WO2013151308A1 - 알콕시실릴기를 갖는 에폭시 화합물, 이를 포함하는 조성물, 경화물, 이의 용도 및 알콕시실릴기를 갖는 에폭시 화합물의 제조방법 - Google Patents

알콕시실릴기를 갖는 에폭시 화합물, 이를 포함하는 조성물, 경화물, 이의 용도 및 알콕시실릴기를 갖는 에폭시 화합물의 제조방법 Download PDF

Info

Publication number
WO2013151308A1
WO2013151308A1 PCT/KR2013/002730 KR2013002730W WO2013151308A1 WO 2013151308 A1 WO2013151308 A1 WO 2013151308A1 KR 2013002730 W KR2013002730 W KR 2013002730W WO 2013151308 A1 WO2013151308 A1 WO 2013151308A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
epoxy
epoxy compound
group
composition
Prior art date
Application number
PCT/KR2013/002730
Other languages
English (en)
French (fr)
Inventor
전현애
박수진
탁상용
김윤주
박숙연
박성환
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to US14/390,340 priority Critical patent/US10689482B2/en
Priority to EP13772355.7A priority patent/EP2835373B1/en
Publication of WO2013151308A1 publication Critical patent/WO2013151308A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • C07D303/26Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds having one or more free hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/28Ethers with hydroxy compounds containing oxirane rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/3281Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Definitions

  • Epoxy compound having an alkoxysilyl group a composition comprising the same, a cured product, uses thereof and a method for producing an epoxy compound having an alkoxysilyl group
  • the present invention relates to an epoxy compound having an alkoxysilyl group exhibiting excellent heat resistance in a composite (hereinafter referred to as an "alkoxysilyl epoxide compound"), a composition comprising the same, a cured product, and a use thereof and an epoxy compound having an alkoxysilyl group. It relates to a manufacturing method. More specifically, the present invention provides a composite. It has excellent heat resistance, specifically, low coefficient of thermal expansion (CTE) and high glass transition temperature synergistic effect (including Tg lease which does not exhibit Yura transition temperature) in the composite and requires a separate silane coupling agent.
  • the present invention relates to an alkoxysilyl epoxy compound, a composition containing the same, a cured product, a use thereof, and an epoxy compound having an alkoxysilyl group and a production method.
  • the thermal expansion coefficient of the polymer material specifically, the epoxy compound self-cured product is approximately 50 to 80 ppm / ° C
  • the thermal expansion coefficient of the ceramic material and the metal material which are inorganic particles, (for example, the thermal expansion coefficient of silicon is 3 to 5 ppm / ° C,
  • the coefficient of thermal expansion of copper is 17 ppm / ° C.), and the coefficient of thermal expansion is very large.
  • the polymer material is combined with the inorganic material or the metal material.
  • the physical properties and processability of the polymeric material are significantly limited due to the different coefficients of thermal expansion of the polymeric and inorganic or metallic materials.
  • the components may be changed during process and / or use temperature change. Due to the significant difference in thermal expansion coefficient (CTE-mismatch), product defects such as crack generation of the inorganic layer, warpage of the substrate, peeling-off of the coating layer, and cracking of the substrate occur. Due to the large CTE of the polymer material and the resulting dimensional change, the next-generation semiconductor substrate, PCBCprinted circuit board, packaging, 0 TFT (0rganic thin film transistor) and flexible display substrate (flexible) display substrate) is limited.
  • CTE-mismatch thermal expansion coefficient
  • product defects such as crack generation of the inorganic layer, warpage of the substrate, peeling-off of the coating layer, and cracking of the substrate occur. Due to the large CTE of the polymer material and the resulting dimensional change, the next-generation semiconductor substrate, PCBCprinted circuit board, packaging, 0 TFT (0rganic thin film transistor) and flexible display substrate (flexible) display substrate) is limited.
  • a large amount of silica inorganic particles of about 2 to 30 sizes can be used to reduce the CTE.
  • a large amount of inorganic particle layering is accompanied by a problem of deterioration of workability and physical properties of the part. That is, the decrease in fluidity due to the large amount of inorganic particles and the formation of voids in the narrowing of the layers are problematic.
  • the viscosity of the material increases rapidly due to the addition of the inorganic particles. Further, when the size of the inorganic particles due to the miniaturization of a semiconductor structure using the trend or a filler of not more than 1 is reduced, the fluidity decreases (increases the viscosity) the problem becomes much worse. In addition, when using an inorganic particle with a large average particle diameter, the peninsula which becomes uneven in the application site
  • a new alkoxysilyl epoxy compound which exhibits improved heat resistance in the composite, specifically low CTE and high glass transition temperature properties and excellent flame retardancy in the cured product.
  • an epoxy composition is provided which exhibits improved heat resistance in the composite, specifically low CTE and high glass transition temperature properties and excellent flame retardancy in the cured product.
  • the cured product of the epoxy composition according to one embodiment of the present invention exhibits improved heat resistance in the composite, specifically, low CTE and high glass transition temperature properties and excellent flame retardancy in the cured product. This is provided.
  • the use of the epoxy composition according to one embodiment of the present invention is provided.
  • a method for producing an epox compound having an alkoxysilyl group is provided.
  • An epoxy compound having an alkoxysilyl group of the formula (1) is provided.
  • the core unit C is independently selected from the structures of Chemical Formulas 2-1 to 2-5, and a plurality of cores present in Chemical Formula 1 Core units C may be the same or different from each other,
  • X is -CH 2- , -C (C3 ⁇ 4) 2- , -C (CF 3 ) 2- , -S- or -S0 2-
  • Y is H and Each independently selected from the group consisting of C1 to C5 alkyl groups,
  • n is a longevity of 1 to 10, when n is 1, R is a structure of formula 3a or 3b, when n is 2 or more, at least one of the plurality of R is a structure of formula 3a or 3b And, the remainder is hydrogen, the epoxy compound of the general formula 2- 1, wherein all the core units of the epoxy compound of the general formula (1), X is -C (C3 ⁇ 4) 2- , R is the formula (3b) is excluded.
  • R a to R c is a C1-5 alkoxy group and the rest is a C1-10 alkyl group, the alkoxy group and the alkyl group may be a straight chain or branched chain, m is 3 Is an integer of 10 to 10).
  • an epoxy composition comprising an epoxy compound having an alkoxysilyl group of formula (1).
  • each Core Unit C is each independently selected from the structures of Chemical Formulas 2-1 to 2-5, and in the plurality of Core Units C in Formula 1, each Core Unit C is the same as or different from each other. May vary;
  • X is - (3 ⁇ 4-, -C (CH 3 ) 2 -, -C (CF 3) 2 -, -S- or -S0 2 -, and in formula 3 2-, Y is H And it is independently selected from the group consisting of C1 to C5 alkyl group,
  • n is an integer of 1 to 10, when n is 1, R is a structure of formula 3a or 3b, when n is 2 or more, at least one of a plurality of R is of the formula 3a or chemical Structure, and the rest is hydrogen.
  • R a to R c is a C1-5 alkoxy group and the rest are a C1-10 alkyl group, the alkoxy group and the alkyl group may be a straight chain or branched chain, m is 3 Is an integer from -10.
  • a glycidyl ether epoxy compound a glycidyl epoxy compound, a glycidyl amine epoxy compound, a glycidyl ester epoxy compound, a rubber-modified epoxy compound, an aliphatic poly glycidyl epoxy compound, and
  • an epoxy composition further comprising at least one kind of epoxy compound selected from the group consisting of aliphatic glycidyl amine epoxy compounds.
  • the epoxy compound has a core structure of bisphenol A, bisphenol F, bisphenol S, biphenyl, naphthalene, benzene, thiodiphenol, fluorene, anthracene, isocyanurate, triphenylmethane, Epoxy compositions having 1,1,2,2-tetraphenylethane, tetraphenylmethane, 4,4'-diaminodiphenylmethane, aminophenols, cycloaliphatic, or novolak units are provided. ⁇
  • the epoxy compound is provided with an epoxy composition having bisphenol A, biphenyl, naphthalene, or fluorene as the core structure.
  • an epoxy composition having bisphenol A, biphenyl, naphthalene, or fluorene as the core structure.
  • An epoxy composition comprising at least one epoxy compound selected from the group consisting of a diester epoxy compound, a rubber-modified epoxy compound, an aliphatic poly glycidyl epoxy compound, and an aliphatic glycidyl amine epoxy compound; Is provided.
  • the epoxy compound of the sixth aspect based on the total weight of the epoxy compound 30 to 100% by weight of the epoxy compound having an alkoxysilyl group and glycidyl ether epoxy compound, glycidyl epoxy compound, glycidylamine epoxy compound, glycy Epoxy composition comprising at least one kind of epoxy compound Owt3 ⁇ 4 to 70% selected from the group consisting of a diester epoxy compound, a rubber modified epoxy compound, an aliphatic poly glycidyl epoxy compound and an aliphatic ' glycidyl amine epoxy compound Is provided.
  • an epoxy composition further comprising at least one kind of layering agent selected from the group consisting of inorganic particles or fibers.
  • the inorganic particles are at least one metal oxide selected from the group consisting of silica, zirconia, titania, alumina, silicon nitride and aluminum nitride, and T-10 type silsesquioxane and ladder type silsesquinoxane And at least one epoxy composition selected from the group consisting of caged silsesquinoxanes.
  • the inorganic particles are provided with an epoxy composition of 5wt% to 95 3 ⁇ 4 based on the total weight of solids of the epoxy composition.
  • the inorganic particles are provided with a 30wt% to 95% of the epoxy composition in an ", based on the total weight of the solid content of the epoxy composition. According to my 12th opinion,
  • the inorganic particles are provided with an epoxy composition of 5wt3 ⁇ 4> to 60% based on the total weight of solids of the epoxy composition. According to point thirteen,
  • the fiber is glass fiber and crystalline polyester fiber selected from the group consisting of E glass fiber, T glass fiber, S glass fiber, NE glass fiber, E glass fiber, H glass fiber, and quartz, polyethylene terephthalate fiber, wholly aromatic fibers, polyoxyethylene Ben jajol fiber, nylon fiber, polyethylene naphthalate fiber, a polypropylene fiber, a polyether, polysulfone fiber.
  • An epoxy composition is provided that is at least one selected from the group consisting of organic fibers selected from the group consisting of polyvinylidene fluoride fibers, polyethylene sulfide fibers, and polyetheretherketone ' fibers.
  • an epoxy composition wherein the fiber is an E glass fiber. According to view 15,
  • the fiber is provided with an epoxy composition which is a T glass fiber.
  • an epoxy composition wherein the fibers are comprised between 10 wt% and 90% relative to the total weight of solids of the epoxy composition.
  • the epoxy composition which further contains hardening is provided. According to view 19,
  • an epoxy composition further comprising an alkoxysilyl group semicoagulant is provided. According to my 20th opinion,
  • the alkoxysilyl group reaction catalyst is at least one inorganic acid selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid, acetic acid and an acid, ammonia, KOH, NH 4 0H, amine, transition metal alkoxide, tin (tin).
  • the alkoxysilyl group reaction catalyst is at least one inorganic acid selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid, acetic acid and an acid, ammonia, KOH, NH 4 0H, amine, transition metal alkoxide, tin (tin)
  • tin tin
  • a composition of an epoxy compound having an alkoxysilyl group is used in an amount of 0.01 to 0.1 equivalents based on 1 equivalent of the alkoxysilyl group of the epoxy compound having an alkoxysilyl group.
  • composition of an epoxy compound having an alkoxysilyl group further comprising water.
  • a substrate comprising the epoxy composition of any of claims 2 to 22. According to Chapter 25—according to
  • any of the second to twenty-second views There is provided a laminate comprising a metal layer on a base layer made of an epoxy composition. According to view 27,
  • a semiconductor device including the printed wiring board of the 27th aspect is provided. According to 29th opinion,
  • a semiconductor packaging material comprising the epoxy composition of any of claims 2 to 22. According to 30th opinion,
  • a semiconductor device comprising the semiconductor packaging material of the 29th aspect is provided. According to opinion 31,
  • An adhesive comprising the epoxy composition of any of claims 22 to 22. According to my thirty-second opinion,
  • positioned at the prepreg of a thirty-fourth aspect is provided. According to view 36,
  • cured material of an epoxy composition is provided. According to 37,
  • a cured product of an epoxy composition having a thermal expansion coefficient of 60 ppm / ° C or less is provided. According to view 38,
  • a cured product of an epoxy composition wherein the glass transition is higher than lOCTC or does not exhibit a glass transition temperature.
  • the core unit C is independently selected from the structures of Chemical Formulas 2-1 to 2-5, and each of the core unit C in the plurality of core units C in Chemical Formula 1 is the same as each other. May be different or different,
  • X is-(3 ⁇ 4-, -C (CH 3 ) 2- , — C (CF 3 ) 2- , -S- or -S0 2-
  • Y is Each independently selected from the group consisting of H and C1 to C5 alkyl groups
  • n is an integer of 1 to 10, when n is 1, R is a structure of formula 3a, when n is 2 or more, at least one of the plurality of R is a structure of formula 3a, and the rest is hydrogen.
  • R a to R c is an alkyl group having 1 to 5 carbon atoms, the remainder is an alkyl group having 1 to 10 carbon atoms, the alkoxy group and the alkyl group may be linear or branched, m is 3 to 10 of Is an integer.
  • 1 is an integer of 1 to 8
  • X is Hal, such as CI, Br. Or I.
  • R a to R c is a C1-5 alkoxy group and the rest are a C1-10 alkyl group, the alkoxy group and The alkyl group may be branched straight chain.
  • a method for preparing an epoxy compound having an alkoxysilyl group which is reacted at room temperature to 120 ° C. for 1 hour to 72 hours is provided.
  • Epoxy compositions are characterized in that in the composites and / or cured products, the chemical reactions of alkoxysilyl groups with fillers (fibers and / or particles) and the formation of chemical bonds by chemical reactions of the alkoxysilyl period result in improved heat resistance, ie, the CTE of the epoxy composites. It is reduced and does not exhibit a glass transition temperature rise or glass transition temperature (hereinafter referred to as '3 ⁇ 4 lease'). Furthermore, the hardened
  • the adhesiveness to the metal film is excellent due to the chemical bonding of the functional groups and alkoxysilyl groups on the surface of the metal film.
  • the alkoxysilyl of the present invention does not need to be blended with a silane coupling agent, which is generally formulated in the epoxy composition due to the improvement of the chemical bond efficiency by the alkoxysilyl epoxy compound.
  • the epoxy composition including the epoxy compound has excellent curing efficiency, and exhibits excellent thermal expansion characteristics of low CTE and high glass transition temperature or Tg lease when forming a composite by curing.
  • Example 1 is a graph showing the dimensional change according to the change in the silver of the composite according to Example 1.
  • Example 3 is a flame retardancy evaluation results of the composite according to Example 1 and Comparative Example 1 It is photograph to show.
  • the present invention provides a novel alkoxysilyl-based epoxy compound having improved heat resistance in the composite by curing the epoxy composition, specifically low CTE and high Tg or Tg lease and / or hardenability in the cured product, epoxy composition comprising the same. And to provide a cured product, its use and production method thereof.
  • composite refers to a cured product of a composition comprising an epoxy compound and a layering agent (fibers and / or inorganic particles).
  • the term “cured product” refers to a cured product of a composition comprising an epoxy compound, and is selected from the group consisting of a layering agent, an additional curing agent, and an optional curing catalyst and other additives in addition to the epoxy compound and the curing agent. It refers to a cured product of a composition including any epoxy compound and a curing agent, including at least one kind, and the cured product may include a semi-cured material.
  • the cured product has a broader meaning than the composite, but the cured product having the inorganic particles or the fiber reinforced may have the same meaning as the composite.
  • the alkoxysilyl epoxy compound according to the present invention may form a complex by curing.
  • the epoxy group reacts with the curing agent and the curing reaction proceeds, while the alkoxysilyl group has a layering agent (fiber) / Or inorganic particles) to form a surface bond and / or an alkoxysilyl term chemical bond with the surface. Therefore, the chemical bonds of the very high epoxy composite systems As it shows the formation efficiency, it shows low CTE and high glass transition temperature synergistic effect or Tg-less. Therefore, the dimensional stability is improved. In addition, no separate and silane coupling agent is required. Moreover, the hardened
  • the epoxy composition according to the present invention exhibits excellent adhesion with a metal film because it is chemically bonded to a -0H group on a metal surface by a metal surface treatment when applied to a chemically treated metal film, for example, copper foil.
  • a metal surface treatment when applied to a chemically treated metal film, for example, copper foil.
  • the core unit C is independently selected from the structures of Chemical Formulas 2-1 to 2-5, and in the plurality of core unit C in Chemical Formula 1, each core unit C is the same as or different from each other.
  • each core unit C is the same as or different from each other.
  • X is -CH2-, -C (C3 ⁇ 4) 2- , -C (CF 3 ) 2- , -S- or -S0 2-
  • Y is H and C1
  • n is an integer of 1 to 10
  • R is a structure of formula 3a or 3b
  • At least one of R is a structure of Formula 3a or 3b, the remainder is hydrogen.
  • epoxy compounds of Formula 2-1 in which all core units of the epoxy compound of Formula 1, X is -c (c3 ⁇ 4) 2- , and R is Formula 3b, are excluded.
  • R a to R c is an alkoxy group having 1 to 5 carbon atoms, preferably an ethoxy group, the remainder is an alkyl group having 1 to 10 carbon atoms, and m is an integer of 3 to 10, preferably It is an integer of 3-6.
  • the alkoxy group and the alkyl group may be linear or branched chain.
  • alkoxy group is a monovalent group which is -OR (R is an alkyl group), which may be linear or branched chain.
  • alkyl group "' refers to a monovalent hydrocarbon group. Thus, it may be straight or branched chain.
  • Core unit C of the repeating units constituting the epoxy compound of Formula 1 is selected from Formulas 2-1 to 2-5.
  • the plurality of core units C constituting the epoxy compound of Formula 1 may be independently selected from the group consisting of Formulas 2—1 to 2-5. Therefore, the plurality of core units C may be all the same or different structures.
  • the term "different structure " of a core unit means not only different types of cores themselves but also identical core structures. It includes the case where the kind of substituent and the linking position in Formula (1) are different.
  • the core unit includes a core of Formula 2-1 and a core of Formula 2-2.
  • the case where the kind of the substituent is different is, for example, in the case of including the core structure in which X is -CH 2 -and the core structure in which X is -C (C) 2 -in the formula (2-1).
  • the core structure of Formula 2-2 connected to the core unit of Formula 1 at positions 1 and 6 and the core structure of Formula 2-2 connected at positions 2 and 7 are included.
  • the plurality of core units C may include two different structures of core units (called C1 and C2 for convenience), in which case the core unit C1 repeat unit and core
  • the epoxy compound including the unit C2 repeating unit may be in the form of an alternating copolymer such as Chemical Formula 1A, a block copolymer such as Chemical Formula 1B, or a random copolymer such as Chemical Formula 1C. Can be.
  • Epoxy Composition According to another embodiment of the present invention, there is provided a composition comprising the novel alkoxysilyl epoxy compound of the formula (1) according to the present invention.
  • a composition comprising the novel alkoxysilyl epoxy compound of the formula (1) according to the present invention.
  • all of the core units of the epoxy compound of Formula 1, X is -C (C3 ⁇ 4) 2- , R is Phosphorus, the epoxy compound of Formula 2-1 may not be excluded.
  • the composition including the new alkoxysilyl epoxy compound of formula (1) to be described later all the core units of the epoxy compound of formula (1), X is -C (CH 3 ) 2- , R is Phosphorus, the epoxy compound of Formula 2-1 may be excluded.
  • any of the compositions provided in the present invention are for use in electronic materials, for example, but not limited to electronic materials such as semiconductor substrates, for example, IC engines, build-up films, encapsulation materials (packaging materials), printed wiring boards, and the like. It can be used for various uses such as parts, adhesives, paints, composite materials.
  • any composition provided in the present invention is a curable composition comprising a curable composition and / or an inorganic material It may be a composition.
  • the epoxy composition according to any of the above-described and below-described embodiments of the present invention includes a new epoxy compound of the formula (1) according to an embodiment of the present invention as an epoxy compound (hereinafter also referred to as 'epoxy compound of the present invention').
  • epoxy compositions of any kind and / or combination conventionally known in the art are included, and the curing agents, curing accelerators (catalysts), inorganic materials (layering agents) constituting the epoxy composition (eg inorganic Particles and / or fibers), other conventional epoxy compounds and other additives, but are not limited in kind.
  • epoxy compositions, cured products and / or composites are used in combination with various kinds of conventional epoxy compounds in terms of property control, depending on their application and / or use.
  • any kind of epoxy known in the art in the art Compounds (hereinafter also referred to as 'traditional epoxy compounds') may also be included.
  • the conventional epoxy compound is not particularly limited and may be any epoxy compound known in the art, for example, a glycidyl ether epoxy compound, a glycidyl epoxy compound, a glycidyl amine epoxy compound , Glycidyl ester epoxy compound , Rubber modified epoxy compound , At least one selected from the group consisting of an aliphatic poly glycidyl epoxy compound and an aliphatic glycidyl amine epoxy compound.
  • the conventional epoxy compound is bisphenol A, bisphenol F, bisphenol S, biphenyl, naphthalene, benzene, thiodiphenol, fluorene (fluorene), anthracene, isocyanurate, triphenylmethane, 1, 1,2,2-tetraphenylethane, tetraphenylmethane, 4.4'diaminodiphenylmethane, aminophenol cycloaliphatic, or glycidyl ether epoxy compound having a novolak unit, glycidyl epoxy compound, glycidyl At least one selected from the group consisting of an amine epoxy compound, a glycidyl ester epoxy compound, a rubber modified epoxy compound, an aliphatic poly glycidyl based epoxy compound and an aliphatic glycidyl amine based epoxy compound.
  • the conventional epoxy compound is a bisphenol A, bisphenol F, bisphenol S, biphenyl, naphthal 3 ⁇ 4 fluorene, benzene, thiodiphenol, fluorene, anthracene, isocyanurate as a core structure , Triphenylmethane, 1,1,2,2 'tetraphenylethane, tetraphenylmethane, 4,4'diaminodiphenylmethane, aminophenol cycloaliphatic, or a glycidyl ether epoxy compound having a novolak unit, Selected from the group consisting of glycidyl epoxy compounds, glycidylamine epoxy compounds, glycidyl ester epoxy compounds, rubber modified epoxy compounds, aliphatic polarglycidyl epoxy compounds and aliphatic glycidyl amine epoxy compounds It can be at least one kind.
  • Any epoxy composition may comprise from 1 to 100 wt% of an epoxy compound and from 0 to 99 wt% of a conventional epoxy compound based on the total weight of the epoxy compound;
  • the epoxy compound of the present invention 10 to 100 wt3 ⁇ 4> and the conventional epoxy compound 0 to 90wt%;
  • 30 to 100 wt% of the epoxy compound of the present invention and 0 to 70 wt% of the conventional epoxy compound for example, 50 to 100 wt% of the epoxy compound of the present invention and 0 to 50 wt% of the conventional epoxy compound, for example
  • the epoxy compound of the present invention may include less than 50 wt% of the internal mole
  • the alkoxysilyl epoxy compound of formula 1 according to any embodiment of the present invention and an inorganic material (layering agent) (for example, inorganic particles and / or fibers) Including epoxy compositions (hereinafter referred to as "composite compositions") are provided.
  • the composite composition is understood to include any kind and / or combination of epoxy compositions known in the art, as long as it includes the alkoxysilyl epoxy compound of Formula 1 and a layering agent, and a curing agent constituting the epoxy composition.
  • inorganic particles may be further included as the layering agent which is an inorganic material in the composition of any of the present invention described above and below.
  • any inorganic particles conventionally known to be used for reinforcing the properties of organic resins may be used, but are not limited to silica, for example, fused silica and crystalline silica, zirconia, titania At least one kind of metal oxide selected from the group consisting of alumina, silicon nitride and aluminum nitride, and T-10 silsesquioxane, ladder silsesquioxane, and cage silsesquioxane At least one selected from the group can be used.
  • the inorganic particles may be used alone or in combination of two or more thereof. In the case of particularly blending a large amount of silica, it is preferable to use fused silica.
  • fused silica can use either a crushed form or a spherical form, it is preferable to use a spherical thing in order to raise the compounding quantity of fused silica and to suppress the raise of the melt viscosity of a molding material.
  • the inorganic particles are not limited thereto, but inorganic particles having a particle size of 0.5 nm to several tens (for example, 50 to 100) may be used in consideration of the use of the composite, specifically, the dispersibility of the inorganic particles. Can be. Since the inorganic particles are dispersed in the epoxy compound, it is preferable to use the inorganic particles of the above sizes due to the difference in dispersibility according to the particle size. As well as inorganic particles In order to raise a compounding quantity, it is preferable to mix
  • the inorganic particles may be suitably added to the epoxy compound according to the appropriate viscosity and use required for reducing and applying the CTE of the epoxy composite, and the content of the inorganic particles may be Based on the total weight of solids (based on the total weight of the epoxy cured product in the case of epoxy cured products) 5 wt% to 95 wt%, for example 5 wt3 ⁇ 4> to 90 wt%, for example 10 wt% to 90 wt%, for example For example, 30 wt% to 95wt3 ⁇ 4>, for example, 30wt3 ⁇ 4> to 90wt%, for example, 5 wt% to 60wt%, for example, 10wt% to 50wt%.
  • the content of the inorganic particles in consideration of the CTE value and the material processability is, for example, the total solid content of the epoxy composition.
  • weight based on the total weight of the epoxy cured product in the case of epoxy cured products
  • the content of the inorganic particles in consideration of the CTE value and the strength of the substrate is, for example, based on the weight of the total solid content of the epoxy composition (in the case of an epoxy cured product).
  • the fiber is used as an inorganic material, it is mainly epoxy
  • the size of the fiber, etc. is not particularly limited because it is compounded by impregnating into the composition, and fibers of any kind and dimension generally used in the art may be used.
  • the fiber is not limited thereto, and any fiber generally used for improving physical properties of the cured organic resin may be used. Specifically, glass fibers, organic fibers or mixtures thereof may be used.
  • the term 'glass fiber' as used herein is used to mean not only glass fiber, but also glass fiber fabric, glass fiber nonwoven fabric, and the like.
  • glass fibers include glass fibers such as E glass fiber, T glass fiber, S glass fiber, NE glass fiber, E glass fiber, D glass fiber, quartz glass fiber, and the like. And E or T glass fibers.
  • Liquid crystalline polyester heart oil, polyethylene terephthalate fiber, wholly aromatic fiber, polyoxybenzazole fiber, nylon fiber, polyethylene naphthalate fiber, polypropylene fiber, polyether sulfone fiber, polyvinyl At least one selected from the group consisting of lidene fluoride fiber, polyethylene sulfide fiber and polyether ether keron fiber may be used alone or in combination of two or more thereof.
  • the content of fibers in any epoxy composition for example, glass fiber composite epoxy compositions according to the present invention, is based on the total weight of solids of the epoxy composition.
  • the fiber content is 10 wt% to 90 wt% based on the total weight of the cured material, for example, 30 wt 3 to 70 wt%, and for example 35 wt%. To 65%.
  • the resin content may be 10wt% to 90wt%, for example 30wt3 ⁇ 4) to 70wt%, for example 35wt% to 65wtV3 ⁇ 4. It is preferable that the content of the fiber is in the above range in terms of heat resistance improvement and processability.
  • any epoxy composition comprising the fiber may further contain inorganic particles, if desired.
  • the inorganic particles may be blended in an amount ranging from 1 wt% to 70 wt% based on the increase of the total resin content in consideration of the improvement of physical properties and fairness.
  • the type of inorganic particles that can be used is not particularly limited, any inorganic particles known in the art can be used, for example, the type of the inorganic particles can be used.
  • an epoxy composition comprising the alkoxysilyl epoxy compound of Formula 1 and a curing agent according to any embodiment of the present invention described above.
  • the curing agent-containing composition may also include any kind and / or known in the art, as long as it includes the alkoxysilyl epoxy compound of Formula 1 and a curing agent. It is understood that the epoxy composition of the formulation is included, and that the curing accelerator (catalyst), inorganic material (layering agent) (for example, inorganic particles and / or fibers) constituting the epoxy composition, any conventional epoxy compound and other additives It does not limit a kind and compounding ratio.
  • an epoxy composition comprising the alkoxysilyl epoxy compound of formula (1) and an alkoxysilyl group reaction catalyst (hereinafter referred to as "banung catalyst") according to any embodiment of the present invention described above.
  • banung catalyst containing composition an alkoxysilyl group reaction catalyst
  • the reaction catalyst-containing composition is also understood to include any kind and / or combination of epoxy compositions known in the art, as long as it includes Formula 1, an alkoxysilyl-based epoxy compound and a reaction catalyst.
  • hardening accelerator catalyst
  • inorganic material layering agent
  • any conventional epoxy compound for example, inorganic particle and / or fiber
  • any conventional epoxy compound and other additives which comprise a composition.
  • an alkoxysilyl group reaction catalyst is added, improved processability (eg, fast curing rate and / or low curing temperature) can be expected.
  • the curing agent-containing composition and the reaction catalyst-containing composition may also include a conventional epoxy compound as an epoxy compound, and in this case, the type of the conventional epoxy compound and the blending amount of the alkoxysilyl epoxy compound and the conventional epoxy compound may be included. As described above.
  • any curing agent generally known as a curing agent for an epoxy compound may be used, but is not particularly limited thereto.
  • an amine resin, a phenol resin, an anhydride oxide, or the like may be used.
  • the present invention is not limited thereto, and examples of the amine curing agent include aliphatic amines, cycloaliphatic amines, aromatic amines, other amines, and modified polyamines.
  • An amine compound including two or more primary amine groups may be used. .
  • amine curing agent examples include 4,4'-dimethylaniline (diamino diphenyl methane) (4,4'-Dimethylani line (diamino di henyl methane, DAM or DDM), diamino diphenyl sulfone (diamino diphenyl sulfone) , DDS), at least one aromatic amine selected from the group consisting of m-phenylene diamine, diethylene triamine (DETA), diethylene tetramine, triethylenetetra Amine (triethylene, tetramine, TETA), m-xylene diamine (MXDA), methane diamine (MDA), ⁇ , ⁇ '-diethylenediamine (N, N'-diethylenediamine, ⁇ , ⁇ '-DEDA), tetraethylenepentaamine (TEPA), and at least one aliphatic amine selected from the group consisting of hexamethylenediamine, is
  • phenol-based curing agent include, but are not limited to, phenol novolac resins, trifunctional phenol novolac resins, cresol novolac resins, bisphenol A novolak resins, xylene novolak resins, triphenyl novolak resins, and biphenyl novolacs.
  • Resins phenol P-xylene resins, phenol 4,4'-dimethylbiphenylene resins, phenol dicyclopentadiene novolac resins, dicyclopentadiene-phenol novolacs (DCPD-phenols), xylok (p Xylene modified), biphenyl phenol resin, naphthalene phenol novolak resin, triazine compound, dihydroxy naphthalene, dihydroxy benzene.
  • the anhydride-based curing agent include, but are not limited to, aliphatic anhydrides such as dodecenyl succinic anhydride (DDSA), poly azelaic poly anhydride, and nuxahydrophthalic anhydride.
  • Cycloaliphatic anhydrides such as lead (hexahydrophthalic anhydride (HHPA), methyl tetrahydrophthalic anhydride (MeTHPA), methylnadic anhydride ( ⁇ A)), trimellitic anhydride (TrimelHtic Anhydride, TMA), pyromellitic acid di anhydride (PMDA), benzophenonetetracarboxylic dianhydride (BTDA) and the like.
  • Aromatic anhydrides, tetrabromophthalic anhydride (TBPA), chlorendic Halogen anhydrides such as chlorendic anhydride and the like.
  • the degree of curing of the epoxy composite can be adjusted to the extent of reaction between the curing agent and the epoxy group, and the content of the curing agent can be adjusted based on the concentration of the epoxy group of the epoxy compound according to the desired degree of curing.
  • the epoxy equivalent / amine equivalent ratio is 0.5 to 2.0, and, for example, 0.8 to 1.5 to adjust the content of the dodocone curing agent It is preferable to use.
  • any curing agent that can be used for curing a phenolic curing agent, an anhydride curing agent, and an epoxy compound not separately described herein is also epoxy depending on the desired curing degree range. It can be suitably combined in stoichiometric amounts according to the chemical reaction of the epoxy functional group and the reactive functional group of the curing agent based on the concentration of the total epoxy groups in the composition, which is common in the art.
  • any photocuring agent generally known in the art may be used, including but not limited to, for example, aromatic phosphonium salts, aromatic iodonium salts and aromatic sulfonium salts. Can be.
  • the photocuring agent is generally, for example, 0.5 to 20 phr (parts per hundred, parts by weight per 100 parts by weight of epoxy compound), preferably at least lphr, and preferably at most 15phr to the epoxy compound.
  • any curing accelerator may be further included as necessary to accelerate the curing reaction.
  • any catalyst known in the art to be generally used for curing an epoxy composition may be used, but is not limited thereto.
  • imidazole tertiary amine
  • Curing accelerators such as quaternary ammonium, organic acid salts, and phosphorus compounds
  • dimethyl benzyl amine 2-methylimidazole (2MZ), 2-undecylimidazole, 2-ethyl-4-methylimidazole (2E4M), 2-phenylimidazole , 1— (2-cyanoethyl) -2-alkyl group imidazole, 2-heptadecyl imidazole (heptadecyl imidazole, 2HDI) Imidazole series such as these; Tertiary amine compounds such as benzyl dimethyl amine (BDMA), trisdimethylaminomethylphenol (DMP-30), and triethylenediamine; Quaternary ammonium salts such as tetrabutylammonium bromide; Organic acid salts of diazabicycloundecene (DBU)
  • curing accelerators may be used as latent in their microcapsule coating and complex salt formation. These may be used independently and may use 2 or more types together according to hardening conditions.
  • the compounding quantity of the said hardening accelerator is not specifically limited, It can mix
  • the epoxy compound may be 0.1 to 10 phr (parts per hundred resin, parts by weight of 100 parts by weight of epoxy compound), for example, 0.2 to 5 phr.
  • the curing accelerator is preferably used in the above content in terms of curing reaction promoting effect and curing reaction rate control.
  • the alkoxysilyl group semi-a catalyst is not limited to this, for example, nitric acid, sulfuric acid, At least one inorganic acid selected from the group consisting of hydrochloric acid, acetic acid and phosphoric acid, ammonia, KOH, NH 4 0H, amines and transition metal alkoxides, tin compounds (e.g. For example, at least one selected from the group consisting of dibutyltin dilaurate, and / or tin (II) 2-ethylnucleoate, etc.) can be used.
  • the compounding quantity of the said alkoxysilyl group semiagitator is not specifically limited, It may contain 0.01 equivalent-0.1 equivalent of an alkoxysilyl group semiagitator with respect to 1 equivalent of alkoxysilyl group.
  • water may be further included in the composition including the alkoxy silyl group reaction catalyst.
  • the blending amount of water is not particularly limited, but may be 0.01 equivalent to 20 equivalents of water with respect to 1 equivalent of the alkoxysilyl group.
  • the epoxy composition is a release agent, surface treatment agent, flame retardant, plasticizer, antibacterial agent, leveling agent, antifoaming agent, colorant, stabilizer, coupling agent, viscosity, which is conventionally formulated for controlling the physical properties of the epoxy composition, within a range that does not impair the physical properties of the epoxy composition.
  • Other additives such as regulators, diluents and the like may also be blended as needed.
  • epoxy composition refers to the epoxy compound of the present invention as well as other components constituting the epoxy composition as desired, for example, any curing agent, curing accelerator (catalyst). ), Inorganic materials (fillers) (eg, inorganic particles and / or fibers), other conventional epoxy compounds, and solvents, are understood to include other additives formulated as needed in the art, and thus
  • the solvent in the epoxy composition is a solid content of the epoxy composition and / or in consideration of the processability of the epoxy composition, etc. It may optionally be used to appropriately adjust the viscosity.
  • total weight of the solid content of the epoxy composition used in the present invention refers to the total weight of the solid component excluding the liquid component such as a solvent among the components constituting the epoxy composition.
  • any epoxy composition provided in any of the embodiments of the present invention can be used for electronic materials.
  • the electronic material is not limited thereto, but for example, a semiconductor substrate, a film, a prepreg, or a laminate plate having a metal layer disposed on a base layer made of the composition of the present invention, a substrate, an encapsulating material (packaging material), and a buildup film Electronic components such as printed wiring boards as well as substrates. It can also be applied to various applications such as adhesives, paints and composite materials.
  • an electronic material comprising or consisting of any composition comprising the alkoxysilyl epoxy compound of the present invention is provided.
  • a semiconductor device comprising or consisting of a commercial electronic material.
  • the semiconductor device may include a semiconductor device including a printed wiring board (eg, a semiconductor device) or / or a semiconductor packaging material including or including a composition comprising the composition comprising the alkoxysilyl epoxy compound of the present invention. It may be a device. Furthermore, there is provided a cured product, an adhesive, a paint or a composite material comprising or consisting of any epoxy composition provided in any embodiment of the present invention. According to another embodiment of the present invention, the black composition comprises or consists of the epoxy composition provided in any of the above-described embodiments of the present invention. Cured product is provided.
  • a printed wiring board eg, a semiconductor device
  • a semiconductor packaging material including or including a composition comprising the composition comprising the alkoxysilyl epoxy compound of the present invention. It may be a device.
  • a cured product, an adhesive, a paint or a composite material comprising or consisting of any epoxy composition provided in any embodiment of the present invention.
  • the black composition comprises or consists of the epoxy composition provided
  • the epoxy composition provided in any of the embodiments of the present invention is used as a cured product when it is actually applied, for example, when used as an electronic material and the like, and an epoxy compound and a layering agent which is an inorganic component in the art.
  • cured material of the containing composition is generally called a composite.
  • the alkoxysilyl epoxy compound provided in one embodiment of the present invention described above exhibits excellent heat resistance in the composite and / or excellent flame resistance in the cured product.
  • the composite may have a low CTE, for example, 15 ppm / ° C. or less, for example, 12 ppm / ° C. or less, for example 10 ppm / ° C.
  • CTE is shown. 'The smaller the CTE value is, the better the physical properties are, and the lower limit of the CTE is not particularly limited.
  • the composite comprising 60 to 80wt%, for example 70 to 80wt% is 20ppm / ° C or less, for example, 15pptn / ° C or less, for example, 10ppn / ° C or less, for example, 8 ppm / ° C
  • 6 ppm / ° C or less for example, CTE of 4 ppm / ° C or less is shown.
  • the composite according to the present invention (cured product including an inorganic material) may have a Tg higher than 100 ° C., for example, 13 CTC or more, and, for example, 250 ° C. or more or Tg-less.
  • the alkoxysilyl epoxy compound self-cured product (cured material containing no inorganic material) according to the present invention has a CTE of 50 ppm / ° C. to 150 ppm mrc.
  • Values expressed in the three ranges herein are meant to include not only the lower and upper limits of the range, but also any lower range between the ranges and all numbers belonging to the range, unless specifically indicated otherwise.
  • C1 to C10 are understood to include all of CI, C2, C3, C4, C5, C6, C7, C8, C9, C10.
  • alkoxysilyl epoxy compound of Chemical Formula 1 may be synthesized by the following method.
  • a method for producing an epoxy compound wherein R in formula 1 is formula 3a.
  • the intermediate of Formula 5 wherein the epoxy compound of Formula 4 is alkene, reacted by the reaction of the epoxy compound of Formula 4 and the alkene compound of Formula 6, which is a basic structure of the epoxy compound having the alkoxysilyl group of Formula 1 Form.
  • an intermediate of Formula 5 is formed by dehydrogenation and alkenation of the hydroxy group of Formula 4 and the epoxy compound.
  • the compounds of Formulas 4 and 5 may also be the same or different from each other in a plurality of core units C.
  • Alkenization which is the reaction of step 1, is carried out by reacting the epoxy compound of formula 4 with the alkene compound of formula 6 in the presence of a solvent and a base.
  • the first step reaction may be performed by reacting the epoxy compound of Formula 4 and the alkene compound of Formula 6 at 0 ° C. to 10 CTC for 1 to 120 hours.
  • the epoxy compound and the alkene compound of Formula 4 are reacted by the stoichiometric equivalence ratio of the hydroxy group and the alkene group, and in consideration of this, an alkene to 1 equivalent of the hydroxy group of the epoxy compound of Formula 4
  • the reaction is carried out such that the alkenyl group of the compound is 0.1 to 5 equivalents.
  • the epoxy compound of Formula 4 may vary in the number of hydroxy groups in the epoxy compound according to the number of repeating units, and in the case where there are two or more hydroxy groups, at least one hydroxy group of the plurality of hydroxy groups and In this case, the alkene compound may be used in an amount less than 1 equivalent, for example, 0.1 equivalent.
  • the alkenization of the first step is described as being performed by reacting with an epoxy compound and an alkene compound of Formula 4 in the presence of a solvent and a base, but in the specific process, ' , the epoxy compound, the alkene compound, and the base of Formula 4 are sequentially added or The black may add all the reaction products and proceed with reaction, or the alkene compound may be added after dehydrogenation of the epoxy compound of Formula 4 at intervals of time.
  • Dehydrogenation is a commonly known process for synthesizing chemicals and the skilled person is skilled in the art according to the first step process described above, the epoxy compound of formula 4, wherein the hydroxy group of the epoxy compound of formula 4 is dehydrogenated and dehydrogenated.
  • the reactant may be suitably added to react with the alkene compound so that an intermediate of Formula 5 is formed. Since the reaction temperature and reaction time of the alkenization depend on the structure of the epoxy compound of formula 4, it may vary depending on the epoxy compound of formula 4, for example, by reacting for 120 hours within 1 hour at 0 ° C to 100 ° C. An intermediate of formula (5) is obtained.
  • any solvent may be used as the solvent, and any organic solvent may be used as long as it can be removed after the reaction without adversely affecting the reaction.
  • Acetonitrile, THF (tetrahydrofuran), MEKCmethyl ethyl ketone (DMK), dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), methylene chloride, rollulene and the like can be used.
  • These solvents may be used alone or in combination of two or more.
  • the amount of use and / or concentration of the solvent is not particularly limited and may be used in a suitable amount and / or concentration within a range in which the reactants are sufficiently dissolved and do not adversely affect the reaction, and those skilled in the art It can consider suitably.
  • step 1 banung This makes is a nucleotide, but, for example, NaH, KOH, is NaOH, K 2 C0 3, KHC0 3, Na 2 C0 3, NaHC0 3, triethylamine, diisopropylethylamine Can be used. These bases alone may be used together with two or more black, and the base is preferably used in 0.1 to 5 equivalents to 1 equivalent of the hydroxy functional group of the epoxy compound of formula (4) in terms of reaction efficiency.
  • an epoxy compound having an alkoxysilyl group in which R in Formula 1 is a compound of Formula 3a is obtained by reacting the intermediate of Formula 5 obtained in the first step reaction with the alkoxy group silane compound of Formula 7a.
  • R is Formula 3a
  • at least one of a plurality of R may be Formula 3a, and the rest may be hydrogen. .
  • R a to Rc may be a C 1-5 alkoxy group, preferably an hydroxy group, the remainder may be a C 1-10 alkyl group, and the alkoxy group and the alkyl group may be linear or branched.
  • the alkenyl and an alkoxy group silane compound of Formula 5 are reacted in the presence of a platinum catalyst and any solvent.
  • the intermediate compound and the silane compound of Formula 5 are stoichiometrically reacted according to the equivalence ratio of hydrogen of the alkenyl group and the alkoxy silyl compound of Formula 7a, and in consideration of this, 1 equivalent of the alkenyl group of Formula 5 Reaction is carried out so that 1 to 5 equivalents of the silane compound may be present.
  • the reaction temperature and reaction time of the second stage reaction are dependent on the type of reaction product, but specifically, at room temperature (eg, 15 to 20 ° C) to 120 ° C. By reacting for 1 to 72 hours, an epoxy compound having an alkoxysilyl group in which R in Formula 1 is represented by Formula 3a is obtained.
  • the solvent in the second stage reaction can optionally be used as needed.
  • a solvent may not be used. That is, if the mixing and stirring of the reactants can proceed smoothly without solvent, no separate solvent is required, which can be easily determined by those skilled in the art.
  • any aprotic solvent can be dissolved well, and any aprotic solvent can be used as long as it can be easily removed after the reaction without adversely affecting the reaction.
  • toluene acetonitrile, tetrahydrofuran (THF), methyl ethyl ketone (MEK), dimethyl formamide (DMF), dimethyl sulfoxide (DMSO) methylene chloride, and the like may be used.
  • solvents may be used alone or in combination of two or more. It does not particularly limit the amount and / or concentration of the solvent, and may be used in a suitable amount and / or concentration within a range in which the reaction product is sufficiently dissolved and does not adversely affect the reaction, and those skilled in the art It can consider suitably.
  • the platinum catalyst in the second step reaction is not limited thereto, but, for example, Pt0 2 or H 2 PtCl 6 (Chloroplatinic acid) may be used.
  • the platinum catalyst is preferably used in an amount of 1 ⁇ 1 to 4 to 0.05 equivalents based on 1 equivalent of the alkenyl group of the intermediate of Formula 5 in terms of reaction efficiency.
  • the epoxy compound in which R in Formula 1 is Formula 3b may be prepared by the following method.
  • the epoxy compound in which R in formula (1) is represented by formula (3b) is prepared by reaction of the epoxy compound of formula (4) and isocyanate-based alkoxy group silane, which are basic structures of the epoxy compound having the alkoxysilyl group.
  • the epoxy compound of Additive Formula 4 and the isocyanate-based alkoxy group silane of the following formula (7b) are reacted in the presence of any solvent.
  • M in formula (7b) is an integer of 3 to 10, preferably an integer of 3 to 6, at least one of R a to R c is a CI— C5 alkoxy group, preferably an ethoxy group and the rest is a C1-C10 alkyl group
  • the alkoxy group and alkyl group may be linear or branched.
  • the epoxy compound of formula 4 and the isocyanate-based alkoxy group silane of formula 7b are hydroxy groups and alkoxy group silanes of the epoxy compound of formula 4 Since it reacts in an equivalent ratio according to the stoichiometry, in consideration of this, the epoxy compound of Formula 4 and the isocyanate alkoxy group silane of Formula 5 so that the alkoxy group silane is 1 equivalent to 5 equivalents to 1 equivalent of hydroxy group of the epoxy compound of Formula 4 Reply.
  • the reaction temperature and reaction time of the reaction vary depending on the reaction product, for example, by reacting at room temperature (for example, 15 ° C. to 25 ° C.) to 12 (C for 1 hour to 72 hours).
  • R is an epoxy compound having an alkoxysilyl group having the general formula (3b)
  • R is the general formula (3b)
  • n is 2 or more, at least among a plurality of R One may be represented by Chemical Formula 3b, and the other may be hydrogen
  • the reaction may be performed in the presence of a base if necessary The reaction may proceed without using a separate device, but the reaction may be slow and the reaction may be accelerated using a base.
  • the base that can be used include, but are not limited to, K 2 CO 3 , Na 2 CO 3 , KHCOs, NaHC0 3 , triethylamine, diisopropylethylamine, and the like.
  • bases may be used singly or in combination of two or more of them.
  • the base is preferably used in an amount of 1 to 5 equivalents based on 1 equivalent of the hydroxy group of the epoxy compound of Formula 1.
  • a solvent is required.
  • the solvent may be used if the viscosity of the reaction product is suitable for reaction to proceed at a reaction temperature without using a separate solvent. May not be used. That is, if the viscosity of the reactants is low enough that the mixing and stirring of the reactants can proceed smoothly without a solvent, a separate solvent is not required, which can be easily determined by those skilled in the art.
  • the reactant can be dissolved well, and any aprotic solvent can be used as long as it can be easily removed after the reaction without any adverse effect on reaction.
  • any aprotic solvent can be used as long as it can be easily removed after the reaction without any adverse effect on reaction.
  • toluene acetonitrile, tetrahydrofuran (THF), methyl ethyl ketone (MEK), dimethyl forraamide (DMF), dimethyl sulfoxide (DMMS0), methylene chloride (MC), and the like
  • THF tetrahydrofuran
  • MEK methyl ethyl ketone
  • DMF dimethyl forraamide
  • DMMS0 dimethyl sulfoxide
  • MC methylene chloride
  • the amount of use and / or concentration of the solvent is not particularly limited and may be used in a suitable amount and / or concentration within a range in which the reactants are sufficiently dissolved and do not adversely affect the reaction, and those skilled in the art It can consider suitably.
  • the present invention will be described in detail through examples. The following examples illustrate the invention and do not limit the invention.
  • the scheme is as follows.
  • glass fibers glass fiber fabrics of Nittobo, E-glass 21166
  • the glass fiber composite film (4 ⁇ X 16mm X0.
  • the epoxy compound and the photoinitiator triarylsulfonium nuxafluoroantimonate salt are dissolved in dichloromethane to have a solid content of 70 3 ⁇ 4.
  • the glass fiber glass fiber fabric from Nittobo, E-glass 2116
  • a vacuum bourbon heated with locrc to remove the solvent and then cooled to room temperature.
  • the epoxy mixture was placed between the glass substrates subjected to the release treatment and irradiated with UV on both sides for 2 minutes to prepare a photocured glass fiber composite.
  • the dimensional change with the temperature of the cured product obtained in Examples and Comparative Examples of Tables 1 and 2 was evaluated using a thermo-mechanical analysizer, and is shown in the following table.
  • the specimen of the epoxy glass fiber composite film was prepared in the size of 4 mmX16 mmXO.l mm, and the specimen of the filler composite material was 5 ⁇ 5 ⁇ X3 ⁇ .
  • TGIC Triglycidyl ether of isocyanurate (Adrich) of isocyanurate
  • HF-1M Phenolic Noble Curing Agent (Meiwa Plastic Industries)
  • Photoinitiator Triaryls Lilfonium hex a f 1 uo r 0 an t i mona t e salts (Aldrich)
  • tin-OC tin (II) 2-ethylnucleonoate (Tin (n) -ethylhexanoate) (Aldrich)
  • thermoset glass fiber composite of the bisphenol A-based epoxy modified with the alkoxysilyl group according to the present invention is (Examples 1 to 3, 5 to 8 and 10 to 10).
  • the glass transition behavior of the thermoset glass fiber composite of bisphenol A-based epoxy modified with alkoxysilyl group was greatly improved, and the ura transition temperature was increased or Tg-less characteristics were shown.
  • the bisphenol A-based epoxy composite modified with the alkoxysilyl group of Example 1 has a lower CTE and a higher heat resistance than the Comparative Example 1 composite, thereby improving Tg-less characteristics. Seemed.
  • the naphthalene-based epoxy composites (Examples 9, 17 and 18) modified with the alkoxysilyl group according to the present invention.
  • the glass transition properties of the glass fiber composites were also improved.
  • the CTE of the alkoxysilyl group-modified biphenyl epoxy composite according to the present invention is 10 to 11 ppm / ° C.
  • the glass transition properties of the glass fiber composites were also improved.
  • the epoxy modified with an alkoxysilyl group The CTE values of the inorganic particle high-rise composites of the compounds (Examples 26, 30 and 31) show very good CTE and Tg-less with 9 to llppm / ° C.
  • the CTE of the high-layer filler composites of the epoxy having no alkoxysilyl group (Comparative Examples 6 and 7) is higher than the epoxy composite of the present invention, the CTE is 16 to 20 ppm / ° C, the glass transition temperature is 100 ° C ⁇ As low as 120 ° C.
  • the excellent CTE and glass transition temperature properties of epoxy compounds with alkoxysilyl groups observed through the present invention are believed to be due to the alkoxysilyl group being effectively formed between the glass fibers and / or fillers and further chemical bonding of the alkoxy silyl period.
  • the photocurable composite containing the bisphenol A-based epoxy compound having an alkoxysilyl group synthesized by hydrosilylation according to the present invention of Example 4 also shows a lower CTE value than the photocurable composite of Comparative Example 2, the glass transition diagram Rose about 10 ° C. From this, it can be seen that the composite of Example 4 prepared by photocuring has very excellent thermal expansion characteristics as compared with the composite of Comparative Example 2.
  • Epoxy having an alkoxysilyl group prepared through carbamate connection with an epoxy compound having alkoxysilyl group prepared by hydrosilylation (Synthesis Example 1)
  • Synthesis Example 5 shows similar heat resistance characteristics as shown in Examples 1 to 4 and Examples 10 to 15 when the composite is formed by thermal curing, but shows a large difference in terms of photocuring characteristics. That is, as in Example 4, having an alkoxysilyl group prepared by hydrosilylation The epoxy compound (Synthesis Example 1) proceeds well with photocuring reaction, but the epoxy compound having an alkoxysilyl group prepared via carbamate linkage (Synthesis Example 5) contains N atoms, and thus photocuring as in Example 16. The reaction does not proceed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 복합체에서 우수한 내열특성, 구체적으로, 복합체에서 낮은 열팽창계수(CTE, Coefficient of Thermal Expansion)과 높은 유리전이온도 상승효과를 나타내며 별도의 실란커플링제를 필요로 하지 않는 알콕시실릴계 에폭시 화합물, 이를 포함하는 조성물, 경화물, 이의 용도 및 및 알콕시실릴기를 갖는 에폭시 화합물의 제조방법에 관한 것이다. 따라서, 본 발명에 의하면, 에폭시기 및 알콕시실릴기를 갖는 에폭시 화합물; 및 이러한 에폭시 화합물과 경화제, 충전제 및/또는 반응촉매 등을 포함하는 조성물, 이의 경화물 및 전자 부품 등 이의 다양한 용도가 제공된다. 본 발명에 의한 새로운 알콕시실릴기를 갖는 에폭시 화합물을 포함하는 에폭시 조성물은 복합체 및/또는 경화물에서, 알콕시실릴기와 충전제(섬유 및/또는 입자)와의 화학 반응 및 알콕시실릴기간의 화학 반응에 의한 화학 결합 형성으로, 향상된 내열특성, 즉, 에폭시 복합체의 CTE가 감소되고 유리전이온도 상승 또는 유리전이온도를 나타내지 않는(이하, 'Tg 리스'라 함) 효과를 나타낸다. 나아가, 본 발명에 의한 알콕시실릴기를 갖는 에폭시 화합물을 포함하는 경화물은 알콕시실릴기의 도입에 의해, 우수한 난연성을 나타낸다.

Description

【명세서】
[발명의 명칭】
알콕시실릴기를 갖는 에폭시 화합물, 이를 포함하는 조성물, 경화물, 이의 용도 및 알콕시실릴기를 갖는 에폭시 화합물의 제조방법
【기술분야】
본 발명은 복합체에서 우수한 내열특성을 나타내는 알콕시실릴기를 갖는 에폭시 화합물 (이하, '알콕시실릴계 에폭사 화합물 '이라 함), 이를 포함하는 조성물, 경화물, 및 이의 용도 및 알콕시실릴기를 갖는 에폭시 화합물의 제조방법에 관한 것이다. 보다 상세하게, 본 발명은 복합체에서. 우수한 내열특성, 구체적으로, 복합체에서 낮은 열팽창계수 (CTE, Coefficient of Thermal Expansion)과 높은 유리전이온도 상승효과 (이는 유라 전이 온도를 나타내지 않는 Tg 리스를 포함함)를 나타내며 별도의 실란커플링제를 필요로 하지 않는 알콕시실릴계 에폭시 화합물, 이를 포함하는 조성물, 경화물, 이와 용도 및 및 알콕시실릴기를 갖는 에폭시 화합물와 제조방법에 관한 것이다.
【발명의 배경이 되는 기술】 '
고분자재료, 구체적으로 에폭시 화합물 자체 경화물의 열팽창계수는 대략 50~80ppm/°C로 무기입자인 세라믹재료 및 금속재료의 열팽창계수 (예를 들어, 실리콘의 열팽창계수는 3~5ppm/°C이며, 구리의 열팽창계수는 17ppm/°C임)에 비하여 열팽창계수 값이 수배 ~수십배 정도로 매우 크다. 따라서, 예를 들어, 반도체, 디스플레이 분야 등에서 고분자 재료가 무기재료 또는 금속재료와 함께 사용되는 경우에, 고분자 재료와 무기재료 또는 금속재료의 서로 다른 열팽창계수로 인하여 고분자 재료의 물성 및 가공성이 현저하게 제한된다. 또한, 예를 들어 실리콘 웨이퍼와 고분자 기판이 인접하여 사용되는 반도체 패키징 등의 경우나, 가스 배리어 특성을 부여하기 위해 무기차단막을 고분자 필름 위에 코팅하는 경우에, 공정 및 /또는 사용 온도 변화시 구성성분 간의 현저한 열팽창계수의 차이 (CTE-mismatch)로 인하여 무기층의 크랙 생성, 기판의 휨 발생, 코팅층의 박리 (peeling-off), 기판 깨짐 등 제품불량이 발생한다. 이와 같은 고분자 재료의 큰 CTE 및 이로 인한 고분자 재료의 치수변화 (dimensional change)로 인하여 차세대 반도체 기판, PCBCprinted circuit board) , 패키징 (packaging), 0TFT(0rganic Thin Fi lm Transistor) , 가요성 디스플레이 기판 (flexible display substrate) 등의 기술개발이 제한된다. 구체적으로, 현재 반도체 및 PCB분야에서는 금속 /세라믹 재료에 비해 매우 높은 CTE를 갖는 고분자 재료로 인하여, 고집적화, 고미세화, 플렉서블화, 고성능화 등이 요구되는 차세대 부품의 설계와 가공성 및 신뢰성 확보에 어려움을 겪고 있다. 다시 말하자면, 부품 공정온도에서의 고분자 재료의 높은 열팽창 특성으로 인하여 부품 제조시, 불량이 발생할 뿐만 아니라 공정이 제한되고 부품의 설계 그리고 가공성 및 신뢰성 확보가 문제시된다. 따라서, 전자부품의 가공성 및 신뢰성 확보를 위해 고분자 재료의 개선된 열팽창 특성, 즉 치수안정성이 요구된다. 현재까지 고분자 재료, 예를 들어 에폭시 화합물의 열팽창특성을 개선 (즉, 작은 열팽창계수)하기 위해서는 일반적으로 (1) 에폭시 화합물을 무기입자 (무기필러) 및 /또는 섬유와:복합화하거나 (2) 새로운 합성법으로 CTE가 감소된 새로운 에폭시 화합물을 설계하는 방법이 사용되어 왔다. 열팽창특성 개선을 위해 에폭시 화합물과 충전제로서 무기입자를 복합화하는 경우에는 약 2~30 크기의 실리카 무기입자를 다량 사용해야만 CTE 감소 효과를 볼 수 있다. 그러나, 다량의 무기입자 층진으로 인하여 가공성 및 부품의 물성이 저하되는 문제가 수반된다. 즉, 다량의 무기입자로 인한 유동성 감소 및 협간 층진시 보이드 형성 등이 문제시된다. :또한, 무기입자의 첨가로 인하여 재료의 점도가 급격하게 증가한다. 나아가, 반도체 구조의 미세화로 인하여 무기입자의 크기가 '감소되는 경향이나, 1 이하의 필러를 사용하면 유동성 저하 (점도증가) 문제가 휠씬 심각해진다. 그리고, 평균입경이 큰 무기입자를 사용하는 경우에는 수지와 무기입자를 포함하는 조성물의 적용부위에 미층진되는 반도가 높아진다. 한편, 유기수지와 층전제로서 섬유를 포함하는 조성물을 사용하는 경우에도 CTE는 크게 감소되지만, 실리콘 칩 등에 비해 여전히 높은 CTE 보인다. 상기한 바와 같이, 현재의 에폭시 화합물의 복합화 기술의 한계로 인하여 차세대 반도체 기판 및 PCB 등의 고집적된 고성능 전자부품의 제조가 제한된다. 따라서 종래 열경화성 고분자 복합체의 높은 CTE와 이로 인한 내열특성 및 가공성 부족 등과 같은 문제를 개선하기 위한 개선된 열팽창 특성, 즉, 낮은 CTE 및 높은 유리전이온도 특성을 갖는 에폭시 복합체의 개발이 요구된다. 【발명의 내용]
[해결하고자 하는 과제]
본 발명의 일 실시형태에 의하면, 복합체에서 향상된 내열특성, 구체적으로는 낮은 CTE와 높^ 유리전이 온도 특성 및 경화물에서 우수한 난연성을 나타내는 새로운 알콕시실릴계 에폭시 화합물이 제공된다. 본 발명의 다른 실시형태에 의하면, 복합체에서 향상된 내열특성, 구체적으로는 낮은 CTE와 높은 유리전이 온도 특성 및 경화물에서 우수한 난연성을 나타내는 에폭시 조성물이 제공된다. 나아가, 본 발명의 또 다른 실시형태에 의하면, 복합체에서 향상된 내열특성, 구체적으로는 낮은 CTE와 높은 유리전이 온도 특성 및 경화물에서 우수한 난연성을 나타내는 본 발명의 일 실시형태에 의한 에폭시 조성물의 경화물이 제공된다. 또한, 본 발명의 다른 실시형태에 의하면, 본 발명의 일 실시형태에 의한 에폭시 조성물의 용도가 제공된다. 본 발명의 다른 실시형태에 의하면, 알콕시실릴기를 갖는 에폭사 화합물의 제조방법이 제공된다.
【과제의 해결 수단]
제 1견지에 의하면, 하기 화학식 1의 알콕시실릴기를 갖는 에폭시 화합물이 제공된다 .
[화학식 1]
Figure imgf000007_0001
(상기 화학식 1에서, 상기 코어 유니트 C는 하기 화학식 2-1 내지 2-5의 구조로부터 각각 독립적으로 선택되며, 상기 화학식 1에 존재하는 다수의 코어
Figure imgf000007_0002
코어 유니트 C는 서로 같거나 다를 수 있으며,
[화학식 2-1]
Figure imgf000007_0003
[화학식 2-3]
Figure imgf000007_0004
[화학식 2-4]
Figure imgf000008_0001
화학식 2-1에서, X는 -CH2-, -C(C¾)2-, -C(CF3)2-, -S- 또는 -S02-이며, 화학식 2-3에서, Y는 H 및 C1 내지 C5 알킬기로 구성되는 그룹으로부터 각각 독립적으로 선택되며,
n은 1 내지 10의 장수이며, n이 1인 경우에, R은 하기 화학식 3a 또는 화학식 3b의 구조이고, n이 2이상인 경우에, 다수의 R 중 적어도 하나는 하기 화학식 3a 또는 화학식 3b의 구조이고, 나머지는 수소이며, 상기 화학식 1의 에폭시 화합물 중 코어 유니트가 모두, X가 -C(C¾)2-이고, R이 하기 화학식 3b인, 화학식 2- 1인 에폭시 화합물은 제외된다.
[화학식 3a]
- (CH2)m-SiRa b , [화학식 3b]
- C0NH(CH2)m-SiRaRbRc
(상기 화학식 3a 및 3b에서, Ra 내지 Rc 중 적어도 하나는 탄소수 1 내지 5 알콕시기이고 나머지는 탄소수 1 내지 10 알킬기이며, 상기 알콕시기 및 알킬기는 직쇄 흑은 분지쇄일 수 있으며, m은 3 내지 10의 정수이다.) ) 제 2견지에 의하면,
하기 화학식 1의 알콕시실릴기를 갖는 에폭시 화합물을 포함하는 에폭시 조성물이 제공된다.
[화학식 1]
Figure imgf000009_0001
(상가 화학식 1에서, 상기 코어 유니트 C는 하기 화학식 2-1 내지 2-5의 구조로부터 각각 독립적으로 선택되며, 상기 화학식 1에 존재하는 다수의 코어 유니트 C에서 각각의 코어 유니트 C는 서로 같거나 다를 수 있으며,
[화학식 2-1]
Figure imgf000009_0002
[화학식 2-2]
Figure imgf000010_0001
화학식 2-1에서, X는 -(¾-, -C(CH3)2-, -C(CF3)2-, -S- 또는 -S02-이며, 화학식 2— 3에서, Y는 H 및 C1 내지 C5 알킬기로 구성되는 그룹으로부터 각각 독립적으로 선택되며,
n은 1 내지 10의 정수이며, n이 1인 경우에, R은 하기 화학식 3a 또는 화학식 3b의 구조이고, n이 2이상인 경우에, 다수의 R 중 적어도 하나는 하기 화학식 3a 또는 화학삭 3b의 구조이고, 나머지는 수소이다. [화학식 3a]
一 (CH2)ffl~SiRaRbRc
[화학식 3b]
― CONH(CH2)m-SiRaRbRc
(상기 화학식 3a 및 3b에서, Ra 내지 Rc 중 적어도 하나는 탄소수 1 내지 5 알콕시기이고 나머지는 탄소수 1 내지 10 알킬기이며, 상기 알콕시기 및 알킬기는 직쇄 흑은 분지쇄일 수 있으며, m은 3 내지 10의 정수이다.) ) 제 3견지에 의하면,
제 2견지에 있어서, 글리시딜에테르계 에폭시 화합물, 글리시딜계 에폭시 화합물, 글리.시딜아민계 에폭시 화합물, 글리시딜에스테르계 에폭시 화합물, 고무 개질된 에폭시 화합물, 지방족 폴리 글리시딜계 에폭시 화합물 및 지방족 글리시딜 아민계 에폭시 화합물로 구성되는 그룹으로부터 선택되는 적아도 일종의 에폭시 화합물을 추가로 포함하는 에폭시 조성물이 제공된다. 제 4견지에 의하면,
제 2견지에 있어서, 상기 에폭시 화합물은 코어구조로 비스페놀 A, 비스페놀 F, 비스페놀 S, 비페닐, 나프탈렌, 벤젠, 티오디페놀, 플루오렌 (fluorene), 안트라센, 이소시아누레이트, 트리페닐메탄, 1,1,2,2-테트라페닐에탄, 테트라페닐메탄, 4,4' -디아미노디페닐메탄, 아미노페놀, 시클로 지방족, 또는 노볼락 유니트를 갖는 에폭시 조성물이 제공된다. ᅳ
제 5견지에 의하면, 제 4견지에 있어서, 상기 에폭시 화합물은 코어구조로 비스페놀 A, 비페닐, 나프탈렌, 또는 플루오렌을 갖는 에폭시 조성물이 제공된다. 제 6견지에 의하면,
제 3견지에 있어서, 에폭시 화합물의 총 중량을 기준으로 상기 알콕시실릴기를 갖는 에폭시 화합물 10 내지 100wt% 및 글리시딜에테르계 에폭시 화합물, 글리시딜계 에폭시 화합물, 글리시딜아민계 에폭시 화합물, 글리시딜에스테르계 에폭시 화합물, 고무 개질된 에폭시 화합물, 지방족 폴리 글리시딜계 에폭시 화합물 및 지방족 글리시딜 아민계 에폭시 화합물로 구성되는 그룹으로부터 선택되는 최소 일종의 에폭시 화합물 Owt¾) 내지 90wt¾>를 포함하는 에폭시 조성물이 제공된다. 제 7견지에 와하면,
제 6견지에 있어서, 에폭시 화합물의 총 중량을 기준으로 상기 알콕시실릴기를 갖는 에폭시 화합물 30 내지 100wt% 및 글리시딜에테르계 에폭시 화합물, 글리시딜계 에폭시 화합물, 글리시딜아민계 에폭시 화합물, 글리시딜에스테르계 에폭시 화합물, 고무 개질된 에폭시 화합물, 지방족 폴리 글리시딜계 에폭시 화합물 및 지방족 '글리시딜 아민계 에폭시 화합물로 구성되는 그룹으로부터 선택되는 최소 일종의 에폭시 화합물 Owt¾ 내지 70 %를 포함하는 에폭시 조성물이 제공된다. 제 8견지에 의하면 , 제 2견지 내지 게 7견지 중 어느 일 견지에 있어서, 무기입자 또는 섬유로 구성되는 그룹으로부터 선택되는 적어도 일종의 층전제를 추가로 포함하는 에폭시 조성물이 제공된다. 제 9견지에 의하면,
제 8견지에 있어서, 상기 무기입자는 실리카, 지르코니아, 티타니아, 알루미나, 질화규소 및 질화알루미늄으로 구성되는 그룹으로부터 선택되는 적어도 일종의 금속산화물, 및 T-10형 실세스퀴녹산, 래더형 실세스퀴녹산, 및 케이지형 실세스퀴녹산으로 구성되는 그룹으로부터 선택되는 적어도 일종인 에폭시 조성물이 제공된다. 제 10견지에 의하면,
제 8견지에 있어서, 상기 무기입자는 에폭시 조성물의 고형분의 총 중량을 기준으로 5wt% 내지 95 ¾인 에폭시 조성물이 제공된다. 제 11견지에 의하면,
제 10견지에 있어서, 상기 무기입자는'에폭시 조성물의 고형분의 총 중량을 기준으로 30wt% 내지 95 %인 에폭시 조성물이 제공된다. 제 12견지에 의하면,
제 10견지에 있어서, 상기 무기입자는 에폭시 조성물의 고형분의 총 중량을 기준으로 5wt¾> 내지 60 %인 에폭시 조성물이 제공된다. 제 13견지에 의하면,
제 8견지에 있어서, 상기 섬유는 E 유리섬유, T 유리섬유, S 유리섬유, NE 유리섬유, E 유리섬유, H 유리섬유, 및 석영으로 구성되는 그룹으로부터 선택되는 유리섬유 및 엑정 폴리에스테르 섬유, 폴리에틸렌테레프탈레이트 섬유, 전방향족 섬유, 폴리옥시벤자졸 섬유, 나일론 섬유, 폴리에틸렌 나프탈레이트 섬유, 폴리프로필렌 섬유, 폴리에테르 ,술폰 섬유,.폴리비닐리덴플로라이드 섬유, 폴리에틸렌 술파이드 섬유, 및 폴리에테르에테르케톤 '섬유로 구성되는 그룹으로부터 선택되는 유기 섬유로 구성되는 그룹으로부터 선택되는 적어도 일종인 에폭시 조성물이 제공된다. 제 14견지에 의하면,
제 13견지에 있어서, 상기 섬유는 E 유리섬유인 에폭시 조성물이 제공된다. 제 15견지에 의하면,
제 13견지에 았어서, 상기 섬유는 T유리섬유인 에폭시 조성물아 제공된다. 제 16견지에 의하면,
제 8견지에 있어서, 상기 섬유는 상기 에폭시 조성물의 고형분의 총 중량에 대하여 10 wt% 내지 90 %로 포함되는에폭시 조성물이 제공된다. 제 17견지에 의하면,
제 8견지에 있어서, 섬유를 포함하는 경우에, 무기입자를 추가로 포함하는 에폭시 조성물이
Figure imgf000015_0001
제 18견지에 의하면,
제 2견지 내지 제 17견지 중 어느 일 견지에 있어서, 경화쩨를 추가로 포함하는 에폭시 조성물이 제공된다. 제 19견지에 의하면,
제 2견지 내지 제 18견지 중 어느 일 견지에 았어서, 알콕시실릴기 반웅촉매를 추가로 포함하는 에폭시 조성물이 제공된다. 제 20견지에 의하면,
제 19견지에 있어서, 상기 알콕시실릴기 반응촉매는 질산, 황산, 염산, 아세트산 및 안산으로 구성되는 그룹으로부터 선택되는 적어도 일종의 무기산, 암모니아, KOH, NH40H, 아민, 전이 금속 알콕사이드, 주석 (tin) 화합물로 구성되는 그룹으로부터 선택되는 적어도 일종인 알콕시실릴기를 갖는 에폭시 화합물의 조성물이 제공된다. 제 21견지에 의하면,
제 19견지에 있어서, 상기 반웅촉매는 알콕시실릴기를 갖는 에폭시 화합물의 알콕시실릴기 1당량에 대하여 0.01 당량 내지 0.1 당량으로 사용되는 알콕시실릴기를 갖는 에폭시 화합물의 조성물이 제공된다. 제 22견지에 의하면,
제 19견지에 있어서, 물을 추가적으로 포함하는 알콕시실릴기를 갖는 에폭시 화합물의 조성물이 제공된다. 제 23견지에 의하면,
제 2견지 내지 제 22견지 중 어느 일 견지의 에폭시 조성물을 포함하는 전자재료가 제공된다. 제 24견지에 의하면,
제 2견지 내지 제 22견지 중 어느 일 견지의 에폭시 조성물을 포함하는 기판이 제공된다. 제 25견지에— 의하면,
제 2견지 내지 제 22견지 중 어느 일 견지의 에폭사 조성물을 포함하는 필름이 제공된다. 제 26견지에 의하면,
제 2견지 내지 제 22견지 중 어느 일 .견지의 에폭시 조성물로 이루어진 기재층 상에 금속층을 포함하는 적층판이 제공된다. 제 27견지에 의하면,
제 26견지의 적층판을 포함하는 인쇄배선판이 제공된다. 제 28견지에 의하면,
제 27견지의 인쇄배선판을 포함하는 반도체 장치가 제공된다. 제 29견지에 의하면,
제 2견지 내지 제 22견지 중 어느 일 견지의 에폭시 조성물을 포함하는 반도체 패키징 재료가 제공된다. 제 30견지에 의하면,
제 29견지의 반도체 패키징 재료를 포함하는 반도체 장치가 제공된다. 제 31견지에 의하면,
제 2견지 내자 제 22견지 중 어느 일 견지의 에폭시 조성물을 포함하는 접착제가 제공된다. 제 32견지에 의하면'
제 2견지 내지 제 22견지 중 어느 일 견지의 에폭사 조성물을 포:함하는 도료가 제공된다. 제 33견지에 의하면,
제 2견지 내지 제 22견지 중 어느 일 견지의 에폭시 조성불을 포함하는 복합재료가 제공된다. 제 34견지에 의하면,
제 2견지 내지 제 22견지 중 어느 일 견지의 에폭시 조성물을 포함하는 프리프레그가 제공된다. 제 35견지에、의하면 ,
제 34견지의 프리프레그에 금속층이 배치된 적층판이 제공된다. 제 36견지에 의하면,
제 2견지 내지 제 22견지 중 어느 일 견지꾀 에폭시 조성물의 경화물이 제공된다. 제 37견지에 의하면,
제 36견지에 있어서, 열팽창계수가 60ppm/°C이하인 에폭시 조성물의 경화물이 제공된다. 제 38견지에 의하면,
제 36견지에 있어서, 유리전이은도가 lOCTC 보다 높거나 유리전이온도를 나타내지 않는 에폭시 조성물의 경화물이 제공된다. 제 39견지에 의하면,
용매 및 염기 존재하에서 하기 화학식 4의 에폭시 화합물과 하기 화학식 6의 알켄 화합물을 반웅시켜서 하기 화학식 5의 중간체를 형성하는 단계; 및
백금촉매 및 임의의 용매 존재하에서 하기 화학식 5의 중간체와 하기 화학식 7a의 알콕시 실란화합물을 반웅시 키는 단계를 포함하는 하기 화학식 1의 알콕시실릴기를 갖는 에폭시 화합물의 제조방법 이 제공된다 .
[화학식 1]
Figure imgf000019_0001
(상기 화학식 1에서, 상기 코어 유니트 C는 하기 화학식 2-1 내지 2-5의 구조로부터 각각 독립 적으로 선택되며, 상기 화학식 1에 존재하는 다수의 코어 유니트 C에서 각각의 코어 유니트 C는 서로 같거나 다를 수 있으며,
[화학식 2-1]
Figure imgf000019_0002
[화학식 2-3]
Figure imgf000019_0003
[화학식 2-4]
Figure imgf000020_0001
화학식 2-1에서, X는 -(¾-, -C(CH3)2-, — C(CF3)2-, -S- 또는 -S02-이며, · 화학식 2-3에서, Y는 H 및 C1 내지 C5 알킬기로 구성되는 그룹으로부터 각각 독립적으로 선택되며,
n은 1 내지 10의 정수이며, n이 1인 경우에, R은 하기 화학식 3a 구조이고, n이 2이상인 경우에, 다수의 R 중 적어도 하나는 하기 화학식 3a 구조아고, 나머지는 수소이다.
[화학식 3a]
― (CH2)m-SiRaRbRc
(상기 화학식 3a에서, Ra 내지 Rc 중 적어도 하나는 탄소수 1 내지 5 알콕시기이고 나머지는 탄소수 1 내지 10 알킬기이며, 상기 알콕시기 및 알킬기는 직쇄 혹은 분지쇄일 수 있으며, m은 3 내지 10의 정수이다.) ) [화학식 4]
Figure imgf000021_0001
[화학식 5]
Figure imgf000021_0003
Figure imgf000021_0002
(상기 화학식 4 및 5에서, 코어 유니트 C 및 n 은 상기 화학식 1에서 정의한 바와 같으며, 식 5에서, n이 1인 경우에 B는 -(C )rCH=CH2 (단, 1은 1 내지 8의 정수임)이고, n이 2이상인 경우에 B중 적어도 하나는 -(CH2)rCH=CH2 (¾, 1은 1 내지 8의 정수임)이고, 나머지는 수소이다.)
[화학식 6]
X-(CH2)rCH=CH2
(화학식 6에서, 1은 1 내지 8의 정수아며, X는 CI, Br.또는 I와 같은 할라。
-0-S02-CH3, -0-S02-CF3, 또는 -으 S02— C6H4-CH3 이다.)
[화학식 7a]
HSiRaRbRc
(상기 화학식 7a에서, Ra 내지 Rc 중 적어도 하나는 탄소수 1 내지 5 알콕시기이고 나머지는 탄소수 1 내지 10 알킬기이며, 상기 알콕시기 및 알킬기는 직쇄 훅은 분지쇄일 수 있다.) 제 40견지에 의하면,
제 39견지에 있어서, 상기 제 1단계에서는 화학식 4의 에폭시 화합물의 히드록시 그룹 1당량에 대하여 알케닐기가 0.1 당량 내지 5당량이 되도록 반웅시키는 알콕시실릴기를 갖는 에폭시 화합물의 제조방법이 제공된다. 제 41견지에 의하면,
제 39견지에 있어서, 상기 제 1단계는 0°C 내지 100 °C로 1 시간 내지 120시간 동안 반응시켜서 알콕시실릴기를 갖는 에폭시 화합물의 제조방법이 제공된다. 제 42견지에— 의하면,
제 39견지에 있어서, 상기 쎄 2단계는 상기 화학식 5의 중간체의 알케닐기 1 당량에 대하여 상기 화학식 7a의 알콕시 실란화합물이 1당량 내지 5당량이 반웅시키알콕시실릴기를 갖는 에폭시 화합물의 제조방법이 제공된다. 제 43견지에 의하면,
제 39견지에 있어서, 상기 제 2단계는 상온 내지 120 °C로 1시간 내지 72시간 동안 반웅시키는 알콕시실릴기를 갖는 에폭시 화합물의 제조방밥이 제공된다.
【발명의 효과】
본 발명에 의한 새로운 알콕시실릴기를 갖는 에폭시 화합물을 포함하는 에폭시 조성물은 복합체 및 /또는 경화물에서, 알콕시실릴기와 충전제 (섬유 및 /또는 입자)와의 화학 반응 및 알콕시실릴기간의 화학 반웅에 의한 화학 결합 형성으로, 향상된 내열특성, 즉, 에폭시 복합체의 CTE가 감소되고 유리전이온도 상승 또는 유리전이온도를 나타내지 않는 (이하, '¾ 리스'라 함) 효과를 나타낸다. 나아가, 본 발명에 와한 알콕시실릴기를 갖는 에폭시 화합물을 포함하는 경화물은 알콕시실릴기의 도입에 의해, 우수한 난연성을 나타낸다. 더욱이, 본 발명에 의한 에폭사 조성물을 기판의 금속필름에 적용하는 경우에, 금속필름 표면의 작용기와 알콕시실릴기의 화학결합에 의해 금속필름에 대하여 우수한 접착력을 나타낸다ᅳ 더욱이, 본 발명의 알콕시실릴계 에폭시 화합물을 포함하는 조성물은 알콕시실릴계 에폭시 화합물에 의한 상기 화학결합의 효율 향상으로 인하여, 종래 에폭시 조성물에 일반적으로 배합되던 실란커플링제의 배합을 필요로 하지 않는다. 상기 에폭시 화합물을 포함하는 에폭시 조성물은 경화효율이 우수한 것으로 경화에 의한 복합체 형성시, 낮은 CTE 및 높은 유리전이온도 혹은 Tg 리스의 우수한 열팽창특성을 나타낸다.
【도면의 간단한 설명】
도 1은 실시예 1에 의한 복합체의 은도 변화에 따른 치수변화를 나타내는 그래프이다.
도 2는 비교예 1에 의한 복합체의 온도 변화에 따른 치수변화를 나타내는 그래프이다.
도 3은 실시예 1 및 비교예 1에 의한 복합체의 난연성 평가 결과를 나타내는 사진이다.
【발명을 실시하기 위한 구체적인 내용】
본 발명은 에폭시 조성물의 경화에 의한 복합체에서 개선된 내열특성, 구체적으로는 낮은 CTE 및 높은 Tg 혹은 Tg 리스 및 /또는 경화물에서 우수한 난영성을 갖는 새로운 알콕시실릴계 에폭시 화합물, 이를 포함하는 에폭시 조성물과 경화물, 이의 용도 및 이의 제조방법을 제공하는 것이다. 본 발명에서 "복합체"란 에폭시 화합물 및 층전제 (섬유 및 /또는 무기입자)를 포함하는 조성물의 경화물을 말한다. 본 발명에서 "경화물' '이란 일반적인 의미로서 에폭시 화합물을 포함하는 조성물의 경화물을 말하는 것으로, 에폭시 화합물 및 경화제 이외에 층전제, 추가 경화제, 그리고 임의의 경화촉매 및 기타 첨가제로 구성되는 그룹으로부터 선택되는 작어도 일종을 포함하는, 어떠한 에폭시 화합물 및 경화제를 포함하는 조성물의 경화물을 말한다. 또한, 상기 경화물은 반경화물을 포함할 수 있다. 일반적으로, 무기입자나 섬유가 보강된 경화물 만을 복합체라 하므로, 경화물은 복합체보다 넓은 의미이지만, 무기입자나 섬유가 보강된 경화물은 복합체는 동일한 의미로 이해될 수도 있다. 본 발명에 의한 알콕시실릴계 에폭시 화합물은 경화에 의한 복합체 형성시, 에폭시기는 경화제와 반웅하여 경화반웅이 진행되고, 알콕시실릴기는 층전제 (섬유 및 /또는 무기입자) 표면과의 계면 결합 및 /또는 알콕시실릴기간 화학결합을 형성한다. 따라서, 매우 우수한 에폭시 복합체 시스템의 화학결합 형성 효율을 나타내므로, 낮은 CTE 및 높은 유리전이온도 상승효과 또는 Tg- 리스 (less)를 나타낸다. 다라서, 치수안정성이 향상된다. 뿐만 아니라, 별도와 실란커플링제를 필요로 하지 않는다. 또한, 본 발명에 의한 알콕시실릴계 에폭시 화합물을 포함하는 경화물은 우수한 난연성을 나타낸다. 나아가, 본 발명에 의한 에폭시 조성물은 화학적으로 처리된 금속필름, 예를 들어 동박 등에 적용시, 금속표면 처리에 의한 금속표면의 -0H기 등과 화학결합하므로 금속필름과 우수한 접착력을 나타낸다. 이하, 본 발명의 일 실시형태에서 제공되는 알콕시실릴계 에폭시 화합물, 이를 포함하는 에폭시 조성물, 경화물 및 이의 용도 그리고 알콕시실릴계 에폭시 화합물의 제조방법에 대하여 보다 상세히 설명한다.
1. 알콕시실랄계 에폭시 화합물 본 발명의 일 실시형태에 의하면, 하가 화학식 1의 새로운 에폭시 화합물이 제공된다.
[화학식 1]
Figure imgf000025_0001
상기 화학식 1에서, 상기 코어 유니트 C는 하기 화학식 2-1 내지 2-5의 구조로부터 각각 독립적으로 선택되며, 상기 화학식 1에 존재하는 다수의 코어 유니트 C에서 각각의 코어 유니트 C는 서로 같거나 다를 수 있으며,
[화학식 2-1]
Figure imgf000026_0001
Figure imgf000027_0001
화학식 2-1에서, X는 -CH2-, -C(C¾)2-, -C(CF3)2-, -S- 또는 -S02-이며, 화학식 2-3에서, Y는 H 및 C1 내지 C5 알킬기로 구성되는 그룹으로부터 각각 독립적으로 선택되며, n은 1 내지 10의 정수이며, n이 1인 경우에, R은 하기 화학식 3a 또는 화학식 3b의 구조이고, n이 2이상인 경우에, 다수의 R 중 적어도 하나는 하기 화학식 3a 또는 화학식 3b의 구조이고, 나머지는 수소이다. 다만, 상가 화학식 1의 에폭시 화합물 중 코어 유니트가 모두, X가 -c(c¾)2- 이고, R이 하기 화학식 3b인, 화학식 2-1인 에폭시 화합물은 제외된다. [화학식 3a]
- (CH2)m-SiRaRbRc
[화학식 3b]
- C0NH(C¾)m— SiRaRbRc
상기 화학식 3a 및 3b에서, Ra 내지 Rc중 적어도 하나는 탄소수 1 내지 5 알콕시기, 바람직하게는 에톡시기이고, 나머지는 탄소수 1 내지 10 알킬기이며, m은 3 내지 10의 정수, 바람직하게는 3 내지 6의 정수이다. 상기 알콕시기 및 알킬기는 직쇄 혹은 분지쇄일 수 있다. 본 명세서에서, "알콕시기' '는 -OR (R은 알킬기)인 1가 그룹으로서, 이는 직쇄상 또는 분지쇄알 수 있다. 본 명세서에서, "알킬기' '은 1가 (monovalent) 탄화수소 그룹을 말하여, 이는 직쇄상 또는 분지쇄일 수 있다. 상기 화학식 1의 에폭시 화합물을 구성하는 반복단위 중 코어 유니트 C는 화학식 2-1 내지 2-5로부터 선택된다. 구체적으로, 화학식 1의 에폭시 화합물을 구성하는 다수의 코어 유니트 C는 화학식 2—1 내지 2-5로 구성되는 그룹으로부터 각각 독립적으로 선택될 수 있다. 따라서, 다수의 코어 유니트 C는 모두 같거나 혹은 각각 다른 구조일 수 있다. 본 명세서에서 코어 유니트의 "다른 구조" 란, 코어 자체의 종류가 상이한 경우뿐만 아니라, 동일한 코어 구조이더라도 치환기의 종류 및 화학식 1에서의 연결 위치가 다른 경우를 포함한다. 코어 자체의 종류가 상이한 경우는, 예를 들어, 코어 유니트로 상기 화학식 2-1의 코어와 상기 화학식 2-2의 코어를 포함하는 경우이다. 치환기의 종류가 다른 경우는, 예를 들어, 화학식 2-1에서 X가 -CH2-인 코어 구조와 X가 -C(C )2-인 코어 구조를 포함하는 경우이다. 코어의 연결 위치가 다른 경우는, 상기 화학식 1의 코어 유니트에 1,6 위치에서 연결된 화학식 2-2의 코어 구조와 2,7 위치에서 연결된 화학식 2-2의 코어 구조를 포함하는 경우이다. 이로써 한정하는 것은 아니지만, 예를 들어, 다수의 코어 유니트 C는 2가지의 다른 구조의 코어 유나트 (편의상 C1 및 C2라 함)를 포함할 수 있으며, 이러한 경우에, 코어 유니트 C1 반복단위와 코어 유니트 C2 반복단위를 포함하는 에폭시 화합물은 하기 화학식 1A와 같은 교호 공중합체 (alternating copolymer), 하기 화학식 1B와 같은 블톡 공중합체 (block copolymer) 또는 하기 화학식 1C와 같은 랜덤 공중합체 (random copolymer) 형태일 수 있다.
[화학식 1A]
Figure imgf000029_0001
[화학식 IB]
Figure imgf000029_0002
[화학식 1C]
Figure imgf000030_0001
2. 에폭시 조성물 본 발명의 또 다른 실시형태에 의하면, 상기 본 발명에 의한 상기 화학식 1의 새로운 알콕시실릴계 에폭시 화합물을 포함하는 조성물이 제공된다. 일 견지에 있어서, 후술하는 화학식 1의 새로운 알콕시실릴계 에폭시 화합물을 포함하는 어떠한 조성물에서 상기 화학식 1의 에폭시 화합물 중 코어 유니트가 모두, X가 -C(C¾)2-이고, R이 하기 화학식 3b인, 화학식 2—1인 에폭시 화합물은 제외되지 않을 수 있다. 다른 견지에 있어서, 후술하는 화학식 1의 새로운 알콕시실릴계 에폭시 화합물을 포함하는 조성물에서 상기 화학식 1의 에폭시 화합물 중 코어 유니트가 모두, X가 -C(CH3)2-이고, R이 하기 화학식 3b인, 화학식 2-1인 에폭시 화합물은 제외될 수 있다.
상기 본 발명에서 제공되는 어떠한 조성물은 전자재료용, 예를 들어, 이로서 한정하는 것은 아니지만, 반도체 기판, 예를 들어, IC 기관이나 빌드업 필름, 봉지재료 (패키징 재료), 프린트 배선기판등의 전자부품 용도, 접착제, 도료, 복합 재료 등 각종 용도로 사용될 수 있다. 또한, 상기 본 발명에서 제공되는 어떠한 조성물은 경화성 조성물 및 /또는 무기재료를 포함하는 경화성 조성물일 수 있다. 본 발명의 상기한 및 후술하는 어떠한 실시형태에 의한 에폭시 조성물에는 에폭시 화합물로 본 발명의 실시형태에 의한 상기 화학식 1의 새로운 에폭시 화합물 (이하, '본 발명의 에폭시 화합물 '이라 하기도 함)을 포함하는 한, 종래 이 기술분야에 알려져 있는 어떠한 종류 및 /또는 배합의 에폭시 조성물이 포함되는 것으로 이해되며, 에폭시 조성물을 구성하는 경화제, 경화촉진제 (촉매), 무기재료 (층전제) (예를 들어, 무기입자 및 /또는 섬유), 기타 통상의 에폭시 화합물 및 기타 첨가제의 종류 및 배합비를 한정하는 것은 아니다. 나아가, 이 기술분야에서, 에폭시 조성물, 경화물 및 /또는 복합체는 이들와 적용처 및 /또는 용도에 따라, 물성제어 측면에서 다양한 종류의 통상의 에폭시 화합물이 함께 사용된다. 따라서, 본 발명의 상기한 및 후술하는 어떠한 실시형태에 의한 에폭시 조성물에서 상기 에폭시 화합물로는 본 발명에 의한 상기 화학식 1의 알콕시실릴계 에폭시 화합물뿐만 아니라, 종래 이 기술분야에 알려져 있는 어떠한 종류의 에폭시 화합물 (이하, '종래의 에폭시 화합물 '이라 하기도 함)을 또한 포함할 수 있다.
상가 종래의 에폭시 화합물은 특히 한정하는 것은 아니며 종래 이 기술분야에 알려져 있는 어떠한 에폭시 화합물일 수 있으며, 예를 들어, 글리시딜에테르계 에폭시 화합물, 글리시딜계 에폭시 화합물, 글리시딜아민계 에폭시 화합물, 글리시딜에스테르계 에폭시 화합물, 고무 개질된 에폭시 화합물, 지방족 폴리 글리시딜계 에폭시 화합물 및 지방족 글리시딜 아민계 에폭시 화합물로 구성되는 그룹으로부터 선택된 적어도 일종일 수 있다. 나아가, 상기 종래의 에폭시 화합물은 코어구조로 비스페놀 A, 비스페놀 F, 비스페놀 S, 비페닐, 나프탈렌, 벤젠, 티오디페놀, 플루오렌 (fluorene), 안트라센, 이소시아누레이트, 트리페닐메탄, 1,1,2,2-테트라페닐에탄, 테트라페닐메탄, 4.4'디아미노디페닐메탄, 아미노페놀 시클로 지방족, 또는 노볼락 유니트를 갖는 글리시딜에테르계 에폭시 화합물, 글리시딜계 에폭시 화합물, 글리시딜아민계 에폭시 화합물, 글리시딜에스테르계 에폭시 화합물, 고무 개질된 에폭시 화합물, 지방족 폴리 글리시딜계 에폭시 화합물 및 지방족 글리시딜 아민계 에폭시 화합물로 구성되는 그룹으로부터 선택된—적어도 일종일 수 있다. 예를 들어, 상기 종래의 에폭시 화합물은 코어구조로 비스페놀 A, 비스페놀 F, 비스페놀 S, 비페닐, 나프탈 ¾ᅳ 플루오렌, 벤젠, 티오디페놀, 플루오렌 (fluorene), 안트라센, 이소시아누레이트, 트리페닐메탄, 1,1,2,2ᅳ 테트라페닐에탄, 테트라페닐메탄, 4,4'디아미노디페닐메탄, 아미노페놀 시클로 지방족, 또는 노볼락 유니트를 갖는 글리시딜에테르계 에폭시 화합물, 글리시딜계 에폭시 화합물, 글리시딜아민계 에폭시 화합물, 글리시딜에스테르계 에폭시 화합물, 고무 개질된 에폭시 화합물, 지방족 폴라글리시딜계 에폭시 화합물 및 지방족 글리시딜 아민계 에폭시 화합물로 구성되는 그룹으로부터 선택된 적어도 일종일 수 있다. 이로써 한정하는 것은 아니지만 예를 들어, 본 발명의 일 실시형태에 의한 어떠한 에폭시 조성물은 에폭시 화합물의 총 중량을 기준으로 본 발명의 어떠한 실시형태에 의한 에폭시 화합물 1 내지 100 wt 및 종래의 에폭시 화합물 0 내지 99wt%; 예를 들어, 본 발명의 에폭시 화합물 10 내지 100 wt¾> 및 종래의 에폭시 화합물 0 내지 90wt%; 예를 들어 , 본 발명의 에폭시 화합물 30 내지 100 wt% 및 종래의 에폭시 화합물 0 내지 70wt%, 예를 들어, 본 발명의 에폭시 화합물 50 내지 100 wt% 및 종래의 에폭시 화합물 0 내지 50wt%, 예를 들어, 본 발명의 에폭시 화합물 10 내지 100 wt% 미만 및 종래의 에폭시 화합물 0 초과 내지 90wt%; 예를 들어, 본 발명의 에폭시 화합물 30 내지 100 wt 미만 및 종래의 에폭시 화합물 0 초과 내지 70wt%; 예를 들어, 본 발명의 에폭시 화합물 50 내자 100 wt% 미만 및 종래의 에폭시 화합물 0 초과 내지 50\ ¾>를 포함할 수 있다. 나아가, 본 발명의 일 실시형태에 의하면, 상기한 본 발명의 어떠한 실시형태에 의한 상기 화학식 1의 알콕시실릴계 에폭시 화합물 및 무기재료 (층전제) (예를 들어, 무기입자 및 /또는 섬유)를 포함하는 에폭시 조성물 (이하, "복합 조성물 "이라 함)이 제공된다. 상기 복합 조성물은 상기 화학식 1의 알콕시실릴계 에폭시 화합물과 층전제를 포함하는 한, 종래 이 기술분야에 알려져 있는 어떠한 종류 및 /또는 배합의 에폭시 조성물이 포함되는 것으로 이해되며, 에폭시 조성물을 구성하는 경화제, 경화촉진제 (촉매), 무기재료 (충전제) (예를 들어, 무기입자 및 /또는 섬유), 종래의 어떠한 에폭시 화합물 및 기타 첨가제의 종류 및 배합비를 한정하는 것은 아니다. 상기 복합 조성물 뿐만 아니라 상기한 및 후술한 본 발명의 어떠한 실시형태의 조성물에 무기재료인 층전제로서 무기입자를 추가로 포함할 수 있다. 무기입자로는 종래 유기수지의 물성올 보강하기 위해 사용되는 것으로 알려져 있는 어떠한 무기입자가 사용될 수 있으며, 이로써 한정하는 것은 아니지만, 실리카 (예를 들어, 용융 실리카 및 결정성 실리카 포함), 지르코니아, 티타니아, 알루미나, 질화규소 및 질화알루미늄으로 구성되는 그룹으로부터 선택되는 적어도 일종의 금속산화불, 및 T-10형 실세스퀴녹산, 래더 (ladder)형 실세스퀴녹산, 및 케이지형 실세스퀴녹산으로 구성되는 그룹으로부터 선택되는 적어도 일종이 사용될 수 있다. 상기 무기입자는 단독으로 또는 2종 이상의 흔합물로 사용될 수 있다. 실리카를 특히 다량 배합하는 경우에는, 용융 실리카를 이용하는 것이 바람직하다. 용융 실리카는 파쇄상이나 구상의 어느 쪽도 사용 가능하지만, 용융 실리카의 배합량을 높이고, 또한 성형 재료의 용융 점도의 상승을 억제하기 위해서는, 구상의 것올 이용하는 것이 바람직하다. 상기 무기입자로는 이로써 한정하는 것은 아니지만, 복합체의 사용용도, 구체적으로는 무기입자의 분산성 등을 고려하여, 입자크기가 0.5nm 내지 수십 (예를 들어, 50 내지 100 )인 무기입자가 사용될 수 있다. 무기입자는 에폭시 화합물에 분산되므로 입자크기에 따른 분산성의 차이로 인하여 상기한 크기의 무기입자가 함께 사용되는 것이 바람직하다 . 뿐만 아니라, 무기입자의 배합량을 높이기 위해서는, 무기입자의 입자 분포가 보다 넓게 하여 배합하는 것이 바람직하다 .
본 발명의 일 실시형태에 의한 에폭시 조성물에서 상기 에폭시 화합물에 대하여 무기입자는 에폭시 복합체의 CTE 감소 및 적용시 요구되는 적정한 점도 및 용도에 따라 적합하게 첨가할 수 있는데, 무기입자의 함량은 에폭시 조성물의 고형분의 총 중량을 기준으로 (에폭시 경화물의 경우에는 에폭시 경화물의 총 중량을 기준으로) 5 wt% 내지 95wt%, 예를 들어, 5wt¾> 내지 90wt%, 예를 들어 10wt% 내지 90wt%, 예를 들어, 30 wt% 내지 95wt¾>, 예를 들어 , 30wt¾> 내지 90wt% 예를 들어, 5 wt% 내지 60wt%, 예를 들어 , 10wt% 내지 50wt% 일 수 있다. 보다 구체적으로, 일 예로서, 에폭시 조성물이 반도체 봉지재 등으로 사용되는 경우에는, 이로써 한정하는 것은 아니지만, CTE 값과 재료 가공성을 고려하여 무기입자의 함량은 예를 들어, 에폭시 조성물의 고형분의 총 중량에 대하여 (에폭시 경화물의 경우에는 에폭시 경화물의 총 중량을 기준으로) 30 wt 내지 95wt%, 예를 들어, 30wt% 내지 90wt% 일 수. 있다. 또한 일 예로서 , 에폭시 조성물이 반도체 기판 등으로 사용되는 경우에는, 기판의 CTE 값과 강도 등올 고려하여 무기입자의 함량은 예를 들어, 에폭시 조성물의 총 고형분의 중량에 대하여 (에폭시 경화물의 경우에는 에폭시 경화물의 총 중량을 기준으로) 5 wt% 내지 60wt¾, 예를 들어 , 10wt% 내지 50wt% 일 수 있다. 한편ᅳ 섬유가 무기재료로 사용되는 경우에는, 주로 섬유에 에폭시 조성물에 함침하는 방식으로 복합화되므로 섬유의 크기 등이 특히 제한되지 않으며, 이 기술분야에서 일반적으로 사용되는 어떠한 종류 및 치수의 섬유가 사용될 수 있다. 섬유로는 이로써 한정하는 것은 아니지만, 종래 유기 수지 경화물의 물성개선을 위해 사용되는 일반적인 어떠한 섬유가 사용될 수 있다. 구체적으로는 유리 섬유, 유기 섬유 또는 이들의 흔합물이 사용될 수 있다. 또한, 본 명세서에서 사용된 용어 '유리 섬유'는 유리 섬유뿐만 아니라, 유리 섬유직물, 유리 섬유 부직물 등을 포함하는 의미로 사용된다. 이로써 한정하는 것은 아니지만, 유리 섬유로는 E 유리섬유, T 유리섬유, S 유리섬유, NE 유리섬유, E 유리섬유, D 유리섬유, 석영 유리섬유 등의 유리 섬유를 예로 들 수 있으며, 예를 들어, E 또는 T 유리 섬유를 예로 들 수 있다. 유기 섬유로는 이로써 특별히 한정하는 것은 아니지만, 액정 폴리에스테르 심유, 폴리에틸렌테레프탈레이트 섬유, 전방향족 섬유, 폴리옥시벤자졸 섬유, 나일론 섬유, 폴리에틸렌 나프탈레이트 섬유, 폴리프로필렌 섬유, 폴리에테르 술폰 섬유, 폴리비닐리덴플로라이드 섬유, 폴리에틸렌 술파이드 섬유, 폴리에테르에테르케론 섬유로 구성되는 그룹으로부터 선택된 적어도 일종이 단독으로 혹은 이종 이상이 함께 사용될 수 있다. 본 발명에 의한 어떠한 에폭시 조성물, 예를 들어, 유리섬유 복합체 에폭시 조성물에서 섬유의 함량은 에폭시 조성물의 고형분의 총 중량을 기준으로
10wt% 내지 90wt%, 예를 들어 , 30wt% 내지 70wt%, 또한 예를 들어, 35wt% 내지 65^%일 수 있다. 또한, 에폭시 조성물의 경화물, 예를 들어, 유리섬유 복합체에서, 섬유의 함량은 경화물의 총 중량을 기준으로 10wt% 내지 90wt%, 예를 를어, 30wt¾ 내지 70wt%, 또한 예를 들어, 35wt% 내지 65 %일 수 있다. 따라서, 레진 함량은 10wt% 내지 90wt%, 예를 들어, 30wt¾) 내지 70wt%, 또한 예를 들어, 35wt% 내지 65wtV¾ 수 있다. 섬유의 함량이 상기 범위인 것이 내열성 향상 및 가공성 측면에서 바람직하다. 한편, 섬유를 포함하는 에폭시 조성물, 경화물 등에서, 통상, 총 고형분 중 섬유를 제외한 고형분 부분은 레진 성분으로 칭하여지며, 섬유를 포함하는 에폭시 조성물에서, 섬유 이외의 양은 레진 성분의 양이다. 나아가, 상기 섬유를 포함하는 어떠한, 에폭시 조성물에는 또한, 필요에 따라, 무기입자가 추가로 포함될 수 있다. 이때 무기입자는 물성 향상 및 공정성을 고려하여, 총 레진 함량의 증량을 기준으로 lwt% 내지 70wt% 범위의 양으로 배합될 수 있다. 이때, 사용될 수 있는 무기입자의 종류는 특히 한정되지 않으며, 이 기술분야에 알려져 있는 어떠한 무기입자가 사용될 수.있으며, 예를 들어, 상기한, 무기입자의 종류가사용될 수 았다. 본 발명의 또 다른 실시형태에 의하면, 상기한 본 발명의 어떠한 실시형태에 의한 상기 화학식 1의 알콕시실릴계 에폭시 화합물 및 경화제를 포함하는 에폭시 조성물 (이하, "경화제 함유 조성물' '이라 함)이 제공된다. 상기 경화제 함유 조성물은 또한, 상기 화학식 1의 알콕시실릴계 에폭시 화합물과 경화제를 포함하는 한, 종래 이 기술분야에 알려져 있는 어떠한 종류 및 /또는 배합의 에폭시 조성물이 포함되는 것으로 이해되며, 에폭시 조성물을 구성하는 경화촉진제 (촉매), 무기재료 (층전제) (예를 들어, 무기입자 및 /또는 섬유), 종래의 어떠한 에폭시 화합물 및 기타 첨가제의 종류 및 배합비를 한정하는 것은 아니다. 본 발명의 또 다른 실시형태에 의하면, 상기한 본 발명의 어떠한 실시형태에 의한 상기 화학식 1의 알콕시실릴계 에폭시 화합물 및 알콕시실릴기 반웅 촉매 (이하, "반웅 촉매"라 함)를 포함하는 에폭시 조성물 (이하, "반웅 촉매 함유 조성물 "이라 함)이 제공된다. 상기 반응 촉매 함유 조성물은 또한, 상기 화학식 1와 알콕시실릴계 쎄폭시 화합물과 반응 촉매를 포함하는 한, 종래 이 기술분야에 알려져 있는 어떠한 종류 및 /또는 배합의 에폭시 조성물이 포함되는 것으로 이해되며, 에폭시 조성물을 구성하는 경화제, 경화촉진제 (촉매), 무기재료 (층전제) (예를 들어, 무기입자 및 /또는 섬유), 종래의 어떠한 에폭시 화합물 및 기타 첨가제의 종류 및 배합비를 한정하는 것은 아니다. 알콕시실릴기 반응촉매가 첨가되는 경우에, 보다 향상된 공정성 (예를 들어, 빠른 경화속도 및 /또는 낮은 경화온도)을 기대할 수 있다. 상기 경화제 함유 조성물 및 반웅 촉매 함유 조성물 또한, 에폭시 화합물로서 종래의 에폭시 화합물을 포함할 수 있으며, 이 경우에 포함될 수 있는 종래의 에폭시 화합물의 종류 및 알콕시실릴계 에폭시 화합물과 종래의 에폭시 화합물의 배합량은 상기한 바와 같다. 상기 경화제 함유 조성물뿐만 아니라, 본 발명의 일 실시형태에 의한 조성물에 경화제가 포함되는 경우에, 경화제로는 에폭시 화합물에 대한 경화제로 일반적으로 알려져 있는 어떠한 경화제가 사용될 수 있으며, 이로써 특히 한정하는 것은 아니지만, 예를 들어, 아민계 수지, 페놀계 수지, 무수산화물계 등이 사용될 수 있다.
보다 구체적으로, 이로써 한정하는 것은 아니지만, 아민계 경화제로는 지방족 아민, 지환족 아민, 방향족 아민, 기타 아민 및 변성폴리아민을 사용할 수 있으며., 2개 이상의 일차 아민기를 포함하는 아민 화합물을 사용할 수 있다. 상기 아민 경화제의 구체적인 예로는 4,4'-디메틸아닐린 (디아미노 디페닐 메탄) (4,4'-Dimethylani line(diamino di henyl methane, DAM 또는 DDM), 디아미노 디페닐설폰 (diamino di phenyl sulfone, DDS), m-페닐렌 디아민 (m-phenylene diamine)으로 구성되는 그룹으로부터 선택된 1종 이상의 방향족 아민, 디에틸렌트리아민 (diethylene triamine, DETA) , 디에틸렌테트라아민 (diethylene tetramine), 트리에틸렌테트라아민 (triethylene . tetramine, TETA), m-크실렌 디아민 (m-xylene diamine, MXDA), 메탄 디아민 (methane diamine, MDA), Ν,Ν'- 디에틸렌디아민 (N,N'-diethylenediamine, Ν,Ν'-DEDA), 테트라에틸렌펜타아민 (tetraethylenepentaamine, TEPA) , 및 핵사메틸렌디아민 (hexamethylenediamine)으로 구성되는 그룹으로부터 선택된 적어도 1종 이상의 지방족 아민, 이소포론 디아민 (isophorone diamine, IPDI), N-아미노에틸 피레라진 (N-Aminoethyl piperazine, AEP), 비스 (4-아미노 3- 메틸시클로핵실)메탄 (Bis(4-Amino 3-Me thyl eye 1 ohexy 1 ) Me thane, Larominc
260)으로 구성되는 그룹으로부터 선택된 1종 이상의 지환족아민, 디시안디아미드 (DICY) 등과 같은 기타 아민, 폴리아미드계, 에폭사이드계 등의 변성아민을 들 수 있다. 이로써 한정하는 것은 아니지만, 페놀계 경화제의 예로는 페놀노블락 수지, 3관능성 페놀 노볼락 수지, 크레졸 노볼락 수지, 비스페놀 A 노블락 수지 , 자일렌 노볼락 수지, 트리 페닐 노볼락 수지, 비페닐 노볼락 수지, 페놀 P- 자일렌 수지, 페놀 4,4'-디메틸비페닐렌 수지, 페놀 디시클로펜타디엔 노볼락 수지, 디시클로펜타디엔 -페놀 노블락 (DCPD-페놀), 자일록 (xylok)(p-자일렌 변성), 비페닐계 페놀수지, 나프탈렌계 페놀 노볼락 수지, 트리아진계 화합물, 디히드록시 나프탈렌, 디히드록시 벤젠 둥을 를 수 있다. . 이로써 한정하는 것은 아니지만, 무수산화물계 경화제의 예로는 도데세닐 숙신산 무수물 (dodecenyl succinic anhydride, DDSA), 폴리 아젤라익 폴리 안하이드리드 (poly azelaic poly anhydride)등과 같은 지방족 무수산화물, 핵사하이드로프탈릭 안하이드리드 (hexahydrophthalic anhydride, HHPA) , 메틸 테트라하이드로프탈릭 안하이드리드 (methyl tetrahydrophthal ic anhydride, MeTHPA) , 메틸나딕 안하이드리드 (methylnadic anhydride, 匪 A)등과 같은 지환족 무수산화물, 트리멜리트 안하이드리드 (TrimelHtic Anhydride, TMA), 피로멜리트산 디안하이드리드 (pyromellitic acid di anhydride, PMDA) , 벤조페논테트라카르복시산 디안하이드리드 (benzophenonetetracarboxylic dianhydride, BTDA) 등과 같은. 방향족 무수산화물, 테트라브로모프탈릭 안하이드리드 (tetrabromophthalic anhydride, TBPA), 클로렌딕 안하이드리드 (chlorendic anhydride) 등과 같은 할로겐계 무수화합물 등을 들 수 있다. ᅳ 일반적으로 경화제와 에폭시기의 반웅 정도로 에폭시 복합체의 경화도를 조절할 수 있으며, 목적하는 경화도 범위에 따라 에폭시 화합물의 에폭시기의 농도를 기준으로 하여 경화제의 함량을 조절할 수 있다. 예를 들어, 아민 경화제가 사용되는 경우에는, 아민 경화제와 에폭시 그룹의 당량 반응에서는 에폭시 당량 /아민 당량비가 0.5 내지 2.0이 되도록, 또한, 예를 들어, 0.8 내지 1.5이 되도톡 경화제의 함량을 조절하여 사용하는 것이 바람직하다. 아민계 경화제의 경우를 예로 하여 경화제의 배합량에 대하여 설명하였으나, 페놀계 경화제, 무수산화물계 경화제 및 본 명세서에 별도로 기재하지 않은 에폭시 화합물의 경화에 사용될 수 있는 어떠한 경화제 또한 원하는 경화도 범위에 따라 에폭시 조성물 중 총 에폭시기의 농도를 기준으로 하여 에폭시 작용기와 경화제의 반응성 작용기의 화학반응식에 따라 화학양론적 양으로 적합하게 배합하여 사용할 수 있으며, 이는 이 기술분야에서 일반적이다. 양이온 광경화제 (광개시제라 하기도 함)로는 이 기술분야에 일반적으로 알려져 있는 어떠한 광경화제가 사용될 수 있으며, 이로써 한정하는 것은 아니지만 예를 들어, 방향족 포스포늄염, 방향족 요오드늄염 및 방향족 술포늄염 등을 들 수 있다. 구체적으로는, 디페닐요오드늄 테트라키스 (펜타플루오로페닐)보레이트, 디페닐요오드늄 핵사플루오로포스페이트 디페닐요오드늄 헥사플루오로안티모네이트, 디 (4-노닐페닐)요오드늄 핵사플루오로포스페이트, 트리페닐술포늄 핵사플루오로포스페이트, 트리페닐술포늄 핵사플루오로안티모네이트, 트리페닐술포늄 테트라키스 (펜타플루오로페닐)보레이트, 4,4'-비스 [디페닐술포니오]디페닐술피드 비스핵사플루오로포스페이트, 4,4'-비스 [디 (β- 히드록시에톡시)페닐술포니오]디페닐술피드 ^ 비스핵사플루오로안티모네이트, 4ᅳ 4'-비스 [디 (β-히드록시에록시)페닐술포니오]디페닐술피드
비스핵사플루오로포스페이트 등을 들 수 있다. 이로써 한정하는 것은 아니지만, - 광경화제는 예를 들어, 에폭시화합물에 대하여 일반적으로 0.5~20phr (parts per hundred, 에폭시 화합물 100중량부당의 중량부), 바람직하게는 lphr이상, 또한 바람직하게는 15phr이하로 사용될 수 있다. 상기한 본 발명에서 제공되는 어떠한 에폭시 조성물에서, 경화반응을 촉진하도특 임의의 경화촉진제 (촉매)가 필요에 따라 추가로 포함될 수 있다. 경화촉진제 (촉매)로는 이 기술분야에서 에폭시 조성물의 경화에 일반적으로 사용되는 것으로 알려져 있는 어떠한 촉매가사용될 수 있으며, 이로써 한정하는 것은 아니지만, 예를 들어, 이미다졸계, 제 3급 아민계, 제 4급 암모늄계, 유기산염계, 인 화합물계 등의 경화촉진제가 사용될 수 있다. 보다 구체적으로, 예를 들어, 디메틸 벤질 아민, 2-메틸이미다졸 (2MZ), 2-운데실이미다졸, 2—에틸 -4-메틸이미다졸 (2E4M), 2-페닐이미다졸, 1— (2- 시아노에틸) -2-알킬기 이미다졸, 2-헵타데실이미다졸 (heptadecyl imidazole, 2HDI) 등의 이미다졸계; 벤질디메틸아민 (benzyl dimethyl amine, BDMA), 트리스디메틸아미노메틸페놀 (DMP-30), 트리에틸렌디아민 등의 3급 아민계 화합물; 테트라부틸암모늄브로마이드 등의 4급 암모늄염; 디아자비시클로운데센 (DBU)이나 DBU의 유기산염; 트리페닐포스핀, 인산에스테르 등의 인계 화합물, BF3-모노에틸 아민 (BF3-MEA) 등과 같은 루이스산 등을 들 수 있으며, 이로써 한정하는 것은 아니다. 이들 경화촉진제는 이들의 마이크로 캡슐코팅 및 착염 형성 등으로 잠재화된 것을 사용할 수도 있다. 이들은 경화 조건에 따라 단독으로 사용할 수도 있고, 2종 이상을 병용할 수도 있다. 상기 경화 촉진제의 배합량은, 특히 한정하는 것은 아니며, 이 기술분야에서 일반적으로사용되는 양으로 배합하여 사용할 수 있다. 예를 들어, 상기 에폭시 화합물에 대하여 0.1 내지 10 phr (parts per hundred resin, 에폭시 화합물 100중량후당의 중량부), 예를 들어, 0.2 내지 5 phr일 수 있다. 경화 촉진제는 경화반응 촉진 효과 및 경화 반웅 속도 제어 측면에서 상기 함량으로 사용되는 것이 바람직하다. 상기 경화 촉진제를 상기 범위의 배합량으로 사용함으로써 빠르게 경화가 진행되며 작업처리량의 향상을 기대할 수 있다. 상기 반응촉매 함유 조성물뿐만 아니라, 본 발명의 어떠한 실시형태에 의한 조성물에 알콕시실릴기 반응촉매가 포함되는 경우에, 알콕시실릴기 반웅촉매로는 이로써 한정하는 것은 아니지만, 예를 들어, 질산, 황산, 염산, 아세트산 및 인산으로 구성되는 그룹으로부터 선택되는 적어도 일종의 무기산, 암모니아, KOH, NH40H, 아민 및 전이 금속 알콕사이드, 주석 (tin) 화합물 (예를 들어, 디부틸틴 디라우레이트 (dibutyltin dilaurate), 및 /또는 주석 (II) 2- 에틸핵사노에이트 등)로 구성되는 그룹으로부터 선택되는 적어도 일종이 사용될 수 있다. 상기 알콕시실릴기 반웅촉매의 배합량은 특별히 한정하지 않으나, 알콕시실릴기 1당량에 대하여 알콕시실릴기 반웅촉매 0.01 당량 내지 0.1 당량을 포함할 수 있다.
상기 알콕시실릴기 반웅촉매의 효율을 좋게 하기 위해, 알콕시 실릴기반응 촉매를 포함하는 조성물에, 물이 추가로 포함될 수 있다. 이때 물의 배합량은 특별히 한정하지 않으나, 알콕시실릴기 1당량에 대하여 물 0.01 당량 내지 20 당량일 수 았다. 상기 에폭시 조성물은 에폭시 조성물의 물성을 손상시키자 않는 범위에서, 에폭시 조성물의 물성조절을 위해 통상적으로 배합되는 이형제, 표면 처리제, 난연제, 가소제, 항균제, 레벨링게, 소포제, 착색제, 안정제, 커플링제, 점도조절제, 희석제 등의 기타 첨가제가또한 필요에 따라 배합될 수 있다. 상기한 바와 같이, 본 명세서에서 사용된 용어 "에폭시 조성물' '은 본 발명의 에폭시 화합물뿐만 아니라 필요에 따라 상기 에폭시 조성물을 구성하는 다른 구성성분, 예를 들어, 임의의 경화제, 경화촉진게 (촉매), 무기재료 (충전제) (예를 들어, 무기입자 및 /또는 섬유), 기타 통상의 에폭시 화합물 및 용매 이외의 이 기술분야에서 필요에 따라 배합되는 기타 첨가제를 포함할 수 있는 것으로 이해되며, 따라서 통상, 에폭시 조성물에서 용매는 에폭시 조성물의 공정성 등을 고려하여 에폭시 조성물의 고형분 함량 및 /또는 점도를 적합하게 조절하도록 임의로 사용될 수 있다. 한편, 본 발명에서 사용된 용어 "에폭시 조성물의 고형분의 총 중량"이란 에폭시 조성물을 구성하는 성분 중 용매 등 액체 성분을 제외한 고체 성분을 총 중량을 말한다.
상기 본 발명의 어떠한 실시형태에서 제공되는 어떠한 에폭시 조성물은 전자재료용으로 사용될 수 있다. 전자 재료는 이로써 한정하는 것은 아니지만, 예를 들어, 반도체용 기판, 필름, 프리프레그, 또는 본 발명의 조성물로된 기재층에 금속층이 배치된 적층판, 기판, 봉지재료 (패키징 재료), 빌드 업 필름 (기판) 등뿐만 아니라, 인쇄 배선기판 등의 전자부품이다. 또한, 접착제, 도료 및 복합체료 등 각종 용도에 적용될 수 있다. 본 발명의 또 다른 실시형태에 의하면, 본 발명의 알콕시실릴계 에폭시 화합물을 포함하는 어떠한 조성물을 포함하는 또는 이로 이루어진 전자재료가 제공된다. 나아가, 상가 전자재료를 포함하거나 이로 이루어지는 반도체 장치가 또한 .제공된다. 구체적으로 상기 반도체 장치는 본 발명의 알콕시실릴계 에폭시 화합물을 포함하는 조성물을 포함하는 또는 이로 이루어진 인쇄배선판을 포함 (예를 들어, 반도체 소자 탑재)하는 반도체 장치 및 /또는 반도체 패키징 재료를 포함하는 반도체 장치일 수 있다. 또한, 상기 본 발명의 어떠한 실시형태에서 제공되는 어떠한 에폭시 조성물을 포함하거나 이로 이루어진 경화물, 접착제, 도료 또는 복합체료가 제공된다. 본 발명의 또 다른 실시형태에 의하면, 상기한 본 발명의 어떠한 실시형태에서 제공되는 에폭시 조성물을 포함하거나 흑은 이로 이루어진 경화물이 제공된다. 상기 본 발명의 어떠한 실시형태에서 제공되는 에폭시 조성물은 실제 적용되는 경우에, 예를 들어, 전자재료 등으로 적용되는 경우에는 경화물로서 사용되며, 이 기술분야에서 에폭시 화합물과 무기 성분인 층전제를 포함하는 조성물의 경화물은 일반적으로 복합체로 칭하여진다. 상기한 본 발명의 일 실시형태에서 제공되는 알콕시실릴계 에폭시 화합물은 복합체에서 우수한 내열특성 및 /또는 경화물에서 우수한 난연성을 나타낸다. 구체적으로, 복합체는 낮은 CTE, 예를 들어, 15ppm/°C 이하, 예를 들어, 12ppm/°C이하, 예를 들어, 10ppm/°C이하, 예를 들어, 8ppm/°C이하, 예를 들어, 6ppm/°C이하, 예를 들어, 4ppm/°C이하의 CTE를 나타낸다. ' CTE 값은 작을수록 물성이 우수한 것으로 CTE의 하한값을 특히 한정하는것은 아나다. 예를 들어, 에폭시 화합물로서 본 발명에 의한 어떠한 알콕시실릴계 에폭시 화합물, 무기재료로서 유리 섬유, 예를 들어, E-글라스 및 /또는 T-글라스 -유리 섬유를 포함하고, 레진함량이 30wt% 내지 60wt% (레진함량에는 무기입자가 포함될 수도 있고 포함되지 않을 수도 있음)인 복합체는 예를 들어, 10ppm/°C이하, 예를 들어, Sppm/'C이하, 예를 들어, 6ppm/t:이하, 예를 들어, 4ppm/°C이하의 CTE를 나타낸다. 또한, 예를 들어, 에폭시 화합물로서 본 발명에 의한 어떠한 알콕시실릴계 에폭시 화합물, 무기재료로서 무기입자, 예를 들어, 실리카 입자를
60 내지 80wt%, 예를 들어 70 내지 80wt% 포함하는 복합체는 20ppm/°C 이하, 예를 들어, 15pptn/°C이하, 예를 들어, 10ppn/°C이하, 예를 들어, 8ppm/°C이하, 예를 들어, 6ppm/°C이하, 예를 들어, 4ppm/°C이하의 CTE를 나타낸다. 또한, 본 발명에 의한 복합체 (무기재료를 포함하는 경화물)는 Tg가 100°C 보다 높으며, 예를 들어, 13CTC이상, 또한, 예를 들어, 250°C 이상 또는 Tg- 리스일 수 있다. Tg 값은 클수록 물성이 우수한 것으로 Tg의 상한값을 특히 한정하는 것은 아니다. 한편, 본 발명에 의한 알콕시실릴계 에폭시 화합물 자체 경화물 (무기재료를 함유하지 않는 경화물)은 50ppm/°C 내지 150ppmrc의 CTE를 갖는다. 본 명세서에세 범위로 나타낸 값은 특히 달리 안급하지 않는 한 범위의 하한값과 상한값뿐만 아니라 범위 사이의 어떠한 하부 범위 및 그 범위에 속하는 모든 수를 각각 포함함을 의미한다. 예를 들어, C1 내지 C10은 CI, C2, C3, C4, C5, C6, C7, C8, C9, C10 모두를 포함하는 것으로 이해된다. 또한, 수치 범위 중 하한값 또는 상한값이 규정되지 않는 것은 수치가 작을수록 혹은 클수록 바람직한 것으로 특히 이들의 한계를 규정하지 않으며, 어떠한 값을 포함하는 것으로 이해된다. 예를 들어, 4ppm/°C이하의 CTE는, 4, 3.5, 3, 2.7, 2, 1.4, 1,
0.5 ppm/°C 등 범위 사이의 모든 값을 포함하는 것으로 이해된다. 3. 알콕시실릴계 에폭시 화합물의 제조방법 본 발명의 일 실시 형 태에 의한 상기 화학식 1의 알콕시실릴계 에폭시화합물은 다음과 같은 방법으로 합성될 수 있다.
( 1) 화학식 1중 R이 화학식 3a인 에폭시 화합물의 제조방법 (제조방법
1)
본 발명의 다른 실시 형 태에 의하면, 화학식 1중 R이 화학식 3a인 에폭시 화합물의 제조방법 이 제공된다 . 먼저 제 1 단계에서는 상기 화학식 1의 알콕시실릴기를 갖는 에폭시 화합물의 기본구조가 되는 하기 화학식 4의 에폭시 화합물과 하기 화학식 6의 알켄화합물의 반웅으로 화학식 4의 에폭시 화합물이 알켄화된 하기 화학식 5의 중간체를 형성 한다. 상기 단계 1의 알켄 (alkene)화에서, 화학식 4와 에폭시 화합물의 히드록시 그룹의 탈수소화 및 알켄화로 하기 화학식 5의 중간체가 형성된다.
[화학식 4]
Figure imgf000048_0001
Figure imgf000049_0001
상기 화학식 4 및 5에서, C 및 n 은 상기 화학식 1에서 정의한 바와 같으며, 식 5에서, n이 1인 경우에 B는 -(C¾)厂 CH=CH2 (단, 1은 1 내지 8의 정수, 바람직하게는 1 내지 4의 정수임)이고, n이 2이상인 경우에 B중 적어도 하나는 - (C¾)rCH=CH2 (단, 1은 1 내지 8의 정수, 바람직하게는 1 내지 4의 정수임)이고, 나머지는 수소이다. 화학식 1의 에폭시 화합물과 마찬가지로 상기 화학식 4 및 5의 화합물 또한, 다수의 코어 유니트 C에서 각각의 코어 유니트 C는 서로 같거나 다를 수 있다.
"[화학식 6]
X-(C¾)厂 CH=CH2
화학식 6에서, 1은 1 내지 8의 정수이며, 바람직하게는 1 내지 4의 정수이고, X는 CI, Br 또는 I와 같은 할라이드, -0-S02— C¾, -0-S02-CF3, 또는 - 0-S02-C6H4-CH3 이다. 상기 제 1.단계의 반응인 알켄화는 용매 및 염기 존재하에서 상기 화학식 4의 에폭시 화합물과 화학식 6의 알켄 화합물을 반응시켜서 행한다. 상기 제 1단계 반응은 상기 화학식 4의 에폭시 화합물과 화학식 6의 알켄 화합물을 0°C 내지 10CTC로 1 내지 120시간 동안 반응시켜서 행할 수 있다. 상기 제 1:단계 반응에서, 화학식 4의 에폭시 화합물과 알켄 화합물은 히드톡시 그룹과 알켄 그룹이 화학양론적 당량비로 반웅하므로, 이를 고려하여 상기 화학식 4의 에폭시 화합물의 하드록시기 1 당량에 대하여 알켄 화합물의 알케닐기가 0.1당량 내지 5당량이 되도록 반응시킨다. 다만, 상기 화학식 4의 에폭시 화합물은 반복단위의 수에 따라 에폭시 화합물 중 히드록시 그룹의 수가 달라지며, 2개 이상의 하드록시 그룹이 있는 경우에 다수의 히드록시 그룹 중 적어도 하나의 히드록시기만 알켄 화합물과 반웅하면 되므로, 이러한 경우에 알켄 화합물이 1당량보다 적은 양, 예를 들어, 0.1당량으로 사용될 수 있다. 이 기술분야의 기술자는 상기 기재사항으로부터, 원하는 화학식 5의 중간 생성물의 알켄화 정도에 따라, 알켄 화합물의 당량을 적합하게 조절할 수 있다. 상기 1단계의 알켄화는 용매 및 염기 존재하에서—화학식 4의 에폭시 화합물과 알켄화합물과 반웅시킴으로써 행하여지는 것으로 기재하였으나, 구체적인 공정에서', 화학식 4의 에폭시 화합물, 알켄화합물 및 염기가 순차적으로 첨가되거나, 흑은 모든 반웅물을 첨가하고 반웅을 진행시킬 수도 있으며, 혹은 시간 간격을 두고 화학식 4의 에폭시 화합물의 탈수소화 후에 알켄화합물이 첨가될 수도 있다. 탈수소화는 화학물질와 합성에 있어서 일반적으로 알려져 있는 공정으로서 이 기술분야의 기술자는 상기 기재된 제 1 단계 공정에 따라, 화학식 4의 에폭시 화합물의 히드톡시 그룹이 탈수소화되고 탈수소화된 화학식 4의 에폭시 화합물과 알켄화합물의 반응으로 화학식 5의 중간체가 형성되도록 반응물을 적합하게 첨가하여 반응시킬 수 있다. 알켄화의 반웅온도 및 반응시간은 화학식 4의 에폭시 화합물의 구조에 의존하므로 화학식 4의 에폭시 화합물에 따라 달라질 수 았으며, 예를 들어, 0°C 내지 100°C에서 1시간 내자 120시간 동안 반웅시킴으로써 화학식 5의 중간체가 얻어진다. 제 1 단계 반웅에서 용매로는 반응물을 잘 용해할 수 있으며, 반응에 어떠한 악영향을 미치지 않고 반응 후에 쉴게 제거될 수 있는 한 어떠한 유기용매가사용될 수 있으며, 이로써 특히 한정하는 것은 아니지만, 예를 들어, 아세토니트릴, THF(tetrahydrofuran), MEKCmethyl ethyl ketone), DMF(dimethyl formamide), DMSO (dimethyl sulfoxide), 메틸렌 클로라이드, 롤루엔 등이 사용될 수 있다. 이들 용매는 단독으로 혹은 2가지 이상이 함께 사용될 수 있다. 용매의 사용양 및 /또는 농도는 특히 한정하는 것은 아니며, 반응물이 층분히 용해되고 반웅에 바람직하지 않은 영향을 미치지 않는 범위에서 적합한 양 및 /또는 농도로 사용될 수 있으며, 이 기술분야의 기술자는 이를 고려하여 적합하게 선택할 수 있다. 제 1 단계 반웅에서 염기로는 이로서 한정하는 것은 아니지만, 예를 들어, NaH, KOH, NaOH, K2C03, KHC03, Na2C03, NaHC03, 트리에틸아민, 디이소프로필에틸 아민이 사용될 수 있다. 이들 염기는 단독으로 흑은 2가지 이상이 함께 사용될 수 있으며, 염기는 화학식 4의 에폭시 화합물의 히드록시 작용기 1당량 대비 0.1당량 내지 5당량으로사용하는 것이 반응효율 측면에서 좋다. 그 후, 제 2 단계 반웅에서, 상기 제 1단계 반웅에서 얻어진 상기 화학식 5의 중간체와 하기 화학식 7a의 알콕시기실란 화합물의 반응으로 상기 화학식 1 중 R이 화학식 3a인 알콕시실릴기를 갖는 에폭시화합물아 얻어진다. 이때, 상기한 바와 같이 , 화학식 1에서, n이 1인 경우에, R은 상기 화학식 3a이며, n이 2이상인 경우에, 다수의 R 중 적어도 하나는 상기 화학식 3a이고, 나머지는 수소일 수 있다.
[화학식 7a]
HSiRa¾Rc
상기 화학식 7a에서 Ra 내지 Rc 중 적어도 하나는 탄소수 1 내지 5 알콕시기, 바람직하게는 에록시기이며, 나머지는 탄소수 1 내지 10 알킬기이고, 상기 알콕시기 및 알킬기는 직쇄 혹은 분지쇄일 수 있다. 제 2 단계 반응의 하이드로실릴화에서는, 백금촉매 및 임의의 용매 존재 하에서 상기 화학식 5와알케닐과 알콕시기실란화합물이 반응된다. 제 2단계 반응에서, 화학식 5의 중간체 화합물과 실란화합물은 화학양론적으로 알케닐 그룹과 화학식 7a의 알콕시 실릴화합물의 수소가 당량비에 따라 반응하므로, 이를 고려하여 상기 화학식 5의 알케닐 그룹 1 당량에 대하여 실란화합물이 1 내지 5당량이 되도록 반웅시킨다. 제 2 단계 반웅의 반웅온도 및 반웅시간은 반웅물의 종류에 따라 달라지지만, 구체적으로는 상온 (예를 들어, 15 내지 20°C) 내지 120°C에서 1시간 내지 72시간 동안 반응시킴으로써 상기 화학식 1중 R이 화학식 3a인 알콕시실릴기를 갖는 에폭시화합물이 얻어진다. 제 2 단계 반응에서 용매는 필요에 따라 임의로 사용될 수 있다. 예를 들어, 제 2 반웅단계에서는 별도의 용매 없이도 반응온도에서 반웅물의 점도가 낮아지면 용매를 사용하지 않을 수도 있다. 즉, 반응물의 혼합 및 교반이 용매 없이 원활하게 진행될 수 있으면 별도의 용매를 필요로하지 않으며, 이는 당업자가 용이하게 판단할 수 있다. 용매를 사용할 경우에, 가능한 용매로는 반웅물을 잘 용해할 수 있으며, 반응에 어떠한 악영향을 미치지 않고 반응 후에 쉽게 제거될 수 있는 한 어떠한 비양성자성 용매 (aprotic solvent)라도 사용될 수 있으며, 이로써 특히 한정하는 것은 아니지만, 예를 들어, 를루엔, 아세토니트릴, THF(tetra hydro furan), MEK(methyl ethyl ketone) , DMF(dimethyl formamide), DMS0( dimethyl sulfoxide) 메틸렌 클로라이드 등이 사용될 수 있다. 이들 용매는 단독으로 혹은 2가지 이상이 함께 사용될 수 있다. 용매의 사용량 및 /또는 농도를 특히 한정하는 것은 아니며, 반웅물이 층분히 용해되고 반응에 바람직하지 않은 영향을 미치지 않는 범위에서 적합한 양 및 /또는 농도로 사용될 수 있으며, 이 기술분야의 기술자는 이를 고려하여 적합하게 선택할 수 있다. 상기 제 2 단계 반웅에서 백금촉매로는 이로써 한정하는 것은 아니지만, 예를 들어, Pt02 또는 H2PtCl6(Chloroplatinic acid)가 사용될 수 있다. 백금촉매는 화학식 5의 중간체의 알케닐 그룹 1 당량에 대하여 1x1으 4 내지 0.05 당량으로 사용하는 것이 반웅효율 측면에서 좋다.
(2) 화학식 1중 R이 화학식 3b인 .에폭시 화합물의 제조방법 (제조방법
2) 참고로, 화학식 1중 R이 화학식 3b인 에폭시 화합물은 다음의 방법으로 제조될 수 있다. 화학식 1중 R이 화학식/ 3b인 에폭시 화합물은 상기 알콕시실릴기를 갖는 에폭시 화합물의 기본구조가 되는 상기 화학식 4의 에폭시 화합물과 이소시아네이트계 알콕시기실란의 반웅으로 제조된다. 상가화학식 4의 에폭시 화합물과 하기 화학식 7b의 이소시아네이트계 알콕시기실란은 임의꾀 용매 존재하에서 반웅된다.
[화학식 7b]
OCN(CH2)mSiRaRbRc
화학식 7b에서 m은 3 내지 10의 정수이고, 바람직하게는 3 내지 6의 정수이며, Ra 내지 Rc중 적어도 하나는 CI— C5 알콕시기, 바람직하게는 에톡시기이고 나머지는 C1-C10 알킬기이며, 상기 알콕시기 및 알킬기는 직쇄 혹은 분지쇄일 수 있다. 화학식 4의 에폭시 화합물과 화학식 7b의 이소시아네이트계 알콕시기실란은 화학식 4의 에폭시 화합물의 히드록시 그룹과 알콕시기실란이 화학양론에 따라 당량비로 반응하므로, 이를 고려하여 상기 화학식 4의 에폭시 화합물의 히드록시 그룹 1 당량에 대하여 알콕시기실란이 1당량 내지 5당량이 되도록 상기 화학식 4의 에폭시 화합물과 화학식 5의 이소시아네이트계 알콕시기실란을 반웅시킨다. 상기 반응의 반웅온도 및 반응시간은 반웅물에 따라 다르지만, 예를들어, 상온 (예를 들어, 15°C 내지 25°C) 내지 12( C에서 1시간 내지 72시간 동안 반웅시키므로써 상기 화학식 1중 R이 화학식 3b인 알콕시실릴기를 갖는 에폭시화합물이 얻어진다. 상가한 바와 같이, 화학식 1에서, n이 1인 경우에, R은 상기 화학식 3b이며, n이 2이상인 경우에 다수의 R 중 적어도 하나는 상기 화학식 3b이고, 나머지는 수소일 수 있다. 상기 반웅은 필요에 따라 염기 존재하에서 행할 수 있다. 별도꾀 기를 사용하지 않아도 반웅이 진행되지만, 반웅속도가 느리며 염기를 사용하여 반웅속도를 빠르게 할 수 있다. 사용가능한 염기의 예로는 이로써 한정하는 것은 아니지만, 예를 들어 K2C03, Na2C03, KHCOs, NaHC03, 트리에틸아민, 디이소프로필에틸아민 등을 들 수 있다. 이들 염기는 단독으로 혹은 2가지 이상이 함께 사용될 수 있다. 염기는 화학식 1의 에폭시 화합물의 히드록시 그룹 1당량에 대하여 1 당량 내지 5 당량으로 사용하는 것이 반웅효율 측면에서 좋다. 용매는 필요에 따라 임의로 사용될 수 있다. 예를 들어, 별도의 용매 없이도 반응온도에서 반웅물의 점도가 반웅이 진행되기에 적합하면 용매를 사용하지 않을 수 있다. 즉, 반응물의 흔합 및 교반이 용매 없이 원활하게 진행될 수 있을 정도로 반응물의 점도가 낮아지면 별도의 용매를 필요로 하지 않으며, 이는 당업자가 용이하게 판단할 수 있다. 용매를 사용할 경우에 , 가능한 용매로는 반응물을 잘 용해할 수 있으며, 반웅에 어떠한 악영향을 미치지 않고 반응 후에 쉽게 제거될 수 있는 한 어떠한 비양성자성 용매 (aprotic solvent)가 사용될 수 있다. 이로써 한정하는 것은 아니지만, 예를 들어, 를루엔, 아세토니트릴, THF(tetra hydro f uran), MEK(methyl ethyl ketone), DMF(dimethyl forraamide), DMS0( dimethyl sulfoxide), 메틸렌클로라이드 (MC) 등이 사용될 수 있다. 이들 용매는 단독으로 혹은 2가지 이상이 함께 사용될 수 있다. 용매의 사용양 및 /또는 농도는 특히 한정하는 것은 아니며, 반응물이 층분히 용해되고 반응에 바람직하지 않은 영향을 미치지 않는 범위에서 적합한 양 및 /또는 농도로 사용될 수 있으며, 이 기술분야의 기술자는 이를 고려하여 적합하게 선택할 수 있다. 이하, 실시예를 통하여 본 발명에 대하여 상세히 설명한다. 하기 실시예는 본 발명을 예시하는 것으로, 이로써 본 발명을 한정하는 것은 아니다. 합성예 1
단계 (1) - 히드록시 그룹의 알릴화 (allylation)
1L 플라스크에 소디움 하이드라이드 (60wt¾>, 미네랄오일에 분산됨) 3 g 및
DMF 200 를 첨가하고 상온에서 교반하면서 흔합하였다. 그 후, 상기 플라스크에 에폭시 화합물 (DGEBA(diglycidyl ether of bisphenol A)(EEW261), 금호 P&B 이하 동일) 38.0g을 넣고, 알릴 브로마이드 (시그마 알드리치, 이하 동일) 8 ^를 적가한 다음에 상온에서 20 시간 동안 교반하여 반응시켰다. 반응 후, 물 300m«를 첨가한 후, 에틸아세테이트로 추출하였다. 그 후, 염수 (brine)로 세척하고 MgS04상에서 건조한 후, 필터로 여과하고 증발기를 사용하여 용매를 제거하고 알릴화된 에폭시 화합물을 얻었다. 반응식은 다음과 같다.
Figure imgf000057_0001
¾ NMR (400腿 z, CDC13) : δ 1.62 (s, 27H), 2.72-2.74 (m, 2H), 2.87- 2.89 (m, 2H), 3.31-3.34 (m, 2H), 3.92 (dd, J =4.8 Hz, 2H) , 4.06-4.19 (m, 10H), 4.23-4.24 (m, 2H), 5.18 (dd, J=0.8Hz, 2H), 5.30 (dd, J=1.2 Hz, 2H), 5.90-5.97 (m, 2H), 6.80-6.82 (m, 12H), 7.11-7.14 (m, 12H) . 단계 (2) - 하이드로실릴화 (Hydrosilylation)
상온에서 100ml 플라스크에 상기 단계 (1)에서 얻어진 알릴화된 에폭시 화합물 16g, 트리에특시실란 (TCI, 이하 동일) 6ml, 백금 산화물 (Platinum oxide) 70 mg, 및 를루엔 40ml을 넣고 아르곤을 충전한 다음에, 85°C에서 24시간 동안 교반하였다. 그 후, 셀라이트 필터 (celite filter)로 여과하고 증발기를 이용해서 용매를 제거하여 알콕시실릴기를 갖는 에폭시 화합물 (DGEBA-HS)을 얻었다. 반응식은 다음과 같다.
Figure imgf000058_0001
Ή NMR (400MHz, CDC13) : δ 0.64-0.68 (m, 4H), 1.19-1.30 (m, 18H), 1.55-1.74 (m, 22H), 2.73 (q, J=2.4Hz, 2H), 2.88 (t, J=4.4Hz, 2H), 3.31-3.35 (m, 2H), 3.65 (t, J=7.0Hz, 4H), 3.79-3.85 (m, 12H), 3.92-4.00 (m, 6H), 4.06-4.19 (m, 8H), 6.80-6.82 (m, 12H), 7.10-7.14 (m, 12H) . 합성예 2
단계 (1) - 히드록시 그룹의 알릴화
1L 플라스크에 소디.움 하이드라이드 (60wt%, 미네랄오일에 분산됨) 3g 및 DMF 200^를 첨가하고 상온에서 교반하면서 흔합하였다. 그 후, 상기 플라스크에 에폭시 화합물 (DGEBA(EEW261)) 35.0g을 넣고, 5ᅳ브로모펜텐 9m를 적가한 다음에 상온에서 24시간 등안 교반하여. 반웅시켰다. 반웅 후, 물 300m.g를 첨가하고 5분간 교반하고 에틸 아세테이트로 추출하였다. 그 후, 염수 (brine)로 세척하고 MgS04상에서 건조한 후, 필터로 여과하고 증발기를 사용하여 용매를 제거하여 알릴화된 에폭시 화합물을 얻었다. 반웅식은 다음과 같다.
Figure imgf000059_0001
¾ NMR (400丽 z, CDCI3) : δ 1.25 (t, J=3.2, 4H), 1.62 (s, 27H) , 1.68- 1.74 (m, 2H), 2.08-2.15 (m, 2H), 2.72-2.74 (m, 2H), 2.87-2.89 (m, 2H), 3.31-3.34 (m, 2H), 3.92 (dd, J=4.8 Hz, 2H), 4.06-4.19 (m, 10H), 4.23-4.24 (m, 2H), 5.18 (dd, J=0.8Hz, 2H) , 5.30 (dd, J=1.2 Hz, 2H), 5.90-5.97 (m, 2H), 6.80-6.82 (m, 12H) , 7.11-7.14 (m, 12H). 단계 (2) - 하이드로실릴화 (Hydrosilylation)
상온에서 250ml 플라스크에 상기 단계 (1)에서 얻어진 -알릴화된 에폭시 화합물 32.0g, 트리에록시실란 12m , 백금 산화물 (Platinum oxide) 150mg, 및 를루엔 lOOini를 넣고 아르곤훌 층전한 다음에, 85°C에서 24시간 동안 교반하였다. 그 후, 샐라이트 필터 (celite filter)로 여과하고 증발기를 이용해서 용매를 제거하여 알콕시실릴기를 갖는 에폭시 화합물 (DGEBA-p-HS)을 얻었다. 반웅식은 다음과 같다.
Figure imgf000060_0001
Έ 腿 (400MHz, CDGI3) : δ 0.64-0.68 (m, 4H), 1.19-1.30 (m, 18H), 1.34-1.42 (m, 4H), 1.55-1.74 (mᅳ 26H) , 2.73 (q, J=2.4Hz, 2H), 2.88 (t, J=4.4Hz, 2H), 3.31-3.35 (m, 2H), 3.65 (t, J=7.0Hz, 4H), 3.79-3.85 (m, 12H), 3.92-4.00 (m, 6H), 4.06-4.19 (m, 8H) , 6.80-6.82 (m, 12H), 7.10-7.14 (m, 12H). 합성예 3
단계 (1) - 히드록시 그룹의 알릴화 :
1L 플라스크에 소디움 하이드라이드 (60wt%, 미네랄오일에 분산됨) 5.3g 및 DMF 300 를 첨가하고 상온에서 교반하면서 흔합하였다. 그 후, 상가 플라스크에 하기 반웅식의 에폭시 화합물 (NET-676) 40. Og 및 알릴 브로마이드 14^를 적가한 다음에 상온에서 24사간 동안 교반하여 반웅시켰다. 반웅 후, 물 300 를 첨가하고 5분간 교반하고 에틸 아세테이트로 추출하였다. 그 후ᅳ 염수 (brine)로 세척하고 MgS04상에서 건조한 후, 필터로 여과하고 증발기를 사용하여 용매를 제거하여 알릴화된 에폭시 화합물을 얻었다. 반웅식은 다음과 같다. 6S
— ο ε 'ακ 졔 = 'ιρ) wz 'ακ ' -z=i ^P) ig's '(^ '" ^'[-s 'i
'(H8I '" 92Ί-8ΓΤ '(HI7 '«0 2Z'0-89"09 : (£D(D 'ZHW001 翻 Hx
Figure imgf000061_0001
-b^ -tr-g-b 긍^응{¾ '- ^S, 룽 (SH-L3N)¾¾^ [Y^[\ ^ * ^^lY^f0 W^kl^
Figure imgf000061_0002
(uojiBiAnsojpAH)-tsl^Hlo¼ - (2) Ifc^
(H2 '"0 ΐδ"8-ΖΓ8 '(HS 'ZHS' =f 'P) 99" '(H 'ω) 9S'Z-TS'Z '(HS 'ω) 6r -ST" '(HS '«·) OI'Z-SO'Z '(HZ '« 90 - 9-96 'S
'(Hi7 ' ) 0^'9-Oe'S '(Η9ΐ '«0 OfV- Z'f '(IK '"0 H' -ir 'OK '"·) Lf£-6£'£
'(HS '"·) L6'Z-£6'Z '(HS '"») S8'Z-6Z-Z : (ε ΧΌ 'z OO ) 藤 Hx
Figure imgf000061_0003
£LZ00/£l0ZW^/13d 80CTSI/C10Z OAV 3.47 (m, 2H), 3.69-3.89 (m. 14H) , 4.05-4.18 (m. 4H), 4.23-4.56 (m, 12H). 7.03-7.18 (m, 8H), 7.29-7.33 (m, 4H), 7.65 (d, J=8.8Hz, 2H), 8.18-8.20 (m. 2H). 합성예 4
상온에서 500ml 플라스크에 DGEBA(diglycidyl ether of bisphenol A, ECT:261, 금호 I¾B) 48g, 트리에틸아민 32ml, 3- (트리에톡시실릴)프로필 이소시아네이트 50 ml 및 메틸렌클로라이드 300ml를 넣고. 1시간 동안 환류하였다. 그 후, 증발기 (evaporator)를 사용하여 용매를 제거하고 알콕시실릴기를 갖는 에폭시 화합물 (DEGBA-IS0)을 얻었다. 반응식은 다음과 같다.
Figure imgf000062_0001
Έ NMR (500MHz, CDC13) : δ= 0.63-0.65 (m, 4H), 1.13-1.24 (m, 18H), 1.61-1.67 (m, 22H) , 2.75 (q, J=2.5 Hz. 2H). 2.91 (t, J=4.5 Hz, 2H). 3.18- .21 (m. 2H), 3.34-3.36 (m, 4H), 3.70-3.84 (m, 12H), 3.92-3.95 (m, 4H). .12-4.25 (m. 8H). 5.33-5.39 (m. 2H), 6.81-6.82 (m. 12H), 7.11-7.13 (m. 12H). 8.59 (br, 2H). 합성예 5
정정용지 (규칙 제 91조) ISA/KR 상은에서 500ml 플라스크에 에폭시 화합물로 하기 반응식의 나프탈렌 트라이머 에폭시 화합물 (NET-676) 20.00g, 트리에틸아민 20 ml, 3- (트리에톡시실릴)프로필 이소시아네이트 (TCI, 이하 동일) 30 ml, 및 메틸렌 클로라이드 200ml를 넣고, 1시간 동안 환류시켰다. 증발기를 이용하여 용매를 제거하고 알콕시실릴기를 갖는 화합물 (NET-ISO)을 얻었다. 반응식은 다음과 같다.
Figure imgf000063_0001
¾ 賺 (400MHz, CDC13) : δ =0.59-0.63 (m, 4H), 1.18-1.26 (m, 18H), 1.57-1.64 (m, 4H), 2.81 (dq, J=2.4Hz, 2H) , 2.94 (dt . J=4.8Hz. 2H), 3.16 (q. J=6.4Hz, 4H), 3.39-3.48 (m. 2H), 3.69-3.89 (m. 14H) , 4.23-4.56 (m, 12H), 5.15 (t, J=6.0Hz, 2H).7.03-7.18 (m, 8H), 7.29-7.33 (m. 4H), 7.65 (d. J=8.8Hz, 2H), 8.18-8.20 (m, 2H). 합성예 6
상온에서 250ml 플라스크에 하기 반웅식의 에폭시 화합물 (NED-66) lO.OOg, 트리에틸아민 7.13ml. 3- (트리에특시실릴)프로필 이소시아네이트 10.14ml. 및 메틸렌 클로라이드 (100ml)를 넣고, 1시간 동안 환류시켰다. 증발기를 이용하여 용매를 제거하고 알콕시실릴기를 갖는 화합물 (NED~IS0)을 얻었다. 반웅식은 다음과 같다.
61 정정용지 (규칙 제 91조) ISA/KR
Figure imgf000064_0001
¾ NMR (500MHz, CDC13) : 6 =0.59-0.63 (m, 2H), 1.18-1.32 (m, 9H). 1.57-1.64 (m, 2H), 2.80-2.85 (m, 2H), 2.93-2.97 (m, 2H), 3.16 (q, J=6.4Hz, 2H), 3.41-3.49 (m, 2H), 3.73-3.87 (m. 8H), 4.25-4.42 (m, 7H). 5.15 (t, J=6.0Hz, 1H), 6.66-6.76 (m, 2H), 7.09 (d, J=2.0Hz, 1H), 7.13-7.19 (m. 3H), 7.30-7.36 (m, 4H). 8.18-8.21 (m, 2H). 합성예 7
상은에서 250ml 플라스크에 하기 반응식의 에폭시 화합물 lO.OOg, 트리에틸아민 5.34ml, 3- (트리에톡시실릴)프로필 이소시아네이트 8ml. 및 메틸렌 클로라이드 100ml를 넣고, 1시간 동안 환류시켰다. 증발기를 이용하여 용매를 제거하고 알콕시실릴기를 갖는 화합물 (Biph-ISO)을 얻었다. 반웅식은 다음과 같다.
Figure imgf000064_0002
62 정정용지 (규칙 제 91조) ISA/KR ¾ NMR (500MHz, CDC13) : 6=0.59-0.63 (m, 2H), 1.18-1.32 (m, 9H), 1.57-1.64 (m, 2H), 2.34 (S, 24H), 2.73 (dd, J=5.0Hz, 2H) , 2.91 (dd, J=4.8Hz 2H), 3.16 (q, J=6.4Hz, 2H) , 3.37-3.41 (m, 2H), 3.73-3.87 (m, 8H), 4.07 (dd, J=3.2Hz, 2H), 4.25-4.42 (m, 5H), 5.15 (t, J=6.0Hz, 1H), 7.18 (s, 8H). 합성예 8
단계 (1) - 히드록시 그룹의 알릴화
500ml 플라스크에 소디움 하이드라이드 (60wt¾, 미네랄오일에 분산됨) 0.92g 및 DMF 100 를 첨가하고 상온에서 교반하면서 흔합하였다. 그 후, 상기 플라스크에 에폭시 화합물 10.0g 및 알릴 브로마이드 3.71g을 적가한 다음에 상은에서 24시간 동안 교반하여 반응시켰다. 반응 후, 물 200 를 참가하고 5분간 교반하고 에틸 아세테이트로 추출하였다. 그 후, 염수 (brine)로 세척하고 MgS04상에서 건조한 후, 필터로 여과하고 증발기를 사용하여 용매를 제거하여 알릴화된 에폭시 화합물을 얻었다. 반웅식은 다음과 같다.
Figure imgf000065_0001
¾ 證 (500MHz, CDCI3) : 5=2.34 (S, 24H) , 2.73 (dd, J=5.0Hz, 2H) ,
2.91 (dd, J=4.8Hz, 2H) ,3.37-3.41 (m, 2H), 3.73-3.87 (m, 2H), 4.07 (dd,
J=3.2Hz, 2H), 4.24-4.42 m, 7H) ,5.30-5.40 (m, 2H), 5.96-6.05 (m, 1H), 7.18 (s, 8H). 단계 (2) - 하이드로실릴화
상온에서 100ml 플라스크에 상기 단계 (1)에서 얻어진 알릴화된 에폭시 화합물 10.0g, 트리에톡시실란 2.84g, 백금 산화물 (Piatinum oxide) 0.07g, 및 롤루엔 60 를 넣고 아르곤을 충전한 다음에 , 85°C에서 24시간 동안 교반하였다, 그 후, 셀라이트 필터 (celite filter)로 여과하고 증발기를 이용해서 용매를 제거하여 알콕시실릴기를 갖는 에폭시 화합물 (Biph-HS)을 얻었다. 반웅식은 다음과 같다.
Figure imgf000066_0001
¾ NMR (500MHz, CDC13) : 5=0.68-0.72 On, 2H), 1.18-1.26 (m, 9H), 1.75- 1.81 (m, 2H), 2.34 (S, 24H), 2.73 (dd, J=5.0Hz, 2H), 2.91 (dd, J=4.8Hz, 2H) ,3.37-3.41 (m, 2H), 3.65 (t, J=7.0Hz, 2H), 3.69-3.87 (m, 8H) , 4.07 (dd, J=3.2Hz, 2H), 4.24-4.42 (m, 5H),7.18 (s, 8H). 예상 합성예 9
단계 (1) - 히드록시 그룹의 알릴화
250ml 플라스크에 소디움 하이드라이드 (60wt%, 미네랄오일에. 분산됨) 0.81g 및 DMF 1001 를 첨가하고 상은에서 교반하면서 흔합한다. 그 후, 상기 플라스크에 바이나프탈렌 에폭시 화합물 10.0g 및 알릴 브로마이드 3.27g을 적가한 다음에 상온에서 24시간동안 교반하여 반웅시킨다. 반웅 후, 물 200m?를 첨가하고 5분간 교반하고 에틸 아세테이트로 추출한다. 그 후, 염수 (brine)로 세척하고 MgS04상에서 건조한 후, 필터로 여과하고 증발기를 사용하여 용매를 제거하여. 알릴화된 에폭시 화합물을 얻는다. 반웅식은 다음과 같다.
Figure imgf000067_0001
단계 (2) - 하이드로실릴화
상온에서 100ml 플라스크에 상기 단계 (1)에서 얻어진 알릴화된 에폭시 화합물 10. Og, 트리에톡시실란 2.52g, 백금 산화물 (Platinum oxide) 0.06g, 및 를루엔 601 를 넣고 아르곤을 층전한 다음에, 85°C에서 24시간 동안 교반한다. 그 후, 셀라이트 필터 (celite filter)로 여과하고 증발기를 이용해서 용매를 제거하여 알콕시실릴기를 갖는 에폭시 화합물을 얻는다. 반웅식은 다음과 같다.
Figure imgf000067_0002
예상 합성예 10
상온에서 250ml 플라스크에 바이나프탈렌 에폭시 화합물 lO.OOg, 트리에틸아민 2.73g, 3- (트리에톡시실릴)프로필 이소시아네이트 3.34g, 및 쩨틸렌 클로라이드 (100ml)를 넣고, 1시간 동안 환류시킨다. 증발기를 이용하여 용매를 제거하고 알콕시실릴기를 갖는 화합물을 얻는다. 반응식은 다음과 같다.
Figure imgf000068_0001
예상 합성예 11
단계 (1) - 히드록시 그룹의 알릴화
250ml 플라스크에 소디움 하이드라아드 (60wt%, 미네랄오일에 분산됨) 0.69g 및 DMF lOOii 를 첨가하고 상은에서 교반하면서 흔합한다. 그 후, 상기 플라스크에 에폭시 화합물, 1,3-비스 (4-(9-(4- (옥시란 -2-일메록시)페닐) 9H- 플루오렌 -9-일)페녹시)프로판 -2-올 (시그마 알드리치) 10.0g 및 알릴 브로마이드 2.78g를 적가한 다음에 상온에서 24시간 동안 교반하여 반웅시킨다. 반웅 후, 물 200ι 를 첨가하고 5분간 교반하고 에틸 아세테이트로 추출한다. 그 후, 염수 (brine)로 세척하고 MgS04상에서 건조한 후, 필터로 여과하고 증발기를 사용하여 용매를 제거하여 알릴화된 에폭시 화합물을 얻는다. 반웅식은 다음과 같다.
Figure imgf000068_0002
단계 (2) - 하이드로실릴화
상온에서 100ml 플라스크에 상기 단계 (1)에서 얻은 알릴화된 에폭 화합물 10. Og, 트리에톡시실란 2.17g, 백금 산화물 (Platinum oxide) 0.05g, 를루엔 60ι 를 넣고 아르곤을 충전한 다음에, 85°C에서 24시간 동안 교반한다. 그 후, 셀라이트 필터 (celite filter)로 여과하고 증발기를 이용해서 용매를 제거하여 알콕시실릴기를 갖는 에폭시 화합물을 얻는다. 반웅식은 다음과 같다.
Figure imgf000069_0001
예상 합성예 12
상온에서 250ml 플라스크에 에폭시 화합물, 1,3-비스 (4-(9-(4- (옥시란 -2- 일메록시)페닐) -9H-플루오렌 -9-일)페녹시)프로판 -2-올 lO.OOg, 트리에틸아민 2.33g, 3- (트리에톡시실릴)프로필 이소시아네이트 2.84g, 및 메틸렌 클로라이드 (100ml)를 넣고, 1시간 동안 환류시킨다. 증발기를 이용하여 용매를 쩨거하고 알콕시실릴기를 갖는 화합물을 얻는다. 반웅식은 다음과 같다.
Figure imgf000070_0001
물성평가 :경화물 제조 및 특성 평가
1. 에폭시 유리섬유 복합체 제조 가. 열경화성 복합체 제조
하기 표 1의 조성으로 에폭시 화합물, 경화제 및 경화촉매를 메틸에틸케톤에 고형분 함량이 40 %이 되도록 녹인 후, 균일한 용액이 되도록 흔합하여 얻어진 혼합물에 유리섬유 (Nittobo사의 유리섬유 직물, E-글라스 2116)를 침지하여 에폭시 화합물을 포함하는 유리섬유 복합물올 제조하였다. 그 후, 상기 복합물을 lOCTC로 가열된 진공 오븐에 넣어 용매를 제거한 다음에 12CTC로 예열된 핫 프레스에서 120°C에서 2시간, 180°C에서 2시간 그리고 >20( C 에서 2시간 동안 경화시켜서 유리섬유 복합체 필름 (4匪 X 16mm X0. limn)을 얻었다. 복합체 필름 제조시, 프레스의 압력과 레진의 점도에 따라 복합체 필름의 레진 함량을 조절하였으며, 복합체 필름에서 레진의 함량은 하기 표 1에 나타낸 바와 같다. 또한, 유리섬유복합체용 조성물에 실리카를 포함하는 경우는, 하기 표
1의 조성으로, 에폭시 화합물, 및 실리카 슬러리 (고형분 함량 70\vt%, 2- 메특시에탄을 용매, 실리카 평균 크기 1 )를 메틸에틸케톤에 고형분 함량이 40wt%°l 되도록 녹인다. 이 흔합액을 1500 rpm의 속도로 1 시간 흔합한 후, 경화제를 넣고 추가로 50분간 더 흔합하였다. 그 후, 여기에, 마지막으로 경화촉매를 넣고 10분간 더 흔합하여 에폭시 흔합물을 얻었다. 상기 에폭시 흔합물에 유리섬유 (Nittobo사 유리 섬유 직물 (Glass fiber fabric) E-글라스 2116)를 침지하여 유리섬유 복합물을 제조하고, 상기와 동일한 조건으로 경화하여 복합체 필름을 얻었다.
나. 광경화성 복합체 제조
하기 표 1 의 조성 (실시예 4, 실시예 16 및 비교예 2)으로 에폭시 화합물과 광개시제인 트리아릴술포늄 핵사플루오로안티모네이트염을 디클로로메탄에 고형분 함량이 70 ¾가 되도록 녹인다. 균일한 용액이 되도록 흔합하여 얻어진 흔합물에 유리섬유 (Nittobo 사의 유리섬유 직물, E-글라스 2116)를 침지한 후, locrc로 가열된 진공 오본에 넣어 용매를 제거한 다음에 상온으로 식힌다. 상기 에폭시 흔합물을 이형처리가 된 유리기판 사이에 넣고, 양면에 UV를 2분간 조사한 후에 광경화된 유리섬유 복합물을 제조하였다.
2. 에폭시 필러 복합체 (경화물)의 제조
하기 표 2의 조성으로, 에폭시 화합물, 및 실리카 슬러리 (고형분 함량
70wt%, 2-메특시에탄올 용매, 실리카 평균 크기 를 메틸에틸케톤에 고형분 함량이 40 )이 되도록 녹인다. 이 흔합액을 1500 rpm의 속도로 1 시간 흔합한 후, 경화제를 넣고 추가로 50분간 더 흔합하였다. 그 후, 여기에, 마지막으로 경화촉매를 넣고 10분가 더 흔합하여 에폭시 흔합물을 얻었다. 상기 흔합물을 ioo°c로 가열된 진공 오븐에 넣어 용매를 제거한 다음에 i2(rc로 예열된 핫 프레스에서 12CTC에서 2시간, 18CTC에서 2시간 그리고 >200°C에서 2시간 동안 경화시켜서 에폭시 필러 (무기입자) 복합체 (5ffl!nX5讓 X3腿)를 얻었다.
3. 내열 특성 평가
하기 표 1 및 2 의 실시예 및 비교예에서 얻어진 경화물의 온도에 따른 치수변화를 열 -기계 분석기 (Thermo-mechanical Analysizer)를 이용하여 평가하여 하기 표에 나타내었다. 에폭시 유리섬유복합필름의 시편은 4 mmX16 mmXO.l mm의 크기로, 필러복합체의 시편은 5πιιηΧ5醒 X3隨의 크기로 제조하였다.
[표 1] 에폭시 유리섬유 복합체
Figure imgf000073_0001
[표 1-계속] 에폭시 유리섬유 복합체
Figure imgf000074_0001
[표 1—계속] 에폭시 유리섬유 복합체
Figure imgf000075_0001
[표 2] 에폭시 필러 복합체
Figure imgf000076_0001
[표 2-계속] 에폭시 유리섬유 복합체
Figure imgf000077_0001
(1) TGIC: 이소시아누레이트의 트리글리시딜 에테르 (Triglycidyl ether of isocyanurate, Adrich)
(2) DGEBA: 비스페놀 A의 디글리시딜 에테르 (Diglycidyl ether of bisphenol A,
Figure imgf000078_0001
(5) 바이페닐 에폭시 수지 : YX-4000H (Yuka She! 1 Epoxy Co)
(6) DDM: 4,4' -디아미노디페닐 메판 (Aldrich)
(7) HF-1M: 페놀노블락계 경화제 (Meiwa Plastic Industries)
(8) TPP: 트리페닐포스핀 (Aldrich사)
(9) 광개시제: 트리아릴술포늄 핵사플루오로안티모네이트염 (TriarylsLilfonium hex a f 1 uo r 0 an t i mona t e salts (Aldrich)
(10) Naphtol: 1,6-디히드록시나프탈렌 (Aldrich)
(11) tin-OC: 주석 (II) 2-에틸핵사노에이트 (Tin( n)-ethylhexanoate)(Aldrich)
(12) 2E4M: 2-에틸— 4-메틸 이미다졸 (Aldrich) 상기 표 1에 나타낸 바와 같이, 본 발명에 의한 알콕시실릴기로 개질된 비스페놀 A계 에폭시의 열경화된 유리섬유복합체는 (실시예 1 ~ 실시예 3, 실시예 5 ~ 실시예 8 및 실시예 10~ 실시예 15)의 CTE는 9 내지 12 ppm/°C로, 알콕시실릴기를 갖지 않는 비스페놀 A 에폭시의 복합체 (비교예 1)의 CTE= 15.3 ppm/0C (E-글라스) 에 비하여 낮다. 또한 알콕시실릴기로 개질된 비스페놀 A계 에폭시의 열경화된 유리섬유복합체의 내열특성 (glass transition behavior)은 크게 향상되어, 유라전이온도가 증가하거나, Tg-리스 특성을 보였다. 구체적으로, 도 1과 도 2에 나타낸 바와 같미, 실시예 1의 알콕시실릴기로 개질된 비스페놀 A계 에폭시 복합체는 비교예 1 복합체의 비하여 CTE가 감소되었고, 내열특성이 크게 향상되어 Tg-리스 특성을 보였다. 본 발명에 의한 알콕시실릴기로 개질된 나프탈렌계 에폭시 복합체 (실시예 9, 17 및 18)의 . CTE는 11 내지 12 ppm/°C로, 알콕시실릴기를 갖지 않는 나프탈렌 에폭시의 복합체 (비교예 3 및 4)의 CTE= 13 ~14 ppm/°C에 비하여 향상되었고. 유리섬유 복합체의 유리전이 특성 또한, 향상되었다. 또한, 본 발명에 의한 알콕시실릴기로 개질된 바이페닐계 에폭시 복합체 (실시예 19 내지 22)의 CTE는 10 내지 11 ppm/°C로, 알콕시실릴기를 갖지 않는 바이페닐계 에폭시의 복합체 (비교예 5)의 CTE= 14 ppm/°C에 비하여 향상되었고. 유리섬유 복합체의 유리전이 특성 또한 향상되었다. 한편, 상기 표 2에 나타낸 바와 같이, 알콕시실릴기로 개질된 에폭시 화합물의 무기입자 고층진 복합체 (실시예 26, 30 및 31)의 CTE 값은 9 내지 llppm/°C로 매우 우수한 CTE 및 Tg-리스를 보인다. 반면, 알콕시실릴기를 갖지 않는 에폭시의 고층진 필러 복합체 (비교예 6 및 7)의 CTE는 본 발명의 에폭시 복합체에 비해 CTE는 16 ~ 20 ppm/°C로 높고, 유리전이 온도는 100°C~ 120 °C 정도로 낮다. 본 발명을 통해 관찰된 알콕시실릴기를 갖는 에폭시화합물의 우수한 CTE 및 유리전이온도 특성은 알콕시실릴기가 유리 섬유 그리고 /또는 필러와 효과적으로 계간 결합 형성 및 알콕시 실릴기간의 추가 화학결합에 기인한 것으로 여겨진다. 또한, 실시예 4의 본 발명에 의한 하이드로실릴레이션으로 합성된 알콕시실릴기를 갖는 비스페놀 A 계 에폭시 화합물을 포함하는 광경화 복합체 역시 비교예 2의 광경화 복합체에 비해 낮은 CTE 값을 나타내고, 유리전이은도는 10 °C 정도 상승하였다. 이로부터, 광경화로 제조된 실시예 4의 복합체는 비교예 2의 복합체에 비하여 열팽창 특성이 매우 우수함을 알 수 있다. 하이드로실릴레이션으로 제조된 알콕시실릴기를 갖는 에폭시 화합물 (합성예 1)과 카바메이트 연결을 통해 제조된 알콕시실릴기를 갖는 에폭시
(합성예 5)는 열경화에 의한 복합체 형성시는 실시예 1~4와 실시예 10~15에서 보여주듯이 내열특성이 유사하지만, 광경화 특성면에서는 큰 차이를 보여준다. 즉, 실시예 4에서와 같이, 하이드로실릴레이션으로 제조된 알콕시실릴기를 갖는 에폭시 화합물 (합성예 1)는 광경화 반웅을 잘 진행하지만, 카바메이트 연결을 통해 제조된 알콕시실릴기를 갖는 에폭시 화합물 (합성예 5)는 N 원자를 포함하고 있어서, 실시예 16에서와 같이 광경화 반응이 진행되지 않는다.
4. 난연성 평가
상기 표 1의 실시예 1 및 비교예 1의 복합체의 스트립에 점화,하였으며ᅳ 이들 스트림이 연소된 사진을 도 3에 나타내었다. 도 3에 나타낸 바와 같이, 본 발명에 의한 에폭시 화합물의 복합체인 실시예 1 복합체의 스트립은 모두 1초 내지 2초 이내에 자연 소화되었다. 그러나, 알콕시실릴기를 갖지 않는 비교예 1 의 복합체 스트립은 완전 연소되었다. 이로부터, 본 발명에 의한 알콕시실릴계 에폭사 화합물을 포함하는 경화물은 우수한 난연성을 나타냄을 알 수 있다.

Claims

【특허 청구범위】
【청구항 1】
하기 화학식 1의 알콕시실릴기를 갖는 에폭시 화합물 ᅳ
[화학식 1]
Figure imgf000082_0001
(상기 화학식 1에서, 상기 코어 유니트 C는 하기 화학식 2-1 내지 2-5의 구조로부터 각각 독립적으로 선택되며 , 상기 화학식 1에 존재하는 다수와 코어 유니트 C에서 각각의 코어 유니트 C는 서로 같거나 다를 수 있으며,
[화학식 2-1]
Figure imgf000082_0002
[화학식 2-3]
Figure imgf000083_0001
[화학식 2-4]
Figure imgf000083_0002
화학식 2-1에서, X는 -CH2-, -C(C¾)2-, -C(CF3)2_, -S- 또는 -S02-이며, 화학식 2-3에서, Y는 H 및 C1 내지 C5 알킬기로 구성되는 그톱으로부터 ¬립적으로 선택되며
n은 1 내지 10의 정수이며, n이 1인 경우에, R은 하기 화학식 3a 또는 화학식 의 구조이고 , n이 2이상인 경우에, 다수의 R 중 적어도 하나는 하기 화학식 3a 또는 화학식 3b의 구조이고, 나머지는 수소이며, 상기 화학식 1의 에폭시 화합물 중 코어 유니트가 모두, X가 C(CH3)2-이고, R이 하기 화학식 3b인, 화학식 2-1인 에폭시 화합물은 제외된다.
[화학식 3a]
- (CHs^-SiRaRbRᅳ
[화학식 3b]
- C0NH(CH2)m-SiRaRbRc
(상기 화학식 3a 및 3b에서, Ra 내지 Rc 중 적어도 하나는 탄소수 1 내지 5 알콕시기이고 나머지는 탄소수 1 내지 10 알킬기이며, 상기 알콕시기 및 알킬기는 직쇄 혹은 분지쇄일 수 있으며, m은 3 내지 10의 정수이다.) )
【청구항 2】
하기 화학식 1의 알콕시실릴기를 갖는 에폭시 화합물을 포함하는 에폭 조성물
[화학식 1]
Figure imgf000084_0001
(상기 화학식 1에서, 상기 코어 유니트 C는 하기 화학식 2-1 내지 2-5의 구조로부터 각각 독립적으로 선택되며, 상기 화학식 1에 존재하는 다수의 코어 유니트 C에서 각각의 코어 유니트 C는 서로 같거나 다를 수 있으며,
[화학식 2-1]
Figure imgf000085_0001
[화학식 2-3]
Figure imgf000085_0002
[화학식 2-4]
Figure imgf000086_0001
화학식 2-1에서, X는 -C¾-,. -C(CH3)2-, -C(CF3)2-, -S- 또는 -S02-이며, 화학식 2-3에서, Y는 H 및 C1 내지 C5 알킬기로 구성되는 그룹으로부터 각각 독립적으로 선택되며, ,
n은 1 내지 10의 정수이며, n이 1인 경우에, R은 하기 화학식 3a 또는 화학식 3b의 구조이고, n이 2이상인 경우에, 다수의 R 중 적어도 하나는 하기 화학식 3a또는 화학식 3b의 구조이고, 나머지는 수소이다. [화학식 3a]
(CH2)m—SiRaRbRc
[화학식 3b]
- CONH(CH2)ra-SiRaRbRc
(상기 화학식 3a 및 3b에서, Ra 내지 중 적어도 하나는 탄소수 1 내지 5 알콕시기이고 나머지는 탄소수 1 내지 10 알킬기이며, 상기 알콕시기 및 알킬기는 직쇄 혹은 분지쇄일 수 있으며, m은 3 내지 10의 정수이다.) )
【청구항 3】
제 2항에 있어서 :' 글리시딜에테르계 에폭시 화합물, 글리시딜계 에폭시 화합물, 글리시딜아민계 에폭시 화합물, 글리시딜에스테르계 에폭시 화합물, 고무 개질된 에폭시 화합물, 지방족 폴리 글리시딜계 에폭시 화합물 및 지방족 글리시딜 아민계 에폭시 화합물로 구성되는 그룹으로부터 선택되는 적어도 일종의 에폭시 화합물을 추가로 포함하는 에폭시 조성물.
【청구항 4】
제 2항에 있어서, 상기 에폭시 화합물은 코어구조로 비스페놀 A, 비스페놀 F, 비스페놀 S, 비페닐, 나프탈렌, 벤젠, 티오디페놀, 플루오렌 (fluorene), 안트라센, 이소시아누레이트, 트리페닐메탄, 1,1,2,2- 테트라페닐에탄, 테트라페닐메탄, 4,4'-디아미노디페닐메탄, 아미노페놀, 시클로 지방족, 또는 노볼락 유니트를 갖는 에폭시 조성물. 【청구항 5】
제 4항에 있어서, 상기 에폭시 화합물은 코어구조로 비스페놀 A, 비페닐, 나프탈렌, 또는 플루오렌을 갖는 에폭시 조성물.
【청구항 6】
제 3항에 있어서, 에폭시 화합물의 총 중량을 기준으로 상기 알콕시실릴기를 갖는 에폭시 화합물 10 내지 100wt¾ 및 글리시딜에테르계 에폭시 화합물., 글리시딜계 에폭시 화합물, 글리시딜아민계 에폭시 화합물, 글리시딜에스테르계 에폭시 화합물, 고무 개질된 에폭시 화합물, 지방족 폴리 글리시딜계 에폭시 화합물 및 .지방족 글리시딜 아민계 에폭시 화합물로 구성되는 그룹으로부터 선택되는 최소 일종의 에폭시 화합물 Owt% 내지 90wt%를 포함하는 에폭시 조성물.
【청구항 7】
. 6항에 있어서, 에폭시 화합물의 총 중량을 기준으로 상기 알콕시실릴기를 갖는 에폭시 화합물 30 내지 100wt% 및 글리시딜에테르계 에폭시 화합물, 글리시딜계 에폭시 화합물, 글리시딜아민계 에폭시 화합물, 글리시딜에스테르계 에폭시 화합물, 고무 개질된 에폭시 화합물, 지방족 폴리 글리시딜계 에폭사화합물 및 지방족 글리시딜 아민계 에폭시 화합물로 구성되는 그룹으로부터 선택되는 최소 일종의 에폭시 화합물 Owt% 내지 70 %를 포함하는 에폭시 조성물. 【청구항 8】
제 2항 내지 제 7항 증 어느 한 항에 있어서, 무기입자 또는 섬유로 구성되는 그룹으로부터 선택되는 적어도 일종의 층전제를 추가로 포함하는 에폭시 조성물.
【청구항 9】
제 8항에 있어서, 상기 무기입자는 실리카, 지르코니아, 티타니아, 알루미나, 질화규소 및 질화알루미늄으로 구성되는 그룹으로부터 선택되는 적어도 일종의 금속산화물, 및 T-10형 실세스퀴녹산, 래더형 실세스퀴녹산, 및 케이지형 실세스퀴녹산으로 구성되는 그룹으로부터 선택되는 적어도 일종인 에폭시 조성물.
【청구항 10】
제 8항에 있어서, 상기 무기입자는 에폭시 조성물의 고형분의 총 중량을 기준으로 5w« 내지 95 %인 에폭시 조성물.
【청구항 11】 '
제 10항에 있어서, 상기 무기입자는 에폭시 조성물의 고형분의 총 중량을 기준으로 30wt%내지 95 %인 에폭시 조성물.
【청구항 12】
제 10항에 있어서, 상기 무기입자는 에폭시 조성물의 고형분의 총 중량을 기준으로 5wt% 내지 60 %인 에폭시 조성물. 【청구항 13]
제 8항에 있어서, 상기 섬유는 E 유리섬유, T 유리섬유, S 유리섬유, NE 유리섬유, E 유리섬유, H 유리심유, 및 석영으로 구성되는 그룹으로부터 선택되는 유리섬유 및 액정 폴리에스테르 섬유, 폴리에틸렌테레프탈레이트 섬유, 전방향족 섬유, 폴리옥시벤자졸 섬유, 나일론 섬유, 폴리쩨틸렌 나프탈레이트 섬유, 폴리프로필렌 섬유, 폴리에테르 술폰 섬유, 폴리비닐리덴플로라이드 섬유, 폴리에틸렌 술파이드 섬유, 및 폴리에테르에테르케톤 섬유로 구성되는 그룹으로부터 선택되는 유기 섬유로 구성되는 그룹으로부터 선택되는 적어도 일종인 에폭시 조성물.
【청구항 14】
제 13항에 있어서, 상기 섬유는 E 유리섬유인 에폭시 조성물. 【청구항 15】
제 13항에 있어서, 상기 섬유는 T유리섬유인 에폭시 조성물. 【청구항 16】
제 8항에 있어서, 상기 섬유는 상기 에폭시 조성물의 고형분의 총 중량에 대하여 10 wt% 내지 90 %로 포함되는 에폭시 조성물. 【청구항 17】
제 8항에 있어서, 섬유를 포함하는 경우에, 무기입자를 추가로 포함하는 에폭시 조성물.
【청구항 18】
제 2항 내지 제 17항 중 어느 한 항에 있어서, 경화제를 추가로 포함하는 에폭시 조성물.
【청구항 19]
제 2항 내지 제 18항 중 어느 한 항에 있어서, 알콕시실릴기 반웅촉매를 추가로 포함하는 에폭시 조성물.
청구항 20】
제 19항에 있어서, 상기 알콕시실릴기 반웅촉매는 질산, 황산, 염산, 아세트산 및 인산으로 구성되는 그룹으로부터 선택되는 적어도 일종의 무기산, 암모니아, KOH, NH40H, 아민, 전이 금속 알콕사이드, 주석 (tin) 화합물로 구성되는 그룹으로부터 선택되는 적어도 일종인 알콕시실릴기를 갖는 에폭시 화합물의 조성물.
【청구항 21】
제 19항에 있어서, 상기 반웅촉매는 알콕시실릴기를 갖는 에폭시 화합물의 알콕시실릴기 1당량에 대하여 0.01 당량 내지 0.1 당량으로 사용되는 알콕시실릴기를 갖는 에폭시 화합물의 조성물.
【청구항 22】
제 19항에 있어서, 물을 추가적으로 포함하는 알콕시실릴기를 갖는 에폭시 화합물의 조성물.
【청구항 23】
제 2항 내지 제 22항 중 어느 한 항의 에폭시 조성물을 포함하는 전자재료.
【청구항 24】
제 2항 내자 제 22항 중 어느 한 항의 에폭시 조성물을 포함하는 기판. 【청구항 25】
제 2항 내지 제 22항 중 어느 한 항의 에폭시 조성물을 포함하는 필름. [청구항 26】
제 2항 내지 제 22항 중 어느 한 항의 에폭시 조성물로 이루어진 기재층 상에 금속층을 포함하는 적층판.
【청구항 27】
제 26항의 적층판을 포함하는 인쇄배선판. 【청구항 28】
제 27항의 인쇄배선판을 포함하는 반도체 장치 . 【청구항 29】
제 2항 내지 제 22항 중 어느 한 함의 에폭시 조성물을 포함하는 반도체 패키 징 재료 .
【청구항 30】
제 29항의 반도체 패키징 재료를 포함하는 반도체 장치 . 【청구항 31】
제 2항 내지 제 22항 중 어느 한 항와 에폭시 조성물을 포함하는 접착제 . [청구항 32】
제 2항 내지 제 22항 중 어느 한 항의 에폭시 조성물을 포함하는 도료 . 【청구항 33】
제 2항 내지 제 22항 증 어느 한 항의 에폭시 조성물을 포함하는 복합재료 .
【청구항 34】
제 2항 내지 제 22항 중 어느 한 항의 에폭시 조성물을 포함하는 프리프레그.
【청구항 35】
제 34항의 프리프레그에 금속층이 배치된 적층판. [청구항 36】
제 2항 내지 제 22항 중 어느 한 항의 에폭시 조성물와경화물.
【청구항 37】 '
제 36항에 있어서, 열팽창계수가 60ppm/ °C이하인 에폭시 조성물의 경화물.
【청구항 38】 .
게 36항에 있어서, 유리전이온도가 10CTC 보다 높거나 유리전이온도를 나타내지 않는 에폭시 조성물의 경화물.
【청구항 39]
용매 및 염기 존재하에서 하기 화학식 4의 에폭시 화합물과 하기 화학식 6의 알켄 화합물을 반웅시켜서 하기 화학식 5의 중간체를 형상하는 단계; 및 백금촉매 및 임의의 용매 존재하에서 하기 화학식 5의 중간체와 하기 화학식 7a의 알콕시 실란화합물을 반웅시키는 단계를 포함하는 하기 화학식 1의 알콕시실릴기를 갖는 에폭시 화합물의 제조방법. [화학식 1]
Figure imgf000095_0001
(상기 화학식 l에서, 상기 코어 유니트 C는 하기 화학식 2-1 내지 2-5의 구조로부터 각각 독립적으로 선택되며, 상기 화학식 1에 존재하는 다수의 코어유니트 C에서 각각의 코어 유니트 C는 서로 같거나 다를 수 있으며,
[화학식 2-1]
Figure imgf000095_0002
[화학식 2-3]
Figure imgf000096_0001
화학식 2-1에서, X는 -CH2-, -C(CH3)2-, -C(CF3)2-, _S— 또는 -S02-이며, 화학식 2-3에서, Y는 H 및 C1 내지 C5 알킬기로 구성되는 그룹으로부터 각각 독립적으로 선택되며,
n은 1 내지 10의 정수이며, n이 1인 경우에, R은 하기 화학식 3a 구조이고, n이 2이상인 경우에, 다수의 R 중 적어도 하나는 하기 화학식 3a 구조이고, 나머지는 수소이다.
[화학식 3a]
- (CH2)m-SiRaRbRc
(상기 화학식 3a에서, Ra 내지 Rc 중 적어도 하나는 탄소수
알콕시기이고 나머지는 탄소수 1 내지 10 알킬기이며, 상기
Figure imgf000097_0001
알킬기는 직쇄 흑은 분지쇄일 수 있으며, m은 3 내지 10의 정수이다.) )
[화학식 4]
Figure imgf000097_0002
(상기 화학식 4 및 5에서, 코어 유니트 C 및 n 은 상기 화학식 1에서 정의한 바와 같으며, 식 5에서, n이 1인 경우에 B는 -(CH2)厂 CH=€¾ (단, 1은 1 내지 8의 정수임)이고, n이 2이상인 경우에 B중 적어도 하나는 -(C¾)厂 CH=CH2 (단, 1은 1 내지 8의 정수임)이고, 나머지는 수소이다.) [화학식 6]
X-(CH2)rCH=CH2
(화학식 6에서, 1은 1 내지 8의 정수이며, X는 CI, Br 또는 I와 같은 할라이드, -0-S02-CH3, -0-S02-CF3( 또는 -으 S02-C6H4-C¾ 이다.)
[화학식 7a]
HSiRa Rc
(상기 화학식 7a에서, Ra 내지 Rc 중 적어도 하나는 탄소수 1 내지 5 알콕시기이고 나머지는 탄소수 1 내지 10 알킬기이며, 상기 알콕시기 및 알킬기는 직쇄 혹은 분지쇄일 수 있다.)
【청구항 40】
제 39항에 있어서,
상기 제 1단계에서는 화학식 4의 에폭시 화합물의 히드록사 그룹 1당량에 대하여 알케닐기가 0.1 당량 내지 5당량이 되도록 반웅시키는 알콕시실릴기를 갖는 에폭시 화합물의 제조방법 .
【청구항 41】
제 39항에 있어서,
상기 제 1단계는 o°c 내지 ioo°c로 1 시간 내지 120시간 동안 반응시켜서 알콕시실릴기를 갖는 에폭시 화합물의 제조방법. 【청구항 42】
제 39항에 있어서,
상기 제 2단계는 상기 화학식 5의 중간체의 알케닐기 1 당량에 대하여 상기 화학식 7a의 알콕시 실란화합물이 1당량 내지 5당량이 반응시키 알콕시실릴기를 갖는 에폭시 화합물의 제조방법 .
【청구항 43】
제 39항에 있어서,
상기 제 2단계는 상온 내지 120°C로 1시간 내지 72시간 동안 반응시 키는 알콕시실릴기를 갖는 에폭시 화합물의 제조방법 .
PCT/KR2013/002730 2012-04-02 2013-04-02 알콕시실릴기를 갖는 에폭시 화합물, 이를 포함하는 조성물, 경화물, 이의 용도 및 알콕시실릴기를 갖는 에폭시 화합물의 제조방법 WO2013151308A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/390,340 US10689482B2 (en) 2012-04-02 2013-04-02 Epoxy compound having alkoxysilyl group, composition and hardened material comprising same, use for same, and production method for epoxy compound having alkoxysilyl group
EP13772355.7A EP2835373B1 (en) 2012-04-02 2013-04-02 Epoxy compound having alkoxysilyl group, composition and hardened material comprising same, use for same, and production method for epoxy compound having alkoxysilyl group

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120034070 2012-04-02
KR10-2012-0034070 2012-04-02
KR10-2013-0035546 2013-04-02
KR1020130035546A KR101898526B1 (ko) 2012-04-02 2013-04-02 알콕시실릴기를 갖는 에폭시 화합물, 이를 포함하는 조성물, 경화물, 이의 용도 및 알콕시실릴기를 갖는 에폭시 화합물의 제조방법

Publications (1)

Publication Number Publication Date
WO2013151308A1 true WO2013151308A1 (ko) 2013-10-10

Family

ID=49633128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002730 WO2013151308A1 (ko) 2012-04-02 2013-04-02 알콕시실릴기를 갖는 에폭시 화합물, 이를 포함하는 조성물, 경화물, 이의 용도 및 알콕시실릴기를 갖는 에폭시 화합물의 제조방법

Country Status (4)

Country Link
US (1) US10689482B2 (ko)
EP (1) EP2835373B1 (ko)
KR (1) KR101898526B1 (ko)
WO (1) WO2013151308A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153631B2 (ja) * 2013-02-25 2017-06-28 コリア インスティチュート オブ インダストリアル テクノロジー アルコキシシリル基を有するエポキシ化合物、その製造方法、それを含む組成物と硬化物及びその用途
KR101664948B1 (ko) 2014-01-09 2016-10-13 한국생산기술연구원 알콕시실릴기를 갖는 새로운 노볼락 경화제, 이의 제조 방법, 이를 포함하는 조성물, 경화물 및 이의 용도
KR101755323B1 (ko) 2014-02-19 2017-07-20 한국생산기술연구원 신규한 에폭시 화합물, 이를 포함하는 혼합물, 조성물, 경화물, 이의 제조 방법, 및 이의 용도
EP3548541B1 (en) * 2016-12-02 2022-05-18 3M Innovative Properties Company Dual cure monomers
US11214583B2 (en) 2017-06-05 2022-01-04 Korea Institute Of Industrial Technology Compound having alkoxysilyl group and active ester group, method for preparing same, composition comprising same, and use
KR101967155B1 (ko) * 2017-11-07 2019-04-09 한국생산기술연구원 알콕시실릴기를 갖는 에폭시 수지의 제조방법, 알콕시실릴기를 갖는 에폭시 수지, 이를 포함하는 조성물 및 이의 용도
KR102064379B1 (ko) * 2018-05-08 2020-01-10 한국생산기술연구원 알콕시실릴기를 갖는 에폭시 화합물의 제조방법
US11168237B2 (en) * 2018-06-14 2021-11-09 3M Innovative Properties Company Adhesion promoters for curable compositions
KR102376880B1 (ko) * 2019-07-04 2022-03-21 (주)이녹스첨단소재 인쇄배선판용 층간 절연재, 이를 포함하는 층간 절연필름 및 이의 제조방법
KR102232340B1 (ko) 2019-11-15 2021-03-26 한국생산기술연구원 알콕시실릴기를 갖는 에폭시 수지의 조성물 및 이의 복합체
KR102399062B1 (ko) * 2020-09-24 2022-05-16 한국생산기술연구원 알콕시실릴기를 갖는 에폭시 화합물의 제조방법
KR102643390B1 (ko) * 2021-01-25 2024-03-08 한국생산기술연구원 알콕시실릴기를 갖는 에폭시 화합물, 이의 제조방법, 조성물 및 용도
KR102607952B1 (ko) * 2021-11-18 2023-12-04 한국생산기술연구원 에폭시 조성물, 이의 경화물 및 이를 포함하는 물품

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408015B2 (en) * 2003-05-01 2008-08-05 Lg Cable, Ltd Reacting functionalized trialkoxysilane with polyepoxide or diamine to yield silane adduct
KR100929380B1 (ko) * 2009-06-18 2009-12-02 주식회사 신아티앤씨 난연성 폴리에폭시 화합물의 제조방법
WO2011142468A1 (ja) * 2010-05-10 2011-11-17 学校法人関西大学 硬化性組成物、これを用いたエポキシ樹脂-無機ポリマー複合材料の製造方法及びエポキシ樹脂-無機ポリマー複合材料
US20120041102A1 (en) * 2009-04-24 2012-02-16 Korea Institute Of Industrial Technology Novel epoxy resin and epoxy resin composition comprising the same

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935346A (en) * 1973-03-12 1976-01-27 Owens-Illinois, Inc. Coated plastic substrates for coating compositions
DE2901685A1 (de) 1978-01-20 1979-07-26 Ciba Geigy Ag Epoxidhaltige massen und deren polymerisation
US4292151A (en) 1978-03-01 1981-09-29 Teijin Limited Process for preparing a cured copolyetherester elastomeric composition
JPS61272244A (ja) * 1985-05-28 1986-12-02 Hitachi Chem Co Ltd 印刷配線板用プリプレグの製造方法
JPS6250312A (ja) 1985-08-30 1987-03-05 Sumitomo Bakelite Co Ltd 耐熱性熱硬化性樹脂組成物
JPS62292828A (ja) 1986-06-12 1987-12-19 Fujitsu Ltd 半導体装置用封止組成物
US4789711A (en) 1986-12-02 1988-12-06 Ciba-Geigy Corporation Multifunctional epoxide resins
JPS63280720A (ja) 1987-05-13 1988-11-17 Toshiba Chem Corp 封止用樹脂組成物
US5019607A (en) * 1989-11-01 1991-05-28 Eastman Kodak Company Modified epoxy resins and composites
KR100204629B1 (ko) 1991-04-04 1999-06-15 카나가와 치히로 열 경화성 수지 조성물
JP2570002B2 (ja) 1991-05-29 1997-01-08 信越化学工業株式会社 フリップチップ用封止材及び半導体装置
JP2546116B2 (ja) * 1992-12-07 1996-10-23 信越化学工業株式会社 有機珪素化合物及び無機質充填剤
JP3419069B2 (ja) 1993-03-29 2003-06-23 シーケイ・ウイトコ・コーポレーシヨン シリル化エポキシ樹脂の水分散液
JP2701695B2 (ja) 1993-06-07 1998-01-21 信越化学工業株式会社 エポキシ樹脂組成物及び半導体装置
JPH07258240A (ja) 1994-03-24 1995-10-09 Dai Ichi Kogyo Seiyaku Co Ltd グリシジルエーテル化合物及びエポキシ樹脂組成物
JP3591786B2 (ja) 1995-01-13 2004-11-24 日本化薬株式会社 ホスファゼン誘導体、樹脂組成物及びその硬化物
KR20010043904A (ko) 1998-05-29 2001-05-25 그래햄 이. 테일러 아릴 알릴 에테르의 에폭시화 방법
EP1086972B1 (en) 1999-01-29 2005-03-30 Arakawa Chemical Industries, Ltd. Hardener for epoxy resin, epoxy resin composition, and process for producing silane-modified phenolic resin
US6087513A (en) 1999-05-21 2000-07-11 The Dow Chemical Company Epoxidation process for aryl allyl ethers
WO2000078838A1 (fr) * 1999-06-17 2000-12-28 Arakawa Chemical Industries, Ltd. Composition de resine epoxy et procede de production d'une resine epoxy modifie au silane
JP3726963B2 (ja) 2001-08-16 2005-12-14 荒川化学工業株式会社 電気絶縁用樹脂組成物、電子材料用絶縁材料およびその製造方法
JP2003055435A (ja) 2001-08-16 2003-02-26 Arakawa Chem Ind Co Ltd 電気絶縁用樹脂組成物、電子材料用絶縁材料およびその製造方法
JP4150877B2 (ja) 2001-09-06 2008-09-17 信越化学工業株式会社 導電性樹脂組成物及びこれを用いた電子部品
US6875807B2 (en) 2003-05-28 2005-04-05 Indspec Chemical Corporation Silane-modified phenolic resins and applications thereof
JP2006012784A (ja) 2004-05-26 2006-01-12 Shin Etsu Chem Co Ltd 固体高分子型燃料電池用付加反応硬化型シリコーンゴム接着剤組成物およびそれを使用する固体高分子型燃料電池
JP2006137800A (ja) 2004-11-10 2006-06-01 Shin Etsu Chem Co Ltd 固体高分子型燃料電池用付加反応硬化型シリコーンゴム接着剤組成物およびそれを使用する固体高分子型燃料電池
JP2007126496A (ja) 2005-11-01 2007-05-24 Shin Etsu Chem Co Ltd 接着剤組成物
JP2007321130A (ja) 2006-06-05 2007-12-13 Shin Etsu Chem Co Ltd 接着剤組成物及び接着フィルム
US7989651B2 (en) 2007-03-09 2011-08-02 Momentive Performance Materials Inc. Epoxysilanes, processes for their manufacture and curable compositions containing same
JP5170414B2 (ja) * 2008-05-16 2013-03-27 信越化学工業株式会社 多官能エポキシ基含有有機ケイ素化合物、その製造方法、コーティング剤組成物、並びに該組成物が被覆処理されてなる物品
JP2010003897A (ja) 2008-06-20 2010-01-07 Idemitsu Kosan Co Ltd 半導体封止用エポキシ樹脂シート部材及びその製造方法
JP5179302B2 (ja) 2008-09-11 2013-04-10 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 自己接着性ポリオルガノシロキサン組成物
US8912295B2 (en) 2009-02-10 2014-12-16 Nissan Chemical Industries, Ltd. Long chain alkylene group-containing epoxy compound
JP2011057755A (ja) 2009-09-07 2011-03-24 Shin-Etsu Chemical Co Ltd シリコーン組成物及びその硬化物
JP5375502B2 (ja) 2009-10-06 2013-12-25 信越化学工業株式会社 アルコール性水酸基含有化合物及びその製造方法
CN101701058B (zh) 2009-11-19 2011-10-26 中国科学院广州化学研究所 一种含三聚氰胺有机硅杂化结构的环氧树脂及其制备方法和应用
JP5459196B2 (ja) 2009-12-15 2014-04-02 信越化学工業株式会社 光硬化性ドライフィルム、その製造方法、パターン形成方法及び電気・電子部品保護用皮膜
US8778597B2 (en) 2010-01-26 2014-07-15 Nissan Chemical Industries, Ltd. Long-chain alkylene-containing curable epoxy resin composition
CN102725691B (zh) 2010-01-26 2014-06-11 日产化学工业株式会社 正型抗蚀剂组合物及图案形成方法、固体摄像元件
TW201204548A (en) * 2010-02-05 2012-02-01 Sumitomo Bakelite Co Prepreg, laminate, printed wiring board, and semiconductor device
JP5679129B2 (ja) 2010-02-19 2015-03-04 日産化学工業株式会社 窒素含有環を有するシリコン含有レジスト下層膜形成組成物
JP5587148B2 (ja) 2010-03-09 2014-09-10 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 自己接着性ポリオルガノシロキサン組成物
CN102666556B (zh) 2010-11-25 2015-02-18 日油株式会社 含硫醚的烷氧基硅烷衍生物及其应用
JP2012131902A (ja) 2010-12-21 2012-07-12 Nitto Denko Corp 半導体封止用エポキシ樹脂組成物およびそれを用いて得られる半導体装置
JP5790155B2 (ja) 2011-05-30 2015-10-07 日油株式会社 硬化性樹脂組成物
JP5772231B2 (ja) 2011-05-30 2015-09-02 日油株式会社 硬化性樹脂組成物
KR101252063B1 (ko) 2011-08-25 2013-04-12 한국생산기술연구원 알콕시실릴기를 갖는 에폭시 화합물, 이의 제조 방법, 이를 포함하는 조성물과 경화물 및 이의 용도
KR101520764B1 (ko) 2012-06-01 2015-05-15 한국생산기술연구원 알콕시실릴기를 갖는 에폭시 화합물, 무기입자를 포함하는 조성물, 경화물, 이의 용도 및 알콕시실릴기를 갖는 에폭시 화합물의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408015B2 (en) * 2003-05-01 2008-08-05 Lg Cable, Ltd Reacting functionalized trialkoxysilane with polyepoxide or diamine to yield silane adduct
US20120041102A1 (en) * 2009-04-24 2012-02-16 Korea Institute Of Industrial Technology Novel epoxy resin and epoxy resin composition comprising the same
KR100929380B1 (ko) * 2009-06-18 2009-12-02 주식회사 신아티앤씨 난연성 폴리에폭시 화합물의 제조방법
WO2011142468A1 (ja) * 2010-05-10 2011-11-17 学校法人関西大学 硬化性組成物、これを用いたエポキシ樹脂-無機ポリマー複合材料の製造方法及びエポキシ樹脂-無機ポリマー複合材料

Also Published As

Publication number Publication date
US20150051316A1 (en) 2015-02-19
EP2835373B1 (en) 2019-09-11
US10689482B2 (en) 2020-06-23
KR101898526B1 (ko) 2018-09-14
EP2835373A4 (en) 2015-11-18
KR20130112007A (ko) 2013-10-11
EP2835373A1 (en) 2015-02-11

Similar Documents

Publication Publication Date Title
WO2013151308A1 (ko) 알콕시실릴기를 갖는 에폭시 화합물, 이를 포함하는 조성물, 경화물, 이의 용도 및 알콕시실릴기를 갖는 에폭시 화합물의 제조방법
JP5852243B2 (ja) アルコキシシリル基を有するエポキシ化合物、その製造方法、それを含む組成物と硬化物及びその用途
KR101596880B1 (ko) 알콕시실릴기를 갖는 에폭시 화합물, 이의 제조 방법, 이를 포함하는 조성물, 경화물 및 이의 용도
JP6664398B2 (ja) 2つ以上のアルコキシシリル基を有する熱硬化性アルコキシシリル化合物、それを含む組成物、硬化物、及びその用途、並びにアルコキシシリル化合物の製造方法
CN106232608B (zh) 环氧化合物,含所述环氧化合物的混合物、组合物和固化产物,及其制备方法和应用
KR101863111B1 (ko) 노볼락계 에폭시 화합물, 이의 제조 방법, 이를 포함하는 조성물, 경화물 및 이의 용도
JP6282352B2 (ja) アルコキシシリル基を有する新規ノボラック硬化剤、その製造方法、それを含む組成物、及び硬化物、並びにその用途
KR101992845B1 (ko) 알콕시실릴기를 갖는 에폭시 화합물, 이를 포함하는 조성물, 경화물, 이의 용도 및 알콕시실릴기를 갖는 에폭시 화합물의 제조방법
WO2013180375A1 (ko) 알콕시실릴기를 갖는 에폭시 화합물, 무기입자를 포함하는 조성물, 경화물, 이의 용도 및 알콕시실릴기를 갖는 에폭시 화합물의 제조방법
KR101644531B1 (ko) 둘 이상의 알콕시실릴기를 갖는 알콕시 실릴 화합물, 이를 포함하는 조성물, 경화물, 이의 용도 및 알콕시실릴 화합물의 제조방법
KR101456025B1 (ko) 알콕시실릴기를 갖는 이소시아누레이트 에폭시 화합물, 이의 제조 방법 및 이를 포함하는 조성물과 경화물 및 이의 용도
KR20140105162A (ko) 알콕시실릴기를 갖는 에폭시 화합물을 포함하는 조성물, 경화물, 및 이의 용도
WO2015126143A1 (ko) 신규한 에폭시 화합물, 이를 포함하는 혼합물, 조성물, 경화물, 이의 제조 방법, 및 이의 용도
WO2015105379A1 (ko) 알콕시실릴기를 갖는 새로운 노볼락 경화제, 이의 제조 방법, 이를 포함하는 조성물, 경화물 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14390340

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013772355

Country of ref document: EP