理を行った。追酸化処理時の温度は室温(約25℃)とした。追酸化処理を施したパルプをイオン交換水で懸濁及び洗浄を繰り返し行い、洗浄水のpHが8以下になった時点で洗浄を終了した。その後、濾紙を用いて減圧濾過し、得られたパルプにイオン交換水を添加した後、攪拌して、0.5%のスラリーを得た。このパルプスラリーを、解繊処理装置(エム・テクニック社製、クレアミックス-2.2S)を用いて、21500回転/分の条件で30分間解繊処理して、解繊パルプ分散液を得た。
得られた解繊パルプ分散液を、セルロース濃度が0.2%になるように薄め、12,000G×10分間遠心分離(遠心分離機:コクサン社製「H-200NR」)し、上澄み液(S)を得た。
そして、解繊パルプ分散液(M)の代わりに上澄み液(S)を用いた以外は実施例13と同様にしてシートの作製を試みた。
オゾン濃度を180g/m3に変更した以外は比較例6と同様にしてシートを作製した。
NBKP(王子製紙社製、水分50%、JIS P8121に準じて測定されるカナダ標準濾水度(CSF)600ml)を含水率80%になるようイオン交換水で希釈し、パルプスラリーを得た。このパルプスラリー15gに、実施例17で使用したのと同様のリン酸化試薬6.29g(乾燥パルプ100質量部に対してリン元素量として20質量部)を加え、105℃の送風乾燥機(ヤマト科学株式会社 DKM400)を用い、15分おきに混練しながら質量が恒量となるまで乾燥させた。次いで、150℃の送風乾燥機で1時間加熱処理して、セルロースにリン酸基を導入した。
次いで、リン酸基を導入したセルロースに300mlのイオン交換水を加え、攪拌洗浄後、脱水した。脱水後のパルプを300mlのイオン交換水で希釈し、攪拌しながら、1Nの水酸化ナトリウム水溶液5mlを少しずつ添加し、pHが12~13のパルプスラリーを得た。その後、このパルプスラリーを脱水し、300mlのイオン交換水を加えて洗浄を行った。この脱水洗浄をさらに2回繰り返した。
洗浄脱水後に得られたパルプにイオン交換水を添加後、攪拌し、0.5質量%のスラリーにした。このパルプスラリーを、解繊処理装置(エム・テクニック社製、クレアミックス-2.2S)を用いて、21500回転/分の条件で30分間解繊処理して、解繊パルプ分散液を得た。
得られた解繊パルプ分散液を、セルロース濃度が0.2%になるように薄め、12,000G×10分間遠心分離(遠心分離機:コクサン社製「H-200NR」)し、上澄み液(T)を得た。
そして、解繊パルプ分散液(M)の代わりに上澄み液(T)を用いた以外は実施例13と同様にしてシートの作製を試みた。しかし、濾水が困難で、シート化できなかった。
実施例13~17及び比較例4~8において得られた微細繊維状セルロースについて、平均繊維幅、重合度、アスペクト比、及び酸基の含有量を測定した。測定結果を表3に示す。
また、実施例13~17及び比較例4~8において得られたシートについて、作製時の濾過時間、シートの引張強度、シートの黄色度、分散液の流動性及び粘度を測定した。測定結果を表3に示す。
平均繊維幅については、上記「微細繊維状セルロースの電子顕微鏡観察による平均繊維幅の測定」に記載の方法で測定した。
[重合度]
重合度については、上記「重合度の測定」に記載の方法で測定した。
[アスペクト比]
TEM写真の画像解析より繊維長、繊維幅を測定し、(繊維長/繊維幅)よりアスペクト比を求めた。
[酸基含有量]
酸基含有量については、上記「酸基の含有量の測定」に記載の方法で測定した。
実施例13~21及び比較例4~8でシートを作製する際に、濃度が0.1%のセルロース繊維含有スラリーを400ml採取し、減圧濾過を行った。濾過器としてはアドバンテック社製KG-90を用い、ガラスフィルターの上にアドバンテック社製の0.5μm孔径、48cm2の面積を有するPTFE製メンブランフィルター(T050A090C、ADVANTEC社製)を載せた。圧力が-0.09MPa(絶対真空度10kPa)になるように減圧濾過し、フィルター上の溶媒含有セルロース繊維の質量が4gになった時間を濾過時間と定義した。濾過時間が短い程、濾水性に優れる。
得られたシートを調湿後(23℃、湿度50%、4時間)、厚みを測定し、次いで、定速伸張形引張試験機を用いて、JIS P8113に基づき引張強度を測定した。その際、引張速度5mm/分、荷重250N、シート試験片幅5.0±0.1mm、スパン長30±0.1mmとした。
実施例13~21及び比較例4~8で0.1%に濃度調整した解繊パルプ分散液或いはその上澄み155gを分取し、減圧濾過を行った。濾過器としてはアドバンテック社製KG-90を用い、ガラスフィルターの上にアドバンテック社製の0.5μm孔径、48cm2の面積を有するPTFE製メンブランフィルター(T050A090C、ADVANTEC社製)を載せた。PTFE製メンブランフィルターの上にセルロース繊維の堆積物が得られた。このセルロース繊維堆積物に3.76mlのエチレングリコールモノt-ブチルエーテルを注ぎ、再び減圧濾過して堆積物を得た。この堆積物を120℃に加熱したシリンダードライヤーにて5分間乾燥した後、さらに130℃の送風乾燥機で2分間乾燥させ、多孔性のシートを得た。得られたシートを200℃、真空下で4時間加熱した後、ASTM規格に準拠し、E313黄色インデックスを、GretagMacbeth社製ハンディ分光光度計(Spectro Eye)を用いて測定した。
解繊パルプ分散液又は上澄み液を、孔径0.5μmのメンブレンフィルター(T050A090C、ADVANTEC社製)上で吸引濾過することによって濃縮した。分散液の濃度が1%になったところで、ろ過作業を終了した。得られた分散液を、ホモミキサー(IKA社製、ULTRA-TURRAX、T-18)を用い、11000回転/分の条件で2分間処理し、24時間静置した後、流動性を下記の基準で目視により評価した。
A:流動性が非常によい。
B:分散液がゲル状傾向であり、流動性が多少劣る。
C:分散液のゲル状傾向が強く、流動性が著しく劣る。
また、濃度0.1%の分散液について粘度を測定した。粘度の測定では、B型粘度計を用い、JIS K7117-1に準じて測定した。
これに対し、平均繊維幅が190nm、重合度が1100である比較例4の微細繊維状セルロースは、シート化した際の引張強度が低かった。また、分散液の流動性が低かった。
重合度が780の比較例5の微細繊維状セルロースは、分散液の流動性が低く、粘度が高かった。
酸基含有量0.13mmol/gの比較例6の微細繊維状セルロース、酸基含有量0.25mmol/gの比較例7の微細繊維状セルロースは、濾水時間が長く、シート化した際の引張強度が低かった。
重合度が890、酸基の含有量が0.71mmol/gの比較例7の微細繊維状セルロースは、水の保持性が高くてシート化できなかった。また、分散液の流動性が低く、粘度はやや高めであった。
実施例13において、酵素処理でEG活性/CBHI活性=2.7、かつBGL活性/CBHI活性=0.06の酵素液を用いた以外はと実施例13と同様の方法で試験した。結果を表4に示す。
実施例13において、酵素処理でEG活性/CBHI活性=2.7、かつBGL活性/CBHI活性=0.11の酵素液を用いた以外はと実施例13と同様の方法で試験した。結果を表4に示す。
実施例13において、酵素処理でEG活性/CBHI活性=2.7、かつBGL活性/CBHI活性=0.22の酵素液を用いた以外はと実施例13と同様の方法で試験した。結果を表4に示す。
実施例13において、酵素処理でEG活性/CBHI活性=2.7、かつBGL活性/CBHI活性=0.30の酵素液を用いた以外はと実施例13と同様の方法で試験した。結果を表4に示す。
Claims (7)
- 微細繊維の製造方法であって、
(a) セルロース原料を酵素で処理すること、及び
(b) 前記処理後のセルロース原料を解繊することを含み、
前記(a)セルロース原料を酵素で処理することは、少なくとも前記酵素に含まれるセロビオヒドロラーゼの活性に対するエンド型グルカナーゼの活性の比が0.06以上の条件下で処理することを含む微細繊維の製造方法。 - 前記(a)セルロース原料を酵素で処理することは、前記酵素に含まれるセロビオヒドロラーゼの活性に対するβ-グルコシダーゼの活性の比が0.30以下の条件下で処理することを含む請求項1に記載の微細繊維の製造方法。
- 前記セルロース原料は植物繊維から選ばれる請求項1に記載の微細繊維の製造方法。
- 請求項1~3のいずれか1項に記載の製造方法で得られた微細繊維。
- 請求項4に記載の微細繊維を含有する不織布。
- 平均繊維幅が1~1000nm、重合度が50以上500未満、及び酸基の含有量が0.1mmol/g以下である、微細繊維状セルロース。
- 平均アスペクト比が10~10000である、請求項6に記載の微細繊維状セルロース。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380008822.8A CN104114765B (zh) | 2012-05-21 | 2013-05-16 | 微细纤维的制造方法和微细纤维和无纺布以及微细纤维状纤维素 |
US14/378,247 US10167576B2 (en) | 2012-05-21 | 2013-05-16 | Method of producing fine fiber, and fine fiber, non-woven fabric, and fine fibrous cellulose |
JP2014516773A JP6327149B2 (ja) | 2012-05-21 | 2013-05-16 | 微細繊維の製造方法及び不織布の製造方法並びに微細繊維状セルロース |
EP13793753.8A EP2853635B1 (en) | 2012-05-21 | 2013-05-16 | Method for producing fine fiber, fine fiber, non-woven fabric, and fine fibrous cellulose |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-115411 | 2012-05-21 | ||
JP2012115411 | 2012-05-21 | ||
JP2012-178344 | 2012-08-10 | ||
JP2012178344 | 2012-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013176033A1 true WO2013176033A1 (ja) | 2013-11-28 |
Family
ID=49623727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/063664 WO2013176033A1 (ja) | 2012-05-21 | 2013-05-16 | 微細繊維の製造方法と微細繊維及び不織布並びに微細繊維状セルロース |
Country Status (5)
Country | Link |
---|---|
US (1) | US10167576B2 (ja) |
EP (1) | EP2853635B1 (ja) |
JP (2) | JP6327149B2 (ja) |
CN (1) | CN104114765B (ja) |
WO (1) | WO2013176033A1 (ja) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015037658A1 (ja) * | 2013-09-11 | 2015-03-19 | 日東紡績株式会社 | セルロースナノファイバーとその製造方法、該セルロースナノファイバーを用いた水分散液、及び繊維強化複合材料 |
WO2015182438A1 (ja) * | 2014-05-26 | 2015-12-03 | 王子ホールディングス株式会社 | 微細繊維および微細繊維含有シートの製造方法、それにより得られるシート、および樹脂が積層された樹脂複合体 |
CN106283793A (zh) * | 2016-09-21 | 2017-01-04 | 东莞市联洲知识产权运营管理有限公司 | 一种纳米纤维素晶须改性的竹原纤维及其制备方法 |
JP2017503487A (ja) * | 2013-12-18 | 2017-02-02 | テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ | フィブリル化セルロース材料の製造方法 |
JP2017057390A (ja) * | 2015-09-17 | 2017-03-23 | 王子ホールディングス株式会社 | 微細繊維状セルロース含有物 |
JP2017057391A (ja) * | 2015-09-17 | 2017-03-23 | 王子ホールディングス株式会社 | 微細繊維状セルロース含有物 |
JP2017095664A (ja) * | 2015-11-27 | 2017-06-01 | 日本製紙株式会社 | セルロースナノファイバーの乾燥固形物の製造方法 |
JP2017099364A (ja) * | 2015-12-04 | 2017-06-08 | 国立大学法人愛媛大学 | 極小セルロースの製造方法 |
WO2017094595A1 (ja) | 2015-11-30 | 2017-06-08 | 王子ホールディングス株式会社 | シートおよびシートの製造方法 |
JP2017517589A (ja) * | 2014-03-31 | 2017-06-29 | ウーペーエム−キュンメネ コーポレイションUPM−Kymmene Corporation | フィブリル化セルロースを製造する方法 |
JP2017122177A (ja) * | 2016-01-07 | 2017-07-13 | 大王製紙株式会社 | 熱可塑性樹脂組成物 |
JP2017125279A (ja) * | 2016-01-15 | 2017-07-20 | 王子ホールディングス株式会社 | 微細セルロース繊維含有シート及びその製造方法 |
JP2018028151A (ja) * | 2016-08-15 | 2018-02-22 | 三菱製紙株式会社 | 炭素短繊維不織布の製造方法 |
JP2018109245A (ja) * | 2016-12-28 | 2018-07-12 | 旭化成株式会社 | 抗菌性能に優れた繊維構造体 |
JPWO2017078084A1 (ja) * | 2015-11-02 | 2018-08-30 | 日本製紙株式会社 | セルロースナノファイバー分散液のろ過方法および製造方法 |
US10550305B2 (en) | 2014-06-30 | 2020-02-04 | Oji Holdings Corporation | Subterranean formation processing composition comprising ultrafine cellulose fibers |
US10703955B2 (en) | 2014-06-30 | 2020-07-07 | Oji Holdings Corporation | Composition comprising ultrafine cellulose fibers |
CN111379162A (zh) * | 2020-04-01 | 2020-07-07 | 青岛大学 | 一种苎麻纤维柔化方法 |
JP2020158939A (ja) * | 2019-03-28 | 2020-10-01 | 王子ホールディングス株式会社 | 繊維状セルロース含有シートの製造方法 |
WO2021107146A1 (ja) * | 2019-11-29 | 2021-06-03 | 王子ホールディングス株式会社 | 繊維状セルロース、繊維状セルロース分散液及びシート |
US11084886B2 (en) | 2015-09-17 | 2021-08-10 | Oji Holdings Corporation | Material comprising ultrafine cellulose fibers |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201409047D0 (en) * | 2014-05-21 | 2014-07-02 | Cellucomp Ltd | Cellulose microfibrils |
EP3176317B1 (en) * | 2014-07-31 | 2019-04-03 | Avex Group Holdings Inc. | Method for manufacturing linen fiber for spinning, and linen fiber for spinning |
NL2016190B1 (en) | 2016-02-01 | 2017-08-10 | Stichting Saxion | Method for regenerating cellulose fibers from cellulose-containing textile. |
CN109072487B (zh) * | 2016-03-11 | 2022-01-11 | 国立大学法人北海道大学 | 乙酸纤维素纤维、乙酸纤维素组合物、以及它们的制造方法 |
KR20170130175A (ko) * | 2016-05-18 | 2017-11-28 | 삼성전자주식회사 | 셀룰로스 분리막을 제조하는 방법, 그에 의하여 제조된 셀룰로스 분리막 및 그를 포함하는 이차이온전지 |
WO2018198162A1 (ja) * | 2017-04-24 | 2018-11-01 | 王子ホールディングス株式会社 | 増粘剤、組成物及びシート |
CN106988137A (zh) * | 2017-04-25 | 2017-07-28 | 华南理工大学 | 一种较高浓度纳米纤维素纤丝的清洁生产方法 |
CN107178004B (zh) * | 2017-04-25 | 2019-05-14 | 华南理工大学 | 一种提高纸张染色色牢度的环境友好型方法 |
JP6694856B2 (ja) | 2017-07-25 | 2020-05-20 | 王子ホールディングス株式会社 | 繊維状セルロース含有組成物、その製造方法、及び膜 |
JP7058410B2 (ja) * | 2017-10-03 | 2022-04-22 | 国立大学法人東海国立大学機構 | 繊維長測定用プレパラートの製造方法、繊維長測定用分散液の調製方法、繊維長測定方法、繊維長測定用プレパラート、繊維長測定装置、および繊維長測定装置の制御プログラム |
EP3530743A1 (en) | 2018-02-21 | 2019-08-28 | Cambridge Glycoscience Ltd | Method of production |
CN108727893A (zh) * | 2018-06-15 | 2018-11-02 | 鲁东大学 | 一种利用酿酒葡萄残渣制备流平剂的方法 |
CN108823797A (zh) * | 2018-07-27 | 2018-11-16 | 铜陵熙成塑料制品有限公司 | 一种改性无纺布材料及其制备方法 |
CN113163828B (zh) | 2018-08-15 | 2024-04-26 | 剑桥糖质科学有限公司 | 新型组合物、其用途及其形成方法 |
JP7131296B2 (ja) * | 2018-10-26 | 2022-09-06 | 王子ホールディングス株式会社 | 微細繊維状セルロース含有組成物およびその製造方法 |
KR102167227B1 (ko) * | 2019-02-19 | 2020-10-19 | 다이텍연구원 | 복합효소 처리 셀룰로오스 나노섬유를 이용한 셀룰로오스 나노섬유/수분산 폴리우레탄 복합 필름의 제조방법 |
JP7184687B2 (ja) * | 2019-03-22 | 2022-12-06 | 旭化成株式会社 | 不織布を利用した孔拡散膜分離モジュール |
WO2021032647A1 (en) | 2019-08-16 | 2021-02-25 | Cambridge Glycoscience Ltd | Methods of treating biomass to produce oligosaccharides and related compositions |
WO2021054274A1 (ja) * | 2019-09-17 | 2021-03-25 | 日本製紙株式会社 | 化学変性ミクロフィブリルセルロース繊維の製造方法 |
BR112022011603A2 (pt) | 2019-12-12 | 2022-08-30 | Cambridge Glycoscience Ltd | Produtos alimentícios multifase com baixo teor de açúcar |
CN112252068A (zh) * | 2020-09-01 | 2021-01-22 | 华南理工大学 | 一种木质纤维素纳米纤丝及其制备方法与应用 |
KR102447183B1 (ko) * | 2021-05-26 | 2022-09-26 | (주)이미인 | 화장용 바이오셀룰로오스 시트의 제조방법 및 그 시트 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06506732A (ja) * | 1991-04-22 | 1994-07-28 | ノボ ノルディスク アクティーゼルスカブ | パルプ処理のためのセルラーゼの使用 |
JPH08500727A (ja) * | 1992-05-29 | 1996-01-30 | オイ・アルコ・アーベー | 新規な酵素製剤及びその製造方法 |
WO2003070940A1 (fr) * | 2002-02-25 | 2003-08-28 | Oji Paper Co., Ltd. | Gene d'enzyme de digestion de la cellulose et utilisation dudit gene |
JP2008075214A (ja) | 2006-09-21 | 2008-04-03 | Kimura Chem Plants Co Ltd | ナノファイバーの製造方法およびナノファイバー |
JP2008150719A (ja) | 2006-12-14 | 2008-07-03 | Forestry & Forest Products Research Institute | セルロースナノファイバーとその製造方法 |
JP2008169497A (ja) | 2007-01-10 | 2008-07-24 | Kimura Chem Plants Co Ltd | ナノファイバーの製造方法およびナノファイバー |
JP2008538176A (ja) * | 2005-03-15 | 2008-10-16 | ヴェレニウム コーポレイション | セルラーゼ、それらをコードする核酸、並びにそれらを作製及び使用する方法 |
JP2009526140A (ja) | 2006-02-08 | 2009-07-16 | エステイーエフアイ−パツクフオルスク・エイ・ビー | ミクロフィブリル化したセルロースの製造法 |
WO2011013567A1 (ja) | 2009-07-31 | 2011-02-03 | 王子製紙株式会社 | 微細繊維状セルロースコンポジットシートの製造方法および微細繊維状セルロースコンポジットシート積層体の製造方法 |
JP2011184816A (ja) | 2010-03-05 | 2011-09-22 | Olympus Corp | セルロースナノファイバーとその製造方法、複合樹脂組成物、成形体 |
JP2011184825A (ja) | 2010-03-09 | 2011-09-22 | Toppan Printing Co Ltd | セルロースナノファイバーの製造方法、セルロースナノファイバー、及びセルロースナノファイバー分散液 |
JP2012036529A (ja) | 2010-08-06 | 2012-02-23 | Asahi Kasei Fibers Corp | セルロースシート |
JP2012046846A (ja) * | 2010-08-27 | 2012-03-08 | Oji Paper Co Ltd | 微細繊維状セルロースの製造方法 |
WO2012043103A1 (ja) * | 2010-09-28 | 2012-04-05 | 日本製紙株式会社 | セルロースナノファイバー |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4307121A (en) * | 1979-11-26 | 1981-12-22 | Thompson Jerome B | Process for preparing cellulose |
JPH0610288A (ja) * | 1992-06-24 | 1994-01-18 | New Oji Paper Co Ltd | 微細繊維状セルロースの製造方法 |
JPH07331588A (ja) | 1994-06-03 | 1995-12-19 | Honshu Paper Co Ltd | 紙およびパルプの製造に有用なセルラーゼおよびその利用方法 |
FI20031818A (fi) * | 2003-12-11 | 2005-06-12 | Valtion Teknillinen | Menetelmä mekaanisen massan valmistamiseksi |
JP2006008857A (ja) | 2004-06-25 | 2006-01-12 | Asahi Kasei Chemicals Corp | 高分散性セルロース組成物 |
JP5500842B2 (ja) * | 2009-03-13 | 2014-05-21 | 国立大学法人京都大学 | セルロースナノファイバーの製造方法 |
JP5463564B2 (ja) | 2009-05-22 | 2014-04-09 | 国立大学法人信州大学 | 耐熱性及び耐塩性セルラーゼ製剤 |
SE0950534A1 (sv) | 2009-07-07 | 2010-10-12 | Stora Enso Oyj | Metod för framställning av mikrofibrillär cellulosa |
JP2012046848A (ja) | 2010-08-27 | 2012-03-08 | Oji Paper Co Ltd | 微細繊維状セルロースの製造方法 |
-
2013
- 2013-05-16 WO PCT/JP2013/063664 patent/WO2013176033A1/ja active Application Filing
- 2013-05-16 EP EP13793753.8A patent/EP2853635B1/en active Active
- 2013-05-16 JP JP2014516773A patent/JP6327149B2/ja active Active
- 2013-05-16 CN CN201380008822.8A patent/CN104114765B/zh active Active
- 2013-05-16 US US14/378,247 patent/US10167576B2/en active Active
-
2018
- 2018-04-18 JP JP2018079990A patent/JP6773071B2/ja active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06506732A (ja) * | 1991-04-22 | 1994-07-28 | ノボ ノルディスク アクティーゼルスカブ | パルプ処理のためのセルラーゼの使用 |
JPH08500727A (ja) * | 1992-05-29 | 1996-01-30 | オイ・アルコ・アーベー | 新規な酵素製剤及びその製造方法 |
WO2003070940A1 (fr) * | 2002-02-25 | 2003-08-28 | Oji Paper Co., Ltd. | Gene d'enzyme de digestion de la cellulose et utilisation dudit gene |
JP2008538176A (ja) * | 2005-03-15 | 2008-10-16 | ヴェレニウム コーポレイション | セルラーゼ、それらをコードする核酸、並びにそれらを作製及び使用する方法 |
JP2009526140A (ja) | 2006-02-08 | 2009-07-16 | エステイーエフアイ−パツクフオルスク・エイ・ビー | ミクロフィブリル化したセルロースの製造法 |
JP2008075214A (ja) | 2006-09-21 | 2008-04-03 | Kimura Chem Plants Co Ltd | ナノファイバーの製造方法およびナノファイバー |
JP2008150719A (ja) | 2006-12-14 | 2008-07-03 | Forestry & Forest Products Research Institute | セルロースナノファイバーとその製造方法 |
JP2008169497A (ja) | 2007-01-10 | 2008-07-24 | Kimura Chem Plants Co Ltd | ナノファイバーの製造方法およびナノファイバー |
WO2011013567A1 (ja) | 2009-07-31 | 2011-02-03 | 王子製紙株式会社 | 微細繊維状セルロースコンポジットシートの製造方法および微細繊維状セルロースコンポジットシート積層体の製造方法 |
JP2011184816A (ja) | 2010-03-05 | 2011-09-22 | Olympus Corp | セルロースナノファイバーとその製造方法、複合樹脂組成物、成形体 |
JP2011184825A (ja) | 2010-03-09 | 2011-09-22 | Toppan Printing Co Ltd | セルロースナノファイバーの製造方法、セルロースナノファイバー、及びセルロースナノファイバー分散液 |
JP2012036529A (ja) | 2010-08-06 | 2012-02-23 | Asahi Kasei Fibers Corp | セルロースシート |
JP2012046846A (ja) * | 2010-08-27 | 2012-03-08 | Oji Paper Co Ltd | 微細繊維状セルロースの製造方法 |
WO2012043103A1 (ja) * | 2010-09-28 | 2012-04-05 | 日本製紙株式会社 | セルロースナノファイバー |
Non-Patent Citations (3)
Title |
---|
SAKUZO FUKUI: "Experimental Methods of Biochemistry (Quantitative Determination of Reducing Sugar) 2nd Ed.", 1990, GAKKAI SHUPPAN CENTER, pages: 23 - 24 |
See also references of EP2853635A4 * |
SEGAL ET AL., TEXTILE RESEARCH JOURNAL, vol. 29, 1959, pages 786 |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2015037658A1 (ja) * | 2013-09-11 | 2017-03-02 | 日東紡績株式会社 | セルロースナノファイバーとその製造方法、該セルロースナノファイバーを用いた水分散液、及び繊維強化複合材料 |
US9951192B2 (en) | 2013-09-11 | 2018-04-24 | Nitto Boseki Co., Ltd. | Cellulose nanofibers, method for producing same, aqueous dispersion using cellulose nanofibers, and fiber-reinforced composite material |
WO2015037658A1 (ja) * | 2013-09-11 | 2015-03-19 | 日東紡績株式会社 | セルロースナノファイバーとその製造方法、該セルロースナノファイバーを用いた水分散液、及び繊維強化複合材料 |
JP2017503487A (ja) * | 2013-12-18 | 2017-02-02 | テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ | フィブリル化セルロース材料の製造方法 |
EP3084073A4 (en) * | 2013-12-18 | 2017-08-09 | Teknologian Tutkimuskeskus VTT OY | Process for producing fibrillated cellulose material |
US10087477B2 (en) | 2013-12-18 | 2018-10-02 | Teknologian Tutkimuskeskus Vtt Oy | Process for producing fibrillated cellulose material |
US10604893B2 (en) * | 2014-03-31 | 2020-03-31 | Upm-Kymmene Corporation | Method for producing fibrillated cellulose |
JP2017517589A (ja) * | 2014-03-31 | 2017-06-29 | ウーペーエム−キュンメネ コーポレイションUPM−Kymmene Corporation | フィブリル化セルロースを製造する方法 |
JP2021014673A (ja) * | 2014-05-26 | 2021-02-12 | 王子ホールディングス株式会社 | 微細繊維および微細繊維含有シートの製造方法、それにより得られるシート、および樹脂が積層された樹脂複合体 |
CN112482065A (zh) * | 2014-05-26 | 2021-03-12 | 王子控股株式会社 | 含微细纤维片与其制造方法、及复合片与其用途 |
JPWO2015182438A1 (ja) * | 2014-05-26 | 2017-04-20 | 王子ホールディングス株式会社 | 微細繊維および微細繊維含有シートの製造方法、それにより得られるシート、および樹脂が積層された樹脂複合体 |
CN106661840A (zh) * | 2014-05-26 | 2017-05-10 | 王子控股株式会社 | 微细纤维及含微细纤维片的制造方法、由其得到的片及层叠树脂的树脂复合体 |
US10273633B2 (en) | 2014-05-26 | 2019-04-30 | Oji Holdings Corporation | Methods for producing ultrafine fiber and ultrafine fiber-containing sheet, sheet obtained thereby, and resin composite comprising laminated resins |
WO2015182438A1 (ja) * | 2014-05-26 | 2015-12-03 | 王子ホールディングス株式会社 | 微細繊維および微細繊維含有シートの製造方法、それにより得られるシート、および樹脂が積層された樹脂複合体 |
US10703955B2 (en) | 2014-06-30 | 2020-07-07 | Oji Holdings Corporation | Composition comprising ultrafine cellulose fibers |
US10550305B2 (en) | 2014-06-30 | 2020-02-04 | Oji Holdings Corporation | Subterranean formation processing composition comprising ultrafine cellulose fibers |
US11084886B2 (en) | 2015-09-17 | 2021-08-10 | Oji Holdings Corporation | Material comprising ultrafine cellulose fibers |
JP2017057390A (ja) * | 2015-09-17 | 2017-03-23 | 王子ホールディングス株式会社 | 微細繊維状セルロース含有物 |
JP2017057391A (ja) * | 2015-09-17 | 2017-03-23 | 王子ホールディングス株式会社 | 微細繊維状セルロース含有物 |
US10850218B2 (en) | 2015-11-02 | 2020-12-01 | Nippon Paper Industries Co., Ltd. | Filtration method and production process of cellulose nanofiber dispersion |
JPWO2017078084A1 (ja) * | 2015-11-02 | 2018-08-30 | 日本製紙株式会社 | セルロースナノファイバー分散液のろ過方法および製造方法 |
JP2017095664A (ja) * | 2015-11-27 | 2017-06-01 | 日本製紙株式会社 | セルロースナノファイバーの乾燥固形物の製造方法 |
WO2017094595A1 (ja) | 2015-11-30 | 2017-06-08 | 王子ホールディングス株式会社 | シートおよびシートの製造方法 |
JP2017099364A (ja) * | 2015-12-04 | 2017-06-08 | 国立大学法人愛媛大学 | 極小セルロースの製造方法 |
JP2017122177A (ja) * | 2016-01-07 | 2017-07-13 | 大王製紙株式会社 | 熱可塑性樹脂組成物 |
JP2017125279A (ja) * | 2016-01-15 | 2017-07-20 | 王子ホールディングス株式会社 | 微細セルロース繊維含有シート及びその製造方法 |
JP2018028151A (ja) * | 2016-08-15 | 2018-02-22 | 三菱製紙株式会社 | 炭素短繊維不織布の製造方法 |
CN106283793A (zh) * | 2016-09-21 | 2017-01-04 | 东莞市联洲知识产权运营管理有限公司 | 一种纳米纤维素晶须改性的竹原纤维及其制备方法 |
JP2018109245A (ja) * | 2016-12-28 | 2018-07-12 | 旭化成株式会社 | 抗菌性能に優れた繊維構造体 |
JP2020158939A (ja) * | 2019-03-28 | 2020-10-01 | 王子ホールディングス株式会社 | 繊維状セルロース含有シートの製造方法 |
JP7375319B2 (ja) | 2019-03-28 | 2023-11-08 | 王子ホールディングス株式会社 | 繊維状セルロース含有シートの製造方法 |
WO2021107146A1 (ja) * | 2019-11-29 | 2021-06-03 | 王子ホールディングス株式会社 | 繊維状セルロース、繊維状セルロース分散液及びシート |
CN111379162A (zh) * | 2020-04-01 | 2020-07-07 | 青岛大学 | 一种苎麻纤维柔化方法 |
CN111379162B (zh) * | 2020-04-01 | 2022-06-17 | 青岛大学 | 一种苎麻纤维柔化方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6773071B2 (ja) | 2020-10-21 |
US20150079866A1 (en) | 2015-03-19 |
CN104114765A (zh) | 2014-10-22 |
JPWO2013176033A1 (ja) | 2016-01-12 |
US10167576B2 (en) | 2019-01-01 |
EP2853635A4 (en) | 2016-01-06 |
EP2853635B1 (en) | 2018-09-12 |
JP6327149B2 (ja) | 2018-05-23 |
JP2018157819A (ja) | 2018-10-11 |
CN104114765B (zh) | 2016-03-30 |
EP2853635A1 (en) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6773071B2 (ja) | 微細繊維の製造方法、及び不織布の製造方法 | |
Santucci et al. | Evaluation of the effects of chemical composition and refining treatments on the properties of nanofibrillated cellulose films from sugarcane bagasse | |
CN103502529B (zh) | 高长径比纤维素纳米长丝及其生产方法 | |
CN107805851B (zh) | 磷酸酯化微细纤维素纤维及其制造方法 | |
JP5544747B2 (ja) | 微細繊維状セルロースの製造方法 | |
JP2012111849A (ja) | 微細繊維状セルロースの製造方法、微細繊維状セルロースシートの製造方法及び微細繊維状セルロース複合体 | |
JP5887857B2 (ja) | 微細繊維状セルロースの製造方法 | |
JP5988843B2 (ja) | 複合材料 | |
JP6326730B2 (ja) | 不織布及びその製造方法 | |
JP5655432B2 (ja) | 微細繊維状セルロースの製造方法 | |
JP2012012713A (ja) | 微細繊維状セルロースの製造方法 | |
Cebreiros et al. | Enhancing cellulose nanofibrillation of eucalyptus Kraft pulp by combining enzymatic and mechanical pretreatments | |
KR102691881B1 (ko) | 수분산성 복합 구조물 및 이를 제조하는 방법 | |
JP2013163773A (ja) | 微細繊維状セルロースの製造方法 | |
JP2012219413A (ja) | 微細繊維の製造方法 | |
JP2014034673A (ja) | 微細繊維状セルロース | |
JP6098370B2 (ja) | 複合材料及びその製造方法 | |
JP6384498B2 (ja) | 繊維状セルロース、樹脂組成物及びセルロース懸濁液 | |
Park et al. | Combined enzymatic pretreatment of pulp for production of CNF | |
Temesgen et al. | Green synthesis of cellulosic nanofiber in enset woven fabric structures via enzyme treatment and mechanical hammering | |
JP7550189B2 (ja) | カルバメート化セルロース繊維の製造方法及びカルバメート化セルロース微細繊維の製造方法 | |
JP7499593B2 (ja) | セルロース繊維の成形体及びその製造方法 | |
Rantanen | The manufacturing potential of micro and nanofibrillated cellulose composite papers | |
JP2022088181A5 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380008822.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13793753 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014516773 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14378247 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013793753 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |