WO2013146712A1 - 急硬性セメント - Google Patents

急硬性セメント Download PDF

Info

Publication number
WO2013146712A1
WO2013146712A1 PCT/JP2013/058644 JP2013058644W WO2013146712A1 WO 2013146712 A1 WO2013146712 A1 WO 2013146712A1 JP 2013058644 W JP2013058644 W JP 2013058644W WO 2013146712 A1 WO2013146712 A1 WO 2013146712A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
hardening
rapid
time
mortar
Prior art date
Application number
PCT/JP2013/058644
Other languages
English (en)
French (fr)
Inventor
朝明 西岡
泰一郎 森
章 七澤
亮悦 吉野
岩波 和英
山本 賢司
敏夫 川内
白井 健太郎
雅夫 松本
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2014507880A priority Critical patent/JP6129157B2/ja
Priority to ES13769484.0T priority patent/ES2627999T3/es
Priority to CN201380016644.3A priority patent/CN104203866B/zh
Priority to EP13769484.0A priority patent/EP2832706B1/en
Publication of WO2013146712A1 publication Critical patent/WO2013146712A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1033Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00086Mixtures with prolonged pot-life
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/76Use at unusual temperatures, e.g. sub-zero
    • C04B2111/766Low temperatures, but above zero

Definitions

  • the present invention relates to a rapid hardening cement.
  • the quick-hardening cement is made by adding a quick-hardening material such as calcium aluminate to the cement, and is characterized in that it can exhibit high strength in a very short time compared to ordinary Portland cement. For this reason, rapid-hardening cement has been put to practical use as paste, mortar, and concrete, for example, as a repair material, a spraying material for tunnels, and an early mold release material for concrete secondary products.
  • a quick-hardening material such as calcium aluminate
  • Examples of the quick-hardening cement include spraying materials made of a quick setting aid in which alkanolamine is added to calcium aluminate, calcium sulfoaluminate, or calcium aluminosilicate (Japanese Patent No.
  • the quick setting cement is kneaded with water using an aggregate or the like and placed. For this reason, it is necessary to maintain fluidity for a certain time required for kneading and placing.
  • the setting and hardening time for gelation is short, and the setting time, particularly at a low temperature of about 0 to 10 ° C., is sufficient. In some cases, it could not be secured.
  • Patent Document 3 a method for ensuring fluidity by adding a coagulation regulator such as oxycarboxylic acid such as citric acid or a salt thereof, Patent Document 6, Patent Document 7
  • a method of modifying cement with water is also known, but there is still room for improvement from the viewpoint of extending the setting and hardening time.
  • an object of the present invention is to search for an effective method for prolonging the setting and hardening time in a low-temperature environment, and to provide a quick-setting cement having an extended setting and hardening time.
  • this invention makes it another subject to provide the preparation method of such a quick-hardening cement.
  • the present inventor has intensively studied to solve the above problems, and after modifying the cement with a polycarboxylic acid-based water reducing agent in advance, mixing with a rapid hardening material ensures a long gelation time and a setting and hardening time. At the same time, it has been found that it is possible to prepare a quick-hardening cement having a short-time strength. Usually, the modification of cement with water ensures the setting and hardening time but does not ensure the strength. Moreover, it is not possible to ensure sufficient coagulation hardening time and short-time strength only by adding a polycarboxylic acid-based water reducing agent.
  • the present invention completed based on the above knowledge is (A) a cement that has been surface-modified in advance with a polycarboxylic acid-based water reducing agent as a modifying agent, and (B) a rapid hardening material comprising calcium aluminate and gypsum. And (C) a quick-hardening cement containing a setting modifier.
  • the addition amount of the modifier is 0.1 to 1.0% by mass with respect to the cement before the modification.
  • the quick-hardening material is 5 to 30% by weight in the total weight of the modified cement and the quick-hardening material
  • (C) setting The adjusting agent is 0.01 to 5% by mass with respect to the total mass of the modified cement and the hardened material.
  • the absorption peak intensity around 3600 cm ⁇ 1 indicating OH groups and hydrates after 0.1 minute from the start of water injection is expressed as “I 3600 cm ⁇ 1 ( 0.13 ) ”, and the absorption peak intensity around 3600 cm ⁇ 1 indicating the OH group and hydrate at the time of curing is“ I 3600 cm ⁇ 1 (cured) ”, I 3600 cm ⁇ 1 (0.1 Min) / I 3600 cm @ -1 (curing) ⁇ 0.2 .
  • the present invention is a cement paste, cement mortar, or cement concrete using the rapid hardening cement according to the present invention.
  • the gelation time at 1 ° C. increase at 5 ° C. is 10 minutes or more.
  • the curing time at 5 ° C. is 20 minutes or more.
  • the present invention is a cured product of the cement paste, cement mortar, or cement concrete according to the present invention.
  • the present invention is a method for using cement paste, cement mortar, or cement concrete, which comprises placing the cement paste, cement mortar, or cement concrete according to the present invention in a temperature environment of 1 to 10 ° C. .
  • the surface 1 of the cement is modified with a polycarboxylic acid-based water reducing agent as a modifier, and the surface-modified cement is rapidly hardened with calcium aluminate and gypsum. It is a manufacturing method of a rapid hardening cement including the process 2 which mixes, and the process 3 which adds a setting regulator at arbitrary time points.
  • the rapid hardening cement according to the present invention has a long setting and hardening time for gelation and hardening, a sufficient working time can be secured at the time of placing.
  • the quick-hardening cement according to the present invention contains cement as a base component. There are no particular restrictions on the cement, but ordinary cement, early-strength cement, ultra-early-strength cement, moderately hot cement, sulfate-resistant cement, low-heat cement, oil well cement and other Portland cement, and blast furnace cement, fly ash cement, and silica Any of mixed cement such as cement and eco-cement can be used.
  • the content of the modified cement in the quick-setting cement is not particularly limited, but is typically 70 to 95% by mass with respect to the total mass of the modified cement and the quick-hardening material. More typically 75-95% by weight.
  • the cement before the cement is mixed with the rapid hardening material, the cement is treated in advance by using a polycarboxylic acid-based (typically polycarboxylic acid-based polymer compound-based) water reducing agent as a modifier.
  • a polycarboxylic acid-based water reducing agent is adsorbed on the surface of cement particles, thereby exerting an effect of prolonging the setting and hardening time. Even if the polycarboxylic acid water reducing agent is added after the cement is mixed with the rapid hardening material or at the same time when the cement is mixed with the rapid hardening material, a sufficient effect cannot be obtained.
  • water reducing agents include lignin (typically lignin sulfonate), melamine (typically melamine sulfonate), and naphthalene (typically naphthalene sulfonate).
  • lignin typically lignin sulfonate
  • melamine typically melamine sulfonate
  • naphthalene typically naphthalene sulfonate
  • a polycarboxylic acid-based water reducing agent is generally a chemical admixture called a high performance AE water reducing agent or a high performance water reducing agent, and a carboxyl group or a hydrogen atom at its terminal is converted to a metal in the chemical structural formula.
  • a comb-type graft copolymer having a substituted group and having a polyoxyethylene chain in the side chain is used as a molecular skeleton, and the copolymer serves as a polycarboxylic acid-based water reducing agent component.
  • Polycarboxylic acid water reducing agents can be classified into two types: olefin-maleate copolymer systems and acrylate-acrylate esters.
  • This system includes compounds generally referred to as polycarboxylic acid ether-based, polyether carboxylic acid-based, carboxyl group (—COOH) and sulfonic acid group (—SO 3 H) -containing multi-component polymers.
  • the polycarboxylic acid-based water reducing agent includes a (meth) acrylic acid-based copolymer having a polyalkylene glycol chain and a maleic acid-based copolymer having a polyalkylene glycol chain, which are used alone. Alternatively, two or more kinds may be mixed and used.
  • the polymer pendant-type chain has a plurality of oxyalkylene or carboxyl groups, and the oxyalkylene group is the main component of the polymer, P
  • (EO) acrylic acid include polyoxyethyleneoxypropylene glycol obtained by grafting acrylic acid.
  • maleic acid-based copolymers having a polyalkylene glycol chain examples include methyl polyethylene glycol vinyl ether-maleic anhydride copolymer, polyethylene glycol allyl ether-maleic anhydride copolymer, methyl polyethylene glycol allyl ether-maleic anhydride copolymer. And a methyl methacrylate polyethylene glycol-maleic acid copolymer.
  • Examples of commercially available polycarboxylic acid-based water reducing agents are “Darlex Super 100, 200, 300, 1000N” series (Grace Chemicals Co., Ltd.), “Reobuild SP-8” of polycarboxylic acid polymer compounds. Series (BASF Pozzolith Co., Ltd.) and the like.
  • the polycarboxylic acid-based water reducing agent is preferably about 10 to 40% by mass of the polycarboxylic acid-based water reducing agent (in terms of solid content) and about 60 to 90% by mass of water. Thereby, since the viscosity is low, spraying is possible so as not to solidify at the tip of the nozzle during spraying.
  • the modification method is not particularly limited as long as the modifier can be adsorbed on the surface of the cement, but in the form of an aqueous solution so that it is uniformly dispersed when added to the cement, it is sprayed onto the cement. Is preferably added to the cement, and more preferably gasified by heating and sprayed. Thereafter, it is preferable to perform kneading so that the modifier spreads throughout the cement.
  • the spray nozzle used for spraying any spray nozzle generally used in applications such as coating, humidity adjustment, and humidification can be used.
  • the method of reforming the cement by increasing the pressure of the liquid or air and making it as fine as possible from the nozzle, the method of gasifying the modifier and mixing and adsorbing with a fluidized bed, etc. are effective. It is. Further, it is possible to modify the cement by spraying it from a spray nozzle while continuing the mixing and grinding with a ball mill or the like.
  • the particle size of the modifying agent to be granulated is about 10 to 200 ⁇ m in the spray nozzle, and is considered to be several ⁇ m when it is formed into droplets in the mixed adsorption operation. In mixed grinding such as a ball mill, the particle size is the same order as the particle size. It is about 1 to 100 ⁇ m.
  • the content of water in the modifier is preferably about 60% by mass or more, and a polycarboxylic acid exhibiting a reforming function
  • the amount of the water reducing agent (in terms of solid content) is preferably about 90% by mass or less so as not to be extremely reduced.
  • the modifier often contains water. For this reason, excessive addition increases the relative humidity of the atmosphere such as air around the cement during the spraying operation, causing condensation in the mixing or transporting equipment, water adsorbing on the cement surface, and the strength development performance of the cement Inhibits.
  • the modifier should be added in an amount of 0.1% by mass or more with respect to the cement before the modification. Preferably, 0.2% by mass or more is added.
  • the modifier is chemically adsorbed on the cement surface, and the adsorption time is fast in seconds. For this reason, a mixed reforming time of several seconds to 60 seconds is sufficient. It is not desorbed by physical operation other than evaporation. For this reason, in the reforming operation, when the cement is received from the lorry vehicle by pneumatic transportation into the raw material tank, the modifying agent is sprayed from the spray nozzle when the raw material is fed in the transport duct, or mixed and pulverized by a ball mill or the like. It is possible to spray the modifier from the spray nozzle during the operation. After the modification, the modifier is chemically and strongly adsorbed on the surface of the cement particles, so that the cement can be subsequently subjected to physical unit operations such as a mixing operation with the rapid hardening material.
  • Rapid hardwood> (1) Calcium aluminate Calcium aluminate is a component generally used as a rapid hardening material, and is indispensable for exhibiting rapid hardening. Usually, it is a mineral obtained by synthesizing a CaO raw material, an Al 2 O 3 raw material, and optionally a SiO 2 raw material, etc. at 1,200 to 1,700 ° C. in an electric furnace or kiln and gradually cooling or quenching. As an exemplary composition, CaO is 35 to 50% by mass, Al 2 O 3 is 40 to 55% by mass, and SiO 2 is 1 to 15% by mass.
  • Calcium aluminate can be in either crystalline or glassy form, but is preferably glassy obtained by quenching the melt with an electric furnace or the like.
  • the fineness of calcium aluminate is preferably 3,000 to 9,000 cm 2 / g in terms of Blaine specific surface area (hereinafter referred to as Blaine value).
  • Gypsum Gypsum is also an important component as a quick-hardening material and, together with the hydration of calcium aluminate, acts to form the quick-hardening hydrate Ettringite, which is indispensable for the quick-hardening cement according to the present invention. . If the gypsum content is too high, abnormal expansion will occur after curing, while if it is too low, the rapid hardening performance will be insufficient. Therefore, the content is preferably 2 to 30% by mass in the rapid setting cement, and 5 to 25% by mass. Is more preferable.
  • the gypsum may be any of anhydrous gypsum, dihydrate gypsum, and hemihydrate gypsum.
  • the fineness of gypsum is preferably 3,000 to 9,000 cm 2 / g in terms of Blaine value.
  • the rapid hardening material (calcium aluminate and gypsum) is 5 to 30% by mass in the total mass of the modified cement and the rapid hardening material, and more preferably 5 to 25 parts by mass in total. If the total of calcium aluminate and gypsum is less than 5% by mass, it is difficult to exhibit rapid hardening performance in which the compressive strength for 3 hours in mortar / concrete is 20 MPa or more, and even if the added amount exceeds 30 parts by mass, The rapid hardening performance, which is a 3 hour compressive strength, does not increase, and tends to cause abnormal expansion after curing.
  • Setting agent> In the present invention, it is essential to add a coagulation adjusting agent such as carbonate and oxycarboxylic acid.
  • the carbonate include potassium carbonate, sodium carbonate, lithium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like.
  • oxycarboxylic acids include oxycarboxylic acids such as citric acid, tartaric acid, gluconic acid, malic acid, acetic acid, adipic acid, and succinic acid, and salts thereof.
  • Examples of the oxycarboxylate include sodium, potassium, calcium, magnesium, ammonium, and aluminum salts of the above acids, and examples include sodium citrate and sodium gluconate.
  • the setting modifier can be used alone or in combination of two or more.
  • the addition amount of the setting modifier is preferably 0.01 to 5% by mass, more preferably 0.05 to 2% with respect to the total mass of the modified cement and the rapid hardening material (calcium aluminate + gypsum). Add mass%. If the setting modifier is less than 0.01% by mass, sufficient gelation time cannot be secured. Even if the addition amount exceeds 5% by mass, the gelation time may be shortened. It is difficult to stably secure a time, for example, a gelation time of 10 minutes or more.
  • the setting modifier can be added to the cement and / or the hardened material at any time.
  • gelation time is defined as one of the indexes for evaluating the setting and hardening characteristics of rapid-hardening cement.
  • the amount is not particularly limited as long as the total of the quick-hardening cement, sand and water satisfies the condition of 460 g.
  • the setting modifier is 10 g
  • the time required to increase by 1 ° C. is referred to as “1 ° C.
  • the setting time is defined as one of the indexes for evaluating the setting and hardening characteristics of the rapid setting cement.
  • the setting time is determined by measuring the relationship between the time after the start of water injection and the temperature rise when adding 60 g of water to 400 g of the rapid hardening cement mortar, and until the temperature of the kneaded cement mortar rises by 5 ° C. due to heat generated by hardening. It's time.
  • FIG. 1 and FIG. 2 show an example of the relationship between the elapsed time after the start of water pouring and the temperature rise when water is added to the rapid-hardening cement mortar according to the present invention and hardened under the condition of 5 ° C.
  • Rapid hardened cement mortar loses its fluidity with increasing temperature due to gelation and hardening.
  • the viscosity of the rapid-hardening cement mortar is increased, and when it is cured, the rapid-hardening mortar is cured and the strength is rapidly increased.
  • the strength of the mortar hardened body exceeds 20 Mpa, which is put to practical use as a civil engineering structure.
  • the viscosity is about 800 cps immediately after kneading of the rapid hardening cement mortar, but with the gelation, the viscosity of the rapid hardening cement mortar exceeds 10,000 cps, kneading with a mixer, injection of the rapid hardening mortar, It is difficult to secure operations such as placing and compacting.
  • the viscosity of the quick-hardening cement mortar after kneading is the J-rote non-shrink mortar quality control test method (Japan Highway Public Corporation Standard JHS 312), and the funnel is KC-57 J ), Mortar flow shown in JIS R5210, rotational viscosity measurement method according to JIS Z8803 “liquid viscosity-measurement method”, and the like.
  • rapid-setting cement mortar hardens after the curing time has elapsed, and records about 1 N / mm 2 by the Procter penetration resistance test method (JIS A 6204 Annex I).
  • the gelation time and setting time are too short, construct a structure with cement concrete, etc. with the addition of aggregate (sand, gravel, etc.) to rapid hardening cement paste, or repair work with cement mortar with addition of sand, etc. It becomes impossible to ensure the work time generally performed. It is desirable that the gelation time and the curing time at 5 ° C. be sufficiently long in order to practically perform mass placement with mortar, concrete, etc. using a concrete pump or the like at a construction site in the cold season.
  • the gelation time for increasing the temperature by 1 ° C. or 2 ° C. in an environment at 5 ° C. is 10 minutes or more. It can be 20 minutes.
  • the setting time at 5 ° C. is 20 minutes or more, preferably 25 minutes or more, for example, 25 to 80 minutes. Can do.
  • the compressive strength at 5 ° C. for 3 hours is ensured to be 20 MPa or more, and typically 20 to 30 MPa is ensured. If it is less than 20 MPa, the strength is insufficient and the practical strength for civil engineering and building applications is not reached.
  • the 3-hour compressive strength is a value obtained by measuring the compressive strength of cement mortar after elapse of 3 hours from the start of water injection according to the “cement physical test method” of JIS R5201.
  • Absorption spectrum by diffuse reflection FT-IR of rapid hardening cement is, 3600cm -1, 1400cm -1, indicating a high peak value at 1100 cm -1.
  • the peak values at 1400 cm ⁇ 1 and 1100 cm ⁇ 1 are almost constant from immediately after the paste is poured to hardening, and this peak is a peak peculiar to the rapid-hardening cement constituent material.
  • the peak near 3600 cm ⁇ 1 indicates the surface OH groups and hydrates.
  • the intensity of the peak around 3600 cm ⁇ 1 gradually increases with the progress of the hydration reaction after the start of water injection.
  • the increase in the absorption peak intensity is slow based on the absorption peak intensity around 3600 cm ⁇ 1 when the curing time has elapsed. For example, I 3600 cm-1 at a short time after the start of water injection is low, and the hydration reaction hardly proceeds.
  • the absorption peak intensity around 3600 cm ⁇ 1 indicating OH groups and hydrates after 0.1 minute from the start of water injection is expressed as “I 3600 cm ⁇ 1 (0 .1 minute) ”, and the absorption peak intensity around 3600 cm ⁇ 1 indicating the OH group and hydrate at the time of curing is“ I 3600 cm ⁇ 1 (cured) ”, I 3600 cm ⁇ 1 (0.1 minute) ) / I 3600 cm -1 (curing) ⁇ 0.2, typically 0.01 ⁇ I 3600 cm ⁇ 1 (0.1 min) / I 3600 cm ⁇ 1 (curing) ⁇ 0.1.
  • the absorption peak intensity around 3600 cm ⁇ 1 indicating OH groups and hydrates after 17 minutes from the start of water injection is expressed as “I 3600 cm ⁇ 1 (17 minutes). ”
  • the absorption peak intensity around 3600 cm ⁇ 1 indicating the OH group and hydrate at the time of curing is“ I 3600 cm ⁇ 1 (cured) ”, I 3600 cm ⁇ 1 (17 minutes) / I 3600 cm ⁇ 1 (Hardening) ⁇ 0.6, typically 0.3 ⁇ I 3600 cm ⁇ 1 (17 minutes) / I 3600 cm ⁇ 1 (hardening) ⁇ 0.5.
  • the quick-hardening cement according to the present invention has high workability and workability because the setting and hardening time is long. For this reason, for example, a grader, a bulldozer, a finisher or the like can be used to spread and further high strength can be obtained at an early stage by compacting and rolling with a hammer, a tire roller, a vibration roller, or the like.
  • the rapid-hardening cement according to the present invention is particularly excellent in workability and workability in a low-temperature environment, and can be suitably used for placing in a temperature environment of 1 to 10 ° C., for example.
  • the hardened cement paste according to the present invention is a hardened mortar or concrete, for example, in tunnels such as roads, railways, water conduits, etc. It can be used sometimes.
  • the quick-hardening cement according to the present invention can be manufactured by modifying the cement in advance by the above-described method and then mixing the quick-hardening material.
  • the order of addition of other components is not particularly limited. Then, by adding water to the rapid-hardening cement and kneading the raw materials with a general mixer, preferably a forced kneading mixer, a quick-hardening cement paste can be produced. If the amount of water added is too large, material separation occurs, but if it is too small, fluidity cannot be obtained. Therefore, 10 to 50 parts by mass with respect to 100 parts by mass of the rapid hardening cement (excluding sand and gravel). The amount is preferably 15 to 45 parts by mass, and typically 20 to 40 parts by mass.
  • Example 1 Ordinary Portland cement (cement No. 1) manufactured by Aoki Factory of Electrochemical Industry Co., Ltd. was prepared.
  • cement no. 1 shows the amount of each substance in cement by Rietveld method and the result of chemical analysis by JIS R5202. Specifically, in the Rietveld method, “SIROQUANT Version 2.5” (manufactured by Sietronics) was used to quantify the amount of substance from the diffraction intensity by powder X-ray diffraction.
  • Table 3 also shows cement No. 1 shows density and brane value measured by JIS R5201 “Physical Test Method for Cement”.
  • Cement No. 1 was modified according to the experiment number using various modifiers such as a polycarboxylic acid-based water reducing agent, water, and a coagulation regulator described in Table 5.
  • the modification method is cement no. While 1 was rotated at a peripheral speed of 60 m / s with a rocking plate type mixer (Chiyoda Giken Kogyo Co., Ltd .: Omnimixer), the modifier was added by spraying and the rotation was continued for 1 minute. Details of the modifiers listed in Table 5 are as follows.
  • ⁇ Polycarboxylic acid-based water reducing agent aqueous solution of “Darlex Super 1000N (trade name)” manufactured by Grace Chemicals Co., Ltd.
  • ⁇ -NS Naphthalene-based water reducing agent
  • FT-500V trade name
  • -Setting controller An aqueous solution of a 50:50 [mass ratio] mixture of potassium carbonate (Asahi Glass Co., Ltd.) and purified citric acid (manufactured by Fuso Chemical Industry Co., Ltd.) (water content is 67 mass%)
  • ⁇ Curing characteristics> With respect to 400 g of rapid-hardening cement mortar, the relationship between the time after water pouring and the temperature rise was measured, and the setting and hardening characteristics were measured.
  • Table 5 1 ° C. rise gelation time, 2 ° C. rise gelation time, curing time, 3 hours compressive strength are as defined above.
  • ⁇ T max indicates the maximum temperature rise after the start of water injection kneading. After the gelation time elapses, the viscosity of the mortar increases and the mortar exhibits a stiff state. After the curing time elapses, the mortar hardens and is about 1 N / mm 2 according to the Procter penetration resistance test method (JIS A 6204 Annex I). Was recorded.
  • the maximum temperature rise ⁇ T max and the 3-hour compressive strength have a correlation, and the higher the ⁇ T max is, the higher the 3-hour compressive strength is.
  • the rapid-hardening admixture was modified with water. Also in this case, both the 1 ° C. rising gel time and the 2 ° C. rising gel time were 10 minutes or longer, the 5 ° C. curing time was also 20 minutes or longer, and the 3-hour compressive strength was ensured to be 20 MPa or higher.
  • the specifications of the FT-IR apparatus are as follows. Manufacturer: Agilent Technologies FTS-175C Measurement method: diffuse reflection method Device conditions: resolution 8 cm, integration count 1024 times, Kubelka-Munk conversion, Background: Measured by heating KBr powder to 200 ° C. in a diffuse reflector and then cooling to 30 ° C. Operating environment: Vacuum, 30 ° C
  • the FT-IR spectrum at the setting and curing stage was I 3600 cm -1 (0.1 min) ⁇ I 3600 cm -1 (17 min) ⁇ 0.1 min, 17 min, 34 min, 78 min ⁇ I 3600cm-1 (34 minutes) ⁇ I3600cm-1 (78 minutes), showing an FT-IR spectrum of unhardened rapid hardening cement paste of 0.1 minutes, 17 minutes and 34 minutes, 78 minutes
  • I 3600 cm ⁇ 1 0.3 minutes after water injection is as low as 0.3, and hydration is particularly suppressed.
  • the rapid cement mortar surface In order to accurately indicate the hydration rate, it can be used to predict the setting and hardening time of a rapid hardening cement paste.
  • the gelation time of the rapid cement mortar is 10 minutes
  • the curing time can be predicted to be secured for 20 minutes or more.
  • Example 2 No. 11 Except for changing the timing of adding the modifier, Experiment No. A quick-hardening cement mortar was produced under the same conditions as in No. 1, and was cured by adding water. Specifically, unmodified cement No. 1 and the components (B) to (G) described above were mixed at the same time, and then a polycarboxylic acid-based water reducing agent and (H) water were added and kneaded. The setting and curing characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 7. Experiment No. In No. 11, as a result of adding 0.31% of the modifier at the same time as the water, the gelation time of 1 ° C. and the gelation time of 2 ° C. cannot be obtained for 10 minutes or more, and the curing time can be obtained for 20 minutes or more. ⁇ T max was as low as 38.5 ° C., and the compression strength for 3 hours was as low as 18 MPa.
  • Example 3 No. 12 Except for changing the timing of adding the modifier, Experiment No. A quick-hardening cement mortar was produced under the same conditions as in No. 1, and was cured by adding water. Specifically, unmodified cement No. 1 and the components (B) to (G) described above were mixed at the same time, and then a polycarboxylic acid-based water reducing agent and (H) water were added and kneaded. The setting and curing characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 7. Experiment No. In No. 12, as a result of adding 0.62% of the modifier at the same time as water, 10 ° C. or higher gelation time was not obtained for both 1 ° C. and 2 ° C. gelation time, and curing time was 20 minutes or more. ⁇ T max was as low as 38.1 ° C., and the compression strength for 3 hours was as low as 17 MPa.
  • Example 4 No. 13 Except for changing the timing of adding the modifier, Experiment No. A quick-hardening cement mortar was produced under the same conditions as in No. 1, and was cured by adding water. Specifically, with a polycarboxylic acid-based water reducing agent, cement no. 1 and the hardened material were simultaneously modified, and the components (D) to (H) described above were mixed and kneaded at the same time. The setting and curing characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 7. Experiment No. In No. 13, the gelation time increased by 1 ° C. and the gelation time increased by 2 ° C. were both 10 minutes or longer, but the curing time was not 20 minutes or longer. Moreover, (DELTA) Tmax was low at 35.5 degreeC, and the 3-hour compressive strength was also as low as 16 MPa.

Abstract

 低温環境下において長い凝結硬化時間が確保された急硬性セメントを提供する。(A)改質剤のポリカルボン酸系減水剤で予め表面改質されたセメント、(B)カルシウムアルミネート及び石膏からなる急硬材、並びに、(C)凝結調整剤を含有する急硬性セメント。

Description

急硬性セメント
 本発明は急硬性セメントに関する。
 急硬性セメントは、カルシウムアルミネート等の急硬材がセメントに添加されてできたものであり、通常のポルトランドセメントに比べて極めて短時間で高い強度を発現できることを特徴としている。このため、急硬性セメントはペースト、モルタル及びコンクリートとして、例えば補修材料、トンネル用吹付材料、コンクリート二次製品の早期脱型材料等として実用に供されてきた。
 急硬性セメントの例としては、カルシウムアルミネート、カルシウムサルホアルミネート、カルシウムアルミノシリケートにアルカノールアミンを加えた急結助剤からなる吹付け材料(特許第4746429号公報)、3CaO・3Al23・CaF2及び無機硫酸塩等を含有する超硬練りコンクリート(特開平2-180740号公報)、3CaO・SiO2固溶体と11CaO・7Al23・CaF2を含有するクリンカー、無水石膏、アルミノケイ酸カルシウムガラス、高炉水砕スラグ微粉末、高性能減水剤、凝結調整剤等を含有する超速硬セメント組成物(特開2007-320833号公報)、C12A7(12CaO・7Al23)系にFe23、CaF2を加えた急硬性クリンカー組成物(特開平9-268037号公報)、12CaO・7Al23を主成分としたクリンカー原料に、Fe23及びCaF2を添加した急硬性クリンカー組成物(特開平6-115986号公報)等が挙げられる。
 一方、セメントや急硬性セメントの凝結硬化調整技術としては、カルシウムアルミネートを主体とするセメントを水により調湿し、流動性を改善した組成物及び製造方法(特開平11-255542号公報)、ポリカルボン酸系分散剤を使用した低水セメント比のコンクリートにおいて、水溶性アルカリ量、半水石膏と二水石膏の合量調整に加えて、セメントに水を噴霧する事により付着水分量を有するセメント組成物による練混ぜ直後の流動性調整技術(特開2007-45647号公報)等があった。
特許第4746429号公報 特開平2-180740号公報 特開2007-320833号公報 特開平9-268037号公報 特開平6-115986号公報 特開平11-255542号公報 特開2007-45647号公報
 急硬性セメントは、骨材等を用い、水と混練し、打設する。このため、混練、打設に要する一定時間は流動性を保持することが必要である。この点に関して、従来の急硬性セメントにおいては、使用する原料セメントの種類によっては、ゲル化する凝結硬化時間が短く、打設時間、とりわけ0~10℃程度の低温時における打設時間を十分に確保できない場合があった。
 特許文献3に記載されているように、クエン酸等のオキシカルボン酸やその塩のような凝結調整剤を添加することで流動性を確保する方法、特許文献6、特許文献7に記載されているようにセメントを水で改質する方法も知られているが、凝結硬化時間を長期化する観点では未だ改善の余地がある。そこで、本発明は、低温環境下において凝結硬化時間を長期化するために有効な方法を探求し、長期化された凝結硬化時間をもつ急硬性セメントを提供することを課題の一つとする。また、本発明は、そのような急硬性セメントの調製方法を提供することを別の課題の一つとする。
 本発明者は上記課題を解決するために鋭意検討したところ、セメントをポリカルボン酸系減水剤により予め改質した後に、急硬材と混合する事によりゲル化時間が長く、凝結硬化時間が確保されると共に、短時間強度が確保された急硬性セメントを調製することが可能であることを見出した。通常、水によるセメントの改質は、凝結硬化時間は確保されるが、強度が確保されない。また、ポリカルボン酸系減水剤を添加しただけでは十分な凝結硬化時間及び短時間強度の両立は確保できない。
 上記の知見に基づいて完成した本発明は一側面において、(A)改質剤のポリカルボン酸系減水剤で予め表面改質されたセメント、(B)カルシウムアルミネート及び石膏からなる急硬材、並びに、(C)凝結調整剤を含有する急硬性セメントである。
 本発明に係る急硬性セメントの一実施形態においては、改質剤の添加量が、改質前のセメントに対して0.1~1.0質量%である。
 本発明に係る急硬性セメントの別の一実施形態においては、(B)急硬材は、改質されたセメントと急硬材の合計質量中の5~30質量%であり、(C)凝結調整剤は改質されたセメントと急硬材の合計質量に対して0.01~5質量%である。
 本発明に係る急硬性セメントの更に別の一実施形態においては、注水開始から0.1分経過時のOH基及び水和物を示す3600cm-1付近の吸収ピーク強度を“I3600cm-1(0.1分)”とし、硬化時間経過時のOH基及び水和物を示す3600cm-1付近の吸収ピーク強度を“I3600cm-1(硬化)”とすると、I3600cm-1(0.1分)/I3600cm-1(硬化)≦0.2である。
 本発明は別の一側面において、本発明に係る急硬性セメントを使用したセメントペースト、セメントモルタル又はセメントコンクリートである。
 本発明に係るセメントペースト、セメントモルタル又はセメントコンクリートの一実施形態においては、5℃での1℃上昇ゲル化時間が10分以上である。
 本発明に係るセメントペースト、セメントモルタル又はセメントコンクリートの別の一実施形態においては、5℃での硬化時間が20分以上である。
 本発明は更に別の一側面において、本発明に係るセメントペースト、セメントモルタル又はセメントコンクリートの硬化物である。
 本発明は更に別の一側面において、本発明に係るセメントペースト、セメントモルタル又はセメントコンクリートを1~10℃の温度環境で打設することを含むセメントペースト、セメントモルタル又はセメントコンクリートの使用方法である。
 本発明は更に別の一側面において、改質剤のポリカルボン酸系減水剤でセメントを表面改質する工程1と、表面改質された前記セメントをカルシウムアルミネート及び石膏からなる急硬材と混合する工程2と、任意の時点で凝結調整剤を添加する工程3とを含む急硬性セメントの製造方法である。
 本発明に係る急硬性セメントはゲル化、及び硬化に掛かる凝結硬化時間が長いので、打設時に十分な作業時間を確保することができる。
凝結硬化速度の正常な急硬性セメントペーストについての、凝結硬化時間とペースト温度の全体の関係を示す模式図である。 凝結硬化速度の正常な急硬性セメントペーストについての、凝結硬化時間とペースト温度の初期の関係を示す模式図である。
<1.セメント>
 本発明に係る急硬性セメントにおいてはベース成分としてセメントを含有する。セメントとしては特に制限はないが、普通セメント、早強セメント、超早強セメント、中庸熱セメント、耐硫酸塩セメント、低熱セメント、油井セメント等のポルトランドセメント、及び高炉セメント、フライアッシュセメント、及びシリカセメント等の混合セメント、エコセメント等いずれも使用が可能である。急硬性セメント中の改質されたセメントの含有量は、特に制限はないが、典型的には、改質されたセメントと急硬材の合計質量中に対して70~95質量%とすることができ、より典型的には75~95質量%とすることができる。
<2.改質剤>
 本発明では、セメントを急硬材と混合する前に、予めポリカルボン酸系(典型的にはポリカルボン酸系高分子化合物系)の減水剤を改質剤として使用してセメントを処理する。理論によって本発明が限定されることを意図するものではないが、ポリカルボン酸系減水剤がセメント粒子の表面に吸着することにより、凝結硬化時間の長期化効果が発揮されると考えられる。ポリカルボン酸系減水剤は、セメントを急硬材と混合した後、又はセメントを急硬材と混合するときに同時に、添加しても十分な効果が得られない。
 減水剤としてはその他にも、リグニン系(典型的にはリグニンスルホン酸塩系)、メラミン系(典型的にはメラミンスルホン酸塩系)、ナフタレン系(典型的にはナフタレンスルホン酸系)があるが、凝結硬化段階でのゲル化時間の長期化効果や3時間圧縮強度を確保する観点から、本発明においては改質剤中の減水剤としてポリカルボン酸系を使用することが必須である。リグニン系、メラミン系では、ゲル化時間の確保、3時間圧縮強度の確保が困難である。ナフタレン系では、ゲル化時間をある程度確保する事は可能であるが、3時間圧縮強度の確保が困難である。改質剤として、水のみを用いた場合は、ゲル化時間は確保されるが、3時間圧縮強度の確保が出来ない。
 ポリカルボン酸系減水剤は、コンクリートの分野において、一般に、高性能AE減水剤又は高性能減水剤などと呼ばれる化学混和剤のうち、化学構造式中にカルボキシル基又はその末端の水素原子が金属に置換された基を持ち、側鎖にポリオキシエチレン鎖などを持つ櫛型グラフト共重合体を分子骨格とするものであり、当該共重合体がポリカルボン酸系減水剤成分となる。ポリカルボン酸系減水剤を分類すると、オレフィン-マレイン酸塩系共重合体系とアクリル酸塩-アクリル酸エステル系の2種に分ける事が出来る。この系の中に、通常ポリカルボン酸エーテル系、ポリエーテルカルボン酸系、カルボキシル基(-COOH)及びスルホン酸基(-SO3H)含有多元ポリマーと呼称されている化合物が含まれる。更に、ポリカルボン酸系減水剤には、ポリアルキレングリコール鎖を有する(メタ)アクリル酸系共重合体及びポリアルキレングリコール鎖を有するマレイン酸系共重合体等が含まれ、これらは単独で用いてもよく2種以上を混合して用いてもよい。
 ポリアルキレングリコール鎖を有する(メタ)アクリル酸系共重合体としては、ポリマーのペンダント型鎖が複数のオキシアルキレン又はカルボキシル基を有していてオキシアルキレン基がポリマーの主要構成要素となるもの、P(EO)アクリル酸としてポリオキシエチレンオキシプロピレングリコールにアクリル酸をグラフト化させたもの等、が挙げられる。
 ポリアルキレングリコール鎖を有するマレイン酸系共重合体としては、メチルポリエチレングリコールビニルエーテル-無水マレイン酸共重合体、ポリエチレングリコールアリルエーテル-無水マレイン酸共重合体、メチルポリエチレングリコールアリルエーテル-無水マレイン酸共重合体、メタクリル酸メチルポリエチレングリコール-マレイン酸共重合体等が挙げられる。
 市販されているポリカルボン酸系減水剤は例示的には、ポリカルボン酸系高分子化合物の「ダーレックススーパー100、200、300、1000N」シリーズ(グレースケミカルズ株式会社)、「レオビルドSP-8」シリーズ(BASFポゾリス株式会社)等が挙げられる。
 ポリカルボン酸系減水剤は、ポリカルボン酸系減水剤(固形分換算)を約10~40質量%、水を約60~90質量%とするのが好ましい。これにより、粘性が低い為、噴霧時にノズルの先端で固形化しない様に噴霧可能である。
<3.改質方法>
 改質剤を添加する順序は、急硬材とセメントを混合する前に、セメントの表面に改質剤を吸着させることが必要である。急硬材とセメントを混合する時に、同時に改質剤を吸着させると短時間強度の向上が十分に確保出来ない。それ以外に、改質剤を添加する順序には特に制限はない。凝結調整剤、その他の減水剤等の混和剤を改質剤と同時にセメントに添加することもできる。もちろん、これらの混和剤は改質剤を添加した後で加えることもできる。
 改質方法としてはセメントの表面に改質剤を吸着させることのできる方法であれば特に制限はないが、セメントに添加したときに均一に分散するように、水溶液の形態とし、セメントに噴霧することによってセメントに添加されることが好ましく、加熱によりガス化して噴霧することがより好ましい。この後、改質剤がセメント全体に行き渡るように混練を行うことが好ましい。噴霧に使用されるスプレーノズルとしては、塗布、調湿、加湿などの用途で一般に用いられているスプレーノズルはいずれも使用可能である。
 また、液体を噴霧する為、液体や空気を昇圧してノズルから極力微細な粒にしてセメントを改質する方法や、改質剤をガス化して、流動層により混合吸着操作させる方法等が有効である。更に、セメントをボールミル等で混合粉砕を継続しつつスプレーノズルから噴霧することにより改質する方法も可能である。粒にされる改質剤の粒径は、スプレーノズルでは約10~200μm、混合吸着操作では液滴化した時、数μmと考えられ、ボールミル等混合粉砕では、粒子の粒径と同一オーダーである約1~100μmである。
 改質剤を噴霧する場合、ノズルの先端での固形化を防止する為、改質剤中の水の含有量を約60質量%以上とすることが好ましく、改質機能を発揮するポリカルボン酸系減水剤(固形分換算)の量が極端に減らないように約90質量%以下とすることが好ましい。
 このように、改質剤は水を含む場合が多い。このため、過多添加すると噴霧操作時のセメント周辺の空気等の雰囲気の相対湿度が上昇し、混合、或いは輸送機器内で結露を起し、セメントの表面に水が吸着し、セメントの強度発現性能を阻害する。この為、改質剤は改質前のセメントに対して、1質量%以下で添加することが好ましく、0.5質量%以下で添加することがより好ましい。1質量%を超えると噴霧時のセメント周辺の空気等の雰囲気環境で結露が発生しやすい。
 但し、改質剤の添加量が少なすぎると、ゲル化時間の長期化効果が不十分となるので、改質剤は改質前のセメントに対して、0.1質量%以上添加するのが好ましく、0.2質量%以上添加するのがより好ましい。
 改質剤は化学的にセメントの表面に吸着し、吸着時間は秒単位で速く、この為、混合改質時間は数秒から60秒で十分であり、一旦化学的に吸着した改質剤は熱的に蒸発する以外、物理操作では脱着しない。改質操作は、この為、セメントをローリー車から空気輸送で原材料タンクに受け入れる際に、輸送ダクト内で原材料圧送時にスプレーノズルから改質剤を噴霧する方法、或いは、ボールミル等で混合粉砕している最中にスプレーノズルから改質剤を噴霧する方法が可能である。改質後は、改質剤は化学的に強固にセメント粒子の表面に吸着している為、セメントはその後、急硬材と混合操作等の物理単位操作を行う事が可能である。
<4.急硬材>
(1)カルシウムアルミネート
 カルシウムアルミネートは急硬材として一般的に使用されている成分であり、急硬性を発揮する上で不可欠である。通常はCaO原料、Al23原料、並びに随意的にSiO2原料等を電気炉又はキルンで1,200~1,700℃で合成し、徐冷または急冷することにより得られる鉱物である。例示的な組成としては、CaOが35~50質量%、Al23が40~55質量%、SiO2が1~15質量%である。例示的な化学物質としては、3CaO・Al23、12CaO・7Al23、11CaO・7Al23・CaF2、CaO・Al23、2CaO・Al23・SiO2、CaO・Al23・2SiO2、3CaO・3Al23・CaF2、3CaO・2Na2O・5Al23等が挙げられ、12CaO・7Al23が好ましい。
 カルシウムアルミネートの含有量は高すぎると硬化後の異常膨張がある一方で、低すぎると短時間強度が不足するので急硬性セメント中で2~30質量%とするのが好ましく、5~25質量%とするのがより好ましい。
 カルシウムアルミネートは結晶質及びガラス質の何れの形態も可能であるが、電気炉等で溶融物を急冷したガラス質が好ましく、ガラス質が60質量%以上であると短時間強度発現に優れる。
 カルシウムアルミネートの粉末度はブレーン比表面積(以下、ブレーン値という)で3,000~9,000cm2/gであるのが好ましい。
(2)石膏
 石膏も急硬材として重要な成分であり、カルシウムアルミネートの水和と共に、急硬性水和物Ettringiteを形成する作用をすることから本発明に係る急硬性セメントには不可欠である。石膏の含有量は高すぎると硬化後の異常膨張を起こす一方で、低すぎると急硬性能が不足するので、急硬性セメント中で2~30質量%とするのが好ましく、5~25質量%とするのがより好ましい。石膏は、無水石膏、二水石膏、半水石膏の何れでもよい。
 石膏の粉末度はブレーン値で3,000~9,000cm2/gが好ましい。
 急硬材(カルシウムアルミネート及び石膏)は、改質されたセメントと急硬材の合計質量中の5~30質量%であり、更に好ましくは合計で5~25質量部である。カルシウムアルミネート及び石膏の合計が5質量%未満ではモルタル・コンクリートでの3時間圧縮強度が20MPa以上を示す急硬性能を示すことは困難であり、30質量部を超えて添加量を増しても、3時間圧縮強度である急硬性能は増加せず、又硬化後の異常膨張を起しやすい。 
<5.凝結調整剤>
 本発明においては、炭酸塩及びオキシカルボン酸類等の凝結調整剤を加える事が不可欠である。炭酸塩としては、炭酸カリウム、炭酸ナトリウム、炭酸リチウム、炭酸水素ナトリム、炭酸水素カリウム等が挙げられる。オキシカルボン酸類としては、クエン酸、酒石酸、グルコン酸、リンゴ酸、酢酸、アジピン酸、コハク酸等のオキシカルボン酸及びこれらの塩が挙げられる。オキシカルボン酸塩としては、上記酸のナトリウム、カリウム、カルシウム、マグネシウム、アンモニウム、アルミニウム塩等が挙げられ、例えば、クエン酸ナトリウム、グルコン酸ナトリウム等が挙げられる。凝結調整剤は単独で使用することができ、二種以上を組み合わせて使用することもできる。
 凝結調整剤の添加量は、改質されたセメント及び急硬材(カルシウムアルミネート+石膏)の合計質量に対して、好ましくは0.01~5質量%、更に好ましくは、0.05~2質量%添加する。凝結調整剤は、0.01質量%未満では十分なゲル化時間を確保出来ず、5質量%を超えて添加量を増しても、ゲル化時間が短縮される場合があり、十分なゲル化時間、例えば10分以上のゲル化時間を安定して確保することは困難である。凝結調整剤は、任意の時点でセメント及び/又は急硬材に添加することができる。
<6.その他のセメント混和剤>
 本発明に係る急硬性セメントにおいては、慣用されている各種のセメント混和剤を適宜添加することができる。例えば、上記したカルシウムアルミネート及び石膏以外の急硬材、減水剤等を添加することができる。また、緻密性や膨張性を付与する為にシリカフューム等のポゾラン物質、3CaO・3Al23・CaSO4等の物質を適量添加する事も有効である。
<7.本発明に係る急硬性セメントの特性>
(1.ゲル化時間、硬化時間及び3時間圧縮強度)
 本発明では急硬性セメントの凝結硬化特性を評価するための指標の一つとして、ゲル化時間を定義する。ゲル化時間は、5℃の周囲温度において、急硬性セメント(改質されたセメント+急硬材(カルシウムアルミネート+石膏)=200g)に豊浦標準砂(200g)を混合して急硬性セメントモルタルを調製し、水(60g)を加えて460gとしたときの、注水開始後の時間と温度上昇の関係を測定し、セメントモルタルの温度が硬化に伴う発熱により1℃又は2℃上昇するまでに要する時間である。凝結調整剤やその他のセメント混和剤については、添加量が少ないので、急硬性セメント、砂及び水の合計が460gという条件を満たしていれば、その量は特に問わない。例えば、凝結調整剤が10gであれば測定は460+10=470[g]の試料に対して行うこととなる。
 本発明においては、1℃上昇するまでに要する時間を“1℃上昇ゲル化時間”、2℃上昇するまでに要する時間を“2℃上昇ゲル化時間”と呼ぶ。また、本発明では急硬性セメントの凝結硬化特性を評価するための指標の一つとして、硬化時間を定義する。硬化時間は、急硬性セメントモルタル400gに水60gを添加する際の、注水開始後の時間と温度上昇の関係を測定し、混練セメントモルタルの温度が硬化に伴う発熱により5℃上昇するまでに要する時間である。図1及び図2に、5℃の条件下において、本発明に係る急硬性セメントモルタルに水を加えて凝結硬化させたときの注水開始後の経過時間と温度上昇の関係の一例を示した。
 急硬セメントモルタルは、ゲル化及び硬化により温度上昇を伴い流動性を失う。
 ゲル化に伴い、急硬性セメントモルタルの粘度の上昇が起こり、硬化に至っては、急硬性モルタルが硬化し、強度が急激に上昇する。好ましい実施形態においては、3時間程度経過後には、モルタル硬化体の強度が20Mpaを超え、土木用構造物等の実用に供される。具体的には、急硬性セメントモルタルの混練直後は、粘度が800cps程度であるが、ゲル化に伴い、急硬性セメントモルタルの粘度は10,000cpsを超え、ミキサーによる混練、急硬性モルタルの注入、打設、締め固め等の作業の確保が困難となる。混練後の急硬性セメントモルタルの粘度の測定方法は、滴下時間の測定方法として、Jロート無収縮モルタル品質管理試験方法(日本道路公団規格JHS 312)、ロートはKC-57 Jロート(道路公団型)、JIS R5210に示すモルタルフロー、JIS Z8803「液体の粘度-測定方法」による回転粘度測定方法等がある。一般に、急硬性セメントモルタルは、硬化時間経過後は硬化して、プロクター貫入抵抗試験方法(JIS A 6204付属書I)により約1N/mm2を記録する。
 ゲル化時間及び硬化時間があまりに短い場合、急硬性セメントペーストに骨材(砂、砂利等)を加えたセメントコンクリート等による構造物の打設、或いは砂等を加えたセメントモルタル等による補修工事を一般的に行う作業時間を確保することができなくなってしまう。寒冷期における工事現場でのコンクリートポンプ等を用いたモルタル、コンクリート等による大量打設を実用的に行うためには5℃でのゲル化時間及び硬化時間が十分に長いことが望まれる。
 本発明に係る急硬性セメントペースト、セメントモルタル又はセメントコンクリートの一実施形態においては、5℃での環境下において、1℃又は2℃温度上昇するゲル化時間が10分以上であり、例えば10~20分とすることができる。
 本発明に係る急硬性セメントペースト、セメントモルタル又はセメントコンクリートの一実施形態においては、5℃での硬化時間が20分以上であり、好ましくは25分以上であり、例えば25~80分とすることができる。
 本発明に係る急硬性セメントペースト、セメントモルタル又はセメントコンクリートの一実施形態においては、5℃での3時間圧縮強度が、20MPa以上確保され、典型的には20~30MPaが確保される。20MPa未満では、強度が不足して、土木建築用途等の実用強度に達しない。3時間圧縮強度は注水開始から3時間経過後のセメントモルタルの圧縮強度をJIS R5201の「セメント物理試験方法」によって測定した値である。
(2.FT-IRスペクトル)
 改質後のセメントを用いて調製した急硬性セメントのゲル化及び硬化時の水和挙動を調査する方法としてFT-IRスペクトルを用いる事が有効である。FT-IRスペクトルは、乾燥された急硬性セメントモルタル粉体表面で、試料の半径約3mm、深さ約1~2μmでの拡散反射赤外吸収スペクトルである為、粒子表面のOH基、水和物の定性的評価に有効と考えられる。
 急硬性セメントの拡散反射FT-IRによる吸収スペクトルは、3600cm-1、1400cm-1、1100cm-1で高いピーク値を示す。この内、1400cm-1、1100cm-1でのピーク値はペースト注水直後から硬化迄、強度は殆ど一定で、このピークは急硬セメント構成材料特有のピークである。3600cm-1付近のピークは表面のOH基及び水和物を示す。
 急硬性セメントは注水開始後、水和反応の進行に伴って3600cm-1付近のピークの強度が次第に大きくなっていく。本発明に係る急硬性セメントにおいては、水和反応が緩やかに進行するため、硬化時間を経過したときの3600cm-1付近の吸収ピーク強度を基準とすると、吸収ピーク強度の上昇が遅い。例えば、注水を開始してから短時間経過時のI3600cm-1が低く、水和反応はほとんど進行しない。例えば、本発明に係る急硬性セメントの一実施形態においては、注水開始から0.1分経過時のOH基及び水和物を示す3600cm-1付近の吸収ピーク強度を“I3600cm-1(0.1分)”とし、硬化時間経過時のOH基及び水和物を示す3600cm-1付近の吸収ピーク強度を“I3600cm-1(硬化)”とすると、I3600cm-1(0.1分)/I3600cm-1(硬化)≦0.2であり、典型的には0.01≦I3600cm-1(0.1分)/I3600cm-1(硬化)≦0.1である。また、本発明に係る急硬性セメントの一実施形態においては、注水開始から17分経過時のOH基及び水和物を示す3600cm-1付近の吸収ピーク強度を“I3600cm-1(17分)”とし、硬化時間経過時のOH基及び水和物を示す3600cm-1付近の吸収ピーク強度を“I3600cm-1(硬化)”とすると、I3600cm-1(17分)/I3600cm-1(硬化)≦0.6であり、典型的には0.3≦I3600cm-1(17分)/I3600cm-1(硬化)≦0.5である。
 本発明に係る急硬性セメントは、凝結硬化時間が長いため、作業性及び施工性が高い。そのため、例えばグレーダー、ブルドーザー及びフィニッシャ等で敷き均らすことができ、更に、ハンマー、タイヤローラ及び振動ローラ等で締め固め転圧することにより早期に高い強度を得ることができる。本発明に係る急硬性セメントは特に低温環境下での作業性及び施工性に優れており、例えば1~10℃での温度環境下において打設するのに好適に使用できる。
 本発明に係る急硬性セメントペーストの硬化物は、モルタルやコンクリートとして、例えば、道路、鉄道、及び導水路等のトンネルにおいて、露出した地山面への覆工時やトンネルの補修等といった覆工時に使用することが可能である。
<製造方法>
 本発明に係る急硬性セメントは、上述した方法によって予めセメントを改質してから、急硬材を混合することにより製造可能である。その他の成分の添加順序は特に問わない。そして、当該急硬性セメントに水を加え、一般のミキサー、好ましくは強制練りミキサーにより原材料を混練りすれば急硬性セメントペーストが製造できる。水の添加量は、多すぎると材料分離が発生する一方で、少なすぎると流動性が得られないので、急硬性セメント100質量部(砂や砂利は除く)に対して、10~50質量部とするのが好ましく、15~45質量部とするのがより好ましく、典型的には20~40質量部とすることができる。
 以下、本発明の実施例について説明するが、これらは例示目的であって本発明が限定されることを意図するものではない。
(例1)
 電気化学工業(株)青海工場製の普通ポルトランドセメント(セメントNo.1)を用意した。表1及び表2に、セメントNo.1のリートベルト法によるセメント中の各物質量と、JIS R5202による化学分析の結果をそれぞれ示す。リートベルト法は、具体的には、「SIROQUANT Version2.5」(Sietronics社製)を用いて粉末X線回折により回折強度から物質量を定量した。また、表3にはセメントNo.1のJIS R5201「セメントの物理試験方法」によって測定した密度及びブレーン値を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 セメントNo.1を表5に記載のポリカルボン酸系減水剤、水、凝結調整剤等の各種改質剤を用いて実験番号に応じて改質した。改質方法は、セメントNo.1を揺動皿型混合機(千代田技研工業社製:オムニミキサ)で周速60m/sで回転させながら、改質剤を霧吹きにより添加し、1分間回転を継続することにより行った。
 表5に記載の改質剤の詳細は以下である。
・ポリカルボン酸系減水剤:グレースケミカルズ社製「ダーレックススーパー1000N(商品名)」の水溶液(水の含有量は70質量%)
・β-NS(ナフタレン系減水剤):グレースケミカルズ社製「FT-500V(商品名)」の水溶液(水の含有量は50質量%)
・凝結調整剤:炭酸カリウム(旭硝子(株)製)と精製クエン酸(扶桑化学工業(株)製)の50:50[質量比]の混合物の水溶液(水の含有量は67質量%)
 次いで、表4に記載の各質量部で下記(A)~(G)の原材料を混合して急硬性セメントモルタルを製造し、次いで、(H)の水を表4に記載の質量部で添加して混練し、発明例及び比較例の急硬性セメントモルタルの硬化物を製造した。養生条件は5℃、相対湿度60%とした。
(A)セメント:改質された又は未改質のセメントNo.1
(B)カルシウムアルミネート(12CaO・7Al23):2000kVA電気炉による約1600℃の溶融物を急冷して、吹き飛ばす工程によりガラス質化したカルシウムアルミネートを、粉末度4,500cm2/g(ブレーン値)に粉砕した電気化学工業(株)青海工場製造品(但し、実験例によっては表5に記載の方法で改質を行った。)
(C)無水石膏:粉末度4,500cm2/g(ブレーン値)に粉砕した電気化学工業(株)青海工場製造品
(D)砂:豊浦標準砂
(E)減水剤:第一工業製薬(株)製のポリアルキルアリルスルホン酸塩系減水剤(商品名:セルフロー110P)
(F)炭酸カリウム:旭硝子(株)製造品
(G)精製クエン酸:扶桑化学工業(株)製造品
(H)水:工業用水
Figure JPOXMLDOC01-appb-T000004
<硬化特性>
 急硬性セメントモルタル400gについて注水混練後の時間と温度上昇の関係を測定し、凝結硬化特性を測定した。表5中、1℃上昇ゲル化時間、2℃上昇ゲル化時間、硬化時間、3時間圧縮強度は先に定義した通りである。ΔTmaxは注水混練開始してからの最大温度上昇幅を示す。ゲル化時間経過後は、モルタルの粘性が上昇、モルタルはこわばり状態を呈し、硬化時間経過後は、モルタルは硬化し、プロクター貫入抵抗試験方法(JIS A 6204付属書I)により約1N/mm2を記録した。最大温度上昇幅△Tmaxと3時間圧縮強度は、相関関係を有し、△Tmaxが高い程、3時間圧縮強度が高い。
Figure JPOXMLDOC01-appb-T000005
 セメントを改質しなかった実験No.1においては、1℃上昇ゲル化時間、2℃上昇ゲル化時間共に、10分以上は得られず、硬化時間も25分以上は得られていない。実験No.2、3では、急硬混和材を水、凝結調整剤で改質したが、1℃上昇ゲル化時間、2℃上昇ゲル化時間共に、10分以上は得られず、硬化時間も25分以上は得られず、更に△Tも45℃以下、3時間圧縮強度も20MPa未満であった。
 一方、セメントをポリカルボン酸系減水剤で改質した実験No.4~6では、1℃上昇ゲル化時間、2℃上昇ゲル化時間共に、10分以上は得られ、硬化時間も20分以上は得られた。更に、ΔTmaxは45℃以上となり、3時間圧縮強度も20MPa以上となった。
 実験No.7では、水によりセメントを改質した結果、1℃上昇ゲル化時間、2℃上昇ゲル化時間共に、10分以上は得られ、硬化時間も20分以上は得られているが、△Tmaxは37℃で低く、3時間圧縮強度も18MPaと低かった。
 実験No.8では、凝結調整剤により改質した結果、1℃上昇ゲル化時間、2℃上昇ゲル化時間共に、10分以上は得られ、硬化時間も20分以上は得られているが、△Tmaxは35.2℃で低く、3時間圧縮強度も16MPaと低かった。
 実験No.9では、ナフタレン系減水剤により改質した結果、1℃上昇ゲル化時間、2℃上昇ゲル化時間共に、10分以上は得られるが、硬化時間は20分未満となり、△Tも37.3℃で低く、更に3時間圧縮強度も18MPaと低かった。
 実験No.10では、セメントをポリカルボン酸系減水剤により改質するのに加えて、急硬混和材を水で改質した。この場合も、1℃上昇ゲル化時間、2℃上昇ゲル化時間共に、10分以上は得られ、5℃硬化時間も20分以上は得られて、3時間圧縮強度は20MPa以上確保された。
<FT-IRによる吸収スペクトルの比較>
 ここで、実験No.1とNo.6の急硬性セメントモルタルについては、別途、FT-IRにより注水開始してから一定時間経過したときの3600cm-1付近に現れるOH基及び水和物の存在を表す吸収ピーク強度を測定した。
 試験方法について述べる。5℃条件下で、急硬性セメントモルタルに注水を開始し、JIS R5201「セメントの物理試験方法」に基づき表6に記載の所定時間混練後、モルタルの一部をろ紙によりアセトン抽出して水和反応を停止した。水和反応を完全に停止させるために、モルタル1体積部に対してアセトン10体積部を使用した。更に、モルタル1体積部に対してアセトン1体積部で、水和停止したモルタルをJIS Z8801-1「金属製網ふるい」で規定する公称目開きが88μmの篩に掛け、篩上のモルタル中の砂を除去し、ペーストを得た。当該操作時、篩上はアセトンにより手動で湿式解砕して可能な限り篩下へと移行させた。88μm篩全通過試料を24時間、シリカゲル挿入デシケータ内で乾燥、放置後、得られた粉体のFT-IR分析を行った。結果を表6に示す。
 FT-IR装置の仕様は以下である。
 メーカー:アジレント・テクノロジー社 FTS-175C
 測定法:拡散反射法
 装置条件:分解能8cm、積算回数1024回、Kubelka-Munk変換、
 バックグラウンド:KBr粉末を拡散反射装置内200℃に加熱後、30℃に冷却して測定。
 使用環境:真空、30℃
 No.1の急硬性セメントモルタルでは、注水開始後の0.1分、17分、35分で、いずれもI3600cm-1で、2.5以上の高い値を示しており、急硬セメントモルタル表面のOH基及び水和物が多く、急硬性セメントモルタルの水和反応が進行しており、水和反応が抑制されていない事が理解出来る。これに対し、予め改質されてゲル化が抑制されたセメントを用いたNo.6の場合、凝結硬化段階でのFT-IRスペクトルは、0.1分、17分、34分、78分では、I3600cm-1(0.1分)<I3600cm-1(17分)<I3600cm-1(34分)<I3600cm-1(78分)、の大小関係を示し、0.1分、17分、34分の未硬化の急硬性セメントペーストのFT-IRスペクトルは78分硬化時のそれに対して低く、急硬セメントモルタル表面のOH基及び水和物が低く、急硬性セメントペーストの水和反応が抑制されている事が理解出来る。更に、注水後0.1分のI3600cm-1=0.3と低く、水和が特に抑制されている。硬化時のI3600cm-1に対する注水開始後0.1分のI3600cm-1の比であるI3600cm-1(0.1分)/I3600cm-1(硬化)は、急硬セメントモルタル表面の水和率を的確に示す為、急硬セメントペーストの凝結硬化時間の予測に用いる事が可能である。注水直後の0.1分での未硬化I3,600cm-1(0.1)/I3,600cm-1(硬化)が0.2以下である場合、急硬セメントモルタルのゲル化時間は10分、硬化時間は20分以上確保されると予測できる。
Figure JPOXMLDOC01-appb-T000006
(例2:No.11)
 改質剤を添加するタイミングを変えた他は実験No.1と同様の条件で急硬性セメントモルタルを製造し、水を加えて硬化させた。具体的には、未改質のセメントNo.1、及び上述した(B)から(G)までの成分を同時に混合した後に、ポリカルボン酸系減水剤、(H)水を加えて混練した。例1と同様に凝結硬化特性を評価した。結果を表7に示す。実験No.11では、改質剤0.31%を水と同時に添加した結果、1℃上昇ゲル化時間、2℃上昇ゲル化時間共に、10分以上は得られず、硬化時間も20分以上は得られず、△Tmaxは38.5℃で低く、3時間圧縮強度も18MPaと低かった。
(例3:No.12)
 改質剤を添加するタイミングを変えた他は実験No.1と同様の条件で急硬性セメントモルタルを製造し、水を加えて硬化させた。具体的には、未改質のセメントNo.1、及び上述した(B)から(G)までの成分を同時に混合した後に、ポリカルボン酸系減水剤、(H)水を加えて混練した。例1と同様に凝結硬化特性を評価した。結果を表7に示す。実験No.12では、改質剤0.62%を水と同時に添加した結果、1℃上昇ゲル化時間、2℃上昇ゲル化時間共に、10分以上は得られず、硬化時間も20分以上は得られず、△Tmaxは38.1℃で低く、3時間圧縮強度も17MPaと低かった。
(例4:No.13)
 改質剤を添加するタイミングを変えた他は実験No.1と同様の条件で急硬性セメントモルタルを製造し、水を加えて硬化させた。具体的には、ポリカルボン酸系減水剤により、セメントNo.1及び急硬材を同時に改質させた後、及び上述した(D)から(H)までの成分を同時に混合して混練した。例1と同様に凝結硬化特性を評価した。結果を表7に示す。実験No.13では、1℃上昇ゲル化時間、2℃上昇ゲル化時間共に、10分以上は得られたが、硬化時間は20分以上は得られなかった。また、△Tmaxは35.5℃で低く、3時間圧縮強度も16MPaと低かった。
Figure JPOXMLDOC01-appb-T000007

Claims (10)

  1.  (A)改質剤のポリカルボン酸系減水剤で予め表面改質されたセメント、(B)カルシウムアルミネート及び石膏からなる急硬材、並びに、(C)凝結調整剤を含有する急硬性セメント。
  2.  改質剤の添加量が、改質前のセメントに対して0.1~1.0質量%である請求項1に記載の急硬性セメント。
  3.  (B)急硬材は、改質されたセメントと急硬材の合計質量中の5~30質量%であり、(C)凝結調整剤は改質されたセメントと急硬材の合計質量に対して0.01~5質量%である請求項1又は2に記載の急硬性セメント。
  4.  注水開始から0.1分経過時のOH基及び水和物を示す3600cm-1付近の吸収ピーク強度を“I3600cm-1(0.1分)”とし、硬化時間経過時のOH基及び水和物を示す3600cm-1付近の吸収ピーク強度を“I3600cm-1(硬化)”とすると、I3600cm-1(0.1分)/I3600cm-1(硬化)≦0.2である請求項1~3の何れか一項に記載の急硬性セメント。
  5.  請求項1~4の何れか一項に記載の急硬性セメントを使用したセメントペースト、セメントモルタル又はセメントコンクリート。
  6.  5℃での1℃上昇ゲル化時間が10分以上である請求項5に記載のセメントペースト、セメントモルタル又はセメントコンクリート。
  7.  5℃での硬化時間が20分以上である請求項5又は6に記載のセメントペースト、セメントモルタル又はセメントコンクリート。
  8.  請求項5~7の何れか一項に記載のセメントペースト、セメントモルタル又はセメントコンクリートの硬化物。
  9.  請求項5~7の何れか一項に記載のセメントペースト、セメントモルタル又はセメントコンクリートを1~10℃の温度環境で打設することを含むセメントペースト、セメントモルタル又はセメントコンクリートの使用方法。
  10.  改質剤のポリカルボン酸系減水剤でセメントを表面改質する工程1と、表面改質された前記セメントをカルシウムアルミネート及び石膏からなる急硬材と混合する工程2と、任意の時点で凝結調整剤を添加する工程3とを含む急硬性セメントの製造方法。
PCT/JP2013/058644 2012-03-30 2013-03-25 急硬性セメント WO2013146712A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014507880A JP6129157B2 (ja) 2012-03-30 2013-03-25 急硬性セメント
ES13769484.0T ES2627999T3 (es) 2012-03-30 2013-03-25 Cemento de endurecimiento rápido
CN201380016644.3A CN104203866B (zh) 2012-03-30 2013-03-25 快硬性水泥
EP13769484.0A EP2832706B1 (en) 2012-03-30 2013-03-25 Rapid hardening cement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012083201 2012-03-30
JP2012-083201 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146712A1 true WO2013146712A1 (ja) 2013-10-03

Family

ID=49259964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058644 WO2013146712A1 (ja) 2012-03-30 2013-03-25 急硬性セメント

Country Status (6)

Country Link
EP (1) EP2832706B1 (ja)
JP (1) JP6129157B2 (ja)
CN (1) CN104203866B (ja)
ES (1) ES2627999T3 (ja)
MY (1) MY172700A (ja)
WO (1) WO2013146712A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047639A (ja) * 2015-09-03 2017-03-09 住友大阪セメント株式会社 セメント組成物への凝結調整剤の添加方法
JP2017154912A (ja) * 2016-02-29 2017-09-07 住友大阪セメント株式会社 収縮低減剤、セメント組成物
JP2020163646A (ja) * 2019-03-29 2020-10-08 太平洋マテリアル株式会社 混和材梱包体および混和材梱包体を用いた速硬コンクリートの製造方法
CN112745094A (zh) * 2021-01-11 2021-05-04 河北承大环保科技有限公司 一种耐低温的改性水泥及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6777479B2 (ja) * 2015-09-29 2020-10-28 日本製鉄株式会社 不定形耐火物
US9802863B1 (en) 2016-03-09 2017-10-31 Flashfill Services, Llc Accelerating set times of flowable fill compositions with dry calcium chloride, and methods of utilizing and producing the same
JP6206614B1 (ja) * 2016-03-31 2017-10-04 三菱マテリアル株式会社 速硬性混和材およびその製造方法
US10322971B1 (en) 2016-04-21 2019-06-18 MK1 Construction Services Fast-setting flowable fill compositions, and methods of utilizing and producing the same
RU2647010C1 (ru) * 2017-02-27 2018-03-13 Алсу Рамилевна Хаматова Быстротвердеющая строительная смесь на основе сталеплавильного шлака
US10851016B1 (en) 2017-02-28 2020-12-01 J&P Invesco Llc Trona accelerated compositions, and methods of utilizing and producing the same
US10919807B1 (en) 2018-04-25 2021-02-16 J&P Invesco Llc High-strength flowable fill compositions
US11434169B1 (en) 2018-04-25 2022-09-06 J&P Invesco Llc High-strength flowable fill compositions
CN112601726A (zh) * 2018-08-22 2021-04-02 电化株式会社 用于以预拌混凝土方式出货的快硬混凝土的硬化剂、以预拌混凝土方式出货的快硬混凝土材料、以预拌混凝土方式出货的快硬混凝土组合物及其调制方法
DE102019104414A1 (de) * 2019-02-21 2020-08-27 Construction Research & Technology Gmbh Bindemittelzusammensetzung mit langer Verarbeitungszeit

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180740A (ja) 1988-12-28 1990-07-13 Denki Kagaku Kogyo Kk 急硬性超硬練りコンクリート
JPH05177124A (ja) * 1991-11-21 1993-07-20 Sumitomo Cement Co Ltd 粉体・粉粒体材料の製造方法および粉体・粉粒体材料
JPH06115986A (ja) 1992-10-01 1994-04-26 Sumitomo Cement Co Ltd 急硬性クリンカー組成物
JPH0717749A (ja) * 1993-06-30 1995-01-20 Chichibu Onoda Cement Corp 高流動性速硬セメント配合物の製造方法
JPH08310845A (ja) * 1995-05-12 1996-11-26 Denki Kagaku Kogyo Kk 急硬性セメント混和材及び急硬性セメント組成物
JPH09268037A (ja) 1996-03-29 1997-10-14 Sumitomo Osaka Cement Co Ltd 急硬性クリンカー組成物
JPH11255542A (ja) 1998-03-12 1999-09-21 Taiheiyo Cement Corp 水硬性セメント組成物とその製造方法
JP2000143324A (ja) * 1998-11-09 2000-05-23 Denki Kagaku Kogyo Kk セメント組成物、それを用いたセメント硬化体、及びその製造方法
JP2001048632A (ja) * 1999-07-30 2001-02-20 Katsuro Kokubu 保存安定性及び遅延硬化性に優れた水硬性組成物
JP2001247343A (ja) * 2000-03-03 2001-09-11 Sumitomo Osaka Cement Co Ltd 凝結調整セメント及びその製造方法
JP2001253753A (ja) * 2000-03-10 2001-09-18 Denki Kagaku Kogyo Kk 急硬性セメントコンクリート及び場所打ちライニング工法
JP2005061863A (ja) * 2003-08-18 2005-03-10 Nippon Steel Corp 製鋼スラグの水和度評価方法
JP2007045647A (ja) 2005-08-08 2007-02-22 Ube Ind Ltd セメント組成物、コンクリート及びセメント組成物の製造方法
JP2007320833A (ja) 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk 超速硬セメント組成物、超速硬セメントコンクリート組成物、及び超速硬セメントコンクリート
JP4746429B2 (ja) 2003-08-20 2011-08-10 電気化学工業株式会社 吹付け材料を用いた吹付け工法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798468B2 (ja) * 1996-04-22 2006-07-19 グレースケミカルズ株式会社 セメントの硬化調整方法
CN1101791C (zh) * 1998-12-30 2003-02-19 滦县筑方特种水泥有限公司 水泥
JP2006062888A (ja) * 2004-08-24 2006-03-09 Taiheiyo Material Kk 急硬性混和材及び急硬性セメント組成物
JP4579772B2 (ja) * 2005-06-06 2010-11-10 太平洋マテリアル株式会社 セメント混和材及び超速硬セメント
FR2893938B1 (fr) * 2005-11-28 2008-02-01 Lafarge Sa Procede de realisation de pieces et ouvrages en beton
EP2161247B1 (de) * 2008-09-05 2012-10-24 Sika Technology AG Verfahren zur Stabilisierung von Polycarboxylaten
PL2379630T3 (pl) * 2009-01-21 2020-07-13 Gcp Applied Technologies Inc. Trwały polikarboksylan zawierający łączniki eterowe do wytwarzania materiałów cementowych metodą mielenia

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180740A (ja) 1988-12-28 1990-07-13 Denki Kagaku Kogyo Kk 急硬性超硬練りコンクリート
JPH05177124A (ja) * 1991-11-21 1993-07-20 Sumitomo Cement Co Ltd 粉体・粉粒体材料の製造方法および粉体・粉粒体材料
JPH06115986A (ja) 1992-10-01 1994-04-26 Sumitomo Cement Co Ltd 急硬性クリンカー組成物
JPH0717749A (ja) * 1993-06-30 1995-01-20 Chichibu Onoda Cement Corp 高流動性速硬セメント配合物の製造方法
JPH08310845A (ja) * 1995-05-12 1996-11-26 Denki Kagaku Kogyo Kk 急硬性セメント混和材及び急硬性セメント組成物
JPH09268037A (ja) 1996-03-29 1997-10-14 Sumitomo Osaka Cement Co Ltd 急硬性クリンカー組成物
JPH11255542A (ja) 1998-03-12 1999-09-21 Taiheiyo Cement Corp 水硬性セメント組成物とその製造方法
JP2000143324A (ja) * 1998-11-09 2000-05-23 Denki Kagaku Kogyo Kk セメント組成物、それを用いたセメント硬化体、及びその製造方法
JP2001048632A (ja) * 1999-07-30 2001-02-20 Katsuro Kokubu 保存安定性及び遅延硬化性に優れた水硬性組成物
JP2001247343A (ja) * 2000-03-03 2001-09-11 Sumitomo Osaka Cement Co Ltd 凝結調整セメント及びその製造方法
JP2001253753A (ja) * 2000-03-10 2001-09-18 Denki Kagaku Kogyo Kk 急硬性セメントコンクリート及び場所打ちライニング工法
JP2005061863A (ja) * 2003-08-18 2005-03-10 Nippon Steel Corp 製鋼スラグの水和度評価方法
JP4746429B2 (ja) 2003-08-20 2011-08-10 電気化学工業株式会社 吹付け材料を用いた吹付け工法
JP2007045647A (ja) 2005-08-08 2007-02-22 Ube Ind Ltd セメント組成物、コンクリート及びセメント組成物の製造方法
JP2007320833A (ja) 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk 超速硬セメント組成物、超速硬セメントコンクリート組成物、及び超速硬セメントコンクリート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832706A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047639A (ja) * 2015-09-03 2017-03-09 住友大阪セメント株式会社 セメント組成物への凝結調整剤の添加方法
JP2017154912A (ja) * 2016-02-29 2017-09-07 住友大阪セメント株式会社 収縮低減剤、セメント組成物
JP2020163646A (ja) * 2019-03-29 2020-10-08 太平洋マテリアル株式会社 混和材梱包体および混和材梱包体を用いた速硬コンクリートの製造方法
JP7262896B2 (ja) 2019-03-29 2023-04-24 太平洋マテリアル株式会社 混和材梱包体および混和材梱包体を用いた速硬コンクリートの製造方法
CN112745094A (zh) * 2021-01-11 2021-05-04 河北承大环保科技有限公司 一种耐低温的改性水泥及其制备方法

Also Published As

Publication number Publication date
ES2627999T3 (es) 2017-08-01
EP2832706A1 (en) 2015-02-04
JP6129157B2 (ja) 2017-05-17
MY172700A (en) 2019-12-10
CN104203866A (zh) 2014-12-10
EP2832706B1 (en) 2017-03-15
JPWO2013146712A1 (ja) 2015-12-14
EP2832706A4 (en) 2015-12-23
CN104203866B (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
JP6129157B2 (ja) 急硬性セメント
JP7054081B2 (ja) セメント組成物、セメントペースト、セメントモルタル及びコンクリート材
JP2014221715A (ja) 長い加工時間(プロセスタイム)と高い初期強度をもつ水硬性結合材のための混和剤
JP2008127247A (ja) 自己流動性水硬性組成物
JP2020055696A (ja) ジオポリマー組成物、並びにそれを用いたモルタル及びコンクリート
JP2005139060A (ja) セメント用凝結促進剤
JP6147194B2 (ja) 急硬性セメント
JP6694313B2 (ja) 速硬コンクリートの製造方法
JP2018172236A (ja) 速硬コンクリート及びその製造方法
JP4809278B2 (ja) 膨張材、セメント組成物、及びそれを用いてなるセメント硬化体
JP6783118B2 (ja) セメント組成物及びその製造方法
JP2007131477A (ja) フライアッシュセメント組成物及びそれを用いたコンクリート成形品
JP6258033B2 (ja) 速硬性膨張セメント混練物の製造方法
JP7083637B2 (ja) コンクリートおよびその製造方法
JP5987378B2 (ja) モルタル
JP4285186B2 (ja) 貯蔵性に優れるアルミナセメント系水硬性組成物
JP5863296B2 (ja) 超高強度セメント系硬化体の製造方法
JP4225873B2 (ja) ポリマーセメント系耐酸性補修材料
JP6207992B2 (ja) セメント混和材およびセメント組成物それを用いたセメント硬化体
JP3844416B2 (ja) 急結性セメントコンクリートの施工方法
JP7456898B2 (ja) 速硬コンクリートおよび速硬コンクリートの製造方法
JP2011132106A (ja) 水硬性組成物及び硬化体
JP5383045B2 (ja) グラウト用セメント組成物およびそれを用いたグラウト材料
JP6667333B2 (ja) セメント組成物、セメント混練物
JP6475579B2 (ja) プレキャストコンクリート用膨張材、その製造方法およびプレキャストコンクリートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507880

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013769484

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013769484

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE