WO2013172075A1 - 結晶化促進剤 - Google Patents

結晶化促進剤 Download PDF

Info

Publication number
WO2013172075A1
WO2013172075A1 PCT/JP2013/056401 JP2013056401W WO2013172075A1 WO 2013172075 A1 WO2013172075 A1 WO 2013172075A1 JP 2013056401 W JP2013056401 W JP 2013056401W WO 2013172075 A1 WO2013172075 A1 WO 2013172075A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
crystallization accelerator
crystallization
fatty acid
weight
Prior art date
Application number
PCT/JP2013/056401
Other languages
English (en)
French (fr)
Inventor
忠義 貞包
勇介 原
隆司 山口
Original Assignee
株式会社J-オイルミルズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社J-オイルミルズ filed Critical 株式会社J-オイルミルズ
Priority to EP13790114.6A priority Critical patent/EP2851414A4/en
Priority to RU2014150951A priority patent/RU2619236C2/ru
Priority to IN8502DEN2014 priority patent/IN2014DN08502A/en
Priority to SG11201406018RA priority patent/SG11201406018RA/en
Priority to CN201380025792.1A priority patent/CN104302749B/zh
Priority to JP2014515521A priority patent/JP6188687B2/ja
Publication of WO2013172075A1 publication Critical patent/WO2013172075A1/ja
Priority to PH12014502172A priority patent/PH12014502172A1/en
Priority to US14/543,145 priority patent/US20150140196A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B5/00Preserving by using additives, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B7/00Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils
    • C11B7/0075Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils by differences of melting or solidifying points
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B7/00Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils
    • C11B7/0083Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils with addition of auxiliary substances, e.g. cristallisation promotors, filter aids, melting point depressors

Definitions

  • the present invention relates to a novel crystallization accelerator, and more particularly, to a fat crystallization accelerator and its use.
  • Patent Document 1 discloses an oil and fat crystallization accelerator containing a sorbitan fatty acid ester having an esterification rate of 28 to 60% and a sorbitol-type content of 20 to 40%.
  • an emulsifier is added to the frying oil composition, the effect of promoting crystallization may be extremely reduced by heating.
  • the present invention comprises a hydroxy saturated fatty acid having 18 to 28 carbon atoms, glycerin and an appropriate fatty acid which have a hydroxyl group and a carboxyl group at both ends and may have one carbonyl group in the chain.
  • the term “polymer compound” includes a mixture thereof.
  • the term “polymer” is used to include polymers and oligomers.
  • the crystallization accelerator is obtained from, for example, palm fruit or palm oil.
  • the content of the polymer compound is preferably 0.005% by weight or more.
  • the crystallization accelerator may be the polymer compound itself.
  • the hydroxy saturated fatty acid preferably has a C18: C22: C24: C28 weight ratio of 5 to 45:10 to 40:20 to 65: 5 to 30.
  • the proportion of the hydroxy saturated fatty acid having 18 to 28 carbon atoms having a carbonyl group in the chain is preferably 15 to 70% by weight based on the whole hydroxy fatty acid.
  • the molar ratio of the hydroxy saturated fatty acid and glycerin is preferably 10: 1 to 1: 1.
  • the hydroxy fatty acid is preferably 20 to 90% by weight based on the total of hydroxy saturated fatty acid and fatty acid.
  • the ratio of the hydroxy fatty acid having 24 carbon atoms having a carbonyl group in the chain is preferably 90% by weight or more based on the whole hydroxy fatty acid having a carbonyl group in the chain.
  • the present invention also provides a method for producing the above-described crystallization accelerator, which comprises recovering the crystallization accelerator by extracting palm fruit with an organic solvent or an oil and fat to recover the crystallization accelerator. .
  • the palm fruit is preferably a palm kernel, more preferably a palm seed coat.
  • the present invention also provides a method for producing the crystallization accelerator, the method comprising producing a hard part obtained by fractionating palm-based fats and oils.
  • the manufacturing method preferably includes a step of recovering an organic solvent insoluble part obtained by further washing the hard part with an organic solvent.
  • the production method further preferably includes a step of recovering an organic solvent extract obtained by further extracting the organic solvent insoluble part with an organic solvent.
  • the organic solvent extract may be subjected to, for example, a molecular weight fractionation method to collect a fraction having a polystyrene-equivalent molecular weight of 3,000 to 100,000. Thereby, a crystallization accelerator composed of a polymer compound is obtained.
  • the present invention also provides (I) the crystallization accelerator and (II) a base oil composed of fats and oils having a melting point of 10 ° C. or higher, the content of (I) component is 0.2 to 15% by weight, and the content of (II) component is A crystallization-promoting oil / fat composition that is 85 to 99.8% by weight is provided.
  • the present invention also provides a crystallization accelerating oil / fat composition containing 0.0005 to 1% by weight of a crystallization accelerator comprising the above polymer compound and having an iodine value of 40 or more.
  • the crystallization accelerating oil / fat composition is, for example, for frying oil, shortening, margarine, chocolate, curry roux or stew roux.
  • the present invention also provides a food using the above crystallization promoting oil / fat composition.
  • the crystallization accelerator of the present invention and the oil / fat composition containing the same have crystallization acceleration superior to conventional emulsifiers for the oil / fat.
  • the frying oil / fat composition to which an emulsifier has been added has a crystal accelerating effect that is extremely reduced by heating, whereas the oil / fat composition of the present invention does not show a decrease in accelerating crystallization even when heated at about the frying conditions. .
  • the crystallization accelerator of the present invention and the oil / fat composition containing the same have various uses as follows. For example, whether or not to crystallize with donut frying oil is important in terms of crying, stickiness and texture of fried donuts, but the crystallization accelerator of the present invention can improve them. .
  • the crystallization promoting action improves the filling state during shortening / margarine production. If the crystallization is high from the beginning, the action of stirring and kneading becomes stronger and the quality is further improved in that it is made uniform. If the coated chocolate does not dry well, it takes time to dry and the cooling must be increased. The shorter the time to dry, the better. However, when the viscosity increases from the beginning, workability decreases.
  • By adding the crystallization accelerator of the present invention to the base dough for coated chocolate drying can be improved and work efficiency can be increased. Work can also be done with soft chocolate dough.
  • the polymer compound having activity includes a polymer compound having a repeating unit of 380 Da.
  • the 14 Da interval means the CH 2 interval.
  • the mass spectral data which ionized TMS-ized C22: 0 hydroxy fatty acid methyl with EI are shown.
  • the structure of C22: 0 hydroxy fatty acid methyl was identified from library search of mass spectrum.
  • the behavior of SFC at 25 ° C. of an oil and fat composition containing 1% by weight of a crystallization accelerator composed of PTS (polymer compound concentration: 0.07% by weight) prepared in Example 12 is shown.
  • the SFC of an oil / fat composition to which 1% by weight of additive-free rapeseed oil or tripalmitin is added is shown.
  • the SFC of the oil and fat composition of the present invention is not different from the other examples in the initial stage, but increases more rapidly than the other examples after a lapse of a certain time. Therefore, according to the present invention, not only the crystallization of fats and oils is promoted, but also a certain amount of working time can be ensured until the SFC rapidly increases.
  • the crystallization accelerator of the present invention comprises a hydroxy saturated fatty acid having 18 to 28 carbon atoms, glycerin and an appropriate fatty acid which have a hydroxyl group and a carboxyl group at both ends and may have one carbonyl group in the chain.
  • the constituent component contains a polymer compound having a molecular weight of 3,000 to 100,000, which is polymerized by an ester bond.
  • the polymer compound may be a single type or a mixture of two or more types.
  • the hydroxy saturated fatty acid has a weight ratio of C18: C22: C24: C28 of preferably 5 to 45:10 to 40:20 to 65: 5 to 30, particularly preferably 5 to 30:10 to 30:30 to 65. : 10-30.
  • oxohydroxy fatty acid When a hydroxy fatty acid having a carbonyl group in the chain (hereinafter referred to as oxohydroxy fatty acid) is contained in the constituent component, the content of oxohydroxy fatty acid is preferably 15 to 70% by weight, particularly preferably 20%, based on the total hydroxy fatty acid. ⁇ 50% by weight.
  • the ratio of the oxohydroxy fatty acid having 24 carbon atoms is preferably 90% by weight or more based on the whole oxohydroxy fatty acid.
  • the carbon number of the hydroxy fatty acid that is appropriately contained in the constituent components is usually 18 to 28.
  • the weight ratio of the hydroxy fatty acid is preferably 20% to 90%, more preferably 25% to 90%, and particularly preferably 30% to 90% with respect to the total of the hydroxy fatty acid and the fatty acid.
  • the molar ratio of the hydroxy fatty acid and the glycerin is preferably 10: 1 to 1: 1, more preferably 7: 1 to 1: 1, and particularly preferably 6: 1 to 1: 1.
  • the polymer compound preferably contains a diacid.
  • the weight ratio of the divalent acid to the hydroxy fatty acid is more preferably 1: 1 to 1:20, and particularly preferably 1: 4 to 1:11.
  • the molecular weight of the polymer compound is 3,000 to 100,000, preferably 5,000 to 100,000, and more preferably 5,000 to 50,000.
  • the polymer compound has the chemical formula: [Wherein x is an integer of 0 to 25, y is 0 or 1, z is an integer of 0 to 25, provided that the sum of x, y and z is 15 to 25; Is an integer from 1 to 15].
  • N is preferably 1 to 10, more preferably 1 to 7.
  • the end of the polymer compound is not particularly limited, but is usually a hydroxyl group, a carboxyl group, a fatty acid ester or the like.
  • Components other than the polymer compound in the crystallization accelerator are not particularly limited, and examples thereof include saturated or unsaturated triglycerides, diglycerides, monoglycerides and the like that are usually contained in fats and oils.
  • the effect of the crystallization accelerator of the present invention is determined by measuring the SFC (solid fat content) under a certain condition (for example, 25 ° C. to 40 ° C., 20 minutes) of a test composition in which it is blended with a base oil (for example, palm oil). You can evaluate it.
  • SFC solid fat content
  • the lower limit of the content of the polymer compound in the crystallization accelerator is usually 0.005% by weight, preferably 0.03% by weight. Although there is no upper limit, it is preferably 1% by weight in terms of preserving physical properties other than crystallization of the base oil.
  • the crystallization accelerator may consist of the polymer compound itself. Therefore, the present invention comprises a hydroxy saturated fatty acid having 18 to 28 carbon atoms, glycerin and an appropriate fatty acid, which have a hydroxyl group and a carboxyl group at both ends and may have one carbonyl group in the chain. And a crystallization accelerator comprising a high molecular weight compound having a molecular weight of 3,000 to 100,000, wherein the constituent component is polymerized by an ester bond.
  • the polymer compound or the crystallization accelerator containing the polymer compound can be obtained from palm fruit.
  • FIG. 9 the cross section of palm fruit and the name of each part are shown. A large amount of the polymer compound of the present invention is present in the palm kernel.
  • the present invention provides a method for producing a crystallization accelerator, which comprises extracting palm fruit, particularly palm kernel, with organic solvent extraction or oil extraction.
  • the organic solvent extraction procedure is in accordance with a conventional method, for example, as follows. First, palm fruits, especially seed coats, are boiled in high-temperature water and then deactivated with lipase. In order to make it easy to extract the components, it is preferable to use a blender.
  • the crystallization accelerator is extracted in the organic solvent by refluxing the shredded product in an organic solvent such as chloroform and toluene at a high temperature.
  • the temperature of the organic solvent at reflux is usually 30 to 120 ° C., preferably 50 to 110 ° C.
  • insoluble matter is filtered and the organic solvent is removed to obtain a crystallization accelerator.
  • the obtained crystallization accelerator may be subjected to molecular weight fractionation methods such as gel permeation chromatography and ultrafiltration to select a fraction having a polystyrene equivalent molecular weight of 3,000 to 100,000.
  • the polymer compound of the present invention or the crystallization accelerator containing the same can also be obtained from edible fats and oils such as palm-based fats and oils.
  • edible fats and oils such as palm-based fats and oils.
  • Palm oils and fats include palm oils such as palm stearin and palm super stearin obtained by fractionating palm oil.
  • a preferred raw material fat is palm super stearin having an iodine value of 10 to 17 (hereinafter sometimes referred to as PSS).
  • ⁇ ⁇ ⁇ Apply palm oil such as palm super stearin to the separation process.
  • the fractionation may be either dry fractionation or solvent fractionation. After dissolving palm super stearin at or above its melting temperature, the temperature is gradually decreased, and the SFC of the slurry is 20 wt% or less, preferably 0.2 to 18 wt%, more preferably 0.2 to 10 wt%, Crystallization is more preferably 0.2 to 5% by weight, and most preferably 0.2 to 2% by weight.
  • the yield of the hard part represented by [hard part weight / (hard part weight + liquid part weight)] is 26% by weight or less, preferably 0.3 to 25% by weight, more preferably 1.0 to 15% by weight.
  • the slurry is fractionated so that For separation, pressure filtration is performed with a filter press, belt press or the like.
  • the fractionation efficiency value represented by hard part yield / slurry SFC is preferably 10 or less, more preferably 1.0 to 8.0, and particularly preferably 1.2 to 7.0.
  • An oil and fat composition comprising a hard part obtained by fractionating palm super stearin is referred to as palm triple stearin (hereinafter sometimes referred to as PTS).
  • PTS palm triple stearin
  • the oil composition comprising the hard part usually contains about 0.005 to 1% by weight of a polymer compound.
  • the polymer compound in PTS is further concentrated.
  • mixing is performed at a ratio of 500 ml of chloroform to 100 g of PTS.
  • the PTS mixture is allowed to stand at a temperature of 15 ° C. to 25 ° C. for 6 to 22 hours, and then insoluble components are filtered through a cylindrical filter paper to obtain a chloroform insoluble portion remaining on the cylindrical filter paper.
  • the chloroform-insoluble portion is washed while refluxing hexane at 55 ° C. to 65 ° C. with a Soxhlet extraction apparatus. A hexane insoluble portion remaining on the cylindrical filter paper without being dissolved in hexane is obtained.
  • chloroform extract a chloroform-dissolved part
  • the above chloroform extract is fractionated by an appropriate molecular weight fractionation method, and a polymer compound having a polystyrene equivalent molecular weight of 3,000 to 100,000 is recovered.
  • the crystallization accelerator of the present invention may be concentrated so that the polymer compound content is 0.005% by weight or more. Therefore, the crystallization accelerator of the present invention includes a concentrate after fractionation of PSS, for example, a hard part after dry fractionation, a chloroform insoluble part of the hard part, a hexane insoluble part of the chloroform insoluble part, and a hexane insoluble part. And a GPC fraction (polymer compound) of the chloroform extract.
  • the present invention also provides a crystallization promoting oil / fat composition
  • a crystallization accelerator comprising (I) a crystallization accelerator and (II) a base oil.
  • This oil / fat composition has an excellent crystallization-promoting action on oil / fat.
  • the oil-and-fat composition of the present invention can ensure a certain work period (for example, 1 to 4 minutes) until crystallization is suddenly accelerated. Therefore, the oil and fat composition of the present invention has a very high industrial utility as a crystallization accelerator.
  • the base oil is determined according to the use of the fat composition.
  • the base oil is an oil having a melting point of 10 ° C. or higher, preferably 15 to 40 ° C. If the melting point is less than 10 ° C., crystals may not be formed or may become very slow.
  • fats and oils with a melting point of 10 ° C. or higher include palm oil, palm oil, palm kernel oil, monkey fat, cacao fat, shea fat and fractionated oils and hardened oils of beef fat, pork fat, milk fat, fish oil and fats and oils thereof.
  • the fat composition of (I) crystallization accelerator and (II) base oil having a melting point of 10 ° C. or higher is preferably 0.2 to 15% by weight of component (I) and 85 of component (II). ⁇ 99.8% by weight.
  • the base oil is also a palm oil and / or palm fractionated oil having an iodine value (also referred to as IV) of 30 to 65, particularly IV of 30 to 60, a random transesterified oil of palm oil and lauric oil, and / or its hardening. It may be at least one selected from the group consisting of oil, oil that is liquid at room temperature, palm kernel oil and palm kernel fractionated oil, and hardened oil of palm kernel oil and palm kernel fractionated oil.
  • the palm-based fats and oils include palm oil, palm oil fractionated oil, transesterified oil, hydrogenated oil, processed oil and fat subjected to two or more treatments selected from fractionation, transesterification and hydrogenation.
  • Palm fractionated oil includes palm olein, palm super olein, palm stearin and the like.
  • transesterified oil are palm-based fats and oils, random transesterified fats and oils of palm-based fats and lauric fats and / or hardened oils thereof.
  • Laurin-based fats and oils mean fats and oils whose main constituent fatty acid is lauric acid having 12 carbon atoms, such as palm kernel oil and palm oil. Palm-based oils and lauric oils are preferably transesterified at a weight ratio of 20:80 to 70:30, particularly preferably 30:70 to 60:40.
  • the transesterification reaction may be either a method using lipase as a catalyst or a method using a metal catalyst such as sodium methylate.
  • the hardened oil include palm hard oil, palm kernel hard oil, and the like. You may perform the hardening reaction of the said hardened oil at any time before transesterification and after transesterification.
  • oils that are liquid at room temperature include soybean oil, rapeseed oil, rice oil, corn oil, cottonseed oil, safflower oil, sunflower oil, olive oil, sesame oil, palm super olein (IV 65 or higher), and the like. These can be used alone or in combination of two or more. Preferred are soybean oil, rapeseed oil, corn oil, cottonseed oil, safflower oil, and palm super olein (IV 65 or higher).
  • the ratio of palm oil and / or palm fractionated oil of IV 30 to 65 is usually 40% by weight or more, preferably 50 to 100% by weight with respect to the whole base oil.
  • the proportion of the random transesterified oil and / or its hardened oil of palm oil and lauric oil is usually 10 to 80% by weight, preferably 10 to 60% by weight, and more preferably based on the whole base oil. 10 to 40% by weight.
  • the ratio of oil that is liquid at normal temperature is usually 0 to 40% by weight, preferably 10 to 40% by weight, more preferably 10 to 30% by weight, based on the entire base oil.
  • the base oil is a palm oil having an iodine value of 30 to 65 and / or a palm fractionated oil and an oil that is liquid at room temperature, it is usually 50 to 90% by weight, preferably 60%, based on the total base oil. It is preferable to include a palm oil having an iodine value of 30 to 65% and / or a fractionated palm oil of 90 to 65% by weight, and an oil which is usually liquid at a normal temperature of 10 to 50% by weight, preferably 10 to 40% by weight.
  • the base oil is a palm oil having an iodine value of 30 to 65 and / or a palm fractionated oil, a random transesterified oil of palm oil and lauric oil and / or a hardened oil thereof,
  • it is usually 20 to 70% by weight, preferably 30 to 70% by weight, with an iodine value of 30 to 65 palm oil and / or palm fractionated oil, and usually 10 to 60% by weight, preferably 10 to 40% by weight.
  • the base oil is a blended oil containing palm oil having an iodine value of 30 to 65 and / or palm fractionated oil, random transesterified oil of palm oil and lauric oil, and oil that is liquid at room temperature
  • the whole base oil Usually, it is 20 to 70% by weight, preferably 30 to 70% by weight of palm oil and / or palm fractionated oil having an iodine value of 30 to 65, usually 10 to 60% by weight, preferably 10 to 40% by weight.
  • the base oil is a blend of palm kernel hard oil and palm kernel olein, it is usually 30 to 80% by weight, preferably 30 to 60% by weight of palm kernel hard oil, and usually 20 to 70% by weight, preferably 40 to 70% by weight of palm kernel olein.
  • the oil / fat composition of the present invention may be one obtained by blending a base oil with 0.0005 to 1% by weight, preferably 0.0005 to 0.5% by weight, of a crystallization accelerator comprising a polymer compound.
  • the base oil is the same as described above, but the iodine value of the oil and fat composition is 40 or more, and preferably 42 to 75. When the iodine value of the oil and fat composition is 40 or more, it is possible to obtain an effect with a small amount of a crystallization accelerator.
  • additives known in the art can be added to the composition of the present invention as long as the effects of the present invention are not impaired.
  • additives include other edible oils and fats; emulsifiers such as lecithin, glycerin fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, sucrose fatty acid ester, polyglycerol fatty acid ester; antioxidants such as tocopherol and vitamin C palmitate Thickeners such as pectin, carrageenan, xanthan gum, carboxymethylcellulose (CMC), guar gum, gum arabic, locust bean gum, karaya gum, tamarind gum, tara gum, kifarselan, casein soda, alginate, agar, gum elemi, gum schema, gum damar Stabilizer; Coloring agent; Flavor such as milk flavor, vanilla flavor, vanilla essence; glucose, maltose, sucrose, lactose,
  • the oil and fat composition of the present invention can be obtained by mixing a crystallization accelerator, a base oil, and appropriate additives at a predetermined ratio. These components may be mixed simultaneously, or the crystallization accelerator may be mixed with a portion of the base oil and then mixed with the remaining components.
  • the oil and fat composition of the present invention is based on its excellent crystallization promoting action, a frying oil and fat composition for frying donuts, fried bread, snack confectionery, instant noodles, side dishes, etc., an oil and fat composition for margarine and shortening, stew, Applications to various oil and fat compositions such as oil and fat composition for curry and oil and fat composition for chocolate are expected.
  • the present invention also provides a food product using the oil composition.
  • foods include donuts, fried bread, snacks, instant noodles, side dishes, margarine, shortening, stew roux, curry roux, chocolate, confectionery coated or coated with chocolate, and the like.
  • the amount of the oil / fat composition added to the food can be appropriately determined according to the concentration of the polymer compound in the oil / fat composition, the type of food, the addition conditions, and the like.
  • the amount of the oil / fat composition added is usually 1 to 100% by weight, preferably 1 to 80% by weight, based on the food.
  • Example 1 (Preparation of crystallization accelerator I)
  • the crystallization accelerator was extracted from palm fruit by the following procedure.
  • the palm fruit was divided into four types of outer pericarp, mesocarp (fruit pulp), inner pericarp and kernel (seed coat + inner cup milk) shown in FIG. 9, and weighed.
  • Each site was individually heated at 100 ° C. for 1 hour to inactivate the contained lipase.
  • each part was fined with a blender.
  • Each part was dispersed in 150 ml of chloroform and extracted for 7 hours while refluxing at 90 ° C.
  • the SFC of the oil and fat composition after 20 minutes at 25 ° C. was measured by the following procedure. 2 ml of the oil and fat composition dissolved at 80 ° C. was put in a glass container and completely dissolved at 100 ° C., and then kept in a constant temperature water bath at 60 ° C. for 60 minutes. After leaving in a constant temperature water bath at 25 ° C. for 20 minutes, the amount of precipitated crystals was measured with an NMR analyzer (NMS120 minispec, manufactured by BRUKER). The results are shown in Table 2.
  • Palm kernel stearin oil (manufactured by J-Oil Mills Co., Ltd.) 2) RBD palm kernel oil (manufactured by J-Oil Mills Co., Ltd.)
  • the SFC at 25 ° C. for 20 minutes was remarkably increased although the extract blending amount was lower than the others. It has been found that the oil and fat extracted from the kernel contains a large amount of the polymer compound of the present invention.
  • the oil composition 5 obtained by extracting palm kernel in an organic solvent at a high temperature has a higher polymer compound having more crystallization promoting activity from the seed coat than the oil composition 7 obtained by pressing. It is thought that it has been extracted.
  • the crude fat content of the koji after pressing the oil composition 7 from the kernel is about 7.5% by weight, and the oil and fat remains in the koji in the pressing process. It is considered difficult to extract. From the results of the crystallization rate in Table 2 and the above consideration, when preparing a crystallization accelerator from palm fruit, it is preferable to use seed coat as a raw material.
  • Example 2 (Preparation of crystallization accelerator II) A crystallization accelerator was prepared by subjecting the palm oil to a dry fractionation step and an organic solvent washing / extraction step shown in FIG.
  • Dry fractionation step A palm super stearin IV12 (manufactured by MEWAHOLEO INDUSTRIES SDN. BHD., Hereinafter referred to as PSS) was used for the dry fractionation, and a 10 kg scale fractionation pilot apparatus (Laboratory scale pilot fractionation, De Smet) was used.
  • PSS palm super stearin IV12
  • a 10 kg scale fractionation pilot apparatus (Laboratory scale pilot fractionation, De Smet) was used.
  • 9.02 kg of PSS was completely dissolved at 70 ° C., and then the water temperature was gradually lowered to 60 ° C. to precipitate crystals.
  • 2 ml of the slurry was sampled and placed in a glass tube, and the SFC of the slurry was measured with the NMR analyzer.
  • the slurry SFC reached 0.5%
  • the slurry was sent to a lab filter and pressure-filtered to 15 bar to obtain 371 g of a hard part (PTS) and 8650 g of a liquid part (hereinafter referred to as “PSS-OL”).
  • PTS hard part
  • PSS-OL a liquid part
  • the PSS refined product was adjusted so that the SFC at 20 ° C. for 20 minutes of the oil and fat composition (Comparative Example 1) in which the PSS refined product and the fat B were blended at a ratio of 60:40 was 0 to 5%.
  • Table 3 shows the compositions of PTS, PSS purified product, and fat B.
  • Oils and fats B are oils and fats prepared by hydrogenating and transesterifying a 50:50 blended oil of palm oil and palm kernel oil by a conventional method.
  • FIG. 3 is a graph showing the relationship between the PTS ratio (X axis) and the crystallization speed (Y axis).
  • the PTS ratio (x) and 40 ° C. SFC (y) are expressed by the formula (1): It was possible to express with the correlation equation shown in. The PTS ratio and the crystallization rate showed a good correlation.
  • Formula (1) can be used to express the activity of the crystallization accelerator and the concentration of the polymer compound.
  • an oil / fat composition having a weight ratio of PSS of Example 2 to fat / oil B of 60:40 was prepared, and its SFC measured at 40 ° C. for 20 minutes was 16.4% (Table 4).
  • the PTS ratio of the composition is 3.19%.
  • the PTS ratio of PSS becomes 5.31%. That is, the crystallization speed of PSS corresponds to 5.31% of PTS.
  • the activity of PTS is 18.8 times higher than that of PSS. This means that PTS promotes crystallization 18.8 times more than PSS.
  • Example 2 The chloroform extract part obtained in Example 2 and the activity increase rate of the polymer compound after GPC fractionation were determined.
  • an oil / fat composition was prepared by mixing the crystallization accelerator, PSS refined product, and oil / fat B at a ratio shown in Table 5A.
  • Table 5B shows 40 ° C SFC of the oil and fat composition. SFC was applied to a calibration curve to determine the PTS ratio of the composition. Furthermore, by dividing the PTS ratio of the composition by the ratio of the crystallization accelerator, the activity increase rate (PTS ratio) of the chloroform extraction part and the polymer compound was determined. The results are shown in Table 5B.
  • Table 6 summarizes the activity increase rate (PSS ratio and PTS ratio) of each fraction of Example 2 and the polymer compound concentration calculated from the increase rate.
  • the weight of PSS is the value in terms of 100g PTS.
  • Example 9 Measurement of molecular weight of polymer compound
  • the chloroform extract obtained by the same method as in Example 2 was dissolved in chloroform and analyzed by GPC.
  • the measurement conditions are the same as in Example 2 except that TSKgel G4000H XL , 7.8 mm ID ⁇ 30 cm, particle size 5 ⁇ m (manufactured by Tosoh Corporation) is used for the GPC column.
  • a GPC chart is shown in FIG.
  • the molecular weight of the polymer compound is 3,000 to 100,000, preferably 5,000 to 100,000, and more preferably 5,000 to 50,000.
  • the molar ratio of hydroxy fatty acid and glycerin in the chemical structure of the polymer compound was determined.
  • hydroxy fatty acid: glycerin was 1.8: 1 (fraction 2), respectively. 4.7: 1 (fraction 3) and 4.9: 1 (fraction 4).
  • Example 10 Analysis of constituents of polymer compound in crystallization accelerator I
  • MALDI / TOF / MS analysis of the polymer compound obtained in Example 2 was performed under the following conditions.
  • the polymer compound was subjected to methanolysis by reacting with a 14% boron trifluoride methanol solution at 80 ° C. for 8 hours.
  • the methanolized sample was reacted with a trimethylsilylating agent (TMSI-H, manufactured by GL Science Co., Ltd.) at 60 ° C. for 1 hour.
  • TMSI-H trimethylsilylating agent
  • the measurement conditions for GC / MS are as follows.
  • MALDI / TOF / MS chart is shown in FIG. From FIG. 6, a polymer compound mainly containing a repeating unit of 380 Da was detected. Moreover, the mass spectrum data of the hydroxy saturated fatty acid methyl of the carbon chain 22 trimethylsilyl identified by GC / MS of the decomposition product are shown in FIG. In addition, the hydroxy fatty acids having carbon chains 18, 22, 24, and 28 were similarly identified by GC / MS.
  • the repeating unit of 380 Da has the following formula: [Wherein, x is an integer of 0 to 21, y is 1, and z is an integer of 0 to 21, provided that the sum of x, y and z is 21] It was found to have the structural formula shown below. As a result of GC / MS of the degradation product, it was found that the 380 Da repeating unit in FIG. 6 was derived from oxo C24: 0 hydroxy fatty acid.
  • Example 11 Analysis of constituent components of polymer compound in crystallization accelerator II
  • the polymer compound (lot 2) obtained in the same manner as in Example 2 was subjected to methanolysis and trimethylsilylation using PSS different from that in Example 2 (Lot 1).
  • the hydroxy fatty acid derivative identified by the above GC / MS and the methyl esterified fatty acid were quantified by GC / FID.
  • the GC / FID conditions are shown below.
  • Table 9 shows the composition of the hydroxy fatty acid derivative analyzed by the GC / FID.
  • the weight ratio of C18: C22: C24: C28 of the hydroxy fatty acid having 18 to 28 carbon atoms in the polymer compound is 5 to 45:10 to 40:20 to 65: 5 to 30.
  • Table 10 shows the ratio of the hydroxy fatty acid derivative to the oxohydroxy fatty acid derivative of the above product.
  • Example 12 (Preparation of crystallization promoting oil / fat composition I) A PTS was prepared in the same manner as in Example 2, except that PSS of IV12 (manufactured by MEWAHOLEO INDUSTRIES SDN. BHD.) Of a lot different from Example 2 was used. When the slurry SFC reached 0.7% during crystallization, pressure filtration was performed, and the yield of the hard part was 2.5% by weight. The fractionation efficiency was 3.5. The concentration of the polymer compound in PTS was calculated to be 0.07% by weight.
  • PSS of IV12 manufactured by MEWAHOLEO INDUSTRIES SDN. BHD.
  • the oil and fat composition shown in Table 11 was prepared.
  • an oil / fat composition was prepared by adding rapeseed extremely hard oil (manufactured by Yokoseki Oil & Fat Co., Ltd.) or tripalmitin (manufactured by Wako Pure Chemical Industries, Ltd.) to the base oil.
  • the SFC of each oil and fat composition was measured at 25 ° C. ⁇ 4 to 20 minutes. After complete dissolution at 80 ° C., 2 ml of the oil and fat composition was placed in a glass container. And after making it melt
  • the crystallization-promoting oil / fat composition to which the crystallization accelerator of the present invention is added is not different from Comparative Examples 2-3 until the SFC of 25 ° C. is about 0 to 4 minutes. It turns out that it increases more rapidly than the example of. This characteristic remarkably improves workability in terms of early crystallization while ensuring a working time at the beginning of production.
  • Example 13 (Preparation of crystallization promoting oil and fat composition II) A crystallization accelerator oil composition was prepared by blending the base oil A with a crystallization accelerator composed of a polymer compound.
  • the polymer compound was prepared in the same procedure as in Example 2.
  • an oil and fat composition using conventional emulsifiers shown in Table 12 instead of the polymer compound was also prepared.
  • Table 12 shows the results of measuring SFC of these oil and fat compositions at 25 ° C for 20 minutes.
  • Example 14 to 15 (Production of donut fried oil) The influence of activity when the oil and fat composition of the present invention was heated was examined. Specifically, a base oil (hereinafter referred to as “oil C”), palm stearin (IV32), and palm oil (IV52) in which palm oil (IV52) and palm olein (IV56) are blended at a weight ratio of 70:30 PTS of Example 12 was added in the ratio shown in Table 13 to a base oil (hereinafter referred to as “oil D”) blended with rapeseed oil at a weight ratio of 20:40:40. 250 g of the obtained oil and fat composition was heated to 190 ° C. in a magnetic dish.
  • oil C base oil
  • IV32 palm stearin
  • IV52 palm oil
  • IV56 palm olein
  • the oil and fat composition was sampled before heating, 24 hours after heating, and 48 hours after heating, and SFC was measured after 20 minutes at 25 ° C.
  • the results are shown in Table 13.
  • a test similar to the above was performed for an oil and fat composition in which two types of emulsifiers shown in Table 13 were blended in an oil and fat C instead of the oil and fat composition of the present invention. The results are shown in Table 13.
  • the oil and fat composition of the present invention does not show a decrease in the crystallization promoting function even when heated under the frying conditions. Excellent in terms.
  • Example 16 Manufacturing of shortening
  • the fat / oil E was added with the PTS of Example 12 in the ratio shown in Table 14.
  • the physical properties of the shortening obtained were evaluated. First, SFC was evaluated after shortening at 25 ° C. for 20 minutes. The results are shown in Table 14.
  • the shortening filling condition was evaluated according to the following criteria: ⁇ : Good ⁇ : Slightly soft or slightly hard ⁇ : Soft or hard The results are shown in Table 14.
  • the hardness of the shortening was measured with a rheometer (product name FUDOH rheometer, manufactured by Rheotech Co., Ltd.). The hardness is expressed as a stress value when a cylindrical probe having a diameter of 15 mm is pushed 10 mm at a speed of 60 mm / min.
  • a rheometer product name FUDOH rheometer, manufactured by Rheotech Co., Ltd.
  • the hardness is expressed as a stress value when a cylindrical probe having a diameter of 15 mm is pushed 10 mm at a speed of 60 mm / min.
  • the same test as described above was performed for the oil and fat composition to which the emulsifier shown in Table 14 was added instead of PTS. The results are shown in Table 14.
  • the shortening produced using the crystallization accelerator of the present invention improved the filling state by promoting crystallization.
  • Example 17 (Production of chocolate A) Chocolate was manufactured using the oil-fat composition which mix
  • a chocolate base dough A having the composition shown in Table 15 was prepared by the following procedure. The total amount of cocoa powder, sugar and lactose, oil and fat F 23%, and lecithin 0.125% were stirred with a heating mixer at 45 to 55 ° C. for about 20 minutes until a paste was formed. The dough was crushed (refined) with a three-roll mill, and 5% of fat F and 0.125% of lecithin were blended therein, followed by stirring and conching at 45 to 55 ° C. for about 3 hours. Further, 7% of the remaining fat and oil and 0.25% of lecithin were blended and stirred at 45 to 55 ° C. for 30 minutes to obtain a chocolate base dough A.
  • Example 12 The fat F 4% and the crystallization promoting fat PTS 1% obtained in Example 12 were blended, and the chocolate base dough A 95% obtained above was added thereto, heated at 80 ° C., and stirred well. 2 g of this melted chocolate A was dropped onto a stainless steel bat. After holding at 40 ° C. for 10 minutes, a stainless steel vat was set up at a room temperature of 20 ° C. Then, the degree of chocolate dripping and drying was observed. Table 16 shows the length of time the chocolate hangs and how long it takes to touch the dryness by hand and the chocolate can no longer be applied.
  • Chocolate A obtained by using the oil and fat composition of the present invention has an adequate sagging length (without a sharp increase in initial viscosity), but has a short drying time and the highest overall evaluation. It was.
  • the chocolate base dough B was added in the proportions shown in Table 18 and mixed uniformly at a temperature of about 45 ° C.
  • a tempering seed agent (trade name: Quick Temper, manufactured by Nisshin Processing Co., Ltd.) was added to the dough in an amount of 0.2% by weight to remove the tempering.
  • the tempered dough was poured into a mold and degassed by tapping. The dough was allowed to stand at a temperature of about 10 ° C. for 15 minutes to cool and solidify.
  • the solidified chocolate was punched out and aged in a 20 ° C. incubator for 10 days, and then the mouth and snapping properties were evaluated according to the following criteria. The results are shown in Table 18.
  • Example 17 In Comparative Example 17, the same operation as in Example 19 was performed except that the dissolved fat G and the dissolved chocolate base dough B were mixed at the ratio shown in Table 18. And the sensory test was implemented like Example 19. FIG. The results are shown in Table 18.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Fats And Perfumes (AREA)
  • Edible Oils And Fats (AREA)
  • Confectionery (AREA)
  • Seeds, Soups, And Other Foods (AREA)

Abstract

【課題】油脂に優れた結晶促進効果に与える物質、それを配合した油脂組成物を提供する。油脂組成物は、優れた結晶促進作用に基づいて、揚げドーナツの砂糖の泣き、ベトツキや食感、ショートニング/マーガリンの充填状態や硬さ、コーティングチョコレートの乾き時間といった作業性や加工性を改善若しくは食感を改善する。 【解決手段】本発明は、両末端にヒドロキシル基及びカルボキシル基を有し、鎖中に1個のカルボニル基を有してもよい炭素数18~28のヒドロキシ飽和脂肪酸、グリセリン及び適宜の脂肪酸を構成成分として含み、前記構成成分が分子量3,000~100,000まで重合した高分子化合物を含有する結晶化促進剤である。

Description

結晶化促進剤
 本発明は、新規な結晶化促進剤に関し、より詳細には、油脂の結晶化促進剤及びその用途に関する。
 近年、フライ油、マーガリン、シチュー用油脂、チョコレート用油脂等の食用油脂にトランス脂肪酸を含まないか低トランス脂肪酸のものが汎用されている。このような油脂は結晶化挙動が遅くなる傾向があり、その結果、食品製造時の作業性が悪くなり、また、製品の品質が劣化するという問題が生じる。例えば、ドーナツのフライ油では、揚げたドーナツの砂糖の泣きやベトツキの改善のため、配合油脂の結晶化挙動が重要となる。ショートニング/マーガリン製造時の充填状態の改善には、配合油脂の結晶促進に有効である。シチューやカレー用ルーの製造工程には、溶かしたルーを容器に流し込み、冷却しながら固める工程がある。シチューやカレー用の油脂の結晶化の速さは、作業時間の短縮に有効である。コーティングチョコレートでは、溶かしたチョコレート生地の乾きがよくないと、乾きに時間がかかる。冷却を強めなければいけない等の作業性が悪くなる。乾くまでの時間は短いほど良いが、最初から粘度が上昇しても作業性が低下するので、コーティングチョコレートの作業性の改善には、配合油脂の結晶化の管理が重要となる。
 従来、油脂の結晶化を促進するために、乳化剤が配合されている。例えば特許文献1には、エステル化率が28~60%であり、かつソルビトール型含量が20~40%であるソルビタン脂肪酸エステルを含有する、油脂の結晶化促進剤が開示されている。しかし、乳化剤をフライ用油脂組成物に添加すると、加熱によって結晶促進効果が極端に減少することがある。
特開2009-209350
 本発明の目的は、油脂の結晶化を促進する物質、及びそれを含有する油脂組成物を提供することある。本発明は、また、上記油脂組成物を使用して製造される食品を提供することにある。
 本発明者らは、上記課題を鋭意検討した結果、以下の発明により解決できることを見いだした。すなわち、本発明は、両末端にヒドロキシル基及びカルボキシル基を有し、鎖中に1個のカルボニル基を有してもよい炭素数18~28のヒドロキシ飽和脂肪酸、グリセリン及び適宜の脂肪酸を構成成分に含み、前記構成成分がエステル結合により重合した分子量3,000~100,000の高分子化合物を含有する結晶化促進剤を提供する。本明細書において、「高分子化合物」という用語は、その混合物を含む。「高分子」という用語は、ポリマー及びオリゴマーを含む意味で使用される。
 上記結晶化促進剤は、例えばパーム果実又はパーム系油脂から得られる。
 前記高分子化合物の含量は、0.005重量%以上であることが好ましい。
 前記結晶化促進剤は、前記高分子化合物自体でもよい。
 前記ヒドロキシ飽和脂肪酸は、C18:C22:C24:C28の重量比が、5~45:10~40:20~65:5~30であることが好ましい。
 鎖中にカルボニル基を有する炭素数18~28の前記ヒドロキシ飽和脂肪酸の割合は、ヒドロキシ脂肪酸全体に対して15~70重量%であることが好ましい。
 前記ヒドロキシ飽和脂肪酸とグリセリンのモル比率は、10:1~1:1であることが好ましい。
 前記ヒドロキシ脂肪酸は、ヒドロキシ飽和脂肪酸と脂肪酸の合計に対して20~90重量%であることが好ましい。
 鎖中にカルボニル基を有する炭素数24の前記ヒドロキシ脂肪酸の割合は、鎖中にカルボニル基を有する前記ヒドロキシ脂肪酸全体に対して90重量%以上であることが好ましい。
 本発明は、また、上記結晶化促進剤の製造方法であって、パーム果実を有機溶剤抽出又は油脂抽出して結晶化促進剤を回収することを含む前記結晶化促進剤の製造方法を提供する。
 前記パーム果実は、パームカーネルが好ましく、パーム種皮であることがより好ましい。
 本発明は、また、上記結晶化促進剤の製造方法であって、パーム系油脂を分別して得られる硬質部を回収する工程を含む、前記結晶化促進剤の製造方法を提供する。
 前記製造方法は、前記硬質部をさらに有機溶剤洗浄して得られる有機溶剤不溶部を回収する工程を含むことが好ましい。
 前記製造方法は、前記有機溶剤不溶部をさらに有機溶剤抽出して得られる有機溶剤抽出物を回収する工程を含むことがさらに好ましい。
 前記製造方法は、前記有機溶剤抽出物を例えば分子量分画法にかけてポリスチレン換算分子量が3,000~100,000の画分を回収してもよい。これにより高分子化合物からなる結晶化促進剤を得る。
 本発明は、また、
(I)上記結晶化促進剤、及び
(II)融点10℃以上の油脂からなるベース油
を含み、(I)成分の含量が0.2~15重量%であり、(II)成分の含量が85~99.8重量%である結晶化促進油脂組成物を提供する。
 本発明は、また、前記高分子化合物からなる結晶化促進剤を0.0005~1重量%含む、ヨウ素価が40以上の結晶化促進油脂組成物を提供する。
 前記結晶化促進油脂組成物は、例えば、フライ油、ショートニング、マーガリン、チョコレート、カレーのルー又はシチューのルー用である。
 本発明は、また、上記結晶化促進油脂組成物を使用した食品を提供する。
 本発明の結晶化促進剤及びそれを含有する油脂組成物は、油脂に対して従来の乳化剤よりも優れた結晶化促進性を有する。乳化剤を添加したフライ用油脂組成物は、加熱によって結晶促進効果が極端に減少するのに対して、本発明の油脂組成物は、フライ条件程度で加熱しても結晶促進の低下が見られない。
 本発明の結晶化促進剤及びそれを含有する油脂組成物は、以下のようなさまざまな用途を有する。例えば、ドーナツのフライ油で結晶化するかしないかは、揚げたドーナツの砂糖の泣き、ベトツキや食感の点で重要であるが、本発明の結晶化促進剤は、これらを改善可能である。その結晶促進作用によって、ショートニング/マーガリン製造時の充填状態を改善する。初期から結晶化が高ければ、攪拌練りの作用が強くなり、均一化される点で、品質がさらに向上する。コーティングチョコレートは、乾きがよくないと、乾きに時間がかかり、冷却を強めなければいけない。乾くまでの時間は短いほど良いが、最初から粘度が上昇すると、作業性が低下する。本発明の結晶化促進剤をコーティングチョコレート用ベース生地に添加することで、乾きをよくし、かつ作業効率を上げることができる。また、柔らかいチョコレート用生地でも、作業が可能になる。
食用油脂から本発明の結晶化促進剤を抽出、濃縮及び精製する工程図である。 本発明に従う実施例のクロロホルム抽出部のGPCチャートである。 本発明の結晶化促進油脂組成物の40℃、20分のSFCで表した結晶化速度を、油脂組成物中のPTS比率に対してプロットしたグラフである。得られる関係は、油脂組成物の結晶化速度やPTS比率を見積もる検量線として使用可能である。 本発明に従う実施例のクロロホルム抽出部のGPCチャートである。図中の画分No.1~4が高分子化合物に相当する。 図4で示した画分3を重クロロホルムに溶解して、測定したH NMRチャート(600MHz)である。4.0ppm~4.1ppmにヒドロキシ脂肪酸のヒドロキシル基に結合するメチレンプロトン(2H)、4.1ppm~4.4ppmにグリセリンのヒドロキシル基に結合するメチレンプロトン(4H)が観察される。ピーク面積比であるプロトン比からヒドロキシ脂肪酸:グリセリンのモル比は、4.7:1であることがわかる。 本発明の高分子化合物のMALDI/TOF/MSチャートである。チャートから、活性を有する高分子化合物は、380Daの繰り返し単位を持つ高分子化合物を含むことがわかる。14Da間隔は、CH間隔を意味する。 TMS化されたC22:0ヒドロキシ脂肪酸メチルをEIでイオン化したマススペクトルデータを示す。マススペクトルのライブラリ検索からC22:0ヒドロキシ脂肪酸メチルの構造を同定した。 実施例12で調製したPTS(高分子化合物濃度:0.07重量%)からなる結晶化促進剤を1重量%含む油脂組成物の25℃でのSFCの挙動を示す。比較のため、無添加、菜種極硬油又はトリパルミチンを1重量%添加した油脂組成物のSFCを示す。本発明の油脂組成物のSFCは、初期は他の例と変わらないが、一定時間経過後、他の例よりも急激に増加する。したがって、本発明によれば、油脂の結晶化が促進されるだけでなく、SFCが急増するまでにある程度の作業時間を確保できる。 パーム果実の断面と各部位の名称を示す模式図である。
 以下に、本発明の実施態様を詳細に説明する。本発明の結晶化促進剤は、両末端にヒドロキシル基及びカルボキシル基を有し、鎖中に1個のカルボニル基を有してもよい炭素数18~28のヒドロキシ飽和脂肪酸、グリセリン及び適宜の脂肪酸を構成成分に含み、前記構成成分がエステル結合により重合した分子量3,000~100,000の高分子化合物を含有する。高分子化合物は、一種単独でも、二種類以上の混合物であってもよい。
 上記ヒドロキシ飽和脂肪酸は、C18:C22:C24:C28の重量比が、好ましくは5~45:10~40:20~65:5~30、特に好ましくは5~30:10~30:30~65:10~30である。
 鎖中にカルボニル基を有するヒドロキシ脂肪酸(以下、オキソヒドロキシ脂肪酸という)を構成成分に含む場合、オキソヒドロキシ脂肪酸の含有量は、ヒドロキシ脂肪酸全体に対して好ましくは15~70重量%、特に好ましくは20~50重量%である。
 炭素数24のオキソヒドロキシ脂肪酸の割合は、オキソヒドロキシ脂肪酸全体に対して90重量%以上であることが好ましい。
 前記構成成分に適宜含まれるヒドロキシ脂肪酸の炭素数は、通常、18~28である。
 前記ヒドロキシ脂肪酸の重量比率は、ヒドロキシ脂肪酸及び脂肪酸の合計に対して20%~90%が好ましく、25%~90%がより好ましく、30%~90%が特に好ましい。
 前記ヒドロキシ脂肪酸と前記グリセリンのモル比率は、好ましくは10:1~1:1、さらに好ましくは、7:1~1:1であり、特に好ましくは6:1~1:1である。
 前記高分子化合物は、二価酸を含むことが好ましい。二価酸と前記ヒドロキシ脂肪酸の重量比率は、1:1~1:20であることがさらに好ましく、1:4~1:11であることが特に好ましい。
 前記高分子化合物の分子量は、3,000~100,000であり、好ましくは5,000~100,000であり、更に好ましくは、5,000~50,000である。
 前記高分子化合物は、化学式:
Figure JPOXMLDOC01-appb-C000001
〔式中、xは0~25の整数であり、yは0又は1であり、zは0~25の整数であり、ただし、x、y及びzの合計は、15~25であり、nは、1~15であり整数である〕の構造単位を含んでいる。上記nは、好ましくは1~10であり、より好ましくは1~7である。
 前記高分子化合物の末端は、特に限定されないが、通常、ヒドロキシル基、カルボキシル基、脂肪酸エステル等である。
 結晶化促進剤中の高分子化合物以外の成分は、特に限定されず、油脂中に通常含まれている飽和又は不飽和のトリグリセリド、ジグリセリド、モノグリセリド等が挙げられる。
 本発明の結晶化促進剤の効果は、それをベース油(例えばパーム油)に配合した試験組成物の一定条件下(例えば25℃~40℃、20分)のSFC(固体脂含量)を測定することで評価できる。20分のSFCが高いことは、結晶化促進剤の結晶化促進効果が大きいことを意味する。
 結晶化促進剤中の高分子化合物の含有量の下限は、通常、0.005重量%であり、好ましくは0.03重量%である。上限はないが、ベース油の結晶化以外の物性を保存する点で、好ましくは1重量%である。
 結晶化促進剤は、高分子化合物自体からなってもよい。よって、本発明は、両末端にヒドロキシル基及びカルボキシル基を有し、鎖中に1個のカルボニル基を有してもよい炭素数18~28のヒドロキシ飽和脂肪酸、グリセリン及び適宜の脂肪酸を構成成分に含み、前記構成成分がエステル結合により重合した分子量3,000~100,000の高分子化合物からなる結晶化促進剤もまた提供する。
 前記高分子化合物又はそれを含む結晶化促進剤は、パーム果実から取得することができる。図9に、パーム果実の断面及び各部の名称を示す。パームカーネルに、本発明の高分子化合物が多く存在している。
 本発明は、パーム果実、特にパームカーネルを有機溶剤抽出又は油脂抽出することを含む、結晶化促進剤の製造方法を提供する。有機溶剤抽出の手順は、常法によるが、例えば以下である。まず、パーム果実、特に種皮を高温水中で煮沸した後、リパーゼで失活させる。成分を抽出し易くするためにブレンダーで細かくすることが好ましい。細断物をクロロホルム、トルエン等の有機溶剤中で、高温下で還流することにより、有機溶媒中に結晶化促進剤を抽出する。還流時の有機溶剤の温度は、通常、30~120℃、好ましくは50~110℃である。抽出後、不溶物をろ過し、上記有機溶媒を除去して結晶化促進剤を得る。
 得られた結晶化促進剤を、ゲル浸透クロマトグラフィー、限外ろ過等の分子量分画法にかけて、ポリスチレン換算分子量が3,000~100,000の画分を選択してもよい。
 本発明の高分子化合物又はそれを含む結晶化促進剤は、パーム系油脂のような食用油脂からも得ることができる。以下に、高分子化合物をパーム系油脂から抽出する方法を、図1を用いて説明する。
 パーム系油脂には、パーム油、パーム油を分別して得られるパームステアリンやパームスーパーステアリン等のパーム分別油を含む。好ましい原料油脂は、ヨウ素価10~17のパームスーパーステアリン(以後、PSSということがある)である。
 パームスーパーステアリン等のパーム系油脂を分別工程にかける。分別はドライ分別、溶剤分別のいずれでもよい。パームスーパーステアリンをその溶解温度以上で溶解後、温度を徐々に下げて行き、スラリーのSFCが20重量%以下、好ましくは0.2~18重量%、より好ましくは0.2~10重量%、さらに好ましくは0.2~5重量%、最も好ましくは0.2~2重量%になるように晶析する。
 〔硬質部重量/(硬質部重量+液状部重量)〕で示される硬質部収率が、26重量%以下、好ましくは0.3~25重量%、さらに好ましくは1.0~15重量%になるように、スラリーを分別する。分別のために、フィルタープレス、ベルトプレス等で加圧ろ過する。分別の際、硬質部収率/スラリーSFCで示される分別効率の値を、好ましくは10以下、さらに好ましくは1.0~8.0、特に好ましくは1.2~7.0にする。パームスーパーステアリンを分別して得られる硬質部からなる油脂組成物をパームトリプルステアリン(以後、PTSということがある)と呼ぶ。上記硬質部からなる油脂組成物は、高分子化合物を通常、約0.005~1重量%含む。
 図1に示す有機溶剤洗浄・抽出工程で、PTS中の高分子化合物をさらに濃縮する。まず、PTSからトリグリセリドを除くために、PTS100gに対してクロロホルム500mlの割合で混合する。PTS混合物を温度15℃~25℃で6~22時間静置後、不溶成分を円筒ろ紙でろ過し、円筒ろ紙に残ったクロロホルム不溶部を得る。
 上記円筒ろ紙に残ったクロロホルム不溶部からさらにトリグリセリドやジグリセリドを除去するために、ソックスレー抽出装置で、55℃~65℃のヘキサンを還流させながらクロロホルム不溶部を洗浄する。ヘキサンに溶解せずに円筒ろ紙に残ったヘキサン不溶部を得る。
 円筒ろ紙に残ったヘキサン不溶部から高分子化合物を得るために、ソックスレー抽出装置を使用し、50~60℃のクロロホルムで抽出する。この操作によりクロロホルム溶解部(以降、クロロホルム抽出物という)を得る。
 上記クロロホルム抽出物を、適当な分子量分画法で分画し、ポリスチレン換算分子量が3,000~100,000の高分子化合物を回収する。
 本発明の結晶化促進剤は、高分子化合物含量が0.005重量%以上になるように濃縮されていればよい。したがって、本発明の結晶化促進剤には、PSSの分別以降の濃縮物、例えば、ドライ分別後の硬質部、該硬質部のクロロホルム不溶部、該クロロホルム不溶部のヘキサン不溶部、該ヘキサン不溶部のクロロホルム抽出物、及び該クロロホルム抽出物のGPC画分(高分子化合物)が含まれる。
 本発明は、また、(I)結晶化促進剤及び(II)ベース油を含む結晶化促進油脂組成物を提供する。この油脂組成物は、油脂に対して優れた結晶促進化作用を有する。しかも、本発明の油脂組成物は、結晶化が急に促進されるまで、ある程度の作業期間(例えば、1~4分)を確保できる。したがって、本発明の油脂組成物は、結晶化促進剤として産業上の利用度が非常に高い。
 上記ベース油は、油脂組成物の用途に応じて決まる。油脂組成物が、例えば冷凍食品用のフライ油用の場合、ベース油は、融点10℃以上、好ましくは15~40℃の油脂である。融点が10℃未満であると、結晶生成されない、あるいは、非常に遅くなる場合がある。融点10℃以上の油脂の例には、パーム油、ヤシ油、パーム核油、サル脂、カカオ脂、シア脂及びそれら油脂の分別油や硬化油、牛脂、豚脂、乳脂、魚油及びそれら油脂の硬化油及び大豆油、菜種油、米油、コーン油、綿実油、紅花油、ひまわり油、オリーブ油、ごま油の硬化油、もしくはそれらのエステル交換油が挙げられる。
 (I)結晶化促進剤と(II)融点10℃以上のベース油の油脂組成物は、好ましくは、(I)成分は0.2~15重量%であり、そして、(II)成分は85~99.8重量%である。
 上記ベース油は、また、ヨウ素価(IVともいう)30~65、特にIV30~60のパーム油及び/又はパーム分別油、パーム系油脂とラウリン系油脂とのランダムエステル交換油及び/又はその硬化油、常温で液体である油、パーム核油及びパーム核分別油、並びにパーム核油及びパーム核分別油の硬化油からなる群から選ばれる少なくとも一種でもよい。
 上記パーム系油脂は、パーム油、パーム油の分別油、エステル交換油、硬化油、パーム油に分別、エステル交換及び水素添加から選択される2以上の処理を施した加工油脂等を含む。パーム分別油は、パームオレイン、パームスーパーオレイン、パームステアリン等を含む。
 前記エステル交換油の好適な例は、パーム系油脂、パーム系油脂とラウリン系油脂とのランダムエステル交換油脂及び/又はその硬化油である。ラウリン系油脂は、パーム核油やヤシ油のように、炭素数12のラウリン酸を主要構成脂肪酸とする油脂を意味する。パーム系油脂とラウリン系油脂とを好ましくは20:80~70:30、特に好ましくは30:70~60:40の重量比でエステル交換したものを使用するとよい。エステル交換反応は、リパーゼを触媒として用いる方法、ナトリウムメチラート等の金属触媒を用いる方法のいずれでもよい。
 前記硬化油の好適な例には、パーム極硬油、パーム核極硬油等が挙げられる。前記硬化油の硬化反応は、エステル交換前、エステル交換後のどの時期に行っても良い。
 常温で液体である油の例は、大豆油、菜種油、米油、コーン油、綿実油、紅花油、ひまわり油、オリーブ油、ごま油、パームスーパーオレイン(IV65以上)等が挙げられる。これらを一種又は二種以上併用することができる。好ましくは、大豆油、菜種油、コーン油、綿実油、紅花油、パームスーパーオレイン(IV65以上)である。
 IV30~65のパーム油及び/又はパーム分別油の割合は、ベース油全体に対して通常、40重量%以上であり、好ましくは50~100重量%である。
 パーム系油脂とラウリン系油脂とのランダムエステル交換油及び/又はその硬化油の割合は、ベース油全体に対して通常、10~80重量%であり、好ましくは10~60重量%、さらに好ましくは10~40重量%である。
 常温で液体である油の割合は、ベース油全体に対して通常、0~40重量%であり、好ましくは10~40重量%、さらに好ましくは10~30重量%である。
 ベース油が、ヨウ素価30~65のパーム油及び/又はパーム分別油、並びに常温で液体である油を含む配合油の場合、ベース油全体に対して通常、50~90重量%、好ましくは60~90重量%のヨウ素価30~65のパーム油及び/又はパーム分別油、並びに通常、10~50重量%、好ましくは10~40重量%の常温で液体である油を含むことが好ましい。
 ベース油が、ヨウ素価30~65のパーム油及び/又はパーム分別油、並びにパーム系油脂とラウリン系油脂とのランダムエステル交換油及び/又はその硬化油を含む配合油の場合、ベース油全体に対して通常、20~70重量%、好ましくは30~70重量%のヨウ素価30~65のパーム油及び/又はパーム分別油、並びに、通常、10~60重量%、好ましくは10~40重量%のパーム系油脂とラウリン系油脂とのランダムエステル交換油及び/又はその硬化油を含むことが好ましい。
 ベース油が、ヨウ素価30~65のパーム油及び/又はパーム分別油、パーム系油脂とラウリン系油脂とのランダムエステル交換油、並びに常温で液体である油を含む配合油の場合、ベース油全体に対して通常、20~70重量%、好ましくは30~70重量%のヨウ素価30~65のパーム油及び/又はパーム分別油、通常、10~60重量%、好ましくは10~40重量%のパーム系油脂とラウリン系油脂とをランダムエステル交換して得られる油及び/又はその硬化油、並びに通常、10~40重量%、好ましくは10~40重量%の常温で液体である油を含む。
 ベース油が、パーム核極硬油及びパーム核オレインの配合油の場合、ベース油全体に対して通常、30~80重量%、好ましくは30~60重量%のパーム核極硬油、及び、通常、20~70重量%、好ましくは40~70重量%のパーム核オレインを含む。
 本発明の油脂組成物は、また、高分子化合物からなる結晶化促進剤を0.0005~1重量%、好ましくは0.0005~0.5重量%をベース油に配合したものでもよい。ベース油は、上記と同様であるが、油脂組成物のヨウ素価40以上であり、好ましくは42~75である。油脂組成物のヨウ素価が40以上であると少量の結晶化促進剤で効果を得ることが可能である。
 本発明の組成物には、結晶化促進剤及びベース油のほかに、当業分野で公知の添加剤を本発明の効果を阻害しない範囲で添加することができる。添加剤の例には、その他の食用油脂;レシチン、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセロール脂肪酸エステル等の乳化剤;トコフェロール、ビタミンCパルミテート等の酸化防止剤;ペクチン、カラギナン、キサンタンガム、カルボキシメチルセルロース(CMC)、グアーガム、アラビアガム、ローカストビーンガム、カラヤガム、タマリンドガム、タラガム、キファーセラン、カゼインソーダ、アルギン酸塩、寒天、ガムエレミ、ガムカナダ、ガムダマール等の増粘剤・安定剤;着色料;ミルクフレーバー、バニラフレーバー、バニラエッセンス等のフレーバー;グルコース、マルトース、シュークロース、ラクトース、トレハロース、マルトトリオース、パラチノース、還元パラチノース、キシリトール、エリスリトール、マルチトール、ソルビトール、異性化液糖、水飴等の糖類;食塩;並びに全脂粉乳、バターミルク、発酵乳、脱脂粉乳、全脂加糖練乳、脱脂加糖練乳、生クリーム等の乳製品、乳脂、乳脂調製品等が挙げられる。
 本発明の油脂組成物は、結晶化促進剤及びベース油、並びに適宜の添加剤を所定の割合で混合することにより得られる。これらの成分を同時に混合してもよく、あるいは結晶化促進剤をベース油の一部と混合した後、残余の成分と混合してもよい。
 本発明の油脂組成物は、その優れた結晶促進作用に基づいて、ドーナツ、揚げパン、スナック菓子、即席麺、惣菜等を揚げるときのフライ油脂組成物、マーガリンやショートニング用の油脂組成物、シチュー、カレー用油脂組成物、チョコレート用油脂組成物等、さまざまな油脂組成物への用途が期待される。
 本発明は、また、上記油脂組成物を使用した食品を提供する。食品の例は、ドーナツ、揚げパン、スナック菓子、即席麺、惣菜、マーガリン、ショートニング、シチューのルー、カレーのルー、チョコレート、チョコレートをコーティングや塗布した菓子等が挙げられる。
 上記食品への油脂組成物の配合量は、油脂組成物中の高分子化合物の濃度、食品の種類、添加条件等に応じて、適宜決められる。油脂組成物の添加量は、食品に対して、通常、1~100重量%であり、好ましくは1~80重量%である。
 以下に、本発明の実施例と比較例を示すことにより、本発明をより詳細に説明する。しかし、本発明は、以下の実施例に限定されるものではない。
〔実施例1〕(結晶化促進剤の調製I)
 以下の手順でパーム果実から結晶化促進剤を抽出した。パーム果実を図9に示す外果皮、中果皮(果肉)、内果皮及びカーネル(種皮+内杯乳)の4種類に分け、秤量した。各部位を別個に100℃で1時間加熱することで、含まれるリパーゼを失活させた。各部位から成分を抽出し易くするために、各部位をブレンダーで細かくした。各部位をクロロホルム150mlに分散させ、90℃で還流しながら7時間抽出した。抽出後、室温で冷まし、繊維、皮、殻等の不溶物を自然ろ過した(ろ紙:No.2、アドバンテック製)。ろ過後、クロロホルムをエバポレータにより除去し、4種類の抽出油脂を得た。各部位の抽出前の重量及び抽出油の重量を表1に示す。
Figure JPOXMLDOC01-appb-T000002
1) 抽出率=[抽出油重量/各部位の抽出前の重量]×100
 
 各部位から抽出した油脂をベース油としての油脂A(IV52のパーム精製油)に配合した油脂組成物の結晶化速度を測定した。
 油脂組成物の25℃20分後のSFCを以下の手順で測定した。80℃で溶解させた油脂組成物2mlをガラス容器に入れ、100℃で完全に溶解させた後、60℃の恒温水槽で60分保持した。25℃の恒温水槽で20分放置後、析出した結晶の量をNMRアナライザー(NMS120 minispec、BRUKER社製)で測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
1)パームカーネルステアリン油(株式会社J-オイルミルズ製)
2)RBDパームカーネル油(株式会社J-オイルミルズ製)
 
 油脂組成物5は、抽出物配合量が他と比べて低いにもかかわらず、25℃20分でのSFCが顕著に高くなった。カーネルから抽出した油脂には、本発明の高分子化合物が多量に含まれていることが判明した。
 パームカーネルを有機溶剤中、高温下で抽出して得た油脂組成物5は、圧搾で得られた油脂組成物7と比較して、種皮からより多くの結晶化促進活性を有する高分子化合物が抽出されていると考えられる。カーネルから油脂組成物7を圧搾した後の粕の粗脂肪分は7.5重量%程度であり、圧搾工程の粕に油脂が残ることからからも溶剤抽出の場合よりも種皮から高分子化合物が抽出され難いと考えられる。表2の結晶化速度の結果と上記考察よりパーム果実から結晶化促進剤を調製する場合、種皮を原料とすることが好ましい。
〔実施例2〕(結晶化促進剤の調製II)
 パーム系油脂を、図1に示すドライ分別工程、及び有機溶剤洗浄・抽出工程にかけて結晶化促進剤を調製した。
1.ドライ分別工程
 IV12のパームスーパーステアリン(MEWAHOLEO INDUSTRIES SDN.BHD.製、以下、PSSという)のドライ分別に、10kgスケール分別パイロット装置(Laboratory scale pilot fractionation、De Smet社)を用いた。まず、PSS 9.02kgを70℃で完全に溶解後、水温を60℃まで徐々に下げ、結晶を析出させた。晶析中に、スラリー2mlをサンプリングしてガラス管に入れ、前記NMRアナライザーでスラリーのSFCを測定した。
 スラリーSFCが0.5%になったところで、スラリーをラボフィルターに送油し、15barまで加圧ろ過して、硬質部(PTS)371g、及び液状部(以降、「PSS-OL」という)8650gを得た。硬質部の重量/(硬質部の重量+液状部の重量)で算出した硬質部収率は、4.1重量%であった。硬質部の収率/スラリーSFCで算出した分別効率は、8.9であった。
2.有機溶剤洗浄・抽出工程
 上記PTSを、図1の有機溶剤洗浄・抽出工程にかけて、PTS中の高分子化合物を濃縮した。
2.1 20℃でのクロロホルム洗浄
 上記PTS100gをクロロホルム330mlに溶解させ、20℃で6~17時間静置後、円筒ろ紙(Whatman 603、内径48mm×145mm、Whatman社製)でろ過した。ろ紙上のクロロホルム不溶部10.25gを得た。
2.2 60℃でのヘキサン洗浄
 上記クロロホルム不溶部10.25gを、円筒ろ紙とともにソックスレー抽出器の抽出部に置き、ヘキサン500mlで2時間還流しながらクロロホルム不溶部に含まれるトリグリセリドを55℃~65℃のヘキサンで除去した。洗浄後、円筒ろ紙に残ったヘキサン不溶部1.82gを得た。
2.3 50~60℃でのクロロホルム抽出
 上記ヘキサン不溶部1.82gを、上記と同様にソックスレー抽出器にてクロロホルム500mlを10時間還流することで、クロロホルム抽出部0.0561gを得た。
2.4 クロロホルム抽出部のGPC分画
 上記クロロホルム抽出部0.0561gをクロロホルム10mlに溶解した後、GPC分析した。GPCチャートを図2に示す。測定条件は、以下の通りである。
機器:1200 series HPLC System(Agilent Technologies社製)
GPCカラム:TSKgel G2500HXL, 7.8mm I.D.×30cm,粒子径5μm(東ソー株式会社製)
移動相:クロロホルム(流速1ml/min)
カラム温度:40℃
検出器:RI
 図2のGPCチャートの保持時間5.2~7.0minに相当する画分を回収して、高分子化合物を0.00572g得た。
〔実施例3~6〕(結晶化促進剤の結晶化速度の測定)
 実施例2のドライ分別工程で得たPTSからなる結晶化促進剤の結晶化促進活性(以降、「活性」ということがある)を測定した。具体的には、PTSをベース油に配合した油脂組成物の結晶化速度(40℃20分のSFC)を測定した。ベース油には、実施例2で使用したものとは別ロットのPSS(IV15 MEWAHOLEO INDUSTRIES SDN.BHD.製)を高分子化合物の低減を目的として脱色及び脱臭したもの(以降、「PSS精製品」という)、及び、油脂Bを用いた。PSS精製品は、PSS精製品と油脂Bとを60:40の割合で配合した油脂組成物(比較例1)の40℃20分のSFCが0~5%になるように調整した。PTS、PSS精製品及び油脂Bの組成を表3に示す。油脂Bは、パーム油とパーム核油とが50:50の配合油を、常法により水素添加とエステル交換することにより調製した油脂である。
 表3に示す油脂組成物の40℃SFCを以下の手順で測定した。組成物2gを100℃の温度で1時間加熱して組成物を溶解した。溶解物を60℃の温度で1時間保持した。その後、40℃の温度に冷却して、20分間保持することにより、結晶化速度としての40℃でのSFCを測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 
 実施例3~6でPTSの濃度が上昇するに従って、油脂組成物の結晶化速度もまた増大する。図3に、PTS比率(X軸)と結晶化速度(Y軸)との関係をグラフ化した。PTS比率(x)と40℃SFC(y)とは、式(1):
Figure JPOXMLDOC01-appb-M000005
に示す相関式で表すことができた。PTS比率と結晶化速度とは、良好な相関関係を示した。
 式(1)は、結晶化促進剤の活性や高分子化合物の濃縮度を表現するのに用いることができる。例えば、実施例2のPSSと油脂Bとの重量比が60:40の油脂組成物を調製し、その40℃20分のSFCを測定したところ16.4%であった(表4)。この数値を上記検量線にあてはめると、組成物のPTS比率が3.19%となる。この数値をさらにPSS割合で除することにより、PSSのPTS比率が5.31%となる。すなわち、PSSの結晶化速度は、PTSの5.31%に相当する。逆にいうと、PTSの活性は、PSSに対して18.8倍上昇している。これは、PTSが、結晶化をPSSよりも18.8倍促進させることを意味する。
Figure JPOXMLDOC01-appb-T000006
1)活性の上昇率=1/[検量線から見積もったPTS比率(%)/PSS割合(%)]
 
 実施例2で得たクロロホルム抽出部及びGPC分画後の高分子化合物の活性上昇率を求めた。まず、上記結晶化促進剤、PSS精製品及び油脂Bを、表5Aに示す割合で混合することにより、油脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000007
 
 上記油脂組成物の40℃SFCを表5Bに示す。SFCを検量線にあてはめて組成物のPTS比率を求めた。さらに、組成物のPTS比率を結晶化促進剤の割合で除することにより、クロロホルム抽出部及び高分子化合物の活性上昇率(PTS比)を求めた。結果を表5Bに示す。
Figure JPOXMLDOC01-appb-T000008
1)Z=X/Y
 
 実施例2の各画分の活性上昇率(PSS比及びPTS比)及び、上昇率から計算した高分子化合物濃度を表6にまとめる。
 
Figure JPOXMLDOC01-appb-T000009
*PSSの重量は、PTS100g換算の値
 
〔実施例9〕(高分子化合物の分子量の測定)
 実施例2と同様の方法で得たクロロホルム抽出部を、クロロホルムに溶解してからGPC分析した。測定条件は、GPCカラムをTSKgel G4000HXL,7.8mm I.D.×30cm,粒子径5μm(東ソー株式会社製)を使用した以外は、実施例2と同様である。GPCチャートを図4に示す。
 図4のGPCチャートのNo.1~5に相当する画分を個別に回収した。表中のポリスチレン換算分子量は、ポリスチレンの標準品(標準品の分子量は光散乱法により測定した重量平均分子量)であるShodex STANDARD SM-105(昭和電工株式会社製)をGPC分析し、得られた保持時間を元に計算したものである。各画分の活性の上昇率(PTS比)を、実施例7と同様の手順で求めた。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000010
 
 表7から高分子化合物の分子量は、3,000~100,000であり、好ましくは5,000~100,000、さらに好ましくは、5,000~50,000の範囲にあることがわかる。
 上記画分2~4を重クロロホルムに溶解し、H NMR(600MHz)を測定した。画分2のH NMRチャートを図5に示す。これら画分のH NMRではヒドロキシ脂肪酸のヒドロキシル基の隣のメチレンプロトン(2H)に帰属されるピークが化学シフト4.0ppm~4.1ppmに、グリセリンのメチレンプロトン(4H)に帰属されるピークが同4.1ppm~4.4ppmに観察される。
 上記プロトン比から高分子化合物の化学構造におけるヒドロキシ脂肪酸とグリセリンのモル比率を求めたところ、表7の画分2~4において、ヒドロキシ脂肪酸:グリセリンは、それぞれ1.8:1(画分2)、4.7:1(画分3)、及び4.9:1(画分4)であった。これら結果より、本発明の高分子化合物の化学構造におけるドロキシ脂肪酸とグリセリンのモル比率は、ヒドロキシ脂肪酸:グリセリン=10:1~1:1の範囲が好ましい。さらに好ましくはヒドロキシ脂肪酸:グリセリン=7:1~1:1の範囲である。
 上記NMRの結果から、脂肪酸(二価酸を含む)とヒドロキシ脂肪酸の重量比率を算出したところ、画分2、3、及び、4の脂肪酸(二価酸を含む):ヒドロキシ脂肪酸は、それぞれ68:32、30:70、及び31:69であった。
 実施例2の高分子化合物を同様にNMR分析したところ、脂肪酸(二価酸を含む):ヒドロキシ脂肪酸は、15:85(モル比率)であった。
〔実施例10〕(結晶化促進剤中の高分子化合物の構成成分の分析I)
 実施例2で得られた高分子化合物のMALDI/TOF/MS分析を以下の条件で行った。
機器: AXIMA-TOF2(株式会社島津製作所)
レーザー: 窒素レーザー(波長:337nm)
マトリックス: ジスラノール
カチオン剤: トリフルオロ酢酸ナトリウム
 高分子化合物を14%三フッ化ホウ素メタノール溶液と80℃で8時間反応させることにより、メタノリシスした。メタノリシスした試料をトリメチルシリル化剤(TMSI-H、ジーエルサイエンス株式会社製)と60℃で1時間反応させた。得られた分解物をメタノール/アセトン=1/1に溶解し、GC/MSで構成成分を同定した。GC/MSの測定条件は、以下のとおりである。
機器:JMS-700V質量分析計(日本電子株式会社製)
6890 series GC System(Agilent Technologies社製)
カラム:CP-TAP CB for Triglycerides,0.25mm I.D.×25m,
膜圧0.1μm(Varian製)
キャリアガス:ヘリウムガス1.7ml/min
カラム温度:200℃(1min)-5℃/min-355℃(10min)
注入口温度:350℃
インターフェイス温度:350℃
試料溶液注入量:1μl
スプリット比:1:10
イオン化方式:EI
測定イオン:正イオン
イオン化電流:300μA
電子加速電圧:70eV
イオン源温度:340℃
イオン加速電圧:10kV
走査範囲:m/z 35~800
 
 MALDI/TOF/MSチャートを図6に示す。図6より、主として380Daの繰り返し単位を含む高分子化合物が検出された。また、分解物のGC/MSで同定されたトリメチルシリル化された炭素鎖22のヒドロキシ飽和脂肪酸メチルのマススペクトルデータを図7に示す。その他、炭素鎖18、22、24、28のヒドロキシ脂肪酸についても同様にGC/MSで同定した。
 前記380Daの繰り返し単位は、下記式:
Figure JPOXMLDOC01-appb-C000011
〔式中、xは0~21の整数であり、yは1であり、zは0~21の整数であり、ただし、x、y及びzの合計は21である〕
で示される構造式を有することが判明した。分解物のGC/MSの結果、図6の380Daの繰り返し単位は、オキソC24:0ヒドロキシ脂肪酸に由来することがわかった。
〔実施例11〕(結晶化促進剤中の高分子化合物の構成成分の分析II)
 実施例2(ロット1)とロットが異なるPSSを使用して実施例2と同様にして得た高分子化合物(ロット2)のメタノリシス及びトリメチルシリル化を行った。上記のGC/MSで同定したヒドロキシ脂肪酸誘導体、及びメチルエステル化された構成脂肪酸を、GC/FIDで定量した。GC/FIDの条件を以下に示す。
機器:6890 series GC System(Agilent Technologies社製)
カラム:CP-TAP CB for Triglycerides,0.25mm I.D.×25m,
膜圧0.1μm(Varian製)
キャリアガス:ヘリウムガス1.7ml/min
カラム温度:200℃(1min)-5℃/min-355℃(10min)
注入口温度:350℃
検出器温度:365℃
試料溶液注入量:1μl
スプリット比:1:50
 GC/FIDで分析された結果を表8に示す。
Figure JPOXMLDOC01-appb-T000012
 
 実施例10に記載した高分子化合物の分解物のGC/MSの結果、C18:0の二価酸由来成分が検出された。表8に示すように二価酸(C18:0)とヒドロキシ脂肪酸の重量比率は、二価酸(C18:0):ヒドロキシ脂肪酸=1:4~1:11であった。
 上記GC/FIDで分析されたヒドロキシ脂肪酸誘導体の組成を表9に示す。
Figure JPOXMLDOC01-appb-T000013
 
 高分子化合物中の炭素数18~28のヒドロキシ脂肪酸のC18:C22:C24:C28の重量比は、5~45:10~40:20~65:5~30にある。
 上記生成物のヒドロキシ脂肪酸誘導体とオキソヒドロキシ脂肪酸誘導体の比率を、表10に示す。
Figure JPOXMLDOC01-appb-T000014
 
〔実施例12〕(結晶化促進油脂組成物Iの調製)
 実施例2と別ロットのIV12のPSS(MEWAHOLEO INDUSTRIES SDN.BHD.製)を用いた以外は、実施例2と同様の手順でPTSを調製した。晶析中にスラリーSFCが0.7%に達した時点で加圧ろ過を行い、硬質部収率は、2.5重量%であった。また、分別効率は、3.5であった。PTS中の高分子化合物の濃度は、0.07重量%と算出された。
 上記PTSからなる結晶化促進剤の活性を測定するため、表11に示す油脂組成物を調製した。比較のため、菜種極硬油(横関油脂工業株式会社製)又はトリパルミチン(和光純薬工業株式会社製)をベース油に添加して油脂組成物を調製した。
 各油脂組成物の25℃×4~20分のSFCを測定した。80℃で完全に溶解させた後、油脂組成物2mlをガラス容器に入れた。そして、100℃で完全に溶解させた後、60℃の恒温水槽で60分保持した。さらに25℃の恒温水槽で4~20分放置した後、析出した結晶の量をNMRアナライザーで測定した。結果を表11及び図8に示す。
Figure JPOXMLDOC01-appb-T000015
 
 表11及び図8から、本発明の結晶化促進剤を添加した結晶化促進油脂組成物は、25℃SFCが0~4分くらいまでは比較例2~3と変わらないが、それ以降は他の例よりも急激に増加することがわかる。この特性は、製造初期のワーキングタイムを確保しつつ、早期に結晶化するという点で、作業性を顕著に改善する。
〔実施例13〕(結晶化促進油脂組成物IIの調製)
 高分子化合物からなる結晶化促進剤をベース油Aへ配合して結晶化促進油脂組成物を調製した。高分子化合物は実施例2と同様の手順で調製した。比較のため、高分子化合物の代わりに表12に示す従来の乳化剤を用いた油脂組成物も用意した。これらの油脂組成物の25℃20分のSFCを測定した結果を、表12に示す。
Figure JPOXMLDOC01-appb-T000016
1)ポエムJ-46B:テトラグリセリンヘキサベヘネート(理研ビタミン株式会社製)
2)サンファットPS-68:オクタステアリン酸ヘキサグリセリン(太陽化学株式会社製)
 
 表12から、高分子化合物からなる結晶促進剤の活性が格段に優れることがわかる。
〔実施例14~15〕(ドーナツ揚げ油の製造)
 本発明の油脂組成物を加熱した時の活性の影響を調べた。具体的には、パーム油(IV52)とパームオレイン(IV56)とを重量基準で70:30に配合したベース油(以下、油脂Cという)とパームステアリン(IV32)、及びパーム油(IV52)と菜種油とを重量基準で20:40:40に配合したベース油(以下油脂D)に、実施例12のPTSを表13に示す割合で添加した。得られた油脂組成物250gを磁性皿に190℃に加熱した。
 加熱前、加熱24時間後、及び加熱48時間後に、油脂組成物をサンプリングし、25℃20分後SFCを測定した。その結果を表13に示す。比較のために、本発明の油脂組成物に代えて、表13に示す二種類の乳化剤を油脂Cに配合した油脂組成物について、上記と同様の試験を行った。その結果を表13に示す。
Figure JPOXMLDOC01-appb-T000017
1)油脂C:パーム油(IV52):パームオレイン(IV56)=70:30の配合油
2)油脂D:パームステアリン(IV32):パーム油(IV52):菜種油=20:40:40の配合油
3)SFC:25℃×20分後の固形分
4)SFCの減少率=(加熱前のSFC-加熱48時間後のSFC)/加熱前のSFC×100
 
 結晶化促進効果の知られている乳化剤は加熱によって効果が極端に減少するのに対して、本発明の油脂組成物は、フライ条件程度で加熱しても結晶化促進機能の低下が見られない点で優れている。
〔実施例16〕(ショートニングの製造)
 実施例12のPTSからなる結晶化促進剤を配合したショートニング用油脂組成物を製造した。具体的には、パーム油とパーム核油(重量比3:7)をエステル交換した後、硬化させた油脂:パームオレイン(IV56):大豆油=20:60:20からなるベース油(以下、油脂Eという)に、実施例12のPTSを表14に示す割合で添加した。得られたショートニングの物性を評価した。まず、ショートニングの25℃×20分後のSFCを評価した。結果を表14に示す。
 ショートニングの充填状態を、以下の基準で評価した:
○:良好
△:少し柔らかいか、少し硬い
×:柔らかいか、硬い
 結果を表14に示す。
 ショートニングの硬さをレオメーター(製品名FUDOH レオメーター、(株)レオテック製)で測定した。硬さは、直径15mmの円柱状のプローブを速さ60mm/minで10mm押し込んだときの応力値として表される。比較のために、PTSに代えて、表14に示す乳化剤を添加した油脂組成物についても、上記と同様の試験を行った。結果を表14に示す。
Figure JPOXMLDOC01-appb-T000018
1)油脂E:パーム油とパーム核油(3:7)を硬化後、エステル交換した油脂:パームオレイン(IV56):大豆油=20:60:20の配合油
2)SFC:25℃×20分後の固形分
3)硬さ:FUDOH レオメーターを使用して、直径15mmの円柱状のプローブを速さ60mm/minで10mm押し込んだときの応力値
 
 表14に示すとおり、本発明の結晶化促進剤を使用して製造したショートニングは、結晶化が促進されることで、充填状態が改善された。
 
〔実施例17〕(チョコレートAの製造)
 本発明の結晶化促進剤を配合した油脂組成物を用いてチョコレートを製造した。表15に示す組成のチョコレートベース生地Aを以下の手順で作製した。ココアパウダー、砂糖及び乳糖の全量、油脂F23%分、レシチン0.125%分を、加温式ミキサーで45~55℃でペースト状になるまで20分程度攪拌した。生地を3本ロールミルで破砕(レファインニング)し、そこに、油脂F5%分、及びレシチン0.125%分を配合し、45~55℃で3時間程度攪拌コンチングした。さらに、残余の油脂7%分及びレシチン0.25%分を配合して、45~55℃で30分攪拌して、チョコレートベース生地Aを得た。
Figure JPOXMLDOC01-appb-T000019
1)油脂F: パーム核極硬油:パーム核オレイン=70:30の配合油
 
 油脂F4%分と実施例12で得た結晶化促進油脂PTS1%分とを配合し、そこへ上記で得たチョコレートベース生地A95%分を加えて、80℃で加熱し、よく攪拌した。この溶けた状態のチョコレートA 2gを、ステンレスバットに滴下した。40℃で10分間保持後、20℃の室温でステンレスバットを立てた。そして、チョコレートの垂れ具合と乾き具合を観察した。チョコレートの垂れ具合を垂れ長さ、そして、乾き具合を手で触わりチョコレートがつかなくなるまでの時間を表16に示す。
 これらの結果を基に、以下の基準で総合評価した。
○:初期の粘度が低く(垂れの長さは十分長い)、乾きが無添加より速くなる
△:初期の粘度は高くなく(垂れの長さは長い)、乾きが無添加に比べ若干速くなる。
×:初期の粘度が高い(垂れの長さが短い)、若しくは、初期の粘度は高くなく(垂れの長さは長い)、乾きの速さは無添加と同じか遅くなる。
 比較のために、本発明の結晶化促進剤に代えて、表16に示す乳化剤を用いて上記と同様の試験を行った。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000020
1)油脂F: パーム核極硬油:パーム核オレイン=70:30の配合油
2)ポエムS-65V:ソルビタン脂肪酸トリステアレート(理研ビタミン株式会社製)
 
 本発明の油脂組成物を使用して得たチョコレートAは、垂れ長さが適度に確保され(初期の粘度が急激に上昇することなく)つつも、乾き時間が短くなり、総合評価が最も高かった。
〔実施例18~19〕(チョコレートBの製造)
 IV11のPSS(FELDA IFFCO OIL PRODUCTS SDN.BHD.製)1部にn-ヘキサン6部を混合し、45℃で完全に溶解し、28℃まで冷却することにより溶剤分別を行った。スラリーSFCは3.2重量%であった。ろ過分離を行い、溶剤を除去し、収率4.5重量%の硬質部(PTS)を得た(実施例18)。分別効率は、1.4であった。本発明の高分子化合物の濃度は、0.06重量%と算出された。
 表17に示す原料を、加温式ミキサーで45~55℃の温度で約20分間、ペースト状になるまで攪拌した。得られた生地を3本ロールミルで破砕(レファイニング)し、45~55℃の温度で3時間程度攪拌コンチングして、チョコレートベース生地Bを得た。
Figure JPOXMLDOC01-appb-T000021
1)油脂G:ハードPMF(株式会社J-オイルミルズ製)
 
 油脂Gと上記結晶化促進剤とを表18に示す割合で混合溶解した後、チョコレートベース生地Bを表18に示す割合で添加して約45℃の温度で均一に混ぜた。得られた溶解生地の温度を30℃に下げた後、テンパリングシード剤(商品名クイックテンパー、日新加工株式会社製)を生地に対して0.2重量%添加し、テンパリングを取った。テンパリングを取った生地を型に流し込み、タッピングにて脱気した。生地を約10℃の温度で15分間放置し、冷却固化させた。固化したチョコレートを型抜きし、20℃のインキュベーターにて10日間熟成させた後、口どけ及びスナップ性を以下の基準で評価した。結果を表18に示す。
(口どけ評価)
 ◎: 非常によい
 ○: よい
 △: 普通
 ×: 悪い
 
(スナップ性の評価)
 ◎: 非常に有り
 ○: 有り
 △: 普通
 ×: なし
 比較例17では、溶解した油脂G及び溶解したチョコレートベース生地Bを、表18に示す割合で混合した以外は、実施例19と同様の操作を行った。そして、実施例19と同様に官能検査を実施した。結果を表18に示す。
Figure JPOXMLDOC01-appb-T000022
1)油脂G:ハードPMF(株式会社J-オイルミルズ製)
 
 表18に示すとおり、本発明の油脂組成物を使用して作製したチョコレートBは、スナップ性及び口どけに優れていた。

Claims (19)

  1.  両末端にヒドロキシル基及びカルボキシル基を有し、鎖中に1個のカルボニル基を有してもよい炭素数18~28のヒドロキシ飽和脂肪酸、グリセリン及び適宜の脂肪酸を構成成分に含み、前記構成成分がエステル結合により重合した分子量3,000~100,000の高分子化合物を含有する結晶化促進剤。
  2.  パーム果実又はパーム系油脂から得られることを特徴とする、請求項1に記載の結晶化促進剤。
  3.  前記高分子化合物の含量が、0.005重量%以上である、請求項1に記載の結晶化促進剤。
  4.  前記高分子化合物からなる、請求項1に記載の結晶化促進剤。
  5.  前記ヒドロキシ飽和脂肪酸は、C18:C22:C24:C28の重量比が5~45:10~40:20~65:5~30である、請求項1に記載の結晶化促進剤。
  6.  鎖中にカルボニル基を有する炭素数18~28の前記ヒドロキシ飽和脂肪酸の割合が、ヒドロキシ脂肪酸全体に対して15~70重量%である、請求項1に記載の結晶化促進剤。
  7.  前記ヒドロキシ飽和脂肪酸とグリセリンのモル比率が10:1~1:1である、請求項1に記載の結晶化促進剤。
  8.  前記ヒドロキシ脂肪酸は、ヒドロキシ飽和脂肪酸と脂肪酸の合計に対して20~90%である、請求項1に記載の結晶化促進剤。
  9.  鎖中にカルボニル基を有する炭素数24の前記ヒドロキシ脂肪酸の割合が、鎖中にカルボニル基を有する前記ヒドロキシ脂肪酸全体に対して90重量%以上である、請求項1に記載の結晶化促進剤。
  10.  請求項1に記載の結晶化促進剤の製造方法であって、パーム果実を有機溶剤抽出又は油脂抽出して結晶化促進剤を回収する工程を含む前記結晶化促進剤の製造方法。
  11.  前記パーム果実がパームカーネルである、請求項10に記載の結晶化促進剤の製造方法。
  12.  請求項1に記載の結晶化促進剤の製造方法であって、パーム系油脂を分別して得られる硬質部を回収する工程を含む、前記結晶化促進剤の製造方法。
  13.  前記硬質部をさらに有機溶剤洗浄して得られる有機溶剤不溶部を回収する工程を含む、請求項12に記載の結晶化促進剤の製造方法。
  14.  前記有機溶剤不溶部をさらに有機溶剤抽出して得られる有機溶剤抽出物を回収する工程を含む、請求項13に記載の結晶化促進剤の製造方法。
  15.  前記有機溶剤抽出物を分子量分画法にかけてポリスチレン換算分子量が3,000~100,000の画分を回収する工程を含む、請求項14に記載の結晶化促進剤の製造方法。
  16. (I)請求項1に記載の結晶化促進剤、及び
    (II)融点10℃以上の油脂からなるベース油
    を含み、(I)成分の含量が0.2~15重量%であり、(II)成分の含量が85~99.8重量%である結晶化促進油脂組成物。
  17.  請求項4に記載の結晶化促進剤を0.0005~1重量%含む、ヨウ素価が40以上の結晶化促進油脂組成物。
  18.  フライ油、ショートニング、マーガリン、チョコレート、カレーのルー又はシチューのルー用である、請求項16に記載の結晶化促進油脂組成物。
  19.  請求項16に記載の結晶化促進油脂組成物を使用した食品。
PCT/JP2013/056401 2012-05-18 2013-03-08 結晶化促進剤 WO2013172075A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP13790114.6A EP2851414A4 (en) 2012-05-18 2013-03-08 CRYSTALLIZATION ACCELERATOR
RU2014150951A RU2619236C2 (ru) 2012-05-18 2013-03-08 Ускоритель кристаллизации
IN8502DEN2014 IN2014DN08502A (ja) 2012-05-18 2013-03-08
SG11201406018RA SG11201406018RA (en) 2012-05-18 2013-03-08 Crystallization accelerator
CN201380025792.1A CN104302749B (zh) 2012-05-18 2013-03-08 结晶化促进剂
JP2014515521A JP6188687B2 (ja) 2012-05-18 2013-03-08 結晶化促進剤
PH12014502172A PH12014502172A1 (en) 2012-05-18 2014-09-29 Crystallization accelerator
US14/543,145 US20150140196A1 (en) 2012-05-18 2014-11-17 Crystallization accelerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012113963 2012-05-18
JP2012-113963 2012-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/543,145 Continuation US20150140196A1 (en) 2012-05-18 2014-11-17 Crystallization accelerator

Publications (1)

Publication Number Publication Date
WO2013172075A1 true WO2013172075A1 (ja) 2013-11-21

Family

ID=49583498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056401 WO2013172075A1 (ja) 2012-05-18 2013-03-08 結晶化促進剤

Country Status (11)

Country Link
US (1) US20150140196A1 (ja)
EP (1) EP2851414A4 (ja)
JP (1) JP6188687B2 (ja)
CN (1) CN104302749B (ja)
IN (1) IN2014DN08502A (ja)
MY (1) MY172417A (ja)
PH (1) PH12014502172A1 (ja)
RU (1) RU2619236C2 (ja)
SG (1) SG11201406018RA (ja)
TW (1) TWI577289B (ja)
WO (1) WO2013172075A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183080A (ja) * 2014-03-24 2015-10-22 不二製油株式会社 脂肪酸またはグリセリン脂肪酸エステル含有脂質の晶析法
CN115053931A (zh) * 2022-05-31 2022-09-16 江南大学 一种油脂结晶促进剂及其制备方法和应用
WO2022202158A1 (ja) 2021-03-23 2022-09-29 不二製油グループ本社株式会社 油脂の固化促進方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114190538B (zh) * 2021-12-21 2023-11-24 郑州轻工业大学 一种促β′晶型形成的油脂促结晶剂及应用
CN114806699B (zh) * 2022-04-27 2023-09-08 广汉市迈德乐食品有限公司 基于强化脂肪晶体内部结构的牛油硬度改良方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211837A (ja) * 1991-10-03 1993-08-24 Unilever Nv 非テンパリング菓子用脂肪
JPH07126604A (ja) * 1993-10-28 1995-05-16 Nisshin Oil Mills Ltd:The 有機液体のゲル化又は固化剤
JPH0913073A (ja) * 1995-06-26 1997-01-14 Kankyo Kagaku Center:Kk 動植物性廃油固化処理用組成物とその製法および動植物性廃油処理方法
JPH09157686A (ja) * 1995-12-05 1997-06-17 Nippon Seirou Kk ワックス組成物
JPH09285255A (ja) * 1996-04-24 1997-11-04 Fuji Oil Co Ltd ハードバター添加用組成物及びハードバターの製造法
JP2000125765A (ja) * 1998-10-19 2000-05-09 Kanegafuchi Chem Ind Co Ltd 油脂組成物
JP2000125764A (ja) * 1998-10-19 2000-05-09 Kanegafuchi Chem Ind Co Ltd 油脂組成物
WO2009060809A1 (ja) * 2007-11-05 2009-05-14 Fuji Oil Company, Limited チョコレート添加剤およびその製造方法
JP2009209350A (ja) 2008-02-08 2009-09-17 Fuji Oil Co Ltd 油脂の結晶化促進剤
WO2010113969A1 (ja) * 2009-03-30 2010-10-07 不二製油株式会社 ブルーム防止剤及びブルーム耐性に優れたチョコレート類
WO2012140937A1 (ja) * 2011-04-14 2012-10-18 株式会社J-オイルミルズ パーム系分別油脂、それを配合した油脂組成物及び食品

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1509543A (en) * 1974-05-16 1978-05-04 Unilever Ltd Purification process
IL46106A (en) * 1974-11-22 1977-06-30 H L S Ind Eng Ltd Production of liquid edible oil from palm oil or similar oils
US4061798A (en) * 1976-09-22 1977-12-06 Junji Kanegae Method for preparing hard butters from palm oil
US4421775A (en) * 1982-06-04 1983-12-20 The United States Of America As Represented By The Secretary Of Agriculture Method for removing the outer waxy cutin-containing layer from papaya
JPH0472394A (ja) * 1989-11-17 1992-03-06 Raku:Kk 廃油処理用組成物
JP3588902B2 (ja) * 1996-03-28 2004-11-17 不二製油株式会社 油脂の乾式分別法
EP0846421A1 (en) * 1996-11-06 1998-06-10 Unilever N.V. Triglyceride fat crystallization
US20020136818A1 (en) * 2000-07-27 2002-09-26 Nalur Shantha C. Food products containing high melting emulsifiers
US7531196B2 (en) * 2003-05-30 2009-05-12 Pacific Specialty Oils, Inc. Cosmeceutical formulation containing palm oils
JP2005320445A (ja) * 2004-05-10 2005-11-17 Asahi Denka Kogyo Kk パームステアリン含有可塑性油脂組成物
DK1843665T3 (da) * 2004-07-13 2011-07-25 Fuji Oil Europe Fedtstoffer med lavt transindhold til konfektfedtsammensætninger med forbedret tekstur og krystallisationshastighed
US20090163729A1 (en) * 2006-06-22 2009-06-25 The Board Of Trustees Operating Michigan State University Compositions and methods for using acyltransferases for altering lipid production on the surface of plants
JP2010022310A (ja) * 2008-07-23 2010-02-04 Nisshin Oillio Group Ltd チョコレート類
JP5211837B2 (ja) * 2008-05-09 2013-06-12 富士通株式会社 制御方法、計算機システム及び制御プログラム
WO2010064592A1 (ja) * 2008-12-02 2010-06-10 日清オイリオグループ株式会社 ルウ用油脂組成物及びルウ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211837A (ja) * 1991-10-03 1993-08-24 Unilever Nv 非テンパリング菓子用脂肪
JPH07126604A (ja) * 1993-10-28 1995-05-16 Nisshin Oil Mills Ltd:The 有機液体のゲル化又は固化剤
JPH0913073A (ja) * 1995-06-26 1997-01-14 Kankyo Kagaku Center:Kk 動植物性廃油固化処理用組成物とその製法および動植物性廃油処理方法
JPH09157686A (ja) * 1995-12-05 1997-06-17 Nippon Seirou Kk ワックス組成物
JPH09285255A (ja) * 1996-04-24 1997-11-04 Fuji Oil Co Ltd ハードバター添加用組成物及びハードバターの製造法
JP2000125765A (ja) * 1998-10-19 2000-05-09 Kanegafuchi Chem Ind Co Ltd 油脂組成物
JP2000125764A (ja) * 1998-10-19 2000-05-09 Kanegafuchi Chem Ind Co Ltd 油脂組成物
WO2009060809A1 (ja) * 2007-11-05 2009-05-14 Fuji Oil Company, Limited チョコレート添加剤およびその製造方法
JP2009209350A (ja) 2008-02-08 2009-09-17 Fuji Oil Co Ltd 油脂の結晶化促進剤
WO2010113969A1 (ja) * 2009-03-30 2010-10-07 不二製油株式会社 ブルーム防止剤及びブルーム耐性に優れたチョコレート類
WO2012140937A1 (ja) * 2011-04-14 2012-10-18 株式会社J-オイルミルズ パーム系分別油脂、それを配合した油脂組成物及び食品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2851414A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183080A (ja) * 2014-03-24 2015-10-22 不二製油株式会社 脂肪酸またはグリセリン脂肪酸エステル含有脂質の晶析法
WO2022202158A1 (ja) 2021-03-23 2022-09-29 不二製油グループ本社株式会社 油脂の固化促進方法
JP7193043B1 (ja) * 2021-03-23 2022-12-20 不二製油株式会社 油脂の固化促進方法
CN115053931A (zh) * 2022-05-31 2022-09-16 江南大学 一种油脂结晶促进剂及其制备方法和应用
CN115053931B (zh) * 2022-05-31 2023-08-25 江南大学 一种油脂结晶促进剂及其制备方法和应用

Also Published As

Publication number Publication date
EP2851414A4 (en) 2016-01-13
PH12014502172A1 (en) 2014-12-10
CN104302749A (zh) 2015-01-21
EP2851414A1 (en) 2015-03-25
SG11201406018RA (en) 2014-11-27
IN2014DN08502A (ja) 2015-05-15
TWI577289B (zh) 2017-04-11
CN104302749B (zh) 2016-12-07
JP6188687B2 (ja) 2017-08-30
MY172417A (en) 2019-11-25
TW201347677A (zh) 2013-12-01
RU2619236C2 (ru) 2017-05-12
RU2014150951A (ru) 2016-07-10
JPWO2013172075A1 (ja) 2016-01-12
US20150140196A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
JP5085810B1 (ja) パーム系分別油脂、それを配合した油脂組成物及び食品
RU2670077C2 (ru) Жировая композиция и жировая смесь
JP6188687B2 (ja) 結晶化促進剤
EP2848127B1 (en) Oil and fat composition suitable for non-tempering hard butter
EP2710898B1 (en) Oil or fat composition which can be used as non-tempered hard butter
JP2013153758A (ja) 油脂組成物及び該油脂組成物を用いたバタークリーム
MX2012004683A (es) Grasa de girasol de alto punto de fusion para confiteria.
CN105685264B (zh) 一种抗温度波动的油脂组合物及其制备方法
WO2011040120A1 (ja) 油脂の製造方法
WO2015193693A1 (en) Trans free and low saturated fat cocoa butter alternative
CN109832351B (zh) 促结晶剂和含促结晶剂的油脂组合物
WO2015072208A1 (ja) 高分子化合物及びその用途
JP2019010024A (ja) 非テンパー型のハードバター組成物
EP2340720B1 (en) Process for producing a fat composition
JPH0678673A (ja) 改良非ラウリン系トリグリセリド組成物
CN111378535B (zh) 油脂组合物及其制备方法
JP5462985B1 (ja) 油脂組成物及びその製造方法
WO2014209787A1 (en) Spreadable products derived from rice bran oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515521

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013790114

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201406286

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014150951

Country of ref document: RU

Kind code of ref document: A