WO2013146534A1 - 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体 - Google Patents

熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体 Download PDF

Info

Publication number
WO2013146534A1
WO2013146534A1 PCT/JP2013/058086 JP2013058086W WO2013146534A1 WO 2013146534 A1 WO2013146534 A1 WO 2013146534A1 JP 2013058086 W JP2013058086 W JP 2013058086W WO 2013146534 A1 WO2013146534 A1 WO 2013146534A1
Authority
WO
WIPO (PCT)
Prior art keywords
furan resin
resin composition
thermosetting
weight
composition according
Prior art date
Application number
PCT/JP2013/058086
Other languages
English (en)
French (fr)
Inventor
智行 小林
茂 小笠原
治樹 堅田
幸弘 原
典孝 辻本
聡 西島
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US14/387,756 priority Critical patent/US9376543B2/en
Priority to JP2014507796A priority patent/JP5860530B2/ja
Priority to EP13767850.4A priority patent/EP2832790A4/en
Publication of WO2013146534A1 publication Critical patent/WO2013146534A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • C08G16/02Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes
    • C08G16/025Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes with heterocyclic organic compounds
    • C08G16/0256Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes with heterocyclic organic compounds containing oxygen in the ring
    • C08G16/0262Furfuryl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/246Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using polymer based synthetic fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates

Definitions

  • the present invention relates to a thermosetting furan resin composition and a furan resin laminate using the same, and more particularly to a thermosetting furan resin composition having a small dimensional change after curing and a furan resin laminate using the same.
  • thermosetting furan resin compositions mainly composed of furfuryl alcohol or furfural as a raw material have a high heat resistance, solvent resistance, and chemical resistance.
  • it is used in various industrial fields as a matrix resin of laminates and composite materials such as medige cement and FRP.
  • thermosetting furan resin composition has a problem that the dimensional change is large due to the diffusion of moisture contained from the condensation reaction during the synthesis of the furan resin and moisture generated from the curing reaction.
  • An object of the present invention is to provide a thermosetting furan resin composition having a small dimensional change after curing and a furan resin laminate including the thermosetting furan resin composition in view of the above-mentioned problems of the prior art.
  • thermosetting furan resin composition comprising a furan resin, a curing catalyst and an additive
  • the additive is a normal salt comprising a strong acid and a strong base. It has been found that the above-mentioned problems can be solved by a certain thermosetting furan resin composition and further by a furan resin laminate using the same, and the present invention has been completed.
  • thermosetting containing the furan resin (A), the curing catalyst (B), and the additive (C) which is a normal salt which consists of a strong acid and a strong base.
  • a furan resin composition is provided.
  • thermosetting furan resin composition according to the first invention, wherein the additive (C) has a solubility in water at 20 ° C. of 30 g / 100 gH 2 O or more. Is done.
  • the additive (C) is sodium chloride, potassium chloride, lithium chloride, sodium bromide, potassium bromide, lithium bromide,
  • a thermosetting furan resin composition that is at least one selected from the group consisting of sodium sulfate, potassium sulfate, lithium sulfate, sodium nitrate, potassium nitrate, and lithium sulfate, or a mixture thereof.
  • the content of the additive (C) is 0.2 to 10 with respect to 100 parts by weight of the furan resin (A).
  • a thermosetting furan resin composition that is parts by weight is provided.
  • thermosetting furan resin composition according to any one of the first to fourth aspects, wherein the moisture content of the thermosetting furan resin composition is 15% by weight or less. Provided.
  • the furan resin (A) is a thermosetting furan resin having a viscosity at 25 ° C. of 100 to 5000 mPa ⁇ s.
  • a composition is provided. According to the present invention, it is possible to ensure impregnation with a low viscosity while being a furan resin capable of reducing the amount of water generated by the curing reaction and preventing the dimensional change of the cured product.
  • the water content of the furan resin (A) is 10% by weight or less, and the total of residual furfuryl alcohol and furfural.
  • a thermosetting furan resin composition having a content of 1% by weight or less is provided. According to the present invention, although it is a furan resin containing almost no volatile monomer, the amount of water generated by the curing reaction is reduced, and the dimensional change of the cured product can be prevented.
  • the curing catalyst (B) is a thermal reaction type latent acid curing catalyst (B2) alone or a sensible curing catalyst (A thermosetting furan resin composition comprising a mixture of B1) and a heat-reactive latent acid curing catalyst (B2) is provided. According to this invention, a long pot life derived from the latent curing catalyst can be obtained.
  • the reactive latent acid curing catalyst (B2) is an inorganic ammonium salt, primary amine salt, secondary amine salt, or tertiary amine salt.
  • a thermosetting furan resin composition that is at least one selected from the group consisting of:
  • the thermal reaction type latent acid curing catalyst (B2) is an ammonium halide, ammonium sulfate, ammonium nitrate, methyl ammonium halide, dimethyl ammonium halide,
  • a thermosetting furan resin composition which is at least one selected from the group consisting of ethylammonium halide and diethylammonium halide.
  • thermosetting furan resin composition in any one of the first to tenth inventions, further comprising 5 to 100 parts by weight of an inorganic filler with respect to 100 parts by weight of the furan resin (A).
  • a thermosetting furan resin composition is provided. According to this invention, the mechanical strength of the composition after thermosetting can be improved by further including a predetermined amount of inorganic filler.
  • thermosetting furan resin composition according to the eleventh aspect wherein the inorganic filler has a pH of 10 or less.
  • thermosetting furan resin composition according to the eleventh or twelfth aspect, wherein the inorganic filler is subjected to organosilane surface treatment.
  • thermosetting furan resin composition according to any one of the first to thirteenth aspects, further comprising an antifoaming agent.
  • an antifoaming agent by further including an antifoaming agent, the foam remaining in the thermosetting furan resin composition is reduced, thereby improving the mechanical strength of the composition after it is cured. it can.
  • the fibrous base material and the thermosetting furan resin composition according to any one of the first to fourteenth aspects are impregnated into the fibrous base material and then cured.
  • thermosetting furan resin composition of the present invention there is an effect that the amount of water generated by the curing reaction is reduced and the dimensional change of the cured product can be prevented.
  • the fibrous base material is impregnated with a thermosetting furan resin composition having a small dimensional change, so that a laminate having a small dimensional shrinkage after curing is obtained.
  • thermosetting furan resin composition of the present invention and the furan resin laminate using the same will be described specifically and in detail below.
  • thermosetting furan resin composition of the present invention comprises a furan resin (A), a curing catalyst (B), and an additive (C) that is a normal salt composed of a strong acid and a strong base.
  • the thermosetting furan resin composition of the present invention mainly contains a furan resin (A), a curing catalyst (B), and an additive (C) which is a normal salt composed of a strong acid and a strong base. preferable.
  • “mainly contained” means preferably containing 50 to 100% by weight, more preferably 60 to 100% by weight, and still more preferably 70 to 100% by weight.
  • furan resin (A) is preferably a furan resin or a modified furan resin.
  • a furan resin is a polymer or precursor (oligomer) of a furan or furan derivative having one or more reactive substituents on the furan ring as a starting material.
  • Furfuryl alcohol type, furfuryl alcohol furfural Examples include furan resins such as co-condensation type, furfuryl alcohol / aldehyde co-condensation type, furfural / ketone co-condensation type, furfural / phenol co-condensation type, furfuryl alcohol / urea co-condensation type, furfuryl alcohol / urea co-condensation type. It is done.
  • furan-based resin (A) furfuryl alcohol type or furfuryl alcohol / formaldehyde co-condensation type furan resin is preferable because it is stably supplied industrially.
  • modified furan resin include furan resins subjected to modifications such as epoxy modification, phenol modification, aldehyde modification, urea modification, and melamine modification.
  • the viscosity of the furan resin (A) is too large, the impregnation property at the time of molding the laminate may be lowered. On the other hand, if the viscosity is too small, sagging may occur at the time of molding the laminate. To 5000 mPa ⁇ s is more preferred, 200 to 3000 mPa ⁇ s is still more preferred, and 300 to 2000 mPa ⁇ s is most preferred.
  • the moisture content of the furan resin (A) is preferably 10% by weight or less (for example, 0.5 to 10% by weight), more preferably 9%, because if it is too large, dimensional shrinkage due to moisture dissipation during curing increases. Hereinafter, it is particularly preferably 8% by weight or less.
  • the total content of residual furfuryl alcohol and furfural in the furan-based resin (A) is preferably 1% by weight or less (for example, 0.0001 to 1% by weight) because if too much, the working environment may be deteriorated. 0.8% by weight or less is more preferable.
  • the curing catalyst (B) is not particularly limited as long as it can cure the furan resin (A), and examples thereof include organic acids such as organic sulfonic acids and organic carboxylic acids and aqueous solutions thereof, hydrochloric acid, sulfuric acid, phosphoric acid and the like. An inorganic acid and its aqueous solution are mentioned.
  • Examples of the organic sulfonic acid include p-toluenesulfonic acid, benzenesulfonic acid, xylenesulfonic acid, methanesulfonic acid and the like.
  • Examples of the organic carboxylic acid include malonic acid, succinic acid, maleic acid, oxalic acid, acetic acid, lactic acid, malic acid, tartaric acid, benzoic acid, citric acid and the like.
  • the above illustrated curing catalysts may be used alone or in combination of two or more.
  • thermal reaction type latent acid curing catalyst (B2) alone or in combination with the obvious curing catalyst (B1) as the curing catalyst (B) for the purpose of shortening the curing time and pot life.
  • Examples of the apparent curing catalyst (B1) include organic acids such as organic sulfonic acids and organic carboxylic acids and aqueous solutions thereof, inorganic acids such as hydrochloric acid and sulfuric acid, and aqueous solutions thereof.
  • the heat-reactive latent acid curing catalyst (B2) is not particularly limited as long as it does not easily react with the components contained in the furan resin (A) at room temperature and reacts quickly by heating during curing to generate an acid.
  • the thermal reaction type latent acid curing catalyst (B2) includes inorganic ammonium salts, primary amine salts, secondary amine salts, and tertiary amine salts from the viewpoints of stability at room temperature and reaction rate due to heating during curing. It is preferable to contain at least one of them.
  • thermal reaction type latent acid curing catalyst (B2) include at least one of ammonium halide, ammonium sulfate, ammonium nitrate, methyl ammonium halide, dimethyl ammonium halide, ethyl ammonium halide, and diethyl ammonium halide. It is more preferable to contain.
  • the halogen include chlorine, bromine and iodine. Among these, it is more preferable to contain ammonium chloride, ammonium sulfate, ammonium nitrate, methylammonium chloride, dimethylammonium chloride, ethylammonium chloride, and diethylammonium chloride.
  • the addition amount of the curing catalyst (B) is not particularly limited because it is adjusted depending on the type and dilution concentration of the furan resin (A) and the curing catalyst (B), and the target curing temperature / curing time.
  • the additive (C) is not particularly limited as long as it is a positive salt composed of a strong acid and a strong base.
  • a positive salt composed of a strong acid and a strong base.
  • Persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate can also be added. Persulfate also acts as a heat-reactive latent acid curing catalyst.
  • the additive (C) may be added as a solid, but is preferably added as an aqueous solution in order to facilitate dispersion in the furan resin.
  • a thermosetting furan resin composition that can further prevent dimensional change of the cured product can be easily obtained with fewer steps.
  • the concentration of the aqueous additive solution is not particularly limited because it is adjusted depending on the type of additive, the addition temperature, the target dimensional accuracy, etc. However, if the concentration is low, the amount of water added increases and the dimensional change increases, so the operating temperature It is preferable to adjust in the vicinity of the solubility in.
  • the solubility in water at 20 ° C. is preferably 30 g / 100 gH 2 O or more.
  • the additive (C) is preferably one or a mixture thereof selected from sodium chloride, lithium chloride, sodium bromide, and lithium bromide. Most preferred.
  • the addition amount of the additive (C) is not particularly limited because it is adjusted depending on the type and moisture content of the furan resin (A) and the curing catalyst (B), the target dimensional accuracy, etc., but the furan resin (A ) 0.2 to 10 parts by weight per 100 parts by weight, more preferably 0.5 to 5 parts by weight, and most preferably 1 to 3 parts by weight. If the amount is less than 0.2 parts by weight, a sufficient dimensional change preventing effect may not be obtained. If the amount is more than 10 parts by weight, the viscosity may be too high when mixed with the furan resin (A).
  • the viscosity of the thermosetting furan resin composition of the present invention is too large, the impregnation property at the time of molding the laminate may be reduced, whereas if it is too small, the sagging may occur at the time of molding the laminate.
  • 100-10000 mPa ⁇ s at 25 ° C. is preferred, 100-3000 mPa ⁇ s is more preferred, and 100-3500 mPa ⁇ s is most preferred.
  • the moisture content of the thermosetting furan resin composition is preferably 15% by weight or less (for example, 0.5 to 15% by weight), and more preferably 12%, because dimensional shrinkage due to moisture dissipation during curing increases if the moisture content is too large. % Or less, particularly preferably 10% by weight or less.
  • an inorganic filler for the purpose of improving strength characteristics, it is preferable to add an inorganic filler to the curable furan resin composition.
  • the inorganic filler is not particularly limited as long as the elastic modulus is high and high filling is possible, but an inorganic filler having a pH of 10 or less is preferable from the viewpoint of preventing curing inhibition.
  • glass powder, silica, talc, kaolin, mica, aluminum hydroxide and the like are preferable, and kaolin, silica, and aluminum hydroxide are most preferable from the viewpoint of cost.
  • the pH of the inorganic filler 0.5 g of the inorganic filler is put in a 100 ml conical stoppered flask, 100 ml of distilled water is added, and the stopper is sealed. It can be measured by stirring and extracting for 24 hours at a rotation speed of 600 rpm using a stirrer in an environment of a temperature of 23 ⁇ 5 ° C., and measuring the pH of the supernatant after standing in accordance with JISZ8802 “pH measurement method”.
  • the surface treatment agent is not particularly limited as long as it can react with or bond to an inorganic filler or furan resin (A), but an organic silane surface treatment that easily forms a bond is preferable.
  • an aminosilane-based surface treatment agent an epoxysilane-based surface treatment agent, and an acrylicsilane-based surface treatment agent.
  • the addition amount of the inorganic filler varies depending on the viscosity of the furan resin (A). However, if the amount is too small, the effect of improving the strength properties cannot be obtained. May occur. Therefore, the amount is preferably 5 to 100 parts by weight, more preferably 10 to 80 parts by weight, and most preferably 10 to 60 parts by weight with respect to 100 parts by weight of the furan resin (A).
  • an antifoaming agent to the curable furan resin composition with the aim of defoaming when mixing the thermosetting furan resin composition.
  • antifoaming agents include: silicone defoamers such as oil-type silicone defoamers and emulsion-type silicone defoamers; defoaming polymer-type defoamers such as nonionic polyethers; special nonionic surfactants Polyether modified methyl alkyl polysiloxane copolymer; polyethylene glycol type nonionic surfactant; and vegetable oil-based antifoaming agent, etc. Silicone defoaming such as oil type silicone antifoaming agent, emulsion type silicone antifoaming agent, etc.
  • An antifoamer may be used independently and may be used in combination of 2 or more type.
  • the addition amount is preferably 0.0001 to 1 part by weight per 100 parts by weight of the curable furan resin (A).
  • thermosetting furan resin composition is not particularly limited, and examples thereof include a method of stirring and mixing using a homodisper.
  • thermosetting furan resin composition of the present invention may contain a reactive diluent from the viewpoint of viscosity adjustment and reactivity adjustment.
  • the reactive diluent is not particularly limited as long as it has a low viscosity, is compatible with the furan resin, and reacts and solidifies when the thermosetting furan resin composition is cured. Furyl alcohol alone, furfural alone, or a mixture of furfuryl alcohol and furfural is preferred.
  • the content of the reactive diluent varies depending on the type of reactive diluent and the viscosity of the furan resin, but if the amount is too small, the impregnation property to the substrate may be lowered.
  • the amount is preferably 10 to 130 parts by weight, more preferably 10 to 110 parts by weight, and more preferably 20 to 90 parts by weight with respect to 100 parts by weight of the furan resin (A). More preferred is 40 to 80 parts by weight.
  • thermosetting furan resin composition of the present invention for example, at least one additive selected from the group consisting of sodium chloride, lithium chloride, sodium bromide and lithium bromide is added to the furan resin (A).
  • a method having an additive addition step of adding (C) and a curing catalyst addition step of adding the curing catalyst (B) to the furan resin (A) can be mentioned.
  • the additive (C) may be added as a powder or may be added as a solution. It is particularly preferable to add the additive (C) as a solution because it facilitates dispersion in the furan resin (A).
  • the solvent include water, methanol, ethanol, and a mixed solution thereof. Among these, from the viewpoint of uniformly adding sodium chloride, lithium chloride, sodium bromide, and lithium bromide, an aqueous solution using water as a solvent is preferable.
  • the concentration of the additive (C) in the solution or dispersion is not particularly limited because it is adjusted by the type of the additive (C), the solvent, the addition temperature, the target dimensional accuracy, and the like.
  • concentration of the aqueous solution is such that the amount of water added to the composition as an aqueous solution is 10 parts by weight or less (for example, 0.5 to 10 parts by weight) with respect to 100 parts by weight of the furan resin (A). Is preferred.
  • the concentration of the aqueous solution can be, for example, about 10 to 25% by weight in the case of sodium chloride and about 30 to 45% by weight in the case of lithium chloride.
  • the curing catalyst (B) is added to the furan resin (A) and mixed by stirring or the like.
  • Furan resin laminate The furan resin laminate of the present invention is obtained by impregnating the above-mentioned furan resin composition into a fibrous base material, followed by heat curing.
  • the fibrous base material examples include a woven or non-woven fabric made of organic fibers such as paper, cotton, and linen, a chopped strand mat, and a roving cloth.
  • the nonwoven fabric material is, for example, polyester, high density polyethylene (HDPE), high strength and high elasticity such as polypropylene, among which resin is preferable, and flexible and porous continuous filament or staple fiber. Felts, mats, spunbonds, webs, and the like with the can also be used.
  • strands such as glass fibers are cut into a certain length and dispersed in a mat shape, and then a thermoadhesive agent such as a thermoplastic resin is uniformly applied and thermally melted. What was made into the mat
  • the reinforcing fiber preferably has a fiber diameter in the range of 3 to 25 ⁇ m, and more preferably has a fiber diameter of 5 to 20 ⁇ m from the viewpoint of strength and price.
  • the method for impregnating the fibrous base material with the thermosetting furan resin composition is not particularly limited, and examples thereof include a method for impregnating the reinforcing fiber with the thermosetting furan resin composition with an impregnation roll.
  • the curing method of the thermosetting furan resin composition impregnated in the fibrous base material is not particularly limited.
  • the fibrous base material impregnated with the thermosetting furan resin composition is a container or mold having a predetermined shape.
  • a method of setting inside and heating and curing with hot air or a hot plate may be used.
  • the temperature at which the thermosetting furan resin composition of the present invention is heat-cured is not particularly limited, but is generally preferably, for example, 70 to 130 ° C.
  • the furan resin laminate of the present invention can easily give a laminate having a small dimensional shrinkage after curing by using the thermosetting furan resin composition having a small dimensional change as described above. Therefore, according to the present invention, a furan resin laminate having good quality can be produced at a low cost, and can be particularly suitably used for applications such as FRP.
  • thermosetting furan resin composition was uniformly impregnated into the fibrous base material with an impregnation roll, the time required to penetrate from the front surface to the back surface was evaluated relative to Comparative Example 1.
  • thermosetting furan resin composition was uniformly impregnated into the fibrous base material with an impregnation roll, the monomer odor was evaluated relative to Comparative Example 1.
  • thermosetting furan resin composition 20 g was put into a sealable glass container having an inner diameter of 20 mm and a height of 50 mm, the presence or absence of fluidity in a 30 ° C. environment was confirmed every hour, and the time when fluidity disappeared was measured.
  • thermosetting furan resin composition (Preparation of thermosetting furan resin composition) ⁇ Examples 1 to 5>
  • a furan resin composed of a cocondensate of furfuryl alcohol and formaldehyde (viscosity 2000 mPa ⁇ s, water content 6% by weight, total content of residual furfuryl alcohol and furfural 0.4% by weight)
  • the additives shown in Table 1 were added and stirred for 5 minutes at 500 rpm using a homodisper. After stirring, a curing catalyst was added, and the mixture was further stirred at 500 rpm for 3 minutes to obtain a thermosetting furan resin composition.
  • Furan resin 100 comprising a co-condensate of furfuryl alcohol and formaldehyde (viscosity 2000 mPa ⁇ s, moisture content 6 wt%, total content of residual furfuryl alcohol and furfural (FA / FL) 0.4 wt%))
  • the additive aqueous solution shown in Table 2 was added to parts by weight, and the mixture was stirred at 500 rpm for 5 minutes using a homodisper. After stirring, a curing catalyst was added, and the mixture was further stirred at 500 rpm for 3 minutes to obtain a thermosetting furan resin composition.
  • Examples 8 to 10> For 100 parts by weight of a furan resin composed of a co-condensate of furfuryl alcohol and formaldehyde (viscosity 2000 mPa ⁇ s, water content 6% by weight, total content of residual furfuryl alcohol and furfural 0.4% by weight), The aqueous additive solution, filler and antifoaming material shown in Table 2 were added and stirred at 500 rpm for 5 minutes using a homodisper. After stirring, a curing catalyst was added, and the mixture was further stirred at 500 rpm for 3 minutes to obtain a thermosetting furan resin composition.
  • Examples 1 to 5 and Comparative Examples 2 to 3 are compared, Examples 1 to 5 in which the viscosity, moisture content, and the total content of residual furfuryl alcohol and furfural of the furan resin are in the preferred range are It was revealed that the retention ratio and the weight retention ratio were good, and that it was effective in improving impregnation properties and preventing monomer dissipation.
  • thermosetting furan resin composition it is possible to ensure better impregnation properties, suppress a tendency to deteriorate the working environment due to volatile monomers, ensure a longer pot life, and impart higher mechanical properties. effective.
  • thermosetting furan resin composition (Preparation of thermosetting furan resin composition) ⁇ Examples B1 to B4> To 100 parts by weight of a co-condensate of furfuryl alcohol and formaldehyde (viscosity 2700 mPa ⁇ s, moisture content 7.4% by weight), the additive (C) shown in Tables 3 and 4 is added, and the homodisper is added. Stir at 1000 rpm for 5 minutes. After stirring, 4.0 parts by weight of a 50% aqueous solution of paratoluenesulfonic acid was added as a curing catalyst (B), and further stirred at 1000 rpm for 5 minutes to obtain a thermosetting furan resin composition.
  • thermosetting furan resin composition was obtained by stirring at 1000 rpm for 5 minutes.
  • thermosetting furan resin composition (5500 g / m 2) a polyester non-woven fabric substrate (thickness 5 mm, basis weight 1000 g / m 2) was uniformly impregnated with impregnation roll, the inner dimension 240 mm ⁇ 240 mm ⁇ 5 mm It left still in a metal mold
  • thermosetting furan resin composition of the present invention is a thermosetting furan resin composition that gives a furan resin laminate with small dimensional shrinkage after curing, and is an effective thermosetting resin as a matrix resin for laminates such as FRP. Since the composition can be easily obtained in a small number of steps, it is very useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

フラン系樹脂(A)と、硬化触媒(B)と、強酸と強塩基からなる正塩である添加剤(C)とを含む、熱硬化性フラン樹脂組成物を提供する。上記添加剤(C)は、20℃における水に対する溶解度が30g/100gH2O以上であることが好ましい。さらに、上記添加剤(C)は、塩化ナトリウム、塩化カリウム、塩化リチウム、臭化ナトリウム、臭化カリウム、臭化リチウム、硫酸ナトリウム、硫酸カリウム、硫酸リチウム、硝酸ナトリウム、硝酸カリウム、及び硫酸リチウムからなる群から選ばれた少なくとも1つあるいはその混合物であることが好ましい。上記添加剤(C)の含有量は、上記フラン系樹脂(A)100重量部に対し0.2~10重量部であることが好ましい。

Description

熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体
 本発明は、熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体に関し、更に詳しくは硬化後の寸法変化が小さい熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体に関する。
 従来、フルフリルアルコールやフルフラールを原料としたフラン樹脂を主成分とする熱硬化性フラン樹脂組成物は、その硬化物が耐熱性・耐溶剤性・耐薬品性に優れていることから、鋼管ライニング、メジセメント、FRP等の積層体及び複合材のマトリックス樹脂として各種産業分野において使用されている。
 しかしながら、従来の熱硬化性フラン樹脂組成物はフラン樹脂合成時の縮合反応に由来する含有水分と硬化反応に由来する発生水分が放散することにより、寸法変化が大きいという問題があった。
 これを踏まえ、フラン樹脂の縮合水を合成終了後留去することで水分含有量を低下させる方法(特許文献1参照)が提案されている。
 しかしながら、この方法では、水分の減少に伴いフラン樹脂の粘度が指数的に増加し、積層体のマトリックス樹脂として必要不可欠である含浸性を確保することが困難であった。
 一方、縮合水を合成終了後留去した後、フルフリルアルコールやフルフラールで希釈することで、寸法変化を防止しつつ、粘度を低下させる方法も考えられる。
 しかしながら、この方法では、揮発性モノマーであるフルフリルアルコールやフルフラールを大量に添加する必要があり、このモノマー放散による作業環境の悪化が大きな問題となる。
 更にこれら方法では、硬化反応に由来する発生水分の放散による寸法変化を防止することは困難であった。
特許3219769号公報
 本発明の目的は、上記従来技術の問題点に鑑み、硬化後の寸法変化が小さい熱硬化性フラン樹脂組成物及びこれを含むフラン樹脂積層体を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意研究した結果、フラン系樹脂と硬化触媒と添加剤からなる熱硬化性フラン樹脂組成物において、上記添加剤が強酸と強塩基からなる正塩である熱硬化性フラン樹脂組成物により、さらにはこれを用いたフラン樹脂積層体により、上記課題を解決することができることを見出し、本発明を完成するに至った。
 すなわち、本発明の第1の発明によれば、フラン系樹脂(A)と、硬化触媒(B)と、強酸と強塩基からなる正塩である添加剤(C)とを含む、熱硬化性フラン樹脂組成物が提供される。
 また、本発明の第2の発明によれば、第1の発明において、添加剤(C)の20℃における水に対する溶解度が30g/100gH2O以上である、熱硬化性フラン樹脂組成物が提供される。
 さらに、本発明の第3の発明によれば、第1又は第2の発明において、添加剤(C)が、塩化ナトリウム、塩化カリウム、塩化リチウム、臭化ナトリウム、臭化カリウム、臭化リチウム、硫酸ナトリウム、硫酸カリウム、硫酸リチウム、硝酸ナトリウム、硝酸カリウム、及び硫酸リチウムからなる群から選ばれた少なくとも1つあるいはその混合物である、熱硬化性フラン樹脂組成物が提供される。
 また、本発明の第4の発明によれば、第1~3の何れかの発明において、添加剤(C)の含有量が、フラン系樹脂(A)100重量部に対し0.2~10重量部である、熱硬化性フラン樹脂組成物が提供される。
 また、本発明の第5の発明によれば、第1~4の何れかの発明において、熱硬化性フラン樹脂組成物の水分量が15重量%以下である、熱硬化性フラン樹脂組成物が提供される。
 また、本発明の第6の発明によれば、第1~5の何れかの発明において、フラン系樹脂(A)は、25℃における粘度が100~5000mPa・sである、熱硬化性フラン樹脂組成物が提供される。
 この発明によれば、硬化反応で発生する水分量が減少し硬化物の寸法変化を防止できるフラン系樹脂でありながら、低粘度で含浸性を確保することが可能となる。
 また、本発明の第7の発明によれば、第1~6の何れかの発明において、フラン系樹脂(A)の水分量が10重量%以下であり、且つ残存フルフリルアルコール及びフルフラールの合計含有率が1重量%以下である、熱硬化性フラン樹脂組成物が提供される。
 この発明によれば、揮発性モノマーを殆ど含まないフラン系樹脂でありながら、硬化反応で発生する水分量が減少し、硬化物の寸法変化を防止できる。
 また、本発明の第8の発明によれば、第1~7の何れかの発明において、硬化触媒(B)が、熱反応型潜在性酸硬化触媒(B2)のみ、あるいは顕在性硬化触媒(B1)と熱反応型潜在性酸硬化触媒(B2)の混合物からなる、熱硬化性フラン樹脂組成物が提供される。
 この発明によれば、潜在性硬化触媒に由来する長いポットライフを得ることが出来る。
 また、本発明の第9の発明によれば、第8の発明において、反応型潜在性酸硬化触媒(B2)が、無機アンモニウム塩、1級アミン塩、2級アミン塩、及び3級アミン塩からなる群から選択される少なくとも1種である、熱硬化性フラン樹脂組成物が提供される。
 また、本発明の第10の発明によれば、第9の発明において、熱反応型潜在性酸硬化触媒(B2)が、ハロゲン化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、ハロゲン化メチルアンモニウム、ハロゲン化ジメチルアンモニウム、ハロゲン化エチルアンモニウム、ハロゲン化ジエチルアンモニウム、からなる群から選択される少なくとも1種である、熱硬化性フラン樹脂組成物が提供される。
 また、本発明の第11の発明によれば、第1~10の何れかの発明において、フラン系樹脂(A)100重量部に対し、5~100重量部の無機系充填剤をさらに含む、熱硬化性フラン樹脂組成物が提供される。
 この発明によれば、所定量の無機系充填剤をさらに含むことにより、熱硬化後の組成物の機械的強度を向上させることができる。
 また、本発明の第12の発明によれば、第11の発明において、無機系充填剤のpHが10以下である、熱硬化性フラン樹脂組成物が提供される。
 また、本発明の第13の発明によれば、第11又は12の発明において、無機系充填剤が有機シラン系表面処理を施されている、熱硬化性フラン樹脂組成物が提供される。
 また、本発明の第14の発明によれば、第1~13の何れかの発明において、さらに消泡剤を含む、熱硬化性フラン樹脂組成物が提供される。
 この発明によれば、消泡剤をさらに含むことにより、熱硬化性フラン樹脂組成物内に残留する泡が少なくなることで、これを硬化した後の組成物の機械的強度を向上させることができる。
 また、本発明の第15の発明によれば、繊維状基材と、第1~14の何れかの発明の熱硬化性フラン樹脂組成物が上記繊維状基材に含浸された後、硬化された硬化物と、を含むフラン樹脂積層体が提供される。
 本発明の熱硬化性フラン樹脂組成物によれば、硬化反応で発生する水分量が減少し、硬化物の寸法変化を防止できるという効果がある。
 また、本発明のフラン樹脂積層体によれば、寸法変化の小さな熱硬化性フラン樹脂組成物を繊維状基材に含浸させることで、硬化後の寸法収縮の小さな積層体となるという効果がある。
 本発明の熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体を、以下に、具体的かつ詳細に説明する。
 1.熱硬化性フラン樹脂組成物
 本発明の熱硬化性フラン樹脂組成物は、フラン系樹脂(A)と、硬化触媒(B)と、強酸と強塩基からなる正塩である添加剤(C)とを含んでいる。本発明の熱硬化性フラン樹脂組成物は、フラン系樹脂(A)と、硬化触媒(B)と、強酸と強塩基からなる正塩である添加剤(C)と、を主として含有することが好ましい。本明細書において、「主として含有する」とは、好ましくは50~100重量%、より好ましくは60~100重量%、さらに好ましくは70~100重量%含有することを意味する。
  (1)フラン系樹脂(A)
 本発明において、フラン系樹脂(A)としては、フラン樹脂、変性フラン樹脂が好ましい。
 フラン樹脂は、フラン環に1或いは複数の反応性置換基を有するフランもしくはフラン誘導体を出発物質の一つとする重合物あるいはその前駆体(オリゴマー)であり、フルフリルアルコール型、フルフリルアルコール・フルフラール共縮合型、フルフリルアルコール・アルデヒド共縮合型、フルフラール・ケトン共縮合型、フルフラール・フェノール共縮合型、フルフリルアルコール・尿素共縮合型、フルフリルアルコール・フェノール共縮合型等のフラン樹脂が挙げられる。
 フラン系樹脂(A)としていずれの種類のものも使用可能であるが、工業的に安定に供給されていることから、フルフリルアルコール型やフルフリルアルコール・ホルムアルデヒド共縮合型のフラン樹脂が好ましい。
 変性フラン樹脂としては、例えばエポキシ変性、フェノール変性、アルデヒド変性、尿素変性、メラミン変性等の変性が施されたフラン樹脂が挙げられる。
 フラン系樹脂(A)の粘度は、大きすぎると積層体成形時の含浸性が低下するおそれがあり、一方、小さすぎると積層体成形時タレが発生するおそれがあることから、25℃において100~5000mPa・sがより好ましく、200~3000mPa・sが更に好ましく、300~2000mPa・sが最も好ましい。
 フラン系樹脂(A)の水分含有率は、大きすぎると硬化時の水分放散による寸法収縮が大きくなる為、10重量%以下(たとえば0.5~10重量%)が好ましく、より好ましくは9%以下、特に好ましくは8重量%以下である。
 フラン系樹脂(A)の残存フルフリルアルコール及びフルフラールの合計含有率は、多すぎると作業環境の悪化を招くおそれがあることから、1重量%以下(たとえば0.0001~1重量%)が好ましく、0.8重量%以下が更に好ましい。
 (2)硬化触媒(B)
 硬化触媒(B)は、フラン系樹脂(A)を硬化しうるものであれば特に限定されず、例えば有機スルホン酸、有機カルボン酸等の有機酸並びにその水溶液、塩酸、硫酸、リン酸等の無機酸並びにその水溶液が挙げられる。
 有機スルホン酸としては、例えばパラトルエンスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸、メタンスルホン酸等が挙げられる。有機カルボン酸としては、例えば、マロン酸、コハク酸、マレイン酸、シュウ酸、酢酸、乳酸、リンゴ酸、酒石酸、安息香酸、クエン酸等が挙げられる。上記例示の硬化触媒は、単独で用いても良いし、2種類以上を組み合わせて用いても良い。
 硬化時間の短縮とポットライフの両立を狙いとして、硬化触媒(B)として、熱反応型潜在性酸硬化触媒(B2)を単独あるいは顕在性硬化触媒(B1)と併用使用する事も好ましい。
 顕在性硬化触媒(B1)としては、有機スルホン酸、有機カルボン酸等の有機酸並びにその水溶液、塩酸、硫酸等の無機酸並びにその水溶液が挙げられる。
 熱反応型潜在性酸硬化触媒(B2)としては、フラン系樹脂(A)に含有する成分と常温では反応しにくく硬化時の加熱ですばやく反応し酸を発生させるものであれば特に限定されない。熱反応型潜在性酸硬化触媒(B2)としては、常温時の安定性と硬化時の加熱による反応速度の点から、無機アンモニウム塩、1級アミン塩、2級アミン塩、3級アミン塩の少なくともいずれかを含有することが好ましい。
 熱反応型潜在性酸硬化触媒(B2)としては、具体的には、ハロゲン化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、ハロゲン化メチルアンモニウム、ハロゲン化ジメチルアンモニウム、ハロゲン化エチルアンモニウム、ハロゲン化ジエチルアンモニウムの少なくともいずれかを含有することがより好ましい。ハロゲンとしては、塩素、臭素、ヨウ素などが挙げられる。中でも、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、塩化メチルアンモニウム、塩化ジメチルアンモニウム、塩化エチルアンモニウム、塩化ジエチルアンモニウムを含有することがさらに好ましい。
 硬化触媒(B)の添加量は、フラン系樹脂(A)および硬化触媒(B)の種類や希釈濃度、目的とする硬化温度・硬化時間により調整されるため特に限定されないが、フラン系樹脂(A)100重量部に対し、0.5~10重量部が好ましく、1~8重量部とするのが特に好ましい。0.5重量部より少ないと、硬化不良の問題となるおそれがある。一方、10重量部より多いと、ポットライフが短くなるおそれがある。
 (3)添加剤(C)
 添加剤(C)は、強酸と強塩基からなる正塩であれば特に限定されず、例えば塩化ナトリウム、塩化カリウム、塩化リチウム、臭化ナトリウム、臭化カリウム、臭化リチウム、硫酸ナトリウム、硫酸カリウム、硫酸リチウム、硝酸ナトリウム、硝酸カリウム、硫酸リチウム等があげられる。過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩も添加できる。過硫酸塩は、熱反応型潜在性酸硬化触媒としても作用する。
 添加剤(C)は、固体で添加してもよいが、フラン系樹脂への分散を容易にするため水溶液で添加する事が好ましい。この場合に、添加剤の分散性が向上する事により、さらに硬化物の寸法変化を防止できる熱硬化性フラン樹脂組成物を、少ない工程で簡便に得ることができる。添加剤水溶液の濃度は、添加剤の種類、添加温度、目的とする寸法精度等により調整されるため特に限定されないが、濃度が低いと添加する水分が多くなり寸法変化が大きくなるので、使用温度における溶解度付近で調整されることが好ましい。
 添加剤(C)は、水に対する溶解度が低すぎるとフラン系樹脂(A)に対する溶解あるいは分散性が悪化する為、20℃における水に対する溶解度が30g/100gH2O以上であることが好ましい。
 添加剤(C)は、塩化ナトリウム、塩化リチウム、臭化ナトリウム、及び臭化リチウムから選ばれる1つあるいはその混合物であることが好ましく、寸法変化防止効果、常温における溶解度の高さから塩化リチウムが最も好ましい。
 添加剤(C)の添加量は、フラン系樹脂(A)および硬化触媒(B)の種類や含有水分量、目的とする寸法精度等により調整されるため特に限定されないが、フラン系樹脂(A)100重量部に対し、0.2~10重量部が好ましく、0.5~5重量部が更に好ましく、1~3重量部が最も好ましい。0.2重量部より少ないと、十分な寸法変化防止効果が得られないおそれがあり、10重量部より多いとフラン系樹脂(A)との混合時粘度が高くなりすぎるおそれがある。
 本発明の熱硬化性フラン樹脂組成物の粘度は、大きすぎると積層体成形時の含浸性が低下するおそれがあり、一方、小さすぎると積層体成形時タレが発生するおそれがあることから、25℃において100~10000mPa・sが好ましく、100~3000mPa・sがより好ましく、100~3500mPa・sが最も好ましい。
 熱硬化性フラン樹脂組成物の水分含有率は、大きすぎると硬化時の水分放散による寸法収縮が大きくなる為、15重量%以下(たとえば0.5~15重量%)が好ましく、より好ましくは12%以下、特に好ましくは10重量%以下である。
 (4)その他の添加物
 強度特性の向上を狙いとして、硬化性フラン樹脂組成物に無機系充填材を添加する事が好ましい。無機系充填材としては、弾性率が高く、高充填が可能であれば特に限定されないが、硬化阻害を防止する観点から、pHが10以下の無機系充填材が好ましい。具体的には、ガラスパウダー・シリカ・タルク・カオリン・マイカ・水酸化アルミニウム等が好ましく、コストの点からカオリン・シリカ・水酸化アルミニウムが最も好ましい。無機系充填材のpHは、無機充填剤0.5gを、100mlの共栓付三角フラスコに入れた後蒸留水100mlを加え、密栓する。温度23±5℃の環境においてスターラーを用い600rpmの回転数で24hr攪拌・抽出し、静置後の上澄み液をJISZ8802『pHの測定方法』に準拠してpHを測定することで測定できる。
 フラン系樹脂(A)との界面接着力向上を狙いとして、無機系充填材に表面処理を施すことは好ましい。表面処理剤としては、無機系充填材やフラン系樹脂(A)と反応、あるいは結合が可能であれば特に限定さないが、結合が形成しやすい、有機シラン系表面処理が好ましく、具体的には、アミノシラン系表面処理剤、エポキシシラン系表面処理剤、アクリルシラン系表面処理剤が最も好ましい。
 無機系充填材の添加量は、フラン系樹脂(A)の粘度により異なるが、少なすぎると強度特性向上の効果が得られず、一方、多すぎると増粘による基材への含浸性低下が発生するおそれがある。このため、フラン系樹脂(A)100重量部に対して、5~100重量部であることが好ましく、10~80重量部が更に好ましく、10~60重量部が最も好ましい。
 熱硬化性フラン樹脂組成物混合時の消泡を狙いとして、硬化性フラン樹脂組成物に消泡剤を添加する事も好ましい。消泡剤の種類としては、オイル型シリコーン消泡剤、エマルジョン型シリコーン消泡剤などのシリコーン消泡剤;非イオン系ポリエーテルなどの破泡性ポリマー型消泡剤;特殊非イオン界面活性剤;ポリエーテル変成メチルアルキルポリシロキサン共重合体;ポリエチレングリコール型非イオン界面活性剤;ならびに植物油系消泡剤などが挙げられ、オイル型シリコーン消泡剤、エマルジョン型シリコーン消泡剤などのシリコーン消泡剤;及び破泡性ポリマー型消泡剤が特に好ましい。消泡剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。その添加量は、硬化性フラン樹脂(A)100重量部に対し、0.0001重量部~1重量部が望ましい。
 熱硬化性フラン樹脂組成物を混合する方法は特に限定されず、例えば、ホモディスパーを用いて撹拌混合する方法が挙げられる。
 本発明の熱硬化性フラン樹脂組成物は、粘度調整や反応性調整の点から、反応性希釈剤を含んでいてもよい。その際、反応性希釈剤としては、粘度が低く、フラン樹脂と相溶性があり、熱硬化性フラン樹脂組成物が硬化する際に反応・固化するものであれば特に限定されないが、例えば、フルフリルアルコール単独、フルフラール単独、あるいはフルフリルアルコールとフルフラールの混合物が好ましい。
 反応性希釈剤の含有量は、反応性希釈剤の種類、フラン樹脂の粘度により異なるが、少なすぎると基材への含浸性が低下するおそれがあり、一方、多すぎると基材に含浸後、タレが発生するおそれがあることから、フラン系樹脂(A)100重量部に対して、10~130重量部であることが好ましく、10~110重量部がより好ましく、20~90重量部が更に好ましく、40~80重量部が最も好ましい。
 本発明の熱硬化性フラン樹脂組成物の製造方法としては、フラン系樹脂(A)に、例えば塩化ナトリウム、塩化リチウム、臭化ナトリウム、臭化リチウムからなる群から選ばれた少なくとも1つの添加剤(C)を添加する添加剤添加工程と、フラン系樹脂(A)に硬化触媒(B)を添加する硬化触媒添加工程とを有している方法が挙げられる。
 添加剤添加工程において、添加剤(C)は、粉体として添加してもよいし、溶液として添加してもよい。添加剤(C)を溶液にして添加する事はフラン系樹脂(A)への分散を容易にするため特に好ましい。溶媒としては、水、メタノール、エタノール、これらの混合液などが挙げられる。中でも塩化ナトリウム、塩化リチウム、臭化ナトリウム、臭化リチウムを均一に添加する観点からは、水を溶媒とする水溶液が好ましい。
 溶液または分散液における添加剤(C)の濃度は、添加剤(C)の種類、溶媒、添加温度、目的とする寸法精度等により調整されるため特に限定されない。水溶液として添加する場合、水溶液の濃度が低いと添加する水分が多くなり寸法変化が大きくなるので、使用温度における飽和溶解度付近で調整されることが好ましい。水溶液の濃度としては、水溶液として組成物に添加される水分量がフラン系樹脂(A)100重量部に対して、10重量部以下(例えば0.5~10重量部)となる濃度であることが好ましい。水溶液の濃度としては、例えば、塩化ナトリウムの場合には10~25重量%程度、塩化リチウムの場合には、30~45重量%程度とすることができる。
 硬化触媒添加工程では、フラン系樹脂(A)に硬化触媒(B)を添加し、攪拌等して混合する。
 2.フラン樹脂積層体
 本発明のフラン樹脂積層体は、上記フラン樹脂組成物を、繊維状基材に含浸後、加熱硬化したものである。
 繊維状基材としては、例えば紙、綿、麻などの有機繊維からなる織物もしくは不織布やチョップドストランドマット、ロービングクロス等があげられる。
 不織布の材料としては、例えばポリエステル、高密度ポリエチレン(HDPE)、ポリプロピレン等の高強度で高弾性のもの、中でも樹脂が好ましく、また、可撓性を有し多孔質である、連続フィラメント又はステープルファイバーを備えたフェルト、マット、スパンボンド、ウェブなども使用可能である。
 チョップドストランドマットとしては、例えばガラス繊維等のストランドを一定長さに切断し、マット状に分散させた後、熱可塑性樹脂等の粘接着剤を均一に付与して熱溶融し、ストランド同士を接着させてマットとしたものなどが好ましい。
 ロービングクロスとしては、ガラス繊維、炭素繊維、アラミド繊維、無機繊維、有機繊維、ウィスカー、金属繊維等が好ましく、中でもガラス繊維が、得られる繊維強化樹脂層の強度と価格のバランスから好ましい。また、強化繊維は繊維径が3~25μmの範囲のものであることが好ましく、強度及び価格の観点から5~20μmの繊維径のものがより好ましい。
 繊維質基材に熱硬化性フラン樹脂組成物を含浸させる方法は特に限定されず、例えば、強化繊維に熱硬化性フラン樹脂組成物を含浸ロールにて含浸させる方法等が挙げられる。
 繊維質基材に含浸させた熱硬化性フラン樹脂組成物の硬化方法は特に限定されず、例えば、熱硬化性フラン樹脂組成物を含浸させた繊維質基材を所定の形状の容器もしくは金型内に設置し、熱風であるいは熱板に挟み込んで加熱硬化する方法等が挙げられる。上記本発明の熱硬化性フラン樹脂組成物を加熱硬化する際の温度は、特に限定されないが、一般的に、例えば70~130℃が好ましい。
 本発明のフラン樹脂積層体は、上記のような寸法変化の小さな熱硬化性フラン樹脂組成物を使用することにより、硬化後の寸法収縮の小さな積層体を簡便に与える事ができる。したがって、本発明により、品質が良好なフラン樹脂積層体を低コストにて製造することができ、例えばFRPなどの用途に特に好適に用いることができる。
 以下、実施例を用いて本発明をさらに詳しく説明するが、本発明はこれらの例によりなんら限定されるものではない。
 本発明における各物性値の測定方法を以下に示す。
 (1)寸法保持率
 成形したフラン樹脂積層体を100mm×100mmにカット後寸法測定し、25℃の恒温室(湿度50%)で100時間養生した後、以下の式を元に比較、寸法保持率を求めた。
 寸法保持率(%)=100時間後の寸法(mm)/カット後寸法(mm)×100
 (2)重量保持率
 成形したフラン樹脂積層体を100mm×100mmにカット後重量測定し、25℃の恒温室(湿度50%)で100時間養生した後、以下の式を元に比較、重量保持率を求めた。
 重量保持率(%)=100時間後の重量(g)/カット後重量(g)×100
 (3)含浸性
 熱硬化性フラン樹脂組成物を繊維状基材に含浸ロールにて均一に含浸する際、表面から裏面へ浸透するまでの時間を比較例1に対し相対的に評価した。
 (4)モノマー放散
 熱硬化性フラン樹脂組成物を繊維状基材に含浸ロールにて均一に含浸する際、モノマー臭を比較例1に対し相対的に評価した。
 (5)ポットライフ
 ポットライフ時間)
 熱硬化性フラン樹脂組成物20gを内径20mm高さ50mmの密封可能なガラス容器に入れ、30℃環境下での流動性の有無を1時間毎に確認し、流動性がなくなる時間を測定した。
 (6)曲げ弾性率
 成形したフラン樹脂積層体の曲げ弾性率を、JIS K7171『プラスチック―曲げ特性の求め方』に準拠して測定した。
 (熱硬化性フラン樹脂組成物の調製)
 <実施例1~5>
 フルフリルアルコールとホルムアルデヒドとの共縮合物(粘度2000mPa・s、水分含有量6重量%、残存フルフリルアルコール及びフルフラールの合計含有率0.4重量%)からなるフラン系樹脂100重量部に対し、表1に示す添加剤を添加し、ホモディスパーを用い500rpmで5分間攪拌した。撹拌後、硬化触媒を添加し、更に500rpm3分間攪拌することで熱硬化性フラン樹脂組成物を得た。
 <実施例6~7>
 フルフリルアルコールとホルムアルデヒドとの共縮合物(粘度2000mPa・s、水分含有量6重量%、残存フルフリルアルコール及びフルフラール(FA/FL)の合計含有率0.4重量%)からなるフラン系樹脂100重量部に対し、表2に示す添加剤水溶液を添加し、ホモディスパーを用い500rpmで5分間攪拌した。撹拌後、硬化触媒を添加し、更に500rpm3分間攪拌することで熱硬化性フラン樹脂組成物を得た。
 <実施例8~10>
 フルフリルアルコールとホルムアルデヒドとの共縮合物(粘度2000mPa・s、水分含有量6重量%、残存フルフリルアルコール及びフルフラールの合計含有率0.4重量%)からなるフラン系樹脂100重量部に対し、表2に示す添加剤水溶液、充填剤及び消泡材を添加し、ホモディスパーを用い500rpmで5分間攪拌した。撹拌後、硬化触媒を添加し、更に500rpm3分間攪拌することで熱硬化性フラン樹脂組成物を得た。
 <比較例1~3>
 表1に示す組成のフルフリルアルコールとホルムアルデヒドとの共縮合物からなるフラン系樹脂100重量部に対し、硬化触媒を添加し、500rpm3分間攪拌することで熱硬化性フラン樹脂組成物を得た。
 (フラン樹脂積層体の成形)
 上記、熱硬化性フラン樹脂組成物(8400g/m2)をポリエステル不織布基材(厚さ5mm、目付1000g/m2)に含浸ロールにて均一に含浸した後、内寸240mm×240mm×5mmの金型内に静置し、90℃で12時間硬化し、フラン樹脂積層体を得た。
 上記実施例及び比較例により得られたフラン樹脂積層体について、各評価を行った。評価結果を表1・表2に示した。なお、表において、単位phrはフラン系樹脂(A)100重量部に対する重量部である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、実施例1~5と比較例1~3とを対比すると、本発明の特定事項である「添加剤の添加」の要件を満たさない比較例1~3で得られたものは、寸法保持率・重量保持率が不良であったのに対して、本願発明の実施例1~5においては、寸法保持率・重量保持率が良好であり、硬化後の寸法変化が小さい熱硬化性フラン樹脂組成物及びフラン樹脂積層体が得られることが明らかになった。
 また、実施例1~5と比較例2~3とを対比すると、フラン系樹脂の粘度、水分量、残存フルフリルアルコール及びフルフラールの合計含有率が好ましい範囲にある実施例1~5は、寸法保持率・重量保持率が良好であり、且つ含浸性の向上やモノマー放散の防止にも効果がある事が明らかになった。
 さらに、実施例6と7の対比により、ポットライフの延長効果が、実施例6と8~10の対比により、曲げ弾性率の向上効果が明らかになった。
 上記熱硬化性フラン樹脂組成物によれば、より良好な含浸性の確保や、揮発性モノマーによる作業環境悪化傾向の抑制、より長いポットライフの確保、より高い機械的特性の付与も可能になる効果がある。
 (熱硬化性フラン樹脂組成物の調製)
 <実施例B1~B4>
 フルフリルアルコールとホルムアルデヒドとの共縮合物(粘度2700mPa・s、水分含有量7.4重量%)100重量部に対し、表3、4に記載の添加剤(C)を添加し、ホモディスパーを用い1000rpmで5分間攪拌した。撹拌後、硬化触媒(B)としてパラトルエンスルホン酸50%水溶液4.0重量部を添加し、更に1000rpm5分間攪拌することで熱硬化性フラン樹脂組成物を得た。
 <実施例B5~B6>
 フルフリルアルコールとホルムアルデヒドとの共縮合物(粘度2700mPa・s、水分含有量7.4重量%)100重量部に対し、使用温度(例えば20~30℃程度)における溶解度付近の濃度(表4に示す)に調整された添加剤(C)の水溶液を添加し、ホモディスパーを用い1000rpmで5分間攪拌した。なお、表4において、添加剤の添加量は、水溶液としての添加量を示す。撹拌後、硬化触媒(B)としてパラトルエンスルホン酸50%水溶液4.0重量部を添加し、更に1000rpm5分間攪拌することで熱硬化性フラン樹脂組成物を得た。
 <比較例B1>
 フルフリルアルコールとホルムアルデヒドとの共縮合物(粘度2700mPa・s、水分含有量7.4重量%)100重量部に対し硬化触媒(B)としてパラトルエンスルホン酸50%水溶液4.0重量部を添加し、1000rpm5分間攪拌することで熱硬化性フラン樹脂組成物を得た。
 (フラン樹脂積層体の成形)
 上記、熱硬化性フラン樹脂組成物(5500g/m2)をポリエステル不織布基材(厚さ5mm、目付1000g/m2)に含浸ロールにて均一に含浸した後、内寸240mm×240mm×5mmの金型内に静置し、90℃で12時間硬化し、フラン樹脂積層体を得た。
 上記実施例B1~B6及び比較例B1により得られたフラン樹脂積層体について、各評価を行った。評価結果を表3・表4に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明の熱硬化性フラン樹脂組成物は、硬化後の寸法収縮が小さいフラン樹脂積層体を与える熱硬化性フラン樹脂組成物であり、FRP等積層体のマトリックス樹脂として効果的な熱硬化性樹脂組成物が、少工程で簡便に得られるため、産業上大いに有用である。

Claims (15)

  1.  フラン系樹脂(A)と、
     硬化触媒(B)と、
     強酸と強塩基からなる正塩である添加剤(C)と
    を含む、
     熱硬化性フラン樹脂組成物。
  2.  前記添加剤(C)は、20℃における水に対する溶解度が30g/100gH2O以上である、
     請求項1記載の熱硬化性フラン樹脂組成物。
  3.  前記添加剤(C)が、塩化ナトリウム、塩化カリウム、塩化リチウム、臭化ナトリウム、臭化カリウム、臭化リチウム、硫酸ナトリウム、硫酸カリウム、硫酸リチウム、硝酸ナトリウム、硝酸カリウム、及び硫酸リチウムからなる群から選ばれた少なくとも1つあるいはその混合物である、
     請求項1又は2記載の熱硬化性フラン樹脂組成物。
  4.  前記添加剤(C)の含有量が、前記フラン系樹脂(A)100重量部に対し0.2~10重量部である、
     請求項1~3の何れか1項に記載の熱硬化性フラン樹脂組成物。
  5.  前記熱硬化性フラン樹脂組成物の水分量が15重量%以下である、請求項1~4の何れか1項に記載の熱硬化性フラン樹脂組成物。
  6.  前記フラン系樹脂(A)は、25℃における粘度が100~5000mPa・sである、
     請求項1~5の何れか1項に記載の熱硬化性フラン樹脂組成物。
  7.  前記フラン系樹脂(A)の水分量が10重量%以下であり、且つ残存フルフリルアルコール及びフルフラールの合計含有率が1重量%以下である、
     請求項1~6の何れか1項に記載の熱硬化性フラン樹脂組成物。
  8.  前記硬化触媒(B)が、熱反応型潜在性酸硬化触媒(B2)のみ、あるいは顕在性硬化触媒(B1)と熱反応型潜在性酸硬化触媒(B2)の混合物からなる、
     請求項1~7の何れか1項に記載の熱硬化性フラン樹脂組成物。
  9.  前記熱反応型潜在性酸硬化触媒(B2)が、無機アンモニウム塩、1級アミン塩、2級アミン塩、及び3級アミン塩からなる群から選択される少なくとも1種である、
     請求項8記載の熱硬化性フラン樹脂組成物。
  10.  前記熱反応型潜在性酸硬化触媒(B2)が、ハロゲン化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、ハロゲン化メチルアンモニウム、ハロゲン化ジメチルアンモニウム、ハロゲン化エチルアンモニウム、及びハロゲン化ジエチルアンモニウムからなる群から選択される少なくとも1種である、
     請求項9記載の熱硬化性フラン樹脂組成物。
  11.  前記フラン系樹脂(A)100重量部に対し、5~100重量部の無機系充填剤をさらに含む、
    請求項1~10の何れか1項に記載の熱硬化性フラン樹脂組成物。
  12.  前記無機系充填剤のpHが10以下である、
    請求項11記載の熱硬化性フラン樹脂組成物。
  13.  前記無機系充填剤が有機シラン系表面処理を施されている、
    請求項11又は12に記載の熱硬化性フラン樹脂組成物。
  14.  さらに、消泡剤を含む、
    請求項1~13の何れか1項に記載の熱硬化性フラン樹脂組成物。
  15.  繊維状基材と、
     請求項1~14の何れか1項に記載の熱硬化性フラン樹脂組成物が該繊維状基材に含浸された後、硬化された硬化物と、
    を含む、
    フラン樹脂積層体。
PCT/JP2013/058086 2012-03-26 2013-03-21 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体 WO2013146534A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/387,756 US9376543B2 (en) 2012-03-26 2013-03-21 Thermosetting furan resin composition and furan resin laminated body using the same
JP2014507796A JP5860530B2 (ja) 2012-03-26 2013-03-21 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体
EP13767850.4A EP2832790A4 (en) 2012-03-26 2013-03-21 THERMOSETTING FURANNIC RESIN COMPOSITION AND LAMINATE OF FURANNIC RESIN USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-069905 2012-03-26
JP2012069905 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013146534A1 true WO2013146534A1 (ja) 2013-10-03

Family

ID=49259790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058086 WO2013146534A1 (ja) 2012-03-26 2013-03-21 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体

Country Status (4)

Country Link
US (1) US9376543B2 (ja)
EP (1) EP2832790A4 (ja)
JP (1) JP5860530B2 (ja)
WO (1) WO2013146534A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199615A (ja) * 2012-03-26 2013-10-03 Sekisui Chem Co Ltd 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体
WO2015107966A1 (ja) * 2014-01-14 2015-07-23 住友ベークライト株式会社 コーティング材料及びコーティング方法
JP2016056297A (ja) * 2014-09-10 2016-04-21 積水化学工業株式会社 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体
JP2016535144A (ja) * 2013-08-01 2016-11-10 コンプネクスト・ソシエタ・ア・レスポンサビリタ・リミタータ 補強層および樹脂を有する複合材料製品の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108329447A (zh) * 2018-02-28 2018-07-27 晋江农发有机肥料制造有限公司 一种新型环保型呋喃树脂及其制备方法
CN108409929A (zh) * 2018-02-28 2018-08-17 晋江农发有机肥料制造有限公司 一种新型尿醛呋喃树脂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559256A (ja) * 1991-08-29 1993-03-09 Dainippon Ink & Chem Inc 酸硬化剤組成物及び合成樹脂組成物
JPH0857577A (ja) * 1994-08-19 1996-03-05 Kao Corp 鋳型製造用粘結剤組成物及び鋳型の製造方法
JP2000302944A (ja) * 1999-04-16 2000-10-31 Gun Ei Chem Ind Co Ltd 熱硬化性フェノール樹脂組成物
JP2000319345A (ja) * 1999-05-14 2000-11-21 Nippon Kayaku Co Ltd 熱硬化性樹脂組成物及びその硬化物
JP3219769B2 (ja) 1993-02-02 2001-10-15 ペルストルプ・ケミテック・アクチボラグ 樹脂バインダー組成物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU765317A1 (ru) * 1978-07-07 1980-09-23 Предприятие П/Я В-8147 Способ получени св зующего дл стеклопластика
JPH05255572A (ja) 1992-03-13 1993-10-05 Shimizu Corp 複合材料
JPH07286053A (ja) 1994-04-20 1995-10-31 Hitachi Chem Co Ltd 紙基材フェノール樹脂積層板の製造方法
DE69535397T2 (de) 1994-08-19 2007-10-31 Kao Corp. Binderzusammensetzung und herstellungsverfahren für formen
US5635583A (en) * 1995-06-06 1997-06-03 Borden Chemical, Inc. Catalytic composition and method for curing urea-formaldehyde resin
JPH09208316A (ja) 1996-01-30 1997-08-12 Kao Corp ガラス状炭素材料およびその製造方法
JP3344266B2 (ja) 1997-03-25 2002-11-11 松下電工株式会社 プリプレグ
JP2003055534A (ja) 2001-08-14 2003-02-26 Nippon Oil Corp 複合材料用樹脂組成物、複合材料用中間材および複合材料
US7104325B2 (en) * 2003-07-09 2006-09-12 Halliburton Energy Services, Inc. Methods of consolidating subterranean zones and compositions therefor
EP2115028B1 (en) * 2007-02-26 2015-01-28 Hexion Specialty Chemicals Research Belgium S.A. Resin-polyester blend binder compositions, method of making same and articles made therefrom
JP2009173762A (ja) 2008-01-24 2009-08-06 Gun Ei Chem Ind Co Ltd 光学材料用熱硬化性樹脂組成物
JP4663764B2 (ja) 2008-07-29 2011-04-06 群栄化学工業株式会社 鋳型造型用粘結剤組成物および該鋳型造型用粘結剤組成物を用いた鋳型の製造方法
WO2011078082A1 (ja) 2009-12-25 2011-06-30 花王株式会社 自硬性鋳型造型用粘結剤組成物
CN102821932B (zh) 2010-04-02 2015-06-10 积水化学工业株式会社 用于修复已设置管的衬套材料和使用该材料修复已设置管的方法
JP5563875B2 (ja) * 2010-04-16 2014-07-30 花王株式会社 鋳型用組成物を製造するためのキット
JP5986457B2 (ja) 2011-08-31 2016-09-06 花王株式会社 自硬性鋳型造型用粘結剤組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559256A (ja) * 1991-08-29 1993-03-09 Dainippon Ink & Chem Inc 酸硬化剤組成物及び合成樹脂組成物
JP3219769B2 (ja) 1993-02-02 2001-10-15 ペルストルプ・ケミテック・アクチボラグ 樹脂バインダー組成物
JPH0857577A (ja) * 1994-08-19 1996-03-05 Kao Corp 鋳型製造用粘結剤組成物及び鋳型の製造方法
JP2000302944A (ja) * 1999-04-16 2000-10-31 Gun Ei Chem Ind Co Ltd 熱硬化性フェノール樹脂組成物
JP2000319345A (ja) * 1999-05-14 2000-11-21 Nippon Kayaku Co Ltd 熱硬化性樹脂組成物及びその硬化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832790A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199615A (ja) * 2012-03-26 2013-10-03 Sekisui Chem Co Ltd 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体
JP2016535144A (ja) * 2013-08-01 2016-11-10 コンプネクスト・ソシエタ・ア・レスポンサビリタ・リミタータ 補強層および樹脂を有する複合材料製品の製造方法
WO2015107966A1 (ja) * 2014-01-14 2015-07-23 住友ベークライト株式会社 コーティング材料及びコーティング方法
US20160340543A1 (en) * 2014-01-14 2016-11-24 Sumitomo Bakelite Co., Ltd. Coating material and coating method
US9718985B2 (en) 2014-01-14 2017-08-01 Sumitomo Bakelite Co., Ltd. Method for coating pipe with acid-curable resin and acid curing agent
JP2016056297A (ja) * 2014-09-10 2016-04-21 積水化学工業株式会社 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体

Also Published As

Publication number Publication date
EP2832790A4 (en) 2015-11-18
US9376543B2 (en) 2016-06-28
US20150051331A1 (en) 2015-02-19
JPWO2013146534A1 (ja) 2015-12-14
JP5860530B2 (ja) 2016-02-16
EP2832790A1 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5860530B2 (ja) 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体
JP4663764B2 (ja) 鋳型造型用粘結剤組成物および該鋳型造型用粘結剤組成物を用いた鋳型の製造方法
JP2007533820A (ja) フェノール樹脂
RU2646605C2 (ru) Многофункциональные бензоксазины и композиционные материалы, включающие указанные соединения
WO2016031988A1 (ja) フラン樹脂及びその製造方法、熱硬化性フラン樹脂組成物、硬化物、並びにフラン樹脂複合体
JP5836056B2 (ja) 熱硬化性フラン樹脂組成物、フラン樹脂硬化物、それらの製造方法及び既設管更生用ライニング材
FI82066C (fi) Nya fenolhartsblandningar.
JP6319703B1 (ja) プロペニル基含有樹脂、樹脂組成物、樹脂ワニス、積層板の製造方法、熱硬化性成型材料および封止材
JPS63345A (ja) フェノ−ル樹脂を主成分とする樹脂組成物
EP2563837A1 (en) Phosphazene blocked azole compounds as latent catalysts for epoxy resins
US5750597A (en) Thermosetting resin compositions
JP6837354B2 (ja) アリル基含有樹脂、樹脂ワニスおよび積層板の製造方法
JP2014214248A (ja) フラン樹脂硬化物の製造方法
JP5879170B2 (ja) 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体
JP2013234286A (ja) 熱硬化性フラン樹脂組成物、フラン樹脂硬化物及びそれらの製造方法
JP2012126886A (ja) 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体
JP4462603B2 (ja) 樹脂フィルム
JP2018076468A (ja) 熱硬化性フラン樹脂組成物及びこれを用いた熱硬化性フラン樹脂積層体
JPH0841289A (ja) フェノール樹脂成形材料
JP2013213140A (ja) 熱硬化性フラン樹脂組成物
JP2019001867A (ja) 樹脂組成物、樹脂ワニス、積層板の製造方法、熱硬化性成型材料および封止材
JPH0349300B2 (ja)
JP2010031130A (ja) 熱硬化性樹脂組成物、熱硬化性樹脂成形材料及び硬化物
JP2006095574A (ja) シェルモールド用フェノール樹脂組成物及びシェルモールド用レジンコーテッドサンド
JP2016141707A (ja) 硬化性組成物、硬化物、複合体及び樹脂複合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507796

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14387756

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013767850

Country of ref document: EP