WO2016031988A1 - フラン樹脂及びその製造方法、熱硬化性フラン樹脂組成物、硬化物、並びにフラン樹脂複合体 - Google Patents

フラン樹脂及びその製造方法、熱硬化性フラン樹脂組成物、硬化物、並びにフラン樹脂複合体 Download PDF

Info

Publication number
WO2016031988A1
WO2016031988A1 PCT/JP2015/074524 JP2015074524W WO2016031988A1 WO 2016031988 A1 WO2016031988 A1 WO 2016031988A1 JP 2015074524 W JP2015074524 W JP 2015074524W WO 2016031988 A1 WO2016031988 A1 WO 2016031988A1
Authority
WO
WIPO (PCT)
Prior art keywords
furan resin
general formula
furan
resin composition
thermosetting
Prior art date
Application number
PCT/JP2015/074524
Other languages
English (en)
French (fr)
Inventor
江口 勇司
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2016545656A priority Critical patent/JP6550059B2/ja
Priority to CN201580045351.7A priority patent/CN106574030B/zh
Priority to EP15836888.6A priority patent/EP3196219B1/en
Priority to US15/506,485 priority patent/US10221275B2/en
Publication of WO2016031988A1 publication Critical patent/WO2016031988A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • C08G16/02Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes
    • C08G16/025Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes with heterocyclic organic compounds
    • C08G16/0256Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes with heterocyclic organic compounds containing oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • C08G16/02Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes
    • C08G16/025Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes with heterocyclic organic compounds
    • C08G16/0256Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes with heterocyclic organic compounds containing oxygen in the ring
    • C08G16/0262Furfuryl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers

Definitions

  • the present invention relates to a furan resin and a method for producing the same, a thermosetting furan resin composition, a cured product, and a furan resin composite.
  • thermosetting furan resin composition containing a furan resin composed of a co-condensate of furfuryl alcohol and formaldehyde is a steel pipe because the cured product is excellent in heat resistance, solvent resistance, chemical resistance, etc. It is used in various industrial fields as a laminated body such as lining, joint cement, and FRP, and a matrix resin for composite materials.
  • Patent Document 1 discloses a thermosetting furan resin composition containing a furan resin obtained by reacting furan or a furan derivative with an aldehyde in the presence of an acid catalyst. Things are listed.
  • thermosetting furan resin composition used for the aforementioned applications, the cured product is required to have excellent elongation while maintaining strength and the like, and excellent adhesion to glass fibers, etc. Further improvement is desired for the characteristics of these.
  • This invention provides the furan resin which gives the thermosetting furan resin composition which can improve the elongation rate of hardened
  • the present invention also provides a thermosetting furan resin composition containing the furan resin, a cured product obtained by curing the resin composition, and a furan resin composite using the resin composition.
  • the gist of the present invention is the following [1] to [10].
  • [1] A furan resin having a repeating unit represented by the following general formula (1).
  • R 1, R 2, R 3 and R 4 are each independently a hydrogen atom, or a .R 1 showing an organic group of heteroatoms carbon atoms which may contain an 1-8 R 2 and R 3 and R 4 may be linked to form a ring structure.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a carbon atom which may contain a hetero atom.
  • thermosetting furan resin composition comprising the furan resin according to any one of the above [1] to [4] and at least one of a curing catalyst and a curing agent.
  • a cured product obtained by curing the thermosetting furan resin composition according to [7].
  • a furan resin composite obtained by impregnating a fibrous base material with the thermosetting furan resin composition according to the above [7] and then curing.
  • This invention can provide the furan resin which gives the thermosetting furan resin composition which can improve the elongation rate of hardened
  • FIG. 1 is a diagram showing a 1 H-NMR spectrum of a furan resin obtained in Example 1.
  • FIG. 1 is a diagram showing a 1 H-NMR spectrum of a furan compound used in Example 1.
  • FIG. 2 is a graph showing an FT-IR spectrum of the furan resin obtained in Example 1.
  • FIG. 2 is a graph showing an FT-IR spectrum of a furan compound used in Example 1.
  • FIG. 6 is a diagram showing a 1 H-NMR spectrum of a furan resin obtained in Example 8.
  • FIG. 6 is a diagram showing a 1 H-NMR spectrum of a furan compound used in Example 8.
  • FIG. 6 is a diagram showing a 1 H-NMR spectrum of furfuryl alcohol used in Example 8.
  • FIG. 6 is a graph showing an FT-IR spectrum of a furan resin obtained in Example 8.
  • FIG. 6 is a graph showing an FT-IR spectrum of a furan compound used in Example 8.
  • FIG. 6 is a diagram showing an FT-IR spectrum of furfuryl alcohol used in Example 8.
  • the furan resin of the present invention is a furan resin having a repeating unit represented by the following general formula (1).
  • R 1, R 2, R 3 and R 4 are each independently a hydrogen atom, or a .R 1 showing an organic group of heteroatoms carbon atoms which may contain an 1-8 R 2 and R 3 and R 4 may be linked to form a ring structure.
  • R 1 , R 2 , R 3 and R 4 in the general formula (1) each independently represent a hydrogen atom or an organic group having 1 to 8 carbon atoms which may contain a hetero atom.
  • the organic group having 1 to 8 carbon atoms include a methyl group, an ethyl group, various propyl groups, various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, and various octyl groups.
  • the “various” means various isomers including n-, sec-, tert-, and iso-.
  • As said hetero atom a nitrogen atom, a sulfur atom, an oxygen atom, and a phosphorus atom are mentioned, for example.
  • R 1 , R 2 , R 3, and R 4 are each independently preferably at least one selected from a hydrogen atom, a methyl group, and an ethyl group from the viewpoint of ease of production. More preferably, all of R 1 , R 2 , R 3 and R 4 are hydrogen atoms.
  • the furan resin having a repeating unit in which R 1 , R 2 , R 3 and R 4 are hydrogen atoms for example, using 1,5-difuranyl-3-pentanol and formaldehyde as raw materials monomers, It can manufacture with the manufacturing method of this invention.
  • the furan resin of the present invention may be a furan resin having a repeating unit represented by the following general formula (1) and a repeating unit represented by the following general formula (2).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a carbon atom which may contain a hetero atom.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the general formula (1) and the general formula (2) are each independently a hydrogen atom or a carbon that may contain a hetero atom.
  • An organic group of formula 1 to 8 is shown. Examples of the organic group having 1 to 8 carbon atoms include a methyl group, an ethyl group, various propyl groups, various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, and various octyl groups.
  • the “various” means various isomers including n-, sec-, tert-, and iso-.
  • As said hetero atom a nitrogen atom, a sulfur atom, an oxygen atom, and a phosphorus atom are mentioned, for example.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a methyl group, And one or more selected from ethyl groups are preferred, and it is more preferred that all of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are hydrogen atoms.
  • the furan resin having a repeating unit in which R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the general formula (1) and (2) are hydrogen atoms is, for example, 1,5-difuranyl It can be produced by the production method of the present invention using -3-pentanol, formaldehyde and furfuryl alcohol as raw material monomers.
  • the furan resin of the present invention includes both the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2)
  • the amount of the repeating unit represented by the general formula (1) in the total amount of the repeating unit represented by the general formula (2) can be 1 to 99 mol%.
  • the quantity of the repeating unit represented by the said General formula (2) can be adjusted with preparation amount.
  • the furan resin of the present invention may have other repeating units in addition to the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2).
  • Examples of other repeating units include repeating units derived from aldehydes, phenols, melamine, urea and the like.
  • aldehydes constituting other repeating units examples include formaldehyde, acetaldehyde, glyoxal, glutaraldehyde, and terephthalaldehyde.
  • phenols constituting other repeating units include phenol, cresol, resorcin, bisphenol A, bisphenol C, bisphenol E, and bisphenol F.
  • the content of the other repeating unit in the furan resin can be 1 to 99 mol%.
  • the number average molecular weight (Mn) of the furan resin of the present invention is preferably from 300 to 500,000 from the viewpoint of improving the elongation of the cured product obtained by curing the furan resin and improving the adhesiveness of the cured product. 300 to 400,000 is more preferable, and 300 to 300,000 is more preferable. Further, the weight average molecular weight (Mw) of the furan resin of the present invention is preferably 500 to 1,000,000, and preferably 500 to 900,000 from the viewpoint of improving the elongation rate of the cured product and improving the adhesiveness of the cured product. More preferred is 500 to 800,000.
  • the number average molecular weight and weight average molecular weight of furan resin are the number average molecular weight and weight average molecular weight by polystyrene conversion calculated
  • the molecular weight distribution (Mw / Mn) of the furan resin of the present invention is preferably 1.1 to 20, more preferably 1.1 to 15, still more preferably 1.1 to 10, from the viewpoint of obtaining a homogeneous furan resin.
  • 1.1 to 7 is more preferable, and 1.1 to 5 is still more preferable.
  • the production method of the furan resin of the present invention is a production method in which a furan compound represented by the following general formula (3) and a carbonyl compound represented by the following general formula (4) are reacted in the presence of an acid catalyst. . According to the method for producing a furan resin of the present invention, the furan resin of the present invention can be efficiently produced.
  • the furan resin production method of the present invention includes a furan compound represented by the following general formula (3), a carbonyl compound represented by the following general formula (4), and a furan represented by the following general formula (5). It may be a production method in which a compound is reacted in the presence of an acid catalyst.
  • Equation (3) in equations (4) and (5), R 1, R 2, R 3, R 4, R 5 and R 6, R 1 in the formula (1) and (2), (It is synonymous with R 2 , R 3 , R 4 , R 5 and R 6. )
  • the furan compound represented by the general formula (3) can be obtained, for example, by appropriately reacting furfural with ketones according to the following reaction formulas (6) to (8).
  • R 1 and R 2 have the same meanings as R 1 and R 2 in the formula (1).
  • Examples of the carbonyl compound represented by the general formula (4) include formaldehyde, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, and cyclohexanone. From the viewpoint of reactivity, formaldehyde is preferable. In addition, when using formaldehyde, you may use the paraformaldehyde which is the polymer. When paraformaldehyde is used for the reaction, formaldehyde is generated by depolymerization that occurs in the reaction system, and this formaldehyde reacts with the furan compound represented by the general formula (3). As a result, formaldehyde was used. A furan resin similar to the case can be obtained.
  • furan compound represented by the general formula (5) examples include furfuryl alcohol, 1- (2-furyl) ethanol, 2-amino-1- (2-furyl) ethanol and the like. Therefore, furfuryl alcohol is preferable.
  • the furan compound represented by General formula (5) comprises the repeating unit represented by General formula (2), the effect
  • Examples of the acid catalyst that can be used in the present invention include inorganic acids such as sulfuric acid and phosphoric acid, sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid, xylenesulfonic acid, and methanesulfonic acid, tartaric acid, citric acid, and malic acid. And organic carboxylic acids such as glycolic acid, lactic acid, benzoic acid and formic acid. Among these, an inorganic acid is preferable and phosphoric acid is more preferable from the viewpoint of reaction efficiency.
  • the amount of the acid catalyst used is preferably 0.01 to 10 parts by mass and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the raw material monomer from the viewpoint of shortening the production time.
  • a pre-reaction may be performed by adding a catalyst other than the acid catalyst before the polymerization using the acid catalyst.
  • a catalyst other than the acid catalyst such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, magnesium hydroxide, calcium hydroxide, and barium hydroxide.
  • Alkali earth metal hydroxides such as magnesium oxide, calcium oxide, barium oxide and other alkaline earth metal oxides, magnesium acetate, zinc acetate, zinc formate organic acid metal salts, aqueous ammonia, triethylamine, etc. And amines, and alkaline substances such as sodium carbonate and potassium carbonate.
  • the amount of the catalyst other than the acid catalyst used is preferably 0.01 to 10 parts by mass and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the raw material monomer.
  • the reaction is preferably performed using a solvent.
  • Solvents include water, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, isobutanol and other alcohol solvents, dibutyl ether, tetrahydrofuran, dioxane and other ether solvents, pentane, hexane and other aliphatic carbonization.
  • examples thereof include hydrogen solvents, aromatic hydrocarbon solvents such as toluene and xylene, and halogenated hydrocarbon solvents such as methylene chloride. These may be used alone or in combination of two or more. Among these, water and alcohol solvents having 2 to 4 carbon atoms are preferable from the viewpoint of availability.
  • the reaction temperature in the production method of the present invention is preferably about 50 to 150 ° C., more preferably about 50 to 130 ° C., further preferably about 55 to 110 ° C., still more preferably about 55 to 90 ° C., and 60 to 70 ° C.
  • the reaction time is more preferably about 1 to 10 hours, and more preferably about 1 to 7 hours.
  • at least one of the furan compound, the carbonyl compound, and the acid catalyst may be added to the reaction system to further perform the reaction.
  • the reaction can be stopped by adding an aqueous alkali solution such as aqueous sodium hydroxide solution to the reaction system for neutralization, whereby the desired furan resin can be obtained.
  • catalyst residues and the like may be removed by a purification operation after neutralization.
  • thermosetting furan resin composition of the present invention includes the furan resin of the present invention and at least one of a curing catalyst and a curing agent, and when cured, has both strength and elongation. A cured product having high adhesion to glass fibers or the like can be obtained.
  • the content of the furan resin of the present invention in the thermosetting furan resin composition of the present invention is 10 to 99.9 from the viewpoint of improving the elongation of the cured product and improving the adhesion to glass fibers and the like. It can be made into the mass%.
  • the curing catalyst is not particularly limited as long as it can cure the furan resin.
  • an inorganic acid such as sulfuric acid, phosphoric acid or hydrochloric acid, or an organic acid such as organic sulfonic acid or organic carboxylic acid may be used. it can.
  • the organic sulfonic acid include p-toluenesulfonic acid, benzenesulfonic acid, xylenesulfonic acid, methanesulfonic acid, and the like.
  • the organic carboxylic acid include malonic acid, succinic acid, maleic acid, oxalic acid, acetic acid, lactic acid, malic acid, tartaric acid, benzoic acid, citric acid and the like.
  • thermosetting furan resin composition contains a curing catalyst
  • the content thereof is preferably 0.01 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the furan resin.
  • thermosetting furan resin composition of the present invention may contain a heat-reactive latent acid curing catalyst in addition to the curing catalyst.
  • Any thermoreactive latent acid curing catalyst may be used as long as it does not react with the components contained in the thermosetting furan resin composition at room temperature (25 ° C.) and decomposes quickly by heating during curing to generate an acid.
  • the thermal reaction type latent acid curing catalyst include inorganic ammonium salts, primary amine salts, secondary amine salts, and tertiary amine salts in terms of the stability at normal temperature and the reaction rate by heating at the time of curing.
  • thermosetting furan resin composition contains at least one, and at least one selected from ammonium chloride, ammonium sulfate, ammonium nitrate, methylammonium chloride, dimethylammonium chloride, ethylammonium chloride, and diethylammonium chloride is more preferable. These may be used alone or in combination of two or more.
  • the thermosetting furan resin composition contains a heat-reactive latent acid curing catalyst, the content is preferably 0.01 to 10 parts by mass, and 0.5 to 5 parts by mass with respect to 100 parts by mass of the furan resin. Part is more preferred.
  • thermosetting furan resin composition of this invention you may contain the hardening
  • the curing agent include bismaleimide compounds and polyfunctional (meth) acrylic compounds.
  • bismaleimide compounds include N, N′-ethylene bismaleimide, N, N′-hexamethylene bismaleimide, N, N ′-(1,3-phenylene) bismaleimide, N, N ′-[1 , 3- (2-Methylphenylene)] bismaleimide, N, N ′-[1,3- (4-methylphenylene)] bismaleimide, N, N ′-(1,4-phenylene) bismaleimide, bis ( 4-maleimidophenyl) methane, bis (3-methyl-4-maleimidophenyl) methane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethane bismaleimide, bis (4-maleimidophenyl) ether, etc. Can be mentioned.
  • polyfunctional (meth) acrylic compound examples include bifunctional (meth) acrylate compounds such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri ( (Meth) acrylate compounds such as (meth) acrylate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate and the like. It is done.
  • bifunctional (meth) acrylate compounds such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri ( (Meth) acrylate compounds such as (meth) acrylate,
  • thermosetting furan resin composition contains a curing agent, the content thereof is preferably 0.01 to 100 parts by mass and more preferably 0.5 to 50 parts by mass with respect to 100 parts by mass of the furan resin.
  • thermosetting furan resin composition of the present invention may contain a reactive diluent from the viewpoint of adjusting the viscosity and adjusting the reactivity.
  • the reactive diluent is not particularly limited as long as it has low viscosity, is compatible with the furan resin, and further reacts and solidifies when the thermosetting furan resin composition is cured. Furyl alcohol, furfural, or a mixture of furfuryl alcohol and furfural is preferred.
  • the thermosetting furan resin composition contains a reactive diluent, the content thereof is preferably 10 to 130 parts by mass, more preferably 40 to 110 parts by mass with respect to 100 parts by mass of the furan resin.
  • thermosetting furan resin composition of the present invention may contain a filler.
  • the filler include organic fillers such as an inorganic filler, carbon powder, and wood powder.
  • the inorganic filler examples include metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium oxide, magnesium oxide, aluminum oxide, zinc oxide, titanium oxide, and antimony oxide, metal powder such as zinc, and carbon powder such as carbonic acid.
  • metal carbonates such as calcium, magnesium carbonate, barium carbonate, and zinc carbonate, calcium sulfate, barium sulfate, calcium silicate, mica, talc, bentonite, zeolite, silica gel, aluminum oxide, and glass powder.
  • These fillers may be used alone or in combination of two or more. From the viewpoint of improving the interfacial adhesive force with the furan resin, the inorganic filler is preferably one that has been subjected to a surface treatment with a surface treatment agent.
  • an organosilane surface treatment agent is preferable, and specifically, an aminosilane surface treatment agent, an epoxysilane surface treatment agent, and an acrylic silane surface treatment agent are more preferable.
  • the thermosetting furan resin composition contains a filler, the content thereof is preferably 10 to 300 parts by mass, more preferably 30 to 250 parts by mass with respect to 100 parts by mass of the furan resin.
  • the thermosetting furan resin composition of the present invention may contain a salt from the viewpoint of reducing the dimensional shrinkage of the cured product.
  • the salt is preferably at least one selected from sodium chloride, lithium chloride, sodium bromide, and lithium bromide. Among these, lithium chloride is more preferable from the viewpoint of reducing the dimensional change of the cured product and the solubility in the furan resin at room temperature.
  • the thermosetting furan resin composition contains a salt, the content thereof is preferably 0.2 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the furan resin.
  • the thermosetting furan resin composition of the present invention may contain optional components such as a plasticizer and an antifoaming agent as necessary within a range not impairing the object of the present invention.
  • the plasticizer include phthalic acid esters such as diethyl phthalate and dibutyl phthalate, phosphoric acid esters, fatty acid esters, and epoxy plasticizers.
  • Antifoaming agents include oil-type silicone antifoaming agents, emulsion-type silicone antifoaming agents, antifoaming polymer-type antifoaming agents such as nonionic polyethers, special nonionic surfactants, and polyether-modified methylalkylpolysiloxanes.
  • Examples include copolymers, polyethylene glycol type nonionic surfactants, vegetable oil-based antifoaming agents, and the like.
  • an emulsion type silicone antifoaming agent and an antifoaming polymer type antifoaming agent are preferable. These may be used alone or in combination of two or more.
  • thermosetting furan resin composition of the present invention can be produced by mixing the furan resin of the present invention, the curing catalyst, and, if necessary, each component described above using a homodisper or the like.
  • the cured product of the present invention is obtained by curing the thermosetting furan resin composition of the present invention, has both excellent strength and elongation, and high adhesion to glass fibers and the like.
  • the cured product of the present invention can be obtained by heat curing the thermosetting furan resin composition.
  • the method for heat-curing the thermosetting furan resin composition include, for example, storing the thermosetting furan resin composition in a container or mold having a predetermined shape, and a thermostatic bath adjusted to 40 to 130 ° C. It can be cured by heating in a water bath. Further, it can be cured by circulating hot air or hot water adjusted to 40 to 130 ° C. in the container or mold having the predetermined shape.
  • thermosetting furan resin composition can be cast on films, such as a polyethylene terephthalate and a polyimide, and it can also be hardened
  • the temperature for heat curing is not particularly limited, but is preferably 50 to 200 ° C., and the heat curing time is preferably 1 to 5 hours, for example.
  • the furan resin composite of the present invention is a composite of the cured product of the present invention and a fibrous base material. More specifically, the fibrous base material is impregnated with the thermosetting furan resin composition of the present invention. And then cured.
  • the fibrous base material for impregnating the thermosetting furan resin composition include glass fiber, carbon fiber, metal fiber, paper, cotton, hemp fabric, nonwoven fabric, chopped strand mat, roving cloth, and the like. Can be mentioned.
  • the material for the nonwoven fabric for example, polyester, high density polyethylene (HDPE), polypropylene and the like are preferable.
  • a flexible, porous felt, mat, spunbond, web or the like with continuous filaments or staple fibers can be used.
  • a chopped strand mat for example, strands such as glass fibers are cut into a certain length and dispersed in a mat shape, and then a thermoadhesive agent such as a thermoplastic resin is uniformly applied and thermally melted. Those which are bonded to form a mat are preferred.
  • the roving cloth is preferably made of glass fiber, carbon fiber, aramid fiber, inorganic fiber, organic fiber, whisker or other reinforcing fiber.
  • the reinforcing fiber preferably has a fiber diameter of 3 to 25 ⁇ m, and more preferably has a fiber diameter of 5 to 20 ⁇ m from the viewpoint of strength and price.
  • glass fibers that have good adhesion to the cured product of the present invention and are excellent in balance between strength and price are preferable.
  • the furan resin composite of the present invention can be produced by impregnating a fibrous base material with the thermosetting furan resin composition and then curing.
  • the method for impregnating the fibrous base material with the thermosetting furan resin composition is not particularly limited, and examples thereof include a method for impregnating the fibrous base material with the thermosetting furan resin composition with an impregnation roll.
  • the impregnation amount of the thermosetting furan resin composition is not particularly limited.
  • the curing method of the thermosetting furan resin composition impregnated into the fibrous base material is not particularly limited.
  • the impregnated fibrous base material is placed in a mold and heated with hot air or sandwiched between hot plates.
  • Examples include a curing method.
  • the temperature for heat curing is not particularly limited, but is preferably 50 to 200 ° C., and the heat curing time is preferably 1 hour or more, and more preferably 1 to 6 hours, for example.
  • the furan resin composite of the present invention uses a cured product having excellent elongation and adhesiveness, the composite has good elongation and also has a good adhesion between the fibrous base material and the cured product. The body is obtained.
  • Example 1 A furan resin was produced according to the following procedure. In addition, reaction in Example 1 is shown in Reaction formula (9). In addition, in the reaction of Example 1, in addition to the furan resin having CH 2 OH groups at both ends represented by the reaction formula (9), a furan resin in which one end is a hydrogen atom can be obtained.
  • the number average molecular weight (Mn) was 760
  • the weight average molecular weight (Mw) was 1,730
  • the molecular weight distribution (Mw / Mn) was 2.29.
  • 1 H-NMR spectrum and FT-IR spectrum were measured under the following conditions.
  • the measurement result (FIG. 1) was compared with the measurement result (FIG. 2) of the furan compound (9a) which is a raw material monomer, and it was confirmed that furan resin was produced.
  • the molecular weight calculation method is to create a calibration curve using the standard polystyrene “TSKstandardPOLYSTYLENE” with weight average molecular weight (Mw) of 18,100, 10,200, 5,970, 2,630, 1,050, 453 respectively, and calculate the weight average molecular weight (Mw), number average Molecular weight (Mn) and molecular weight distribution were determined.
  • FIG. 1 shows a 1 H-NMR spectrum measured using heavy DMSO as a solvent.
  • Example 2 In a three-necked flask equipped with a condenser, thermometer, and nitrogen inlet, 400 g of furan compound (9a), 294.4 g of 37% by mass formalin solution (9b), and 30.6 g of acetic acid are mixed, and nitrogen flow is performed for 30 minutes. Then, it was heated to 65 ° C. and reacted for 4.5 hours. Subsequently, after cooling to room temperature, it neutralized with 5 mass% sodium hydroxide aqueous solution, and isolate
  • the obtained liquid was diluted with ethyl acetate, washed with 5% by mass aqueous sodium hydrogen carbonate solution and saturated aqueous sodium chloride solution, the aqueous phase was separated, and magnesium sulfate was added to the organic phase and dried. . Thereafter, ethyl acetate was distilled off under reduced pressure to obtain a dark orange liquid furan resin.
  • Mn was 570
  • Mw was 720
  • Mw / Mn was 1.26.
  • the 1 H-NMR spectrum and the FT-IR spectrum were measured in the same manner as in Example 1 to confirm that the desired furan resin was obtained.
  • Example 3 The reaction was conducted in the same manner as in Example 2 except that 280 g of the furan compound (9a), 125 g of furfuryl alcohol, 114.6 g of 37 mass% formalin solution (9b), and 31.6 g of acetic acid were used. An orange liquid furan resin was obtained.
  • Mn was 730
  • Mw was 1120
  • Mn was 1.53
  • Mw molecular weight distribution
  • Example 4 A curable furan resin composition was prepared by adding 1.5 parts by mass of a 65% by mass aqueous solution of p-toluenesulfonic acid to 100 parts by mass of the furan resin obtained in Example 2, and mixing them.
  • This thermosetting furan resin composition is cast on a polyethylene terephthalate (PET) film, cured in a hot air oven at 60 ° C. for 1 hour, and further cured at 80 ° C. for 3 hours, whereby a 100 ⁇ m thick black brown cured film Got.
  • PET polyethylene terephthalate
  • Example 5 A cured film was prepared in the same manner as in Example 4 except that the furan resin obtained in Example 3 was used.
  • Comparative Example 2 A cured film was prepared in the same manner as in Example 4 except that the resin obtained in Comparative Example 1 was used.
  • the cured films of Examples 4 and 5 exhibited excellent elongation at break and also had good strength at break and elastic modulus.
  • the cured film of Comparative Example 2 was inferior in breaking elongation although it had good breaking strength and elastic modulus.
  • Example 6 After impregnating the glass fiber cloth with the thermosetting furan resin composition prepared in Example 4 and laminating with a polyethylene sheet, it was restrained with a mold and cured in a hot air oven at 60 ° C. for 1 hour and further at 90 ° C. for 4 hours. As a result, a furan resin composite having a thickness of 4 mm was obtained.
  • Example 7 A furan resin composite was prepared in the same manner as in Example 6 except that the thermosetting furan resin composition prepared in Example 5 was used.
  • Comparative Example 3 A furan resin composite was prepared in the same manner as in Example 6 except that the thermosetting furan resin composition prepared in Comparative Example 2 was used.
  • the furan resin composites of Examples 6 and 7 exhibited excellent elongation at break, and also had good strength at break and elastic modulus.
  • the furan resin composite of Comparative Example 3 was inferior in breaking elongation although the breaking strength and elastic modulus were good.
  • Example 8 A furan resin was produced according to the following procedure. In addition, reaction in Example 8 is shown in Reaction formula (10). In addition, in the reaction of Example 8, in addition to the furan resin having CH 2 OH groups at both ends represented by the reaction formula (10), a furan resin in which one end is a hydrogen atom can be obtained.
  • furan compound (10a) 8.98 g [0.041 mol]
  • paraformaldehyde (10b) 14.40 g
  • furfuryl alcohol (10c) 36.00 g [0.367 mol]
  • 0.34 g of a 10% by mass NaOH aqueous solution intended to depolymerize paraformaldehyde and perform the preliminary reaction was mixed and heated to 60 ° C. to obtain a uniform solution.
  • 1.60 g of 10 mass% phosphoric acid aqueous solution and 6.5 g of ion-exchange water were added, and it heated up, and was made to react at 100 degreeC for 90 minutes.
  • the number average molecular weight (Mn) was 440
  • the weight average molecular weight (Mw) was 3,420
  • the molecular weight distribution (Mw / Mn) was 7.77.
  • the 1 H-NMR spectrum of the obtained furan resin was measured under the following conditions, peaks derived from the furan compound (10a) and furfuryl alcohol (10c) as raw material monomers were observed, and the raw material monomer A new broad peak was observed at 3.85 to 4.0 ppm and 5.85 to 6.45 ppm (FIGS. 5 to 7).
  • FIG. 8 shows the results of measuring the FT-IR spectrum of the product furan resin. From the above results, it was confirmed that the intended furan resin was obtained.
  • the molecular weight calculation method is to create a calibration curve using the standard polystyrene “TSKstandardPOLYSTYLENE” with weight average molecular weight (Mw) of 18,100, 10,200, 5,970, 2,630, 1,050, 453 respectively, and calculate the weight average molecular weight (Mw), number average Molecular weight (Mn) and molecular weight distribution were determined.
  • thermosetting furan resin composition was prepared by adding and mixing 0.05 g of a 65% by mass paratoluenesulfonic acid monohydrate aqueous solution as a curing catalyst to 5.0 g of the furan resin obtained in Example 8.
  • a product was prepared.
  • a Teflon sheet was closely attached to a resin mold having a width of 10 mm, a length of 80 mm, and a depth of 1 mm, and the thermosetting furan resin composition obtained was poured onto the Teflon sheet, and then the thermosetting furan.
  • a Teflon sheet was stacked on the resin composition. This was cured by heating in an oven at 60 ° C. for 1 hour and further by heating to 90 ° C. for 3 hours to obtain a cured product.
  • the cured product was black reddish brown, high in strength and flexible.
  • Example 5 A cured product was produced in the same manner as in Example 9 for the resin of Comparative Example 4. The obtained cured product was blackish brown, and was harder than the cured product obtained in Example 9, but was brittle and did not have flexibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

 [1]下記一般式(1)で表される繰り返し単位を有するフラン樹脂、[2]特定のフラン化合物とカルボニル化合物とを酸触媒の存在下で反応させるフラン樹脂の製造方法である。 (式(1)中、R1、R2、R3及びR4は、各々独立に、水素原子、又はヘテロ原子を含んでいてもよい炭素数1~8の有機基を示す。R1とR2、及びR3とR4とは連結して環構造を形成していてもよい。)

Description

フラン樹脂及びその製造方法、熱硬化性フラン樹脂組成物、硬化物、並びにフラン樹脂複合体
 本発明は、フラン樹脂及びその製造方法、熱硬化性フラン樹脂組成物、硬化物、並びにフラン樹脂複合体に関する。
 従来、フルフリルアルコールとホルムアルデヒドとの共縮合物からなるフラン樹脂を含む熱硬化性フラン樹脂組成物は、その硬化物が耐熱性、耐溶剤性、耐薬品性等に優れていることから、鋼管ライニング、目地セメント、及びFRP等の積層体や、複合材のマトリックス樹脂として各種産業分野において使用されている。
 このような熱硬化性フラン樹脂組成物として、特許文献1には、フラン又はフラン誘導体とアルデヒド類とを、酸触媒の存在下で反応させて得られるフラン樹脂を含有する熱硬化性フラン樹脂組成物が記載されている。
特開2013-234286号公報
 前述の用途に用いられる熱硬化性フラン樹脂組成物においては、その硬化物が強度等を維持しつつ伸び率に優れること、及びガラス繊維等に対する接着性に優れることが要求されているため、これらの特性について更なる改善が望まれている。
 本発明は、硬化物の伸び率、及びガラス繊維等に対する接着性を向上させることができる熱硬化性フラン樹脂組成物を与えるフラン樹脂、及びその製造方法を提供する。
 また、本発明は、前記フラン樹脂を含有する熱硬化性フラン樹脂組成物、この樹脂組成物を硬化させた硬化物、及びこの樹脂組成物を用いたフラン樹脂複合体を提供する。
 本発明は、下記[1]~[10]を要旨とするものである。
[1]下記一般式(1)で表される繰り返し単位を有するフラン樹脂。
Figure JPOXMLDOC01-appb-C000005

(式(1)中、R1、R2、R3及びR4は、各々独立に、水素原子、又はヘテロ原子を含んでいてもよい炭素数1~8の有機基を示す。R1とR2、及びR3とR4とは連結して環構造を形成していてもよい。)
[2]下記一般式(1)で表される繰り返し単位、及び下記一般式(2)で表される繰り返し単位を有する、前記[1]に記載のフラン樹脂。
Figure JPOXMLDOC01-appb-C000006

(式(1)及び式(2)中、R1、R2、R3、R4、R5及びR6は、各々独立に、水素原子、又はヘテロ原子を含んでいてもよい炭素数1~8の有機基を示す。R1とR2、R3とR4、及びR5とR6とは連結して環構造を形成していてもよい。)
[3]前記一般式(1)において、R1、R2、R3及びR4が水素原子である、前記[1]に記載のフラン樹脂。
[4]前記一般式(1)及び前記一般式(2)において、R1、R2、R3、R4、R5及びR6が水素原子である、前記[2]に記載のフラン樹脂。
[5]下記一般式(3)で表されるフラン化合物、及び下記一般式(4)で表されるカルボニル化合物を、酸触媒の存在下で反応させる、前記[1]又は[3]に記載のフラン樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000007

(式(3)及び式(4)中、R1、R2、R3及びR4は、式(1)中のR1、R2、R3及びR4と同義である。)
[6]下記一般式(3)で表されるフラン化合物、下記一般式(4)で表されるカルボニル化合物、及び下記一般式(5)で表されるフラン化合物を、酸触媒の存在下で反応させる、前記[2]又は[4]に記載のフラン樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000008

(式(3)、式(4)及び式(5)中、R1、R2、R3、R4、R5及びR6は、式(1)及び式(2)中のR1、R2、R3、R4、R5及びR6と同義である。)
[7]前記[1]~[4]のいずれかに記載のフラン樹脂と、硬化触媒及び硬化剤の少なくとも1種とを含む熱硬化性フラン樹脂組成物。
[8]前記[7]に記載の熱硬化性フラン樹脂組成物を硬化させた硬化物。
[9]前記[8]に記載の硬化物と繊維質基材とが複合したフラン樹脂複合体。
[10]前記[7]に記載の熱硬化性フラン樹脂組成物を繊維質基材に含浸させた後、硬化させたフラン樹脂複合体。
 本発明は、硬化物の伸び率、及びガラス繊維等に対する接着性を向上させることができる熱硬化性フラン樹脂組成物を与えるフラン樹脂、及びその製造方法を提供することができる。
 また、本発明は、前記フラン樹脂を含有する熱硬化性フラン樹脂組成物、この樹脂組成物を硬化させた硬化物、及びこの樹脂組成物を用いたフラン樹脂複合体を提供することができる。
実施例1で得られたフラン樹脂の1H-NMRスペクトルを示す図である。 実施例1で用いたフラン化合物の1H-NMRスペクトルを示す図である。 実施例1で得られたフラン樹脂のFT-IRスペクトルを示す図である。 実施例1で用いたフラン化合物のFT-IRスペクトルを示す図である。 実施例8で得られたフラン樹脂の1H-NMRスペクトルを示す図である。 実施例8で用いたフラン化合物の1H-NMRスペクトルを示す図である。 実施例8で用いたフルフリルアルコールの1H-NMRスペクトルを示す図である。 実施例8で得られたフラン樹脂のFT-IRスペクトルを示す図である。 実施例8で用いたフラン化合物のFT-IRスペクトルを示す図である。 実施例8で用いたフルフリルアルコールのFT-IRスペクトルを示す図である。
[フラン樹脂]
 本発明のフラン樹脂は、下記一般式(1)で表される繰り返し単位を有するフラン樹脂である。
Figure JPOXMLDOC01-appb-C000009

(式(1)中、R1、R2、R3及びR4は、各々独立に、水素原子、又はヘテロ原子を含んでいてもよい炭素数1~8の有機基を示す。R1とR2、及びR3とR4とは連結して環構造を形成していてもよい。)
 前記一般式(1)中におけるR1、R2、R3及びR4は、各々独立に、水素原子、又はヘテロ原子を含んでいてもよい炭素数1~8の有機基を示す。
 前記炭素数1~8の有機基としては、メチル基、エチル基、各種プロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、及び各種オクチル基が挙げられる。なお、「各種」とは、n-、sec-、tert-、iso-を含む各種異性体を意味する。
 前記ヘテロ原子としては、例えば、窒素原子、硫黄原子、酸素原子及びリン原子が挙げられる。
 前記一般式(1)において、R1、R2、R3及びR4は、製造容易性の観点から、各々独立に、水素原子、メチル基、及びエチル基から選ばれる1種以上が好ましく、R1、R2、R3及びR4の全てが水素原子であることがより好ましい。
 前記一般式(1)においてR1、R2、R3及びR4が水素原子である繰り返し単位を有するフラン樹脂は、例えば、1,5-ジフラニル-3-ペンタノール及びホルムアルデヒドを原料モノマーとして、本発明の製造方法により製造することができる。
 本発明のフラン樹脂は、下記一般式(1)で表される繰り返し単位、及び下記一般式(2)で表される繰り返し単位を有するフラン樹脂であってもよい。
Figure JPOXMLDOC01-appb-C000010

(式(1)及び式(2)中、R1、R2、R3、R4、R5及びR6は、各々独立に、水素原子、又はヘテロ原子を含んでいてもよい炭素数1~8の有機基を示す。R1とR2、R3とR4、及びR5とR6とは連結して環構造を形成していてもよい。)
 前記一般式(1)及び一般式(2)中におけるR1、R2、R3、R4、R5及びR6は、各々独立に、水素原子、又はヘテロ原子を含んでいてもよい炭素数1~8の有機基を示す。
 前記炭素数1~8の有機基としては、メチル基、エチル基、各種プロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、及び各種オクチル基が挙げられる。なお、「各種」とは、n-、sec-、tert-、iso-を含む各種異性体を意味する。
 前記ヘテロ原子としては、例えば、窒素原子、硫黄原子、酸素原子及びリン原子が挙げられる。
 前記一般式(1)及び一般式(2)において、R1、R2、R3、R4、R5及びR6は、製造容易性の観点から、各々独立に、水素原子、メチル基、及びエチル基から選ばれる1種以上が好ましく、R1、R2、R3、R4、R5及びR6の全てが水素原子であることがより好ましい。
 前記一般式(1)及び一般式(2)においてR1、R2、R3、R4、R5及びR6が水素原子である繰り返し単位を有するフラン樹脂は、例えば、1,5-ジフラニル-3-ペンタノール、ホルムアルデヒド及びフルフリルアルコールを原料モノマーとして、本発明の製造方法により製造することができる。
 本発明のフラン樹脂が前記一般式(1)で表される繰り返し単位、及び一般式(2)で表される繰り返し単位の両方を含む場合において、前記一般式(1)で表される繰り返し単位、及び一般式(2)で表される繰り返し単位の全量中における、前記一般式(1)で表される繰り返し単位の量は、1~99mol%とすることができる。なお、前記一般式(2)で表される繰り返し単位の量は、仕込み量により調整することができる。
 本発明のフラン樹脂は、前記一般式(1)で表される繰り返し単位、及び一般式(2)で表される繰り返し単位の他に、他の繰り返し単位を有していてもよい。他の繰り返し単位としては、アルデヒド類、フェノール類、メラミン、尿素等に由来する繰り返し単位が挙げられる。
 他の繰り返し単位を構成する前記アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、グリオキザール、グルタルアルデヒド、及びテレフタルアルデヒド等が挙げられる。
 また、他の繰り返し単位を構成する前記フェノール類としては、フェノール、クレゾール、レゾルシン、ビスフェノールA、ビスフェノールC、ビスフェノールE、及びビスフェノールF等が挙げられる。
 本発明のフラン樹脂が前記他の繰り返し単位を有する場合、フラン樹脂中の他の繰り返し単位の含有量は、1~99mol%とすることができる。
 本発明のフラン樹脂の数平均分子量(Mn)は、該フラン樹脂を硬化させた硬化物の伸び率を向上させる観点、及び硬化物の接着性を向上させる観点から、300~50万が好ましく、300~40万がより好ましく、300~30万が更に好ましい。
 また、本発明のフラン樹脂の重量平均分子量(Mw)は、硬化物の伸び率を向上させる観点、及び硬化物の接着性を向上させる観点から、500~100万が好ましく、500~90万がより好ましく、500~80万が更に好ましい。
 なお、本明細書において、フラン樹脂の数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)の測定から求めたポリスチレン換算による数平均分子量及び重量平均分子量である。
 本発明のフラン樹脂の分子量分布(Mw/Mn)は、均質なフラン樹脂を得る観点から、1.1~20が好ましく、1.1~15がより好ましく、1.1~10が更に好ましく、1.1~7がより更に好ましく、1.1~5がより更に好ましい。
[フラン樹脂の製造方法]
 本発明のフラン樹脂の製造方法は、下記一般式(3)で表されるフラン化合物、及び下記一般式(4)で表されるカルボニル化合物を、酸触媒の存在下で反応させる製造方法である。本発明のフラン樹脂の製造方法によれば、前記本発明のフラン樹脂を効率的に製造することができる。
Figure JPOXMLDOC01-appb-C000011

(式(3)及び式(4)中、R1、R2、R3及びR4は、式(1)中のR1、R2、R3及びR4と同義である。)
 また、本発明のフラン樹脂の製造方法は、下記一般式(3)で表されるフラン化合物、下記一般式(4)で表されるカルボニル化合物、及び下記一般式(5)で表されるフラン化合物を、酸触媒の存在下で反応させる製造方法であってもよい。
Figure JPOXMLDOC01-appb-C000012

(式(3)、式(4)及び式(5)中、R1、R2、R3、R4、R5及びR6は、式(1)及び式(2)中のR1、R2、R3、R4、R5及びR6と同義である。)
 前記一般式(3)で表されるフラン化合物は、例えば、フルフラールとケトン類とを下記反応式(6)~(8)にしたがって適宜反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000013

(式(6)~(8)中、R1及びR2は、式(1)中のR1及びR2と同義である。)
 なお、前記一般式(3)で表されるフラン化合物の製造方法については、Rong Xing, Ayyagari V. Subrahmanyam, Hakan Olcay, Wei Qi, G. Peter van Walsum, Hemant Pendseb and George W. Huber, Green Chem., 2010, 12, 1933-1946、及びPaula A. Zapata, Jimmy Faria, M. Pilar, Ruiz & Daniel E. Resasco, Top Catal, 2012, 55, 38-52等にも記載されている。
 前記一般式(4)で表されるカルボニル化合物としては、ホルムアルデヒド、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン等が挙げられるが、反応性の観点から、ホルムアルデヒドが好ましい。
 なお、ホルムアルデヒドを用いる場合は、その重合体であるパラホルムアルデヒドを用いてもよい。パラホルムアルデヒドを反応に用いた場合、反応系内において生じる解重合によりホルムアルデヒドが生成し、このホルムアルデヒドと前記一般式(3)で表されるフラン化合物とが反応するため、結果的としてホルムアルデヒドを用いた場合と同様のフラン樹脂を得ることができる。
 前記一般式(5)で表されるフラン化合物としては、フルフリルアルコール、1-(2-フリル)エタノール、2-アミノ-1-(2-フリル)エタノール等が挙げられるが、反応性の観点から、フルフリルアルコールが好ましい。なお、一般式(5)で表されるフラン化合物は一般式(2)で表される繰り返し単位を構成するものであるが、後述する反応性希釈剤としての作用も期待できる。
 本発明に用いることができる酸触媒としては、硫酸、リン酸等の無機酸や、ベンゼンスルホン酸、パラトルエンスルホン酸、キシレンスルホン酸、メタンスルホン酸等のスルホン酸、酒石酸、クエン酸、リンゴ酸、グリコール酸、乳酸、安息香酸、蟻酸等の有機カルボン酸が挙げられる。
 これらの中でも、反応効率の観点から、無機酸が好ましく、リン酸がより好ましい。
 前記酸触媒の使用量は、製造時間を短縮する観点から、原料モノマー100質量部に対して、0.01~10質量部が好ましく、0.05~5質量部がより好ましい。
 本発明のフラン樹脂の製造方法においては、酸触媒による重合の前に、前記酸触媒以外の触媒を添加して予備反応を行ってもよい。例えば、アルカリ触媒等を用いて予備反応を行った場合には、前記フラン化合物のフラン環のメチロール化が促進され、その後の重合反応が進みやすくなる。また、得られたフラン樹脂を含む熱硬化性フラン樹脂組成物の硬化性が向上する。
 このような用途に用いることができる前記酸触媒以外の触媒としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物、酸化マグネシウム、酸化カルシウム、酸化バリウム等のアルカリ土類金属の酸化物、酢酸マグネシウム、酢酸亜鉛、ギ酸亜鉛等の有機酸の金属塩、アンモニア水、トリエチルアミン等のアミン類、炭酸ナトリウム、炭酸カリウム等のアルカリ性物質等が挙げられる。
 前記酸触媒以外の触媒の使用量は、原料モノマー100質量部に対して、0.01~10質量部が好ましく、0.05~5質量部がより好ましい。
 本発明のフラン樹脂の製造方法においては、溶媒を用いて反応を行うことが好ましい。溶媒としては、水、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、イソブタノール等のアルコール系溶媒、ジブチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ペンタン、ヘキサン等の脂肪族炭化水素系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、塩化メチレン等のハロゲン化炭化水素系溶媒等を挙げることができる。これらは、単独でもよく、2種以上を組み合わせて用いてもよい。
 これらの中でも、入手容易性等の観点から、水、炭素数2~4のアルコール系溶媒が好ましい。
 本発明の製造方法における反応温度は、50~150℃程度が好ましく、50~130℃程度がより好ましく、55~110℃程度が更に好ましく、55~90℃程度がより更に好ましく、60~70℃程度がより更に好ましく、また、反応時間は1~10時間程度が好ましく、1~7時間程度がより好ましい。
 なお、本発明においては、反応の終了前に、前記フラン化合物、前記カルボニル化合物及び酸触媒の少なくとも1種を反応系に追加して、更に反応を行ってもよい。
 反応の停止は、水酸化ナトリウ水溶液等のアルカリ水溶液を反応系内に添加して中和することにより行うことができ、これにより目的とするフラン樹脂を得ることができる。
 なお、本発明の製造方法においては、中和の後、触媒残渣等を精製操作により取り除いてもよい。
[熱硬化性フラン樹脂組成物]
 本発明の熱硬化性フラン樹脂組成物は、本発明のフラン樹脂と、硬化触媒及び硬化剤の少なくとも1種とを含むものであり、これを硬化させた場合、強度と伸び率とを兼ね備えると共に、ガラス繊維等に対する接着性が高い硬化物を得ることができる。
 本発明の熱硬化性フラン樹脂組成物中の本発明のフラン樹脂の含有量は、硬化物の伸び率を向上させる観点、及びガラス繊維等に対する接着性を向上させる観点から、10~99.9質量%とすることができる。
〔硬化触媒〕
 硬化触媒としては、フラン樹脂を硬化しうるものであれば特に限定されず、例えば、硫酸、リン酸、塩酸等の無機酸、あるいは有機スルホン酸、有機カルボン酸等の有機酸等を用いることもできる。
 有機スルホン酸としては、例えば、パラトルエンスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸、メタンスルホン酸等が挙げられる。
 有機カルボン酸としては、例えば、マロン酸、コハク酸、マレイン酸、シュウ酸、酢酸、乳酸、リンゴ酸、酒石酸、安息香酸、クエン酸等が挙げられる。
 これらは、単独でもよく、2種以上を組み合わせて用いてもよい。
 熱硬化性フラン樹脂組成物が硬化触媒を含有する場合、その含有量は、フラン樹脂100質量部に対して0.01~10質量部が好ましく、0.5~5質量部がより好ましい。
 本発明の熱硬化性フラン樹脂組成物は、前記硬化触媒に加えて熱反応型潜在性酸硬化触媒を含有してもよい。熱反応型潜在性酸硬化触媒としては、熱硬化性フラン樹脂組成物に含まれる成分と常温(25℃)では反応せず、硬化時の加熱ですばやく分解して酸を発生させるものであれば特に限定されない。熱反応型潜在性酸硬化触媒の具体例としては、常温時の安定性と硬化時の加熱による反応速度の点から、無機アンモニウム塩、1級アミン塩、2級アミン塩、3級アミン塩の少なくともいずれかを含有することが好ましく、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、塩化メチルアンモニウム、塩化ジメチルアンモニウム、塩化エチルアンモニウム、塩化ジエチルアンモニウムから選ばれる1種以上がより好ましい。これらは、単独でもよく、2種以上を組み合わせて用いてもよい。
 熱硬化性フラン樹脂組成物が熱反応型潜在性酸硬化触媒を含有する場合、その含有量は、フラン樹脂100質量部に対し、0.01~10質量部が好ましく、0.5~5質量部がより好ましい。
〔硬化剤〕
 本発明の熱硬化性フラン樹脂組成物においては、その硬化物中に架橋によるネットワークを形成させるための硬化剤を含有してもよい。硬化剤としては、例えばビスマレイミド系化合物、及び多官能(メタ)アクリル系化合物が挙げられる。
 ビスマレイミド系化合物としては、例えば、N,N'-エチレンビスマレイミド、N,N'-ヘキサメチレンビスマレイミド、N,N'-(1,3-フェニレン)ビスマレイミド、N,N'-[1,3-(2-メチルフェニレン)]ビスマレイミド、N,N'-[1,3-(4-メチルフェニレン)]ビスマレイミド、N,N'-(1,4-フェニレン)ビスマレイミド、ビス(4-マレイミドフェニル)メタン、ビス(3-メチル-4-マレイミドフェニル)メタン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンビスマレイミド、ビス(4-マレイミドフェニル)エーテル等が挙げられる。
 多官能(メタ)アクリル系化合物としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート等の2官能(メタ)アクリレート化合物や、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の3官能以上の(メタ)アクリレート化合物が挙げられる。なお、本明細書において「(メタ)アクリレート」とは、「アクリレート又はメタクリレート」を意味する。
 熱硬化性フラン樹脂組成物が硬化剤を含有する場合、その含有量は、フラン樹脂100質量部に対して、0.01~100質量部が好ましく、0.5~50質量部がより好ましい。
〔反応性希釈剤〕
 本発明の熱硬化性フラン樹脂組成物は、粘度を調整する観点、反応性を調整する観点から、反応性希釈剤を含んでもよい。
 反応性希釈剤としては、粘度が低く、フラン樹脂と相溶性があり、更に熱硬化性フラン樹脂組成物が硬化する際に反応、固化するものであれば特に限定されないが、例えば、前述のフルフリルアルコールや、フルフラール、又はフルフリルアルコールとフルフラールとの混合物が好ましい。
 熱硬化性フラン樹脂組成物が反応性希釈剤を含有する場合、その含有量は、フラン樹脂100質量部に対して、10~130質量部が好ましく、40~110質量部がより好ましい。
〔フィラー〕
 本発明の熱硬化性フラン樹脂組成物はフィラーを含んでもよい。フィラーとしては、例えば、無機フィラー、炭素粉末、木粉等の有機フィラーが挙げられる。
 無機フィラーとしては、例えば、水酸化アルミニウム、水酸化マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、酸化亜鉛、酸化チタン、酸化アンチモン等の金属水酸化物や金属酸化物、亜鉛等の金属粉末、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、炭酸亜鉛等の金属炭酸塩、硫酸カルシウム、硫酸バリウム、珪酸カルシウム、マイカ、タルク、ベントナイト、ゼオライト、シリカゲル、酸化アルミニウム、ガラスパウダー等が挙げられる。これらのフィラーは、単独でもよく、2種以上を組み合わせて用いてもよい。
 前記無機フィラーは、フラン樹脂との界面接着力を向上させる観点から、表面処理剤により表面処理を施したものであることが好ましい。表面処理剤としては、有機シラン系表面処理剤が好ましく、具体的にはアミノシラン系表面処理剤、エポキシシラン系表面処理剤、アクリルシラン系表面処理剤がより好ましい。
 熱硬化性フラン樹脂組成物がフィラーを含有する場合、その含有量は、フラン樹脂100質量部に対して、10~300質量部が好ましく、30~250質量部がより好ましい。
〔塩〕
 本発明の熱硬化性フラン樹脂組成物は、硬化物の寸法収縮を小さくする観点から、塩を含んでもよい。
 塩としては、塩化ナトリウム、塩化リチウム、臭化ナトリウム、及び臭化リチウムから選ばれる1以上が好ましい。これらの中でも、硬化物の寸法変化をより小さくする観点、及び常温でのフラン樹脂への溶解度の観点から、塩化リチウムがより好ましい。
 熱硬化性フラン樹脂組成物が塩を含有する場合、その含有量は、フラン樹脂100質量部に対して、0.2~10質量部が好ましく、0.5~5質量部がより好ましい。
<その他の成分>
 本発明の熱硬化性フラン樹脂組成物は、本発明の目的を損なわない範囲で、必要に応じ、可塑剤、消泡剤等の任意成分を含有していてもよい。
 可塑剤としては、例えば、フタル酸ジエチル、フタル酸ジブチル等のフタル酸エステル、リン酸エステル、脂肪酸エステル、エポキシ系可塑剤等が挙げられる。
 消泡剤としては、オイル型シリコーン消泡剤、エマルジョン型シリコーン消泡剤、非イオン系ポリエーテル等の破泡性ポリマー型消泡剤、特殊非イオン界面活性剤、ポリエーテル変性メチルアルキルポリシロキサン共重合体、ポリエチレングリコール型非イオン界面活性剤、植物油系消泡剤等が挙げられる。これらの中でも消泡剤としては、エマルジョン型シリコーン消泡剤、破泡性ポリマー型消泡剤が好ましい。
 これらは、単独でもよく、2種以上を組み合わせて用いてもよい。
<熱硬化性フラン樹脂組成物の製造方法>
 本発明の熱硬化性フラン樹脂組成物は、本発明のフラン樹脂、前記硬化触媒、及び必要に応じて前述の各成分を、ホモディスパー等を用いて混合することにより製造することができる。
[硬化物]
 本発明の硬化物は、本発明の熱硬化性フラン樹脂組成物を硬化させたものであり、優れた強度と伸び率とを兼ね備えると共に、ガラス繊維等に対する接着性が高いものである。
<硬化物の製造方法>
 本発明の硬化物は、前記熱硬化性フラン樹脂組成物を加熱硬化することにより得ることができる。前記熱硬化性フラン樹脂組成物を加熱硬化する方法としては、例えば、前記熱硬化性フラン樹脂組成物を所定形状の容器又は金型に収容し、40~130℃に調整された恒温槽、恒温水槽内で加熱することにより硬化させることができる。また、前記所定形状の容器又は金型内に40~130℃に調整された熱風又は熱水を循環させることにより硬化させることもできる。
 また、ポリエチレンテレフタレート、ポリイミド等のフィルム上に前記熱硬化性フラン樹脂組成物をキャストし、これをオーブン等で加熱することにより硬化させることもできる。
 加熱硬化する際の温度としては、特に限定されないが、50~200℃が好ましく、加熱硬化時間としては、例えば、1~5時間が好ましい。
[フラン樹脂複合体]
 本発明のフラン樹脂複合体は、本発明の硬化物と繊維質基材とが複合したものであり、より具体的には、本発明の熱硬化性フラン樹脂組成物を繊維質基材に含浸させた後、硬化させたものである。
 前記熱硬化性フラン樹脂組成物を含浸させるための繊維質基材としては、ガラス繊維、炭素繊維、金属繊維、紙、綿、麻等からなる織物、不織布、チョップドストランドマット、及びロービングクロス等が挙げられる。
 不織布の材料としては、例えばポリエステル、高密度ポリエチレン(HDPE)、ポリプロピレン等が好ましい。また、可撓性を有し多孔質である、連続フィラメント又はステープルファイバーを備えたフェルト、マット、スパンボンド、ウェブ等も使用することができる。
 チョップドストランドマットとしては、例えばガラス繊維等のストランドを一定長さに切断し、マット状に分散させた後、熱可塑性樹脂等の粘接着剤を均一に付与して熱溶融し、ストランド同士を接着させてマットとしたもの等が好ましい。
 ロービングクロスとしては、ガラス繊維、炭素繊維、アラミド繊維、無機繊維、有機繊維、ウィスカー等の強化繊維からなるものが好ましい。また、強化繊維は繊維径が3~25μmのものが好ましく、強度及び価格の観点から繊維径が5~20μmのものがより好ましい。
 これらの中でも、本発明の硬化物との接着性が良好であると共に、強度と価格とのバランスに優れるガラス繊維が好ましい。
<フラン樹脂複合体の製造方法>
 本発明のフラン樹脂複合体は、前記熱硬化性フラン樹脂組成物を繊維質基材に含浸させた後、硬化させることにより製造することができる。
 繊維質基材に熱硬化性フラン樹脂組成物を含浸させる方法は特に限定されず、例えば、繊維質基材に熱硬化性フラン樹脂組成物を含浸ロールにて含浸させる方法等が挙げられる。なお、熱硬化性フラン樹脂組成物の含浸量は特に限定されない。
 繊維質基材に含浸させた熱硬化性フラン樹脂組成物の硬化方法は特に限定されず、例えば、含浸させた繊維質基材を金型内に設置し、熱風であるいは熱板に挟み込んで加熱硬化する方法等が挙げられる。
 加熱硬化する際の温度としては、特に限定されないが、50~200℃が好ましく、加熱硬化時間としては、例えば、1時間以上が好ましく、1~6時間がより好ましい。
 本発明のフラン樹脂複合体は、伸び率及び接着性に優れる硬化物を用いているため、複合体の伸び率も良好であると共に、繊維質基材と硬化物との接着性も良好な複合体が得られる。
 本発明を実施例により説明するが、本発明はこれらの例によってなんら限定されるものではない。
<実施例1>
 以下の手順にしたがってフラン樹脂を製造した。なお、実施例1における反応を反応式(9)に示す。なお、実施例1の反応においては、反応式(9)で表される両末端にCH2OH基を有するフラン樹脂以外にも、片末端が水素原子であるフラン樹脂も得ることができる。
Figure JPOXMLDOC01-appb-C000014

(反応式(9)中、mは重合度を示す。)
 冷却管、温度計、窒素導入口をセットした三口フラスコ中で、フラン化合物(9a)5g、パラホルムアルデヒド(9b)0.76g、85質量%リン酸0.03g、イソプロパノール5mlを混合し、30分間窒素バブリングを行った後、90℃のオイルバスで加熱して3時間反応させた。
 その後、更にパラホルムアルデヒド(9b)0.76g、85質量%リン酸0.03gを添加し、オイルバスを110℃まで昇温し、還流下で2時間反応させた。
 次いで、室温まで冷却した後、テトラヒドロフランで希釈し、水酸化ナトリウム水溶液にて中和することにより反応を停止した。エバポレータを用いて溶媒を除去した後、クロロホルム50mlを添加して希釈し、有機相を20質量%塩化ナトリウム水溶液で3回洗浄した。次いで、水相を分離した後、有機相に硫酸マグネシウムを添加して乾燥させた。更にエバポレータを用いてクロロホルムを除去することにより、濃赤色の粘調なフラン樹脂を5.87g得た。
 得られたフラン樹脂について下記方法によりGPC測定を行ったところ、数平均分子量(Mn)は760、重量平均分子量(Mw)は1,730、分子量分布(Mw/Mn)は2.29であった。
 また、下記の条件にて1H-NMRスペクトル及びFT-IRスペクトルを測定した。測定結果(図1)を原料モノマーであるフラン化合物(9a)の測定結果(図2)と比較し、フラン樹脂が生成していることを確認した。
 具体的には、生成物であるフラン樹脂のフラン環の5位のプロトンの積分値が、原料であるフラン化合物における5位のプロトンの積分値と比較して大幅に減少していることを確認した。
 また、図1において、ホルムアルデヒド由来の炭素に結合するプロトン(CH2)のピークを4.30~4.31ppmの位置に確認し、末端CH2OHのピークを5.07~5.10ppm付近に確認した。
 更に、原料であるフラン化合物のフラン環の3位及び4位のピークを、6.05ppm及び6.32ppmに確認したのに対し(図2)、生成物であるフラン樹脂のフラン環の3位及び4位のピークが5.97ppm及び6.12ppmの位置にシフトしていることを確認した(図1)。
 以上の結果より、目的とするフラン樹脂が得られたことを確認した。
<測定条件>
〔GPC測定〕
 株式会社島津製作所製GPCシステム、及び東ソー株式会社製「TSKgel G2000HXL」×2(排除限界分子量10,000)をカラムとして用いた。カラム温度40℃、流量1.0ml/minに設定すると共に、展開媒としてテトラヒドロフラン、検出器としてRIを使用した。
 分子量計算方法は、重量平均分子量(Mw)がそれぞれ18,100、10,200、5,970、2,630、1,050、453の標準ポリスチレン「TSKstandardPOLYSTYLENE」を用いて検量線を作成し、計算により重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布を求めた。
1H-NMRスペクトル測定〕
 日本電子株式会社製NMR測定装置「ECX-400」を用い、重クロロホルム又は重DMSOを溶媒とし、23℃で測定した。なお、図1には重DMSOを溶媒として用いて測定した1H-NMRスペクトルを示す。
〔FT-IR測定〕
 スペクトロメータとして、ThermoElectron製「NICOLET380」を用いてATR法により測定した。
<実施例2、3及び比較例1>
実施例2
 冷却管、温度計、窒素導入口をセットした三口フラスコ中で、フラン化合物(9a)400g、37質量%ホルマリン溶液(9b)294.4g、酢酸30.6gを混合し、30分間窒素フローを行った後、65℃に加熱して4.5時間反応させた。
 次いで、室温まで冷却した後、5質量%水酸化ナトリウム水溶液にて中和し、水相を分離した。得られた液状物を酢酸エチルを加えて希釈し、5質量%炭酸水素ナトリウム水溶液、及び飽和塩化ナトリウム水溶液で洗浄した後、水相を分離し、有機相に硫酸マグネシウムを添加して乾燥させた。その後、酢酸エチルを減圧下で留去することで濃橙色液状フラン樹脂を得た。
 得られたフラン樹脂について実施例1と同様にGPC測定を行ったところ、Mnは570、Mwは720、分子量分布(Mw/Mn)は1.26であった。
 また、実施例1と同様に1H-NMRスペクトル及びFT-IRスペクトルを測定し、目的のフラン樹脂が得られていることを確認した。
実施例3
 フラン化合物(9a)を280g、フルフリルアルコールを125g、37質量%ホルマリン溶液(9b)を114.6g、及び酢酸を31.6g使用したこと以外は実施例2と同様にして反応を行い、濃橙色液状フラン樹脂を得た。
 得られたフラン樹脂について実施例1と同様にGPC測定を行ったところ、Mnは730、Mwは1120、分子量分布(Mw/Mn)は1.53であった。
 また、実施例1と同様に1H-NMRスペクトル及びFT-IRスペクトルを測定し、目的のフラン樹脂が得られていることを確認した。
比較例1
 冷却管、温度計を備えたフラスコ中にフルフリルアルコール400g、パラホルムアルデヒド112.5g、10質量%NaOH水溶液3.4gを入れ、50℃に加熱してパラホルムアルデヒドをフルフリルアルコールに完全に溶解させた。その後、10質量%リン酸水溶液16g、イオン交換水65gを加え、90℃に昇温して1.5時間反応させた。
 反応終了後室温まで冷却し、50質量%NaOH水溶液でpH6まで中和した。その後、減圧下で135℃まで加熱し、揮発分を除去することにより、フルフリルアルコール系フラン樹脂を得た。
<実施例4、5及び比較例2>
実施例4
 実施例2で得られたフラン樹脂100質量部にp-トルエンスルホン酸の65質量%水溶液1.5質量部を添加し、混合することにより硬化性フラン樹脂組成物を調製した。この熱硬化性フラン樹脂組成物をポリエチレンテレフタレート(PET)フィルム上にキャストし、熱風オーブン中60℃で1時間硬化させ、更に80℃で3時間硬化させることにより、厚さ100μmの黒褐色の硬化フィルムを得た。
実施例5
 実施例3で得られたフラン樹脂を用いたこと以外は実施例4と同様にして硬化フィルムを作成した。
比較例2
 比較例1で得られた樹脂を用いたこと以外は実施例4と同様に硬化フィルムを作成した。
〔評価〕
 実施例4、5及び比較例2で得られた硬化フィルムを10mm幅の短冊状に裁断し、引張試験機により1mm/minの速度で引張試験を行い、下記基準にしたがって評価した。結果を表1に示す。
 破断伸び
  G(良い):2.5%以上
  B(悪い):2.5%未満
 破断強度
  G(良い):35MPa以上
  B(悪い):35MPa未満
 弾性率:
  G(良い):2GPa以上
  B(悪い):2GPa未満
 判定
  G(良い):前記3つの評価の全てがG(良い)評価であるもの
  B(悪い):前記3つの評価のうち少なくとも1つがB(悪い)評価であるもの
Figure JPOXMLDOC01-appb-T000015
 実施例4及び5の硬化フィルムは、優れた破断伸びを示すと共に、破断強度及び弾性率も良好であった。一方、比較例2の硬化フィルムは、破断強度、及び弾性率は良好であるものの、破断伸びに劣るものであった。
<実施例6、7及び比較例3>
実施例6
 実施例4において調製した熱硬化性フラン樹脂組成物をガラス繊維クロスに含浸させてポリエチレンシートでラミネートした後、金型で拘束し、熱風オーブン中60℃で1時間、更に90℃で4時間硬化させることにより、厚さ4mmのフラン樹脂複合体を得た。
実施例7
 実施例5において調製した熱硬化性フラン樹脂組成物を用いたこと以外は、実施例6と同様にしてフラン樹脂複合体を作成した。
比較例3
 比較例2において調製した熱硬化性フラン樹脂組成物を用いたこと以外は、実施例6と同様にしてフラン樹脂複合体を作成した。
〔評価〕
 実施例6、7及び比較例3で得られたフラン樹脂複合体をJIS-K7164に準拠し、引張試験機により1mm/minの速度で引張試験を行い、下記基準にしたがって評価した。結果を表2に示す。
 破断伸び
  G(良い):2.5%以上
  B(悪い):2.5%未満
 破断強度
  G(良い):70MPa以上
  B(悪い):70MPa未満
 弾性率:
  G(良い):4.5GPa以上
  B(悪い):4.5GPa未満
 判定
  G(良い):前記3つの評価の全てがG(良い)評価であるもの
  B(悪い):前記3つの評価のうち少なくとも1つがB(悪い)評価であるもの
Figure JPOXMLDOC01-appb-T000016
 実施例6及び7のフラン樹脂複合体は優れた破断伸びを示すと共に、破断強度及び弾性率も良好であった。一方、比較例3のフラン樹脂複合体は、破断強度及び弾性率は良好であるものの、破断伸びに劣るものであった。
<実施例8>
 以下の手順にしたがってフラン樹脂を製造した。なお、実施例8における反応を反応式(10)に示す。なお、実施例8の反応においては、反応式(10)で表される両末端にCH2OH基を有するフラン樹脂以外にも、片末端が水素原子であるフラン樹脂も得ることができる。
Figure JPOXMLDOC01-appb-C000017

(反応式(10)中、s及びtはそれぞれ独立に重合度を示す。)
 冷却管、温度計をセットしたフラスコ中で、フラン化合物(10a)8.98g〔0.041mol〕、パラホルムアルデヒド(10b)14.40g、フルフリルアルコール(10c)36.00g〔0.367mol〕、パラホルムアルデヒドを解重合すること及び前記予備反応を行うことを目的とする10質量%NaOH水溶液0.34gを混合し、60℃に加熱して均一な溶液とした。
 更に10質量%リン酸水溶液1.60g、イオン交換水6.5gを添加し、昇温して100℃で90分反応させた。次いで、室温まで冷却した後、10質量%NaOH水溶液にて中和し反応を停止した。
 その後、減圧下で反応後溶液を140℃まで加熱して揮発分を除去することにより、濃褐色で液状のフラン樹脂を得た。
 得られたフラン樹脂について下記条件によりGPC測定を行ったところ、数平均分子量(Mn)は440、重量平均分子量(Mw)は3,420、分子量分布(Mw/Mn)は7.77であった。
 また、得られたフラン樹脂の1H-NMRスペクトルを下記条件にて測定したところ、原料モノマーであるフラン化合物(10a)及びフルフリルアルコール(10c)に由来するピークが観察されると共に、原料モノマーでは観察されなかったブロードなピークが3.85~4.0ppm及び5.85~6.45ppmに新たに確認された(図5~7)。
 また、生成物であるフラン樹脂のフラン環の5位のプロトンの積分値が、フラン環の3位及び4位のプロトンの積分値に比べて大幅に低下していることから、フラン環の5位に新たな炭素-炭素結合が形成されたことを確認した。また、生成物であるフラン樹脂のFT-IRスペクトルを測定した結果を図8に示す。
 以上の結果より、目的とするフラン樹脂が得られたことを確認した。
<測定条件>
〔GPC測定〕
 株式会社島津製作所製GPCシステム、及び東ソー株式会社製「TSKgel G2000HXL」×2(排除限界分子量10,000)をカラムとして用いた。カラム温度40℃、流量1.0ml/minに設定すると共に、展開媒としてテトラヒドロフラン、検出器としてRIを使用した。
 分子量計算方法は、重量平均分子量(Mw)がそれぞれ18,100、10,200、5,970、2,630、1,050、453の標準ポリスチレン「TSKstandardPOLYSTYLENE」を用いて検量線を作成し、計算により重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布を求めた。
1H-NMRスペクトル測定〕
 日本電子株式会社製NMR測定装置「ECX-400」を用い、重DMSOを溶媒とし、23℃で測定した。なお、図5~7には重DMSOを溶媒として用いて測定した1H-NMRスペクトルを示す。
〔FT-IR測定〕
 スペクトロメータとして、ThermoElectron製「NICOLET380」を用いてATR法により測定した。
<実施例9>
 実施例8で得られたフラン樹脂5.0gに対して、硬化触媒として65質量%のパラトルエンスルホン酸一水和物水溶液0.05gを添加し、混合することにより、熱硬化性フラン樹脂組成物を調製した。
 次いで、幅10mm×長さ80mm×深さ1mmの樹脂製の型枠にテフロンシートを密着させ、該テフロンシート上に得られた熱硬化性フラン樹脂組成物を流し入れ、その後、該熱硬化性フラン樹脂組成物の上にテフロンシートを重ねた。これを60℃のオーブン中で1時間、更に90℃に昇温して3時間熱処理することにより硬化させ硬化体を得た。硬化体は黒赤褐色で強度が高く可撓性を有していた。
<比較例4>
 原料モノマーとしてフラン化合物(10a)を用いなかったこと以外は実施例8と同様に反応を行い、濃褐色の液状樹脂を得た。得られた液状樹脂について、上記の条件でGPC測定を行ったところ、数平均分子量(Mn)が350、重量平均分子量(Mw)が1,580、分子量分布(Mw/Mn)が4.51であった。
<比較例5>
 比較例4の樹脂について実施例9と同様にして硬化体を作製した。得られた硬化体は黒褐色であり、実施例9で得られた硬化体と比較して、硬度が高いものの脆く、可撓性を有していなかった。

Claims (10)

  1.  下記一般式(1)で表される繰り返し単位を有するフラン樹脂。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、R1、R2、R3及びR4は、各々独立に、水素原子、又はヘテロ原子を含んでいてもよい炭素数1~8の有機基を示す。R1とR2、及びR3とR4とは連結して環構造を形成していてもよい。)
  2.  下記一般式(1)で表される繰り返し単位、及び下記一般式(2)で表される繰り返し単位を有する、請求項1に記載のフラン樹脂。
    Figure JPOXMLDOC01-appb-C000002

    (式(1)及び式(2)中、R1、R2、R3、R4、R5及びR6は、各々独立に、水素原子、又はヘテロ原子を含んでいてもよい炭素数1~8の有機基を示す。R1とR2、R3とR4、及びR5とR6とは連結して環構造を形成していてもよい。)
  3.  前記一般式(1)において、R1、R2、R3及びR4が水素原子である、請求項1に記載のフラン樹脂。
  4.  前記一般式(1)及び前記一般式(2)において、R1、R2、R3、R4、R5及びR6が水素原子である、請求項2に記載のフラン樹脂。
  5.  下記一般式(3)で表されるフラン化合物、及び下記一般式(4)で表されるカルボニル化合物を、酸触媒の存在下で反応させる、請求項1又は3に記載のフラン樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000003

    (式(3)及び式(4)中、R1、R2、R3及びR4は、式(1)中のR1、R2、R3及びR4と同義である。)
  6.  下記一般式(3)で表されるフラン化合物、下記一般式(4)で表されるカルボニル化合物、及び下記一般式(5)で表されるフラン化合物を、酸触媒の存在下で反応させる、請求項2又は4に記載のフラン樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000004

    (式(3)、式(4)及び式(5)中、R1、R2、R3、R4、R5及びR6は、式(1)及び式(2)中のR1、R2、R3、R4、R5及びR6と同義である。)
  7.  請求項1~4のいずれかに記載のフラン樹脂と、硬化触媒及び硬化剤の少なくとも1種とを含む熱硬化性フラン樹脂組成物。
  8.  請求項7に記載の熱硬化性フラン樹脂組成物を硬化させた硬化物。
  9.  請求項8に記載の硬化物と繊維質基材とが複合したフラン樹脂複合体。
  10.  請求項7に記載の熱硬化性フラン樹脂組成物を繊維質基材に含浸させた後、硬化させたフラン樹脂複合体。
PCT/JP2015/074524 2014-08-29 2015-08-28 フラン樹脂及びその製造方法、熱硬化性フラン樹脂組成物、硬化物、並びにフラン樹脂複合体 WO2016031988A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016545656A JP6550059B2 (ja) 2014-08-29 2015-08-28 フラン樹脂及びその製造方法、熱硬化性フラン樹脂組成物、硬化物、並びにフラン樹脂複合体
CN201580045351.7A CN106574030B (zh) 2014-08-29 2015-08-28 呋喃树脂及其制造方法、热固化性呋喃树脂组合物、固化物、以及呋喃树脂复合体
EP15836888.6A EP3196219B1 (en) 2014-08-29 2015-08-28 Furan resin, method for producing same, thermosetting furan resin composition, cured product, and furan resin composite
US15/506,485 US10221275B2 (en) 2014-08-29 2015-08-28 Furan resin, method for producing same, thermosetting furan resin composition, cured product, and furan resin composite

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014176422 2014-08-29
JP2014-176407 2014-08-29
JP2014176407 2014-08-29
JP2014-176422 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031988A1 true WO2016031988A1 (ja) 2016-03-03

Family

ID=55399869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074524 WO2016031988A1 (ja) 2014-08-29 2015-08-28 フラン樹脂及びその製造方法、熱硬化性フラン樹脂組成物、硬化物、並びにフラン樹脂複合体

Country Status (5)

Country Link
US (1) US10221275B2 (ja)
EP (1) EP3196219B1 (ja)
JP (1) JP6550059B2 (ja)
CN (1) CN106574030B (ja)
WO (1) WO2016031988A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141707A (ja) * 2015-01-30 2016-08-08 積水化学工業株式会社 硬化性組成物、硬化物、複合体及び樹脂複合体
WO2018038220A1 (ja) * 2016-08-25 2018-03-01 積水化学工業株式会社 硬化性組成物、硬化物、及び樹脂複合体
JP2018035333A (ja) * 2016-08-25 2018-03-08 積水化学工業株式会社 硬化性組成物、硬化物、及び樹脂複合体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248959B (zh) * 2021-05-18 2022-07-12 深圳优易材料科技有限公司 一种耐高温磨损的防腐涂料及其制备方法和应用
CN114933686A (zh) * 2022-06-22 2022-08-23 山东怡泰恒环保材料有限公司 一种高性能防脱水自硬呋喃树脂的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2600403A (en) * 1950-02-16 1952-06-17 Harvel Res Corp Partially hydrogenated furfuraldehyde-ketone reaction products thickened under acidic conditions
US2828275A (en) * 1954-03-18 1958-03-25 Harvel Res Corp Mixtures of furfural-ketone and partially hydrogenated furfural-ketone organic reaction products
JPS5887111A (ja) * 1981-11-10 1983-05-24 エス・カ−・ヴエ−・トロ−ストベルク・アクチエンゲゼルシヤフト アルデヒド及びケトンからなる酸基含有熱安定性親水性縮合生成物、その製法、及び該化合物からなる粘稠化剤、保留剤、界面活性剤、分散化剤及び/又は流動化剤
CS227107B1 (cs) * 1982-04-15 1984-04-16 Miloslav Ing Kacer Způsob přípravy tmelových chemicky odolných hmot
CS230690B1 (cs) * 1982-08-04 1984-08-13 Lubor Svoboda Elektrostatický vodivá, chemicky odolná podlaha
CN102850157A (zh) * 2012-07-30 2013-01-02 华东理工大学 一种由多功能催化剂一步法高效制备长链烷烃的新技术

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2363829A (en) 1942-10-07 1944-11-28 Harvel Res Corp Furfuraldehyde-ketone-formaldehyde reaction product and method of making same
US2655491A (en) * 1952-07-30 1953-10-13 Dow Chemical Co Self-hardening furan resin compositions using a mixture of benzene sulfonyl chloride and trichloroacetic acid as catalysts
US5459183A (en) * 1993-05-19 1995-10-17 Schuller International, Inc. Low VOC furan resins and method of reducing VOCS in furan resins
JP2013503152A (ja) * 2009-08-27 2013-01-31 イエダ リサーチ アンド ディベロップメント カンパニー リミテッド オリゴフラン類、ポリフラン類、それらの作製および使用
AU2011236216B2 (en) * 2010-04-02 2015-01-29 Sekisui Chemical Co., Ltd. Lining material for rehabilitating existing pipe and method for rehabilitating existing pipe using same
JP2013234286A (ja) 2012-05-10 2013-11-21 Sekisui Chem Co Ltd 熱硬化性フラン樹脂組成物、フラン樹脂硬化物及びそれらの製造方法
US9527952B1 (en) * 2014-02-17 2016-12-27 The University Of Toledo Amorphous polyester from bio-based bis-furan assembly
KR101592882B1 (ko) * 2014-06-27 2016-02-15 주식회사 퓨어스피어 구형 푸란 수지 입자 제조방법
US9840485B1 (en) * 2016-09-27 2017-12-12 Sekisui Chemical Co., Ltd. Bisfuran dihalide, method for producing bisfuran dihalide, and method for producing bisfuran diacid, bisfuran diol or bisfuran diamine using bisfuran dihalide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2600403A (en) * 1950-02-16 1952-06-17 Harvel Res Corp Partially hydrogenated furfuraldehyde-ketone reaction products thickened under acidic conditions
US2828275A (en) * 1954-03-18 1958-03-25 Harvel Res Corp Mixtures of furfural-ketone and partially hydrogenated furfural-ketone organic reaction products
JPS5887111A (ja) * 1981-11-10 1983-05-24 エス・カ−・ヴエ−・トロ−ストベルク・アクチエンゲゼルシヤフト アルデヒド及びケトンからなる酸基含有熱安定性親水性縮合生成物、その製法、及び該化合物からなる粘稠化剤、保留剤、界面活性剤、分散化剤及び/又は流動化剤
CS227107B1 (cs) * 1982-04-15 1984-04-16 Miloslav Ing Kacer Způsob přípravy tmelových chemicky odolných hmot
CS230690B1 (cs) * 1982-08-04 1984-08-13 Lubor Svoboda Elektrostatický vodivá, chemicky odolná podlaha
CN102850157A (zh) * 2012-07-30 2013-01-02 华东理工大学 一种由多功能催化剂一步法高效制备长链烷烃的新技术

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KLIEM ALEXANDER ET AL.: "The Partial Hydrogenation of Difurfuralacetone and Related Compounds", JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 72, no. 12, December 1950 (1950-12-01), pages 5506 - 5507, XP055412884 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141707A (ja) * 2015-01-30 2016-08-08 積水化学工業株式会社 硬化性組成物、硬化物、複合体及び樹脂複合体
WO2018038220A1 (ja) * 2016-08-25 2018-03-01 積水化学工業株式会社 硬化性組成物、硬化物、及び樹脂複合体
JP2018035333A (ja) * 2016-08-25 2018-03-08 積水化学工業株式会社 硬化性組成物、硬化物、及び樹脂複合体

Also Published As

Publication number Publication date
US10221275B2 (en) 2019-03-05
EP3196219A1 (en) 2017-07-26
EP3196219A4 (en) 2018-04-11
CN106574030A (zh) 2017-04-19
EP3196219B1 (en) 2019-04-10
JPWO2016031988A1 (ja) 2017-06-15
US20170253686A1 (en) 2017-09-07
CN106574030B (zh) 2018-11-13
JP6550059B2 (ja) 2019-07-24

Similar Documents

Publication Publication Date Title
WO2016031988A1 (ja) フラン樹脂及びその製造方法、熱硬化性フラン樹脂組成物、硬化物、並びにフラン樹脂複合体
JP6153234B2 (ja) ベンゾオキサジンおよびそれを含む組成物
WO2016099667A1 (en) Controlling crosslinking density and processing parameters of phthalonitriles
JP2007533820A (ja) フェノール樹脂
JP5860530B2 (ja) 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体
JP5836056B2 (ja) 熱硬化性フラン樹脂組成物、フラン樹脂硬化物、それらの製造方法及び既設管更生用ライニング材
TW201037013A (en) Phosphoric acid resistant polymaleimide prepolymer compositions
Bindu et al. Addition‐cure phenolic resins based on propargyl ether functional novolacs: synthesis, curing and properties
JPS63345A (ja) フェノ−ル樹脂を主成分とする樹脂組成物
JP6837354B2 (ja) アリル基含有樹脂、樹脂ワニスおよび積層板の製造方法
JP6760815B2 (ja) 樹脂ワニス、その製造方法および積層板の製造方法
CN101454367A (zh) 用于木质纤维素材料的高性能氨基塑料树脂
JP2018035333A (ja) 硬化性組成物、硬化物、及び樹脂複合体
KR20130103307A (ko) 에폭시 수지용 잠복 촉매로서의 포스파젠 차단된 아졸 화합물
WO2018038220A1 (ja) 硬化性組成物、硬化物、及び樹脂複合体
JP2017119830A (ja) アリル基含有樹脂、その製造方法、樹脂ワニスおよび積層板の製造方法
JP6423316B2 (ja) 新規アルデヒド含有樹脂
JP2016141707A (ja) 硬化性組成物、硬化物、複合体及び樹脂複合体
JP6863830B2 (ja) 樹脂組成物、樹脂ワニス、積層板の製造方法、熱硬化性成型材料および封止材
RU2463315C1 (ru) Фталидсодержащие соолигомеры для получения сшитых фталидсодержащих сополимеров, способ их получения (варианты), фталидсодержащие сшитые сополимеры на их основе в качестве конструкционных полимеров
JP2018076468A (ja) 熱硬化性フラン樹脂組成物及びこれを用いた熱硬化性フラン樹脂積層体
JP2013234286A (ja) 熱硬化性フラン樹脂組成物、フラン樹脂硬化物及びそれらの製造方法
JP5879170B2 (ja) 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体
Rohimi et al. Lignin-Based Polybenzoxazine Derived from Empty Fruit Bunch Fibers with Good Thermal and Mechanical Properties
JP2013213140A (ja) 熱硬化性フラン樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545656

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015836888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15506485

Country of ref document: US

Ref document number: 2015836888

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE