WO2013157613A1 - 炭素繊維束および炭素繊維束の製造方法 - Google Patents

炭素繊維束および炭素繊維束の製造方法 Download PDF

Info

Publication number
WO2013157613A1
WO2013157613A1 PCT/JP2013/061536 JP2013061536W WO2013157613A1 WO 2013157613 A1 WO2013157613 A1 WO 2013157613A1 JP 2013061536 W JP2013061536 W JP 2013061536W WO 2013157613 A1 WO2013157613 A1 WO 2013157613A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber bundle
carbon fiber
dtex
less
heat
Prior art date
Application number
PCT/JP2013/061536
Other languages
English (en)
French (fr)
Inventor
孝之 桐山
杉浦 直樹
昌宏 畑
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49383565&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013157613(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to KR1020167011122A priority Critical patent/KR101984362B1/ko
Priority to CN201811445201.7A priority patent/CN109518309B/zh
Priority to EP13778729.7A priority patent/EP2840173B1/en
Priority to US14/395,250 priority patent/US10837127B2/en
Priority to JP2013522035A priority patent/JP5720783B2/ja
Priority to KR1020147029175A priority patent/KR101656976B1/ko
Priority to CN201380020239.9A priority patent/CN104246033A/zh
Publication of WO2013157613A1 publication Critical patent/WO2013157613A1/ja
Priority to US17/098,688 priority patent/US11970791B2/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Definitions

  • the present invention relates to a carbon fiber bundle, a manufacturing method thereof, and a composite material using the carbon fiber bundle.
  • a method of producing carbon fiber from polyacrylonitrile fiber using a polymer mainly composed of acrylonitrile as a raw material is widely known. First, flame resistance at 200 to 300 ° C. in air or other oxidizing gas atmosphere. Into flame-resistant fibers, which are then carbonized at 800 to 2,000 ° C. in an inert gas atmosphere such as nitrogen or argon. Further, graphitization is performed in an inert gas atmosphere at 2000 ° C. or higher to produce graphite fibers having a higher elastic modulus.
  • knot strength is a characteristic value independent of the strand strength and elastic modulus.
  • the knot strength of the carbon fiber bundles produced under the same firing conditions using precursor fibers with different spinning conditions even when the tensile strength is not significantly different, The numbers are very different.
  • the knot strengths of carbon fiber bundles obtained using the same precursor fiber bundle and obtained under different firing conditions are also greatly different. This is because the knot strength is a characteristic that depends on the structure of the carbon fiber bundle.
  • the structure of the carbon fiber is not only influenced by the structure of the precursor fiber, but also the precursor fiber that is an organic fiber. It is considered that a different structure is formed depending on the firing conditions, particularly the flameproofing conditions, while the structure is greatly changed from carbon fibers to inorganic fibers.
  • the flameproofing process is a reaction in which the cyclization reaction of acrylonitrile polymer by heat and the oxidation reaction by oxygen and the decomposition gasification reaction of the polymer, especially the copolymerization component, are generated.
  • oxygen is transferred from the outer surface of the filament. Since it is a reaction that needs to diffuse inside, the reaction tends to cause reaction spots in the cross-sectional direction of the single fiber.
  • this oxidation reaction is an exothermic reaction and promotes a cyclization reaction or a decomposition reaction. As a result, structural spots in the cross-sectional direction are more likely to occur.
  • the structure of the precursor fiber is greatly influenced by the composition of the polyacrylonitrile polymer as the raw material. Further, when a modified polymer of polyacrylonitrile-based polymer or a polymer that is not polyacrylonitrile-based is used as a raw material, the structure of the obtained carbon fiber is different, and as a result, the knot strength is greatly different.
  • Patent Document 3 and Patent Document 4 describe the knot strength of pitch-based carbon fibers. Furthermore, it is stated that pitch-based carbon fibers have a considerably lower knot strength than acrylonitrile-based carbon fibers, and it is stated that the raw material pitch is modified as a countermeasure. Table 2 shows a summary of the actual values after unit conversion.
  • the knot strength is a characteristic that is greatly influenced by the structure of the carbon fiber, and can be said to greatly depend on the raw material of the precursor fiber, the manufacturing conditions, and the conditions of the firing process.
  • Patent Document 5 1 to 10% of a specific polymerizable unsaturated carboxylic acid alkyl ester and a specific polymerizable unsaturated carboxylic acid are used for the purpose of efficiently producing and providing high-quality and high-performance carbon fibers.
  • Secondary ion mass after being composed of a copolymer obtained by copolymerization of 0.25 to 5% and flameproofing at 260 ° C. for 5 minutes and further at 280 ° C. for 5 minutes in air at normal pressure
  • a strand strength of 389 kgf obtained by firing a polyacrylonitrile-based precursor fiber bundle having a single yarn inner / outer layer oxygen concentration ratio of 6 or less determined by analysis (SIMS) or an inner layer H / C of 0.03 or less.
  • Carbon fibers that are greater than / mm 2 have been proposed.
  • This example uses a 2.0 denier polyacrylonitrile-based precursor fiber bundle made of a copolymer of 92.5% acrylonitrile, 1.5% itaconic acid and 6% normal butyl methacrylate.
  • the fiber is flame-resistant in air at 240 to 260 ° C. for 30 minutes, and heat-treated in a nitrogen stream to 1,300 ° C. to obtain carbon fiber.
  • Carbon having a strand strength of 501 kgf / mm 2 and a strand modulus of 26 tonf / mm 2 Fiber bundles have been proposed. This significantly lowers the acrylonitrile ratio, thereby reducing the flame resistance and making it possible to produce carbon fibers with relatively high tensile strength in a short flame resistance time, even if the fineness of the single fiber is relatively large. Has succeeded.
  • Patent Document 6 a flame resistant polymer having a polyacrylonitrile-based polymer as a precursor is spun to obtain a flame resistant fiber bundle having a single fiber fineness of 2 dtex or more, and then the flame resistant fiber bundle is carbonized.
  • a technique for efficiently producing a carbon fiber bundle having a large fineness has been proposed.
  • Patent Document 5 since the acrylonitrile ratio is as low as 92.5%, formation of a ladder structure in the flameproofing treatment is not sufficient, decomposition and gasification occur in the carbonization treatment, and the carbon fiber has a dense structure. The formation has been inhibited. Furthermore, since the flameproofing treatment time is as short as 10 minutes, this decomposition gasification reaction occurs abruptly, resulting in sparser spots. As a result, it has become very difficult to produce carbon fibers having sufficient knot strength.
  • the structure of the flame resistant fiber which is a precursor fiber obtained by spinning a flame resistant polymer, disclosed in Patent Document 6, compared to the flame resistant fiber subjected to flame resistance treatment after spinning a polyacrylonitrile-based polymer, It does not have a dense structure and is relatively close to a pitch-based precursor fiber. As a result, the carbon fiber obtained has a low knot strength.
  • (1) single fiber fineness of the carbon fiber bundle is less 2.5dtex than 0.8 dtex, the carbon fiber bundle knot strength is 298N / mm 2 or more.
  • a polyacrylonitrile precursor fiber bundle having a single fiber fineness of 1.7 dtex or more and 5.0 dtex or less comprising a polyacrylonitrile copolymer having 96 to 99 mol% of acrylonitrile units and 1 to 4 mol% of hydroxyalkyl methacrylate units.
  • the amount of heat Jb obtained by integrating the heat generation rate of 260 ° C. or more and 290 ° C. or less is 600 kJ / kg or more and 1000 kJ / kg or less.
  • a carbon fiber bundle having high knot strength and excellent handleability and workability even when the single fiber fineness is large is provided.
  • the composite material using such a carbon fiber bundle is provided.
  • a carbon fiber bundle having a single fiber fineness of the carbon fiber bundle of 0.8 dtex or more and 2.5 dtex or less and a knot strength of 298 N / mm 2 or more is provided. .
  • a heat treatment step is performed by heat-treating the polyacrylonitrile-based precursor fiber bundle for 50 minutes to 150 minutes in an oxidizing atmosphere where the temperature is raised within a temperature range of 220 to 300 ° C.
  • This manufacturing method is suitable for manufacturing the carbon fiber bundle.
  • the polyacrylonitrile-based precursor fiber bundle one or a plurality of polyacrylonitrile-based precursors selected from the group consisting of the following polyacrylonitrile-based precursor fiber bundles i and the polyacrylonitrile-based precursor fiber bundles ii shown below Fiber bundles can be used.
  • a certain kind of precursor fiber bundle may correspond to both i and ii, or may correspond to only one of i and ii.
  • a polyacrylonitrile-based precursor fiber bundle composed of a polyacrylonitrile-based copolymer having 96 to 99 mol% of acrylonitrile units and 1 to 4 mol% of hydroxyalkyl methacrylate units.
  • the single fiber fineness is 1.7 dtex or more and 5.0 dtex or less.
  • the amount of heat Jb obtained by integrating the heat generation rate of 260 ° C. or more and 290 ° C. or less is 600 kJ / kg or more and 1000 kJ / kg or less.
  • the “polyacrylonitrile-based precursor fiber bundle” is a fiber bundle for carbon fibers made of a polymer containing acrylonitrile as a main component.
  • the ratio of the acrylonitrile unit in the monomer unit constituting the polymer is, for example, 94 mol% or more, and further 96 mol% or more.
  • the polyacrylonitrile polymer that can be used as a raw material for the polyacrylonitrile-based precursor fiber bundle which is a raw material for the carbon fiber bundle of the present invention, includes a polyacrylonitrile homopolymer or copolymer, or a mixture thereof.
  • the polyacrylonitrile-based polymer is preferably one in which the flameproofing reaction proceeds rapidly to the inside, and is a polyacrylonitrile monocopolymer (copolymerized with a hydroxyalkyl methacrylate unit (only one type other than an acrylonitrile unit and an acrylonitrile unit).
  • a copolymer with a monomer); or a polyacrylonitrile-based precursor fiber bundle using a heat flux type differential scanning calorimeter, an air stream of 100 ml / min at a flow rate of 30 ° C. and 0.10 MPa standard Among them, a polyacrylonitrile-based copolymer satisfying the following conditions (A) and (B) having a constant temperature rising exothermic curve of 30 ° C.
  • the amount of heat Ja obtained by integrating the heat generation rate of 230 ° C. or higher and 260 ° C. or lower of the constant-temperature heating exothermic curve is 140 kJ / kg or higher and 200 kJ / kg or lower.
  • the heat generation rate of 260 ° C. or higher and 290 ° C. or lower is integrated.
  • the amount of heat Jb determined in this way is 600 kJ / kg or more and 1000 kJ / kg or less.
  • the content of hydroxyalkyl methacrylate units in the polyacrylonitrile copolymer is preferably 1 to 4 mol%.
  • the carboxylic acid ester group of the hydroxyalkyl methacrylate unit is thermally decomposed into a carboxylic acid group at a high temperature of 250 ° C. or higher. If the content of the hydroxyalkyl methacrylate unit in the copolymer is 1 mol% or more, when the carboxylic acid ester group of the hydroxyalkyl methacrylate unit becomes a carboxylic acid group in the flameproofing step, the flameproofing reaction is performed. Sufficient effects to promote can be easily obtained. On the other hand, if it is 4 mol% or less, runaway of the flameproofing reaction can be easily suppressed. Furthermore, it is easy to suppress a decrease in carbonization yield due to elimination of the hydroxyalkyl group in the flameproofing step.
  • the lower limit of the content of the hydroxyalkyl methacrylate unit is preferably 1.2 mol% or more from the viewpoint of securing the denseness of the polyacrylonitrile-based precursor fiber bundle (hereinafter referred to as “precursor fiber bundle” as appropriate), and has higher performance.
  • the amount of 1.5 mol% or more is more preferable in that a carbon fiber can be obtained.
  • the upper limit of the content of the hydroxyalkyl methacrylate unit is preferably 4.0 mol% or less from the viewpoint of suppressing a runaway reaction in the flameproofing step, and 3.0 from the viewpoint of suppressing a decrease in carbonization yield. The mol% or less is more preferable.
  • hydroxyalkyl methacrylate used as a raw material for the hydroxyalkyl methacrylate unit examples include 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, monoglyceryl methacrylate, and tetrahydrofurfuryl methacrylate. . Furthermore, these hydroxyalkyl methacrylates may be used in combination.
  • 2-hydroxyethyl methacrylate has a hydroxyethyl group elimination temperature of 240 ° C. or higher in the flameproofing process, has a sufficient bulk to improve oxygen permeability, and the hydroxyethyl group is eliminated. It is suitable as a constituent component of the copolymer used in the present invention from the viewpoints of little decrease in mass when it is produced and industrial availability.
  • the polyacrylonitrile-based copolymer preferably contains acrylonitrile units and hydroxyalkyl methacrylate units, but may contain other monomer units as necessary.
  • the polyacrylonitrile-based copolymer may be composed of acrylonitrile units and hydroxyalkyl methacrylate units.
  • a hydroxyalkyl acrylate unit can be used.
  • a vinyl monomer copolymerizable with acrylonitrile is preferable.
  • (meth) acrylate esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, chloride
  • Vinyl halides such as vinyl, vinyl bromide, vinylidene chloride, acids such as (meth) acrylic acid, itaconic acid, crotonic acid and their salts, maleic imide, phenylmaleimide, (meth) acrylamide, styrene, ⁇ - Examples include methylstyrene and vinyl acetate. These may be used alone or in combination of two or more.
  • the content of other monomer units in the polyacrylonitrile-based copolymer is preferably 3.0% by mole or less in consideration of the content of acrylonitrile units and hydroxyalkyl methacrylate units.
  • Polymerization methods for obtaining a polyacrylonitrile-based polymer that can be used as a raw material for the polyacrylonitrile-based precursor fiber bundle, which is a raw material for the carbon fiber bundle of the present invention include, for example, redox polymerization in an aqueous solution and suspension in a heterogeneous system. Examples include, but are not limited to, turbid polymerization and emulsion polymerization using a dispersant.
  • a polyacrylonitrile-based precursor fiber bundle for carbon fiber bundles is obtained by dissolving a spinning stock solution having a polymer concentration of 15 to 30% by mass obtained by dissolving a polyacrylonitrile-based polymer in a solvent, and an aqueous solution having a solvent concentration of 30 to 70% by mass.
  • a coagulated yarn is obtained by discharging it into a coagulation bath having a temperature of 20 to 50 ° C., and the coagulated yarn is drawn. The spinning method will be described below.
  • ⁇ Preparation of spinning dope> The above polymer is dissolved in a solvent by a known method to obtain a spinning dope.
  • a solvent organic solvents such as dimethylacetamide, dimethylsulfoxide, dimethylformamide, and aqueous solutions of inorganic compounds such as zinc chloride and sodium thiocyanate can be used.
  • An organic solvent is preferable in that the precursor fiber does not contain a metal and the process is simplified.
  • dimethylacetamide is preferably used in that the density of the precursor fiber bundle is high.
  • the spinning dope preferably has a polymer concentration of a certain level or more so as to obtain a dense coagulated yarn and to have an appropriate viscosity and fluidity.
  • the concentration of the polymer in the spinning dope is preferably in the range of 15 to 30% by mass, more preferably in the range of 18 to 25% by mass.
  • the coagulation bath liquid is generally an aqueous solution of the same solvent as the spinning dope. At this time, water functions as a poor solvent for the polymer.
  • a spinning method of the polyacrylonitrile-based precursor fiber bundle of the carbon fiber bundle obtained in the present invention a known method can be adopted, and specific examples include a wet spinning method, a dry wet spinning method, a dry spinning method, and the like. Among these, the wet spinning method is preferably used from the viewpoint of productivity.
  • the coagulated yarn can be obtained by discharging and spinning the above spinning solution into a coagulation bath through a spinneret.
  • the coagulation bath condition is important for obtaining a dense structure necessary for the precursor fiber for carbon fiber and ensuring coagulability that enables high productivity.
  • As the coagulation bath conditions a solvent concentration of 30% by mass to 70% by mass and a temperature of 20 ° C. or more and 50 ° C. or less are preferable. If the coagulation bath conditions are within this range, a dense precursor fiber bundle can be obtained while maintaining an appropriate coagulation rate. Moreover, the roundness of the single fiber of the precursor fiber bundle described later can be controlled in the coagulation process in the spinning process.
  • the concentration in the coagulation bath is 70% by mass or less, the exchange rate of the solvent and water on the surface of the spinning dope discharged into the coagulation bath exceeds the diffusion rate of water into the spinning dope, Precursor fibers can be easily obtained, and furthermore, adhesion between single yarns of the precursor fiber bundle can be easily suppressed.
  • the concentration is preferably 67% by mass or less from the viewpoint of further suppressing adhesion between single yarns.
  • the coagulation bath solvent concentration is 30% by mass or more, the exchange rate of the solvent and water on the surface of the spinning dope discharged into the coagulation bath is significantly higher than the diffusion rate of water into the spinning dope.
  • a dense precursor fiber bundle can be easily obtained as long as it can be easily suppressed and does not cause rapid shrinkage of the coagulated yarn.
  • the cross-sectional shape of the precursor fiber bundle varies depending on the coagulation bath conditions. When the concentration is in the range of 30% by weight to 70% by weight, the roundness representing the cross-sectional shape is easily kept within a good range in terms of performance expression of the carbon fiber and resin impregnation.
  • the exchange rate of the solvent and water on the surface of the spinning dope discharged into the coagulation bath is significantly higher than the diffusion rate of water into the spinning dope.
  • a dense precursor fiber can be easily obtained within a range that can be easily suppressed and abrupt shrinkage of the coagulated yarn does not occur.
  • it is 20 degreeC or more, the replacement
  • the coagulation bath temperature is preferably 25 ° C. or higher, more preferably 35 ° C. or higher.
  • the coagulation bath temperature is preferably 45 ° C. or lower.
  • the single fiber fineness of the polyacrylonitrile-based precursor fiber bundle in the present invention is preferably 1.7 dtex or more and 5.0 dtex or less. If it is 1.7 dtex or more, it is easy to produce a carbon fiber bundle having a desired knot strength with high productivity. On the other hand, if the single fiber fineness of the precursor fiber bundle is 5.0 dtex or less, the double structure of the cross section is not remarkable in the flameproofing step, and a uniform quality carbon fiber bundle can be easily and stably produced.
  • the single fiber fineness of the precursor fiber bundle is preferably 1.8 dtex or more, and more preferably 2.4 dtex or more. Further, the single fiber fineness is preferably 4.0 dtex or less, and more preferably 3.2 dtex or less.
  • the number of carbon fiber precursor fiber bundles and carbon fiber bundles is preferably 6,000 or more and 50,000 or less. If the number of carbon fiber bundles is 50,000 or less, it is easy to reduce non-uniformity between the single fibers in the structure in the cross-sectional direction of the single fibers generated in the firing step, and sufficient mechanical performance is easily obtained. Moreover, if it is 6,000 or more, it will become easy to ensure productivity.
  • the number of carbon fiber bundles is preferably 12,000 or more and 36,000 or less, and more preferably 23,000 or more and 38,000 or less.
  • the single fiber fineness of the polyacrylonitrile-based precursor fiber bundle exceeds 3.1 dtex, the total fineness does not exceed 110,000 dtex, which reduces the structural non-uniformity in the cross-sectional direction between the single fibers. preferable.
  • the method for producing the carbon fiber of the present invention will be described.
  • the polyacrylonitrile-based precursor fiber bundle is subjected to flameproofing treatment at a temperature of 220 ° C. or higher and 300 ° C. or lower in an oxidizing atmosphere to obtain a flameproof fiber bundle.
  • “under an oxidizing atmosphere” means in the air containing an oxidizing substance such as nitrogen dioxide, sulfur dioxide and oxygen.
  • the flameproofing time is affected by the fineness of the polyacrylonitrile-based precursor fiber bundle, oxygen diffuses to the inside of the single fiber, flameproofing to the inside of the single fiber, and to increase the knot strength, the following It is preferable that the heat treatment time T1 satisfying the condition (C): (C) 45 ⁇ single fiber fineness (dtex) of polyacrylonitrile precursor fiber ⁇ heat treatment time T1 (min) ⁇ 45 ⁇ single fiber fineness (dtex) ⁇ 60 of polyacrylonitrile precursor fiber.
  • the density of the flameproof fiber bundle obtained by the flameproofing treatment is preferably 1.34 to 1.43 g / cm 3 . If it is 1.34 g / cm 3 or more, it is easy to produce carbon fibers without reducing the yield of carbon fiber bundles. In general, it is known that the higher the density of the flame-resistant fiber, the higher the yield of the carbon fiber bundle obtained, but the performance of the carbon fiber decreases.
  • the density of the flame-resistant fiber bundle is 1.43 g / If it is cm 3 or less, it is easy to improve the yield of the obtained carbon fiber bundle while suppressing the deterioration of the performance of the carbon fiber. From the viewpoint of maintaining the performance of the obtained carbon fiber and improving the yield, the density of the flame-resistant fiber bundle is more preferably 1.34 to 1.38 g / cm 3 .
  • the polyacrylonitrile-based precursor fiber bundle is measured at a heating rate of 10 ° C./min in an air stream of 100 ml / min (standard: 30 ° C., 0.10 MPa) using a heat flux type differential scanning calorimeter. It is preferable that the constant-temperature heating exothermic curve at 30 ° C. or higher and 450 ° C. or lower when satisfying the following conditions.
  • the initial treatment temperature is a temperature equal to or higher than the temperature at which the flameproofing reaction is started, and the precursor fiber bundle. It is set within the range of the temperature below the temperature that does not melt. On the other hand, if the flameproofing reaction proceeds to some extent, a higher processing temperature can be set in order to efficiently perform the flameproofing process.
  • the present inventors set this temperature range around 260 ° C. in the first half of the flame resistance process and the second half of the flame resistance process.
  • the calorific value of 230 ° C or higher and 260 ° C or lower is defined as the calorific value Ja
  • the calorific value of 260 ° C or higher and 290 ° C or lower is defined as the calorific value Jb. The quality and performance of fiber bundles were compared.
  • the flameproofing reaction and oxygen diffusion are performed in a well-balanced manner, and the cross-sectional double structure of the flameproofing fiber is suppressed in the high-speed flameproofing treatment, and high quality and performance It was found that a carbon fiber bundle with good expression was efficiently obtained, and a precursor fiber bundle having a large single fiber fineness could be uniformly flame-resistant.
  • the flameproofing treatment temperature when manufacturing an actual carbon fiber bundle is affected by the equipment used and the treatment time, so the temperature setting during the flameproofing treatment should be raised within the range of 220 to 300 ° C. What is necessary is just to set it as the optimal temperature setting in order to flame-proof the precursor fiber.
  • the polyacrylonitrile precursor fiber has a heat quantity Jb of 600 kJ / kg or more, the precursor fiber bundle can be easily flameproofed to the target density of the flameproof fiber without impairing the productivity in the flameproofing step.
  • the polyacrylonitrile precursor fiber is 1,000 kJ / kg or less, the flameproofing reaction proceeds slowly in the flameproofing step, and thus it is easy to uniformly flameproof the precursor fiber bundle having a large single fiber fineness. It becomes easy to suppress formation of a cross-sectional double structure.
  • the amount of heat Jb is preferably 620 kJ / kg or more from the viewpoint of improving productivity, and more preferably 640 kJ / kg or more from the viewpoint of further improving productivity.
  • 900 kJ / kg or less is preferable from a viewpoint of performing a flameproofing treatment on a precursor fiber bundle having a large single fiber fineness more uniformly.
  • the amount of heat Ja can be used as an index of flameproofing reactivity in the first half of the flameproofing process
  • the amount of heat Jb can be used as an index of flameproofing reactivity in the second half of the flameproofing process.
  • the amount of heat Ja and the amount of heat Jb can only be used as an index of the flame resistance reactivity of the precursor fiber bundle
  • the processing temperature range applied to the actual flame resistance process is the amount of heat Ja or the amount of heat Jb. It may or may not include a temperature range (ie 230 to 260 ° C. or 260 to 290 ° C.), and 220 to 300 depending on the precursor fiber bundle used, the equipment used, and the processing time. It can adjust suitably in the range of ° C.
  • the heat quantity Ja obtained by integrating the heat generation rate of 230 ° C. or higher and 260 ° C. or lower of the constant-temperature heating exothermic curve is integrated, and the heat generation rate of 140 kJ / kg or higher and 200 kJ / kg or lower and 260 ° C. or higher and 290 ° C. or lower is integrated.
  • the flame-resistant yarn having a calorific value Jb of 600 kJ / kg or more and 1000 kJ / kg or less has a small internal / external structure difference, and when the flame-resistant yarn is baked, homogeneous carbon fibers can be easily obtained as single fibers. Homogeneous carbon fiber is considered to have high strength against stresses that cause strain from all directions.
  • the strength in a complex stress field from all directions can be evaluated by the tensile breaking stress of a knotted carbon fiber bundle, and a carbon fiber having a knot strength of 298 N / mm 2 or more can be produced. Further, even when the single fiber fineness is increased, the deterioration of physical properties can be reduced if these conditions are satisfied.
  • Carbon fiber bundles can be obtained by carbonizing fiber bundles obtained from the flameproofing process. After the flameproofing treatment and before the carbonization treatment, a precarbonization treatment can be performed in which the obtained flameproofed fiber bundle is treated in an inert gas at a maximum temperature of 550 ° C or higher and 800 ° C or lower.
  • a carbon fiber bundle can be produced by subjecting the obtained flame-resistant fiber bundle to carbonization treatment in an inert gas at a temperature of 800 ° C. or higher and 2,000 ° C. or lower.
  • a graphite fiber can also be manufactured by processing this carbon fiber in an inert gas at a high temperature of about 2500 ° C. or more and 2,800 ° C. or less.
  • the temperature is set according to the desired mechanical properties of the carbon fiber.
  • the maximum temperature of carbonization treatment should be low, and the elastic modulus can be increased by extending the treatment time, so that the maximum temperature can be lowered as a result. .
  • the temperature gradient can be set gently, which is effective in suppressing defect point formation.
  • the carbonization furnace may be 1,000 ° C. or higher although it depends on the temperature setting of the carbonization furnace. Preferably it is 1050 degreeC or more.
  • the temperature gradient is not particularly limited, but it is preferable to set a linear gradient.
  • a surface treatment may be performed before the sizing treatment step.
  • the main components of the sizing agent in the sizing treatment liquid are epoxy resin, epoxy-modified polyurethane resin, polyester resin, phenol resin, polyamide resin, polyurethane resin, polycarbonate resin, polyetherimide resin, polyamideimide resin, polyimide resin, bismaleimide Resins, urethane-modified epoxy resins, polyvinyl alcohol resins, polyvinyl pyrrolidone resins, polyether sulfone resins and the like can be mentioned, and are not particularly limited.
  • the content of the sizing agent in the sizing treatment liquid is not particularly limited, but is preferably 0.2 to 20% by mass, more preferably 3 to 10% by mass.
  • the content of the sizing agent in the sizing treatment liquid is not particularly limited, but is preferably 0.2 to 20% by mass, more preferably 3 to 10% by mass.
  • the solvent or dispersion medium used for the sizing treatment liquid is not particularly limited, it is preferable to use water from the viewpoint of handleability and safety.
  • the adhesion amount of the sizing agent with respect to 100% by mass of the carbon fiber bundle is preferably 0.3 to 5% by mass, and more preferably 0.4 to 3% by mass.
  • the adhesion amount of the sizing agent is 0.3% by mass or more, it becomes easy to sufficiently impart the desired function to the carbon fiber bundle.
  • the adhesion amount of the sizing agent 3% by mass or less, the impregnation property of the matrix resin into the carbon fiber bundle at the time of manufacturing the composite material which is a subsequent process is easily improved.
  • the solvent or dispersion medium of the sizing process liquid is removed by drying.
  • the conditions at this time are preferably in the range of 10 to 10 minutes at a temperature of 120 to 300 ° C., more preferably in the range of 30 to 4 minutes at a temperature of 150 to 250 ° C.
  • the drying temperature By setting the drying temperature to 120 ° C. or higher, the solvent can be easily removed sufficiently.
  • the quality of the sizing-treated carbon fiber bundle can be easily maintained by setting the drying temperature to 300 ° C. or less.
  • the drying method is not particularly limited, and examples thereof include a method in which the carbon fiber bundle is brought into contact with a hot roll using steam as a heat source and a method in which the carbon fiber bundle is dried in an apparatus in which hot air is circulated. be able to.
  • the carbon fiber bundle of the present invention preferably has a single fiber fineness of 0.8 to 2.5 dtex.
  • the average single fiber fineness is in the range of 0.8 to 2.5 dtex, the bending rigidity of each single fiber constituting the carbon fiber bundle is increased, and the carbon fiber bundle having high bending rigidity as the carbon fiber bundle is also obtained. It becomes.
  • the problem that the oxygen permeability is reduced and the existence probability of defects is increased, and the problem that the strength of the carbon fiber is lowered is not preferable.
  • the knot strength obtained by dividing the tensile breaking load of the carbon fiber bundles knotted by the cross-sectional area of the fiber bundle is 298 N / mm 2 or more. is there. More preferably 400 N / mm 2 or more, further preferably at 450 N / mm 2 or more.
  • the knot strength can be an index reflecting the mechanical performance of the fiber bundle other than in the fiber axis direction, and in particular, the performance in the direction perpendicular to the fiber axis can be easily evaluated.
  • a material is often formed by quasi-isotropic lamination, and a complex stress field is formed.
  • the cross-sectional shape of the single fiber of the carbon fiber bundle of the present invention is not particularly limited, and may be any of a circular shape, an elliptical shape, and an empty bean shape.
  • roundness is adopted as an index representing the cross-sectional shape of a single fiber.
  • the roundness of a perfect circle is 1.00, and this value decreases as the shape moves away from the perfect circle. Accordingly, the roundness of the elliptical shape and the empty bean shape is smaller than 1.00.
  • the numerical value becomes smaller as the ratio of the major axis to the minor axis increases.
  • the cross-sectional shape of the single fiber of the precursor fiber bundle approximately matches the cross-sectional shape of the single fiber of the carbon fiber bundle, it can be considered as a form derived from the precursor fiber. There is a solidification process as a manufacturing process that greatly affects the determination of the cross-sectional shape of a single fiber.
  • the coagulation rate is relatively slow, so that a precursor fiber bundle having a large roundness and a dense structure can be obtained.
  • the solvent concentration of the coagulation bath liquid is low, the coagulation rate is relatively fast, so that a precursor fiber bundle having a small roundness and a sparse structure is obtained.
  • the structure of the precursor fiber bundle is dense, a carbon fiber bundle having a high strength is easily obtained.
  • the flameproofing step when the roundness is large, the convergence property as a precursor fiber bundle is high, unevenness occurs in the amount of oxygen introduced between the single fibers constituting the bundle, and the heat generated by the flameproofing reaction is also uniform. There is a tendency for a part to accumulate heat in the part and have a locally high temperature. Moreover, in each single fiber, the tendency for oxygen diffusion to a center part to become insufficient becomes strong, and flameproofing reaction does not fully advance easily. As a result, single yarn breakage and fluff generation in the carbonization process increase, the process passability is poor, and the strength and appearance quality of the resulting carbon fiber bundle tend to decrease.
  • the carbon fiber bundle having a small roundness has a larger gap between the single fibers, and as a result, the impregnation property of the resin can be further improved. Therefore, it is easy to form a composite with a resin, and a composite material with higher performance can be obtained.
  • carbon fiber with a high roundness has a high rotational symmetry of the shape. Therefore, in comparison with carbon fibers having the same fineness, the minimum stiffness value of the second moment of section is the largest, and the straight fiber as a single fiber It has become a higher one. As a result, the strength is excellent.
  • the cross-sectional shape of the precursor fiber can be selected depending on the properties and performance of the target composite material.
  • the cross-sectional shape of a single fiber of a preferable carbon fiber bundle has a roundness of 0.70 to 0.99. If the roundness is 0.70 or more, the denseness of the precursor fiber bundle is likely to be obtained, and a high-strength carbon fiber bundle tends to be easily obtained. If it is 0.99 or less, the oxygen diffusibility inside the fiber bundle and further inside the single fiber in the flameproofing process can be easily set to a sufficient level. A more preferable range of roundness is 0.79 or more and 0.97 or less.
  • ⁇ Constant temperature heating exothermic curve of precursor fiber bundle was measured by a heat flux type differential scanning calorimeter as follows. First, the precursor fiber bundle was cut into a length of 4.0 mm, 4.0 mg was precisely weighed, and packed in 50 ⁇ l (product name: P / N SSC000E030) made of a sealed sample container Ag manufactured by SII, The lid was covered with a mesh cover made by SII (trade name: P / N 50-037) (450 ° C./15 minutes, heat-treated in air).
  • the nodule strength was measured as follows. A gripping part having a length of 25 mm is attached to both ends of a carbon fiber bundle having a length of 150 mm and used as a test specimen. When producing the test specimen, the carbon fiber bundle is aligned by applying a load of 0.1 ⁇ 10 ⁇ 3 N / denier. One knot is formed on the test body in the substantially central part, the crosshead speed during tension is 100 mm / min, and the maximum load value is measured. Next, a value obtained by dividing the maximum load value by the cross-sectional area of the carbon fiber bundle is defined as a knot strength. The number of tests was 12 and the minimum and maximum values were removed, and the average value of 10 was used as the measured value of nodule strength.
  • This acrylonitrile copolymer was dissolved in dimethylacetamide to prepare a 21% by mass spinning dope.
  • the second oil bath continues to have the same composition and concentration as the first oil bath
  • the oil agent treatment liquid was again applied to the fiber bundle.
  • the fiber bundle to which the oil agent treatment liquid was applied again was dried using a heating roll, and dry-heat-stretched 1.34 times between the heating rolls whose rotation speed was adjusted to a predetermined condition.
  • the total draw ratio from the swollen yarn at this time was 7.4 times.
  • the moisture content was adjusted by applying water to the fiber bundle with a touch roll to obtain a precursor fiber bundle having a single fiber fineness of 2.5 dtex.
  • the precursor fiber bundle was subjected to a flameproofing treatment at a stretch rate of 5.0% for 70 minutes under a temperature distribution of 220 to 260 ° C. to obtain a flameproof fiber bundle having a density of 1.35 g / cm 3 .
  • the obtained flame-resistant fiber bundle was further pre-carbonized in a nitrogen atmosphere at 700 ° C. and an elongation of 3% for 1.1 minutes, followed by 1,300 ° C. and ⁇ 4.0% elongation in a nitrogen atmosphere.
  • Carbon fiber treatment was performed at a rate of 1.0 minute to obtain a carbon fiber bundle. Thereafter, the carbon fiber bundle was subjected to a surface treatment by an electrolytic oxidation method, and then a sizing agent was applied.
  • the sizing agent used was 80 parts by mass of “Epicoat 828 (trade name)” manufactured by Japan Epoxy Resin Co., Ltd. as the main agent, and 20 parts by mass of “Pluronic F88 (trade name)” manufactured by Asahi Denka Co., Ltd. as the emulsifier. And an aqueous dispersion prepared by phase inversion emulsification. 1% by mass of this sizing agent was adhered to the carbon fiber bundle, and after a drying treatment, a carbon fiber bundle was obtained. When the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 4.4 GPa and the strand elastic modulus was 233 GPa.
  • the single fiber fineness of the carbon fiber was 1.27 dtex, the roundness was 0.82, and the knot strength was 417 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 170 kJ / kg, and the heat quantity Jb was 725 kJ / kg.
  • a carbon fiber bundle was obtained in the same manner as in Example 1 except that it was changed to (mol%).
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 4.3 GPa and the strand elastic modulus was 233 GPa.
  • the single fiber fineness of the carbon fiber was 1.26 dtex, the roundness was 0.82, and the knot strength was 410 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 168 kJ / kg, and the heat quantity Jb was 722 kJ / kg.
  • Example 3 A carbon fiber bundle was obtained in the same manner as in Example 2 except that the coagulation bath concentration (dimethylacetamide concentration) was 45% by mass and the coagulation bath temperature was 25 ° C.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 4.2 GPa and the strand elastic modulus was 232 GPa.
  • the single fiber fineness of the carbon fiber was 1.27 dtex, the roundness was 0.79, and the knot strength was 420 N / mm 2 .
  • the heat quantity Ja obtained from the heat flux type differential scanning calorimetry was 175 kJ / kg, and the heat quantity Jb was 740 kJ / kg.
  • Example 4 A carbon fiber bundle was obtained in the same manner as in Example 2 except that the coagulation bath concentration was 50% by mass and the coagulation bath temperature was 35 ° C.
  • the strand physical properties of the obtained carbon fiber bundle were measured, the strand strength was 4.3 GPa and the strand elastic modulus was 232 GPa.
  • the single fiber fineness of the carbon fiber was 1.27 dtex, the roundness was 0.86, and the knot strength was 420 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 170 kJ / kg, and the heat quantity Jb was 725 kJ / kg.
  • Example 5 A carbon fiber bundle was obtained in the same manner as in Example 2 except that the coagulation bath concentration was 50% by mass and the coagulation bath temperature was 40 ° C.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 4.2 GPa and the strand elastic modulus was 233 GPa.
  • the single fiber fineness of the carbon fiber was 1.26 dtex, the roundness was 0.88, and the knot strength was 422 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 172 kJ / kg, and the heat quantity Jb was 727 kJ / kg.
  • Example 6 A carbon fiber bundle was obtained in the same manner as in Example 1 except that the coagulation bath concentration was 60% by mass and the coagulation bath temperature was 45 ° C.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 4.2 GPa and the strand elastic modulus was 233 GPa.
  • the single fiber fineness of the carbon fiber was 1.27 dtex, the roundness was 0.93, and the knot strength was 450 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 168 kJ / kg, and the heat quantity Jb was 722 kJ / kg.
  • Example 7 A carbon fiber bundle was obtained in the same manner as in Example 1 except that the coagulation bath concentration was 67% by mass and the coagulation bath temperature was 35 ° C.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 4.2 GPa and the strand elastic modulus was 233 GPa.
  • the single fiber fineness of the carbon fiber was 1.26 dtex, the roundness was 0.95, and the knot strength was 490 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 163 kJ / kg, and the heat quantity Jb was 710 kJ / kg.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 4.2 GPa and the strand elastic modulus was 233 GPa.
  • the carbon fiber had a single fiber fineness of 1.26 dtex, a roundness of 0.98, and a knot strength of 510 N / mm 2 . Further, the heat quantity Ja obtained from the heat flux type differential scanning calorimetry was 159 kJ / kg, and the heat quantity Jb was 698 kJ / kg.
  • Example 9 The spinning stock solution is discharged through a spinneret (spinning nozzle) having a pore number of 36,000 and a hole diameter of 60 ⁇ m into a coagulation bath composed of a dimethylacetamide aqueous solution having a concentration of 45% by mass and a temperature of 35 ° C., and the discharge linear velocity from the spinneret surface.
  • a precursor fiber bundle was obtained in the same manner as in Example 1 except that a fiber bundle (swelling yarn) was obtained by taking it up at a rate 0.45 times as high as.
  • a carbon fiber was produced in the same manner as in Example 1 except that the flameproof elongation was set to -4%.
  • the strand strength was 4.8 GPa and the strand elastic modulus was 235 GPa.
  • the single fiber fineness of the carbon fiber was 1.04 dtex, the roundness was 0.82, and the knot strength was 480 N / mm 2 .
  • the heat quantity Ja obtained from the heat flux type differential scanning calorimetry was 190 kJ / kg, and the heat quantity Jb was 745 kJ / kg.
  • Example 10 The spinning dope is discharged through a spinneret (spinning nozzle) having a hole number of 24,000 and a hole diameter of 60 ⁇ m into a coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 45 mass% and a temperature of 35 ° C., and the discharge linear velocity from the spinneret surface
  • a precursor fiber bundle was obtained in the same manner as in Example 1 except that a fiber bundle (swelling yarn) was obtained by taking it up at a rate 0.44 times that of.
  • Carbon fibers were produced in the same manner as in Example 1 except that the flameproof elongation was -2.0%.
  • the strand strength was 4.7 GPa and the strand elastic modulus was 235 GPa.
  • the single fiber fineness of the carbon fiber was 0.95 dtex, the roundness was 0.82, and the knot strength was 460 N / mm 2 .
  • the heat quantity Ja obtained from the heat flux type differential scanning calorimetry was 185 kJ / kg, and the heat quantity Jb was 740 kJ / kg.
  • the oil agent treatment liquid is guided to the first oil bath composed of the oil agent treatment liquid dispersed in water at a concentration of mass%, applied to the fiber bundle, and once squeezed with a guide, the second oil bath having the same composition and concentration as the first oil bath is subsequently applied.
  • the oil agent treatment liquid was again applied to the fiber bundles after being led to the two-oil bath.
  • This fiber bundle was dried using a heating roll, and dry-heat-stretched 1.7 times between heating rolls whose rotation speed was adjusted to a predetermined condition.
  • the total draw ratio from the swollen yarn at this time was 9.0 times. Except for these, a precursor fiber bundle with a single fiber fineness of 2.3 dtex was obtained in the same manner as in Example 1.
  • Carbon fibers were produced in the same manner as in Example 1 except that the above-mentioned precursor fiber bundle had a flameproof elongation rate of 1.0%.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 5.0 GPa and the strand elastic modulus was 235 GPa.
  • the single fiber fineness of the carbon fiber was 1.12 dtex, the roundness was 0.85, and the knot strength was 490 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 175 kJ / kg, and the heat quantity Jb was 730 kJ / kg.
  • Example 12 The spinning stock solution is discharged through a spinneret (spinning nozzle) having a hole number of 15,000 and a hole diameter of 60 ⁇ m into a coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 45% by mass and a temperature of 35 ° C., and the discharge linear velocity from the spinneret surface
  • a precursor fiber bundle having a single fiber fineness of 3.5 dtex was obtained in the same manner as in Example 1 except that a fiber bundle (swelling yarn) was obtained by taking it up at a rate 0.23 times as high as.
  • the precursor fiber bundle was subjected to a flame resistance treatment at a stretch rate of 5% for 120 minutes under a temperature distribution of 220 to 260 ° C. to obtain a flame resistant fiber bundle.
  • the obtained flame-resistant fiber bundle was further pre-carbonized in a nitrogen atmosphere at 700 ° C. and 3.0% elongation for 1.2 minutes, followed by 1,350 ° C. and ⁇ 4.0% in a nitrogen atmosphere.
  • the carbonization treatment was performed for 1.2 minutes at an elongation rate of.
  • a carbon fiber bundle was obtained in the same manner as Example 1 except for these. When the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 4.0 Pa and the strand elastic modulus was 235 GPa.
  • the single fiber fineness of the carbon fiber was 1.69 dtex, the roundness was 0.84, and the knot strength was 360 N / mm 2 .
  • the heat quantity Ja obtained from the heat flux type differential scanning calorimetry was 150 kJ / kg, and the heat quantity Jb was 690 kJ / kg.
  • Example 13 The spinning stock solution is discharged through a spinneret (spinning nozzle) having a pore number of 12,000 and a hole diameter of 60 ⁇ m into a coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 45 mass% and a temperature of 35 ° C., and the discharge linear velocity from the spinneret surface
  • a precursor fiber bundle having a single fiber fineness of 4.5 dtex was obtained in the same manner as in Example 1 except that the fiber was taken up at a rate of 0.18 times the above.
  • the precursor fiber bundle was subjected to a flame resistance treatment at a stretch rate of 5% for 150 minutes under a temperature distribution of 220 to 260 ° C. to obtain a flame resistant fiber bundle.
  • the obtained flame-resistant fiber bundle was further pre-carbonized at 700 ° C. and 3.0% elongation in a nitrogen atmosphere for 1.8 minutes, followed by 1,300 ° C. and ⁇ 4.0% in a nitrogen atmosphere. Was carbonized for 1.6 minutes.
  • a carbon fiber bundle was obtained in the same manner as Example 1 except for these. When the strand physical properties of the obtained carbon fiber bundle were measured, the strand strength was 3.0 GPa and the strand elastic modulus was 230 GPa.
  • the single fiber fineness of the carbon fiber was 2.43 dtex, the roundness was 0.83, and the knot strength was 345 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 135 kJ / kg, and the heat quantity Jb was 660 kJ / kg.
  • Example 14 Carbon fibers were produced in the same manner as in Example 1 except that the flameproofing treatment time was 50 minutes.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 4.0 GPa and the strand elastic modulus was 235 GPa.
  • the single fiber fineness of the carbon fiber was 1.27 dtex, the roundness was 0.82, and the knot strength was 390 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 170 kJ / kg, and the heat quantity Jb was 725 kJ / kg.
  • Example 15 Carbon fibers were produced in the same manner as in Example 1 except that the flameproofing treatment time was 120 minutes.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 5.2 GPa and the strand elastic modulus was 235 GPa.
  • the single fiber fineness of the carbon fiber was 1.27 dtex, the roundness was 0.82, and the knot strength was 480 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 170 kJ / kg, and the heat quantity Jb was 725 kJ / kg.
  • Example 16 Carbon fibers were produced in the same manner as in Example 1 except that the flameproofing treatment time was 150 minutes.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 5.2 GPa and the strand elastic modulus was 235 GPa.
  • the single fiber fineness of the carbon fiber was 1.27 dtex, the roundness was 0.82, and the knot strength was 500 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 170 kJ / kg, and the heat quantity Jb was 725 kJ / kg.
  • Example 17 The spinning stock solution is discharged through a spinneret (spinning nozzle) having a pore number of 40,000 and a hole diameter of 60 ⁇ m into a coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 45 mass% and a temperature of 35 ° C., and the discharge linear velocity from the spinneret surface
  • a carbon fiber bundle was produced in the same manner as in Example 1 except that a fiber bundle (swelling yarn) was obtained by taking it at a rate 0.32 times as high as.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 3.9 GPa and the strand elastic modulus was 225 GPa.
  • the single fiber fineness of the carbon fiber was 1.27 dtex, the roundness was 0.82, and the knot strength was 298 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 170 kJ / kg, and the heat quantity Jb was 725 kJ / kg.
  • a carbon fiber bundle was obtained in the same manner as in Example 1 except that it was changed to (mol%).
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 4.2 GPa and the strand elastic modulus was 233 GPa.
  • the single fiber fineness of the carbon fiber was 1.26 dtex, the roundness was 0.85, and the knot strength was 415 N / mm 2 .
  • the heat quantity Ja obtained from the heat flux type differential scanning calorimetry was 198 kJ / kg, and the heat quantity Jb was 850 kJ / kg.
  • the spinning stock solution is discharged through a spinneret (spinning nozzle) having a hole number of 24,000 and a hole diameter of 60 ⁇ m into a coagulation bath composed of a dimethylacetamide aqueous solution having a concentration of 60% by mass and a temperature of 35 ° C., and the discharge linear velocity from the spinneret surface
  • the oil agent treatment liquid was again applied to the fiber bundle.
  • the fiber bundle to which the oil agent treatment liquid was applied again was dried using a heating roll, and dry heat drawing was performed 1.3 times between the heating rolls whose rotation speed was adjusted to a predetermined condition.
  • the total draw ratio from the swollen yarn at this time was 7.3 times.
  • the moisture content was adjusted by applying water to the fiber bundle with a touch roll to obtain a precursor fiber bundle having a single fiber fineness of 2.5 dtex.
  • the precursor fiber bundle was subjected to a flame resistance treatment at a stretching rate of 2.0% under a temperature distribution of 220 to 260 ° C. for 180 minutes to obtain a flame resistant fiber bundle.
  • the obtained flame-resistant fiber bundle was further pre-carbonized under a nitrogen atmosphere at 700 ° C. and 3.0% elongation for 2.2 minutes, followed by 1,300 ° C. and ⁇ 4.0% in a nitrogen atmosphere.
  • the carbonization treatment was performed for 2.0 minutes at an elongation rate of.
  • a carbon fiber bundle was obtained in the same manner as Example 1 except for these. When the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 3.8 GPa and the strand elastic modulus was 231 GPa.
  • the single fiber fineness 1.37dtex carbon fiber, a roundness 0.85, knot strength was 297N / mm 2. Further, the heat quantity Ja obtained from the heat flux type differential scanning calorimetry was 190 kJ / kg, and the heat quantity Jb was 1151 kJ / kg.
  • Comparative Example 2 A carbon fiber was produced in the same manner as in Comparative Example 1 except that the flameproofing treatment time was 120 minutes and the flameproofing elongation was 5.0%.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 3.2 GPa and the strand elastic modulus was 230 GPa.
  • the single fiber fineness of the carbon fiber was 1.37 dtex, the roundness was 0.85, and the knot strength was 275 N / mm 2 .
  • the heat quantity Ja obtained from the heat flux type differential scanning calorimetry was 190 kJ / kg, and the heat quantity Jb was 1151 kJ / kg.
  • Comparative Example 3 Carbon fibers were produced in the same manner as in Comparative Example 1 except that the flameproofing treatment time was 60 minutes and the flameproofing elongation was 5.0%.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 3.0 GPa and the strand elastic modulus was 225 GPa.
  • the single fiber fineness of the carbon fiber was 1.40 dtex, the roundness was 0.85, and the knot strength was 259 N / mm 2 .
  • the heat quantity Ja obtained from the heat flux type differential scanning calorimetry was 190 kJ / kg, and the heat quantity Jb was 1151 kJ / kg.
  • Example 4 Carbon fibers were produced in the same manner as in Example 1 except that the flameproofing treatment time was 30 minutes.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 3.0 GPa and the strand elastic modulus was 235 GPa.
  • the single fiber fineness of the carbon fiber was 1.27 dtex, the roundness was 0.82, and the knot strength was 290 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 170 kJ / kg, and the heat quantity Jb was 725 kJ / kg.
  • the single fiber fineness of the carbon fiber was 1.21 dtex, the roundness was 0.85, and the knot strength was 275 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 139 kJ / kg, and the heat quantity Jb was 650 kJ / kg.
  • the spinning stock solution is discharged through a spinneret (spinning nozzle) having a pore number of 12,000 and a hole diameter of 60 ⁇ m into a coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 45 mass% and a temperature of 35 ° C., and the discharge linear velocity from the spinneret surface
  • a precursor fiber bundle having a single fiber fineness of 5.5 dtex was obtained in the same manner as in Example 1 except that the fiber was taken up at a rate 0.15 times that of.
  • the single fiber fineness of the carbon fiber was 2.78 dtex, the roundness was 0.82, and the knot strength was 250 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 130 kJ / kg, and the heat quantity Jb was 650 kJ / kg.
  • Carbon fibers were produced in the same manner as in Example 1 except that the flameproofing treatment time was 180 minutes.
  • the strand physical property of the obtained carbon fiber bundle was measured, the strand strength was 5.3 GPa and the strand elastic modulus was 238 GPa.
  • the single fiber fineness of the carbon fiber was 1.27 dtex, the roundness was 0.82, and the knot strength was 510 N / mm 2 .
  • the heat quantity Ja determined by heat flux type differential scanning calorimetry was 170 kJ / kg, and the heat quantity Jb was 725 kJ / kg.
  • Tables 3 and 4 show the test conditions of Examples and Comparative Examples and the physical properties of the obtained carbon fiber bundles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Mechanical Engineering (AREA)

Abstract

 単繊維繊度が大きくても、結節強度が高く、取扱い性、加工性に優れた炭素繊維束を提供する。単繊維繊度が0.8dtex以上2.5dtex以下であり、結節強度が298N/mm以上である炭素繊維束。明細書に記載される特定のポリアクリロニトリル系前駆体繊維束を、220~300℃の温度範囲内で昇温する酸化性雰囲気下で、50分以上150分以下熱処理する熱処理工程を有する、結節強度が298N/mm以上である炭素繊維束の製造方法。

Description

炭素繊維束および炭素繊維束の製造方法
 本発明は、炭素繊維束とその製造方法、ならびに炭素繊維束を用いた複合材料に関する。
 アクリロニトリルが主成分となる重合物を原料とするポリアクリロニトリル系繊維から炭素繊維を製造する方法は広く知られており、まず、空気または他の酸化性ガス雰囲気中にて、200~300℃で耐炎化して耐炎化繊維となし、次いでこれを窒素、アルゴン等の不活性ガス雰囲気中にて800~2,000℃で炭化して製造される。また、さらに2000℃以上の不活性ガス雰囲気中で黒鉛化を行ない、弾性率が一段と高い黒鉛繊維を製造することも行なわれる。
 炭素繊維束の結節強度は、炭素繊維の構造影響を特に大きく受ける特性のひとつである。しかしながら、炭素繊維束の引張強度とは相関しないことが知られている。たとえば特許文献1には、市販されている4種の炭素繊維の結節強度が記載されていて、その炭素繊維のストランド引張強度のカタログデータをまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上表から明らかなように、結節強度はストランド強度、弾性率によらない特性値であることが明確に示されている。
 さらに、特許文献2に記載されているとおり、紡糸条件が異なる前駆体繊維を用いて、同じ焼成条件で製造された炭素繊維束の結節強度は、引張強度が大きく異なっていない場合でさえも、大きく数値が異なっている。
また、同じ前駆体繊維束を用い、異なる焼成条件で得た炭素繊維束の結節強度はやはり大きく異なったものとなる。これは、結節強度が炭素繊維束の構造に依存する特性であることに由来するもので、炭素繊維の構造が、前駆体繊維の構造に影響されるだけではなく、有機繊維である前駆体繊維から無機繊維である炭素繊維へと大きく構造が変化する中で、焼成条件特に耐炎化条件によっても、異なった構造が形成されることが原因と考えられる。耐炎化工程は、熱によるアクリロニトリルポリマーの環化反応と酸素による酸化反応およびポリマー特に共重合成分の分解ガス化反応が生じている反応であり、その内、酸化反応はフィラメントの外表面から酸素が内部に拡散していくことが必要な反応であることから、単繊維の断面方向での反応斑が生じやすい反応となっている。また、この酸化反応は発熱反応で、環化反応や分解反応を促進するものでもあり、その結果、より断面方向の構造斑が生じやすい。この耐炎化工程の特徴から、表1に示されるように単繊維繊度が0.8dtex未満の炭素繊維束では高い結節強度を有するものが工業化されているものの、前駆体繊維の繊維径が大きいものほど、均一な構造を有する炭素繊維が製造し難くなり、さらに高性能な炭素繊維を得るために、耐炎化工程での処理時間を大幅に長くする必要性が生じ、低コスト化と生産性向上の観点から大きな障害となっていた。
 また、前駆体繊維の構造は、原料であるポリアクリロニトリル系重合物の組成に大きく影響されるものでもある。さらに、ポリアクリロニトリル系重合物の改質ポリマーやポリアクリロニトリル系ではない重合物を原料として用いた場合は、得られる炭素繊維の構造が異なり、その結果結節強度は大きく異なるものとなる。特許文献3および特許文献4には、ピッチ系炭素繊維の結節強度が記載されている。さらに、ピッチ系炭素繊維は、結節強度はアクリロニトリル系炭素繊維に比べかなり低いことが述べられ、その対策として原料ピッチの改質が行われているとの趣旨が記載されている。実際に記載されている値を単位換算後まとめたものを表2に示した。
Figure JPOXMLDOC01-appb-T000002
 このように、結節強度は炭素繊維の構造に大きく影響される特性であり、前駆体繊維の原料、製造条件、さらに焼成工程の条件に大きく依存するものといえる。
 特許文献5には高品質、高性能な炭素繊維を効率よく製造し提供する目的で、特定の重合性不飽和カルボン酸アルキルエステルを1~10%、および、特定の重合性不飽和カルボン酸を0.25~5%共重合してなる共重合体より構成され、かつ、260℃で5分間、さらに280℃で5分間、空気中、常圧にて耐炎化した後の、二次イオン質量分析(SIMS)により求めた単糸内外層酸素濃度比率が6以下であるか、内層のH/Cが0.03以下であるポリアクリロニトリル系前駆体繊維束を焼成してなる、ストランド強度が389kgf/mm以上である炭素繊維が提案されている。実施例にはアクリロニトリル92.5%、イタコン酸1.5%、メタクリル酸ノルマルブチル6%よりなる共重合体より製造された、2.0デニールのポリアクリロニトリル系前駆体繊維束を用いて、この繊維を空気中で240~260℃において30分間で耐炎化し、窒素気流中1,300℃まで加熱処理して炭素繊維を得て、ストランド強度501kgf/mm、ストランド弾性率26tonf/mmの炭素繊維束が提案されている。これはアクリロニトリル比率を大幅に下げることにより、耐炎化反応性を低下させて、比較的単繊維の繊度が大きいものでも、短時間の耐炎化時間で、比較的引張強度の高い炭素繊維の製造に成功している。
 特許文献6には、ポリアクリロニトリル系重合物を前駆体とする耐炎ポリマーを紡糸し、単繊維繊度が2デシテックス以上であるような耐炎繊維束を得た後、この耐炎繊維束を炭化処理することにより、効率的に太繊度の炭素繊維束を製造する技術が提案されている。
 特許文献7には、ポリアクリロニトリル系前駆体繊維を、溶媒A、特定の有機求核試薬Bおよびポリアクリロニトリル系前駆体繊維に対する酸化作用を有する有機窒素化合物Cを含む液中で熱処理して耐炎化を行う耐炎化繊維の製造方法が記載されている。
特開2002-201569号公報 特開2010-285710号公報 特開平03-14624号公報 特開平03-14625号公報 特開平09-31758号公報 特開2008-202207号公報 特開2004-300600号公報
 しかしながら、特許文献5では、アクリロニトリル比率が92.5%と低いために、耐炎化処理でのラダー構造形成は十分ではなく、炭素化処理で分解、ガス化が生じ、炭素繊維の緻密な構造の形成を阻害してしまっている。さらに、耐炎化処理時間が10分と短いために、この分解ガス化の反応が急激に生じるために、より疎密度の斑が生じてしまう。その結果、十分な結節強度を有する炭素繊維を製造することが非常に難しくなってしまっている。
 また、特許文献6に開示される、耐炎ポリマーを紡糸して得られる前駆体繊維である耐炎繊維の構造は、ポリアクリロニトリル系重合物を紡糸後、耐炎化処理を施した耐炎繊維に比べて、緻密な構造を有するものとはならず、比較的ピッチ系の前駆体繊維に近いものとなってしまう。その結果、得られる炭素繊維の結節強度は低いものとなってしまう。
 さらに、特許文献7に開示される方法について、本発明者らが追試を行ったところ、耐炎化繊維の強度は低いものしか得られなかった。また、高温の液中で熱処理を行うため、安全面でも問題があり、連続生産する場合、耐炎化時間によっては、設備が非常に大きくなったり、生産性を低下しなければならなくなり、工業化に適するものではない。また、ボビンに巻いた状態でバッチ処理を行う場合は、ボビンの内外層で耐炎化の斑が発生し、得られる炭素繊維の結節強度は低いものとなってしまう。
 また、合成繊維の分野において生産量を増大する手段として、単繊維数を増加させたり、単繊維1本1本の太さを太くしたりして繊維束を太くし、口金1個あたりの吐出量を増加させる方法が知られている。このように繊維束を太くすれば、生産量が増大する一方で、設備費の増加は最低限に抑えられるため、同時にコストダウンにも繋がることから、ポリエステルやナイロンなどの主要な産業用繊維において広く用いられている(特許文献6参照)。
 しかし、アクリルニトリルを主成分とする前駆体を用いて焼成する工程において、単繊維繊度を大きくすることは、反応に必要な酸素の単繊維内部への侵入を阻害するため、構造形成が非常に為され難く、炭素繊維の機械的強度発現性と単繊維繊度が太いことを両立させることは難しいとされてきた。さらに、繊維径が大きく、かつ結節強度が高い炭素繊維を、低コストで得る技術はこれまでなかった。そのために、炭素繊維を樹脂と含浸させる工程や成型加工工程などでの取り扱いに耐えうる、繊維径の大きな炭素繊維を市場に供給することができていなかった。
 本発明は、単繊維繊度が大きくても結節強度が高く、取扱い性、加工性に優れた炭素繊維束を提供することを目的とする。また、本発明は、このような炭素繊維束を用いた複合材料を提供することを目的とする。
 前記課題は、以下の本発明の態様(1)~(9)によって解決される。
 (1)炭素繊維束の単繊維繊度が0.8dtex以上2.5dtex以下であり、結節強度が298N/mm以上である炭素繊維束。
 (2)炭素繊維束の結節強度が345N/mm以上である(1)に記載の炭素繊維束。
 (3)炭素繊維束の単繊維繊度が1.2dtex以上1.6dtex以下、結節強度が380N/mm以上である(1)に記載の炭素繊維束。
 (4)単繊維本数が6,000本以上50,000本以下である(1)~(3)のいずれかに記載の炭素繊維束。
 (5)単繊維本数が23,000本以上38,000本以下である(4)に記載の炭素繊維束。
 (6)アクリロニトリル単位96~99モル%とメタクリル酸ヒドロキシアルキル単位1~4モル%のポリアクリロニトリル系共重合体からなる単繊維繊度が1.7dtex以上5.0dtex以下のポリアクリロニトリル系前駆体繊維束、および/または、熱流束型示差走査熱量計を用いて、30℃、0.10MPa基準の流量で100ml/分の空気気流中、昇温速度10℃/分で測定した30℃以上450℃以下の等速昇温発熱曲線が以下の(A)および(B)の条件を満たす単繊維繊度が1.7dtex以上5.0dtex以下のポリアクリロニトリル系前駆体繊維束を、220~300℃の温度範囲内で昇温する酸化性雰囲気下で、50分以上150分以下熱処理する熱処理工程を有する、結節強度が298N/mm以上である炭素繊維束の製造方法:
(A)等速昇温発熱曲線の230℃以上260℃以下の発熱速度を積分して求めた熱量Jaが140kJ/kg以上200kJ/kg以下、
(B)260℃以上290℃以下の発熱速度を積分して求めた熱量Jbが600kJ/kg以上1000kJ/kg以下。
 (7)前記熱処理工程における熱処理時間T1が、以下(C)の条件を満たす(6)に記載の炭素繊維束の製造方法:
(C)45×ポリアクリロニトリル系前駆体繊維束の単繊維繊度(dtex)≧熱処理時間T1(分)≧45×ポリアクリロニトリル系前駆体繊維束の単繊維繊度(dtex)-60。
 (8)前記熱処理工程において、前記ポリアクリロニトリル系前駆体繊維束の伸長率を-5%以上5%以下とする(7)に記載の炭素繊維束の製造方法。
 (9)(1)~(5)のいずれかに記載の炭素繊維束を含有する樹脂系複合材料。
 本発明によれば、単繊維繊度が大きくても、結節強度が高く、取り扱い性、加工性に優れた炭素繊維束が提供される。また、本発明によれば、このような炭素繊維束を用いた複合材料が提供される。
 本発明の一態様によれば、炭素繊維束の単繊維繊度が0.8dtex以上2.5dtex以下である炭素繊維束であり、結節強度が298N/mm以上である炭素繊維束が提供される。
 本発明の別の態様によれば、ポリアクリロニトリル系前駆体繊維束を、220~300℃の温度範囲内で昇温する酸化性雰囲気下で、50分以上150分以下熱処理する熱処理工程(耐炎化工程)を有する、結節強度が298N/mm以上である炭素繊維束の製造方法が提供される。この製造方法は上記炭素繊維束を製造するために好適である。ここで、ポリアクリロニトリル系前駆体繊維束として、以下に示すiのポリアクリロニトリル系前駆体繊維束およびiiのポリアクリロニトリル系前駆体繊維束からなる群から選ばれる一種もしくは複数種のポリアクリロニトリル系前駆体繊維束を用いることができる。或る一種類の前駆体繊維束が、iおよびiiの両方に該当してもよく、あるいはiおよびiiのいずれか一方のみに該当してもよい。
 i)アクリロニトリル単位96モル%以上99モル%以下とメタクリル酸ヒドロキシアルキル単位1モル%以上4モル%以下のポリアクリロニトリル系共重合体からなるポリアクリロニトリル系前駆体繊維束。ただし、その単繊維繊度は1.7dtex以上5.0dtex以下である。
 ii)熱流束型示差走査熱量計を用いて、100ml/分(30℃、0.10MPa基準の流量)の空気気流中、昇温速度10℃/分で測定した30℃以上450℃以下の等速昇温発熱曲線が、以下の(A)および(B)の両方の条件を満たす、ポリアクリロニトリル系前駆体繊維束。ただし、その単繊維繊度は1.7dtex以上5.0dtex以下である:
(A)等速昇温発熱曲線の230℃以上260℃以下の発熱速度を積分して求めた熱量Jaが140kJ/kg以上200kJ/kg以下、
(B)260℃以上290℃以下の発熱速度を積分して求めた熱量Jbが600kJ/kg以上1000kJ/kg以下。
 本発明に関して、「ポリアクリロニトリル系前駆体繊維束」とは、アクリロニトリルが主成分となる重合物からなる炭素繊維用の繊維束である。その重合物を構成するモノマー単位中のアクリロニトリル単位の比率は、例えば、94モル%以上、さらには96モル%以上とされる。以下、詳細に本発明を説明する。
 本発明の炭素繊維束の原料であるポリアクリロニトリル系前駆体繊維束の原料として用いることができるポリアクリロニトリル系重合体としては、ポリアクリロニトリル単独重合体若しくは共重合体、またはその混合物がある。
 ポリアクリロニトリル系重合体としては、耐炎化反応が内部まで速やかに進行するものが好ましく、メタクリル酸ヒドロキシアルキル単位を共重合するポリアクリロニトリル単共重合体(アクリロニトリル単位と、アクリロニトリル単位以外の1種類のみの単量体との共重合体);若しくはポリアクリロニトリル系前駆体繊維束としたときに、熱流束型示差走査熱量計を用いて、30℃、0.10MPa基準の流量で100ml/分の空気気流中、昇温速度10℃/分で測定した30℃以上450℃以下の等速昇温発熱曲線が以下の(A)(B)の条件を満たすポリアクリロニトリル系共重合体が好ましい。
 (A)等速昇温発熱曲線の230℃以上260℃以下の発熱速度を積分して求めた熱量Jaが140kJ/kg以上200kJ/kg以下
 (B)260℃以上290℃以下の発熱速度を積分して求めた熱量Jbが600kJ/kg以上1000kJ/kg以下。
 ポリアクリロニトリル系共重合体中のメタクリル酸ヒドロキシアルキル単位の含有量は、1~4モル%が好ましい。メタクリル酸ヒドロキシアルキル単位のカルボン酸エステル基は、250℃以上の高温で熱分解してカルボン酸基になる。共重合体中のメタクリル酸ヒドロキシアルキル単位の含有量が1モル%以上であれば、耐炎化工程においてメタクリル酸ヒドロキシアルキル単位のカルボン酸エステル基がカルボン酸基となった際に、耐炎化反応を促進する十分な効果が容易に得られる。一方、4モル%以下であれば、耐炎化反応の暴走を容易に抑制できる。さらに耐炎化工程でのヒドロキシアルキル基の脱離に伴う炭素化収率の低下を抑えることが容易である。
 メタクリル酸ヒドロキシアルキル単位の含有量の下限は、ポリアクリロニトリル系前駆体繊維束(以下適宜「前駆体繊維束」という)の緻密性確保の観点から1.2モル%以上が好ましく、より高性能な炭素繊維が得られるという点で1.5モル%以上がより好ましい。また、メタクリル酸ヒドロキシアルキル単位の含有量の上限は、耐炎化工程での暴走反応を抑制する点から4.0モル%以下が好ましく、炭素化収率の低下を抑制するという点で3.0モル%以下がより好ましい。
 メタクリル酸ヒドロキシアルキル単位の原料となるメタクリル酸ヒドロキシアルキルとしては、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸4-ヒドロキシブチル、メタクリル酸モノグリセリル、メタクリル酸テトラヒドロフルフリルが挙げられる。さらには、これらのメタクリル酸ヒドロキシアルキルを併用しても良い。
 メタクリル酸2-ヒドロキシエチルは、耐炎化工程においてヒドロキシエチル基の脱離温度が240℃以上であること、酸素透過性の向上に十分な嵩高さを有していること、ヒドロキシエチル基が脱離したときの質量の減少が少ないこと、工業的に入手しやすいことなどの点で、本発明で用いる共重合体の構成成分として好適である。
 ポリアクリロニトリル系共重合体は、アクリロニトリル単位とメタクリル酸ヒドロキシアルキル単位を含有することが好ましいが、必要に応じて他のモノマー単位を含有してもよい。あるいは、ポリアクリロニトリル系共重合体が、アクリロニトリル単位とメタクリル酸ヒドロキシアルキル単位からなっていてもよい。メタクリル酸ヒドロキシアルキル単位に替えて、例えば、アクリル酸ヒドロキシアルキル単位を用いることができる。
 他のモノマーとしては、アクリロニトリルと共重合可能なビニル系モノマーが好ましい。具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル等の(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、(メタ)アクリル酸、イタコン酸、クロトン酸等の酸類及びそれらの塩類、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α-メチルスチレン、酢酸ビニルなどが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 ポリアクリロニトリル系共重合体における他のモノマー単位の含有量は、アクリロニトリル単位やメタクリル酸ヒドロキシアルキル単位の含有量を考慮して、3.0モル%以下が好ましい。
 本発明の炭素繊維束の原料であるポリアクリロニトリル系前駆体繊維束の原料として用いることができるポリアクリロニトリル系重合体を得るための重合方法としては、例えば水溶液中におけるレドックス重合、不均一系における懸濁重合、分散剤を使用した乳化重合等が挙げられるが、これらに限定されるものではない。
 一般に、炭素繊維束用ポリアクリロニトリル系前駆体繊維束は、ポリアクリロニトリル系重合体を溶剤に溶解して得た重合体濃度15~30質量%の紡糸原液を、溶剤濃度30~70質量%の水溶液からなる温度20~50℃の凝固浴中に吐出して凝固糸を得、この凝固糸を延伸することによって製造する。以下紡糸方法を説明する。
 <紡糸原液の調製>
 上述の重合体を溶剤に公知の方法で溶解して、紡糸原液とする。溶剤としては、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミドなどの有機溶剤や、塩化亜鉛、チオシアン酸ナトリウムなどの無機化合物の水溶液を用いることができる。前駆体繊維中に金属を含有せず、また、工程が簡略化される点で有機溶剤が好ましく、その中でも前駆体繊維束の緻密性が高いという点で、ジメチルアセトアミドを用いることが好ましい。
 <凝固>
 紡糸原液は、緻密な凝固糸を得るため、また、適正な粘度、流動性を有するように、ある程度以上の重合体濃度を有することが好ましい。紡糸原液における重合体の濃度は、15~30質量%の範囲にあることが好ましく、より好ましくは18~25質量%の範囲である。凝固浴液は、一般に紡糸原液と同じ溶剤の水溶液が用いられる。この際、水が重合体の貧溶媒として機能する。
本発明で得られる炭素繊維束のポリアクリロニトリル系前駆体繊維束の紡糸方法としては、公知の方法を採用でき、具体的には湿式紡糸法、乾湿式紡糸法、乾式紡糸法などが挙げられる。これらの中でも生産性の観点から湿式紡糸法が好ましく用いられる。
 上記紡糸原液を、紡糸口金を介して凝固浴中に吐出して紡糸することで、凝固糸を得ることができる。凝固浴条件は、炭素繊維用前駆対繊維に必要な緻密構造を得ること、高生産性を可能にする凝固性を確保するのに重要である。凝固浴条件としては、溶剤濃度30質量%以上70質量%以下かつ、温度20℃以上50℃以下が好ましい。凝固浴条件がこの範囲内であれば、適正な凝固速度を保ちながら緻密な前駆体繊維束を得ることが出来る。また、後述する前駆体繊維束の単繊維の真円度は、紡糸工程における凝固工程において制御することが可能である。
 凝固浴中の溶剤濃度が70質量%以下であれば、凝固浴中に吐出された紡糸原液の表面における溶剤と水との交換速度が、紡糸原液中への水の拡散速度を上回り、緻密な前駆体繊維を容易に得ることが出来、更に、前駆体繊維束の単糸間の接着を容易に抑制することができる。特に、単繊維繊度および総繊度がともに大きい前駆体繊維束を紡糸する際には、単糸間の接着をさらに抑制する点から、濃度は67質量%以下が好ましい。また、凝固浴溶剤濃度が30質量%以上であれば、凝固浴中に吐出された紡糸原液の表面における溶剤と水との交換速度が、紡糸原液中への水の拡散速度を著しく上回ることを容易に抑制することができ、凝固糸の急激な収縮が起こらない範囲で緻密な前駆体繊維束を容易に得ることが出来る。前駆体繊維束の断面形状は、凝固浴条件により変化する。濃度が30重量%から70重量%の範囲であれば、断面形状を表す真円度は、炭素繊維の性能発現や樹脂含浸性において、良好な範囲内に容易に保たれる。
 一方、凝固浴温度については、50℃以下であれば、凝固浴中に吐出された紡糸原液の表面における溶剤と水との交換速度が、紡糸原液中への水の拡散速度を著しく上回ることを容易に抑制することができ、凝固糸の急激な収縮が起こらない範囲で、緻密な前駆体繊維を容易に得ることが出来る。また、20℃以上であれば、凝固浴中に吐出された紡糸原液の表面における溶剤と水との交換速度と、紡糸原液中への水の拡散速度が適正に保たれ、安定に前駆体繊維束を生産することが容易となる。さらに、凝固浴を過剰に冷却する必要が無く、設備投資やランニングコストを抑制でき、低コストで前駆体繊維束を生産することが可能となる。凝固浴温度は25℃以上が好ましく、35℃以上がさらに好ましい。また凝固浴温度は45℃以下が好ましい。
 本発明におけるポリアクリロニトリル系前駆体繊維束の単繊維繊度は1.7dtex以上5.0dtex以下であることが好ましい。1.7dtex以上であれば、生産性良く、目的の結節強度の炭素繊維束を製造することが容易である。一方、前駆体繊維束の単繊維繊度が5.0dtex以下であれば、耐炎化工程において断面二重構造が顕著とならず、均一な品質の炭素繊維束を容易に安定に生産できる。前駆体繊維束の単繊維繊度は1.8dtex以上が好ましく、2.4dtex以上がさらに好ましい。また単繊維繊度は4.0dtex以下が好ましく、3.2dtex以下がさらに好ましい。
 本発明の製造方法において、ポリアクリロニトリル系前駆体繊維束の単繊維繊度を1.7dtex以上5.0dtex以下とすることにより、単繊維繊度が0.8dtex以上2.5dtex以下の炭素繊維束を得ることができる。
 本発明において、炭素繊維前駆体繊維束および炭素繊維束は6,000本以上50,000本以下であることが好ましい。炭素繊維束が50,000本以下であれば、焼成工程で生じる単繊維の断面方向の構造において単繊維同士間の不均一性を少なくしやすく、十分な機械的性能が得られやすい。また、6,000本以上であれば、生産性が確保しやすくなる。炭素繊維束の本数12,000本以上36,000本以下であることが好ましく、23,000本以上38,000以下がより好ましい。また、ポリアクリロニトリル系前駆体繊維束の単繊維繊度が3.1dtexを超える場合は、総繊度として110,000dtexを超えないことが単繊維同士間の断面方向の構造不均一性を少なくする点で好ましい。
 次に、本発明の炭素繊維の製造方法を説明する。まずポリアクリロニトリル系前駆体繊維束は、酸化性雰囲気下において、220℃以上300℃以下の温度で耐炎化処理されて、耐炎化繊維束とされる。なお、本発明において、「酸化性雰囲気下」とは、二酸化窒素、二酸化硫黄、酸素等の酸化性物質を含有する空気中を意味する。
 耐炎化処理時間は、50~150分間であることが好ましい。耐炎化処理時間が50分間以上であれば、前駆体繊維束を構成する単繊維内部への酸素の拡散を充分に行うことが容易である。酸素の拡散の点から70分以上がさらに好ましい。また、耐炎化処理時間が150分間以下であれば、炭素繊維束の製造工程において耐炎化処理工程が生産性を損なう原因となることなく、効率よく炭素繊維束を製造することが容易である。耐炎化時間は130分以下が好ましく、100分以下がさらに好ましい。
 さらに、耐炎化時間は、ポリアクリロニトリル系前駆体繊維束の繊度に影響を受けるため、単繊維内部まで酸素を拡散させ、単繊維の内部まで耐炎化を行い、結節強度を高めるためには、以下(C)の条件を満たす熱処理時間T1であることが好ましい:
(c)45×ポリアクリロニトリル前駆体繊維の単繊維繊度(dtex)≧熱処理時間T1(分)≧45×ポリアクリロニトリル前駆体繊維の単繊維繊度(dtex)-60。
 本発明では、耐炎化処理の開始から耐炎化工程が終わるまでの過程において、ポリアクリロニトリル系繊維の伸張率が-5%以上5%以下であれば、炭素繊維の品位、特にストランド強度が低下することがなく、充分な強度が発現しやすくなる。またこの時の伸張率が-5%以上5%以下であれば、糸切れ等が発生することなく、安定して耐炎化繊維の生産を行うことが容易である。繊度が太いときの、結節強度発現性の観点から、前記伸張率は0%以上が好ましく、3%以上がさらに好ましい。
 耐炎化処理によって得られる耐炎化繊維束の密度は、1.34~1.43g/cmであることが好ましい。1.34g/cm以上であれば、炭素繊維束の収率を低下させること無く炭素繊維を製造することが容易である。一般的に、耐炎化繊維の密度が高いほど得られる炭素繊維束の収率は向上するが、炭素繊維の性能は低下することが知られており、耐炎化繊維束の密度が1.43g/cm以下であれば、炭素繊維の性能低下を抑えつつ、得られる炭素繊維束の収率を向上することが容易である。得られる炭素繊維の性能保持と収率向上の観点から、耐炎化繊維束の密度は、1.34~1.38g/cmがより好ましい。
 伸長率は、耐炎化処理を受ける区間において、繊維がその区間に導入される速度をA、耐炎化処理を受けた繊維がその区間から導出される速度をBとしたとき、下式(1):
伸長率(%)=(A-B)/A×100・・・・式(1)
により計算される。
 <等速昇温発熱曲線の熱量Ja、Jb>
 本発明において、ポリアクリロニトリル系前駆体繊維束は、熱流束型示差走査熱量計を用いて100ml/分(基準:30℃、0.10MPa)の空気気流中、昇温速度10℃/分で測定したときの30℃以上450℃以下の等速昇温発熱曲線が以下の条件を満たすものが好ましい。
 [条件]:
(A)等速昇温発熱曲線の230℃以上260℃以下の発熱速度を積分して求めた熱量Jaが140kJ/kg以上200kJ/kg以下、かつ、
(B)等速昇温発熱曲線の260℃以上290℃以下の発熱速度を積分して求めた熱量Jbが600kJ/kg以上1000kJ/kg以下。
上述の等速昇温発熱曲線は、前駆体繊維束中で耐炎化反応が進行する時に発生する熱量を示している。
 なお、炭素繊維を製造する際、前駆体繊維束から耐炎化繊維束を得る耐炎化工程では、その初期の処理温度は、耐炎化反応が開始される温度以上の温度、かつ、前駆体繊維束が溶融しない温度以下の温度、の範囲内に設定される。一方、耐炎化反応がある程度進行すれば、耐炎化処理を効率良く行うために、より高い処理温度に設定することができる。一般的には、220℃から300℃の温度域で前駆体繊維束を耐炎化処理するため、本発明者等は、260℃を中心としてこの温度領域を耐炎化工程前半と耐炎化工程後半の2つの温度領域に分けて、230℃以上260℃以下の発熱量を熱量Jaとし、260℃以上290℃以下の発熱量を熱量Jbとし、それぞれの温度領域の発熱量と最終的に得られる炭素繊維束の品質及び性能を比較した。
 その結果、熱量Ja及び熱量Jbが上記の範囲にある場合に、耐炎化反応と酸素拡散がバランス良く行われ、高速耐炎化処理において耐炎化繊維の断面二重構造が抑制され、高品質かつ性能発現性が良好な炭素繊維束が効率良く得られ、単繊維繊度の大きい前駆体繊維束を均一に耐炎化処理出来ることがわかった。なお実際の炭素繊維束を製造する際の耐炎化処理温度に関しては、使用する設備や処理時間の影響を受ける為、耐炎化処理時の温度設定は、220~300℃の範囲内で昇温させ、前駆体繊維を耐炎化処理するために最適な温度設定とすれば良い。
 即ち、熱量Jaが140kJ/kg以上のポリアクリロニトリル前駆体繊維であれば、耐炎化工程前半において適度に耐炎化反応が進行し、前駆体繊維束を熱によって溶融させることなく工程を通過させやすくなる。また、Jaが200kJ/kg以下のポリアクリロニトリル前駆体繊維であれば、耐炎化工程前半において、耐炎化反応が一気に進行することなく、単繊維繊度の大きい前駆体繊維束においても均一に耐炎化処理しやすくなる。熱量Jaは、生産性の観点から150kJ/kg以上がより好ましく、一方、単繊維繊度の大きい前駆体繊維束をより均一に耐炎化処理する観点から190kJ/kg以下がより好ましく、180kJ/kg以下が特に好ましい。
 一方、熱量Jbが600kJ/kg以上のポリアクリロニトリル前駆体繊維であれば、耐炎化工程において生産性を損なうことなく目標とする耐炎化繊維の密度まで前駆体繊維束を耐炎化処理しやすくなる。また、1,000kJ/kg以下のポリアクリロニトリル前駆体繊維であれば、耐炎化工程において、耐炎化反応が緩やかに進行するため、単繊維繊度の大きい前駆体繊維束を均一に耐炎化処理しやすくなり、断面二重構造の形成を抑制しやすくなる。熱量Jbは、生産性向上の観点から620kJ/kg以上が好ましく、更なる生産性向上の観点から640kJ/kg以上がより好ましい。また、単繊維繊度の大きい前駆体繊維束をより均一に耐炎化処理する観点から900kJ/kg以下が好ましい。
 以上のことから熱量Jaを耐炎化工程前半における耐炎化反応性の指標とすることができ、熱量Jbを耐炎化工程後半における耐炎化反応性の指標とすることができることがわかった。なお、熱量Ja及び熱量Jbは、あくまで前駆体繊維束の耐炎化反応性の指標とすることができるものであって、実際の耐炎化工程に適用する処理温度領域は、熱量Jaや熱量Jbの温度領域(即ち、230~260℃や260~290℃)を含んでいても良いし、含んでいなくても良く、用いる前駆体繊維束や使用する設備、処理時間に応じて、220~300℃の範囲で適宜調節することができる。
 また、等速昇温発熱曲線の230℃以上260℃以下の発熱速度を積分して求めた熱量Jaが140kJ/kg以上200kJ/kg以下、及び、260℃以上290℃以下の発熱速度を積分して求めた熱量Jbが600kJ/kg以上1000kJ/kg以下になる耐炎化糸は内外構造差が小さく、また、その耐炎化糸を焼成すると、単繊維として、均質な炭素繊維が容易に得られる。均質な炭素繊維はあらゆる方向からのひずみを生じる応力に対して、高強度を有すると考えられる。このあらゆる方向からの複雑な応力場での強度について、炭素繊維束を結節したものの引張破断応力により評価することができ、結節強度が298N/mm以上である炭素繊維を製造することができる。さらに、単繊維繊度を大きくした時にもこれらの条件を満足すれば物性低下を小さくできる。
 耐炎化工程から得られた繊維束を炭素化して炭素繊維束を得ることができる。耐炎化処理後、炭素化処理前に、得られた耐炎化繊維束を不活性ガス中、最高温度が550℃以上800℃以下の温度で処理する前炭素化処理を行うこともできる。
 得られた耐炎化繊維束を不活性ガス中、800℃以上2,000℃以下の温度で炭素化処理することによって炭素繊維束を製造することができる。さらにこの炭素繊維を不活性ガス中、2,500℃以上2,800℃以下程度の高温で処理することによって、黒鉛繊維を製造することもできる。温度の設定は、炭素繊維の所望の機械的物性により設定する。高強度を有する炭素繊維を得るためには、炭素化処理の最高温度は低いほうがよく、また処理時間を長くすることにより弾性率を高くすることができるため、その結果最高温度を下げることができる。更に、処理時間を長くすることにより、温度勾配を緩やかに設定することが可能となり、欠陥点形成を抑制するのに効果がある。炭素化炉は、炭素化炉の温度設定にもよるが1,000℃以上であればよい。好ましくは1050℃以上である。温度勾配については特に制限はないが、直線的な勾配を設定するのが好ましい。
 本発明の炭素繊維束を用いて複合材料を製造する場合、サイジング処理工程の前に、表面処理が行われても良い。例えば、電解液中で電解酸化処理を施したり、気相または液相での酸化処理を施したりすることによって、複合材料における炭素繊維とマトリックス樹脂との親和性や接着性を向上させることが好ましい。
 サイジング処理液中のサイジング剤の主成分としては、エポキシ樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ウレタン変性エポキシ樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、ポリエーテルサルフォン樹脂などが挙げられ、特に限定されない。
 サイジング処理液中のサイジング剤の含有量は特に限定されず、0.2~20質量%が好ましく、より好ましくは3~10質量%である。サイジング処理液中のサイジング剤の含有量を0.2質量%以上とすることで、炭素繊維に所望する機能を充分に付与することが容易である。また、サイジング処理液中のサイジング剤の含有量を20質量%以下とすることで、サイジング剤の付着量が好ましいものとなり、後工程である複合材料を製造する際の炭素繊維束中へのマトリックス樹脂の含浸性が容易に良好となる。
 サイジング処理液に用いる溶媒または分散媒は特に限定されないが、取り扱い性および安全性の面から、水を用いることが好ましい。
 炭素繊維束100質量%に対するサイジング剤の付着量は、0.3~5質量%であることが好ましく、0.4~3質量%がより好ましい。サイジング剤の付着量を0.3質量%以上とすることで、炭素繊維束に所望する機能を充分に付与することが容易となる。また、サイジング剤の付着量を3質量%以下とすることで、後工程である複合材料を製造する際の炭素繊維束中へのマトリックス樹脂の含浸性が容易に良好となる。
 サイジング処理後の乾燥処理では、サイジング処理液の溶媒または分散媒を乾燥除去する。その際の条件は、120~300℃の温度で、10秒~10分間の範囲が好適であり、より好適には150~250℃の温度で、30秒~4分間の範囲である。乾燥温度を120℃以上とすることで、溶媒を充分に除去することが容易にできる。また、乾燥温度を300℃以下とすることで、サイジング処理された炭素繊維束の品質を維持することが容易にできる。
 乾燥処理の方法は特に限定されず、例えば、蒸気を熱源とするホットロールに炭素繊維束を接触させて乾燥させる方法や、熱風が循環している装置内で炭素繊維束を乾燥させる方法を挙げることができる。
 本発明の炭素繊維束は、単繊維繊度0.8~2.5dtexであることが好ましい。平均単繊維繊度が0.8~2.5dtexの範囲であると、炭素繊維束を構成する単繊維の1本1本の曲げ剛性が高くなり、炭素繊維束としても曲げ剛性の高い炭素繊維束となる。また、酸素透過性が低下する問題や、欠陥の存在確率が増加してしまい、炭素繊維の強度が低下してしまう問題もが起こらないので好ましい。
 更に、本発明において、炭素繊維束を結節したものの引張破断荷重を繊維束の断面積(=単位長さ当たりの質量÷密度)で除した結節強度が298N/mm以上であることが重要である。より好ましくは400N/mm以上、更に好ましくは450N/mm以上であることが望ましい。結節強度は、繊維軸方向以外の繊維束の機械的な性能を反映させる指標となりうるものであり、特に繊維軸に垂直な方向の性能を簡易的に評価することができる。複合材料においては、擬似等方積層により材料を形成することが多く、複雑な応力場を形成する。その際、繊維軸方向の引張、圧縮応力の他に、繊維軸方向の応力も発生している。さらに、衝撃試験のような比較的高速なひずみを付与した場合、材料内部の発生応力状態はかなり複雑であり、繊維軸方向と異なる方向の強度が重要となる。したがって、結節強度が298N/mm未満では、擬似等方材料において十分な機械的性能が発現しない。
 また、本発明の炭素繊維束の単繊維の断面形状は特に限定はなく、円形状、楕円形状、空豆形状のいずれでも良い。ここで、本発明において単繊維の断面形状を表す指標として真円度を採用する。真円度は下記式(2)にて求められる値であって、S及びLはそれぞれ、単繊維の繊維軸に垂直な断面をSEM観察し画像解析することにより得られる、単繊維の断面積及び周長である。
真円度=4πS/L・・・(2)
 真円の真円度は1.00であり、真円から形状が離れるに従いこの数値は小さくなる。したがって、楕円形状、空豆形状の真円度は1.00よりも小さく、例えば楕円形状においては、その長径と短径の比率が高くなれば数値はより小さくなる。また、前駆体繊維束の単繊維の断面形状は、おおよそ炭素繊維束の単繊維の断面形状と一致することから、前駆体繊維由来の形態と考えることができる。単繊維の断面形状決定に大きな影響を及ぼす製造工程として凝固過程がある。凝固浴液の溶剤濃度が高い場合は、凝固速度は比較的遅いため、真円度が大きく、構造が緻密な前駆体繊維束を得ることができる。一方、凝固浴液の溶剤濃度が低い場合は、凝固速度は比較的速いため、真円度が小さく、構造が疎な前駆体繊維束を得る。一般に前駆体繊維束の構造が緻密な場合、炭素繊維束は高強度のものが得られやすい。
 耐炎化工程においては、真円度が大きい場合、前駆体繊維束としての収束性が高く、束として構成する単繊維間に酸素導入量に斑が生じ、さらにまた耐炎化反応に伴う発熱が一部に蓄熱し、局所的に高い温度となる部分が生じる傾向がある。また、それぞれの単繊維において、中心部への酸素拡散が不足する傾向が強くなり、耐炎化反応が十分に進行しにくい。これらの結果、炭素化工程での単糸破断や毛羽発生が多くなり、工程通過性が悪く、得られる炭素繊維束の強度や外観品位の低下が生じる傾向がある。したがって、真円度の大きい前駆体繊維束の焼成においては、耐炎化工程の処理時間を長くするなどの工夫をすることが望まれる。樹脂との複合材料の性能発現の観点からは、真円度の小さい炭素繊維束は単繊維間の空隙が大きくなり、その結果、樹脂の含浸性はより優れたものとすることができる。したがって、樹脂との複合化が容易で、より性能の高い複合材料を得ることができる。一方、真円度の大きい炭素繊維は、形状の回転対称性が高いことから、同じ繊度を有する炭素繊維の比較において、断面2次モーメントの最小の剛性値がもっとも大きくなり、単繊維としての直進性がより高いものとなっている。その結果、強度発現性に優れたものとなる。
 以上のように、炭素繊維の製造し易さ、性能発現性、成型加工性への断面形状の影響には、プラス面、マイナス面がある。したがって、目的とする複合材料の性状や性能により、前駆体繊維の断面形状を選択することができる。好ましい炭素繊維束の単繊維の断面形状は、真円度0.70以上0.99以下である。真円度が0.70以上であれば、前駆体繊維束の緻密性が得られやすく、高強度の炭素繊維束を得られ易くなる傾向が強い。0.99以下であれば、耐炎化工程での繊維束内部、さらには単繊維内部への酸素拡散性を十分なレベルにしやすくなる。より好ましい真円度の範囲は、0.79以上0.97以下である。
 以下に実施例を示して、本発明をさらに具体的に説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。
 <前駆体繊維束の等速昇温発熱曲線>
 前駆体繊維束の等速昇温発熱曲線は、熱流束型示差走査熱量計により、以下のようにして測定した。先ず、前駆体繊維束を4.0mmの長さに切断し、4.0mgを精秤して、エスアイアイ社製の密封試料容器Ag製50μl(商品名:P/N SSC000E030)中に詰め、エスアイアイ社製メッシュカバーCu製(商品名:P/N 50-037)(450℃/15分間、空気中で熱処理済)で蓋をした。次いで、熱流束型示差走査熱量計:エスアイアイ社製DSC/220(商品名)を用いて、10℃/分の昇温速度、エアー供給量100ml/min(エアー供給量の基準:30℃、0.10MPa)の条件で、室温(30℃)から450℃まで測定した。得られた等速昇温発熱曲線の230℃以上260℃以下の発熱量を熱量Jaとし、260℃以上290℃以下の発熱量を熱量Jbとした。
 <炭素繊維束の結節強度の測定>
 結節強度の測定は以下のように実施した。
150mm長の炭素繊維束の両端に長さ25mmの掴み部を取り付け試験体とする。試験体の作製の際、0.1×10-3N/デニールの荷重を掛けて炭素繊維束の引き揃えを行う。この試験体に結び目を1つほぼ中央部に形成し、引張時のクロスヘッド速度は100mm/minで実施し、その最大荷重値を測定する。次いで、この最大荷重値を炭素繊維束の断面積で除した値を結節強度とする。試験数は12本で実施し、最小と最大値を取り除き、10本の平均値を結節強度の測定値とした。
 <ストランド強度及びストランド弾性率の測定>
 ストランド強度及びストランド弾性率は、ASTM D4018の方法に準拠してエポキシ樹脂含浸ストランドの引張物性を測定した。
 <炭素繊維束の真円度>
 (1)サンプルの作製
 長さ5cmに切断した炭素繊維束をエポキシ樹脂(エポマウント主剤:エポマウント硬化剤=100:9(質量比))に包埋し、2cmに切断して横断面を露出させ、鏡面処理した。
 (2)観察面のエッチング処理
 更に、繊維の外形を明瞭にするために、サンプルの横断面を次の方法でエッチング処理した。
・使用装置:日本電子(株)JP-170(商品名) プラズマエッチング装置、
・処理条件:(雰囲気ガス:Ar/O=75/25(体積比)、プラズマ出力:50W、真空度:約120Pa、処理時間:5min。)。
 (3)SEM観察
 前記(1)及び(2)により得られたサンプルの横断面を、SEM(PHILIPS FEI-XL20(商品名))を用いて観察し、画面上に5個以上の繊維断面が写っている写真を任意に5枚撮影した。
 炭素繊維束の単繊維の真円度測定
 画像解析ソフトウェア(日本ローパー(株)製、製品名:Image-Pro PLUS)を用いて繊維断面の外形をトレースし、周長Lおよび面積Sを計測した。各サンプルについて5枚の写真から任意に20個、ただし、1枚の写真から3個以上の繊維断面を選んで計測し、LおよびSの平均値を求め、次式:
真円度=(4πS)/L
により真円度を算出した。
 (実施例1)
 アクリロニトリル、メタクリル酸2-ヒドロキシエチル、過硫酸アンモニウム-亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/メタクリル酸2-ヒドロキシエチル単位=98.5/1.5(モル%)からなるアクリロニトリル系共重合体を得た。このアクリロニトリル系共重合体をジメチルアセトアミドに溶解し、21質量%の紡糸原液を調製した。孔数24,000、孔直径60μmの紡糸口金(紡糸ノズル)を通して、濃度45質量%、温度35℃のジメチルアセトアミド水溶液からなる凝固浴中に紡糸原液を吐出させ、紡糸口金面からの吐出線速度の0.32倍の速度で引き取ることで繊維束(膨潤糸条)を得た。ついで、この繊維束を水洗と同時に5.4倍に延伸し、さらにアミノ変性シリコン/ポリオキシエチレン(6)ラウリルエーテル=91/9(質量比)の油剤組成物が1.5質量%の濃度で水中に分散した油剤処理液からなる第一油浴槽に導き、油剤処理液を繊維束に付与し、ガイドで一旦絞った後、引き続き第一油浴槽と同じ組成・濃度からなる第二油浴槽に導き、再度油剤処理液を繊維素束に付与した。再度油剤処理液を付与した繊維束は加熱ロールを用いて乾燥し、回転速度を所定の条件に調節した加熱ロール間で1.34倍に乾熱延伸をした。この時の膨潤糸条からの全延伸倍率は7.4倍であった。その後、タッチロールにて繊維束に水を付与することで水分率を調整し、単繊維繊度2.5dtexの前駆体繊維束を得た。
 上記の前駆体繊維束を、220~260℃の温度分布の下、70分間、伸長率5.0%で耐炎化処理を施し、密度1.35g/cmの耐炎化繊維束を得た。得られた耐炎化繊維束を、さらに、窒素雰囲気下700℃、3%の伸長率で1.1分間前炭素化処理し、続いて窒素雰囲気中1,300℃、-4.0%の伸長率で1.0分間炭素化処理して炭素繊維束を得た。その後、炭素繊維束に電解酸化方式による表面処理を施し、その後、サイジング剤を付与した。使用したサイジング剤は、主剤として、ジャパンエポキシレジン(株)製「エピコート828(商品名)」を80質量部、乳化剤として旭電化(株)製「プルロニックF88(商品名)」20質量部を混合し、転相乳化により調製した水分散液である。このサイジング剤を炭素繊維束に対し1質量%付着させ、乾燥処理を経た後に炭素繊維束を得た。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度4.4GPa、ストランド弾性率233GPaであった。また、炭素繊維の単繊維繊度1.27dtex、真円度0.82であり、結節強度は417N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは170kJ/kgであり、熱量Jbは725kJ/kgであった。
 (実施例2)
 アクリロニトリル、メタクリル酸2-ヒドロキシエチル、過硫酸アンモニウム-亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/メタクリル酸2-ヒドロキシエチル単位=98.0/2.0(モル%)にした以外は実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度4.3GPa、ストランド弾性率233GPaであった。また、炭素繊維の単繊維繊度1.26dtex、真円度0.82であり、結節強度は410N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは168kJ/kgであり、熱量Jbは722kJ/kgであった。
 (実施例3)
 凝固浴濃度(ジメチルアセトアミドの濃度)45質量%、凝固浴温度25℃とした以外は実施例2と同様にして炭素繊維束を得た。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度4.2GPa、ストランド弾性率232GPaであった。また、炭素繊維の単繊維繊度1.27dtex、真円度0.79であり、結節強度は420N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは175kJ/kgであり、熱量Jbは740kJ/kgであった。
 (実施例4)
 凝固浴濃度50質量%、凝固浴温度35℃とした以外は実施例2と同様にして炭素繊維束を得た。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度4.3GPa、ストランド弾性率232GPaであった。また、炭素繊維の単繊維繊度1.27dtex、真円度0.86であり、結節強度は420N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは170kJ/kgであり、熱量Jbは725kJ/kgであった。
 (実施例5)
 凝固浴濃度50質量%、凝固浴温度40℃とした以外は実施例2と同様にして炭素繊維束を得た。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度4.2GPa、ストランド弾性率233GPaであった。また、炭素繊維の単繊維繊度1.26dtex、真円度0.88であり、結節強度は422N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは172kJ/kgであり、熱量Jbは727kJ/kgであった。
 (実施例6)
 凝固浴濃度60質量%、凝固浴温度45℃とした以外は実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度4.2GPa、ストランド弾性率233GPaであった。また、炭素繊維の単繊維繊度1.27dtex、真円度0.93であり、結節強度は450N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは168kJ/kgであり、熱量Jbは722kJ/kgであった。
 (実施例7)
 凝固浴濃度67質量%、凝固浴温度35℃とした以外は実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度4.2GPa、ストランド弾性率233GPaであった。また、炭素繊維の単繊維繊度1.26dtex、真円度0.95であり、結節強度は490N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは163kJ/kgであり、熱量Jbは710kJ/kgであった。
 (実施例8)
 アクリロニトリル、メタクリル酸2-ヒドロキシエチル、過硫酸アンモニウム-亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/メタクリル酸2-ヒドロキシエチル単位=97.5/2.5(モル%)、凝固浴濃度67質量%、凝固浴温度45℃とした以外は実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度4.2GPa、ストランド弾性率233GPaであった。また、炭素繊維の単繊維繊度1.26dtex、真円度0.98であり、結節強度は510N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは159kJ/kgであり、熱量Jbは698kJ/kgであった。
 (実施例9)
 孔数36,000、孔直径60μmの紡糸口金(紡糸ノズル)を通して、濃度45質量%、温度35℃のジメチルアセトアミド水溶液からなる凝固浴中に紡糸原液を吐出させ、紡糸口金面からの吐出線速度の0.45倍の速度で引き取ることで繊維束(膨潤糸条)を得た以外は実施例1と同じ方法で前駆体繊維束を得た。耐炎化伸張率を-4%とした以外は、実施例1と同様の方法で炭素繊維を製造した。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度4.8GPa、ストランド弾性率235GPaであった。また、炭素繊維の単繊維繊度1.04dtex、真円度0.82であり、結節強度は480N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは190kJ/kgであり、熱量Jbは745kJ/kgであった。
 (実施例10)
 孔数24,000、孔直径60μmの紡糸口金(紡糸ノズル)を通して、濃度45質量%、温度35℃のジメチルアセトアミド水溶液からなる凝固浴中に紡糸原液を吐出させ、紡糸口金面からの吐出線速度の0.40倍の速度で引き取ることで繊維束(膨潤糸条)を得た以外は実施例1と同じ方法で前駆体繊維束を得た。耐炎化伸張率-2.0%とした以外は、実施例1と同様の方法で炭素繊維を製造した。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度4.7GPa、ストランド弾性率235GPaであった。また、炭素繊維の単繊維繊度0.95dtex、真円度0.82であり、結節強度は460N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは185kJ/kgであり、熱量Jbは740kJ/kgであった。
 (実施例11)
 濃度45質量%、温度35℃のジメチルアセトアミド水溶液からなる凝固浴中に紡糸原液を吐出させ、紡糸原液の吐出線速度の0.35倍の速度で引き取ることで繊維束(膨潤糸条)を得た。ついで、この繊維束に対して水洗と同時に5.3倍の延伸を行い、さらにアミノ変性シリコン/ポリオキシエチレン(6)ラウリルエーテル=91/9(質量比)の油剤組成物が、1.5質量%の濃度で水中に分散した油剤処理液からなる第一油浴槽に導き油剤処理液を繊維束に付与し、ガイドで一旦絞った後、引き続き第一油浴槽と同じ組成・濃度からなる第二油浴槽に導き、再度油剤処理液を繊維素束に付与した。この繊維束を加熱ロールを用いて乾燥し、回転速度を所定の条件に調節した加熱ロール間で1.7倍に乾熱延伸をした。この時の膨潤糸条からの全延伸倍率は9.0倍であった。これら以外は実施例1と同様の方法で、単繊維繊度2.3dtexの前駆体繊維束を得た。
 上記の前駆体繊維束を、耐炎化伸張率を1.0%とした以外は実施例1と同様の方法で炭素繊維を製造した。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度5.0GPa、ストランド弾性率235GPaであった。また、炭素繊維の単繊維繊度1.12dtex、真円度0.85であり、結節強度は490N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは175kJ/kgであり、熱量Jbは730kJ/kgであった。
 (実施例12)
 孔数15,000、孔直径60μmの紡糸口金(紡糸ノズル)を通して、濃度45質量%、温度35℃のジメチルアセトアミド水溶液からなる凝固浴中に紡糸原液を吐出させ、紡糸口金面からの吐出線速度の0.23倍の速度で引き取ることで繊維束(膨潤糸条)を得たこと以外は実施例1と同様にして単繊維繊度3.5dtexの前駆体繊維束を得た。
 上記の前駆体繊維束を、220~260℃の温度分布の下、伸張率5%で120分間耐炎化処理を施し、耐炎化繊維束を得た。得られた耐炎化繊維束を、さらに、窒素雰囲気下700℃、3.0%の伸長率で1.2分間前炭素化処理し、続いて窒素雰囲気中1,350℃、-4.0%の伸長率で1.2分間炭素化処理した。これら以外は実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度4.0Pa、ストランド弾性率235GPaであった。また、炭素繊維の単繊維繊度1.69dtex、真円度0.84であり、結節強度は360N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは150kJ/kgであり、熱量Jbは690kJ/kgであった。
 (実施例13)
 孔数12,000、孔直径60μmの紡糸口金(紡糸ノズル)を通して、濃度45質量%、温度35℃のジメチルアセトアミド水溶液からなる凝固浴中に紡糸原液を吐出させ、紡糸口金面からの吐出線速度の0.18倍の速度で引き取ること以外は実施例1と同様にして単繊維繊度4.5dtexの前駆体繊維束を得た。
 上記の前駆体繊維束を、220~260℃の温度分布の下、伸張率5%で150分間耐炎化処理を施し、耐炎化繊維束を得た。得られた耐炎化繊維束を、さらに、窒素雰囲気下700℃、3.0%の伸長率で1.8分間前炭素化処理し、続いて窒素雰囲気中1,300℃、-4.0%の伸長率で1.6分間炭素化処理した。これら以外は実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度3.0GPa、ストランド弾性率230GPaであった。また、炭素繊維の単繊維繊度2.43dtex、真円度0.83であり、結節強度は345N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは135kJ/kgであり、熱量Jbは660kJ/kgであった。
 (実施例14)
 耐炎化処理時間50分とした以外は実施例1と同様の方法で炭素繊維を製造した。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度4.0GPa、ストランド弾性率235GPaであった。また、炭素繊維の単繊維繊度1.27dtex、真円度0.82であり、結節強度は390N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは170kJ/kgであり、熱量Jbは725kJ/kgであった。
 (実施例15)
 耐炎化処理時間120分とした以外は実施例1と同様の方法で炭素繊維を製造した。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度5.2GPa、ストランド弾性率235GPaであった。また、炭素繊維の単繊維繊度1.27dtex、真円度0.82であり、結節強度は480N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは170kJ/kgであり、熱量Jbは725kJ/kgであった。
 (実施例16)
 耐炎化処理時間150分とした以外は実施例1と同様の方法で炭素繊維を製造した。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度5.2GPa、ストランド弾性率235GPaであった。また、炭素繊維の単繊維繊度1.27dtex、真円度0.82であり、結節強度は500N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは170kJ/kgであり、熱量Jbは725kJ/kgであった。
 (実施例17)
 孔数40,000、孔直径60μmの紡糸口金(紡糸ノズル)を通して、濃度45質量%、温度35℃のジメチルアセトアミド水溶液からなる凝固浴中に紡糸原液を吐出させ、紡糸口金面からの吐出線速度の0.32倍の速度で引き取ることで繊維束(膨潤糸条)を得た以外は実施例1と同様にして炭素繊維束を製造した。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度3.9GPa、ストランド弾性率225GPaであった。また、炭素繊維の単繊維繊度1.27dtex、真円度0.82であり、結節強度は298N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは170kJ/kgであり、熱量Jbは725kJ/kgであった。
 (実施例18)
 アクリロニトリル、アクリル酸2-ヒドロキシエチル、過硫酸アンモニウム-亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/アクリル酸2-ヒドロキシエチル単位=98.5/1.5(モル%)にした以外は実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度4.2GPa、ストランド弾性率233GPaであった。また、炭素繊維の単繊維繊度1.26dtex、真円度0.85であり、結節強度は415N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは198kJ/kgであり、熱量Jbは850kJ/kgであった。
 (比較例1)
 アクリロニトリル、アクリルアミド、及びメタクリル酸を、過硫酸アンモニウム-亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/アクリルアミド単位/メタクリル酸単位=96/3/1(モル%)からなるアクリロニトリル系共重合体を得た。このアクリロニトリル系共重合体をジメチルアセトアミドに溶解し、21質量%の紡糸原液を調製した。孔数24,000、孔直径60μmの紡糸口金(紡糸ノズル)を通して、濃度60質量%、温度35℃のジメチルアセトアミド水溶液からなる凝固浴中に紡糸原液を吐出させ、紡糸口金面からの吐出線速度の0.32倍の速度で引き取ることで繊維束(膨潤糸条)を得た。ついで、この繊維束を水洗と同時に5.4倍に延伸し、さらにアミノ変性シリコン/ポリオキシエチレン(6)ラウリルエーテル=91/9(質量比)の油剤組成物が、1.5質量%の濃度で水中に分散した油剤処理液からなる第一油浴槽に導き油剤処理液を繊維束に付与し、ガイドで一旦絞った後、引き続き第一油浴槽と同じ組成・濃度からなる第二油浴槽に導き、再度油剤処理液を繊維素束に付与した。再度油剤処理液を付与した繊維束を加熱ロールを用いて乾燥し、回転速度を所定の条件に調節した加熱ロール間で1.3倍に乾熱延伸をした。この時の膨潤糸条からの全延伸倍率は7.3倍であった。その後、タッチロールにて繊維束に水を付与することで水分率を調整し、単繊維繊度2.5dtexの前駆体繊維束を得た。
 上記の前駆体繊維束を、220~260℃の温度分布の下、伸張率2.0%で180分間耐炎化処理を施し、耐炎化繊維束を得た。得られた耐炎化繊維束を、さらに、窒素雰囲気下700℃、3.0%の伸長率で2.2分間前炭素化処理し、続いて窒素雰囲気中1,300℃、-4.0%の伸長率で2.0分間炭素化処理した。これら以外は実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度3.8GPa、ストランド弾性率231GPaであった。また、炭素繊維の単繊維繊度1.37dtex、真円度0.85であり、結節強度は297N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは190kJ/kgであり、熱量Jbは1151kJ/kgであった。
 (比較例2)
 耐炎化処理時間を120分、耐炎化伸張率を5.0%とした以外は比較例1と同様の方法で炭素繊維を製造した。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度3.2GPa、ストランド弾性率230GPaであった。また、炭素繊維の単繊維繊度1.37dtex、真円度0.85であり、結節強度は275N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは190kJ/kgであり、熱量Jbは1151kJ/kgであった。
 (比較例3)
 耐炎化処理時間を60分、耐炎化伸張率を5.0%とした以外は比較例1と同様の方法で炭素繊維を製造した。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度3.0GPa、ストランド弾性率225GPaであった。また、炭素繊維の単繊維繊度1.40dtex、真円度0.85であり、結節強度は259N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは190kJ/kgであり、熱量Jbは1151kJ/kgであった。
 (比較例4)
 耐炎化処理時間を30分とした以外は実施例1と同様の方法で炭素繊維を製造した。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度3.0GPa、ストランド弾性率235GPaであった。また、炭素繊維の単繊維繊度1.27dtex、真円度0.82であり、結節強度は290N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは170kJ/kgであり、熱量Jbは725kJ/kgであった。
 (比較例5)
 アクリロニトリル、メタクリル酸2-ヒドロキシエチル、過硫酸アンモニウム-亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/メタクリル酸2-ヒドロキシエチル単位=95.0/5.0(モル%)にした。それ以外は実施例1と同様にして炭素繊維束を製造した。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度3.0GPa、ストランド弾性率229GPaであった。また、炭素繊維の単繊維繊度1.21dtex、真円度0.85であり、結節強度は275N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは139kJ/kgであり、熱量Jbは650kJ/kgであった。
 (比較例6)
 孔数12,000、孔直径60μmの紡糸口金(紡糸ノズル)を通して、濃度45質量%、温度35℃のジメチルアセトアミド水溶液からなる凝固浴中に紡糸原液を吐出させ、紡糸口金面からの吐出線速度の0.15倍の速度で引き取ること以外は実施例1と同様にして単繊維繊度5.5dtexの前駆体繊維束を得た。
 上記の前駆体繊維束を、220~260℃の温度分布の下、伸張率5.0%で150分間耐炎化処理を施し、耐炎化繊維束を得た。得られた耐炎化繊維束を、さらに、窒素雰囲気下700℃、3.0%の伸長率で1.8分間前炭素化処理し、続いて窒素雰囲気中1,300℃、-4.0%の伸長率で1.6分間炭素化処理した。これら以外は実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度2.5GPa、ストランド弾性率225GPaであった。また、炭素繊維の単繊維繊度2.78dtex、真円度0.82であり、結節強度は250N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは130kJ/kgであり、熱量Jbは650kJ/kgであった。
 (参考例1)
 耐炎化処理時間180分とした以外は実施例1と同様の方法で炭素繊維を製造した。得られた炭素繊維束のストランド物性を測定したところ、ストランド強度5.3GPa、ストランド弾性率238GPaであった。また、炭素繊維の単繊維繊度1.27dtex、真円度0.82であり、結節強度は510N/mmであった。更に、熱流束型示差走査熱量測定より求められる熱量Jaは170kJ/kgであり、熱量Jbは725kJ/kgであった。
 耐炎化時間を長くすると、結節強度は高くできるが、耐炎化時間が長いため、生産性が実施例に比較して低下してしまう。
 実施例および比較例の試験条件および得られた炭素繊維束の物性を表3および4に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (9)

  1.  炭素繊維束の単繊維繊度が0.8dtex以上2.5dtex以下であり、結節強度が298N/mm以上である炭素繊維束。
  2.  炭素繊維束の結節強度が345N/mm以上である請求項1に記載の炭素繊維束。
  3.  炭素繊維束の単繊維繊度が1.2dtex以上1.6dtex以下、結節強度が380N/mm以上である請求項1に記載の炭素繊維束。
  4.  単繊維本数が6,000本以上50,000本以下である請求項1~3のいずれか一項に記載の炭素繊維束。
  5.  単繊維本数が23,000本以上38,000本以下である請求項4に記載の炭素繊維束。
  6.  アクリロニトリル単位96~99モル%とメタクリル酸ヒドロキシアルキル単位1~4モル%のポリアクリロニトリル系共重合体からなる単繊維繊度が1.7dtex以上5.0dtex以下のポリアクリロニトリル系前駆体繊維束、および/または、熱流束型示差走査熱量計を用いて、30℃、0.10MPa基準の流量で100ml/分の空気気流中、昇温速度10℃/分で測定した30℃以上450℃以下の等速昇温発熱曲線が以下の(A)および(B)の条件を満たす単繊維繊度が1.7dtex以上5.0dtex以下のポリアクリロニトリル系前駆体繊維束を、220~300℃の温度範囲内で昇温する酸化性雰囲気下で、50分以上150分以下熱処理する熱処理工程を有する、結節強度が298N/mm以上である炭素繊維束の製造方法:
    (A)等速昇温発熱曲線の230℃以上260℃以下の発熱速度を積分して求めた熱量Jaが140kJ/kg以上200kJ/kg以下、
    (B)260℃以上290℃以下の発熱速度を積分して求めた熱量Jbが600kJ/kg以上1000kJ/kg以下。
  7.  前記熱処理工程における熱処理時間T1が、以下の(C)の条件を満たす請求項6に記載の炭素繊維束の製造方法:
    (C)45×ポリアクリロニトリル系前駆体繊維束の単繊維繊度(dtex)≧熱処理時間T1(分)≧45×ポリアクリロニトリル系前駆体繊維束の単繊維繊度(dtex)-60。
  8.  前記熱処理工程において、前記ポリアクリロニトリル系前駆体繊維束の伸長率を-5%以上5%以下とする請求項7に記載の炭素繊維束の製造方法。
  9.  請求項1~5のいずれか一項に記載の炭素繊維束を含有する樹脂系複合材料。
PCT/JP2013/061536 2012-04-18 2013-04-18 炭素繊維束および炭素繊維束の製造方法 WO2013157613A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020167011122A KR101984362B1 (ko) 2012-04-18 2013-04-18 탄소 섬유속 및 탄소 섬유속의 제조 방법
CN201811445201.7A CN109518309B (zh) 2012-04-18 2013-04-18 碳纤维束以及碳纤维束的制造方法
EP13778729.7A EP2840173B1 (en) 2012-04-18 2013-04-18 Carbon fiber bundle
US14/395,250 US10837127B2 (en) 2012-04-18 2013-04-18 Carbon fiber bundle and method of producing carbon fiber bundle
JP2013522035A JP5720783B2 (ja) 2012-04-18 2013-04-18 炭素繊維束および炭素繊維束の製造方法
KR1020147029175A KR101656976B1 (ko) 2012-04-18 2013-04-18 탄소 섬유속 및 탄소 섬유속의 제조 방법
CN201380020239.9A CN104246033A (zh) 2012-04-18 2013-04-18 碳纤维束以及碳纤维束的制造方法
US17/098,688 US11970791B2 (en) 2012-04-18 2020-11-16 Carbon fiber bundle and method of producing carbon fiber bundle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012094550 2012-04-18
JP2012-094550 2012-04-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/395,250 A-371-Of-International US10837127B2 (en) 2012-04-18 2013-04-18 Carbon fiber bundle and method of producing carbon fiber bundle
US17/098,688 Continuation US11970791B2 (en) 2012-04-18 2020-11-16 Carbon fiber bundle and method of producing carbon fiber bundle

Publications (1)

Publication Number Publication Date
WO2013157613A1 true WO2013157613A1 (ja) 2013-10-24

Family

ID=49383565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061536 WO2013157613A1 (ja) 2012-04-18 2013-04-18 炭素繊維束および炭素繊維束の製造方法

Country Status (8)

Country Link
US (2) US10837127B2 (ja)
EP (1) EP2840173B1 (ja)
JP (1) JP5720783B2 (ja)
KR (2) KR101984362B1 (ja)
CN (3) CN109505038A (ja)
HU (1) HUE044063T2 (ja)
TW (2) TW201802315A (ja)
WO (1) WO2013157613A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221867A (ja) * 2014-05-23 2015-12-10 東レ株式会社 プリプレグ及びその製造方法ならびに炭素繊維強化複合材料
JP2016030869A (ja) * 2014-07-29 2016-03-07 東レ株式会社 炭素繊維束
JP2017066580A (ja) * 2015-09-29 2017-04-06 東レ株式会社 炭素繊維束およびその製造方法
JP2018145541A (ja) * 2017-03-02 2018-09-20 三菱ケミカル株式会社 炭素繊維束及びその製造方法
JP2018159139A (ja) * 2017-03-22 2018-10-11 三菱ケミカル株式会社 アクリル繊維束、および、アクリル繊維束を用いた炭素繊維の製造方法
WO2019012999A1 (ja) 2017-07-10 2019-01-17 東レ株式会社 炭素繊維束およびその製造方法
JPWO2017204026A1 (ja) * 2016-05-24 2019-03-22 東レ株式会社 炭素繊維束およびその製造方法
WO2019244830A1 (ja) 2018-06-18 2019-12-26 東レ株式会社 炭素繊維およびその製造方法
WO2023008273A1 (ja) 2021-07-26 2023-02-02 東レ株式会社 炭素繊維束およびその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101626223B1 (ko) * 2014-12-23 2016-06-01 주식회사 효성 탄소 섬유 전구체 섬유용 중합물 및 이를 이용한 탄소 섬유
AU2016381341B2 (en) 2015-12-31 2021-06-03 Ut-Battelle, Llc Method of producing carbon fibers from multipurpose commercial fibers
CN105544021A (zh) * 2016-02-18 2016-05-04 上海应用技术学院 一种抑制碳纤维结构不均匀性的方法
KR102142368B1 (ko) * 2017-10-31 2020-08-07 도레이 카부시키가이샤 탄소섬유 다발 및 이의 제조방법
US11267166B2 (en) * 2019-12-18 2022-03-08 Toyota Motor Engineering & Manufacturing North America, Inc. Devices, systems, and methods for generating a single fiber path of a composite material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314624A (ja) 1989-06-09 1991-01-23 Idemitsu Kosan Co Ltd 炭素繊維の製造方法
JPH0314625A (ja) 1989-06-09 1991-01-23 Idemitsu Kosan Co Ltd 炭素繊維用ピッチ及びそれを用いた炭素繊維の製造方法
JPH0931758A (ja) 1988-04-26 1997-02-04 Toray Ind Inc 炭素繊維
JP2002201569A (ja) 2000-11-06 2002-07-19 Toray Ind Inc ゴム補強用コード及び繊維強化ゴム材料
JP2004300600A (ja) 2003-03-31 2004-10-28 Toray Ind Inc 耐炎化繊維、炭素繊維およびそれらの製造方法
JP2008202207A (ja) 2007-01-26 2008-09-04 Toray Ind Inc 炭素繊維束およびその製造方法
WO2010143681A1 (ja) * 2009-06-10 2010-12-16 三菱レイヨン株式会社 機械的性能発現に優れた炭素繊維束
JP2010285710A (ja) 2009-06-10 2010-12-24 Mitsubishi Rayon Co Ltd 炭素繊維束およびその製造方法
JP2011046942A (ja) * 2009-07-31 2011-03-10 Mitsubishi Rayon Co Ltd ポリアクリロニトリル系共重合体、炭素繊維用ポリアクリロニトリル系前駆体繊維、および炭素繊維の製造方法
WO2012050171A1 (ja) * 2010-10-13 2012-04-19 三菱レイヨン株式会社 炭素繊維前駆体繊維束、炭素繊維束、及びそれらの利用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742925A (en) * 1980-08-22 1982-03-10 Toho Rayon Co Ltd Production of high-performance carbon fiber strand
JPS6445830A (en) 1987-08-13 1989-02-20 Toray Industries High performance carbon fiber cord
EP0378187A3 (en) 1989-01-13 1990-10-31 Idemitsu Kosan Company Limited Pitch for carbon fibers, process for production of said pitch, and process for production of carbon fibers using said pitch
ATE272670T1 (de) 1999-12-15 2004-08-15 Toray Industries Seil zur verstärkung von gummiartikeln und faserverstärktes material
JP2002038368A (ja) 2000-07-24 2002-02-06 Mitsubishi Rayon Co Ltd 炭素繊維束及び炭素繊維束の表面処理方法
JP2003328271A (ja) * 2002-05-08 2003-11-19 Toho Tenax Co Ltd 炭素繊維ストランド、及び炭素繊維強化樹脂
JP4630193B2 (ja) * 2004-02-13 2011-02-09 三菱レイヨン株式会社 炭素繊維前駆体繊維束の製造方法及び製造装置
JP4360233B2 (ja) * 2004-03-11 2009-11-11 東レ株式会社 ゴルフシャフト
PL1778905T3 (pl) 2004-08-10 2009-02-27 Toho Tenax Europe Gmbh Wielostopniowo skręcana nić z włókna węglowego
CN101861416B (zh) * 2007-11-06 2012-06-13 东邦泰纳克丝株式会社 碳纤维束及其制造方法
JP2009197358A (ja) * 2008-02-21 2009-09-03 Toray Ind Inc 耐炎ポリマー繊維束および耐炎繊維束の製造方法
BRPI1012968A2 (pt) 2009-06-10 2018-01-16 Mitsubishi Rayon Co fibra intumescida de acrilonitrilo para fibra de carbono, feixe de fibra precursor, feixe estabilizado, feixe de fibra de carbono e métodos de produção dos mesmos
CN101643943B (zh) * 2009-07-10 2011-06-22 东华大学 聚丙烯腈基碳纤维原丝的制备方法
JP5533743B2 (ja) 2010-09-24 2014-06-25 東レ株式会社 繊維強化プラスチックの製造方法
CN102154740A (zh) * 2011-05-13 2011-08-17 北京化工大学 一种制备高强度炭纤维的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931758A (ja) 1988-04-26 1997-02-04 Toray Ind Inc 炭素繊維
JPH0314624A (ja) 1989-06-09 1991-01-23 Idemitsu Kosan Co Ltd 炭素繊維の製造方法
JPH0314625A (ja) 1989-06-09 1991-01-23 Idemitsu Kosan Co Ltd 炭素繊維用ピッチ及びそれを用いた炭素繊維の製造方法
JP2002201569A (ja) 2000-11-06 2002-07-19 Toray Ind Inc ゴム補強用コード及び繊維強化ゴム材料
JP2004300600A (ja) 2003-03-31 2004-10-28 Toray Ind Inc 耐炎化繊維、炭素繊維およびそれらの製造方法
JP2008202207A (ja) 2007-01-26 2008-09-04 Toray Ind Inc 炭素繊維束およびその製造方法
WO2010143681A1 (ja) * 2009-06-10 2010-12-16 三菱レイヨン株式会社 機械的性能発現に優れた炭素繊維束
JP2010285710A (ja) 2009-06-10 2010-12-24 Mitsubishi Rayon Co Ltd 炭素繊維束およびその製造方法
JP2011046942A (ja) * 2009-07-31 2011-03-10 Mitsubishi Rayon Co Ltd ポリアクリロニトリル系共重合体、炭素繊維用ポリアクリロニトリル系前駆体繊維、および炭素繊維の製造方法
WO2012050171A1 (ja) * 2010-10-13 2012-04-19 三菱レイヨン株式会社 炭素繊維前駆体繊維束、炭素繊維束、及びそれらの利用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2840173A1

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221867A (ja) * 2014-05-23 2015-12-10 東レ株式会社 プリプレグ及びその製造方法ならびに炭素繊維強化複合材料
JP2016030869A (ja) * 2014-07-29 2016-03-07 東レ株式会社 炭素繊維束
JP2017066580A (ja) * 2015-09-29 2017-04-06 東レ株式会社 炭素繊維束およびその製造方法
JPWO2017204026A1 (ja) * 2016-05-24 2019-03-22 東レ株式会社 炭素繊維束およびその製造方法
US11313054B2 (en) 2016-05-24 2022-04-26 Toray Industries, Inc. Carbon fiber bundle
JP2018145541A (ja) * 2017-03-02 2018-09-20 三菱ケミカル株式会社 炭素繊維束及びその製造方法
JP2018159139A (ja) * 2017-03-22 2018-10-11 三菱ケミカル株式会社 アクリル繊維束、および、アクリル繊維束を用いた炭素繊維の製造方法
WO2019012999A1 (ja) 2017-07-10 2019-01-17 東レ株式会社 炭素繊維束およびその製造方法
KR20200028334A (ko) 2017-07-10 2020-03-16 도레이 카부시키가이샤 탄소섬유 다발 및 그 제조 방법
WO2019244830A1 (ja) 2018-06-18 2019-12-26 東レ株式会社 炭素繊維およびその製造方法
KR20210019029A (ko) 2018-06-18 2021-02-19 도레이 카부시키가이샤 탄소 섬유 및 그의 제조 방법
WO2023008273A1 (ja) 2021-07-26 2023-02-02 東レ株式会社 炭素繊維束およびその製造方法
KR20240034682A (ko) 2021-07-26 2024-03-14 도레이 카부시키가이샤 탄소 섬유 다발 및 그 제조 방법

Also Published As

Publication number Publication date
US20150114262A1 (en) 2015-04-30
TWI620843B (zh) 2018-04-11
US20210062372A1 (en) 2021-03-04
TW201802315A (zh) 2018-01-16
TW201402892A (zh) 2014-01-16
CN109505038A (zh) 2019-03-22
EP2840173A1 (en) 2015-02-25
EP2840173B1 (en) 2019-03-27
KR20140138989A (ko) 2014-12-04
HUE044063T2 (hu) 2019-09-30
KR20160052790A (ko) 2016-05-12
CN104246033A (zh) 2014-12-24
JP5720783B2 (ja) 2015-05-20
US10837127B2 (en) 2020-11-17
JPWO2013157613A1 (ja) 2015-12-21
CN109518309A (zh) 2019-03-26
EP2840173A4 (en) 2015-04-22
KR101656976B1 (ko) 2016-09-12
CN109518309B (zh) 2022-06-14
KR101984362B1 (ko) 2019-05-30
US11970791B2 (en) 2024-04-30

Similar Documents

Publication Publication Date Title
JP5720783B2 (ja) 炭素繊維束および炭素繊維束の製造方法
JP5765420B2 (ja) 炭素繊維束および炭素繊維の製造方法
JP5324472B2 (ja) 耐炎化繊維と炭素繊維の製造方法
JP2006299439A (ja) 炭素繊維およびその製造方法、並びにアクリロニトリル系前駆体繊維およびその製造方法
JP2012188781A (ja) 炭素繊維およびその製造方法
JP2010242249A (ja) 高強度炭素繊維用耐炎化繊維及びその製造方法
JP4875238B2 (ja) 炭素繊維およびその前駆体の製造方法並びに油剤付着方法
JP2013181264A (ja) 炭素繊維束
JP4088500B2 (ja) 炭素繊維の製造方法
JP4446991B2 (ja) 炭素繊維用アクリロニトリル系前駆体繊維の製造方法
JP2004060126A (ja) 炭素繊維及びその製造方法
JP5842343B2 (ja) 炭素繊維前駆体アクリル繊維束の製造方法
JP2006233360A (ja) 炭素繊維および炭素繊維の製造方法
JP2023146345A (ja) 炭素繊維束及び炭素繊維束の製造方法
JP2022154119A (ja) 炭素繊維の製造方法
JP2005248358A (ja) 炭素繊維前駆体繊維
JP2007284807A (ja) アクリロニトリル系炭素繊維前駆体繊維束及びその製造方法、並びに炭素繊維束
JPH06228810A (ja) 炭素繊維用前駆体繊維の製造方法
JP2002302827A (ja) アクリロニトリル系前駆体繊維の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013522035

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147029175

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14395250

Country of ref document: US

Ref document number: 2013778729

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE