WO2013147301A1 - ブロック基を有するポリロタキサンの製造方法 - Google Patents

ブロック基を有するポリロタキサンの製造方法 Download PDF

Info

Publication number
WO2013147301A1
WO2013147301A1 PCT/JP2013/059910 JP2013059910W WO2013147301A1 WO 2013147301 A1 WO2013147301 A1 WO 2013147301A1 JP 2013059910 W JP2013059910 W JP 2013059910W WO 2013147301 A1 WO2013147301 A1 WO 2013147301A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
reaction
molecule
mol
production method
Prior art date
Application number
PCT/JP2013/059910
Other languages
English (en)
French (fr)
Inventor
尚之 横田
健二 有光
明生 松下
誉志貴 大上
幹夫 藤本
福田 康法
実 岩田
佑樹 林
Original Assignee
宇部興産株式会社
アドバンスト・ソフトマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社, アドバンスト・ソフトマテリアルズ株式会社 filed Critical 宇部興産株式会社
Priority to EP13769114.3A priority Critical patent/EP2832766A4/en
Priority to US14/389,498 priority patent/US20150051390A1/en
Priority to CN201380017520.7A priority patent/CN104204035B/zh
Priority to KR1020147029759A priority patent/KR20150005557A/ko
Priority to JP2014508255A priority patent/JP6013459B2/ja
Publication of WO2013147301A1 publication Critical patent/WO2013147301A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/007Polyrotaxanes; Polycatenanes

Definitions

  • the present invention relates to a cyclic molecule, a linear molecule that is clasped into the cyclic molecule, and blocking groups that are arranged at both ends of the linear molecule so that the cyclic molecule is not detached from the linear molecule.
  • the present invention relates to a method for producing a polyrotaxane.
  • topological gels characterized by free movement of crosslinking points have attracted attention as a new type of polymer gel.
  • the polyrotaxane that can be used as a constituent component of this topological gel includes a cyclic molecule (rotator), a linear molecule (axis: axis) that is included in a cyclic manner in the cyclic molecule, and a linear molecule. Is a compound having blocking groups arranged at both ends of the linear molecule so that the cyclic molecule is not detached from the chain.
  • polyrotaxanes using ⁇ -cyclodextrin hereinafter also referred to as “ ⁇ -CD” as a cyclic molecule and polyethylene glycol (hereinafter also referred to as “PEG”) as a linear molecule have various properties.
  • ⁇ -CD ⁇ -cyclodextrin
  • PEG polyethylene glycol
  • Patent Document 1 as a method for efficiently preparing polyrotaxane, for example, both molecular ends of PEG are first converted to carboxyl groups, then mixed with ⁇ -CD, and ⁇ -CD is clathrated with ⁇ -CD.
  • An ⁇ -CD inclusion compound (pseudopolyrotaxane) is obtained, and then the pseudopolyrotaxane is reacted with a blocking agent having, for example, an amino group or an OH group in the presence of a BOP reagent and / or a HOBt reagent.
  • a blocking agent having, for example, an amino group or an OH group in the presence of a BOP reagent and / or a HOBt reagent.
  • An object of the present invention is to provide a method capable of producing a polyrotaxane having a desired inclusion ratio with high yield and purity.
  • the inventors of the present invention have studied to solve the above-mentioned problems.
  • the inventors of the present invention have found that in the absence of a solvent or in the presence of a specific amount of a triazine-based amidating agent in a solvent inert to the reaction.
  • a chain molecule for example, by reacting a pseudopolyrotaxane containing a linear molecule and a cyclic molecule having a carboxyl group at both molecular ends of PEG with a blocking agent having an amino group, a desired inclusion rate can be obtained. It is possible to introduce a blocking group at both ends of a linear molecule while maintaining it, and to find out a method by which this blocked polyrotaxane can be obtained in good yield and high purity. It came to complete.
  • the gist of the present invention is as follows.
  • the present invention 1 includes a cyclic molecule, a linear molecule that is clasped into the cyclic molecule, and a blocking group that is disposed at both ends of the linear molecule so that the cyclic molecule is not detached from the linear molecule.
  • the triazine-based amidating agent is represented by the formula (1): (Where R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 8 carbon atoms, Any one of R 3 , R 4 and R 5 is an alkyl group having 1 to 4 carbon atoms, and the other two are a 5- to 6-membered ring together with the nitrogen atom to which they are bonded.
  • Forming X is a halogen atom
  • the triazine-based amidating agent is 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride (DMT-MM).
  • the present invention relates to the production method of the second aspect.
  • the present invention 4 relates to the production method according to any one of the present inventions 1 to 3, wherein the linear molecule having a carboxyl group at both ends is a polyalkylene glycol having both ends of the molecule being a carboxyl group.
  • the present invention 5 relates to the production method according to any one of the present invention 1 to 4, wherein the cyclic molecule is cyclodextrin.
  • the present invention 6 relates to the production method of any one of the present inventions 1 to 5, wherein the blocking agent containing an amino group is adamantylamine or a hydrochloride thereof.
  • the present invention 7 relates to any one of the present inventions 1 to 6, wherein a triazine amidating agent is used in an amount of 3.8 mol to 80 mol with respect to 1 mol of a carboxyl group of a linear molecule having carboxyl groups at both ends. It relates to a manufacturing method.
  • the present invention 8 uses any one of the present inventions 1 to 7 wherein the blocking agent containing an amino group is used in an amount of 1.4 mol to 40 mol with respect to 1 mol of the carboxyl group of the linear molecule having carboxyl groups at both ends.
  • the present invention 9 relates to the production method of any one of the present inventions 1 to 8, wherein the reaction is carried out in at least one solvent selected from the group consisting of dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and toluene.
  • the present invention 10 relates to the production method of any one of the present invention 1 to 9, wherein the reaction is carried out in the presence of an organic base.
  • the present invention 11 relates to the production method of any one of the present invention 1 to 10, wherein the reaction is carried out at a reaction temperature of 5 to 60 ° C.
  • the present invention 12 relates to the production method of any one of the present inventions 1 to 11, wherein the reaction is carried out under the condition that the water content in the reaction mixture at the start of the reaction is 5% by mass or less.
  • a polyrotaxane having a desired inclusion rate can be produced with high yield and purity.
  • the blocking agent having an amino group in detail, the blocking agent having an amino group and a carboxyl group that is a terminal group of a linear molecule in the pseudopolyrotaxane.
  • two types of reactions of esterification reaction of the cyclodextrin hydroxyl group that can be included as a cyclic molecule in the pseudopolyrotaxane and the terminal carboxyl group of the linear molecule proceed simultaneously.
  • the introduction ratio of the blocking group by the amidation of the carboxyl group (hereinafter sometimes referred to as amidation selectivity) is very high, that is, very
  • the target blocked polyrotaxane can be obtained in high yield and high purity with high reaction selectivity.
  • triazine-based amides represented by 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride (DMT-MM) used in the present invention
  • the agent is generally known as a dehydrating condensation agent that is preferably used in the presence of water.
  • pseudopolyrotaxanes generally have low solubility in water, and it is difficult to form a blocking group in the presence of water, so it is appropriate to use the above triazine-based amidating agent. is there.
  • the present inventors have tried using a triazine-based amidating agent in a reaction for introducing a blocking group, and in the absence of water.
  • the amidation reaction proceeds with a good reaction yield. It was confirmed that a polyrotaxane having a high yield and high purity could be obtained, and the production method of the present invention was reached.
  • the present invention relates to a cyclic molecule, a linear molecule that is clasped into the cyclic molecule, and blocking groups that are arranged at both ends of the linear molecule so that the cyclic molecule is not detached from the linear molecule.
  • a block polyrotaxane is produced by reacting a pseudopolyrotaxane containing a molecule with a blocking agent containing an amino group to introduce a blocking group.
  • the cyclic molecule in the present invention is not particularly limited as long as it can include a linear molecule.
  • the cyclic molecule includes a molecule or substance that is substantially cyclic. Examples of the molecule that is substantially cyclic include those that are not completely closed, such as the letter “C”, and those that have a helical structure.
  • cyclodextrins for example, ⁇ -CD, ⁇ -CD, ⁇ -CD, dimethylcyclodextrin and glucosylcyclodextrin, derivatives or modified products thereof
  • crown ethers Mention may be made of benzocrowns, dibenzocrowns and dicyclohexanocrowns.
  • CDs are preferable, and ⁇ -cyclodextrin is particularly preferable.
  • the linear molecule in the present invention is a molecule or substance that is included in a circular shape in a skewered manner and can be integrated non-covalently, and has a carboxyl group at both ends of the linear molecule. If it is a compound, it will not specifically limit.
  • both ends of the molecule are carboxyl groups
  • Polyalkylene glycols such as polyethylene glycol derivatives, polypropylene glycol derivatives, polytetramethylene glycol derivatives, polypentamethylene glycol derivatives, polyhexamethylene glycol derivatives (for example, polyalkylene having 2 to 14 carbon atoms in the alkylene moiety in the repeating unit) Alkylene glycols); Aliphatic polyesters such as polybutyrolactone derivatives and polycaprolactone derivatives (for example, aliphatic polyesters having 1 to 14 carbon atoms in the alkylene moiety in the repeating unit); Polyolefins such as polyethylene derivatives, polypropylene derivatives, polybutene derivatives (for example, polyolefins having 1 to 12 carbon atoms in the olefin unit); Polydialkylsiloxanes such as polydimethylsiloxane derivatives (for example, polydialkylsiloxa
  • the polyalkylene glycols whose both ends of the molecule are carboxyl groups are dicarboxylic acid compounds having a linear partial structure derived from polyalkylene glycol and a carboxyl group at both ends of the partial structure.
  • the linear molecule in the present invention is preferably polyalkylene glycols, aliphatic polyesters, polyolefins, polydienes or polydialkylsiloxanes in which both ends of the molecule are carboxyl groups; more preferably both molecules.
  • Polyethylene glycol derivative polypropylene glycol derivative, polytetramethylene glycol derivative, polybutyrolactone derivative, polycaprolactone derivative, polyethylene derivative, polypropylene derivative, polybutene derivative, polyisoprene derivative, polybutadiene derivative, polydimethylsiloxane derivative having a terminal carboxyl group; Particularly preferred are polyethylene glycol derivatives, polypropylene glycol derivatives, polyethylene derivatives, Pyrene derivatives, poly dimethyl siloxane derivative.
  • the number average molecular weight of the linear molecule in the present invention is not particularly limited, but is preferably 200 to 200,000, more preferably 1,000 to 100,000, more preferably 3,000 to 50,000. Particularly preferred is 5,000 to 45,000.
  • a value measured by gel permeation chromatography GPC: Gel Permeation Chromatography, standard substance: polystyrene, pullulan or polyethylene oxide
  • GPC Gel Permeation Chromatography, standard substance: polystyrene, pullulan or polyethylene oxide
  • the weight average molecular weight of the linear molecule is 200 or more, for example, when a crosslinked polyrotaxane is formed using the obtained polyrotaxane, the characteristics tend to be better.
  • the weight average molecular weight of the linear molecule is 200,000 or less, it tends to be easier to prepare a pseudopolyrotaxane having a low water content.
  • the production raw material in the present invention is a dicarboxylic acid compound in which a linear molecule is clasped with a cyclic molecule and has carboxyl groups at both ends of the linear molecule.
  • a pseudopolyrotaxane is used. Sometimes called.
  • the method for introducing carboxyl groups to both ends of the linear molecule or the method for converting both ends of the linear molecule into carboxyl groups is not particularly limited.
  • methods for carboxylating the hydroxyl groups at both ends of polyethylene glycol (PEG) include oxidation of PEG with potassium permanganate, oxidation with manganese oxide / hydrogen peroxide, oxidation with chromic acid compounds (Jones oxidation) Or an oxidation method such as oxidation with 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO oxidation) can be used.
  • the inclusion reaction of a linear molecule having a carboxyl group at both ends with a cyclic molecule is performed by, for example, mixing a linear molecule having a carboxyl group at both ends of the molecule with a cyclic molecule in a solvent.
  • the solvent used here is a solvent that dissolves a linear molecule having a carboxyl group at both ends, a cyclic molecule, and a pseudo-polyrotaxane, which is a product, and does not inhibit the inclusion reaction.
  • the pseudopolyrotaxane that is the production raw material of the present invention can be obtained.
  • the number of the cyclic molecules that include the linear molecule is not particularly limited.
  • the linear molecule depends on the dispersibility in a desired solvent, the type of the modifying group, and the like. It can be appropriately selected by a method such as adjusting the usage amount of the molecule-like molecule and the cyclic molecule.
  • the inclusion amount when the cyclic molecule is closely packed and included in the linear molecule is expressed as the maximum inclusion ratio 1.0
  • the cyclic molecule that includes the linear molecule is included.
  • the introduction rate (inclusion rate) of molecules is usually 0.05 to 0.80.
  • the inclusion rate when the linear molecule is a polyethylene glycol derivative and the cyclic molecule is cyclodextrin is preferably 0.05 to 0.65, more preferably 0.10. Is 0.60, even more preferably 0.15 to 0.55, and particularly preferably 0.20 to 0.40.
  • the maximum inclusion amount of the cyclic molecule can be determined from the length of the linear molecule and the thickness of the cyclic molecule.
  • the maximum inclusion amount when the linear molecule is a polyethylene glycol derivative and the cyclic molecule is ⁇ -cyclodextrin is calculated by the method described in, for example, Macromolecules, 1993, Vol 26, pages 5698-5703. be able to.
  • the inclusion rate was measured by dissolving the obtained polyrotaxane in the measurement solvent (DMSO-d 6 ) and measuring with a 1 H-NMR measurement apparatus (AVANCE500 type Bruker BioSpin), and the chemical shift was 4 to 6 ppm. It can be calculated by comparing the integrated value of the proton derived from cyclodextrin with the integrated value of the proton derived from 3 to 4 ppm of PEG.
  • the inclusion amount of the cyclic molecule if the inclusion amount of the cyclic molecule is close to the maximum value, the movement distance of the cyclic molecule on the linear molecule tends to be limited. That is, when the inclusion ratio is 0.65 or less, the cyclic molecules are not densely arranged on the linear molecules, and the mobility of the cyclic molecules tends to be further improved. On the other hand, when the inclusion ratio is 0.05 or more, for example, when a crosslinked polyrotaxane is produced from polyrotaxane, a desired pulley effect (slide ring gel effect) tends to be sufficiently obtained.
  • the molecular weight (number average molecular weight) of the pseudopolyrotaxane as the production raw material is preferably 10,000 to 500,000, more preferably 30,000 to 500,000 from the viewpoint of the number average molecular weight of the linear molecule and the inclusion rate. 400,000, more preferably 50,000 to 300,000, particularly preferably 90,000 to 200,000, particularly more preferably 100,000 to 160,000.
  • the number average molecular weight of the pseudo polyrotaxane is 10,000 or more, for example, when a crosslinked polyrotaxane is formed, the characteristics tend to be further improved.
  • the number average molecular weight of the pseudopolyrotaxane is 500,000 or less, it tends to be easy to prepare a pseudopolyrotaxane having a low water content.
  • the water content of the pseudopolyrotaxane as a production raw material is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, and particularly preferably 1% by mass or less.
  • a value measured by the Karl Fischer method or the like is used as the moisture content.
  • the other production raw material used in the present invention which is a blocking agent having an amino group, reacts with the carboxyl groups at both ends of the linear molecule in the pseudopolyrotaxane, and after the reaction, the cyclic molecule is directly converted.
  • the blocking agent is preferably a compound having, for example, an amino group and a partial structure that forms a blocking group.
  • Examples of the partial structure forming such a blocking group include groups derived from dinitrobenzenes (for example, 2,4-dinitrophenyl group, 3,5-dinitrophenyl group, etc.), groups derived from cyclodextrins, and adamantanes.
  • Groups for example, adamantyl group
  • groups derived from triphenylmethanes for example, trityl group
  • groups derived from fluoresceins groups derived from pyrenes, groups derived from substituted benzenes, may be substituted
  • Examples include polynuclear aromatic groups and groups derived from steroids.
  • a group derived from dinitrobenzenes a group derived from cyclodextrins, a group derived from adamantanes, a group derived from triphenylmethanes, a group derived from fluoresceins, or a group derived from pyrenes, more preferably 2,4-dinitrophenyl group, 3,5-dinitrophenyl group, 2,4-diphenylphenyl group, 2,4-diisopropylphenyl group, 2,4-di-t-butylphenyl group, 4-diphenylaminophenyl group 4-diphenylphosphinylphenyl group, adamantyl group or trityl group, particularly preferably 2,4-dinitrophenyl group, 3,5-dinitrophenyl group, adamantyl group or trityl group.
  • the blocking groups provided at both molecular ends of the polyrotaxane of the present invention may be the same or different from each other.
  • the blocking agent having an amino group used in the present invention amines containing a partial structure that forms the blocking group can be used.
  • the amines containing the partial structure forming the blocking group include, for example, hydrates, inorganic acid salts (hydrochlorides, hydrobromides, etc.), or organic acid salts (methanesulfonic acid salts, toluenesulfonic acid). Salt, etc.).
  • Adamantylamine and its hydrochloride are preferable from the viewpoint of reactivity with a carboxyl group in the pseudopolyrotaxane and / or economy.
  • a commercial item can be used for adamantylamine and its hydrochloride.
  • the usage-amount of the blocking agent which has an amino group is not specifically limited.
  • the amount of the blocking agent used can be 1.0 mol to 50 mol with respect to 1 mol of the carboxyl group of the linear molecule in the pseudopolyrotaxane. It is preferably from ⁇ 40 mol, more preferably from 2.4 mol to 30 mol, more preferably from 5.0 mol to 30 mol, and particularly preferably from 7.5 mol to 20 mol. .
  • the usage-amount of an amidating agent is 50 mol or less, since economical efficiency is favorable, it is preferable.
  • a carboxyl group is formed at both molecular ends as a linear molecule.
  • a PEG derivative having a cyclic group and a pseudopolyrotaxane containing a cyclic molecule, a blocking agent containing an amino group, and an organic base and / or a solvent inert to the reaction, if necessary, are stirred, shaken, etc. It is performed by the method of making it react.
  • the order of adding the triazine-based amidating agent, pseudopolyrotaxane, blocking agent, and organic base and / or solvent inert to the reaction is not particularly limited.
  • the reaction method of the present invention is preferably performed by adding a triazine-based amidating agent to a mixture obtained by adding a pseudopolyrotaxane, a blocking agent, and an organic base and / or a solvent inert to the reaction.
  • triazine-based amidating agent examples include formula (1):
  • R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 8 carbon atoms, Any one of R 3 , R 4 and R 5 is an alkyl group having 1 to 4 carbon atoms, and the other two are a 5- to 6-membered ring together with the nitrogen atom to which they are bonded.
  • Forming X is a halogen atom
  • the alkyl group having 1 to 4 carbon atoms is, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl.
  • the aryl group having 6 to 8 carbon atoms include a phenyl group, a toluyl group, and a xylyl group.
  • R 1 and R 2 an alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group is particularly preferable.
  • R 3 , R 4 and R 5 is an alkyl group having 1 to 4 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group , Sec-butyl group, and tert-butyl group. Among them, a methyl group is preferable.
  • R 3 , R 4 and R 5 together with the nitrogen atom to which they are attached form a 5-6 membered ring group, for example, a pyrrolidinyl group, a piperidinyl group, a morpholino group, A thiomorpholino group is mentioned, and among these, a morpholino group is preferable.
  • These rings are substituted with an alkyl group having 1 to 4 carbon atoms (methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group). It may be.
  • X is a halogen atom, and examples thereof include a fluorine atom, a chlorine atom, and a bromine atom. Among them, a chlorine atom is preferable.
  • triazine-based amidating agent of the formula (1) 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) is used from the viewpoint of the reactivity and economical efficiency (cost) of the amidation reaction.
  • -4-Methylmorpholinium chloride hereinafter sometimes referred to as DMT-MM is preferred.
  • the amount of the triazine-based amidating agent used is not particularly limited as long as it is 2.0 mol to 100 mol with respect to 1 mol of the carboxyl group of the linear molecule in the pseudopolyrotaxane.
  • the amount of the triazine-based amidating agent used is preferably 3.8 to 80 mol with respect to 1 mol of the carboxyl group of the linear molecule in the pseudopolyrotaxane. It is more preferably from mol to 70 mol, particularly preferably from 15 mol to 60 mol.
  • the amount of the amidating agent used is less than 2.0 mol, the carboxyl group in the used pseudopolyrotaxane is not sufficiently blocked, and as a result, the cyclic molecule may be detached from the pseudopolyrotaxane. Moreover, when the usage-amount of an amidating agent exceeds 100 mol, since economical efficiency worsens, it is unpreferable.
  • the reaction in the present invention may be performed in the presence or absence of an organic base.
  • the organic base used is not particularly limited as long as it does not adversely affect the amidation reaction.
  • An amidating agent may also be used as the organic base.
  • Examples of the organic base include alkylamines having 3 to 24 carbon atoms such as trimethylamine, triethylamine, tri-n-propylamine, diisopropylmethylamine, tri-n-butylamine; 8 to 24 carbon atoms which may have a substituent such as dimethylphenylamine, ethylmethylphenylamine, diethylphenylamine, diphenylamine, diphenylmethylamine, diphenylethylamine, n-propyldiphenylamine, isopropyldiphenylamine, triphenylamine
  • Arylamines of Pyridines having 5 to 24 carbon atoms which may have a substituent such as pyridine, picoline, lutidine, collidine, dimethylaminopyridine, 4-pyrrolidinopyridine; Diazabicycloundecene (DBU), diazabicyclononene (DBN), 1,4-diazabicyclo [2.2.2] o
  • Alicyclic amines having 4 to 24 carbon atoms which may be present; It may have a substituent such as imidazole, N- (alkyl having 1 to 12 carbon atoms) imidazole, N-phenylimidazole, N-trimethylsilylimidazole, N-triethylsilylimidazole, N-tert-butyldimethylsilylimidazole, etc.
  • the organic base is preferably at least one organic base selected from the group consisting of alkylamines having 3 to 24 carbon atoms and alicyclic amines having 4 to 24 carbon atoms; triethylamine, diisopropylethylamine, And at least one organic base selected from the group consisting of N-methylmorpholine is more preferably used.
  • the amount used is not particularly limited as long as the reaction solution is alkaline (pH test paper).
  • An organic base may be used as the organic solvent.
  • the reaction in the present invention can be carried out in the absence of a solvent or in a solvent inert to the reaction.
  • solvent inert to the reaction examples include dimethylformamide (DMF), dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), ⁇ -methoxy-N, N-dimethylpropionamide, 1,3-dimethyl-2 -An aprotic amide solvent such as imidazolidinone (DMI) and at least one organic solvent selected from the group consisting of aromatic hydrocarbons such as benzene, toluene and xylene.
  • At least one organic solvent selected from the group consisting of dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and toluene is preferable.
  • the water content in the reaction mixture at the start of the reaction is 5% by mass or less, preferably 3% by mass or less, more preferably 1% by mass or less. If the water content at the start of the reaction is 5% by mass or less, it is possible to more effectively suppress the influence of the amidation reaction.
  • the amount of water in the reaction mixture is 5% by mass or less at the start of the reaction. It is preferably used while adjusting, more preferably 3% by mass or less, and particularly preferably 1% by mass or less.
  • water generated by the amidation reaction in the present invention is not included in the water content.
  • the amount of the solvent used is preferably from 0.1 mL to 1000 mL, more preferably from 0.5 mL to 500 mL, particularly preferably from 1 mL to 100 mL, based on 1 g of the pseudopolyrotaxane that is the production raw material. It is preferable that the amount of the solvent used is 0.1 mL or more because the reactivity of the amidation reaction and / or the stirring efficiency of the reaction mixture does not decrease, and when it is 1000 mL or less, the economy is good. Is preferable.
  • the reaction temperature is not particularly limited.
  • the reaction temperature in the present invention can be ⁇ 20 to 150 ° C., preferably 0 to 100 ° C., more preferably 5 to 60 ° C., and particularly preferably 5 to 45 ° C. It is known that the reactivity of the pseudopolyrotaxane used is good within this reaction temperature range.
  • the reaction pressure is not particularly limited, but it is preferably carried out under atmospheric pressure.
  • the inside of the reaction vessel may be in any case, for example, in an inert gas flow such as nitrogen or argon, or in an atmosphere of these gases, or in an open system.
  • reaction in the present invention for example, in the presence of a triazine-based amidating agent, a pseudopolyrotaxane containing a linear molecule and a cyclic molecule having a carboxyl group at both molecular ends of PEG, a blocking agent containing an amino group,
  • a triazine-based amidating agent for example, a pseudopolyrotaxane containing a linear molecule and a cyclic molecule having a carboxyl group at both molecular ends of PEG, a blocking agent containing an amino group
  • the reaction is carried out by mixing an organic base and / or a solvent inert to the reaction, if necessary, followed by stirring, shaking and the like.
  • the reaction in the present invention can be carried out in a solid-liquid suspension state.
  • a poor solvent for polyrotaxane such as water is added to the obtained reaction mixture to precipitate a solid, and a solid separated from the reaction mixture is obtained by, for example, filtration or decantation.
  • the obtained solid is purified by an operation such as rinsing and repulp washing using a purification solvent, etc., if necessary, and then the solid is dried, and the block which is the object of the present invention A polyrotaxane having a group is obtained.
  • Examples of the solvent for purification include water; alcohols such as methanol, ethanol, n-propanol, isopropanol, and n-butanol; aliphatic hydrocarbons such as n-hexane, n-heptane, and cyclohexane; acetone and butanone.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, and n-butanol
  • aliphatic hydrocarbons such as n-hexane, n-heptane, and cyclohexane
  • acetone and butanone examples of the solvent for purification
  • Ketones such as methyl isobutyl ketone; ethers such as diethyl ether, diisopropyl ether, t-butyl methyl ether, tetrahydrofuran, dioxane and 1,2-dimethoxyethane; halogenated carbonization such as dichloromethane and 1,2-dichloroethane Hydrogen: Solvents for purification such as aromatic hydrocarbons such as benzene, toluene and xylene. These purification solvents may be used alone or in combination of two or more. Further, the number of washings and the amount of purification solvent used are not particularly limited.
  • drying method examples include air drying, drying by blowing nitrogen gas, and drying under reduced pressure, but are not particularly limited.
  • drying temperature is not particularly limited as long as it is in the range of room temperature to 100 ° C.
  • a polyrotaxane having a desired inclusion rate can be produced with high yield and purity.
  • the cyclic molecule is cyclodextrin, it has a desired inclusion ratio, for example, according to the method described in Patent Document 1 (Example 1), etc.
  • the blocked polyrotaxane is analyzed by 1 H-NMR spectrum analysis. It can be confirmed by examining the increase or decrease in the specific proton number of the cyclodextrin in it.
  • a blocking agent having an amino group and a carboxyl group that is a terminal group of a linear molecule in the pseudopolyrotaxane are used.
  • two types of reactions are simultaneously carried out: esterification reaction between the hydroxyl group of cyclodextrin in the pseudopolyrotaxane and the carboxyl group of the terminal group of the linear molecule.
  • esterification reaction between the hydroxyl group of cyclodextrin in the pseudopolyrotaxane and the carboxyl group of the terminal group of the linear molecule.
  • a pseudopolyrotaxane containing a linear molecule having a carboxyl group at both molecular terminals and a cyclic molecule, and a block having an amino group Even if the amidation reaction with the agent is carried out in a heterogeneous reaction system such as a solid-liquid suspension system, the amidation reaction proceeds unexpectedly with a good reaction yield, and the target pseudopolyrotaxane contains A polyrotaxane in which blocking groups are introduced at both ends of a linear molecule can be obtained with high purity.
  • this solution was filtered with a chromatodisc (GL Science, 0.2 ⁇ m), and GPC analysis was performed using 30 ⁇ L of the obtained filtrate.
  • GPC analysis standard material: polyethylene oxide
  • GPC analysis was performed on the sample prepared as described above, and the GPC area% corresponding to the polyrotaxane having a blocking group as the target product was determined as the purity of the polyrotaxane having a blocking group in the present invention (GPC). Area%).
  • Example 1 Production of polyrotaxane having a blocking group: adamantyl group
  • adamantyl group In a nitrogen atmosphere, in a 100 mL internal volume glass flask equipped with a stirrer, a heating device, and a thermometer, 15.0 g of dimethylformamide, 0.22 g (1.17 mmol) of adamantylamine hydrochloride, and 0.63 g of triethylamine ( 6.23 mmol) was added and stirred for 30 minutes.
  • the obtained filtrate is washed (rinsed) with 15.0 g of ethanol and dried under reduced pressure, so that the polyrotaxane having a blocking group, which is the target product (hereinafter also referred to as “blocked polyrotaxane”), is obtained as a white solid. 9.58 g was obtained.
  • the inclusion rate of the obtained polyrotaxane having a blocking group is shown in Table 1.
  • Example 2 Production of polyrotaxane having blocking group: examination of organic base
  • the reaction was performed in the same manner as in Example 1 except that the type of organic base was changed as shown in Table 1. The results are shown in Table 1.
  • Example 3 Production of polyrotaxane having a blocking group: examination of organic base
  • the reaction was performed in the same manner as in Example 2 except that the organic base, reaction temperature and reaction time were changed as shown in Table 1. The results are shown in Table 1.
  • Examples 4-7 Comparative Example 3: Production of polyrotaxane having a blocking group: Examination of amount of amidating agent used
  • the reaction was conducted in the same manner as in Example 1 except that the amount of the amidating agent (DMT-MM) used was changed as shown in Table 2 below. The results are shown in Table 2 together with the results of Example 1.
  • Examples 8 to 11 Production of polyrotaxane having a blocking group: Examination of amount of blocking agent used
  • the reaction was performed in the same manner as in Example 1 except that the amount of the blocking agent (adamantylamine / hydrochloride) used was changed as shown in Table 3 below. The results are shown in Table 3 together with the results of Example 1.
  • Example 12 to 13 Production of polyrotaxane having a blocking group: examination of the amount of organic base used
  • the reaction was performed in the same manner as in Example 1 except that the amount of organic base (triethylamine) used was changed as shown in Table 4 below. The results are shown in Table 4.
  • Example 14 Comparative Examples 4 to 7: Production of polyrotaxane having a blocking group: Investigation of solvent
  • the reaction was performed in the same manner as in Example 1 except that the type of the organic solvent was changed as shown in Table 5 below. The results are shown in Table 5 together with the results of Example 1.
  • Example 15 to 18 Production of polyrotaxane having a blocking group: examination of water content in organic solvent
  • the reaction was performed in the same manner as in Example 1 except that the organic solvent (dimethylformamide) was used by containing water as shown in Table 6 below. The results are shown in Table 6.
  • Examples 19 to 20 Production of polyrotaxane having a blocking group: examination of reaction temperature
  • the reaction was conducted in the same manner as in Example 1 except that the reaction temperature was used by adding water as shown in Table 7 below. The results are also shown in Table 7.
  • the blocked polyrotaxane having a desired inclusion rate is 90% or more in yield and the purity (GPC area percentage) is 85% or more (approximately 90% or more).
  • the amidation selectivity is improved as compared with the conventional method using a condensing agent, which is an industrially very suitable production method.
  • a polyrotaxane having a desired inclusion rate can be produced with high yield and purity.
  • the blocked polyrotaxane obtained by the production method of the present invention is, for example, optionally substituted with a hydroxyalkyl group or the like after the hydroxyl group of cyclodextrin in this compound is further crosslinked by a known method.
  • a so-called crosslinked polyrotaxane can be obtained.
  • the obtained crosslinked polyrotaxane exhibits excellent flexibility and durability, which are unique properties as a topological gel. For example, packing materials, cushioning materials, cushioning materials for automobiles and various devices, friction parts of devices, etc.
  • Medical materials used outside the body such as coating materials, adhesives, adhesives, sealing materials, soft contact lens materials, tire materials, gels for electrophoresis, biocompatible materials, poultice materials, coating materials or wound dressings, Drug delivery system, photographic light-sensitive material, various paints and components of coating materials including the above coating materials, functional separation membrane, water-swelling rubber, water-stopping tape, moisture-absorbing gelling agent, fireproof coating material for buildings, heat dissipation
  • Various battery materials such as materials, waste mud gelling agent, chromatography carrier material, bioreactor carrier material, fuel cell or electrolyte It is useful as such.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polyethers (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

 本発明は、環状分子、環状分子に串刺し状に包接される直鎖状分子、及び直鎖状分子から環状分子が脱離しないように直鎖状分子の両末端に配置されるブロック基を有するポリロタキサンの製造方法であって、溶媒の非存在下又は非プロトン性アミド系溶媒及び芳香族炭化水素からなる群より選択される少なくとも1種の有機溶媒中、環状分子に包接され、両末端にカルボキシル基を有する直鎖状分子と、アミノ基を含むブロック化剤とを、当該直鎖状分子のカルボキシル基1モルに対して、2.0モル~100モルのトリアジン系アミド化剤の存在下で反応させて、ブロック基を形成することを含む、ポリロタキサンの製造方法を提供する。

Description

ブロック基を有するポリロタキサンの製造方法
 本発明は、環状分子、環状分子に串刺し状に包接される直鎖状分子、及び直鎖状分子から環状分子が脱離しないように直鎖状分子の両末端に配置されるブロック基を有するポリロタキサンの製造方法に関する。
 近年、自由に架橋点が動くことを特徴とするトポロジカルゲルが、新しいタイプの高分子ゲルとして注目されている。このトポロジカルゲルの構成成分として使用することができるポリロタキサンは、環状分子(回転子:rotator)と、環状分子に串刺し状に包接される直鎖状分子(軸:axis)、及び直鎖状分子から環状分子が脱離しないように直鎖状分子の両末端に配置されるブロック基を有する化合物である。中でも、環状分子としてα-シクロデキストリン(以下「α-CD」ともいう)、直鎖状分子としてポリエチレングリコール(以下「PEG」ともいう)を用いたポリロタキサンは、種々の特性を有することから、その研究が近年、盛んに行われている(例えば、特許文献1参照)。
 例えば、特許文献1では、効率よくポリロタキサンを調製する方法として、例えば、PEGの両分子末端を、まずカルボキシル基に変換した後、α-CDと混合してα-CDが包接されたPEG/α-CD包接化合物(擬ポリロタキサン)を得て、次いで、BOP試薬及び/又はHOBt試薬の存在下で、擬ポリロタキサンを、例えば、アミノ基又はOH基を有するブロック化剤と反応させて、擬ポリロタキサンのPEG部位の両末端にブロック基を配置させる製造方法が報告されている。
国際公開WO2005/095493号パンフレット
 しかしながら、特許文献1記載の方法においては、直鎖状分子で串刺しにされていた環状分子は溶媒中で脱離し易い(脱包接化)ことが確認されており、同様にブロック基を配置させるための反応でも脱包接化する問題があった。
 本発明は、所望の包接率を有するポリロタキサンを、収率及び純度よく製造することができる方法を提供することを課題とする。
 そこで、本発明の発明者らは、上記課題を解決すべく検討を行った結果、溶媒の非存在下又は反応に不活性な溶媒中、特定量のトリアジン系アミド化剤の存在下で、直鎖状分子として、例えば、PEGの両分子末端にカルボキシル基を有する直鎖状分子及び環状分子を含む擬ポリロタキサンと、アミノ基を有するブロック化剤とを反応させることにより、所望の包接率を維持しつつ、直鎖状分子の両末端にブロック基を導入することが可能であって、さらにこのブロック化されたポリロタキサンを良好な収率且つ高純度で得ることができる方法を見出し、本発明を完成させるに至った。
 本発明の要旨は、以下のとおりである。
 本発明1は、環状分子、環状分子に串刺し状に包接される直鎖状分子、及び直鎖状分子から環状分子が脱離しないように直鎖状分子の両末端に配置されるブロック基を有するポリロタキサンの製造方法であって、
 溶媒の非存在下又は非プロトン性アミド系溶媒及び芳香族炭化水素からなる群より選択される少なくとも1種の有機溶媒中、環状分子に包接され、両末端にカルボキシル基を有する直鎖状分子と、アミノ基を含むブロック化剤とを、当該直鎖状分子のカルボキシル基1モルに対して、2.0モル~100モルのトリアジン系アミド化剤の存在下で反応させて、ブロック基を形成することを含む、ポリロタキサンの製造方法に関する。
 本発明2は、トリアジン系アミド化剤が、式(1):
Figure JPOXMLDOC01-appb-C000002
(式中、
 R及びRは、それぞれ独立して、炭素原子数1~4のアルキル基又は炭素原子数6~8のアリール基であり、
 R、R及びRのいずれか1つは、炭素原子数1~4のアルキル基であり、他の2つは、それらが結合する窒素原子と一緒になって、5~6員環を形成しており、
 Xは、ハロゲン原子である)
で示される化合物である、本発明1の製造方法に関する。
 本発明3は、トリアジン系アミド化剤が、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム・クロリド(DMT-MM)である、本発明2の製造方法に関する。
 本発明4は、両末端にカルボキシル基を有する直鎖状分子が、分子の両末端がカルボキシル基であるポリアルキレングリコール類である、本発明1~3のいずれかの製造方法に関する。
 本発明5は、環状分子が、シクロデキストリンである、本発明1~4のいずれかの製造方法に関する。
 本発明6は、アミノ基を含むブロック化剤が、アダマンチルアミン又はその塩酸塩である、本発明1~5のいずれかの製造方法に関する。
 本発明7は、両末端にカルボキシル基を有する直鎖状分子のカルボキシル基1モルに対して、トリアジン系アミド化剤が3.8モル~80モル用いられる、本発明1~6のいずれかの製造方法に関する。
 本発明8は、両末端にカルボキシル基を有する直鎖状分子のカルボキシル基1モルに対して、アミノ基を含むブロック化剤が1.4モル~40モル用いられる、本発明1~7のいずれかの製造方法に関する。
 本発明9は、反応を、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、及びトルエンからなる群より選択される少なくとも1種の溶媒中で行なう、本発明1~8のいずれかの製造方法に関する。
 本発明10は、反応を、有機塩基の存在下で行う、本発明1~9のいずれかの製造方法に関する。
 本発明11は、反応を、5~60℃の反応温度で行う、本発明1~10のいずれかの製造方法に関する。
 本発明12は、反応を、反応開始時の反応混合物中の水分量が5質量%以下の条件で行う、本発明1~11のいずれかの製造方法に関する。
 本発明の製造方法によれば、所望の包接率を有するポリロタキサンを、収率及び純度よく製造することができる。
 アミノ基を有するブロック化剤を使用した擬ポリロタキサンへのブロック基導入反応では、詳細には、アミノ基を有するブロック化剤と、擬ポリロタキサン中の直鎖状分子の末端基であるカルボキシル基とのアミド化反応の他に、擬ポリロタキサン中の環状分子として含まれ得るシクロデキストリンの水酸基と、直鎖状分子の末端基のカルボキシル基とのエステル化反応の2種類の反応が同時に進行する。しかしながら、本発明のトリアジン系アミド化剤を使用した方法によれば、カルボキシル基のアミド化によるブロック基の導入割合(以降、アミド化選択率ということがある)が非常に高く、すなわち、非常に高い反応選択率で、目的とするブロック化されたポリロタキサンを高収率且つ高純度で取得することができる。
 また、本発明で使用される4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム・クロリド(DMT-MM)に代表されるトリアジン系アミド化剤は、通常、水の存在下で好適に使用される脱水縮合剤として知られている。これに対して、擬ポリロタキサンは、一般に水への溶解性が低く、水の存在下でのブロック基の形成は困難であるため、上記トリアジン系アミド化剤の使用は不向きとするのが妥当である。しかしながら、そのような周知技術の存在にも関わらず、本発明者らは、トリアジン系アミド化剤を、ブロック基を導入するための反応において使用してみたところ、水の非存在下であっても、さらに、固-液懸濁系のような不均一系で実施しても、良好な反応収率でアミド化反応が進み、そればかりか、反応終了後においても、所望とする包接率を有するポリロタキサンを高収率且つ高純度で取得することが可能であることを確認し、本発明の製造方法に至った。
 本発明は、環状分子、環状分子に串刺し状に包接される直鎖状分子、及び直鎖状分子から環状分子が脱離しないように直鎖状分子の両末端に配置されるブロック基を有するポリロタキサンの製造方法であって、溶媒の非存在下又は反応に不活性な溶媒中、特定量のトリアジン系アミド化剤の存在下で、両分子末端にカルボキシル基を有する直鎖状分子と環状分子を含む擬ポリロタキサンと、アミノ基を含むブロック化剤とを反応させて、ブロック基を導入することを特徴とするブロック化されたポリロタキサンの製造方法である。
 本発明における環状分子は、直鎖状分子を包接可能であれば、特に限定されない。また、環状分子には、実質的に環状である分子又は物質を含む。実質的に環状である分子には、英字の「C」のように、完全に閉環構造ではないもの、螺旋構造を有するもの等が挙げられる。
 本発明における環状分子として、種々のシクロデキストリン(CD)類(例えばα-CD、β-CD、γ-CD、ジメチルシクロデキストリン及びグルコシルシクロデキストリン、これらの誘導体又は変性体等)、クラウンエーテル類、ベンゾクラウン類、ジベンゾクラウン類、及びジシクロヘキサノクラウン類を挙げることができる。中でも、CD類が好ましく、とりわけα-シクロデキストリンが好ましい。
 本発明における直鎖状分子は、環状分子に串刺し状に包接され、非共有結合的に一体化することができる分子又は物質であって、直鎖状分子の両末端部分にカルボキシル基を有する化合物であれば特に限定されない。
 直鎖状分子としての具体例としては、分子の両末端がカルボキシル基である、
 ポリエチレングリコール誘導体、ポリプロピレングリコール誘導体、ポリテトラメチレングリコール誘導体、ポリペンタメチレングリコール誘導体、ポリヘキサメチレングリコール誘導体等のポリアルキレングリコール類(例えば、繰り返し単位中のアルキレン部分の炭素原子数が2~14のポリアルキレングリコール類);
 ポリブチロラクトン誘導体、ポリカプロラクトン誘導体等の脂肪族ポリエステル類(例えば、繰り返し単位中のアルキレン部分の炭素原子数が1~14の脂肪族ポリエステル類);
 ポリエチレン誘導体、ポリプロピレン誘導体、ポリブテン誘導体等のポリオレフィン類(例えば、オレフィン単位の炭素原子数が1~12のポリオレフィン類);
 ポリジメチルシロキサン誘導体等のポリジアルキルシロキサン類(例えば、ケイ素原子に結合しているアルキル部分の炭素原子数が1~4のポリジアルキルシロキサン類);
 ポリブタジエン誘導体、ポリイソプレン誘導体等のポリジエン類(例えば、ジエン単位の炭素原子数が4~12のポリジエン類);
 ポリエチレンカーボネート誘導体、ポリプロピレンカーボネート誘導体、ポリテトラメチレンカーボネート誘導体、ポリペンタメチレンカーボネート誘導体、ポリヘキサメチレンカーボネート誘導体、ポリフェニレンカーボネート誘導体等のポリカーボネート類(例えば、繰り返し単位中の炭化水素部分の炭素原子数が1~12のポリカーボネート類);
 カルボキシメチルセルロース誘導体、ヒドロキシエチルセルロース誘導体、ヒドロキシプロピルセルロース誘導体等のセルロース類;
 ポリ(メタ)アクリル酸誘導体、ポリ(メタ)アクリル酸エステル誘導体(例えば、ポリメチルメタクリレート誘導体、ポリメチルアクリレート誘導体等)、ポリ(メタ)アクリルアミド誘導体、ポリ(メタ)アクリロニトリル誘導体、及び(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリルアミド、(メタ)アクリロニトリルから選ばれる2種以上のモノマーを共重合させて得られるコポリマー誘導体等の(メタ)アクリル系ポリマー類;
 ナイロン6誘導体、ナイロン66誘導体等のポリアミド類;ポリイミド類;ポリスルホン酸類;ポリイミン類;ポリ尿素類;ポリスルフィド類;ポリフォスファゼン類;ポリケトン類、ポリエーテルエーテルケトン類;例えば、クラブレスコール等のポリフェニレン類等が挙げられる。
 ここで、分子の両末端がカルボキシル基であるポリアルキレングリコール類とは、ポリアルキレングリコールに由来する直鎖状の部分構造と、当該部分構造の両末端にカルボキシル基とを有するジカルボン酸化合物であるポリアルキレングリコール誘導体のグル―プを意味し、分子の両末端がカルボキシル基である脂肪族ポリエステル類、分子の両末端がカルボキシル基であるポリオレフィン類、分子の両末端がカルボキシル基であるポリジアルキルシロキサン類、分子の両末端がカルボキシル基であるポリジエン類等についてもそれぞれ同様の構成を成す誘導体のグル―プを意味する。
 本発明における直鎖状分子は、好ましくは、分子の両末端がカルボキシル基である、ポリアルキレングリコール類、脂肪族ポリエステル類、ポリオレフィン類、ポリジエン類又はポリジアルキルシロキサン類;より好ましくは、分子の両末端がカルボキシル基である、ポリエチレングリコール誘導体、ポリプロピレングリコール誘導体、ポリテトラメチレングリコール誘導体、ポリブチロラクトン誘導体、ポリカプロラクトン誘導体、ポリエチレン誘導体、ポリプロピレン誘導体、ポリブテン誘導体、ポリイソプレン誘導体、ポリブタジエン誘導体、ポリジメチルシロキサン誘導体;特に好ましくは、分子の両末端がカルボキシル基である、ポリエチレングリコール誘導体、ポリプロピレングリコール誘導体、ポリエチレン誘導体、ポリプロピレン誘導体、ポリジメチルシロキサン誘導体である。
 本発明における直鎖状分子の数平均分子量は特に限定されないが、好ましくは200~200,000であり、さらに好ましくは1,000~100,000であり、より好ましくは3,000~50,000であり、特に好ましくは5,000~45,000である。なお、本願明細書における数平均分子量としては、例えば、ゲル浸透クロマトグラフィー(GPC:Gel Permeation Chromatography、標準物質:ポリスチレン、プルラン又はポリエチレンオキシド)などによって測定される値を使用することができる。
 前記直鎖状分子の重量平均分子量が200以上であると、得られるポリロタキサンを用いて、例えば、架橋ポリロタキサンを構成した場合に、特性がより良好になる傾向がある。一方、前記直鎖状分子の重量平均分子量が200,000以下であると、水分含量の少ない擬ポリロタキサンを調製することがより容易になる傾向がある。
 本発明における製造原料は、直鎖状分子が環状分子により串刺し状に包接され、かつその直鎖状分子の両末端にカルボキシル基を有するジカルボン酸化合物であって、本明細書では、擬ポリロタキサンと称することもある。
 直鎖状分子の両末端にカルボキシル基を導入する方法、又は直鎖状分子の両末端をカルボキシル基に変換する方法は、特に限定されない。例えば、ポリエチレングリコール(PEG)の両末端の水酸基をカルボキシル基化する方法としては、PEGの、過マンガン酸カリウムによる酸化、酸化マンガン/過酸化水素による酸化、クロム酸化合物を用いた酸化(Jones酸化)、又は2,2,6,6-テトラメチル-1-ピぺリジニルオキシラジカルによる酸化(TEMPO酸化)等の酸化方法を使用することができる。
 両末端にカルボキシル基を有する直鎖状分子の環状分子による包接化反応は、分子の両末端にカルボキシル基を有する直鎖状分子と環状分子とを、例えば、溶媒中で混合するといった方法によって行なうことができる。ここで使用される溶媒としては、両末端にカルボキシル基を有する直鎖状分子、環状分子、及び生成物である擬ポリロタキサンを溶解する溶媒であって、かつ包接化反応を阻害しないものであれば、特に限定されない。
 例えば、特許文献1(実施例1)に記載の方法に従って、本発明の製造原料である擬ポリロタキサンを取得することができる。
 本発明における擬ポリロタキサンについて、直鎖状分子を包接する環状分子の個数(包接量)は、特に限定されず、例えば、所望の溶媒への分散性、修飾基の種類等に応じて直鎖状分子と環状分子の使用量を調整する等の方法により適宜選択することができる。また、直鎖状分子に環状分子が最密で包接されたとき(充填率:100%)の包接量を最大包接率1.0として表したとき、直鎖状分子を包接する環状分子の導入率(包接率)は、通常、0.05~0.80である。より具体的には、直線状分子がポリエチレングリコール誘導体であって、且つ環状分子がシクロデキストリンである場合の包接率は、好ましくは0.05~0.65であり、より好ましくは0.10~0.60であり、さらにより好ましくは0.15~0.55であり、特に好ましくは0.20~0.40である。ここで、環状分子の最大包接量は、直鎖状分子の長さと環状分子の厚さとから決定することができる。例えば、直鎖状分子がポリエチレングリコール誘導体であり、且つ環状分子がα-シクロデキストリンの場合の最大包接量は、例えば、Macromolecules,1993,Vol26,5698-5703ページに記載の方法等により算出することができる。また、包接率は、測定溶媒(DMSO-d)に、得られたポリロタキサンを溶解し、H-NMR測定装置(AVANCE500型 Bruker BioSpin社製) により測定し、ケミカルシフトが4~6ppmのシクロデキス卜リン由来のプロトンの積分値と3~4ppmのPEG由来のプロトンの積分値との比較で算出することができる。
 本発明における擬ポリロタキサンについて、環状分子の包接量が最大値に近い状態であると、直鎖状分子上の環状分子の移動距離が制限される傾向が生じる。すなわち、前記包接率が0.65以下であると、直鎖状分子上に環状分子が密に配置され過ぎず、環状分子の可動性がより向上する傾向がある。また一方、前記包接率が0.05以上であると、例えば、ポリロタキサンから架橋ポリロタキサンを製造した場合、所望の滑車効果(スライドリングゲル効果)が充分に得られる傾向がある。
 そこで、製造原料である擬ポリロタキサンの分子量(数平均分子量)は、直線状分子の数平均分子量、及び包接率の観点から、好ましくは10,000~500,000、より好ましくは30,000~400,000、さらに好ましくは50,000~300,000、特に好ましくは90,000~200,000、特により好ましくは100,000~160,000である。前記擬ポリロタキサンの数平均分子量が10,000以上であると、これを用いて、例えば、架橋ポリロタキサンを構成した場合に特性がより向上する傾向がある。一方、前記擬ポリロタキサンの数平均分子量が500,000以下であると、水分含量が少ない擬ポリロタキサンを調製することが容易になる傾向がある。
 本発明においては、反応開始時の反応混合物の水分量が多いと、反応が影響を受ける場合がある。そこで、製造原料である擬ポリロタキサンの含有水分量は、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくは1質量%以下である。なお、水分量は、例えば、カールフィッシャー法等で測定された値を使用する。製造原料である擬ポリロタキサンの含有水分量が10質量%を超える場合は、適宜、脱水、乾燥等の処理を行ってから使用することが好ましい。
 本発明で使用されるもう一方の製造原料である、アミノ基を有するブロック化剤としては、擬ポリロタキサン中の直鎖状分子の両末端のカルボキシル基と反応し、かつ反応後、環状分子が直鎖状分子により串刺し状になった形態を保持することができるブロック基を形成することができるものであれば、特に限定されない。ブロック化剤は、例えば、アミノ基と、ブロック基を形成する部分構造とを有する化合物であることが好ましい。
 このようなブロック基を形成する部分構造としては、ジニトロベンゼン類由来の基(例えば、2,4-ジニトロフェニル基、3,5-ジニトロフェニル基等)、シクロデキストリン類由来の基、アダマンタン類由来の基(例えば、アダマンチル基等)、トリフェニルメタン類由来の基(例えば、トリチル基等)、フルオレセイン類由来の基、ピレン類由来の基、置換ベンゼン類由来の基、置換されていてもよい多核芳香族基、ステロイド類由来の基などが挙げられる。好ましくは、ジニトロベンゼン類由来の基、シクロデキストリン類由来の基、アダマンタン類由来の基、トリフェニルメタン類由来の基、フルオレセイン類由来の基、又はピレン類由来の基であり、より好ましくは、2,4-ジニトロフェニル基、3,5-ジニトロフェニル基、2,4-ジフェニルフェニル基、2,4-ジイソプロピルフェニル基、2,4-ジ-t-ブチルフェニル基、4-ジフェニルアミノフェニル基、4-ジフェニルホスフィニルフェニル基、アダマンチル基、又はトリチル基であり、特に好ましくは、2,4-ジニトロフェニル基、3,5-ジニトロフェニル基、アダマンチル基、又はトリチル基である。なお、本発明のポリロタキサンの両分子末端に設けられるブロック基は、互いに同一であっても、又は異なっていてもよい。本発明で使用されるアミノ基を有するブロック化剤としては、上記ブロック基を形成する部分構造を含むアミン類を使用ことができる。さらに、上記ブロック基を形成する部分構造を含むアミン類は、例えば、水和物、無機酸塩(塩酸塩、臭化水素酸塩等)、又は有機酸塩(メタンスルホン酸塩、トルエンスルホン酸塩等)であってもよい。擬ポリロタキサン中のカルボキシル基との反応性、及び/又は経済性の観点からアダマンチルアミン及びその塩酸塩が好ましい。なお、アダマンチルアミン及びその塩酸塩は、市販品を使用することができる。
 なお、本発明の製造方法において、アミノ基を有するブロック化剤の使用量は、特に限定されない。しかしながら、経済性の観点から、ブロック化剤の使用量は、擬ポリロタキサン中の直鎖状分子のカルボキシル基1モルに対して、1.0モル~50モルとすることができ、1.4モル~40モルであることが好ましく、2.4モル~30モルであることがさらに好ましく、5.0モル~30モルであることがより好ましく、7.5モル~20モルであることが特に好ましい。なお、アミド化剤の使用量が50モル以下である場合は、経済性が良好であるために好ましい。
 本発明の製造方法は、例えば、直鎖状分子のカルボキシル基1モルに対して2.0モル~100モルのトリアジン系アミド化剤の存在下で、直鎖状分子として両分子末端にカルボキシル基を有するPEG誘導体及び環状分子を含む擬ポリロタキサンと、アミノ基を含むブロック化剤と、必要に応じて有機塩基及び/又は反応に不活性な溶媒とを混合し、攪拌、振とう等を行って反応させる方法で行われる。なお、トリアジン系アミド化剤、擬ポリロタキサン、ブロック化剤、並びに有機塩基及び/又は反応に不活性な溶媒の投入順序は、特に限定されない。しかしながら、本発明の反応は、擬ポリロタキサン、ブロック化剤、並びに有機塩基及び/又は反応に不活性な溶媒を加えた混合物に、トリアジン系アミド化剤を添加して行う反応方法が好ましい。
 本発明におけるトリアジン系アミド化剤としては、具体的には、式(1):
Figure JPOXMLDOC01-appb-C000003
(式中、
 R及びRは、それぞれ独立して、炭素原子数1~4のアルキル基又は炭素原子数6~8のアリール基であり、
 R、R及びRのいずれか1つは、炭素原子数1~4のアルキル基であり、他の2つは、それらが結合する窒素原子と一緒になって、5~6員環を形成しており、
 Xは、ハロゲン原子である)
で示される化合物が挙げられる。
 R及びRについて、炭素原子数1~4のアルキル基は、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられ、炭素原子数6~8のアリール基としては、フェニル基、トルイル基、キシリル基等が挙げられる。R及びRとしては、炭素原子数1~4のアルキル基が好ましく、中でもメチル基が好ましい。
 R、R及びRのいずれか1つは、炭素原子数1~4のアルキル基であり、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基が挙げられ、中でもメチル基が好ましい。
 R、R及びRの他の2つは、それらが結合する窒素原子と一緒になって、5~6員環基を形成しており、例えば、ピロリジニル基、ピペリジニル基、モルホリノ基、チオモルホリノ基が挙げられ、中でもモルホリノ基が好ましい。これらの環は、炭素原子数1~4のアルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基)で置換されていてもよい。
 Xは、ハロゲン原子であり、例えば、フッ素原子、塩素原子、及び臭素原子が挙げられ、中でも塩素原子が好ましい。
 式(1)のトリアジン系アミド化剤としては、アミド化反応の反応性及び経済性(コスト)の観点から、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム・クロリド(以降、DMT-MMと称することがある)が好ましい。
 本発明の製造方法において、トリアジン系アミド化剤の使用量は、擬ポリロタキサン中の直鎖状分子のカルボキシル基1モルに対して、2.0モル~100モルであれば、特に限定されない。しかしながら、経済性の観点からトリアジン系アミド化剤の使用量は、擬ポリロタキサン中の直鎖状分子のカルボキシル基1モルに対して、3.8モル~80モルであることが好ましく、7.5モル~70モルであることがより好ましく、15モル~60モルであることが特に好ましい。アミド化剤の使用量が、2.0モル未満である場合、使用した擬ポリロタキサン中のカルボキシル基が充分にブロック化されず、その結果、擬ポリロタキサンから環状分子が脱離することがある。また、アミド化剤の使用量が、100モルを越える場合、経済性が悪くなるために好ましくない。
 本発明における反応は、有機塩基の存在下、又は非存在下のいずれの場合で行なってもよい。また、本発明における反応を有機塩基の存在下にて行う場合、使用される有機塩基としては、アミド化反応に悪影響を与えるもの以外であれば、特に限定されない。また、アミド化剤を、有機塩基として使用してもよい。
 有機塩基としては、例えば、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、ジイソプロピルメチルアミン、トリ-n-ブチルアミン等の炭素原子数3~24のアルキルアミン類;
 ジメチルフェニルアミン、エチルメチルフェニルアミン、ジエチルフェニルアミン、ジフェニルアミン、ジフェニルメチルアミン、ジフェニルエチルアミン、n-プロピルジフェニルアミン、イソプロピルジフェニルアミン、トリフェニルアミン等の置換基を有していてもよい炭素原子数8~24のアリールアミン類;
 ピリジン、ピコリン、ルチジン、コリジン、ジメチルアミノピリジン、4-ピロリジノピリジン等の置換基を有していてもよい炭素原子数5~24のピリジン類;
 ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、キヌクリジン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、N-メチルモルホリン、炭素原子数1~20のアルキルモルホリン、ジ(炭素原子数1~10のアルキル)ピペラジン、炭素原子数1~19のアルキルピペリジン等の置換基を有していてもよい炭素原子数4~24の脂環式アミン類;
 イミダゾール、N-(炭素原子数1~12のアルキル)イミダゾール、N-フェニルイミダゾール、N-トリメチルシリルイミダゾール、N-トリエチルシリルイミダゾール、N-tert-ブチルジメチルシリルイミダゾール等の置換基を有していてもよい炭素原子数3~24のイミダゾール類;
 トリアゾール、N-(炭素原子数1~12のアルキル)トリアゾール、N-フェニルトリアゾール等の置換基を有していてもよい炭素原子数3~24のトリアゾール類;
 テトラ(炭素原子数1~4のアルキル)グアニジン等の置換基を有していてもよい炭素原子数1~24のグアニジン類;
 1,8-ビス(ジメチルアミノ)ナフタレン(別名:プロトンスポンジ)、ホスファゼン等が挙げられる。
 有機塩基としては、炭素原子数3~24のアルキルアミン類、及び炭素原子数4~24の脂環式アミン類からなる群より選択される少なくとも1種の有機塩基が好ましく;トリエチルアミン、ジイソプロピルエチルアミン、及びN-メチルモルホリンからなる群より選択される少なくとも1種の有機塩基がより好ましく使用される。
 反応を有機塩基の存在下に行う場合、例えば、反応液がアルカリ性(pH試験紙)を示す量であれば、その使用量は特に制限されない。また有機塩基を有機溶媒として用いてもよい。
 さらに本発明における反応は、溶媒の非存在下又は反応に不活性な溶媒中で行なうことができる。反応に不活性な溶媒としては、例えば、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)、β-メトキシ-N,N-ジメチルプロピオンアミド、1,3-ジメチル-2-イミダゾリジノン(DMI)等の非プロトン性アミド系溶媒、及びベンゼン、トルエン、キシレン等の芳香族炭化水素からなる群より選択される少なくとも1種の有機溶媒が挙げられる。中でも、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、及びトルエンからなる群より選択される少なくとも1種の有機溶媒が好ましい。水を使用する場合は、反応開始時の反応混合物中の水分量が5質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下となるように使用する。反応開始時の水分量が5質量%以下であると、アミド化反応に影響が出ることをより効果的に抑制することができる。有機溶媒を使用する場合、水を含有しないことが好ましく、具体的には、水分を含有する有機溶媒を使用する場合、反応開始時に、反応混合物中の水分量が5質量%以下となるように調整しながら使用することが好ましく、より好ましくは3質量%以下、特に好ましくは1質量%以下となるように調整しながら使用する。但し、本発明におけるアミド化反応により生成する水は、前記水分量に包含されないこととする。
 溶媒を使用する場合、溶媒の使用量は、製造原料である擬ポリロタキサン1gに対して、0.1mL~1000mLが好ましく、0.5mL~500mLがより好ましく、1mL~100mLが特に好ましい。溶媒の使用量が、0.1mL以上であると、アミド化反応の反応性、及び/又は反応混合物の攪拌効率が低下しないため好ましく、また、1000mL以下の場合は、経済性が良好であるために好ましい。
 本発明の製造方法において、反応温度は、特に限定されない。しかしながら、本発明における反応温度は、-20~150℃とすることができ、0~100℃が好ましく、5~60℃がより好ましく、5~45℃が特に好ましい。この反応温度の範囲であれば、使用する擬ポリロタキサンの反応性も良好であることがわかっている。
 また、本発明において、反応圧力は、特に限定されないが、大気圧下で行われることが好ましい。さらに、反応容器内は、例えば、窒素、アルゴン等の不活性ガス流通下、又はこれらのガス雰囲気下で行っても、あるいは開放系で行ってもいずれの場合であってもよい。
 本発明における反応は、例えば、トリアジン系アミド化剤の存在下で、PEGの両分子末端にカルボキシル基を有する直鎖状分子と環状分子とを含む擬ポリロタキサンと、アミノ基を含むブロック化剤と、必要に応じて有機塩基及び/又は反応に不活性な溶媒とを混合し、攪拌、振とう等を行って反応させる方法で行われる。なお、本発明における反応は、固-液懸濁状態でも実施できることを特徴とする。
 反応後、得られた反応混合物に、水等のポリロタキサンに対する貧溶媒を加えて固形物を析出させ、例えば、ろ過、デカンテーション等により反応混合物から分離する固形物を取得する。次いで、得られた固形物を、必要に応じて、精製用溶媒等を用いて、リンス洗浄、リパルプ洗浄等の操作により精製後、この固形物を乾燥させることで本発明の目的物であるブロック基を有するポリロタキサンを取得する。
 精製用溶媒としては、例えば、水;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール等のアルコール類;n-ヘキサン、n-ヘプタン、シクロへキサン等の脂肪族炭化水素類;アセトン、ブタノン、メチルイソブチルケトン等のケトン類;ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドフラン、ジオキサン、1,2-ジメトキシエタン等のエーテル類;ジクロロメタン、1,2-ジクロロエタン等のハロゲン化炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素等の精製用溶媒が挙げられる。なお、これらの精製用溶媒は、単独、又は2種以上混合して使用してもよい。また、洗浄回数、精製用溶媒の使用量は特に限定されない。
 乾燥の方法としては、例えば、風乾、窒素ガスの吹き付けによる乾燥、減圧乾燥等が挙げられるが、特に限定されない。また、乾燥温度も、室温~100℃の範囲であれば、特に限定されない。
 本発明の製造方法によれば、所望の包接率を有するポリロタキサンを、収率及び純度よく製造することができる。なお、所望の包接率を有することは、環状分子がシクロデキストリンの場合、例えば、特許文献1(実施例1)に記載の方法などに従い、H-NMRスペクトル分析により、ブロック化されたポリロタキサン中のシクロデキストリンの特定のプロトン数の増減を調べて確認することができる。また、一般に、アミノ基を有するブロック化剤を使用した擬ポリロタキサンへのブロック基導入反応では、アミノ基を有するブロック化剤と、擬ポリロタキサン中の直鎖状分子の末端基であるカルボキシル基とのアミド化反応のほかに、擬ポリロタキサンの中のシクロデキストリンの水酸基と、直鎖状分子の末端基のカルボキシル基とのエステル化反応の2種類の反応が同時に行われる。しかしながら、トリアジン系アミド化剤を使用した本発明の製造方法によれば、非常に高いアミド化反応選択率で、目的とするブロック化されたポリロタキサンを高収率且つ高純度で取得することができる。
 また、本発明の製造方法によれば、特定量のトリアジン系アミド化剤の存在下、両分子末端にカルボキシル基を有する直鎖状分子と環状分子とを含む擬ポリロタキサンと、アミノ基を有するブロック化剤とをアミド化させる反応を固-液懸濁系のような不均一反応系で実施したとしても、意外にも良好な反応収率でアミド化反応が進み、目的とする擬ポリロタキサン中の直鎖状分子の両末端にブロック基が導入されたポリロタキサンを高純度で得ることができる。
 さらに、本発明によれば、一般に、水を含む溶媒との組み合わせで良好なアミド化反応性を示すトリアジン系アミド化剤を、特定の製造原料との反応で使用したとしても、意外にも水の非存在下であればあるほど、良好な反応選択性と反応収率でブロック基を有するポリロタキサンを高純度で得ることができる。
 次に、実施例により本発明を詳細に説明するが、本発明は実施例に限定されるものではない。
〔ブロック基を有するポリロタキサンの純度〕
(使用機器)
カラム:TSKgel SuperAWM-H φ6.0mm×150mm(東ソー社製)
ガードカラム:TSKguardcolumn SuperAW-H φ6.0mm×35mm東ソー社製)
溶離液:0.01M LiBr/DMSO
(LiBr・HO:3.15gとDMSO:3Lとから調製)
カラム温度:50℃
検出器:RI検出器 
流量:0.5mL/min
(試料調製)
 実施例及び比較例で得られたブロック基を有するポリロタキサン10mg~15mgを秤量し、これに溶離液(0.01M LiBr/DMSO)4mLを加えて、超音波処理を行なって溶解させた。次いで、この溶液を、クロマトディスク(GLサイエンス、0.2μm)でろ過処理し、得られたろ液を30μL使用してGPC分析を行なった。
(純度測定:GPC面積百分率、GPC面積%)
 上記のようにして調製した試料についてGPC分析(標準物質:ポリエチレンオキシド)を行い、目的物であるブロック基を有するポリロタキサンに相当するGPC面積%を、本発明におけるブロック基を有するポリロタキサンの純度(GPC面積%)とした。
〔アミド化選択率〕
(使用機器)
 上記の純度測定:GPC面積%の分析条件にて使用した条件と同じである。
(アルカリ処理された試料の調製)
 実施例・比較例のブロック基を有するポリロタキサン25mgを秤量し、これに、水2.5mL及び50質量%水酸化ナトリウム水溶液0.3gを加えて、室温下、2時間攪拌した。次いで、得られた溶液に、酢酸0.25g、溶離液(0.01M LiBr/DMSO)10mLを順に加え、不溶物が無くなるまで超音波処理を行なって溶解させた。さらに、この溶液を、ろ紙(アドバンテック東洋社製、円形定量ろ紙、No.5C)でろ過処理し、得られたろ液を30μL使用してGPC分析を行なった。
(GPC分析:アルカリ処理後のポリロタキサンの純度)
 上記のようにしてアルカリ処理した試料についてGPC分析(標準物質:ポリエチレンオキシド)を行い、目的物であるブロック基を有するポリロタキサンに相当するGPC面積%を、アルカリ処理後のブロック基を有するポリロタキサンの純度(GPC面積%)とした。
(アミド化選択率の算出)
 上記のようにして得られた実施例及び比較例におけるブロック基を有するポリロタキサンの純度とアルカリ処理後のブロック基を有するポリロタキサンの純度の数値を用いて、下記数式<1>より、本発明におけるブロック基を有するポリロタキサンのアミド化選択率を算出した。
Figure JPOXMLDOC01-appb-M000004
(参考例;擬ポリロタキサンの合成)
(参考例1:PEG-ジカルボン酸の調製;TEMPO酸化)
 分子量35,000のポリエチレングリコール(PEG)(Clariant社製)200gを使用して、特許文献1の実施例1の方法に従って、分子の両末端がカルボキシル基であるポリエチレングリコール誘導体(PEG-ジカルボン酸)を定量的に得た。
(参考例2:擬ポリロタキサンの合成;包接化)
 参考例1にて調製したPEG-ジカルボン酸10gに、65~70℃に加温したα‐シクロデキストリン水溶液(組成;α‐シクロデキストリン:27.8g、水:40g)を加え、液温80℃にて1時間攪拌して包接化反応を行った。反応終了後、反応液から水分を留去し、得られた濃縮物を減圧乾燥することで、白色固体として擬ポリロタキサン(34.0g)を得た。
(実施例1:ブロック基を有するポリロタキサンの製造:アダマンチル基)
 窒素雰囲気下、撹拌装置、加熱装置、及び温度計を備えた内容積100mLのガラス製フラスコに、ジメチルホルムアミド15.0g、アダマンチルアミン塩酸塩0.22g(1.17mmol)、及びトリエチルアミン0.63g(6.23mmol)を加え、30分攪拌した。次いで、この混合液に、参考例2と同様の方法で得られた擬ポリロタキサン10.00g(数平均分子量:130,000、0.077mmol相当)、DMT-MM0.32g(1.16mmol)、ジメチルホルムアミド10.0g(ジメチルホルムアミド使用量(合計):25.0g)の順に加え、固-液懸濁反応系下、25℃にて3時間攪拌した。なお、反応開始時の反応混合物の水分量は、0.47質量%であった。反応終了後、得られた反応混合物に、水30gを加えて攪拌して反応を停止させた後、ろ過を行ない、ろ物を取得した。得られたろ物をエタノール15.0gにて洗浄(リンス)し、減圧乾燥することにより、目的物であるブロック基を有するポリロタキサン(以下、「ブロック化されたポリロタキサン」ともいう)を、白色固体として9.58g得た。
 得られたブロック基を有するポリロタキサンの包接率を表1に示す。
(比較例1~2:ブロック基を有するポリロタキサンの製造:アミド化剤の検討)
 アミド化剤の種類を表1のように変更した以外は、実施例1と同様に反応を行った。結果を表1に示す。
(実施例2:ブロック基を有するポリロタキサンの製造:有機塩基の検討)
 有機塩基の種類を表1のように変更した以外は、実施例1と同様に反応を行った。結果を表1に示す。
(実施例3:ブロック基を有するポリロタキサンの製造:有機塩基の検討)
 有機塩基、反応温度及び反応時間を表1のように変更した以外は、実施例2と同様に反応を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
*1:DMT-MM;4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム・クロリド
*2:BOP;1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウム・ヘキサフルオロホスファート
*3:PyBOP;1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウム・ヘキサフルオロホスファート
*4:TEA;トリエチルアミン
*5:DIPEA;ジイソプロピルエチルアミン
*6:H-NMR測定(DMSO-d)より算出(最大包接率を:1.000)。―は未測定。
*7:ブロック化されたポリロタキサンの取得収率(%)
*8:ブロック化されたポリロタキサンの純度(%)
*9:数式<1>より算出(%)
(実施例4~7、比較例3:ブロック基を有するポリロタキサンの製造:アミド化剤使用量の検討)
 アミド化剤(DMT-MM)の使用量を下記表2のように変更した以外は、実施例1と同様に反応を行った。結果を、実施例1の結果と併せて表2に示す。
Figure JPOXMLDOC01-appb-T000006
*1:DMT-MM;4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム・クロリド
*2:ブロック化されたポリロタキサンの取得収率(%)
*3:ブロック化されたポリロタキサンの純度(%)
*4:数式<1>より算出(%)
(実施例8~11:ブロック基を有するポリロタキサンの製造:ブロック化剤使用量の検討)
 ブロック化剤(アダマンチルアミン・塩酸塩)の使用量を下記表3のように変更した以外は、実施例1と同様に反応を行った。結果を、実施例1の結果と併せて表3に示す。
Figure JPOXMLDOC01-appb-T000007
*1:アダマンチルアミン塩酸塩
*2:ブロック化されたポリロタキサンの取得収率(%)
*3:ブロック化されたポリロタキサンの純度(%)
*4:数式<1>より算出(%)
(実施例12~13:ブロック基を有するポリロタキサンの製造:有機塩基使用量の検討)
 有機塩基(トリエチルアミン)の使用量を下記表4のように変更した以外は、実施例1と同様に反応を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000008
*1:TEA;トリエチルアミン
*2:ブロック化されたポリロタキサンの取得収率(%)
*3:ブロック化されたポリロタキサンの純度(%)
*4:数式<1>より算出(%)
(実施例14、比較例4~7:ブロック基を有するポリロタキサンの製造:溶媒の検討)
 有機溶媒の種類を下記表5のように変更した以外は、実施例1と同様に反応を行った。結果を実施例1の結果と併せて表5に示す。
Figure JPOXMLDOC01-appb-T000009
*1:DMF;ジメチルホルムアミド、CHCN;アセトニトリル、DMSO;ジメチルスルホキシド、MeOH;メタノール
*2:ブロック化されたポリロタキサンの取得収率(%)
*3:○;反応に使用可能、×;低収率、又は未反応のため反応に使用不可
(実施例15~18:ブロック基を有するポリロタキサンの製造:有機溶媒中の水分含量の検討)
 有機溶媒(ジメチルホルムアミド)に、下記表6のように水を含有させて使用した以外は、実施例1と同様に反応を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000010
*1:ジメチルホルムアミドの合計使用量(g)
*2:反応系への水の添加量(g)、及び反応溶媒(溶媒+水)における水の含有量(質量%)
*3:ブロック化されたポリロタキサンの取得収率(%)
*4:ブロック化されたポリロタキサンの純度(%)
*5:数式<1>より算出(%)
*6:カールフィッシャー水分測定による、反応終了後の反応混合物中の水の含有量(質量%)
*7:H-NMR測定(DMSO-d)より算出(最大包接率:1.000)
(実施例19~20:ブロック基を有するポリロタキサンの製造:反応温度の検討)
 反応温度を下記表7のように水を含有させて使用した以外は、実施例1と同様に反応を行った。結果を表7に併せて示す。
Figure JPOXMLDOC01-appb-T000011
*1:反応中の反応混合物の温度(℃)
*2:ブロック化されたポリロタキサンの取得収率(%)
*3:ブロック化されたポリロタキサンの純度(%)
*4:数式<1>より算出(%)
 上記のとおり、本発明の製造方法によれば、所望の包接率を有するブロック化されたポリロタキサンを収率90%以上、かつ純度(GPC面積百分率)も85%以上(概ね90%以上)で得ることができる。また、表1より、従来の縮合剤を使用した方法に比べてアミド化選択率についても向上しており、工業的にも非常に好適な製造方法である。
 本発明の製造方法によれば、所望の包接率を有するポリロタキサンを、収率及び純度よく製造することができる。本発明の製造方法で得られたブロック化されたポリロタキサンは、例えば、この化合物中のシクロデキストリンの水酸基を、必要に応じて、例えば、ヒドロキシアルキル基等で置換後、さらに公知の方法で架橋させることで、いわゆる、架橋ポリロタキサンを得ることができる。得られた架橋ポリロタキサンは、トポロジカルゲルとしての特有の性質である優れた柔軟性、耐久性等を示すため、例えば、パッキング材料、クッション材、自動車や種々の装置の緩衝材、装置の摩擦部分のコーティング材、接着剤、粘着剤、シール材料、ソフトコンタクトレンズ用材料、タイヤ用材料、電気泳動用ゲル、生体適合性材料、湿布材料、塗布材料又は創傷被覆材等の体外に用いる医療用材料、ドラッグデリバリーシステム、写真用感光材料、種々の塗料及び上記コーティング材料を含むコーティング材料の構成成分等、分離機能膜、水膨潤ゴム、止水テープ、吸湿ゲル化剤、建築物用耐火被覆材、放熱材料、廃泥ゲル化剤、クロマトグラフィー担体用材料、バイオリアクター担体用材料、燃料電池又は電解質等の種々の電池材料等として有用である。
 日本特許出願2012-082227号の開示はその全体を本明細書に援用する。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (12)

  1.  環状分子、環状分子に串刺し状に包接される直鎖状分子、及び直鎖状分子から環状分子が脱離しないように直鎖状分子の両末端に配置されるブロック基を有するポリロタキサンの製造方法であって、
     溶媒の非存在下又は非プロトン性アミド系溶媒及び芳香族炭化水素からなる群より選択される少なくとも1種の有機溶媒中、環状分子に包接され、両末端にカルボキシル基を有する直鎖状分子と、アミノ基を含むブロック化剤とを、当該直鎖状分子のカルボキシル基1モルに対して、2.0モル~100モルのトリアジン系アミド化剤の存在下で反応させて、ブロック基を形成することを含む、ポリロタキサンの製造方法。
  2.  トリアジン系アミド化剤が、式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     R及びRは、それぞれ独立して、炭素原子数1~4のアルキル基又は炭素原子数6~8のアリール基であり、
     R、R及びRのいずれか1つは、炭素原子数1~4のアルキル基であり、他の2つは、それらが結合する窒素原子と一緒になって、5~6員環を形成しており、
    Xは、ハロゲン原子である)
    で示される化合物である、請求項1記載の製造方法。
  3.  トリアジン系アミド化剤が、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム・クロリド(DMT-MM)である、請求項2記載の製造方法。
  4.  両末端にカルボキシル基を有する直鎖状分子が、分子の両末端がカルボキシル基であるポリアルキレングリコール類である、請求項1~3のいずれか1項記載の製造方法。
  5.  環状分子が、シクロデキストリンである、請求項1~4のいずれか1項記載の製造方法。
  6.  アミノ基を含むブロック化剤が、アダマンチルアミン又はその塩酸塩である、請求項1~5のいずれか1項記載の製造方法。
  7.  両末端にカルボキシル基を有する直鎖状分子のカルボキシル基1モルに対して、トリアジン系アミド化剤が3.8モル~80モル用いられる、請求項1~6のいずれか1項記載の製造方法。
  8.  両末端にカルボキシル基を有する直鎖状分子のカルボキシル基1モルに対して、アミノ基を含むブロック化剤が1.4モル~40モル用いられる、請求項1~7のいずれか1項記載の製造方法。
  9.  反応を、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、及びトルエンからなる群より選択される少なくとも1種の有機溶媒中で行なう、請求項1~8のいずれか1項記載の製造方法。
  10.  反応を、有機塩基の存在下で行う、請求項1~9のいずれか1項記載の製造方法。
  11.  反応を、5~60℃の反応温度で行う、請求項1~10のいずれか1項記載の製造方法。
  12.  反応を、反応開始時の反応混合物の水分量が5質量%以下の条件下で行う、請求項1~請求項11のいずれか1項記載の製造方法。
PCT/JP2013/059910 2012-03-30 2013-04-01 ブロック基を有するポリロタキサンの製造方法 WO2013147301A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13769114.3A EP2832766A4 (en) 2012-03-30 2013-04-01 PROCESS FOR PREPARING POLYROTAXAN WITH BLOCKING GROUPS
US14/389,498 US20150051390A1 (en) 2012-03-30 2013-04-01 Blocked polyrotaxane production method
CN201380017520.7A CN104204035B (zh) 2012-03-30 2013-04-01 具有封端基团的聚轮烷的制造方法
KR1020147029759A KR20150005557A (ko) 2012-03-30 2013-04-01 블록기를 갖는 폴리로탁산의 제조 방법
JP2014508255A JP6013459B2 (ja) 2012-03-30 2013-04-01 ブロック基を有するポリロタキサンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012082227 2012-03-30
JP2012-082227 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147301A1 true WO2013147301A1 (ja) 2013-10-03

Family

ID=49260533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059910 WO2013147301A1 (ja) 2012-03-30 2013-04-01 ブロック基を有するポリロタキサンの製造方法

Country Status (6)

Country Link
US (1) US20150051390A1 (ja)
EP (1) EP2832766A4 (ja)
JP (1) JP6013459B2 (ja)
KR (1) KR20150005557A (ja)
CN (1) CN104204035B (ja)
WO (1) WO2013147301A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045921A1 (ja) * 2012-09-19 2014-03-27 住友精化株式会社 ポリロタキサンの製造方法
WO2016072396A1 (ja) * 2014-11-04 2016-05-12 国立大学法人 東京医科歯科大学 骨形成因子安定保持剤、骨形成因子活性化剤、骨形成因子の安定保持方法、骨形成因子の活性化方法、医薬組成物、複合体の使用、及び骨の再生方法
WO2018225704A1 (ja) 2017-06-06 2018-12-13 アドバンスト・ソフトマテリアルズ株式会社 環状分子にポリアルキレンオキシド鎖又はその誘導体を有する置換基を有するポリロタキサン及びその製造方法
WO2021230268A1 (ja) 2020-05-13 2021-11-18 株式会社Asm 環状分子にプロピレンオキシ繰り返し単位を有して形成される鎖を有する基を有するポリロタキサン

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014347606B2 (en) * 2013-11-11 2018-02-15 Tokuyama Corporation Photochromic composition
EP3687548A4 (en) 2017-09-29 2021-05-26 The Regents of the University of California MULTI-ARMED POLYROTAXANE PLATFORM FOR PROTECTED NUCLEIC ACID DELIVERY
CN112105676B (zh) * 2018-05-17 2023-08-29 株式会社德山 低含水量聚轮烷单体和含有该单体的固化性组合物
US11230497B2 (en) * 2019-04-10 2022-01-25 Saudi Arabian Oil Company Cement additives
CN111154015A (zh) * 2020-01-03 2020-05-15 河南大学 卟啉封端的纳米级荧光聚轮烷及其制备方法和应用
US11858039B2 (en) 2022-01-13 2024-01-02 Saudi Arabian Oil Company Direct ink printing of multi-material composite structures

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154675A (ja) * 2003-11-28 2005-06-16 Kozo Ito ポリロタキサン及びその製造方法
WO2005080469A1 (ja) * 2004-01-08 2005-09-01 The University Of Tokyo 架橋ポリロタキサンを有する化合物及びその製造方法
WO2005095493A1 (ja) 2004-03-31 2005-10-13 The University Of Tokyo ポリロタキサンを有するポリマー材料、並びにその製造方法
WO2009041666A1 (ja) * 2007-09-28 2009-04-02 Nanodex Inc. 葉酸修飾されたシクロデキストリン化合物、その製造方法、標的指向性薬物送達システム用の薬物送達剤、医薬組成物及び造影剤
JP2010174105A (ja) * 2009-01-28 2010-08-12 Fukuoka Univ 多機能性シクロデキストリン誘導体、その包接化合物およびそれらの製造方法。
JP2012082227A (ja) 2003-03-28 2012-04-26 Threshold Pharmaceuticals Inc 癌を処置するための組成物および方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082227A (ja) 2003-03-28 2012-04-26 Threshold Pharmaceuticals Inc 癌を処置するための組成物および方法
JP2005154675A (ja) * 2003-11-28 2005-06-16 Kozo Ito ポリロタキサン及びその製造方法
WO2005080469A1 (ja) * 2004-01-08 2005-09-01 The University Of Tokyo 架橋ポリロタキサンを有する化合物及びその製造方法
WO2005095493A1 (ja) 2004-03-31 2005-10-13 The University Of Tokyo ポリロタキサンを有するポリマー材料、並びにその製造方法
WO2009041666A1 (ja) * 2007-09-28 2009-04-02 Nanodex Inc. 葉酸修飾されたシクロデキストリン化合物、その製造方法、標的指向性薬物送達システム用の薬物送達剤、医薬組成物及び造影剤
JP2010174105A (ja) * 2009-01-28 2010-08-12 Fukuoka Univ 多機能性シクロデキストリン誘導体、その包接化合物およびそれらの製造方法。

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAWSON R.E. ET AL.: "Synthesis of a-cyclodextrin [2]-rotaxanes using chlorotriazine capping reagents", ORGANIC AND BIOMOLECULAR CHEMISTRY, vol. 6, 2008, pages 1814 - 1821, XP055170377 *
MACROMOLECULES, vol. 26, 1993, pages 5698 - 5703
See also references of EP2832766A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045921A1 (ja) * 2012-09-19 2014-03-27 住友精化株式会社 ポリロタキサンの製造方法
JP5604610B2 (ja) * 2012-09-19 2014-10-08 住友精化株式会社 ポリロタキサンの製造方法
KR20150058290A (ko) * 2012-09-19 2015-05-28 스미또모 세이까 가부시키가이샤 폴리로탁산의 제조 방법
US9487630B2 (en) 2012-09-19 2016-11-08 Sumitomo Seika Chemicals Co., Ltd. Method for manufacturing polyrotaxane
KR102049137B1 (ko) 2012-09-19 2020-01-08 스미또모 세이까 가부시키가이샤 폴리로탁산의 제조 방법
WO2016072396A1 (ja) * 2014-11-04 2016-05-12 国立大学法人 東京医科歯科大学 骨形成因子安定保持剤、骨形成因子活性化剤、骨形成因子の安定保持方法、骨形成因子の活性化方法、医薬組成物、複合体の使用、及び骨の再生方法
WO2018225704A1 (ja) 2017-06-06 2018-12-13 アドバンスト・ソフトマテリアルズ株式会社 環状分子にポリアルキレンオキシド鎖又はその誘導体を有する置換基を有するポリロタキサン及びその製造方法
WO2021230268A1 (ja) 2020-05-13 2021-11-18 株式会社Asm 環状分子にプロピレンオキシ繰り返し単位を有して形成される鎖を有する基を有するポリロタキサン

Also Published As

Publication number Publication date
JPWO2013147301A1 (ja) 2015-12-14
KR20150005557A (ko) 2015-01-14
EP2832766A1 (en) 2015-02-04
US20150051390A1 (en) 2015-02-19
CN104204035B (zh) 2017-05-24
JP6013459B2 (ja) 2016-10-25
EP2832766A4 (en) 2015-12-02
CN104204035A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
JP6013459B2 (ja) ブロック基を有するポリロタキサンの製造方法
Cai et al. Preparation of stimuli-responsive hydrogel networks with threaded β-cyclodextrin end-capped chains via combination of controlled radical polymerization and click chemistry
Tirino et al. Synthesis of chitosan–PEO hydrogels via mesylation and regioselective Cu (I)-catalyzed cycloaddition
Pereira et al. Towards hydroxamic acid linked zirconium metal–organic frameworks
Hashidzume et al. Copper-catalyzed azide-alkyne cycloaddition oligomerization of 3-azido-1-propyne derivatives
JP6196964B2 (ja) ヒドロキシアルキル化ポリロタキサンの製造方法
Shen et al. Synthesis and hydrogelation of star-shaped poly (L-lysine) polypeptides modified with different functional groups
WO2005068417A1 (ja) 新規なトリフェニルメタン誘導体、それを含有する有機ゲル化剤、有機ゲルおよび有機ファイバー
JP2018034111A (ja) 金属吸着剤
JP4836144B2 (ja) イオン性有機化合物及びその製法、並びに該イオン性有機化合物からなるハイドロゲル化剤及びハイドロゲル
JP6286439B2 (ja) 環状分子が重合鎖を有するポリロタキサン及びその製造方法
CN108623711B (zh) 阿魏酸-环糊精共价偶联化合物及其制备方法和应用
An et al. Self-healable hydrogels with NaHCO 3 degradability and a reversible gel–sol–gel transition from phenolic ester containing polymers
JP2017222809A (ja) 機能性超分子化合物
WO2011154977A1 (en) 'process for the preparation of colesevelam hydrochloride"
JP2012025923A (ja) ポリロタキサンの合成方法及び新規ポリロタキサン
JP7200517B2 (ja) ポリカルボン酸誘導体の製造方法
JP4873570B2 (ja) ポリ[2]カテナン化合物およびその単量体、ならびにそれらの製造方法
WO2022209020A1 (ja) ポリロタキサン及び架橋ポリロタキサン
JP3690019B2 (ja) 芳香族ポリスルホン重合体およびその製造方法
CN115926018B (zh) 一种壳聚糖基二醛六亚甲基异氰酸酯荧光水凝胶膜及其制备方法和应用
JPH03221504A (ja) シクロデキストリンポリマーの合成方法及びシクロデキストリン膜の製造方法
WO2024014395A1 (ja) ロタキサン化合物
CN115340581B (zh) 邻苯酚亚硫亚胺类on-DNA化合物的合成方法及其应用
JP2023164200A (ja) ポリロタキサン及び架橋ポリロタキサン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14389498

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147029759

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013769114

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013769114

Country of ref document: EP