WO2013140955A1 - 基板処理装置およびヒータ洗浄方法 - Google Patents

基板処理装置およびヒータ洗浄方法 Download PDF

Info

Publication number
WO2013140955A1
WO2013140955A1 PCT/JP2013/054808 JP2013054808W WO2013140955A1 WO 2013140955 A1 WO2013140955 A1 WO 2013140955A1 JP 2013054808 W JP2013054808 W JP 2013054808W WO 2013140955 A1 WO2013140955 A1 WO 2013140955A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
cleaning
cleaning liquid
housing
liquid
Prior art date
Application number
PCT/JP2013/054808
Other languages
English (en)
French (fr)
Inventor
僚 村元
Original Assignee
大日本スクリーン製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012068082A external-priority patent/JP5999625B2/ja
Priority claimed from JP2012068083A external-priority patent/JP5963298B2/ja
Application filed by 大日本スクリーン製造株式会社 filed Critical 大日本スクリーン製造株式会社
Priority to KR1020147026096A priority Critical patent/KR101925173B1/ko
Priority to US14/386,685 priority patent/US9991141B2/en
Priority to CN201380015581.XA priority patent/CN104205305B/zh
Publication of WO2013140955A1 publication Critical patent/WO2013140955A1/ja
Priority to US15/966,569 priority patent/US10573542B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/024Cleaning by means of spray elements moving over the surface to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means

Definitions

  • the present invention relates to a substrate processing apparatus having an infrared lamp and provided with a heater for performing heat treatment on a substrate, and a heater cleaning method for cleaning the heater.
  • substrates to be heat-treated include semiconductor wafers, glass substrates for liquid crystal displays, plasma display substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, and magneto-optical disk substrates.
  • Substrates such as photomask substrates, ceramic substrates, solar cell substrates and the like.
  • the manufacturing process of a semiconductor device includes, for example, a step of locally implanting impurities (ions) such as phosphorus, arsenic, and boron into a main surface (surface) of a semiconductor wafer (hereinafter simply referred to as “wafer”). .
  • impurities ions
  • wafer main surface
  • a resist made of a photosensitive resin is patterned on the surface of the wafer, and portions that do not require ion implantation are masked with the resist. Since the resist patterned on the surface of the wafer becomes unnecessary after the ion implantation, a resist removal process for removing the unnecessary resist on the surface of the wafer is performed after the ion implantation.
  • a typical resist removal process oxygen plasma is irradiated on the wafer surface, and the resist on the wafer surface is ashed. Then, a chemical solution such as a sulfuric acid / hydrogen peroxide mixture (sulfuric acid / hydrogen peroxide mixture: SPM) is supplied to the surface of the wafer. Thereby, the ashed resist is removed, and the removal of the resist from the surface of the wafer is achieved.
  • SPM sulfuric acid / hydrogen peroxide mixture
  • the inventor of the present invention is considering heating the chemical solution supplied to the main surface of the substrate during chemical processing in order to further increase the temperature of the chemical solution supplied to the main surface of the substrate.
  • a chemical solution existing on the main surface of the substrate is heated by disposing a heater having an infrared lamp and a housing that accommodates the infrared lamp at a distance from the main surface of the substrate.
  • the chemical solution is heated by the infrared lamp, the chemical solution is rapidly heated, and a large amount of chemical mist is generated around the main surface of the substrate.
  • the chemical mist generated during the heat treatment adheres to the lower surface of the heater housing facing the main surface of the substrate. If the chemical mist is left attached to the lower surface of the housing, the amount of infrared light emitted to the outside of the housing decreases due to a decrease in infrared transmittance on the lower surface of the housing.
  • the chemical mist is dried and crystallized, the lower surface of the housing may become a particle source. Therefore, every time one substrate is processed, it is necessary to wash away the chemical solution adhering to the lower surface of the heater housing.
  • a bar nozzle in which a plurality of discharge ports directed downward in the vertical direction are arranged in a row or a plurality of rows in the horizontal direction is provided, and the processing liquid from each discharge port is applied to the heater from above. Measures to supply can be considered. However, with such a measure, it is difficult to spread the cleaning liquid over the entire lower surface of the heater housing.
  • the objective of this invention is providing the substrate processing apparatus and heater cleaning method which can wash
  • the present invention provides a heater cleaning method for cleaning a heater which is disposed opposite to an upper surface (upper main surface) of a substrate held by a substrate holding means and heats the upper surface.
  • the heater has an infrared lamp and a housing.
  • the first discharge port is disposed at a heater cleaning position above a lower nozzle that has a first discharge port facing the lower surface of the substrate held by the substrate holding unit and discharging liquid upward.
  • the heater is disposed at the heater position above the first discharge port, so that the heater faces the first discharge port.
  • the cleaning liquid is discharged upward from the first discharge port.
  • the cleaning liquid from the first discharge port blows upward, and reaches the lower outer surface of the heater housing disposed at the heater cleaning position, thereby cleaning the lower outer surface.
  • the heater is used for heat treatment for heating the substrate held by the substrate holding means.
  • the lower outer surface of the housing is disposed opposite to the surface of the substrate. For this reason, after the heat treatment, there is a possibility that foreign matter adheres to the lower outer surface of the housing. Such foreign matter can be washed away by the cleaning liquid supplied upward from the first discharge port, that is, toward the lower outer surface of the housing. As a result, the outer surface of the housing can be cleaned well, so that the outer surface of the housing can be kept clean.
  • the housing may have a facing surface that faces the surface of the substrate when the substrate is heated by the infrared lamp. Further, the heat treatment may be performed in a state where a chemical solution is present on the upper surface of the substrate. In this case, during the heat treatment, the chemical solution may be rapidly heated by the infrared lamp, and a large amount of chemical solution mist may be generated around the main surface of the substrate. And there exists a possibility that the chemical
  • the method includes an upper nozzle disposed above the first discharge port (more specifically, above the heater cleaning position) in parallel with the lower cleaning liquid discharging step. It further includes an upper cleaning liquid discharge step of supplying the cleaning liquid to the outer surface of the housing by discharging the cleaning liquid downward.
  • the cleaning liquid in parallel with the discharge of the cleaning liquid from the lower nozzle, the cleaning liquid is discharged downward from the upper nozzle disposed above the heater disposed at the heater cleaning position. Therefore, the cleaning liquid can be spread over a wide range of the outer surface of the housing. Thereby, the outer surface of the heater housing can be cleaned extensively.
  • the upper nozzle may be a ceiling nozzle disposed on a ceiling wall of a processing chamber that houses the substrate holding means.
  • the method includes a liquid landing position moving step of moving the liquid landing position on the outer surface of the housing of the cleaning liquid discharged from the first discharge port in parallel with the lower cleaning liquid discharging step. Further included.
  • the landing position of the cleaning liquid on the outer surface of the housing is moved in parallel with the discharge of the cleaning liquid from the first discharge port.
  • the liquid landing position moving step may include a step of reciprocating the heater in a direction (horizontal direction) that intersects the discharge direction of the cleaning liquid from the first discharge port.
  • the method further includes a drying step of removing the cleaning solution adhering to the outer surface of the housing after completion of the lower cleaning solution supply step.
  • the cleaning liquid remaining on the outer surface of the housing is removed after the heater housing is cleaned with the cleaning liquid.
  • the drying step includes a heat drying step of irradiating the housing with infrared rays from the infrared lamp to heat and dry the outer surface of the housing.
  • the housing is warmed by infrared irradiation from the infrared lamp, and the cleaning liquid adhering to the outer surface of the housing is evaporated and removed. Thereby, the outer surface of a housing can be dried favorably.
  • the lower nozzle further has a second discharge port for discharging gas upward, and the drying step supplies a drying gas to the lower nozzle.
  • a lower drying gas spraying step for supplying a drying gas to the outer surface of the housing of the heater disposed at the heater cleaning position by spraying a drying gas upward from the second discharge port.
  • the drying gas from the second discharge port is sprayed onto the lower outer surface of the heater housing.
  • the cleaning liquid adhering to the lower outer surface of the housing is blown off by the drying gas.
  • the outer surface of a housing can be dried favorably.
  • the present invention further includes an infrared lamp and a housing that accommodates the infrared lamp, and a heater that heats the main surface of the substrate at a processing position facing the main surface of the substrate is different from the processing position.
  • a substrate processing apparatus including cleaning liquid supply means for supplying a cleaning liquid to an outer surface of the housing in a state where the heater is positioned at a cleaning position.
  • the cleaning liquid is supplied to the outer surface of the heater housing in a state where the heater is disposed at a cleaning position different from the processing position during the heat treatment.
  • the housing may have a facing surface that faces the surface of the substrate during the heat treatment for heating the substrate with an infrared lamp.
  • the substrate may be subjected to heat treatment in a state where the chemical solution is present on the main surface of the substrate. In this case, during the heat treatment, the chemical solution is suddenly warmed by the infrared lamp, and a large amount of chemical solution mist is generated around the main surface of the substrate, and this chemical solution mist may adhere to the opposing surface of the housing.
  • the cleaning position may be a standby position when the heater is retracted from the processing position and stands by. According to this configuration, since the cleaning process is performed on the heater that is waiting at the standby position, the heater can be cleaned regardless of the progress of the substrate processing as long as the heater is positioned at the standby position. That is, since the heater can be cleaned without interrupting the substrate processing, the productivity of the substrate processing apparatus can be increased.
  • the substrate processing apparatus further includes a housing member that houses the heater and receives the cleaning liquid scattered from the heater.
  • the storage member includes a bottomed container-like storage container having a discharge port at the bottom and capable of storing a liquid, and the cleaning liquid supply means supplies a cleaning liquid into the storage container. May be included.
  • the substrate processing apparatus is connected to the discharge port of the storage container, and is interposed in a drain pipe for discharging the liquid stored in the storage container, and the drain pipe. A drain valve for opening and closing the drain pipe may be further included.
  • the discharge of the cleaning liquid from the bottomed container is prevented by closing the drainage valve.
  • the cleaning liquid is stored in the storage container.
  • the outer surface of the housing can be cleaned by immersing the outer surface of the heater housing in the cleaning liquid stored in the storage container.
  • the cleaning liquid supply means may include a cleaning liquid nozzle having a cleaning liquid discharge port for discharging the cleaning liquid toward the outer surface of the housing.
  • the substrate processing apparatus further includes a drying gas spraying unit that sprays a drying gas toward the outer surface of the housing in order to remove the cleaning liquid from the outer surface of the housing.
  • a drying gas spraying unit that sprays a drying gas toward the outer surface of the housing in order to remove the cleaning liquid from the outer surface of the housing.
  • the drying gas is sprayed from the drying gas spraying means to the heater housing.
  • the cleaning liquid adhering to the outer surface of the housing is blown off by the drying gas.
  • the outer surface of a housing can be dried favorably.
  • the substrate processing apparatus further includes a heater elevating unit that elevates and lowers the heater, and the drying gas spraying unit discharges a drying gas in a direction intersecting with the elevating direction of the heater.
  • a drying gas nozzle and the substrate processing apparatus controls the drying gas spraying means and the heater lifting and lowering means to discharge the drying gas from the drying gas nozzle and to raise and lower the heater, thereby It further includes spray drying control means for raising and lowering the supply position of the drying gas on the outer surface of the housing.
  • the heater moves up and down in the region facing the discharge port. For this reason, since the drying gas is sprayed on a wide area (preferably the entire area) of the outer surface of the housing, the cleaning liquid can be removed from a wide area (preferably the entire area) of the outer surface of the housing. Thereby, the outer surface of a housing can be dried favorably.
  • the substrate processing apparatus further includes a heating / drying control unit that heats and dries the cleaning liquid adhering to the outer surface by irradiating the housing with infrared rays from the infrared lamp. .
  • a heating / drying control unit that heats and dries the cleaning liquid adhering to the outer surface by irradiating the housing with infrared rays from the infrared lamp.
  • the present invention further provides a heater cleaning method for cleaning a heater that heats the main surface of the substrate at a processing position facing the main surface of the substrate.
  • the heater includes an infrared lamp and a housing that accommodates the infrared lamp.
  • the heater cleaning method includes a heater disposition step of disposing the heater at a cleaning position different from the processing position, and a cleaning liquid supply step of supplying a cleaning liquid to the outer surface of the heater positioned at the cleaning position.
  • the method further includes a drying step of removing the cleaning liquid adhering to the outer surface of the housing after completion of the cleaning liquid supply step.
  • a drying step of removing the cleaning liquid adhering to the outer surface of the housing after completion of the cleaning liquid supply step.
  • the drying step includes a heating and drying step of irradiating the housing with infrared rays from the infrared lamp to heat and dry the cleaning liquid adhering to the outer surface.
  • the drying step includes a heater raising / lowering step for raising and lowering the heater, and a drying gas from the drying gas nozzle toward the outer surface of the housing in a direction intersecting with the raising / lowering direction of the heater.
  • FIG. 2 is a schematic cross-sectional view of a heater head provided in the substrate processing apparatus.
  • FIG. It is a perspective view of the infrared lamp with which the heater head was equipped.
  • It is a block diagram which shows the electric constitution of the substrate processing apparatus shown in FIG.
  • It is process drawing which shows the process example of the resist removal process by the said substrate processing apparatus.
  • It is an illustration for explaining an SPM liquid film formation process.
  • It is an illustration figure for demonstrating a SPM liquid film heating process.
  • FIG. 12 is a block diagram showing an electrical configuration of the substrate processing apparatus shown in FIG. 11. 12 is a flowchart showing a flow of a heater head cleaning / drying step in the substrate processing apparatus of FIG. 11.
  • FIG. 15B is an illustrative view showing a step subsequent to FIG. 15A.
  • FIG. 15D is an illustrative view showing a step subsequent to FIG. 15B. It is a figure which shows the other structural example of a washing
  • FIG. 17 is a cross-sectional view taken along section line AA of FIG. It is a figure which shows the further another structural example of a washing
  • FIG. 19 is a cross-sectional view taken along the section line BB in FIG. 18.
  • FIG. 1 is a diagram schematically showing a configuration of a substrate processing apparatus 1 in which a heater cleaning method according to an embodiment of the present invention is executed.
  • the substrate processing apparatus 1 removes unnecessary resist from the surface of the wafer W after ion implantation processing or dry etching processing for injecting impurities into the surface (main surface) of the wafer W as an example of a substrate. It is a single wafer type device used for processing.
  • the substrate processing apparatus 1 includes a processing chamber 2 partitioned by a partition wall 2A.
  • a fan filter unit (not shown) for sending clean air into the processing chamber 2 is provided on the ceiling wall of the processing chamber 2.
  • the clean air is air generated by purifying air in a clean room where the substrate processing apparatus 1 is installed.
  • the substrate processing apparatus 1 includes a wafer rotation mechanism (substrate holding means) 3, a peeling liquid nozzle (chemical solution supply means) 4, and a heater head (heater) 35 in the processing chamber 2.
  • the wafer rotation mechanism 3 holds and rotates the wafer W.
  • the stripping solution nozzle 4 supplies an SPM solution as an example of a resist stripping solution as a chemical solution to the surface (upper surface) of the wafer W held by the wafer rotation mechanism 3.
  • the heater head 35 is disposed to face the surface of the wafer W held by the wafer rotation mechanism 3 and heats the SPM liquid on the surface of the wafer W.
  • the wafer rotating mechanism 3 for example, a sandwiching type may be adopted.
  • the wafer rotating mechanism 3 includes, for example, a spin shaft 7 that extends substantially vertically, a disk-shaped spin base 8 that is mounted substantially horizontally on the upper end of the spin shaft 7, and a peripheral portion of the spin base 8. And a plurality of clamping members 9 provided at approximately equal intervals in a plurality of locations. Each of the clamping members 9 is brought into contact with the end surface of the wafer W, and the wafer W is held by the plurality of clamping members 9 so that the wafer W is held in a substantially horizontal posture. It is arranged on the central axis of the.
  • Rotational force is input to the spin shaft 7 from a chuck rotation drive mechanism 6 including a motor (not shown). With this rotational force input, the spin shaft 7 rotates, and the spin base 8 rotates about a predetermined rotation axis (vertical axis) C with the wafer W held by the holding member 9 maintained in a substantially horizontal posture.
  • the chuck rotation drive mechanism 6 has a rotor (drive shaft) integrated with the spin shaft 7 and a stator arranged around the rotor, and has a form of a hollow motor in which the spin shaft 7 penetrates in the vertical direction. (See FIG. 11).
  • the spin shaft 7 is a hollow shaft, and a back side liquid supply pipe 80 and a back side gas supply pipe 81 extending in the vertical direction are inserted through the spin shaft 7.
  • the upper end of the back side liquid supply pipe 80 and the upper end of the back side gas supply pipe 81 are connected to a back nozzle (lower nozzle) 82 provided at the upper end of the spin shaft 7, respectively.
  • the back surface nozzle 82 has a circular back surface liquid discharge port (first discharge port) 84 and a circular back surface gas discharge port (second discharge port) 85 at its upper end.
  • the back surface liquid discharge port 84 and the back surface gas discharge port 85 are arranged close to each other.
  • Each of the discharge ports 84 and 85 is opposed to the rotation center of the lower surface of the wafer W held by the wafer rotation mechanism 3.
  • the back surface liquid discharge port 84 and the back surface gas discharge port 85 have the same height in the vertical direction.
  • a cleaning liquid lower supply pipe 86 to which DIW (deionized water) as an example of the cleaning liquid is supplied is connected to the back surface side liquid supply pipe 80.
  • the lower cleaning solution supply pipe 86 is provided with a lower cleaning solution valve 87 for opening and closing the lower cleaning solution supply pipe 86.
  • a drying gas lower supply pipe 88 to which nitrogen gas as an example of the drying gas is supplied is connected to the back side gas supply pipe 81.
  • the drying gas lower supply pipe 88 is provided with a drying gas lower valve 89 for opening and closing the drying gas lower supply pipe 88.
  • the stripping liquid nozzle 4 is, for example, a straight nozzle that discharges the SPM liquid in a continuous flow state.
  • the stripping liquid nozzle 4 is attached to the tip of the first liquid arm 11 extending substantially horizontally with its discharge port directed downward.
  • the first liquid arm 11 is provided so as to be rotatable around a predetermined swing axis extending in the vertical direction.
  • the first liquid arm 11 is coupled to a first liquid arm swinging mechanism 12 for swinging the first liquid arm 11 within a predetermined angle range.
  • the stripping liquid nozzle 4 moves to a position on the rotation axis C of the wafer W (position facing the rotation center of the wafer W) and a home set on the side of the wafer rotation mechanism 3. Moved between positions. This home position is a standby position when the heater head 35 is retracted from above the wafer W and stands by.
  • a stripping solution supply pipe 15 to which an SPM solution from an SPM supply source is supplied is connected to the stripping solution nozzle 4.
  • a stripping solution valve 23 for switching supply / stop of supply of the SPM solution from the stripping solution nozzle 4 is interposed.
  • the substrate processing apparatus 1 includes a DIW nozzle 24, an SC1 nozzle 25, and a cup 5.
  • the DIW nozzle 24 supplies DIW (deionized water) as a rinsing liquid to the surface of the wafer W held by the wafer rotating mechanism 3.
  • the SC1 nozzle 25 supplies SC1 (ammonia-hydrogen peroxide mixture) as a cleaning chemical to the surface of the wafer W held by the wafer rotating mechanism 3.
  • the cup 5 surrounds the periphery of the wafer rotation mechanism 3 and receives the SPM liquid SC1 and DIW flowing down or splashing from the wafer W.
  • the DIW nozzle 24 is, for example, a straight nozzle that discharges DIW in a continuous flow state, and is fixedly disposed above the wafer rotation mechanism 3 so that the discharge port faces the vicinity of the rotation center of the wafer W.
  • a DIW supply pipe 26 to which DIW is supplied from a DIW supply source is connected to the DIW nozzle 24.
  • a DIW valve 27 for switching supply / stop of supply of DIW from the DIW nozzle 24 is interposed in the middle of the DIW supply pipe 26.
  • the SC1 nozzle 25 is, for example, a straight nozzle that discharges SC1 in a continuous flow state.
  • the SC1 nozzle 25 is attached to the tip of the second liquid arm 28 that extends substantially horizontally with its discharge port directed downward.
  • the second liquid arm 28 is provided so as to be rotatable around a predetermined swing axis extending in the vertical direction.
  • the second liquid arm 28 is coupled to a second liquid arm swing mechanism 29 for swinging the second liquid arm 28 within a predetermined angle range.
  • the SC1 nozzle 25 moves to a position on the rotation axis C of the wafer W (a position facing the rotation center of the wafer W) and a home position set to the side of the wafer rotation mechanism 3. Moved between.
  • An SC1 supply pipe 30 to which SC1 from an SC1 supply source is supplied is connected to the SC1 nozzle 25.
  • An SC1 valve 31 for switching supply / stop of supply of SC1 from the SC1 nozzle 25 is interposed in the middle of the SC1 supply pipe 30.
  • a support shaft 33 extending in the vertical direction is disposed on the side of the wafer rotation mechanism 3.
  • a heater arm 34 extending in the horizontal direction is coupled to the upper end portion of the support shaft 33.
  • a heater head 35 that houses and holds an infrared lamp 38 is attached to the tip of the heater arm 34.
  • the support shaft 33 is coupled with a swing drive mechanism 36 for rotating the support shaft 33 around the central axis, and an elevating drive mechanism 37 for moving the support shaft 33 up and down along the central axis. ing.
  • a driving force is input to the support shaft 33 from the swing drive mechanism 36 and the support shaft 33 is rotated within a predetermined angle range, whereby the heater arm 34 is located above the wafer W held by the wafer rotation mechanism 3. However, it swings around the support shaft 33 as a fulcrum.
  • the heater head 35 has a position on the rotation axis C of the wafer W (a position facing the rotation center of the wafer W) and a home position set to the side of the wafer rotation mechanism 3. Move between. Further, by inputting a driving force from the lifting drive mechanism 37 to the support shaft 33 and moving the support shaft 33 up and down, the proximity position close to the surface of the wafer W held by the wafer rotation mechanism 3 (two in FIG. 1).
  • the heater head 35 moves up and down.
  • the proximity position is set to a position where the distance between the surface of the wafer W held by the wafer rotation mechanism 3 and the lower surface (opposing surface) 52B of the heater head 35 is 3 mm, for example.
  • a cleaning liquid upper nozzle (ceiling nozzle) 94 and a drying gas upper nozzle (ceiling nozzle) 95 are laterally adjacent to each other above the rotation axis C of the wafer rotating mechanism 3.
  • the cleaning liquid upper nozzle 94 has a discharge port for discharging the liquid downward in a shower shape.
  • a cleaning liquid supply pipe 90 to which the cleaning liquid is supplied is connected to the cleaning liquid upper nozzle 94.
  • a cleaning liquid upper valve 91 for opening and closing the cleaning liquid upper supply pipe 90 is interposed in the cleaning liquid upper supply pipe 90.
  • the drying gas upper nozzle 95 has a discharge port for discharging gas vertically downward.
  • the drying gas upper nozzle 95 is connected to a drying gas upper supply pipe 92 to which nitrogen gas as an example of the drying gas is supplied.
  • the drying gas upper supply pipe 92 is provided with a drying gas upper valve 93 for opening and closing the drying gas upper supply pipe 92.
  • FIG. 2 is a schematic sectional view showing a configuration example of the heater head 35.
  • the heater head 35 has an infrared lamp 38, an opening 39 in the upper part, a bottomed container-like lamp housing (housing) 40 that houses the infrared lamp 38, and the infrared lamp 38 is suspended inside the lamp housing 40. And a support member 42 for supporting the lamp housing 40 and a lid (housing) 41 for closing the opening 39 of the lamp housing 40.
  • the lid 41 is fixed to the tip of the heater arm 34.
  • FIG. 3 is a perspective view showing a configuration example of the infrared lamp 38.
  • the infrared lamp 38 includes an annular (arc-shaped) annular portion 43 and a pair extending from both ends of the annular portion 43 along the central axis of the annular portion 43. It is one infrared lamp heater which has the linear parts 44 and 45 of these.
  • the annular portion 43 mainly functions as a light emitting portion that emits infrared rays.
  • the diameter (outer diameter) of the annular portion 43 is set to about 60 mm, for example.
  • the central axis of the annular portion 43 is an axis (vertical axis) perpendicular to the surface of the wafer W held by the wafer rotation mechanism 3.
  • the infrared lamp 38 is configured by accommodating a filament in a quartz tube.
  • An amplifier 54 (see FIG. 4) for supplying voltage is connected to the infrared lamp 38.
  • As the infrared lamp 38 a short, medium and long wavelength infrared heater represented by a halogen lamp and a carbon heater can be adopted.
  • the lid 41 has a disk shape and is fixed in a horizontal posture with respect to the heater arm 34.
  • the lid 41 is formed using a fluororesin material such as PTFE (polytetrafluoroethylene).
  • the lid 41 is formed integrally with the heater arm 34.
  • the lid 41 may be formed separately from the heater arm 34.
  • a material such as ceramics or quartz can also be used as the material of the lid 41.
  • a substantially cylindrical groove 51 is formed on the lower surface 49 of the lid 41.
  • the groove 51 has an upper bottom surface 50 formed of a horizontal flat surface, and the upper surface 42A of the support member 42 is fixed to the upper bottom surface 50 in contact therewith.
  • the lid 41 is formed with insertion holes 58 and 59 that penetrate the upper bottom surface 50 in the vertical direction (vertical direction). The insertion holes 58 and 59 are formed so that the upper ends of the linear portions 44 and 45 of the infrared lamp 38 are inserted.
  • the lamp housing 40 has a bottomed cylindrical container shape.
  • the lamp housing 40 is formed using quartz.
  • the lamp housing 40 is fixed to the lower surface 49 of the lid 41 (in this embodiment, the lower surface of the region other than the groove portion 51) with the opening 39 facing upward.
  • An annular flange 40A projects radially outward (in the horizontal direction) from the peripheral edge on the opening side of the lamp housing 40.
  • the lamp housing 40 is supported by the lid 41 by fixing the flange 40A to the lower surface 49 of the lid 41 using a fixing unit (not shown) such as a bolt.
  • the bottom plate portion 52 of the lamp housing 40 is in the shape of a horizontal disk.
  • Each of the upper surface 52A and the lower surface 52B (opposing surface) of the bottom plate portion 52 forms a horizontal flat surface.
  • the infrared lamp 38 is disposed so that the lower portion of the annular portion 43 is close to the upper surface 52 ⁇ / b> A of the bottom plate portion 52.
  • the annular portion 43 and the bottom plate portion 52 are provided in parallel to each other. In other words, the bottom of the annular portion 43 is covered by the bottom plate portion 52 of the lamp housing 40.
  • the outer diameter of the lamp housing 40 is set to about 85 mm, for example.
  • the vertical distance between the infrared lamp 38 (the lower portion of the annular portion 43) and the upper surface 52A is set to about 2 mm, for example.
  • the support member 42 has a thick plate shape (substantially disk shape), and is fixed to the lid 41 from below with a bolt 56 or the like in a horizontal posture.
  • the support member 42 is formed using a heat-resistant material (for example, ceramics or quartz).
  • the support member 42 has two insertion holes 46 and 47 that penetrate the upper surface 42A and the lower surface 42B in the vertical direction (vertical direction). The straight portions 44 and 45 of the infrared lamp 38 are inserted through the insertion holes 46 and 47, respectively.
  • the O-ring 48 is fitted and fixed to the middle part of each straight part 44, 45.
  • the outer circumferences of the two O-rings 48 are in pressure contact with the inner walls of the corresponding insertion holes 46 and 47, respectively.
  • the straight portions 44 and 45 are prevented from being removed from the insertion holes 46 and 47, and the infrared lamp 38 is suspended and supported by the support member 42.
  • the infrared lamp 38 When power is supplied from the amplifier 54 to the infrared lamp 38, the infrared lamp 38 emits infrared rays, and the infrared rays are emitted toward the lower side of the heater head 35 through the lamp housing 40. Infrared rays emitted through the bottom plate portion 52 of the lamp housing 40 heat the SPM liquid on the wafer W. More specifically, during the resist removal process described later, the bottom plate portion 52 of the lamp housing 40 constituting the lower end surface of the heater head 35 faces the surface of the wafer W held by the wafer rotation mechanism 3. Be placed. In this state, the infrared rays emitted through the bottom plate portion 52 of the lamp housing 40 heat the wafer W and the SPM liquid on the wafer W.
  • an air supply path 60 for supplying air into the lamp housing 40 and an exhaust path 61 for exhausting the atmosphere inside the lamp housing 40 are formed.
  • the air supply path 60 and the exhaust path 61 have an air supply port 62 and an exhaust port 63 that open on the lower surface of the lid 41, respectively.
  • One end of an air supply pipe 64 is connected to the air supply path 60.
  • the other end of the air supply pipe 64 is connected to an air supply source.
  • One end of an exhaust pipe 65 is connected to the exhaust path 61.
  • the other end of the exhaust pipe 65 is connected to an exhaust source.
  • FIG. 4 is a block diagram showing an electrical configuration of the substrate processing apparatus 1.
  • the substrate processing apparatus 1 includes a control device 55 having a configuration including a microcomputer.
  • the control device 55 includes a chuck rotation drive mechanism 6, an amplifier 54, a swing drive mechanism 36, a lift drive mechanism 37, a first liquid arm swing mechanism 12, a second liquid arm swing mechanism 29, a stripping liquid valve 23, DIW.
  • Valve 27, SC1 valve 31, cleaning liquid lower valve 87, drying gas lower valve 89, cleaning liquid upper valve 91, drying gas upper valve 93, and the like are connected as control targets.
  • FIG. 5 is a process diagram showing a processing example of resist removal processing in the substrate processing apparatus 1.
  • FIG. 6A is an illustrative view for explaining an SPM liquid film forming step described later.
  • FIG. 6B is an illustrative view for explaining an SPM liquid film heating step to be described later.
  • FIG. 7 is a plan view showing a moving range of the heater head 35 in an SPM liquid film heating step to be described later.
  • the wafer W after the ion implantation process is loaded into the processing chamber 2 (see FIG. 1) by a transfer robot (not shown) controlled by the control device 55 (step S1: wafer loading).
  • the wafer W is delivered to the wafer rotating mechanism 3 with its surface facing upward.
  • the heater head 35, the stripping solution nozzle 4 and the SC1 nozzle 25 are each arranged at the home position so as not to hinder the loading of the wafer W.
  • the controller 55 controls the chuck rotation drive mechanism 6 to start rotation of the wafer W (step S2).
  • the rotation speed of the wafer W is increased to a liquid buildup speed (in the range of 30 to 300 rpm, for example, 60 rpm), and then maintained at the liquid buildup speed.
  • the liquid buildup speed is a speed at which the wafer W can be covered with the SPM liquid supplied later, that is, a speed at which the liquid film of the SPM liquid can be held on the surface of the wafer W.
  • the control device 55 controls the first liquid arm swing mechanism 12 to move the stripping liquid nozzle 4 to a position above the wafer W.
  • the controller 55 opens the stripping liquid valve 23 and supplies the SPM liquid to the surface of the wafer W from the stripping liquid nozzle 4 as shown in FIG. 6A.
  • the SPM liquid supplied to the surface of the wafer W is accumulated on the surface of the wafer W, and an SPM liquid film 70 covering the entire surface of the wafer W is formed on the surface of the wafer W (step S3: SPM liquid film forming step).
  • the control device 55 controls the first liquid arm swinging mechanism 12 so that the stripping liquid nozzle 4 is placed on the rotation center of the wafer W and stripping is performed.
  • the SPM liquid is discharged from the liquid nozzle 4.
  • the liquid film 70 of the SPM liquid can be formed on the surface of the wafer W, and the SPM liquid can be spread over the entire surface of the wafer W.
  • the entire surface of the wafer W can be covered with the liquid film 70 of the SPM liquid.
  • the control device 55 controls the chuck rotation driving mechanism 6 so that the rotation speed of the wafer W is smaller than the liquid buildup speed. Reduce to the heat treatment speed. Thereby, the SPM liquid film heating process (heating process) of step S4 is performed.
  • the heat treatment speed is such that the SPM liquid film 70 can be held on the surface of the wafer W without supplying the SPM liquid to the wafer W (in the range of 1 to 20 rpm, for example, 15 rpm). Further, in synchronization with the deceleration of the wafer W by the chuck rotation driving mechanism 6, as shown in FIG.
  • the control device 55 closes the stripping solution valve 23 and stops the supply of the SPM solution from the stripping solution nozzle 4.
  • the first liquid arm swinging mechanism 12 is controlled to return the stripping liquid nozzle 4 to the home position.
  • control device 55 controls the amplifier 54 to emit infrared rays from the infrared lamp 38. Further, the control device 55 controls the swing drive mechanism 36 and the elevation drive mechanism 37 to move the heater head 35 from the home position, and further to a central proximity position (FIG. 6B and FIG. 6B) facing the rotation center of the wafer W. The position is moved back and forth between a position indicated by a solid line in FIG. 7 and a peripheral vicinity position (a position indicated by a two-dot chain line in FIGS.
  • the wafer W and the SPM liquid immediately below the infrared lamp 38 are rapidly heated, and the SPM liquid near the boundary with the wafer W is heated.
  • a region facing the lower surface 52B of the bottom plate portion 52 on the surface of the wafer W (a region facing the infrared lamp 38) has a circular arc in a range from the region including the rotation center of the wafer W to the region including the peripheral edge of the wafer W. Reciprocates while drawing a belt-like trajectory. As a result, the entire surface of the wafer W can be heated.
  • the peripheral edge position is such that when the heater head 35 is viewed from above, a part of the lower surface 52B of the bottom plate portion 52, more preferably, the annular portion 43 of the infrared lamp 38 is more radial than the outer periphery of the wafer W. It is a position that overhangs.
  • the liquid film 70 of the SPM liquid is heated near the boundary with the surface of the wafer W.
  • the reaction between the resist on the surface of the wafer W and the SPM solution proceeds, and the resist peels off from the surface of the wafer W.
  • the control device 55 controls the amplifier 54 to stop the infrared radiation from the infrared lamp 38.
  • the control device 55 controls the swing drive mechanism 36 and the lift drive mechanism 37 to return the heater head 35 to the home position.
  • a large amount of SPM liquid mist is attached to the lower surface 52B of the lamp housing 40 of the heater head 35.
  • the control device 55 controls the chuck rotation driving mechanism 6 to increase the rotation speed of the wafer W to a predetermined liquid processing rotation speed (in the range of 300 to 1500 rpm, for example, 1000 rpm). Further, the control device 55 opens the DIW valve 27 and supplies DIW from the discharge port of the DIW nozzle 24 toward the vicinity of the rotation center of the wafer W (step S5: intermediate rinsing process).
  • the DIW supplied to the surface of the wafer W receives centrifugal force due to the rotation of the wafer W and flows on the surface of the wafer W toward the periphery of the wafer W. Thereby, the SPM liquid adhering to the surface of the wafer W is washed away by DIW.
  • the DIW valve 27 When the DIW supply is continued for a predetermined intermediate rinse time, the DIW valve 27 is closed and the supply of DIW to the surface of the wafer W is stopped.
  • the controller 55 While maintaining the rotation speed of the wafer W at the liquid processing rotation speed, the controller 55 opens the SC1 valve 31 and supplies SC1 from the SC1 nozzle 25 to the surface of the wafer W (step S6). Further, the control device 55 controls the second liquid arm swing mechanism 29 to swing the second liquid arm 28 within a predetermined angle range, so that the SC1 nozzle 25 is placed on the rotation center and the peripheral portion of the wafer W. Move back and forth between the top and bottom.
  • the supply position on the surface of the wafer W to which SC1 is guided from the SC1 nozzle 25 is in the range from the rotation center of the wafer W to the peripheral edge of the wafer W in an arc shape that intersects the rotation direction of the wafer W. Move back and forth while drawing a trajectory.
  • SC1 is supplied uniformly over the entire surface of the wafer W, and foreign substances such as resist residues and particles adhering to the surface of the wafer W can be removed by the chemical ability of SC1.
  • the controller 55 closes the SC1 valve 31 and controls the second liquid arm swing mechanism 29 to return the SC1 nozzle 25 to the home position.
  • the controller 55 opens the DIW valve 27 and supplies DIW from the discharge port of the DIW nozzle 24 toward the vicinity of the rotation center of the wafer W. (Step S7: rinsing process).
  • the DIW supplied to the surface of the wafer W receives centrifugal force due to the rotation of the wafer W and flows on the surface of the wafer W toward the periphery of the wafer W. Thereby, SC1 adhering to the surface of the wafer W is washed away by DIW.
  • the DIW valve 27 When the supply of DIW is continued for a predetermined rinse time, the DIW valve 27 is closed and the supply of DIW to the surface of the wafer W is stopped.
  • the control device 55 closes the DIW valve 27 and stops the supply of DIW to the surface of the wafer W. Thereafter, the control device 55 controls the chuck rotation driving mechanism 6 to increase the rotation speed of the wafer W to a predetermined high rotation speed (for example, 1500 to 2500 rpm), and shake off the DIW adhering to the wafer W and dry it.
  • the spin dry process is performed (step S8).
  • the control device 55 controls the chuck rotation drive mechanism 6 to stop the rotation of the wafer rotation mechanism 3.
  • the resist removal process for one wafer W is completed, and the processed wafer W is unloaded from the processing chamber 2 by the transfer robot (step S9).
  • the heater head 35 is cleaned, and a heater head cleaning / drying process for drying the cleaned heater head 35 is performed (step S10).
  • a cleaning process for cleaning the heater head 35 is performed, and a drying process is performed on the heater head 35 after the cleaning process.
  • FIG. 8 is a flowchart for explaining an example of the heater head cleaning / drying process.
  • FIG. 9A is a schematic diagram for explaining the cleaning process in the heater head cleaning / drying process
  • FIG. 9B is a schematic diagram for explaining the drying process in the heater head cleaning / drying process.
  • FIG. 10 is a plan view showing a moving range of the heater head 35 in the heater head cleaning / drying step.
  • the control device 55 controls the swing drive mechanism 36 to swing the heater arm 34 and controls the lift drive mechanism 37 to move the heater head 35 up and down.
  • the head 35 is moved from the home position to the heater cleaning position above the wafer rotation mechanism 3.
  • the wafer W is not held by the wafer rotation mechanism 3. Therefore, the heater head 35 is disposed to face the upper surface of the spin base 8 (step S21, heater arrangement step). More specifically, the circular lower surface 52B of the heater head 35 (lamp housing 40) is disposed at the heater cleaning position above the rotation center (on the rotation axis C) by the wafer rotation mechanism 3.
  • the heater cleaning position is desirably a height position at which the cleaning liquid blown from the back surface liquid discharge port 84 reaches the lower surface 52B of the heater head 35.
  • the control device 55 opens the cleaning liquid upper valve 91 (see FIG. 1 and the like) and discharges the cleaning liquid downwardly from the cleaning liquid upper nozzle 94 (step S22, upper cleaning liquid discharging step). ).
  • the cleaning liquid flowing downward from the cleaning liquid upper nozzle 94 falls on the heater head 35 disposed at the heater cleaning position. That is, the liquid is deposited on the upper surface of the heater head 35 (for example, the upper surface of the lid 41).
  • control device 55 opens the cleaning liquid lower valve 87 (see FIG. 1 and the like), and discharges the cleaning liquid vertically upward from the back surface liquid discharge port 84 of the back surface nozzle 82 (step S22, lower cleaning liquid discharge process).
  • the cleaning liquid blows up vertically from the back surface liquid discharge port 84.
  • the cleaning liquid blown from the back surface liquid discharge port 84 lands on the lower surface 52B of the bottom plate portion 52 of the lamp housing 40 that constitutes the lower surface of the heater head 35.
  • control device 55 controls the swing drive mechanism 36 to swing the heater arm 34, thereby reciprocating the heater head 35 between the first moving end position and the second moving end position.
  • Any position within the range from the first moving end position to the second moving end position is a heater cleaning position.
  • the first moving end position is set above the spin base 8 between the center of the spin base 8 and one peripheral edge of the spin base 8, as shown by a solid line in FIG.
  • the second moving end position is set above the spin base 8 between the center of the spin base 8 and the other peripheral edge of the spin base 8, as indicated by a two-dot chain line in FIG.
  • the first moving end position is a position where one peripheral edge portion of the lower surface 52B of the lamp housing 40 is on the rotation center (on the rotation axis C) of the spin base 8.
  • the second moving end position is such that the other peripheral edge of the lower surface 52B of the heater head 35 (the peripheral edge on the opposite side of the one peripheral edge with the center of the lower surface 52B) is on the rotation center of the spin base 8 (rotation axis). C)).
  • control device 55 controls the swing drive mechanism 36 to swing the heater arm 34 so that the heater head 35 is moved from the center of the spin base 8 to the first moving end position (shown by a solid line in FIG. 10). To the position shown).
  • control device 55 controls the swing drive mechanism 36 to swing the heater arm 34 within a predetermined angle range so that the heater head 35 is moved to the first moving end position and the second moving end position ( The position is moved back and forth between the position indicated by the two-dot chain line in FIG. 10 (step S23, a landing position moving step).
  • the landing position of the cleaning liquid is within the range from one peripheral edge of the lower surface 52B to the other peripheral edge through the center. Reciprocating while drawing an arcuate trajectory that intersects the circumferential direction. As a result, the cleaning liquid is uniformly supplied to the entire area of the lower surface 52B of the lamp housing 40, and foreign substances such as SPM liquid mist adhering to the lower surface 52B of the lamp housing 40 are washed away by the cleaning liquid.
  • the cleaning liquid landing position reciprocates while drawing an arcuate locus.
  • the cleaning liquid supplied to the upper surface of the heater head 35 spreads over the entire upper surface of the heater head 35 and spreads to the side wall of the heater head 35. As described above, the cleaning liquid is evenly distributed over the entire outer surface of the heater head 35, and the entire outer surface of the heater head 35 can be cleaned well.
  • step S24 The discharge of the cleaning liquid from the cleaning liquid upper nozzle 94 and the back surface liquid discharge port 84 and the reciprocating swing of the heater arm 34 are continued until a predetermined cleaning processing time elapses.
  • the control device 55 closes the cleaning liquid upper valve 91 and the cleaning liquid lower valve 87 (step S25), and the cleaning liquid from the cleaning liquid upper nozzle 94 and the back surface liquid discharge port 84. Stop discharging.
  • the control device 55 opens the drying gas upper valve 93 (step S26). As a result, the drying gas from the drying gas upper nozzle 95 is sprayed onto the upper surface of the heater head 35 disposed at the heater cleaning position. The cleaning liquid adhering to the upper surface of the heater head 35 is blown off by the drying gas.
  • the control device 55 opens the drying gas lower valve 89 (step S26, lower drying gas spraying step). Thereby, the drying gas from the back surface gas discharge port 85 of the back surface nozzle 82 is sprayed on the lower surface 52B of the lamp housing 40 of the heater head 35 arranged at the heater cleaning position.
  • the control device 55 controls the swing drive mechanism 36 to swing the heater arm 34 to reciprocate the heater head 35 between the first moving end position and the second moving end position.
  • the spraying position of the drying gas from the back surface gas discharge port 85 on the lower surface 52B intersects the circumferential direction of the lower surface 52B within a range from one peripheral edge portion of the lower surface 52B to the other peripheral edge portion. It moves back and forth while drawing an arcuate trajectory.
  • the drying gas is uniformly supplied to the entire area of the lower surface 52B of the lamp housing 40, and the cleaning liquid adhering to the lower surface 52B of the lamp housing 40 is blown off by the drying gas.
  • the control device 55 controls the amplifier 54 to emit infrared rays from the infrared lamp 38 (step S26, heat drying step). Thereby, the lamp housing 40 is heated, and the cleaning liquid adhering to the lower surface 52B or the outer periphery of the lamp housing 40 is evaporated and removed.
  • step S27 The discharge of the drying gas from the drying gas upper nozzle 95 and the back nozzle 82 and the emission of infrared rays from the infrared lamp 38 are continued until a predetermined drying processing time elapses.
  • the control device 55 closes the drying gas upper valve 93 and the drying gas lower valve 89 (step S28), and the drying gas upper nozzle 95 and the backside gas.
  • the discharge of the drying gas from the discharge port 85 is stopped.
  • control device 55 controls the swing drive mechanism 36 to swing the heater arm 34 and return the heater head 35 after the cleaning process to the home position.
  • a series of resist removal processing is completed by the end of the heater head cleaning and drying process.
  • the cleaning process for cleaning the heater head 35 is performed in the resist removal process for each wafer W.
  • the heater head 35 is disposed at a heater cleaning position facing the upper side of the back surface liquid discharge port 84.
  • the cleaning liquid is discharged vertically upward from the back surface liquid discharge port 84.
  • the cleaning liquid from the back surface liquid discharge port 84 is blown upward vertically and reaches the lower surface 52B of the lamp housing 40 of the heater head 35 disposed at the heater cleaning position.
  • a large amount of SPM liquid mist generated in the SPM liquid film heating process may adhere to the lower surface 52B of the lamp housing 40. Since the SPM liquid mist adhering to the lower surface 52B of the lamp housing 40 can be washed away by the cleaning liquid supplied from the back surface liquid discharge port 84 to the lower surface 52B of the lamp housing 40, the lower surface 52B of the lamp housing 40 is cleaned well. can do. Thereby, the lower surface 52B of the lamp housing 40 can be kept clean. As a result, it is possible to prevent a decrease in the amount of infrared light emitted to the outside of the lamp housing 40 and to prevent the lower surface 52B of the lamp housing 40 from becoming a particle source.
  • the cleaning liquid is supplied to the heater head 35 from both the cleaning liquid upper nozzle 94 and the back surface liquid discharge port 84.
  • the heater head 35 may be cleaned only by supplying the cleaning liquid to the heater head 35 from the back surface liquid discharge port 84 without supplying the cleaning liquid from the cleaning liquid upper nozzle 94. Good.
  • the landing position of the cleaning liquid on the lower surface 52B of the heater head 35 is moved by reciprocating the heater head 35 in the horizontal direction.
  • a nozzle having a discharge port capable of changing the liquid discharge direction can be adopted as the back nozzle 82.
  • the cleaning liquid landing position on the lower surface 52B of the heater head 35 can be moved by changing the discharge direction of the cleaning liquid from the discharge port.
  • the cleaning liquid adhering to the heater head 35 is blown and dried by blowing the drying gas from the drying gas upper nozzle 95 or the back nozzle 82, and the infrared lamp.
  • the example which performs both the heat drying which warms the lamp housing 40 by 38 was demonstrated.
  • the heater head 35 may be dried only by heat drying with the infrared lamp 38 without performing blow-off drying with a drying gas.
  • the back surface nozzle 82 has a back surface liquid discharge port 84 and a back surface gas discharge port 85, but instead of this, the cleaning liquid and the dry gas are selectively discharged from one discharge port. It is also possible to adopt a nozzle that has been made.
  • the heater arm 34 may be cleaned together with the heater head cleaning / drying step (step S10 shown in FIG. 5). The heater arm 34 can be cleaned using the cleaning liquid discharged from the cleaning liquid upper nozzle 94. In addition, the heater arm 34 can be cleaned using a bar nozzle (not shown) separately provided in the processing chamber 2.
  • a large number of discharge ports directed downward in the vertical direction are arranged in a row or a plurality of rows along the horizontal direction, and are arranged, for example, in an upper region in the processing chamber 2.
  • the cleaning liquid is discharged from each discharge port of the bar nozzle in a state in which the heater arm 34 (and the heater head 35) is disposed to face the lower side of the bar nozzle. As a result, the cleaning liquid falls on the outer surface of the heater arm 34 and the outer surface of the heater arm 34 is cleaned.
  • FIG. 11 is a diagram schematically showing a configuration of a substrate processing apparatus 101 according to another embodiment of the present invention.
  • the same reference numerals are assigned to portions corresponding to the respective portions shown in FIG. 1, and the description thereof is omitted.
  • the substrate processing apparatus 101 has a wafer rotating mechanism (substrate holding means) 3 for holding and rotating the wafer W in the processing chamber 2 and a surface (upper surface) of the wafer W held by the wafer rotating mechanism 3.
  • the wafer is disposed opposite to the surface of the wafer W held in the wafer rotation mechanism 3 and a peeling liquid nozzle (chemical liquid supply means) 4 for supplying an SPM liquid as an example of a resist stripping liquid as a chemical liquid.
  • a heater head (heater) 35 for heating the SPM liquid on the surface of W and a cleaning pod (storage container) 180 are provided.
  • the cleaning pod 180 is disposed at the home position of the heater head 35.
  • the cleaning pod 180 is a bottomed cylindrical container, and the heater head 35 is kept in a state of being accommodated in the cleaning pod 180 when not in use.
  • FIG. 12 is a diagram showing the configuration of the cleaning pod 180.
  • the cleaning pod 180 is a bottomed cylindrical container.
  • the upper surface of the cleaning pod 180 is open, and an inlet for receiving the heater head 35 is formed on the upper surface.
  • the heater head 35 is accommodated in the cleaning pod 180 from this entrance.
  • the cleaning pod 180 includes a cylindrical peripheral wall 181 and a bottom portion 182 coupled to the lower end of the peripheral wall 181.
  • a drain port 183 is formed at the substantially central portion of the bottom portion 182.
  • One end of a drainage pipe 184 is connected to the drainage port 183 on the lower surface of the bottom 182.
  • the other end of the drainage pipe 184 is connected to a drainage facility for processing the drainage.
  • a drain valve 185 for opening and closing the drain pipe 184 is interposed in the drain pipe 184. The drain valve 185 is normally opened.
  • the peripheral wall 181 is provided with a cleaning liquid nozzle (cleaning liquid supply means) 186 for supplying DIW as an example of the cleaning liquid to the outer surface of the heater head 35.
  • the cleaning liquid is supplied to the cleaning liquid nozzle 186 through a cleaning liquid supply pipe (cleaning liquid supply means) 187.
  • a cleaning liquid valve (cleaning liquid supply means) 188 is interposed in the cleaning liquid supply pipe 187. When the cleaning liquid valve 188 is opened, the cleaning liquid is supplied to the cleaning liquid nozzle 186, and the cleaning liquid is discharged from the discharge port of the cleaning liquid nozzle 186.
  • a drying gas nozzle (drying gas blowing means) 189 for supplying nitrogen gas as an example of a drying gas to the outer surface of the heater head 35 is disposed slightly below the upper edge of the peripheral wall 181.
  • a plurality (for example, a pair) of drying gas nozzles 189 are provided.
  • the pair of drying gas nozzles 189 are disposed on the peripheral wall 181 at the same height so that the discharge ports thereof face each other across the central axis of the cleaning pod 180.
  • the drying gas is supplied to each drying gas nozzle 189 through a drying gas supply pipe (drying gas spraying means) 190.
  • Each drying gas supply pipe 190 is provided with a drying gas valve (drying gas blowing means) 191.
  • the drying gas valve 191 When the drying gas valve 191 is opened, the drying gas is supplied to the corresponding drying gas nozzle 189.
  • a drying gas is discharged from each drying gas nozzle 189 substantially horizontally toward the inside of the cleaning pod 180.
  • FIG. 13 is a block diagram showing an electrical configuration of the substrate processing apparatus 101.
  • the substrate processing apparatus 101 includes a control device 55 configured to include a microcomputer.
  • the control device 55 includes a chuck rotation drive mechanism 6, an amplifier 54, a swing drive mechanism 36, a lift drive mechanism 37, a first liquid arm swing mechanism 12, a second liquid arm swing mechanism 29, a stripping liquid valve 23, DIW.
  • Valve 27, SC1 valve 31, drain valve 185, cleaning liquid valve 188, drying gas valve 191 and the like are connected as control targets.
  • resist removal processing in the substrate processing apparatus 101 is substantially the same as that in the above-described embodiment. That is, the resist removal process described with reference to FIGS. 5, 6A, 6B, and 7 can be performed by the substrate processing apparatus 101. However, the contents of the heater head cleaning / drying step (step S10 in FIG. 5) are different and will be described below.
  • the heater head 35 is in the home position, the heater head 35 is accommodated in the cleaning pod 180. That is, the swing drive mechanism 36 is driven by the control device 55, and the heater arm 34 is moved so that the heater head 35 is disposed vertically above the upper surface of the cleaning pod 180.
  • the lifting / lowering drive mechanism 37 is controlled by the controller 55, and the heater arm 34 and the heater head 35 are lowered vertically until the heater head 35 reaches the home position. When the heater head 35 reaches the home position, it is made to wait at that position. In the home position, at least the entire lamp housing 40 of the heater head 35 (preferably the entire heater head 35) is accommodated in the cleaning pod 180.
  • the heater head 35 is cleaned not at the top of the spin base 8 but at the home position. Therefore, the heater head 35 can be cleaned as long as it is not in use, even after the wafer W has not been unloaded, that is, even when the wafer W is present on the spin base 8. That is, the heater head 35 can be cleaned regardless of the progress of the resist removal process. Therefore, the cleaning timing of the heater head 35 can be set to any timing other than the use timing. Specifically, for example, after completion of the SPM liquid film heating step (step S4 shown in FIG. 5), the heater head 35 returned to the home position may be subjected to a cleaning process or a drying process (FIG. Step S20 indicated by a two-dot chain line in FIG. 5: heater head cleaning and drying step). Moreover, if it is after an SPM liquid film heating process, you may perform a heater head washing
  • FIG. 14 is a flowchart showing an example of the heater head cleaning and drying process.
  • FIG. 15A is a schematic diagram for explaining the cleaning process in the heater head cleaning and drying process
  • FIGS. 15B and 15C are schematic diagrams for explaining the drying process in the heater head cleaning and drying process.
  • the control device 55 closes the drain valve 185 and opens the cleaning liquid valve 188 (step S31).
  • the cleaning liquid is discharged from the cleaning liquid nozzle 186 with the drain valve 185 closed, the cleaning liquid is guided to the bottom 182 in the cleaning pod 180 and is stored in the cleaning pod 180 as shown in FIG. 15A. .
  • the discharge of the cleaning liquid from the cleaning liquid nozzle 186 is continued until the liquid level of the processing liquid stored in the cleaning pod 180 reaches a predetermined cleaning height.
  • This cleaning height is set at a position above the lower surface 52B of the heater head 35 at the home position. Accordingly, when the level of the cleaning liquid stored in the cleaning pod 180 has reached the cleaning height, the outer surface of the lower part of the lamp housing 40 (the outer peripheral surface of the lower surface 52B and the lower part of the peripheral wall of the lamp housing 40). Is immersed in a cleaning solution.
  • the control device 55 closes the cleaning liquid valve 188 (step S33). Thereby, the supply of the cleaning liquid from the cleaning liquid nozzle 186 is stopped.
  • the liquid level of the cleaning liquid is detected by a liquid level sensor (not shown), and the controller 55 determines whether the liquid level has reached the cleaning level based on the detection output from the liquid level sensor. Also good.
  • the liquid storage time is set in advance so that the liquid level in the cleaning pod 180 reaches the cleaning height, and the cleaning liquid valve 188 is opened. The cleaning liquid valve 188 may be closed at the timing when the liquid storage time has elapsed.
  • the control device 55 opens the drain valve 185 (step S35).
  • the cleaning liquid stored in the cleaning pod 180 is drained from the drain port 183 through the drain pipe 184 when the drain valve 185 is opened. Thereby, the immersion of the outer surface of the lower part of the lamp housing 40 in the cleaning liquid is completed.
  • the drying process shown in FIGS. 15B and 15C is performed.
  • the control device 55 opens each drying gas valve 191 (step S36).
  • the drying gas is discharged substantially horizontally from the discharge port of each drying gas nozzle 189 toward the inside of the cleaning pod 180.
  • the control device 55 controls the elevating drive mechanism 37 to raise the heater head 35.
  • the discharge port of the drying gas nozzle 189 is opposed to the outer peripheral surface of the peripheral wall of the lamp housing 40.
  • the control device 55 controls the lift drive mechanism 37 to move the heater head 35 in a predetermined upper position (position indicated by a solid line in FIG. 15B) and an intermediate position (two-dot chain line in FIG. 15B, solid line in FIG. 15C). Are moved up and down (step S37).
  • the lower surface 52 ⁇ / b> B of the heater head 35 is positioned to the side of the discharge port of the drying gas nozzle 189. Therefore, the upper position is higher than the home position.
  • the intermediate position of the heater head 35 is set between the upper position and the home position. In this intermediate position, a portion of the outer peripheral surface of the heater head 35 (the outer peripheral surface of the lamp housing 40) that is immersed in the cleaning liquid in the cleaning process is positioned below the discharge port of the drying gas nozzle 189.
  • the drying gas blowing position (supply position) in the lower part of the outer peripheral surface of the peripheral wall of the lamp housing 40 also moves up and down (up and down). Therefore, the drying gas can be sprayed over a wide area on the outer peripheral surface of the peripheral wall of the lamp housing 40. Thereby, the cleaning liquid adhering to the lower part of the outer peripheral surface of the peripheral wall of the lamp housing 40 is blown off and removed.
  • the drying gas discharged from the drying gas nozzle 189 flows along the lower surface 52B slightly below the lower surface 52B of the lamp housing 40.
  • the cleaning liquid adhering to the lower surface 52B is blown off and removed by the flowing drying gas.
  • the cleaning liquid scattered from the heater head 35 is received by the peripheral wall 181. Therefore, it is possible to suppress or prevent the droplets of the cleaning liquid from splashing out of the cleaning pod 180.
  • the control device 55 temporarily stops the raising / lowering operation and raises the heater head 35 in the upper position for a predetermined time before starting the lowering after raising the heater head 35 to the upper position. You may control the raising / lowering drive mechanism 37 so that it may make. In this case, the cleaning liquid can be more effectively removed from the lower surface 52B of the lamp housing 40. Further, the control device 55 controls the amplifier 54 to emit infrared rays from the infrared lamp 38 in parallel with the discharge of the drying gas from the drying gas nozzle 189 in step S36 (step S38, heat drying step). Thereby, the lamp housing 40 is warmed, and the cleaning liquid adhering to the lower part of the lamp housing 40 is removed by evaporation.
  • the discharge of the drying gas from the drying gas nozzle 189 and the infrared radiation from the infrared lamp 38 are continued from the start of the infrared radiation from the infrared lamp 38 until a predetermined drying processing time elapses.
  • the control device 55 closes each drying gas valve 191 (step S40) and stops the discharge of the drying gas from the drying gas nozzle 189. Further, the control device 55 controls the amplifier 54 to stop the infrared radiation from the infrared lamp 38 (step S40).
  • the control device 55 controls the elevating drive mechanism 37 to lower the heater head 35 and return it to the home position (step S41).
  • the heater head cleaning / drying process is completed.
  • the cleaning process for cleaning the heater head 35 is performed in the resist removal process for each wafer W.
  • the heater head 35 is disposed at the home position.
  • the drainage valve 185 is closed and the cleaning liquid is supplied from the cleaning liquid nozzle 186, whereby the cleaning liquid is stored in the cleaning pod 180.
  • the outer surface of the lower part of the lamp housing 40 including the lower surface 52B can be cleaned.
  • a large amount of SPM liquid mist generated in the SPM liquid film heating step may adhere to the lower surface 52B of the lamp housing 40.
  • the SPM mist can be washed away by the cleaning liquid supplied to the lower surface 52B of the lamp housing 40.
  • the lower surface 52B of the lamp housing 40 can be cleaned well, and the lower surface 52B of the lamp housing 40 can be kept clean. Therefore, a decrease in the amount of infrared light emitted to the outside of the lamp housing 40 can be prevented, and the lower surface 52B of the lamp housing 40 can be prevented from becoming a particle source.
  • FIG. 16 is a diagram illustrating another configuration example of the cleaning pod (housing member). 17 is a cross-sectional view taken along the section line AA of FIG. Cleaning pod 280 shown in FIGS. 16 and 17 is mounted and used in place of cleaning pod 180 in the configuration shown in FIG.
  • FIG. 16 and the like portions corresponding to the respective portions shown in FIG. 12 are denoted by the same reference numerals, and description thereof is omitted.
  • a plurality of (for example, four) cleaning liquid nozzles 111 are disposed on the disk-shaped bottom 282 of the cleaning pod 280.
  • Each cleaning liquid nozzle 111 has a cleaning liquid discharge port 110 for discharging the cleaning liquid toward the lower surface 52 ⁇ / b> B of the heater head 35.
  • each cleaning liquid discharge port 110 is arranged at equal intervals in the circumferential direction at the peripheral edge of the bottom portion 282.
  • the discharge direction of each cleaning liquid discharge port 110 is an upward direction inclined by a predetermined angle (for example, 30 ° to 60 °) in the vertical direction and a direction toward the central axis direction of the cylindrical cleaning pod 180.
  • a cleaning liquid is supplied to each cleaning liquid nozzle 111 through a cleaning liquid supply pipe 112.
  • a cleaning liquid valve 113 is interposed in each cleaning liquid supply pipe 112. When the cleaning liquid valve 113 is opened, the cleaning liquid is supplied to the corresponding cleaning liquid nozzle 111, and the cleaning liquid is discharged from the cleaning liquid discharge port 110 of the cleaning liquid nozzle 111.
  • this cleaning pod 280 a cleaning process different from the cleaning process in the cleaning pod 180 shown in FIG.
  • this cleaning pod 280 a drying process similar to the drying process in the cleaning pod 180 shown in FIG.
  • the heater head 35 undergoes a cleaning process at a cleaning position (position shown in FIG. 16) slightly above the home position.
  • the controller 55 controls the elevating drive mechanism 37 to raise the heater head 35, slightly above the home position and below the intermediate position (position shown in FIG. 15C and the like). It is arranged at the cleaning position set. Further, each cleaning liquid valve 113 is opened, and the cleaning liquid is discharged from each cleaning liquid discharge port 110. The cleaning liquid discharged from each cleaning liquid discharge port 110 is deposited on the lower surface 52 ⁇ / b> B of the heater head 35. In this embodiment, for example, the cleaning liquid discharged from each cleaning liquid discharge port 110 lands on the circular lower surface 52B at an intermediate position of a line segment connecting the cleaning liquid discharge port 110 and the center of the lower surface 52B.
  • the cleaning liquid that has landed on the lower surface 52B spreads around the lower surface 52B. Thereafter, the cleaning liquid valve 113 is closed when a predetermined cleaning process period elapses from the start of the discharge of the cleaning liquid from the cleaning liquid nozzle 111.
  • the drain valve 185 is in an open state throughout the entire cleaning process. Therefore, the cleaning liquid guided to the bottom portion 282 is discharged outside the apparatus through the drainage pipe 184 without being accumulated in the bottom portion 282.
  • the cleaning pod 280 According to the cleaning pod 280, foreign substances such as SPM liquid mist adhering to the lower surface 52B of the lamp housing 40 are washed away by the cleaning liquid supplied to the lower surface 52B of the lamp housing 40. Thereby, the lower surface 52B of the lamp housing 40 can be satisfactorily cleaned. Thereafter, the drying process described above with reference to FIGS. 15B and 15C is performed.
  • FIG. 18 is a view of a cleaning pod (housing member) 380 according to still another configuration example.
  • 19 is a cross-sectional view taken along the section line BB of FIG.
  • Cleaning pod 380 shown in FIGS. 18 and 19 is mounted and used instead of cleaning pod 180 in the configuration shown in FIG.
  • portions corresponding to the respective portions shown in FIG. 12 are denoted by the same reference numerals, and description thereof is omitted.
  • each cleaning liquid nozzle 201 has a cleaning liquid discharge port 200 for discharging the cleaning liquid toward the lower surface 52 ⁇ / b> B of the heater head 35. Further, since the cleaning liquid discharge port 200 is also disposed at the center of the bottom portion 382, the drainage port 283 is disposed at the peripheral edge of the bottom portion 382.
  • the plurality of cleaning liquid discharge ports 200 include a single central discharge port 200A facing the lower side of the center of the lower surface 52B of the heater head 35 positioned at the home position, and a plurality (for example, four) facing the lower edge of the lower surface 52B. ) Peripheral discharge port 200B.
  • the peripheral discharge ports 200B are arranged at equal intervals in the circumferential direction at the peripheral edge of the bottom 382.
  • the discharge directions of the cleaning liquid discharge ports 200A and 200B are vertically upward.
  • a cleaning liquid is supplied to each cleaning liquid nozzle 201 through a cleaning liquid supply pipe 202.
  • a cleaning liquid valve 203 is interposed in the cleaning liquid supply pipe 202. When the cleaning liquid valve 203 is opened, the cleaning liquid is supplied to the cleaning liquid nozzle 201, and the cleaning liquid is discharged from the cleaning liquid discharge port 200 (200A, 200B) of the cleaning liquid nozzle 201.
  • this cleaning pod 380 a cleaning process different from the cleaning process in the cleaning pod 180 shown in FIG.
  • the heater head 35 is subjected to a cleaning process at the cleaning position (position shown in FIG. 18) as in the case of the cleaning pod 280 shown in FIG.
  • the cleaning liquid valve 203 is opened, and the cleaning liquid is discharged from each of the cleaning liquid discharge ports 200 (200A, 200B).
  • the cleaning liquid discharged from each cleaning liquid discharge port 200 lands on the lower surface 52B of the heater head 35 and spreads around the lower surface 52B.
  • the cleaning liquid valve 203 is closed when a predetermined cleaning process period elapses from the start of the discharge of the cleaning liquid from the cleaning liquid nozzle 201.
  • the drain valve 185 is in an open state throughout the entire cleaning process. Therefore, the cleaning liquid guided to the bottom portion 382 is discharged from the machine through the drainage pipe 184 without being accumulated in the bottom portion 382.
  • the number of drying gas nozzles 189 is not limited to two, and three or more drying gas nozzles 189 may be provided. In this case, the plurality of drying gas nozzles 189 are desirably disposed at the same height, and are desirably disposed at equal intervals in the circumferential direction.
  • the discharge direction of the drying gas nozzle 189 may not be horizontal but may be obliquely downward. Further, the drying gas nozzle 189 does not need to be provided on the peripheral wall 181 of the cleaning pod, and may be disposed above the upper surfaces of the cleaning pods 180, 280, 380 (that is, outside the cleaning pod).
  • the lamp in the drying process of the heater head 35, the lamp is obtained by both blow-off drying in which the drying gas from the drying gas nozzle 189 is blown and blown and heat drying in which the lamp housing 40 is heated by the infrared lamp 38.
  • the example which dries the outer surface of the housing 40 was demonstrated.
  • the outer surface of the lamp housing 40 may be dried only by heat drying with the infrared lamp 38 without performing blow-off drying with a drying gas.
  • the heater arm 34 may be cleaned together with the execution of the heater head cleaning / drying process.
  • the heater arm 34 can be cleaned using, for example, a bar nozzle (not shown) separately provided in the processing chamber 2.
  • a bar nozzle In the bar nozzle, a large number of discharge ports directed downward in the vertical direction are arranged in a row or a plurality of rows along the horizontal direction, and are arranged, for example, in an upper region in the processing chamber 2.
  • the cleaning liquid is discharged from each discharge port of the bar nozzle in a state where the heater arm 34 is disposed below the bar nozzle. As a result, the cleaning liquid falls on the outer surface of the heater arm 34 and the outer surface of the heater arm 34 is cleaned.
  • the processing chamber 2 is cleaned (chamber cleaning) in conjunction with the execution of the heater head cleaning / drying process in step S10. Also good. Further, the following modifications are possible with respect to the above-described two embodiments described with reference to FIGS.
  • the cleaning liquid is not limited to DIW, and a dilute hydrofluoric acid aqueous solution, carbonated water, electrolytic ion water, ozone water, or the like may be employed as the cleaning liquid.
  • a chemical solution such as a dilute hydrofluoric acid aqueous solution is used as the cleaning solution, after the cleaning solution is supplied to the heater head 35, a rinse treatment for washing the cleaning solution from the heater head 35 using DIW or carbonated water is performed. Also good.
  • drying gas was mentioned as an example of drying gas
  • clean air and other inert gas can be used as drying gas.
  • the above embodiment can also be applied to a heater cleaning method provided in a substrate processing apparatus that selectively etches a nitride film on a main surface of a substrate using a high-temperature etching solution such as phosphoric acid.

Abstract

基板保持手段(3)により保持された基板(W)の上面に対向配置されてその上面を加熱するためのヒータ(35)が洗浄される。ヒータは、赤外線ランプ(38)とハウジング(40)とを有している。ヒータ洗浄方法は、前記基板保持手段に保持された基板の下面に対向し、上方に向けて液を吐出する第1吐出口(84)を有する下ノズル(82)の上方のヒータ洗浄位置に、前記第1吐出口に対向するように前記ヒータを配置するヒータ配置工程と、前記基板保持手段に基板を保持していない状態で、前記下ノズルに洗浄液を供給して、前記第1吐出口から上方に向けて洗浄液を吐出させることにより、前記ヒータ洗浄位置に配置された前記ヒータの前記ハウジングの外表面に洗浄液を供給する下洗浄液吐出工程とを含む。

Description

基板処理装置およびヒータ洗浄方法
 この発明は、赤外線ランプを有し、基板に加熱処理を施すためのヒータを備える基板処理装置、およびそのヒータを洗浄するためのヒータ洗浄方法に関する。加熱処理の対象となる基板には、たとえば、半導体ウエハ、液晶表示装置用ガラス基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などの基板が含まれる。
 半導体装置の製造工程には、たとえば、半導体ウエハ(以下、単に「ウエハ」という。)の主面(表面)にリン、砒素、硼素などの不純物(イオン)を局所的に注入する工程が含まれる。この工程では、不要な部分に対するイオン注入を防止するため、ウエハの表面に感光性樹脂からなるレジストがパターン形成されて、イオン注入が不要な部分がレジストによってマスクされる。ウエハの表面上にパターン形成されたレジストは、イオン注入の後は不要になるから、イオン注入後には、そのウエハの表面上の不要となったレジストを除去するためのレジスト除去処理が行われる。
 代表的なレジスト除去処理では、ウエハの表面に酸素プラズマが照射されて、ウエハの表面上のレジストがアッシングされる。そして、ウエハの表面に硫酸と過酸化水素水の混合液である硫酸過酸化水素水混合液(sulfuric acid/hydrogen peroxide mixture:SPM液)などの薬液が供給される。これにより、アッシングされたレジストが除去され、ウエハの表面からのレジストの除去が達成される。
 ところが、レジストのアッシングのための酸素プラズマの照射は、ウエハの表面のレジストで覆われていない部分(たとえば、レジストから露呈した酸化膜)にダメージを与えてしまう。
 そのため、最近では、レジストのアッシングを行わずに、ウエハの表面にSPM液を供給して、このSPM液に含まれるペルオキソ一硫酸(HSO)の強酸化力により、ウエハの表面からレジストを剥離して除去する手法が注目されつつある。
特開2005-93926号公報
 本件発明者は、基板の主面に供給された薬液のより一層の高温化を図るため、薬液処理時において、基板の主面に供給した薬液を加熱することを検討している。具体的には、赤外線ランプと、この赤外線ランプを収容するハウジングとを有するヒータを、基板の主面に間隔を空けて対向配置することにより、基板の主面に存在する薬液を加熱することを検討している。
 ところが、赤外線ランプによる薬液の加熱処理の際には、薬液が急激に温められて、基板の主面の周辺に、薬液ミストが大量に発生する。加熱処理の際に発生した薬液ミストは、基板の主面に対向するヒータのハウジングの下面に付着する。ハウジングの下面に薬液ミストが付着したまま放置されると、ハウジングの下面の赤外線透過率の低下により、ハウジング外に放出される赤外線の照射光量が低下する。それだけでなく、薬液ミストが乾燥して結晶化することにより、ハウジングの下面がパーティクル源になるおそれがある。したがって、基板を1枚処理する毎に、ヒータのハウジングの下面に付着した薬液を洗い流す必要がある。
 ヒータのハウジングを洗浄する方策として、鉛直下方に向く複数個の吐出口が水平方向に沿って一列または複数列に配列されたバーノズルを設け、各吐出口からの処理液をヒータに対して上方から供給する方策が考えられる。しかしながら、このような方策では、ヒータのハウジングの下面全域に洗浄液を行き渡らせるのは困難である。
 本発明の目的は、ヒータを良好に洗浄することができる基板処理装置およびヒータ洗浄方法を提供することである。
 この発明は、基板保持手段により保持された基板の上面(上側の主面)に対向配置されてその上面を加熱するためのヒータを洗浄するヒータ洗浄方法を提供する。ヒータは、赤外線ランプとハウジングとを有する。前記ヒータ洗浄方法は、前記基板保持手段に保持された基板の下面に対向し、上方に向けて液を吐出する第1吐出口を有する下ノズルの上方のヒータ洗浄位置に、前記第1吐出口に対向するように前記ヒータを配置するヒータ配置工程と、前記基板保持手段に基板を保持していない状態で、前記下ノズルに洗浄液を供給して、前記第1吐出口から上方に向けて洗浄液を吐出させることにより、前記ヒータ洗浄位置に配置された前記ヒータの前記ハウジングの外表面に洗浄液を供給する下洗浄液吐出工程とを含む、ヒータ洗浄方法である。
 この方法によれば、第1吐出口の上方のヒータ位置にヒータが配置され、それによって、ヒータが第1吐出口に対向する。その状態で、第1吐出口から上方に向けて洗浄液が吐出される。第1吐出口からの洗浄液は、上方に向けて吹き上がり、ヒータ洗浄位置に配置されたヒータのハウジングの下部外表面に着液し、この下部外表面を洗浄する。
 ヒータは、基板保持手段に保持された基板を加熱する加熱処理のために用いられる。この加熱処理の際には、基板の表面にハウジングの下部外表面が対向配置される。そのため、加熱処理後には、ハウジングの下部外表面に異物が付着しているおそれがある。このような異物は、第1吐出口から上方に向けて、すなわち、ハウジングの下部外表面に向けて供給される洗浄液により洗い流すことができる。これにより、ハウジングの外表面を良好に洗浄できるので、ハウジングの外表面を清浄な状態に保つことができる。
 前記ハウジングは、前記赤外線ランプによる基板に対する加熱処理時に基板の表面に対向する対向面を有していてもよい。また、前記加熱処理は、基板の上面に薬液が存在している状態で行われてもよい。この場合、加熱処理の際に、赤外線ランプにより薬液が急激に温められて、基板の主面の周囲に大量の薬液ミストが発生するおそれがある。そして、発生した薬液ミストが、ハウジングの対向面に付着するおそれがある。
 しかしながら、このような場合であっても、ヒータのハウジングの対向面を洗浄液を用いて洗浄することにより、ハウジングの対向面に付着している薬液ミストを洗い流すことができ、ハウジングの対向面を清浄な状態に保つことができる。ゆえに、ハウジング外に放出される赤外線の照射光量の低下を防止することができ、かつハウジングがパーティクル源になって基板の処理に悪影響を及ぼすことを防止できる。
 この発明の一実施形態では、前記方法は、前記下洗浄液吐出工程に並行して、前記第1吐出口の上方(より具体的には前記ヒータ洗浄位置の上方)に配設された上ノズルから下方に向けて洗浄液を吐出することにより前記ハウジングの外表面に洗浄液を供給する上洗浄液吐出工程をさらに含む。
 この方法によれば、下ノズルからの洗浄液の吐出と並行して、ヒータ洗浄位置に配置されたヒータの上方に配置された上ノズルから、下方に向けて洗浄液が吐出される。そのため、ハウジングの外表面の広範囲に、洗浄液を行き渡らせることができる。これにより、ヒータのハウジングの外表面を広範囲に洗浄することができる。
 前記上ノズルは、前記基板保持手段を収容する処理室の天井壁に配置される天井ノズルであってもよい。
 この発明の一実施形態では、前記方法は、前記下洗浄液吐出工程に並行して、前記第1吐出口から吐出される洗浄液の前記ハウジングの外表面における着液位置を移動させる着液位置移動工程をさらに含む。
 この方法によれば、第1吐出口からの洗浄液の吐出に並行して、ハウジングの外表面における洗浄液の着液位置が移動させられる。これにより、ハウジングの下部外表面の広範囲に洗浄液を着液させて、効果的な洗浄を図ることができる。
 前記着液位置移動工程は、前記第1吐出口からの洗浄液の吐出方向と交差する方向(水平方向)に前記ヒータを往復移動させる工程を含んでいてもよい。
 この発明の一実施形態では、前記方法は、前記下洗浄液供給工程の終了後、前記ハウジングの外表面に付着している洗浄液を除去する乾燥工程をさらに含む。
 この方法によれば、洗浄液によるヒータハウジングの洗浄処理後に、ハウジングの外表面に残留する洗浄液が除去される。これにより、ハウジングの外表面に残留した洗浄液が、基板の処理に悪影響を及ぼすことを防止することができる。
 この発明の一実施形態では、前記乾燥工程は、前記赤外線ランプから赤外線を前記ハウジングに照射して、前記ハウジングの外表面を加熱して乾燥させる加熱乾燥工程を含む。
 この方法によれば、赤外線ランプからの赤外線の照射によりハウジングが温められて、ハウジングの外表面に付着している洗浄液が蒸発して除去される。これにより、ハウジングの外表面を良好に乾燥させることができる。
 この発明の一実施形態では、前記下ノズルが、上方に向けて気体を吐出するための第2吐出口をさらに有しており、前記乾燥工程は、前記下ノズルに乾燥用ガスを供給して、前記第2吐出口から上方に向けて乾燥用ガスを吹き付けることにより、前記ヒータ洗浄位置に配置された前記ヒータの前記ハウジングの外表面に乾燥用ガスを供給する下乾燥用ガス吹付け工程を含む。
 この方法によれば、第2吐出口からの乾燥用ガスがヒータのハウジングの下部外表面に吹き付けられる。この乾燥用ガスによって、ハウジングの下部外表面に付着している洗浄液が吹き飛ばされる。これにより、ハウジングの外表面を良好に乾燥させることができる。
 この発明は、さらに、赤外線ランプと、前記赤外線ランプを収容するハウジングとを有し、基板の主面に対向する処理位置で、その基板の主面を加熱するヒータと、前記処理位置とは異なる洗浄位置に前記ヒータが位置する状態で、前記ハウジングの外表面に、洗浄液を供給する洗浄液供給手段とを含む、基板処理装置を提供する。
 この構成によれば、加熱処理時の処理位置とは異なる洗浄位置にヒータが配置された状態で、ヒータのハウジングの外表面に洗浄液が供給される。これにより、ハウジングの外表面に付着している異物を、洗浄液を用いて洗い流すことができる。ゆえに、ハウジングの外表面を良好に洗浄することができる。
 ハウジングは、赤外線ランプによって基板を加熱する加熱処理時に基板の表面に対向する対向面を有していてもよい。また、基板の主面に薬液が存在している状態で、基板に対して加熱処理が施されていてもよい。この場合、加熱処理の際に、赤外線ランプにより薬液が急激に温められて基板の主面の周囲に大量の薬液ミストが発生し、この薬液ミストがハウジングの対向面に付着することがある。
 しかしながら、このような薬液ミストは、ヒータへの洗浄液の供給によって洗い流される。これにより、ハウジングの対向面を洗浄することができる。ゆえに、ハウジング外に放出される赤外線の照射光量の低下や、ハウジングがパーティクル源になって基板の処理に悪影響を及ぼすことを防止できる。
 前記洗浄位置が、前記ヒータが前記処理位置から退避して待機するときの待機位置であってもよい。この構成によれば、待機位置に待機するヒータに対して洗浄処理を施すので、ヒータが待機位置に位置していれば、基板処理の進行状況に拘わりなく、ヒータを洗浄することができる。すなわち、基板処理を中断することなくヒータを洗浄できるので、基板処理装置の生産性を高めることができる。
 この発明一実施形態では、前記基板処理装置は、前記ヒータを収容し、当該ヒータから飛散する洗浄液を受け止める収容部材をさらに含む。この構成によれば、ヒータの周囲に洗浄液が飛散するのを抑制することができる。
 この場合、前記収容部材は、底部に排出口を有し、液を溜めることが可能な有底容器状の貯留容器を含み、前記洗浄液供給手段は、前記貯留容器内に洗浄液を供給する洗浄液ノズルを含んでいてもよい。この場合に、前記基板処理装置は、前記貯留容器の前記排出口に接続されて、前記貯留容器に溜められた液を排出するための排液配管と、前記排液配管に介装されて、前記排液配管を開閉する排液バルブとをさらに含んでいてもよい。
 この構成によれば、排液バルブが閉じられることにより有底容器からの洗浄液の排出が阻止される。この状態で、洗浄液ノズルから洗浄液が供給されることにより、貯留容器に洗浄液が溜められる。貯留容器に溜められた洗浄液中に、ヒータのハウジングの外表面を浸漬させることにより、ハウジングの外表面を洗浄することができる。
 前記洗浄液供給手段は、前記ハウジングの外表面に向けて洗浄液を吐出する洗浄液吐出口を有する洗浄液ノズルを備えていてもよい。
 この発明一実施形態では、前記基板処理装置は、前記ハウジングの外表面から洗浄液を除去するために、前記ハウジングの外表面に向けて乾燥用ガスを吹き付ける乾燥用ガス吹付手段をさらに含む。
 この構成によれば、ヒータのハウジングに乾燥用ガス吹付手段から乾燥用ガスが吹き付けられる。乾燥用ガスによって、ハウジングの外表面に付着している洗浄液が吹き飛ばされる。これにより、ハウジングの外表面を良好に乾燥させることができる。
 この発明の一実施形態では、前記基板処理装置は、前記ヒータを昇降させるヒータ昇降手段をさらに含み、前記乾燥用ガス吹付手段は、前記ヒータの昇降方向と交差する方向に乾燥用ガスを吐出する乾燥用ガスノズルを含み、前記基板処理装置は、前記乾燥用ガス吹付手段および前記ヒータ昇降手段を制御して、前記乾燥用ガスノズルから乾燥用ガスを吐出させるとともに、前記ヒータを昇降させることにより、前記ハウジングの外表面における乾燥用ガスの供給位置を昇降させる吹付乾燥制御手段をさらに含む。
 この構成によれば、乾燥用ガスノズルからの乾燥用ガスが横向きに吐出されつつ、その吐出口に対向する領域をヒータが昇降する。このため、ハウジングの外表面の広い領域(好ましくは全域)に乾燥用ガスが吹き付けられるので、ハウジングの外表面の広い領域(好ましくは全域)から洗浄液を除去することができる。これにより、ハウジングの外表面を良好に乾燥することができる。
 この発明の一実施形態では、前記基板処理装置は、前記赤外線ランプから赤外線を前記ハウジングに照射させることにより、前記外表面に付着している洗浄液を加熱して乾燥させる加熱乾燥制御手段をさらに含む。この構成によれば、赤外線ランプからの赤外線の照射によりハウジングが加熱されて、ハウジングの外表面に付着している洗浄液が除去される。これにより、ハウジングの外表面を良好に乾燥させることができる。
 この発明は、さらに、基板の主面に対向する処理位置でその基板の主面を加熱するヒータを洗浄するためのヒータ洗浄方法を提供する。ヒータは、赤外線ランプと、この赤外線ランプを収容するハウジングとを有する。前記ヒータ洗浄方法は、前記処理位置とは異なる洗浄位置に前記ヒータを配置するヒータ配置工程と、前記洗浄位置に位置する前記ヒータの外表面に洗浄液を供給する洗浄液供給工程とを含む。
 この発明の一実施形態では、前記方法は、前記洗浄液供給工程の終了後、前記ハウジングの外表面に付着している洗浄液を除去する乾燥工程をさらに含む。
 この方法によれば、洗浄液の供給によるヒータ洗浄処理後に、ハウジングの外表面に残留する洗浄液が除去される。これにより、洗浄液がハウジングの外表面に残留して、基板の処理に悪影響を及ぼすことを防止することができる。
 この発明の一実施形態では、前記乾燥工程は、前記赤外線ランプから赤外線を前記ハウジングに照射して、前記外表面に付着している洗浄液を加熱して乾燥させる加熱乾燥工程を含む。
 この発明一実施形態では、前記乾燥工程は、前記ヒータを昇降させるヒータ昇降工程と、前記ハウジングの外表面に向けて、乾燥用ガスノズルから、前記ヒータの昇降方向と交差する方向に乾燥用ガスを吐出する乾燥用ガス吐出工程とを含む。
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
本発明の一実施形態に係るヒータ洗浄方法が実行される基板処理装置の構成を模式的に示す図である。 前記基板処理装置に備えられたヒータヘッドの図解的な断面図である。 前記ヒータヘッドに備えられた赤外線ランプの斜視図である。 図1に示す基板処理装置の電気的構成を示すブロック図である。 前記基板処理装置によるレジスト除去処理の処理例を示す工程図である。 SPM液膜形成工程を説明するための図解的な図である。 SPM液膜加熱工程を説明するための図解的な図である。 SPM液膜加熱工程におけるヒータヘッドの移動範囲を示す平面図である。 ヒータヘッド洗浄乾燥工程の一例を示すフローチャートである。 ヒータヘッド洗浄乾燥工程中の一工程を説明するための図解的な図である。 図9Aの次の工程を示す図解的な図である。 ヒータヘッド洗浄乾燥工程におけるヒータヘッドの移動範囲を示す平面図である。 本発明の他の実施形態に係る基板処理装置の構成を模式的に示す図である。 図11に示す基板処理装置に備えられた洗浄ポッドの構成を示す図である。 図11に示す基板処理装置の電気的構成を示すブロック図である。 図11の基板処理装置におけるヒータヘッド洗浄乾燥工程の流れを示すフローチャートである。 ヒータヘッド洗浄乾燥工程中の一工程を説明するための図解的な図である。 図15Aの次の工程を示す図解的な図である。 図15Bの次の工程を示す図解的な図である。 洗浄ポッドの他の構成例を示す図である。 図16の切断面線A-Aから見た断面図である。 洗浄ポッドのさらに他の構成例を示す図である。 図18の切断面線B-Bから見た断面図である。
 図1は、本発明の一実施形態に係るヒータ洗浄方法が実行される基板処理装置1の構成を模式的に示す図である。基板処理装置1は、たとえば基板の一例としてのウエハWの表面(主面)に不純物を注入するイオン注入処理やドライエッチング処理の後に、そのウエハWの表面から不要になったレジストを除去するための処理に用いられる枚葉式の装置である。
 基板処理装置1は、隔壁2Aにより区画された処理室2を備えている。処理室2の天井壁には、処理室2内に清浄空気を送り込むためのファンフィルタユニット(図示しない)が設けられている。清浄空気とは、基板処理装置1が設置されるクリーンルーム内の空気を浄化して生成される空気である。
 基板処理装置1は、処理室2内に、ウエハ回転機構(基板保持手段)3と、剥離液ノズル(薬液供給手段)4と、ヒータヘッド(ヒータ)35とを備えている。ウエハ回転機構3は、ウエハWを保持して回転させる。剥離液ノズル4は、ウエハ回転機構3に保持されているウエハWの表面(上面)に対して、薬液としてのレジスト剥離液の一例としてのSPM液を供給する。ヒータヘッド35は、ウエハ回転機構3に保持されているウエハWの表面に対向して配置され、ウエハWの表面上のSPM液を加熱する。
 ウエハ回転機構3として、たとえば挟持式のものが採用されてもよい。具体的には、ウエハ回転機構3は、たとえば、ほぼ鉛直に延びるスピン軸7と、スピン軸7の上端にほぼ水平に取り付けられた円板状のスピンベース8と、スピンベース8の周縁部の複数箇所にほぼ等間隔で設けられた複数個の挟持部材9とを備えている。そして、各挟持部材9をウエハWの端面に当接させて、複数の挟持部材9でウエハWを挟持することにより、ウエハWがほぼ水平な姿勢で保持され、ウエハWの中心がスピン軸7の中心軸線上に配置される。
 スピン軸7には、モータ(図示しない)を含むチャック回転駆動機構6から回転力が入力される。この回転力の入力により、スピン軸7が回転し、挟持部材9に挟持されたウエハWがほぼ水平な姿勢を保った状態で、スピンベース8ともに所定の回転軸線(鉛直軸線)Cまわりに回転する。チャック回転駆動機構6は、スピン軸7と一体化されたロータ(駆動軸)と、その周囲に配置されたステータとを有し、スピン軸7が鉛直方向に貫通した中空モータの形態を有していてもよい(図11参照)。
 スピン軸7は中空軸であり、その内部には、それぞれ鉛直方向に延びる裏面側液供給管80および裏面側ガス供給管81が挿通されている。裏面側液供給管80の上端部および裏面側ガス供給管81の上端部は、それぞれ、スピン軸7の上端に設けられた裏面ノズル(下ノズル)82に接続されている。裏面ノズル82は、その上端に、円形の裏面液吐出口(第1吐出口)84と、円形の裏面ガス吐出口(第2吐出口)85とを有している。裏面液吐出口84および裏面ガス吐出口85は互いに近接して配置されている。各吐出口84,85は、ウエハ回転機構3に保持されるウエハWの下面のほぼ回転中心に対向している。裏面液吐出口84および裏面ガス吐出口85の上下方向の高さは揃っている。
 裏面側液供給管80には、洗浄液の一例としてのDIW(脱イオン化された水)が供給される洗浄液下供給管86が接続されている。洗浄液下供給管86には、その洗浄液下供給管86を開閉するための洗浄液下バルブ87が介装されている。
 裏面側ガス供給管81には、乾燥用ガスの一例としての窒素ガスが供給される乾燥用ガス下供給管88が接続されている。乾燥用ガス下供給管88には、その乾燥用ガス下供給管88を開閉するための乾燥用ガス下バルブ89が介装されている。
 剥離液ノズル4は、たとえば、連続流の状態でSPM液を吐出するストレートノズルである。剥離液ノズル4は、その吐出口を下方に向けた状態で、ほぼ水平に延びる第1液アーム11の先端に取り付けられている。第1液アーム11は、鉛直方向に延びる所定の揺動軸線まわりに旋回可能に設けられている。第1液アーム11には、第1液アーム11を所定角度範囲内で揺動させるための第1液アーム揺動機構12が結合されている。第1液アーム11の揺動により、剥離液ノズル4は、ウエハWの回転軸線C上の位置(ウエハWの回転中心に対向する位置)と、ウエハ回転機構3の側方に設定されたホームポジションとの間で移動される。このホームポジションは、ヒータヘッド35がウエハWの上方から退避して待機するときの待機位置である。
 剥離液ノズル4には、SPM供給源からのSPM液が供給される剥離液供給管15が接続されている。剥離液供給管15の途中部には、剥離液ノズル4からのSPM液の供給/供給停止を切り換えるための剥離液バルブ23が介装されている。
 また、基板処理装置1は、DIWノズル24と、SC1ノズル25と、カップ5とを備えている。DIWノズル24は、ウエハ回転機構3に保持されたウエハWの表面にリンス液としてのDIW(脱イオン化された水)を供給する。SC1ノズル25は、ウエハ回転機構3に保持されたウエハWの表面に対して洗浄用の薬液としてのSC1(ammonia-hydrogen peroxide mixture:アンモニア過酸化水素水混合液)を供給する。カップ5は、ウエハ回転機構3の周囲を取り囲み、ウエハWから流下または飛散するSPM液やSC1、DIWを受け止める。
 DIWノズル24は、たとえば、連続流の状態でDIWを吐出するストレートノズルであり、ウエハ回転機構3の上方で、その吐出口をウエハWの回転中心付近に向けて固定的に配置されている。DIWノズル24には、DIW供給源からのDIWが供給されるDIW供給管26が接続されている。DIW供給管26の途中部には、DIWノズル24からのDIWの供給/供給停止を切り換えるためのDIWバルブ27が介装されている。
 SC1ノズル25は、たとえば、連続流の状態でSC1を吐出するストレートノズルである。SC1ノズル25は、その吐出口を下方に向けた状態で、ほぼ水平に延びる第2液アーム28の先端に取り付けられている。第2液アーム28は、鉛直方向に延びる所定の揺動軸線まわりに旋回可能に設けられている。第2液アーム28には、第2液アーム28を所定角度範囲内で揺動させるための第2液アーム揺動機構29が結合されている。第2液アーム28の揺動により、SC1ノズル25は、ウエハWの回転軸線C上の位置(ウエハWの回転中心に対向する位置)と、ウエハ回転機構3の側方に設定されたホームポジションとの間で移動される。
 SC1ノズル25には、SC1供給源からのSC1が供給されるSC1供給管30が接続されている。SC1供給管30の途中部には、SC1ノズル25からのSC1の供給/供給停止を切り換えるためのSC1バルブ31が介装されている。
 ウエハ回転機構3の側方には、鉛直方向に延びる支持軸33が配置されている。支持軸33の上端部には、水平方向に延びるヒータアーム34が結合されている。そのヒータアーム34の先端に、赤外線ランプ38を収容保持するヒータヘッド35が取り付けられている。また、支持軸33には、支持軸33を中心軸線まわりに回動させるための揺動駆動機構36と、支持軸33を中心軸線に沿って上下動させるための昇降駆動機構37とが結合されている。
 揺動駆動機構36から支持軸33に駆動力を入力して、支持軸33を所定の角度範囲内で回動させることにより、ウエハ回転機構3に保持されたウエハWの上方で、ヒータアーム34が、支持軸33を支点として揺動する。ヒータアーム34の揺動により、ヒータヘッド35が、ウエハWの回転軸線C上の位置(ウエハWの回転中心に対向する位置)と、ウエハ回転機構3の側方に設定されたホームポジションとの間で移動する。また、昇降駆動機構37から支持軸33に駆動力を入力して、支持軸33を上下動させることにより、ウエハ回転機構3に保持されたウエハWの表面に近接する近接位置(図1に二点鎖線で示す高さの位置。後述する中央近接位置および周縁近接位置を含む。)と、そのウエハWの上方に退避する退避位置(図1に実線で示す高さの位置)との間で、ヒータヘッド35が昇降する。この実施形態では、近接位置は、ウエハ回転機構3に保持されたウエハWの表面とヒータヘッド35の下面(対向面)52Bとの間隔がたとえば3mmになる位置に設定されている。
 処理室2の天井壁の下面には、ウエハ回転機構3による回転軸線Cの上方に、洗浄液上ノズル(天井ノズル)94と乾燥用ガス上ノズル(天井ノズル)95とが互いに横方向に隣接して配置されている。
 洗浄液上ノズル94は、下向きにシャワー状に液を吐出するための吐出口を有している。洗浄液上ノズル94には、洗浄液が供給される洗浄液上供給管90が接続されている。洗浄液上供給管90には、その洗浄液上供給管90を開閉するための洗浄液上バルブ91が介装されている。
 乾燥用ガス上ノズル95は、鉛直下向きに気体を吐出するための吐出口を有している。乾燥用ガス上ノズル95には、乾燥用ガスの一例としての窒素ガスが供給される乾燥用ガス上供給管92が接続されている。乾燥用ガス上供給管92には、その乾燥用ガス上供給管92を開閉するための乾燥用ガス上バルブ93が介装されている。
 図2は、ヒータヘッド35の構成例を示す図解的な断面図である。
 ヒータヘッド35は、赤外線ランプ38と、上部に開口部39を有し、赤外線ランプ38を収容する有底容器状のランプハウジング(ハウジング)40と、ランプハウジング40の内部で赤外線ランプ38を吊り下げて支持する支持部材42と、ランプハウジング40の開口部39を閉塞するための蓋(ハウジング)41とを備えている。この実施形態では、蓋41がヒータアーム34の先端に固定されている。
 図3は、赤外線ランプ38の構成例を示す斜視図である。図2および図3に示すように、赤外線ランプ38は、円環状の(円弧状の)円環部43と、円環部43の両端から、円環部43の中心軸線に沿うように延びる一対の直線部44,45とを有する1本の赤外線ランプヒータである。主として円環部43が赤外線を放射する発光部として機能する。この実施形態では、円環部43の直径(外径)は、たとえば約60mmに設定されている。赤外線ランプ38が支持部材42に支持された状態で、円環部43は水平姿勢をなしている。換言すると、円環部43の中心軸線は、ウエハ回転機構3に保持されたウエハWの表面に垂直な軸線(鉛直軸線)である。
 赤外線ランプ38は、フィラメントを石英管内に収容して構成されている。赤外線ランプ38には、電圧供給のためのアンプ54(図4参照)が接続されている。赤外線ランプ38として、ハロゲンランプやカーボンヒータに代表される短・中・長波長の赤外線ヒータを採用することができる。
 図2に示すように、蓋41は円板状をなし、ヒータアーム34に対して水平姿勢に固定されている。蓋41は、PTFE(ポリテトラフルオロエチレン)などのフッ素樹脂材料を用いて形成されている。この実施形態では、蓋41はヒータアーム34と一体に形成されている。しかしながら、蓋41をヒータアーム34と別に形成するようにしてもよい。また、蓋41の材料として、PTFE等の樹脂材料以外にも、セラミックスや石英などの材料を採用することもできる。
 蓋41の下面49には、略円筒状の溝部51が形成されている。溝部51は水平平坦面からなる上底面50を有し、上底面50に支持部材42の上面42Aが接触して固定されている。蓋41には、上底面50を上下方向(鉛直方向)に貫通する挿通孔58,59が形成されている。各挿通孔58,59は、赤外線ランプ38の直線部44,45の各上端部が挿通するように形成されている。
 ランプハウジング40は有底円筒容器状をなしている。ランプハウジング40は石英を用いて形成されている。
 ランプハウジング40は、その開口部39を上方に向けた状態で、蓋41の下面49(この実施形態では、溝部51以外の領域の下面)に固定されている。ランプハウジング40の開口側の周端縁からは、円環状のフランジ40Aが径方向外方に向けて(水平方向に)突出している。フランジ40Aがボルト等の固定ユニット(図示しない)を用いて蓋41の下面49に固定されることにより、ランプハウジング40が蓋41に支持されている。
 この状態で、ランプハウジング40の底板部52は、水平姿勢の円板状をなしている。底板部52の上面52Aおよび下面52B(対向面)は、それぞれ水平平坦面をなしている。ランプハウジング40内において、赤外線ランプ38は、その円環部43の下部が底板部52の上面52Aに近接して対向配置されている。円環部43と底板部52とは互いに平行に設けられている。見方を変えると、円環部43の下方は、ランプハウジング40の底板部52によって覆われている。この実施形態では、ランプハウジング40の外径は、たとえば約85mmに設定されている。また、赤外線ランプ38(円環部43の下部)と上面52Aとの間の上下方向の間隔はたとえば約2mmに設定されている。
 支持部材42は厚肉の板状(略円板状)をなしており、ボルト56等によって、蓋41にその下方から、水平姿勢で取付け固定されている。支持部材42は、耐熱性を有する材料(たとえばセラミックスや石英)を用いて形成されている。支持部材42は、その上面42Aおよび下面42Bを、上下方向(鉛直方向)に貫通する2つの挿通孔46,47を有している。赤外線ランプ38の直線部44,45が、挿通孔46,47にそれぞれ挿通している。
 各直線部44,45の途中部には、Oリング48が外嵌固定されている。直線部44,45を挿通孔46,47に挿通させた状態では、2つのOリング48の外周が対応する挿通孔46,47の内壁にそれぞれ圧接する。これにより、直線部44,45の各挿通孔46,47に対する抜止めが達成され、赤外線ランプ38が支持部材42によって吊り下げ支持される。
 アンプ54から赤外線ランプ38に電力が供給されると、赤外線ランプ38が赤外線を放射し、その赤外線は、ランプハウジング40を介して、ヒータヘッド35の下方に向けて出射される。ランプハウジング40の底板部52を介して出射された赤外線が、ウエハW上のSPM液を加熱する。
 より具体的には、後述するレジスト除去処理の際に、ヒータヘッド35の下端面を構成するランプハウジング40の底板部52が、ウエハ回転機構3に保持されているウエハWの表面に対向して配置される。この状態では、ランプハウジング40の底板部52を介して出射された赤外線が、ウエハWおよびウエハW上のSPM液を加熱する。
 また、蓋41内には、ランプハウジング40の内部にエアを供給するための給気経路60と、ランプハウジング40の内部の雰囲気を排気するための排気経路61とが形成されている。給気経路60および排気経路61は、蓋41の下面に開口する給気ポート62および排気ポート63をそれぞれ有している。給気経路60には、給気配管64の一端が接続されている。給気配管64の他端は、エアの給気源に接続されている。排気経路61には、排気配管65の一端が接続されている。排気配管65の他端は、排気源に接続されている。
 図4は、基板処理装置1の電気的構成を示すブロック図である。基板処理装置1は、マイクロコンピュータを含む構成の制御装置55を備えている。制御装置55には、チャック回転駆動機構6、アンプ54、揺動駆動機構36、昇降駆動機構37、第1液アーム揺動機構12、第2液アーム揺動機構29、剥離液バルブ23、DIWバルブ27、SC1バルブ31、洗浄液下バルブ87、乾燥用ガス下バルブ89、洗浄液上バルブ91、乾燥用ガス上バルブ93等が制御対象として接続されている。
 図5は、基板処理装置1におけるレジスト除去処理の処理例を示す工程図である。図6Aは、後述するSPM液膜形成工程を説明するための図解的な図である。図6Bは、後述するSPM液膜加熱工程を説明するための図解的な図である。図7は、後述するSPM液膜加熱工程におけるヒータヘッド35の移動範囲を示す平面図である。
 以下、図1~図7を参照しつつ、レジスト除去処理の処理例について説明する。
 レジスト除去処理に際しては、制御装置55によって制御される搬送ロボット(図示しない)によって、処理室2(図1参照)内にイオン注入処理後のウエハWが搬入される(ステップS1:ウエハ搬入)。ウエハWは、その表面を上方に向けた状態でウエハ回転機構3に受け渡される。このとき、ウエハWの搬入の妨げにならないように、ヒータヘッド35、剥離液ノズル4およびSC1ノズル25は、それぞれホームポジションに配置されている。
 ウエハ回転機構3にウエハWが保持されると、制御装置55はチャック回転駆動機構6を制御して、ウエハWを回転開始させる(ステップS2)。ウエハWの回転速度は、液盛り速度(30~300rpmの範囲で、たとえば60rpm)まで上げられ、その後、その液盛り速度に維持される。液盛り速度とは、後に供給されるSPM液でウエハWをカバレッジできる速度、すなわち、ウエハWの表面にSPM液の液膜を保持可能な速度である。また、制御装置55は、第1液アーム揺動機構12を制御して、剥離液ノズル4をウエハWの上方位置に移動させる。
 ウエハWの回転速度が液盛り速度に達した後、図6Aに示すように、制御装置55は、剥離液バルブ23を開いて、剥離液ノズル4からSPM液をウエハWの表面に供給する。ウエハWの表面に供給されるSPM液は、ウエハWの表面上に溜められていき、ウエハWの表面上に、その表面の全域を覆うSPM液の液膜70が形成される(ステップS3:SPM液膜形成工程)。
 図6Aに示すように、SPM液膜形成工程の開始時には、制御装置55は、第1液アーム揺動機構12を制御して、剥離液ノズル4をウエハWの回転中心上に配置させ、剥離液ノズル4からSPM液を吐出させる。これにより、ウエハWの表面にSPM液の液膜70を形成して、SPM液をウエハWの表面の全域に行き渡らせることができる。これにより、SPM液の液膜70でウエハWの表面の全域を覆うことができる。
 剥離液ノズル4からのSPM液の吐出開始から予め定める液膜形成期間が経過すると、制御装置55は、チャック回転駆動機構6を制御して、ウエハWの回転速度を液盛り速度よりも小さい所定の加熱処理速度に下げる。これにより、ステップS4のSPM液膜加熱工程(加熱処理)が実行される。
 加熱処理速度は、ウエハWへのSPM液の供給がなくても、ウエハWの表面上にSPM液の液膜70を保持可能な速度(1~20rpmの範囲で、たとえば15rpm)である。また、チャック回転駆動機構6によるウエハWの減速と同期して、図6Bに示すように、制御装置55は、剥離液バルブ23を閉じて、剥離液ノズル4からのSPM液の供給を停止するとともに、第1液アーム揺動機構12を制御して、剥離液ノズル4をホームポジションに戻す。ウエハWへのSPM液の供給が停止されるが、ウエハWの回転速度が加熱処理速度に下げられることにより、ウエハWの表面上にSPM液の液膜70が継続して保持される。
 また、図6Bおよび図7に示すように、制御装置55は、アンプ54を制御して、赤外線ランプ38から赤外線を放射させる。さらに、制御装置55は、揺動駆動機構36および昇降駆動機構37を制御して、ヒータヘッド35を、ホームポジションから移動させ、さらに、ウエハWの回転中心と対向する中央近接位置(図6Bおよび図7に実線で示す位置)と、ウエハWの周縁部と対向する周縁近接位置(図6Bおよび図7に二点鎖線で示す位置)との間で往復移動させる。赤外線ランプ38による赤外線の照射により、赤外線ランプ38直下のウエハWおよびSPM液が急激に温められ、ウエハWとの境界付近のSPM液が温められる。そして、ウエハWの表面における底板部52の下面52Bに対向する領域(赤外線ランプ38に対向する領域)が、ウエハWの回転中心を含む領域からウエハWの周縁を含む領域に至る範囲内を円弧帯状の軌跡を描きつつ往復移動する。これにより、ウエハWの表面の全域を加熱することができる。
 赤外線ランプ38からの赤外線の照射により、赤外線ランプ38直下のSPM液が急激に温められる。そのため、ウエハWの表面の周囲に、大量のSPM液ミストが生じる。
 なお、周縁近接位置は、ヒータヘッド35をその上方から見たときに、底板部52の下面52Bの一部、より好ましくは赤外線ランプ38の円環部43が、ウエハWの外周よりも径方向に張り出している位置である。
 ステップS4のSPM液膜加熱工程では、SPM液の液膜70がウエハWの表面との境界付近で温められる。この間に、ウエハWの表面上のレジストとSPM液との反応が進み、ウエハWの表面からのレジストの剥離が進行する。
 その後、ウエハWの回転速度が下げられてから予め定める液膜加熱処理時間が経過すると、制御装置55は、アンプ54を制御して、赤外線ランプ38からの赤外線の放射を停止させる。また、制御装置55は、揺動駆動機構36および昇降駆動機構37を制御して、ヒータヘッド35をホームポジションに戻す。このSPM液膜加熱工程の終了時には、ヒータヘッド35のランプハウジング40の下面52Bには、大量のSPM液ミストが付着している。
 そして、制御装置55は、チャック回転駆動機構6を制御して、ウエハWの回転速度を所定の液処理回転速度(300~1500rpmの範囲で、たとえば1000rpm)に上げる。さらに、制御装置55は、DIWバルブ27を開いて、DIWノズル24の吐出口からウエハWの回転中心付近に向けてDIWを供給する(ステップS5:中間リンス処理工程)。ウエハWの表面に供給されたDIWは、ウエハWの回転による遠心力を受けて、ウエハWの表面上をウエハWの周縁に向けて流れる。これにより、ウエハWの表面に付着しているSPM液がDIWによって洗い流される。
 DIWの供給が所定の中間リンス時間にわたって続けられると、DIWバルブ27が閉じられて、ウエハWの表面へのDIWの供給が停止される。
 ウエハWの回転速度を液処理回転速度に維持しつつ、制御装置55は、SC1バルブ31を開いて、SC1ノズル25からSC1をウエハWの表面に供給する(ステップS6)。また、制御装置55は、第2液アーム揺動機構29を制御して、第2液アーム28を所定角度範囲内で揺動させて、SC1ノズル25を、ウエハWの回転中心上と周縁部上との間で往復移動させる。これによって、SC1ノズル25からのSC1が導かれるウエハWの表面上の供給位置は、ウエハWの回転中心からウエハWの周縁部に至る範囲内を、ウエハWの回転方向と交差する円弧状の軌跡を描きつつ往復移動する。これにより、ウエハWの表面の全域に、SC1がむらなく供給され、SC1の化学的能力により、ウエハWの表面に付着しているレジスト残渣およびパーティクルなどの異物を除去することができる。
 SC1の供給が所定のSC1供給時間にわたって続けられると、制御装置55は、SC1バルブ31を閉じるとともに、第2液アーム揺動機構29を制御して、SC1ノズル25をホームポジションに戻す。また、ウエハWの回転速度が液処理回転速度に維持された状態で、制御装置55は、DIWバルブ27を開いて、DIWノズル24の吐出口からウエハWの回転中心付近に向けてDIWを供給させる(ステップS7:リンス処理工程)。ウエハWの表面に供給されたDIWは、ウエハWの回転による遠心力を受けて、ウエハWの表面上をウエハWの周縁に向けて流れる。これにより、ウエハWの表面に付着しているSC1がDIWによって洗い流される。
 DIWの供給が所定のリンス時間にわたって続けられると、DIWバルブ27が閉じられて、ウエハWの表面へのDIWの供給が停止される。
 リンス処理の開始から所定時間が経過すると、制御装置55は、DIWバルブ27を閉じて、ウエハWの表面へのDIWの供給を停止する。その後、制御装置55は、チャック回転駆動機構6を制御して、ウエハWの回転速度を所定の高回転速度(たとえば1500~2500rpm)に上げて、ウエハWに付着しているDIWを振り切って乾燥されるスピンドライ処理を行う(ステップS8)。
 スピンドライ処理が予め定めるスピンドライ処理時間にわたって行われると、制御装置55は、チャック回転駆動機構6を制御して、ウエハ回転機構3の回転を停止させる。これにより、1枚のウエハWに対するレジスト除去処理が終了し、搬送ロボットによって、処理済みのウエハWが処理室2から搬出される(ステップS9)。
 ウエハWの搬出後、ヒータヘッド35を洗浄し、その洗浄後のヒータヘッド35を乾燥するヒータヘッド洗浄乾燥工程が実行される(ステップS10)。ヒータヘッド洗浄乾燥工程では、ヒータヘッド35を洗浄するための洗浄処理が施され、その洗浄処理後のヒータヘッド35に対して乾燥処理が施される。ステップS10のヒータヘッド洗浄乾燥工程の終了により、1枚のウエハWに対する一連のレジスト除去処理は終了する。
 図8は、ヒータヘッド洗浄乾燥工程の一例を説明するためのフローチャートである。図9Aは、ヒータヘッド洗浄乾燥工程における洗浄処理を説明するための図解的な図であり、図9Bは、ヒータヘッド洗浄乾燥工程における乾燥処理を説明するための図解的な図である。図10は、ヒータヘッド洗浄乾燥工程におけるヒータヘッド35の移動範囲を示す平面図である。
 ヒータヘッド洗浄乾燥工程の洗浄処理では、制御装置55は、揺動駆動機構36を制御してヒータアーム34を揺動させる、かつ昇降駆動機構37を制御してヒータヘッド35を昇降させて、ヒータヘッド35をホームポジションからウエハ回転機構3の上方のヒータ洗浄位置に移動させる。このとき、ウエハ回転機構3にはウエハWが保持されていない。そのため、ヒータヘッド35は、スピンベース8の上面に対向して配置される(ステップS21。ヒータ配置工程)。より詳しくは、ウエハ回転機構3による回転中心の上方(回転軸線C上)のヒータ洗浄位置にヒータヘッド35(ランプハウジング40)の円形の下面52Bが位置するように配置される。ヒータ洗浄位置は、裏面液吐出口84から吹き上げられる洗浄液がヒータヘッド35の下面52Bに達するような高さ位置であることが望ましい。
 また、図9Aに示すように、制御装置55は、洗浄液上バルブ91(図1等参照)を開いて、洗浄液上ノズル94から下向きにシャワー状に洗浄液を吐出させる(ステップS22。上洗浄液吐出工程)。これにより、洗浄液上ノズル94から下方に向けて流下した洗浄液は、ヒータ洗浄位置に配置されたヒータヘッド35に降り掛かる。すなわち、ヒータヘッド35の上面(たとえば蓋41の上面)に着液する。
 また、制御装置55は、洗浄液下バルブ87(図1等参照)を開いて、裏面ノズル82の裏面液吐出口84から鉛直上方に向けて洗浄液を吐出させる(ステップS22。下洗浄液吐出工程)。これにより、裏面液吐出口84から、洗浄液が、鉛直上方に向けて吹き上がる。裏面液吐出口84から吹き上げられた洗浄液は、ヒータヘッド35の下面を構成するランプハウジング40の底板部52の下面52Bに着液する。
 また、制御装置55は揺動駆動機構36を制御してヒータアーム34を揺動させて、ヒータヘッド35を、第1移動端位置と第2移動端位置との間で往復移動させる。第1移動端位置から第2移動端位置までの範囲内の任意の位置は、いずれもヒータ洗浄位置である。第1移動端位置は、図10に実線で示すように、スピンベース8の中心とスピンベース8の一周縁部との間においてスピンベース8の上方に設定されている。第2移動端位置は、図10に二点鎖線で示すように、スピンベース8の中心とスピンベース8の他周縁部との間においてスピンベース8の上方に設定されている。さらに具体的には、第1移動端位置は、ランプハウジング40の下面52Bの一周縁部がスピンベース8の回転中心上(回転軸線C上)にある位置である。第2移動端位置は、ヒータヘッド35の下面52Bの他周縁部(前記の一周縁部に対して下面52Bの中心を挟んで反対側の周縁部)がスピンベース8の回転中心上(回転軸線C上)にある位置である。
 制御装置55は、まず、揺動駆動機構36を制御してヒータアーム34を揺動させることにより、ヒータヘッド35を、スピンベース8の中心から、前記第1移動端位置(図10に実線で示す位置)に移動させる。次いで、制御装置55は、揺動駆動機構36を制御して、ヒータアーム34を所定角度範囲内で揺動させて、ヒータヘッド35を、前記第1移動端位置と前記第2移動端位置(図10に二点鎖線で示す位置)上との間で往復移動させる(ステップS23。着液位置移動工程)。
 これによって、裏面液吐出口84からの洗浄液が導かれる下面52B上において、洗浄液の着液位置は、下面52Bの一周縁部から中心を経由して他周縁部に至る範囲内を、下面52Bの周方向と交差する円弧状の軌跡を描きつつ往復移動する。これにより、ランプハウジング40の下面52Bの全域に洗浄液がむらなく供給され、この洗浄液により、ランプハウジング40の下面52Bに付着しているSPM液ミストなどの異物が洗い流される。
 また、裏面液吐出口84からの洗浄液が導かれるヒータヘッド35の上面(蓋41の上面)においても、洗浄液の着液位置が、円弧状の軌跡を描きつつ往復移動する。ヒータヘッド35の上面に供給された洗浄液は、ヒータヘッド35の上面全域へと拡がり、また、ヒータヘッド35の側壁へと拡がる。
 以上により、ヒータヘッド35の外表面の全域に洗浄液がまんべんなく行き渡り、ヒータヘッド35の外表面の全域を良好に洗浄することができる。
 洗浄液上ノズル94および裏面液吐出口84からの洗浄液の吐出、ならびにヒータアーム34の往復揺動は、予め定める洗浄処理時間が経過するまで続行される。
 予め定める洗浄処理時間が終了すると(ステップS24でYES)、制御装置55は、洗浄液上バルブ91および洗浄液下バルブ87を閉じて(ステップS25)、洗浄液上ノズル94および裏面液吐出口84からの洗浄液の吐出を停止する。
 また、図9Bに示すように、制御装置55は、乾燥用ガス上バルブ93を開く(ステップS26)。これにより、乾燥用ガス上ノズル95からの乾燥用ガスが、ヒータ洗浄位置に配置されたヒータヘッド35の上面に吹き付けられる。この乾燥用ガスによって、ヒータヘッド35の上面に付着している洗浄液が吹き飛ばされる。
 また、制御装置55は、乾燥用ガス下バルブ89を開く(ステップS26。下乾燥用ガス吹付け工程)。これにより、裏面ノズル82の裏面ガス吐出口85からの乾燥用ガスが、ヒータ洗浄位置に配置されたヒータヘッド35のランプハウジング40の下面52Bに吹き付けられる。
 このとき、制御装置55は揺動駆動機構36を制御してヒータアーム34を揺動させて、ヒータヘッド35を、第1移動端位置と第2移動端位置との間で往復移動させる。これによって、裏面ガス吐出口85からの乾燥用ガスの下面52Bにおける吹付け位置は、下面52Bの一周縁部から中心を経由して他周縁部に至る範囲内を、下面52Bの周方向と交差する円弧状の軌跡を描きつつ往復移動する。
 これにより、ランプハウジング40の下面52Bの全域に乾燥用ガスがむらなく供給され、この乾燥用ガスによって、ランプハウジング40の下面52Bに付着している洗浄液が吹き飛ばされる。
 さらに、制御装置55は、アンプ54を制御して、赤外線ランプ38から赤外線を放射させる(ステップS26。加熱乾燥工程)。これにより、ランプハウジング40が温められて、ランプハウジング40の下面52Bまたは外周に付着している洗浄液が蒸発して除去される。
 乾燥用ガス上ノズル95および裏面ノズル82からの乾燥用ガスの吐出、ならびに赤外線ランプ38からの赤外線の放射は、予め定める乾燥処理時間が経過するまで続行される。
 予め定める乾燥処理時間が終了すると(ステップS27でYES)、制御装置55は、乾燥用ガス上バルブ93および乾燥用ガス下バルブ89を閉じて(ステップS28)、乾燥用ガス上ノズル95および裏面ガス吐出口85からの乾燥用ガスの吐出を停止する。
 また、制御装置55は、揺動駆動機構36を制御して、ヒータアーム34を揺動させ、洗浄処理後のヒータヘッド35をホームポジションに戻す。
 ヒータヘッド洗浄乾燥工程の終了により、一連のレジスト除去処理は終了する。
 以上により、この実施形態によれば、各ウエハWに対するレジスト除去処理において、ヒータヘッド35を洗浄するための洗浄処理が実行される。この洗浄処理では、裏面液吐出口84の上方に対向するヒータ洗浄位置に、ヒータヘッド35が配置される。また、裏面液吐出口84から鉛直上方に向けて洗浄液が吐出される。裏面液吐出口84からの洗浄液は、鉛直上方に向けて吹き上がり、ヒータ洗浄位置に配置されたヒータヘッド35のランプハウジング40の下面52Bに着液する。
 SPM液膜加熱工程において発生する大量のSPM液ミストはランプハウジング40の下面52Bに付着することがある。裏面液吐出口84からランプハウジング40の下面52Bに供給される洗浄液により、ランプハウジング40の下面52Bに付着しているSPM液ミストを洗い流すことができるから、ランプハウジング40の下面52Bを良好に洗浄することができる。これにより、ランプハウジング40の下面52Bを清浄な状態に保つことができる。その結果、ランプハウジング40外に放出される赤外線の照射光量の低下を防止することができ、かつランプハウジング40の下面52Bがパーティクル源になることを防止することができる。
 また、ヒータヘッド35の洗浄処理後に、ヒータヘッド35の外表面が乾燥される。これにより、ヒータヘッド35の外表面に残留した洗浄液が、ウエハWの処理に悪影響を及ぼすことを防止できる。
 以上の実施形態について、次のような変形が可能である。
 たとえば、前述の実施形態では、ヒータヘッド35の洗浄処理において、ヒータヘッド35に、洗浄液上ノズル94および裏面液吐出口84の双方から洗浄液を供給している。しかし、ヒータヘッド35の洗浄処理において、洗浄液上ノズル94からの洗浄液を供給せずに、裏面液吐出口84からのヒータヘッド35に対する洗浄液の供給のみによって、ヒータヘッド35を洗浄するようにしてもよい。この場合には、ヒータヘッド35の乾燥処理において、ヒータヘッド35に対する乾燥用ガス上ノズル95の吹き付けの必要はない。
 また、前述の実施形態では、ヒータヘッド35を水平方向に往復移動させることにより、ヒータヘッド35の下面52Bにおける洗浄液の着液位置を移動させている。しかし、ヒータヘッド35を移動する代わりに、たとえば、裏面ノズル82として液の吐出方向を変更可能な吐出口を有するノズルを採用することもできる。この場合には、吐出口からの洗浄液の吐出方向を異ならせることにより、ヒータヘッド35の下面52Bにおける洗浄液の着液位置を移動させることができる。
 さらに、前述の実施形態では、ヒータヘッド35の乾燥処理において、ヒータヘッド35に付着した洗浄液を、乾燥用ガス上ノズル95や裏面ノズル82からの乾燥用ガスを吹き付けて飛ばす吹き飛ばし乾燥と、赤外線ランプ38によりランプハウジング40を温める加熱乾燥との双方を行う例を説明した。しかし、乾燥用ガスによる吹き飛ばし乾燥は行わずに、赤外線ランプ38による加熱乾燥のみにより、ヒータヘッド35を乾燥させてもよい。
 また、裏面ノズル82は、裏面液吐出口84と裏面ガス吐出口85とを有しているが、これに代えて、1つの吐出口から洗浄液と乾燥ガスとを選択的に吐出させるように構成されたノズルを採用することもできる。
 また、ヒータヘッド洗浄乾燥工程(図5に示すステップS10)と併せて、ヒータアーム34の洗浄が行われてもよい。ヒータアーム34の洗浄は、洗浄液上ノズル94から吐出される洗浄液を用いて行うことができる。また、処理室2内に別途配設されたバーノズル(図示しない)を用いて、ヒータアーム34を洗浄することもできる。バーノズルは、鉛直下方に向く多数の吐出口が水平方向に沿って一列または複数列に配列されており、たとえば、処理室2内の上部領域に配置される。この場合、ヒータアーム34(およびヒータヘッド35)が、バーノズルの下方に対向配置された状態で、バーノズルの各吐出口から洗浄液が吐出される。それによって、洗浄液がヒータアーム34の外表面に降り掛かり、ヒータアーム34の外表面が洗浄される。
 さらに、ヒータヘッド洗浄乾燥工程(図5に示すステップS10)と併せて処理室2内の洗浄(チャンバ洗浄)が行われてもよい。
 図11は、本発明の他の実施形態に係る基板処理装置101の構成を模式的に示す図である。この図11において、前述の図1に示された各部に対応する部分に同一参照符号を付し、説明を省略する。
 基板処理装置101は、処理室2内に、ウエハWを保持して回転させるウエハ回転機構(基板保持手段)3と、ウエハ回転機構3に保持されているウエハWの表面(上面)に対して、薬液としてのレジスト剥離液の一例としてのSPM液を供給するための剥離液ノズル(薬液供給手段)4と、ウエハ回転機構3に保持されているウエハWの表面に対向して配置され、ウエハWの表面上のSPM液を加熱するヒータヘッド(ヒータ)35と、洗浄ポッド(貯留容器)180とを備えている。
 洗浄ポッド180は、ヒータヘッド35のホームポジションに配置されている。洗浄ポッド180は、有底円筒状の容器であり、ヒータヘッド35は、不使用時には、洗浄ポッド180に収容された状態で待機させられる。
 図12は、洗浄ポッド180の構成を示す図である。洗浄ポッド180は、有底円筒状の容器である。洗浄ポッド180の上面は開放されていて、その上面に、ヒータヘッド35を受け入れる入口が形成されている。ヒータヘッド35は、この入口から洗浄ポッド180内に収容される。洗浄ポッド180は、円筒状の周壁181と、この周壁181の下端に結合された底部182とを含む。
 底部182の略中央部には、排液口183が形成されている。底部182の下面には、排液配管184の一端が排液口183に接続されている。排液配管184の他端は、排液を処理するための排液設備へと接続されている。排液配管184には、排液配管184を開閉するための排液バルブ185が介装されている。なお、排液バルブ185は、通常、開成されている。
 周壁181には、ヒータヘッド35の外表面に洗浄液の一例としてのDIWを供給するための洗浄液ノズル(洗浄液供給手段)186が配設されている。洗浄液ノズル186には、洗浄液供給管(洗浄液供給手段)187を通じて洗浄液が供給される。洗浄液供給管187には洗浄液バルブ(洗浄液供給手段)188が介装されている。洗浄液バルブ188が開かれることにより、洗浄液ノズル186に洗浄液が供給され、洗浄液ノズル186の吐出口から洗浄液が吐出される。
 排液バルブ185が閉じられた状態で、洗浄液ノズル186から洗浄液が吐出されると、洗浄液は底部182へと導かれ、洗浄ポッド180内に溜められる。また、洗浄ポッド180内に溜まった洗浄液は、排液バルブ185が開かれることにより排液口183から排液され、排液配管184を通して排液される。
 周壁181の上端縁よりやや下方位置には、ヒータヘッド35の外表面に乾燥用ガスの一例としての窒素ガスを供給するための乾燥用ガスノズル(乾燥用ガス吹付手段)189が配置されている。この実施形態では、複数(たとえば一対)の乾燥用ガスノズル189が備えられている。一対の乾燥用ガスノズル189は、たとえば、その吐出口が洗浄ポッド180の中心軸線を挟んで対向するように同じ高さで周壁181に配設されている。
 各乾燥用ガスノズル189には、乾燥用ガス供給管(乾燥用ガス吹付手段)190を通じて乾燥用ガスが供給される。各乾燥用ガス供給管190には乾燥用ガスバルブ(乾燥用ガス吹付手段)191が介装されている。乾燥用ガスバルブ191が開かれることにより、対応する乾燥用ガスノズル189に乾燥用ガスが供給される。各乾燥用ガスノズル189からは、洗浄ポッド180の内側に向けて略水平に乾燥用ガスが吐出される。
 図13は、基板処理装置101の電気的構成を示すブロック図である。図13において、前述の図4に示された各部の対応部分には、同一参照符号を付す。基板処理装置101は、マイクロコンピュータを含む構成の制御装置55を備えている。制御装置55には、チャック回転駆動機構6、アンプ54、揺動駆動機構36、昇降駆動機構37、第1液アーム揺動機構12、第2液アーム揺動機構29、剥離液バルブ23、DIWバルブ27、SC1バルブ31、排液バルブ185、洗浄液バルブ188、乾燥用ガスバルブ191等が制御対象として接続されている。
 基板処理装置101におけるレジスト除去処理の例は、前述の実施形態と実質的に同様である。すなわち、図5、図6A、図6Bおよび図7を参照して説明したレジスト除去処理は、基板処理装置101によっても行うことができる。ただし、ヒータヘッド洗浄乾燥工程(図5のステップS10)の内容は、異なるので、以下に説明する。
 ヒータヘッド35がホームポジションにあるときには、ヒータヘッド35は、洗浄ポッド180内に収容されている。すなわち、制御装置55により揺動駆動機構36が駆動されて、ヒータヘッド35が洗浄ポッド180の上面の鉛直上方に配置されるようにヒータアーム34が移動される。さらに、制御装置55により昇降駆動機構37が制御されて、ヒータヘッド35がホームポジションに達するまで、ヒータアーム34およびヒータヘッド35が鉛直下方に降下される。ヒータヘッド35がホームポジションに達すると、その位置で待機させられる。ホームポジションでは、ヒータヘッド35の少なくともランプハウジング40の全体(好ましくはヒータヘッド35の全体)が洗浄ポッド180内に収容される。
 この実施形態では、ヒータヘッド35は、スピンベース8の上方ではなく、ホームポジションで洗浄される。そのため、ウエハWの搬出後でなくても、すなわち、スピンベース8上にウエハWが存在しているときであっても、不使用状態である限り、ヒータヘッド35を洗浄することができる。すなわち、レジスト除去処理の進行状況に拘わりなく、ヒータヘッド35を洗浄することができる。したがって、ヒータヘッド35の洗浄タイミングは、その使用タイミング以外の任意のタイミングとすることができる。具体的には、たとえばSPM液膜加熱工程(図5に示すステップS4)の終了後において、ホームポジションに戻されたヒータヘッド35に対して洗浄処理や乾燥処理を施すようにしてもよい(図5に二点鎖線で示すステップS20:ヒータヘッド洗浄乾燥工程)。また、SPM液膜加熱工程後であれば、その他のタイミングでヒータヘッド洗浄乾燥工程を実行させてもよい。
 図14は、ヒータヘッド洗浄乾燥工程の一例を示すフローチャートである。図15Aは、ヒータヘッド洗浄乾燥工程における洗浄処理を説明するための図解的な図であり、図15Bおよび図15Cは、ヒータヘッド洗浄乾燥工程における乾燥処理を説明するための図解的な図である。
 所定の洗浄タイミングになると、制御装置55は、排液バルブ185を閉じ、洗浄液バルブ188を開く(ステップS31)。排液バルブ185が閉じられた状態で、洗浄液ノズル186から洗浄液が吐出されると、図15Aに示すように、洗浄液は洗浄ポッド180内を底部182へと導かれ、洗浄ポッド180内に溜められる。洗浄液ノズル186からの洗浄液の吐出は、洗浄ポッド180内に溜められている処理液の液面高さが、予め定める洗浄高さに達するまで続行される。この洗浄高さは、ホームポジションにあるヒータヘッド35の下面52Bよりも上方位置に設定されている。したがって、洗浄ポッド180に溜められた洗浄液の液面が洗浄高さに達している場合には、ランプハウジング40の下部分の外表面(下面52Bおよびランプハウジング40の周壁の下部分の外周面)は洗浄液に浸漬された状態にある。
 洗浄ポッド180に溜められている洗浄液の液面高さが洗浄高さに達すると(ステップS32でYES)、制御装置55は洗浄液バルブ188を閉じる(ステップS33)。これにより、洗浄液ノズル186からの洗浄液の供給が停止される。たとえば、液面センサ(図示しない)によって洗浄液の液面高さを検出し、この液面センサからの検出出力に基づき、制御装置55が液面の洗浄高さへの到達を判断するようにしてもよい。また、洗浄ポッド180内に洗浄液が全く溜められていない状態から、洗浄ポッド180内の液面高さが洗浄高さに達するような液溜め時間が予め設定されており、洗浄液バルブ188の開成からそのような液溜め時間が経過したタイミングで、洗浄液バルブ188が閉じられてもよい。
 ランプハウジング40の下面52Bの洗浄液への浸漬により、ランプハウジング40の下面52Bに付着しているSPM液ミストなどの異物が洗い流される。その後、洗浄ポッド180に溜められている洗浄液の量が維持され、それによって、ランプハウジング40の下部分の外表面の洗浄液への浸漬が維持される。
 洗浄液バルブ188が閉じられてから予め定める洗浄処理時間(浸漬時間)が経過すると(ステップS34でYES)、制御装置55は排液バルブ185を開く(ステップS35)。洗浄ポッド180内に溜められた洗浄液は、排液バルブ185が開かれることにより、排液口183から排液配管184を通して排液される。これにより、ランプハウジング40の下部分の外表面の洗浄液への浸漬が終了する。
 次いで、図15Bおよび図15Cに示す乾燥処理が実行される。
 洗浄ポッド180内から洗浄液が抜かれた後、制御装置55は、各乾燥用ガスバルブ191を開く(ステップS36)。これにより、各乾燥用ガスノズル189の吐出口から、洗浄ポッド180の内側に向けて、略水平に乾燥用ガスが吐出される。
 また、制御装置55は昇降駆動機構37を制御して、ヒータヘッド35を上昇させる。それによって、ランプハウジング40の周壁外周面に、乾燥用ガスノズル189の吐出口が対向させられる。
 その後、制御装置55は昇降駆動機構37を制御して、ヒータヘッド35を、予め定める上位置(図15Bに実線で示す位置)と、中間位置(図15Bに二点鎖線で、図15Cに実線でそれぞれ示す位置)との間を昇降させる(ステップS37)。ヒータヘッド35の上位置では、ヒータヘッド35の下面52Bが乾燥用ガスノズル189の吐出口の側方に位置する。したがって、上位置は、ホームポジションよりも高い。ヒータヘッド35の中間位置は、上位置とホームポジションとの間に設定されている。この中間位置では、ヒータヘッド35の外周面(ランプハウジング40の外周面)のうち、前記の洗浄処理において洗浄液に浸漬される部分が、乾燥用ガスノズル189の吐出口よりも下に位置する。
 ヒータヘッド35の昇降に伴って、ランプハウジング40の周壁外周面の下部分における乾燥用ガスの吹付け位置(供給位置)も上下動(昇降)する。そのため、ランプハウジング40の周壁外周面の広範囲に乾燥用ガスを吹き付けることができる。これにより、ランプハウジング40の周壁外周面の下部分に付着している洗浄液が吹き飛ばされて除去される。
 また、図15Bに示すように、ヒータヘッド35が上位置にあるときには、乾燥用ガスノズル189から吐出された乾燥用ガスは、ランプハウジング40の下面52Bのやや下方を、下面52Bに沿って流れる。このように流れる乾燥用ガスにより、下面52Bに付着している洗浄液が吹き飛ばされて除去される。ヒータヘッド35から飛散した洗浄液は、周壁181に受け止められる。そのため、洗浄液の液滴が洗浄ポッド180外に飛散するのを抑制または防止することができる。
 ヒータヘッド35の昇降動作に際して、制御装置55は、ヒータヘッド35を上位置まで上昇させた後降下を開始する前に、昇降動作を一旦停止させて、ヒータヘッド35を上位置のまま所定時間維持させるように昇降駆動機構37を制御してもよい。この場合、ランプハウジング40の下面52Bから、洗浄液をより効果的に除去することができる。
 さらに、制御装置55は、ステップS36における乾燥用ガスノズル189からの乾燥用ガスの吐出に並行して、アンプ54を制御して、赤外線ランプ38から赤外線を放射させる(ステップS38。加熱乾燥工程)。これにより、ランプハウジング40が温められて、ランプハウジング40の下部分に付着している洗浄液が蒸発除去される。
 乾燥用ガスノズル189からの乾燥用ガスの吐出、および赤外線ランプ38からの赤外線の放射は、赤外線ランプ38からの赤外線の放射開始から、予め定める乾燥処理時間が経過するまで続行される。
 乾燥処理時間が経過すると(ステップS39でYES)、制御装置55は、各乾燥用ガスバルブ191を閉じて(ステップS40)、乾燥用ガスノズル189からの乾燥用ガスの吐出を停止する。また、制御装置55は、アンプ54を制御して、赤外線ランプ38からの赤外線の放射を停止させる(ステップS40)。
 また、制御装置55は、昇降駆動機構37を制御して、ヒータヘッド35を降下させて、ホームポジションに戻す(ステップS41)。
 こうして、ヒータヘッド洗浄乾燥工程が終了する。
 以上により、この実施形態によれば、各ウエハWに対するレジスト除去処理において、ヒータヘッド35を洗浄するための洗浄処理が実行される。この洗浄処理の実行時には、ホームポジションにヒータヘッド35が配置される。また、排液バルブ185が閉じられて、洗浄液ノズル186から洗浄液が供給されることにより、洗浄ポッド180に洗浄液が溜められる。洗浄ポッド180中に溜められた洗浄液中に、ランプハウジング40の下部の外表面が浸漬されることにより、下面52Bを含むランプハウジング40の下部分の外表面を洗浄することができる。
 SPM液膜加熱工程(図5に示すステップS4)において発生した大量のSPM液ミストはランプハウジング40の下面52Bに付着していることがある。このSPMミストは、ランプハウジング40の下面52Bに供給される洗浄液によって洗い流すことができる。これにより、ランプハウジング40の下面52Bを良好に洗浄することができ、ランプハウジング40の下面52Bを清浄な状態に保つことができる。ゆえに、ランプハウジング40外に放出される赤外線の照射光量の低下を防止することができ、かつランプハウジング40の下面52Bがパーティクル源になることを防止することができる。
 また、ヒータヘッド35の洗浄処理後に、下面52Bを含むランプハウジング40の下部分の外表面が乾燥される。これにより、洗浄液がランプハウジング40の下部分の外表面に残留して、ウエハWの処理に悪影響を及ぼすことを防止できる。
 図16は、洗浄ポッド(収容部材)の他の構成例を示す図である。図17は、図16の切断面線A-Aから見た断面図である。図16および図17に示す洗浄ポッド280は、図11に示す構成において、洗浄ポッド180に代えて搭載されて用いられる。
 図16等において、図12に示された各部に対応する部分は同一参照符号で示し、説明を省略する。
 この洗浄ポッド280においては、洗浄ポッド280の円板状の底部282に複数(たとえば4つ)の洗浄液ノズル111が配設されている。各洗浄液ノズル111は、ヒータヘッド35の下面52Bに向けて洗浄液を吐出するための洗浄液吐出口110を有している。
 図16および図17に示すように、各洗浄液吐出口110は、底部282の周縁部において、周方向に等間隔に配設されている。各洗浄液吐出口110の吐出方向は、鉛直方向に所定角度(たとえば30°~60°)傾斜した上向き、かつ円筒状の洗浄ポッド180の中心軸線方向に向かう方向である。各洗浄液ノズル111には、洗浄液供給管112を通じて洗浄液が供給される。各洗浄液供給管112には洗浄液バルブ113が介装されている。洗浄液バルブ113が開かれることにより、対応する洗浄液ノズル111に洗浄液が供給され、洗浄液ノズル111の洗浄液吐出口110から洗浄液が吐出される。
 この洗浄ポッド280では、図12等に示した洗浄ポッド180における洗浄処理とは異なる洗浄処理が実行される。一方、この洗浄ポッド280では、図12等に示した洗浄ポッド180における乾燥処理と同様の乾燥処理が実行される。洗浄ポッド280では、ヒータヘッド35は、ホームポジションよりもやや上方の洗浄位置(図16に示す位置)で洗浄処理を受ける。
 所定の洗浄タイミングになると、制御装置55により昇降駆動機構37が制御されて、ヒータヘッド35が上昇されて、ホームポジションよりもやや上方で、かつ中間位置(図15C等に示す位置)よりも下方に設定された洗浄位置に配置される。
 また、各洗浄液バルブ113が開かれて、各洗浄液吐出口110から洗浄液が吐出される。各洗浄液吐出口110から吐出された洗浄液は、ヒータヘッド35の下面52Bに着液する。この実施形態では、各洗浄液吐出口110から吐出された洗浄液は、たとえば、円形の下面52B上において、洗浄液吐出口110と下面52Bの中心とを結ぶ線分の中間位置に着液する。下面52Bに着液した洗浄液は、下面52Bを伝ってその周囲に広がる。その後、洗浄液ノズル111からの洗浄液の吐出開始から、予め定める洗浄処理期間が経過すると、洗浄液バルブ113が閉じられる。洗浄処理の全期間を通じて、排液バルブ185は開成状態にある。そのため、底部282に導かれた洗浄液は、底部282に溜められずに、排液配管184を通して機外に排出される。
 この洗浄ポッド280によれば、ランプハウジング40の下面52Bに供給される洗浄液により、ランプハウジング40の下面52Bに付着しているSPM液ミストなどの異物が洗い流される。これにより、ランプハウジング40の下面52Bを良好に洗浄することができる。
 その後、図15Bおよび図15Cを参照して前述した乾燥処理が実行される。
 図18は、さらに他の構成例に係る洗浄ポッド(収容部材)380の図である。図19は、図18の切断面線B-Bから見た断面図である。図18および図19に示す洗浄ポッド380は、図11に示す構成において、洗浄ポッド180に代えて搭載されて用いられる。
 図18等において、図12に示された各部に対応する部分は同一参照符号で示し、説明を省略する。
 この洗浄ポッド380においては、洗浄ポッド380の円板状の底部382に複数(たとえば5つ。図18では3つのみ図示)の洗浄液ノズル201が配設されている。各洗浄液ノズル201は、ヒータヘッド35の下面52Bに向けて洗浄液を吐出するための洗浄液吐出口200を有している。また、洗浄液吐出口200が底部382の中央部にも配設されているので、底部382の周縁部に排液口283が配置されている。
 複数の洗浄液吐出口200は、ホームポジションに位置するヒータヘッド35の下面52Bの中心の下方に対向する1つの中央吐出口200Aと、その下面52Bの周縁部の下方に対向する複数(たとえば4つ)の周縁吐出口200Bとを備えている。各周縁吐出口200Bは、底部382の周縁部において、周方向に等間隔に配設されている。各洗浄液吐出口200A,200Bの吐出方向は、鉛直上方である。各洗浄液ノズル201には、洗浄液供給管202を通じて洗浄液が供給される。洗浄液供給管202には洗浄液バルブ203が介装されている。洗浄液バルブ203が開かれることにより、洗浄液ノズル201に洗浄液が供給され、洗浄液ノズル201の洗浄液吐出口200(200A,200B)から洗浄液が吐出される。
 この洗浄ポッド380では、図12等に示した洗浄ポッド180における洗浄処理とは異なる洗浄処理が実行される。一方、この洗浄ポッド380では、図12等に示した洗浄ポッド180における乾燥処理と同様の乾燥処理が実行される。洗浄ポッド380では、ヒータヘッド35は、図16等に示した洗浄ポッド280の場合と同様に、洗浄位置(図18に示す位置)で洗浄処理を受ける。
 ヒータヘッド35が洗浄位置に配置された後、洗浄液バルブ203が開かれて、各洗浄液吐出口200(200A,200B)から洗浄液が吐出される。各洗浄液吐出口200から吐出された洗浄液は、ヒータヘッド35の下面52Bに着液し、下面52Bを伝ってその周囲に広がる。その後、洗浄液ノズル201からの洗浄液の吐出開始から、予め定める洗浄処理期間が経過すると、洗浄液バルブ203が閉じられる。洗浄処理の全期間を通じて、排液バルブ185は開成状態にある。そのため、底部382に導かれた洗浄液は、底部382に溜められずに、排液配管184を通して機外に排出される。
 このようにして、ランプハウジング40の下面52Bに供給される洗浄液により、ランプハウジング40の下面52Bに付着しているSPM液ミストなどの異物が洗い流される。これにより、ランプハウジング40の下面52Bを良好に洗浄することができる。
 その後、図15Bおよび図15Cを参照して前述した乾燥処理が実行される。
 図12~図19を参照して説明した実施形態について、以下のような変形が可能である。
 図16の洗浄ポッド280および図17の洗浄ポッド380においては、それらの内部に洗浄液を溜める必要はない。したがって、洗浄ポッド280,380から排液バルブ185を取り除いた構成を採用してもよい。
 また、乾燥用ガスノズル189の個数は2つに限らず、3個以上の乾燥用ガスノズル189が設けられてもよい。この場合に、複数の乾燥用ガスノズル189は同じ高さに配置されていることが望ましく、また、周方向に等間隔に配設されていることが望ましい。
 また、乾燥用ガスノズル189の吐出方向は、水平でなく、斜め下向きであってもよい。
 また、乾燥用ガスノズル189は、洗浄ポッドの周壁181に設けられる必要はなく、洗浄ポッド180,280,380の上面よりも上方(すなわち洗浄ポッド外)に配置されていてもよい。
 また、前述の実施形態では、ヒータヘッド35の乾燥処理において、乾燥用ガスノズル189からの乾燥用ガスを吹き付けて飛ばす吹き飛ばし乾燥と、赤外線ランプ38によりランプハウジング40を温める加熱乾燥との双方により、ランプハウジング40の外表面を乾燥させる例を説明した。しかし、乾燥用ガスによる吹き飛ばし乾燥は行わずに、赤外線ランプ38による加熱乾燥のみにより、ランプハウジング40の外表面を乾燥させるようにしてもよい。
 また、ヒータヘッド洗浄乾燥工程を処理室2からのウエハWの搬出後に行う場合には、ヒータヘッド洗浄乾燥工程の実行と併せて、ヒータアーム34の洗浄が行われてもよい。ヒータアーム34の洗浄は、たとえば処理室2内に別途配設されたバーノズル(図示しない)を用いて、ヒータアーム34を洗浄することができる。バーノズルは、鉛直下方に向く多数の吐出口が水平方向に沿って一列または複数列に配列されており、たとえば、処理室2内の上部領域に配置される。この場合、ヒータアーム34が、バーノズルの下方に対向配置された状態で、バーノズルの各吐出口から洗浄液が吐出される。それによって、洗浄液がヒータアーム34の外表面に降り掛かり、ヒータアーム34の外表面が洗浄される。
 さらに、ヒータヘッド洗浄乾燥工程を処理室2からのウエハWの搬出後に行う場合には、ステップS10のヒータヘッド洗浄乾燥工程の実行と併せて処理室2内の洗浄(チャンバ洗浄)が行われてもよい。
 また、図1~図19を参照して説明した前述の2つの実施形態に関して、次のような変形が可能である。
 すなわち、洗浄処理に用いる洗浄液としてDIWを用いる場合を例に挙げて説明した。しかしながら、洗浄液は、DIWに限らず、希フッ酸水溶液、炭酸水、電解イオン水、オゾン水などを洗浄液として採用することもできる。さらに洗浄液として、希フッ酸水溶液等の薬液を用いる場合には、洗浄液をヒータヘッド35に供給した後に、DIWや炭酸水などを用いてヒータヘッド35から洗浄液を洗い流すためのリンス処理が施されてもよい。
 また、乾燥用ガスの一例として窒素ガスを挙げたが、清浄空気やその他の不活性ガスを乾燥用ガスとして用いることができる。
 また、上記の実施形態を、燐酸などの高温のエッチング液を用いて基板の主面の窒化膜を選択的にエッチングする基板処理装置に備えられるヒータの洗浄方法に適用することもできる。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
 この出願は、2012年3月23日に日本国特許庁に提出された特願2012-68082号および特願2012-68083号に対応しており、これらの出願の全開示はここに引用により組み込まれるものとする。
1     基板処理装置
2     処理室
2A   隔壁
3     ウエハ回転機
4     剥離液ノズル
5     カップ
6     チャック回転駆動機構
7     スピン軸
8     スピンベース
9     挟持部材
11   第1液アーム
12   第1液アーム揺動機構
15   剥離液供給管
23   剥離液バルブ
24   剥離液ノズル
25   SC1ノズル
26   DIW供給管
27   DIWバルブ
28   第2液アーム
29   第2液アーム揺動機構
30   SC1供給管
31   SC1バルブ
33   支持軸
34   ヒータアーム
35   ヒータヘッド
36   揺動駆動機構
37   昇降駆動機構
38   赤外線ランプ
39   開口部
40   ランプハウジング
40A フランジ
41   蓋
42   支持部材
42A 上面
42B 下面
43   円環部
44,45    直線部
46,47    挿通孔
48   Oリング
49   下面
50   上底面
51   溝部
52   底板部
52A 上面
52B 下面
54   アンプ
55   制御装置
56   ボルト
58,59    挿通孔
60   給気経路
61   排気経路
62   給気ポート
63   排気ポート
64   給気配管
65   排気配管
70   液膜
80   裏面側液供給管
81   裏面側ガス供給管
82   裏面ノズル
84   裏面液吐出口
85   裏面ガス吐出口
86   洗浄液下供給管
87   洗浄液下バルブ
88   乾燥用ガス下供給管
89   乾燥用ガス下バルブ
90   洗浄液上供給管
91   洗浄液上バルブ
92   乾燥用ガス上供給管
93   乾燥用ガス上バルブ
94   洗浄液上ノズル
95   乾燥用ガス上ノズル
101 基板処理装置
110 洗浄液吐出口
111 洗浄液ノズル
112 洗浄液供給管
113 洗浄液バルブ
180,280,380      洗浄ポッド
181 周壁
182 底部
183 排液口
184 排液配管
185 排液バルブ
186 洗浄液ノズル
187 洗浄液供給管
188 洗浄液バルブ
189 乾燥用ガスノズル
190 乾燥用ガス供給管
191 乾燥用ガスバルブ
200 洗浄液吐出口
200A      中央吐出口
200B      周縁吐出口
201 洗浄液ノズル
202 洗浄液供給管
203 洗浄液バルブ
282 底部
283 排液口
382 底部
A     切断面線
B     切断面線
C     回転軸線
S1~S10、S20~S29,S31~S41     ステップ
W     ウエハ

Claims (19)

  1.  赤外線ランプとハウジングとを有し、基板保持手段により保持された基板の上面に対向配置されてその上面を加熱するためのヒータを洗浄するヒータ洗浄方法であって、
     前記基板保持手段に保持された基板の下面に対向し、上方に向けて液を吐出する第1吐出口を有する下ノズルの上方のヒータ洗浄位置に、前記第1吐出口に対向するように前記ヒータを配置するヒータ配置工程と、
     前記基板保持手段に基板を保持していない状態で、前記下ノズルに洗浄液を供給して、前記第1吐出口から上方に向けて洗浄液を吐出させることにより、前記ヒータ洗浄位置に配置された前記ヒータの前記ハウジングの外表面に洗浄液を供給する下洗浄液吐出工程とを含む、ヒータ洗浄方法。
  2.  前記下洗浄液吐出工程に並行して、前記第1吐出口の上方に配設された上ノズルから下方に向けて洗浄液を吐出することにより前記ハウジングの外表面に洗浄液を供給する上洗浄液吐出工程をさらに含む、請求項1に記載のヒータ洗浄方法。
  3.  前記下洗浄液吐出工程に並行して、前記第1吐出口から吐出される洗浄液の前記ハウジングの外表面における着液位置を移動させる着液位置移動工程をさらに含む、請求項1または2に記載のヒータ洗浄方法。
  4.  前記下洗浄液供給工程の終了後、前記ハウジングの外表面に付着している洗浄液を除去する乾燥工程をさらに含む、請求項1~3のいずれか一項に記載のヒータ洗浄方法。
  5.  前記乾燥工程は、前記赤外線ランプから赤外線を前記ハウジングに照射して、前記ハウジングの外表面を加熱して乾燥させる加熱乾燥工程を含む、請求項4に記載のヒータ洗浄方法。
  6.  前記下ノズルが、上方に向けて気体を吐出するための第2吐出口をさらに有しており、
     前記乾燥工程は、前記下ノズルに乾燥用ガスを供給して、前記第2吐出口から上方に向けて乾燥用ガスを吹き付けることにより、前記ヒータ洗浄位置に配置された前記ヒータの前記ハウジングの外表面に乾燥用ガスを供給する下乾燥用ガス吹付け工程を含む、請求項4または5に記載のヒータ洗浄方法。
  7.  赤外線ランプと、前記赤外線ランプを収容するハウジングとを有し、基板の主面に対向する処理位置で、その基板の主面を加熱するヒータと、
     前記処理位置とは異なる洗浄位置に前記ヒータが位置する状態で、前記ハウジングの外表面に、洗浄液を供給する洗浄液供給手段とを含む、基板処理装置。
  8.  前記洗浄位置が、前記ヒータが前記処理位置から退避して待機するときの待機位置である、請求項7に記載の基板処理装置。
  9.  前記ヒータを収容し、当該ヒータから飛散する洗浄液を受け止める収容部材をさらに含む、請求項7または8に記載の基板処理装置。
  10.  前記収容部材は、底部に排出口を有し、液を溜めることが可能な有底容器状の貯留容器を含み、
     前記洗浄液供給手段は、前記貯留容器内に洗浄液を供給する洗浄液ノズルを含む、請求項9に記載の基板処理装置。
  11.  前記貯留容器の前記排出口に接続されて、前記貯留容器に溜められた液を排出するための排液配管と、
     前記排液配管に介装されて、前記排液配管を開閉する排液バルブとをさらに含む、請求項10に記載の基板処理装置。
  12.  前記洗浄液供給手段は、前記ハウジングの外表面に向けて洗浄液を吐出する洗浄液吐出口を有する洗浄液ノズルを備えている、請求項7~9のいずれか一項に記載の基板処理装置。
  13.  前記ハウジングの外表面から洗浄液を除去するために、前記ハウジングの外表面に向けて乾燥用ガスを吹き付ける乾燥用ガス吹付手段をさらに含む、請求項7~12のいずれか一項に記載の基板処理装置。
  14.  前記ヒータを昇降させるヒータ昇降手段をさらに含み、
     前記乾燥用ガス吹付手段は、前記ヒータの昇降方向と交差する方向に乾燥用ガスを吐出する乾燥用ガスノズルを含み、
     前記基板処理装置は、前記乾燥用ガス吹付手段および前記ヒータ昇降手段を制御して、前記乾燥用ガスノズルから乾燥用ガスを吐出させるとともに、前記ヒータを昇降させることにより、前記ハウジングの外表面における乾燥用ガスの供給位置を昇降させる吹付乾燥制御手段をさらに含む、請求項13に記載の基板処理装置。
  15.  前記赤外線ランプから赤外線を前記ハウジングに照射させることにより、前記外表面に付着している洗浄液を加熱して乾燥させる加熱乾燥制御手段をさらに含む、請求項7~14のいずれか一項に記載の基板処理装置。
  16.  赤外線ランプと、この赤外線ランプを収容するハウジングとを有し、基板の主面に対向する処理位置でその基板の主面を加熱するヒータを、洗浄するためのヒータ洗浄方法であって、
     前記処理位置とは異なる洗浄位置に前記ヒータを配置するヒータ配置工程と、
     前記洗浄位置に位置する前記ヒータの外表面に洗浄液を供給する洗浄液供給工程とを含む、ヒータ洗浄方法。
  17.  前記洗浄液供給工程の終了後、前記ハウジングの外表面に付着している洗浄液を除去する乾燥工程をさらに含む、請求項16に記載のヒータ洗浄方法。
  18.  前記乾燥工程は、前記赤外線ランプから赤外線を前記ハウジングに照射して、前記外表面に付着している洗浄液を加熱して乾燥させる加熱乾燥工程を含む、請求項17に記載のヒータ洗浄方法。
  19.  前記乾燥工程は、
     前記ヒータを昇降させるヒータ昇降工程と、
     前記ハウジングの外表面に向けて、乾燥用ガスノズルから、前記ヒータの昇降方向と交差する方向に乾燥用ガスを吐出する乾燥用ガス吐出工程とを含む、請求項17または18に記載のヒータ洗浄方法。
PCT/JP2013/054808 2012-03-23 2013-02-25 基板処理装置およびヒータ洗浄方法 WO2013140955A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147026096A KR101925173B1 (ko) 2012-03-23 2013-02-25 기판 처리 장치 및 히터 세정 방법
US14/386,685 US9991141B2 (en) 2012-03-23 2013-02-25 Substrate processing apparatus and heater cleaning method
CN201380015581.XA CN104205305B (zh) 2012-03-23 2013-02-25 基板处理装置以及加热器清洗方法
US15/966,569 US10573542B2 (en) 2012-03-23 2018-04-30 Heater cleaning method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-068083 2012-03-23
JP2012068082A JP5999625B2 (ja) 2012-03-23 2012-03-23 基板処理方法
JP2012068083A JP5963298B2 (ja) 2012-03-23 2012-03-23 基板処理装置およびヒータ洗浄方法
JP2012-068082 2012-03-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/386,685 A-371-Of-International US9991141B2 (en) 2012-03-23 2013-02-25 Substrate processing apparatus and heater cleaning method
US15/966,569 Continuation US10573542B2 (en) 2012-03-23 2018-04-30 Heater cleaning method

Publications (1)

Publication Number Publication Date
WO2013140955A1 true WO2013140955A1 (ja) 2013-09-26

Family

ID=49222418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054808 WO2013140955A1 (ja) 2012-03-23 2013-02-25 基板処理装置およびヒータ洗浄方法

Country Status (5)

Country Link
US (2) US9991141B2 (ja)
KR (1) KR101925173B1 (ja)
CN (1) CN104205305B (ja)
TW (2) TWI490938B (ja)
WO (1) WO2013140955A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934307A (zh) * 2014-03-17 2015-09-23 斯克林集团公司 基板处理方法以及基板处理装置
WO2021033427A1 (ja) * 2019-08-21 2021-02-25 株式会社Screenホールディングス 加熱部材の清浄方法および基板処理装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707099B2 (en) 2013-08-12 2020-07-07 Veeco Instruments Inc. Collection chamber apparatus to separate multiple fluids during the semiconductor wafer processing cycle
JP6222818B2 (ja) * 2013-09-10 2017-11-01 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP6363876B2 (ja) * 2014-05-21 2018-07-25 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP6326387B2 (ja) * 2015-03-19 2018-05-16 東京エレクトロン株式会社 基板液処理装置及び基板液処理方法並びに基板液処理プログラムを記憶したコンピュータ読み取り可能な記憶媒体
CN104694891A (zh) * 2015-03-24 2015-06-10 京东方科技集团股份有限公司 一种去离子水供给装置
KR101619166B1 (ko) * 2015-06-12 2016-05-18 카즈오 스기하라 기판의 세정·건조 처리 장치
US20170084470A1 (en) * 2015-09-18 2017-03-23 Tokyo Electron Limited Substrate processing apparatus and cleaning method of processing chamber
JP6894264B2 (ja) * 2016-03-25 2021-06-30 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP6789038B2 (ja) * 2016-08-29 2020-11-25 株式会社Screenホールディングス 基板処理装置
KR101927699B1 (ko) 2016-10-31 2018-12-13 세메스 주식회사 기판 처리 장치 및 방법
KR101958637B1 (ko) * 2016-11-24 2019-03-15 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
JP2018107338A (ja) * 2016-12-27 2018-07-05 株式会社Sumco ウェーハの洗浄方法
JP6975953B2 (ja) * 2016-12-28 2021-12-01 ヒューグル開発株式会社 異物除去装置及び異物除去方法
WO2018200398A1 (en) 2017-04-25 2018-11-01 Veeco Precision Surface Processing Llc Semiconductor wafer processing chamber
US10204807B2 (en) 2017-04-25 2019-02-12 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and method for processing wafer
SG11202007002YA (en) * 2018-01-23 2020-08-28 Acm Res Shanghai Inc Methods and apparatus for cleaning substrates
WO2020100829A1 (ja) * 2018-11-16 2020-05-22 東京エレクトロン株式会社 基板処理装置及び基板処理装置の洗浄方法
JP7126927B2 (ja) * 2018-11-16 2022-08-29 株式会社Screenホールディングス 基板処理装置および基板処理方法
CN113448186A (zh) * 2020-03-27 2021-09-28 长鑫存储技术有限公司 晶圆处理装置及晶圆处理方法
KR20230102300A (ko) * 2021-12-30 2023-07-07 세메스 주식회사 기판 처리 장치 및 기판 처리 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102884A (ja) * 1997-09-29 1999-04-13 Dainippon Screen Mfg Co Ltd 基板処理装置および周辺部材の洗浄方法
JPH11135469A (ja) * 1997-10-31 1999-05-21 Dainippon Screen Mfg Co Ltd 基板洗浄装置
JP2921781B2 (ja) * 1993-01-23 1999-07-19 東京エレクトロン株式会社 洗浄装置及び洗浄方法
JPH11283949A (ja) * 1998-03-31 1999-10-15 Tokyo Electron Ltd 基板洗浄装置および基板洗浄方法
JP2003332287A (ja) * 2002-05-17 2003-11-21 Dainippon Screen Mfg Co Ltd 基板洗浄方法及びその装置
JP2004259734A (ja) * 2003-02-24 2004-09-16 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2006012881A (ja) * 2004-06-22 2006-01-12 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2009026948A (ja) * 2007-07-19 2009-02-05 Dainippon Screen Mfg Co Ltd 基板処理装置および処理チャンバ内洗浄方法
WO2011074521A1 (ja) * 2009-12-18 2011-06-23 株式会社ジェイ・イー・ティ 基板処理装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243166A (ja) 1992-02-26 1993-09-21 Nec Corp 半導体基板の気相成長装置
JPH05259097A (ja) 1992-03-12 1993-10-08 Kokusai Electric Co Ltd 枚葉式cvd装置
US5379784A (en) 1993-01-23 1995-01-10 Tokyo Electron Limited Apparatus for cleaning conveyor chuck
JPH0831878A (ja) 1994-07-19 1996-02-02 Toshiba Corp 半田実装装置
JPH09186127A (ja) 1995-12-28 1997-07-15 Shiii & I:Kk 半導体ウェハーの洗浄・乾燥方法および装置
JP3166065B2 (ja) 1996-02-08 2001-05-14 東京エレクトロン株式会社 処理装置及び処理方法
JP2000279899A (ja) 1999-03-29 2000-10-10 Shibaura Mechatronics Corp スピン処理装置及びその方法
JP3348695B2 (ja) 1999-06-04 2002-11-20 日本電気株式会社 半導体ウェーハ上のフォトレジスト除去方法及び除去装置
JP2001077011A (ja) 1999-09-08 2001-03-23 Mitsubishi Electric Corp 半導体製造装置、その洗浄方法、および光源ユニット
JP2001156049A (ja) 1999-11-30 2001-06-08 Seiko Epson Corp 有機物剥離装置及び有機物剥離方法
JP5010781B2 (ja) * 2001-03-28 2012-08-29 忠弘 大見 プラズマ処理装置
JP5199531B2 (ja) * 2002-12-05 2013-05-15 ジングルス・テヒノロギース・アクチェンゲゼルシャフト 層の厚さを制御するための方法および装置
JP2005093926A (ja) 2003-09-19 2005-04-07 Trecenti Technologies Inc 基板処理装置および基板処理方法
JP4271095B2 (ja) * 2004-07-15 2009-06-03 東京エレクトロン株式会社 基板加熱装置及び基板加熱方法
JP2010003845A (ja) 2008-06-19 2010-01-07 Sumco Corp 半導体ウェーハのエッチング装置及び方法
JP5401255B2 (ja) 2008-11-05 2014-01-29 東京エレクトロン株式会社 洗浄装置、洗浄方法、および記憶媒体
JP2011074521A (ja) 2009-09-30 2011-04-14 Teijin Techno Products Ltd 無機粒子含有芳香族ポリアミド繊維、および無機粒子含有芳香族ポリアミドドープの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921781B2 (ja) * 1993-01-23 1999-07-19 東京エレクトロン株式会社 洗浄装置及び洗浄方法
JPH11102884A (ja) * 1997-09-29 1999-04-13 Dainippon Screen Mfg Co Ltd 基板処理装置および周辺部材の洗浄方法
JPH11135469A (ja) * 1997-10-31 1999-05-21 Dainippon Screen Mfg Co Ltd 基板洗浄装置
JPH11283949A (ja) * 1998-03-31 1999-10-15 Tokyo Electron Ltd 基板洗浄装置および基板洗浄方法
JP2003332287A (ja) * 2002-05-17 2003-11-21 Dainippon Screen Mfg Co Ltd 基板洗浄方法及びその装置
JP2004259734A (ja) * 2003-02-24 2004-09-16 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2006012881A (ja) * 2004-06-22 2006-01-12 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2009026948A (ja) * 2007-07-19 2009-02-05 Dainippon Screen Mfg Co Ltd 基板処理装置および処理チャンバ内洗浄方法
WO2011074521A1 (ja) * 2009-12-18 2011-06-23 株式会社ジェイ・イー・ティ 基板処理装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934307A (zh) * 2014-03-17 2015-09-23 斯克林集团公司 基板处理方法以及基板处理装置
US9786522B2 (en) 2014-03-17 2017-10-10 SCREEN Holdings Co., Ltd. Substrate treatment method and substrate treatment apparatus
WO2021033427A1 (ja) * 2019-08-21 2021-02-25 株式会社Screenホールディングス 加熱部材の清浄方法および基板処理装置
TWI739503B (zh) * 2019-08-21 2021-09-11 日商斯庫林集團股份有限公司 加熱構件的清潔方法以及基板處理裝置
JP7372079B2 (ja) 2019-08-21 2023-10-31 株式会社Screenホールディングス 加熱部材の清浄方法および基板処理装置

Also Published As

Publication number Publication date
KR101925173B1 (ko) 2018-12-04
US20180247843A1 (en) 2018-08-30
CN104205305B (zh) 2017-03-08
US10573542B2 (en) 2020-02-25
KR20140138744A (ko) 2014-12-04
US9991141B2 (en) 2018-06-05
CN104205305A (zh) 2014-12-10
TW201603136A (zh) 2016-01-16
TWI490938B (zh) 2015-07-01
TWI584367B (zh) 2017-05-21
US20150047677A1 (en) 2015-02-19
TW201349330A (zh) 2013-12-01

Similar Documents

Publication Publication Date Title
WO2013140955A1 (ja) 基板処理装置およびヒータ洗浄方法
US9601357B2 (en) Substrate processing device and substrate processing method
JP5604371B2 (ja) 液処理装置および液処理方法
JP6094851B2 (ja) 基板処理方法および基板処理装置
JP5606992B2 (ja) 液処理装置および液処理方法
TW201620039A (zh) 晶圓狀物件之處理方法及設備
WO2018037982A1 (ja) 基板処理装置および基板処理方法
WO2013021883A1 (ja) 液処理装置
JP2015056448A (ja) 基板処理方法および基板処理装置
KR20160145495A (ko) 기판 처리 방법 및 기판 처리 장치
JP6028892B2 (ja) 基板処理装置
JP2013207272A (ja) 基板処理装置
JP5999625B2 (ja) 基板処理方法
JP2017041512A (ja) 基板処理方法および基板処理装置
KR20180109718A (ko) 기판 처리 방법 및 기판 처리 장치
JP5031654B2 (ja) 基板処理装置および基板処理方法
JP6008384B2 (ja) 基板処理装置
JP5963298B2 (ja) 基板処理装置およびヒータ洗浄方法
JP6593920B2 (ja) 基板処理方法および基板処理装置
JP5855721B2 (ja) 液処理装置および液処理方法
JP5852927B2 (ja) 基板処理方法
JP2013182958A (ja) 基板処理方法
JP2008034455A (ja) 基板処理装置および基板処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147026096

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14386685

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764850

Country of ref document: EP

Kind code of ref document: A1