JP6094851B2 - 基板処理方法および基板処理装置 - Google Patents

基板処理方法および基板処理装置 Download PDF

Info

Publication number
JP6094851B2
JP6094851B2 JP2012188009A JP2012188009A JP6094851B2 JP 6094851 B2 JP6094851 B2 JP 6094851B2 JP 2012188009 A JP2012188009 A JP 2012188009A JP 2012188009 A JP2012188009 A JP 2012188009A JP 6094851 B2 JP6094851 B2 JP 6094851B2
Authority
JP
Japan
Prior art keywords
liquid
wafer
substrate
organic solvent
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012188009A
Other languages
English (en)
Other versions
JP2014045150A (ja
Inventor
幸史 吉田
幸史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2012188009A priority Critical patent/JP6094851B2/ja
Priority to US13/961,923 priority patent/US20140060573A1/en
Publication of JP2014045150A publication Critical patent/JP2014045150A/ja
Application granted granted Critical
Publication of JP6094851B2 publication Critical patent/JP6094851B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02082Cleaning product to be cleaned
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Description

本発明は、硫酸を含む液を用いた処理を、半導体ウエハ等の基板に施すための基板処理方法および基板処理装置に関する。
半導体装置の製造工程には、たとえば、半導体ウエハ(以下、単に「ウエハ」という)の表面にリン、砒素、硼素などの不純物(イオン)を局所的に注入する工程が含まれる。この工程では、不要な部分に対するイオン注入を防止するため、ウエハの表面に感光性樹脂からなるレジストがパターン形成されて、イオン注入の不要な部分がレジストによってマスクされる。ウエハの表面上にパターン形成されたレジストは、イオン注入の後は不要になるから、イオン注入後には、その不要となったレジストを除去するためのレジスト除去処理が行われる。
このようなレジスト除去処理の代表的なものでは、ウエハの表面に酸素プラズマが照射されて、ウエハの表面上のレジストがアッシングされる。そして、ウエハの表面に硫酸と過酸化水素水の混合液である硫酸過酸化水素水混合液(sulfuric acid/hydrogen peroxide mixture:SPM液)などの薬液が供給されて、アッシングされたレジストが除去されることにより、ウエハの表面からのレジストの除去が達成される。
しかしながら、レジストのアッシングのための酸素プラズマの照射は、ウエハの表面のレジストで覆われていない部分(たとえば、レジストから露呈した酸化膜)にダメージを与えてしまう。
そのため、最近では、レジストのアッシングを行わずに、ウエハの表面にSPM液を供給して、このSPM液に含まれるペルオキソ一硫酸(HSO)の強酸化力により、ウエハの表面からレジストを除去して除去する手法が注目されつつある。
特開2005−32819号公報
ところが、高ドーズのイオン注入が行われたウエハでは、レジストが変質(硬化)していることがある。
SPM液に高いレジスト除去性能を発揮させる一つの手法として、ウエハの表面上のSPM液を高温(たとえば200℃以上)に昇温させるというものがある。このような手法であれば、表面に硬化層を有するレジストであっても、アッシングすることなく、ウエハの表面から除去することができる。
ウエハの表面との境界付近のSPM液を高温に保つためには、高温のSPM液をウエハに供給し続けることが考えられるが、このような方策では、SPM液の使用量が増えるおそれがある。
本願発明者らは、ウエハの表面の全域をSPM液の液膜で覆いつつ、ウエハの表面に、赤外線ランプを有するヒータを対向配置させ、SPM液の液膜に赤外線を照射することにより、当該SPM液を加熱することを検討している。このような方策を採用することにより、SPM液の消費量を低減しつつ硬化したレジストをウエハから除去することができる。そればかりか、レジストの除去効率を著しく高めることができる結果、レジスト除去処理の処理時間を短縮することも可能である。
しかしながら、SPM液の赤外線の吸収率はそれほど高くない。そのため、ヒータから放射された赤外線は、SPM液の液膜を透過してシリコンウエハに吸収される。つまり、SPM液よりも基板が先に温められ、その基板によってSPM液の液膜が昇温されている。すなわち、SPM液の液膜の加熱効率がそれほど良くないと考えられる。この場合、SPM液の液膜における赤外線の吸収率を高めることができれば、SPM液の液膜の加熱効率を高めて、当該SPM液の液膜を、より一層良好に温めることができる。
そこで、本発明の目的は、基板の表面の全域を硫酸を含む液の液膜で覆いつつ、硫酸を含む液を含む液膜を、より一層良好に温めることができる基板処理方法および基板処理装置を提供することである。
前記の目的を達成するための請求項1記載の発明は、基板(W)の表面からレジストを除去するための基板処理方法であって、基板保持手段(3)に保持されている基板の表面に、硫酸を含む液と、硫酸との反応により黒色炭化物を含む微粒子を生成する有機溶媒との混合液の液膜(90)を形成する混合液液膜形成工程(S3,S4;S13,S14;S23,S24;S43,S44;S63)と、前記混合液の前記液膜を保持している基板の表面に向けて、当該表面に対向配置されたヒータ(35)から赤外線を照射する赤外線照射工程(S5;S15;S25;S45;S64)とを含む、基板処理方法である。
なお、括弧内の英数字は、後述の実施形態における対応構成要素等を表すが、特許請求の範囲を実施形態に限定する趣旨ではない。以下、この項において同じ。
この発明の方法によれば、硫酸を含む液と硫酸を含む液と、硫酸との反応により黒色炭化物を含む微粒子を生成する有機溶媒との混合液の液膜が基板の表面に形成される。硫酸を含む液と有機溶媒との混合液中には、黒色炭化物を含む微粒子が析出し、そのため当該混合液全体が黒色化している。析出する黒色炭化物を含む微粒子の大部分が炭素により構成されている場合には、赤外線の吸収率が極めて高く、そのため、硫酸を含む液と有機溶媒との混合液の液膜は、その赤外線の吸収率が高く、加熱効率が高い。したがって、基板の表面に当該混合液の液膜を形成することにより、赤外線照射工程において、硫酸を含む液を含む当該混合液を、より一層良好に温めることができる。これにより、レジスト除去の処理効率をより一層高めることができ、その結果、レジスト除去処理全体の処理時間を短縮化することができる。
このような黒色炭化物を含む微粒子は、次のような生成メカニズムで析出されていると考えられる。すなわち、有機溶媒が硫酸を含む液中の硫酸と反応することにより、有機溶媒が脱水されてエーテルやエステルが等生成される。そして、生成されたエーテルやエステル等が、硫酸を含む液中の硫酸によってさらに炭化されることにより、黒色の炭化物が生成し析出する。
請求項2に記載のように、前記有機溶媒は、IPA液や、エタノール、アセトンなど、硫酸の脱水作用および/または酸化作用により炭化する性質を有していてもよい
請求項記載の発明は、前記混合液液膜形成工程は、前記基板保持手段に保持されている基板の表面に、前記有機溶媒の液膜(80)を形成する有機溶媒液膜形成工程(S3;S23;S43)と、前記有機溶媒液膜形成工程の実行後、前記有機溶媒の前記液膜を保持している基板の表面に、硫酸を含む液を供給する硫酸含有液混合液供給工程(S4;S24;S44)とを含む、請求項1または2に記載の基板処理方法である。
この発明の方法によれば、有機溶媒の液膜が形成されている基板の表面に、硫酸を含む液が供給される。
この場合、豊富な量の有機溶媒に対して硫酸を含む液を供給するので、豊富な量の硫酸を含む液に対して有機溶媒を供給する場合と比較して、硫酸を含む液と有機溶媒との混触に伴う反応を緩やかなものに抑制することができる。これにより、硫酸を含む液と有機溶媒との混触によって、激しい反応が生じるのを防止することができる。
請求項記載の発明は、前記混合液液膜形成工程は、前記基板保持手段に保持されている基板の表面に、硫酸を含む液の液膜(120)を形成する硫酸含有液液膜形成工程(S13)と、前記硫酸含有液液膜形成工程の実行後、前記硫酸を含む液の前記液膜を保持している基板の表面に、前記有機溶媒を供給する有機溶媒供給工程(S14)とを含む、請求項1または2に記載の基板処理方法である。
この発明の方法によれば、硫酸を含む液の液膜が形成されている基板の表面に、有機溶媒が供給される。この場合は、有機溶媒と比較して硫酸の量が多いので脱水反応を確実に進行させることが可能となる。
請求項記載の発明は、前記赤外線照射工程の実行後に実行され、前記基板保持手段に保持されている基板の表面を(洗浄用薬液を用いて)洗浄する洗浄工程(S7;S17;S28;S48;S66)を含む、請求項1〜のいずれか一項に記載の基板処理方法である。
赤外線照射工程の実行後には、硫酸を含む液と有機溶媒との混合液が基板の表面から除去されるが、当該混合液除去後の基板の表面に黒色炭化物を含む微粒子が残留していると、この微粒子がパーティクルとなって基板汚染の原因となるおそれがある。
この発明の方法によれば、赤外線照射工程の実行後に基板の表面が洗浄される。これにより、洗浄後の基板の表面には、黒色炭化物を含む微粒子は存在しない。その結果、パーティクルの発生を防止することができる。
請求項記載の発明は、基板(W)の表面からレジストを除去するための基板処理装置(1;101)であって、基板を保持する基板保持手段(3)と、前記基板保持手段に保持されている基板の表面に硫酸を含む液と、硫酸との反応により黒色炭化物を含む微粒子を生成する有機溶媒との混合液の液膜を形成するために、硫酸を含む液と前記有機溶媒との混合液を供給する混合液供給手段(4,5;110)と、赤外線ランプ(38)を有し、前記基板保持手段に保持されている基板の表面に対向配置されて、当該表面に向けて赤外線を照射するヒータ(35)とを含む、基板処理装置である。
この構成によれば、請求項1に関連して説明した作用効果と同様の作用効果を奏することができる。
また、請求項7に記載のように、前記有機溶媒は、硫酸の脱水作用および/または酸化作用により炭化する性質を有していてもよい。
請求項記載の発明は、前記混合液供給手段は、前記基板保持手段に保持されている基板の表面に硫酸を含む液を吐出する硫酸含有液ノズル(4)と、前記基板保持手段に保持されている基板の表面に前記有機溶媒を吐出する有機溶媒ノズル(5)とを含む、請求項6または7に記載の基板処理装置である。
この構成によれば、硫酸含有液ノズルから基板の表面に硫酸を含む液が吐出される。また、有機溶媒ノズルから基板の表面に有機溶媒が吐出される。これにより、基板の表面に、硫酸を含む液と有機溶媒との混合液の液膜を良好に形成することができる。
硫酸を含む液と有機溶媒との混触に伴い激しい反応が生じるおそれがあるが、硫酸を含む液と有機溶媒との混合が基板の表面で行われるので、その反応は、基板の表面で生じ、配管内等では生じることはない。そのため、基板処理装置に大きな損傷が生じるのを防止することができる。
請求項記載の発明は、前記有機溶媒ノズルは、前記有機溶媒の液滴を噴霧する噴霧ノズル(100)である、請求項に記載の基板処理装置である。
この構成によれば、有機溶媒ノズルから、有機溶媒の液滴が噴霧される。たとえば、基板の表面に硫酸を含む液の液膜が形成されている状態で、基板の表面に有機溶媒の液滴が噴霧されると、有機溶媒の液滴を広範囲かつ均一に、硫酸を含む液の液膜に供給することができる。また、有機溶媒の液滴が微小液滴であるので、硫酸を含む液と有機溶媒との混触のために生じる反応が激しくなることを抑制することができる。
請求項10記載の発明は、前記混合液供給手段は、前記基板保持手段に保持されている基板の表面に、硫酸を含む液と有機溶媒との混合液を吐出する混合液ノズル(110)を含む、請求項6または7に記載の基板処理装置である。
この構成によれば、硫酸を含む液と有機溶媒との混合液が、混合液ノズルから吐出される。そのため、基板の表面に、硫酸を含む液と有機溶媒との混合液の液膜を良好に形成することができる。
本発明の一実施形態に係る基板処理装置の構成を模式的に示す図である。 図1に示すヒータヘッドの図解的な断面図である。 図2に示す赤外線ランプの斜視図である。 図1に示すヒータアームおよびヒータヘッドの斜視図である。 図1に示すヒータヘッドの配置位置を示す平面図である。 図1に示す基板処理装置の電気的構成を示すブロック図である。 図1に示す基板処理装置で実行されるレジスト除去処理の第1処理例を示す工程図である。 第1処理例の主要な工程における制御装置による制御内容を説明するためのタイムチャートである。 第1処理例の一工程を説明するための図解的な図である。 図9Aの次の工程を示す図解的な図である。 図9Bの次の工程を示す図解的な図である。 図9Cの次の工程を示す図解的な図である。 黒色炭化物の生成メカニズムを示す図である。 図1に示す基板処理装置で実行される第2処理例を説明するための工程図である。 第2処理例の一工程を説明するための図解的な図である。 図12Aの次の工程を示す図解的な図である。 第2処理例の変形例を示す図解的な図である。 図1に示す基板処理装置で実行される第3処理例を説明するための工程図である。 図1に示す基板処理装置で実行される第4処理例を説明するための工程図である。 本発明の他の実施形態に係る基板処理装置の構成を模式的に示す図である。 図16に示す基板処理装置で実行される処理例を説明するための工程図である。
以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、本発明の一実施形態に係る基板処理方法が適用される基板処理装置1の構成を模式的に示す図である。基板処理装置1は、たとえば基板の一例としてのウエハWの表面(表面)に不純物を注入するイオン注入処理やドライエッチング処理の後に、そのウエハWの表面から不要になったレジストを除去するための処理に用いられる枚葉式の装置である。
基板処理装置1は、隔壁(図示しない)により区画された処理室2内に、ウエハWを保持して回転させるウエハ回転機構(基板保持手段)3と、ウエハ回転機構3に保持されているウエハWの表面(上面)に、硫酸を含む液の一例としての硫酸過酸化水素水混合液(sulfuric acid/hydrogen peroxide mixture:SPM液)を供給するためのSPM液ノズル(硫酸含有液ノズル)4と、ウエハ回転機構3に保持されているウエハWの表面(上面)に、有機溶媒の一例としてのイソプロピルアルコール(isopropyl alcohol:IPA液)を供給するための有機溶媒ノズル5と、ウエハ回転機構3に保持されているウエハWの表面に対向して配置され、ウエハWの表面に向けて赤外線を照射するヒータヘッド(ヒータ)35とを備えている。
ウエハ回転機構3として、たとえば挟持式のものが採用されている。具体的には、ウエハ回転機構3は、モータ6と、このモータ6の駆動軸と一体化されたスピン軸7と、スピン軸7の上端にほぼ水平に取り付けられた円板状のスピンベース8と、スピンベース8の周縁部の複数箇所にほぼ等角度間隔で設けられた複数個の挟持部材9とを備えている。そして、複数個の挟持部材9は、ウエハWをほぼ水平な姿勢で挟持する。この状態で、モータ6が駆動されると、その駆動力によってスピンベース8が所定の回転軸線(鉛直軸線)Cまわりに回転され、そのスピンベース8とともに、ウエハWがほぼ水平な姿勢を保った状態で回転軸線Cまわりに回転される。
なお、ウエハ回転機構3としては、挟持式のものに限らず、たとえば、ウエハWの裏面を真空吸着することにより、ウエハWを水平な姿勢で保持し、さらにその状態で回転軸線Cまわりに回転することにより、その保持したウエハWを回転させる真空吸着式のものが採用されてもよい。
SPM液ノズル4は、たとえば、連続流の状態でSPM液を吐出するストレートノズルである。SPM液ノズル4は、その吐出口を下方に向けた状態で、ほぼ水平に延びるSPM液アーム11の先端に取り付けられている。SPM液アーム11は、鉛直方向に延びる所定の揺動軸線まわりに旋回可能に設けられている。SPM液アーム11には、SPM液アーム11を所定角度範囲内で揺動させるためのSPM液アーム揺動機構12が結合されている。SPM液アーム11の揺動により、SPM液ノズル4は、ウエハWの回転軸線C上の位置(ウエハWの回転中心に対向する位置)と、ウエハ回転機構3の側方に設定されたホームポジションとの間で移動される。
SPM液ノズル4にSPM液を供給するためのSPM液供給機構13は、硫酸(HSO)と過酸化水素水(H)とを混合させるための第1混合部14と、第1混合部14とSPM液ノズル4との間に接続されたSPM液供給管15とを備えている。第1混合部14には、硫酸供給管16および過酸化水素水供給管17が接続されている。硫酸供給管16には、後述する硫酸供給部(図示しない)から、所定温度(たとえば約80℃)に温度調節された硫酸が供給される。一方、過酸化水素水供給管17には、過酸化水素水供給源(図示しない)から、温度調節されていない室温(約25℃)程度の過酸化水素水が供給される。硫酸供給管16の途中部には、硫酸バルブ18および流量調節バルブ19が介装されている。また、過酸化水素水供給管17の途中部には、過酸化水素水バルブ20および流量調節バルブ21が介装されている。SPM液供給管15の途中部には、攪拌流通管22およびSPM液バルブ23が第1混合部14側からこの順に介装されている。攪拌流通管22は、たとえば、管部材内に、それぞれ液体流通方向を軸にほぼ180度のねじれを加えた長方形板状体からなる複数の撹拌フィンを、液体流通方向に沿う管中心軸まわりの回転角度を90°ずつ交互に異ならせて配置した構成を有している。
SPM液バルブ23が開かれた状態で、硫酸バルブ18および過酸化水素水バルブ20が開かれると、硫酸供給管16からの硫酸および過酸化水素水供給管17からの過酸化水素水が第1混合部14に流入し、それらが第1混合部14からSPM液供給管15へと流出する。硫酸および過酸化水素水は、SPM液供給管15を流通する途中、攪拌流通管22を通過することにより十分に攪拌される。攪拌流通管22による攪拌によって、硫酸と過酸化水素水とが十分に反応し、多量のペルオキソ一硫酸(HSO)を含むSPM液が生成される。そして、SPM液は、硫酸と過酸化水素水との反応熱により、第1混合部14に供給される硫酸の液温以上の高温(130℃〜170℃。たとえば約140℃)に昇温する。その高温のSPM液がSPM液供給管15を通してSPM液ノズル4に供給される。
有機溶媒ノズル5は、たとえば、連続流の状態でIPA液を吐出するストレートノズルである。有機溶媒ノズル5は、その吐出口を下方に向けた状態で、ほぼ水平に延びる有機溶媒アーム70の先端に取り付けられている。有機溶媒アーム70は、鉛直方向に延びる所定の揺動軸線まわりに旋回可能に設けられている。有機溶媒アーム70には、有機溶媒アーム70を所定角度範囲内で揺動させるための有機溶媒アーム揺動機構71が結合されている。有機溶媒アーム70の揺動により、有機溶媒ノズル5は、ウエハWの回転軸線C上の位置(ウエハWの回転中心に対向する位置)と、ウエハ回転機構3の側方に設定されたホームポジションとの間で移動される。
有機溶媒ノズル5には、IPA液供給源からのIPA液が供給される有機溶媒供給管72が接続されている。有機溶媒供給管72の途中部には、有機溶媒ノズル5からのIPA液の供給/供給停止を切り換えるための有機溶媒バルブ73が介装されている。
また、基板処理装置1は、ウエハ回転機構3に保持されたウエハWの表面にリンス液としてのDIW(脱イオン水:deionzied water)を供給するためのリンス液ノズル24と、ウエハ回転機構3に保持されたウエハWの表面に対して洗浄用の薬液としてのSC1(ammonia-hydrogen peroxide mixture:アンモニア過酸化水素水混合液。洗浄用薬液)を供給するためのSC1ノズル25とを備えている。
リンス液ノズル24は、たとえば、連続流の状態でDIWを吐出するストレートノズルであり、ウエハ回転機構3の上方で、その吐出口をウエハWの回転中心付近に向けて固定的に配置されている。リンス液ノズル24には、DIW供給源からのDIWが供給されるリンス液供給管26が接続されている。リンス液供給管26の途中部には、リンス液ノズル24からのDIWの供給/供給停止を切り換えるためのリンス液バルブ27が介装されている。
SC1ノズル25は、たとえば、連続流の状態でSC1を吐出するストレートノズルである。SC1ノズル25は、その吐出口を下方に向けた状態で、ほぼ水平に延びるSC1アーム28の先端に取り付けられている。SC1アーム28は、鉛直方向に延びる所定の揺動軸線まわりに旋回可能に設けられている。SC1アーム28には、SC1アーム28を所定角度範囲内で揺動させるためのSC1アーム揺動機構29が結合されている。SC1アーム28の揺動により、SC1ノズル25は、ウエハWの回転軸線C上の位置(ウエハWの回転中心に対向する位置)と、ウエハ回転機構3の側方に設定されたホームポジションとの間で移動される。
SC1ノズル25には、SC1供給源からのSC1が供給されるSC1供給管30が接続されている。SC1供給管30の途中部には、SC1ノズル25からのSC1の供給/供給停止を切り換えるためのSC1バルブ31が介装されている。
ウエハ回転機構3の側方には、鉛直方向に延びる支持軸33が配置されている。支持軸33の上端には、水平方向に延びるヒータアーム34が結合されており、ヒータアーム34の先端に、ヒータヘッド35が取り付けられている。また、支持軸33には、支持軸33を、その中心軸線まわりに回動させるための揺動駆動機構36と、支持軸33を、その中心軸線に沿って上下動させるための昇降駆動機構37とが結合されている。
揺動駆動機構36から支持軸33に駆動力を入力して、支持軸33を所定の角度範囲内で回動させることにより、ウエハ回転機構3に保持されたウエハWの上方で、ヒータアーム34を、支持軸33を支点として揺動させる。ヒータアーム34の揺動により、ヒータヘッド35が、ウエハWの回転軸線C上を含む位置(ウエハWの回転中心に対向する位置)と、ウエハ回転機構3の側方に設定されたホームポジションとの間で移動される。また、昇降駆動機構37から支持軸33に駆動力を入力して、支持軸33を上下動させることにより、ウエハ回転機構3に保持されたウエハWの表面に近接する近接位置(後述するミドル近接位置や、エッジ近接位置、センター近接位置を含む趣旨である。図1に二点鎖線で示す位置)と、そのウエハWの上方に退避する退避位置(図1に実線で示す位置)との間で、ヒータヘッド35を昇降させる。
図2は、ヒータヘッド35の図解的な断面図である。
ヒータヘッド35は、赤外線ランプ38と、上部に開口部39を有し、赤外線ランプ38を収容する有底容器状のランプハウジング40と、ランプハウジング40の内部で赤外線ランプ38を吊下げ支持する支持部材42と、ランプハウジング40の開口部39を閉塞するための蓋41とを備えている。この実施形態では、蓋41がヒータアーム34の先端に固定されている。
図3は、赤外線ランプ38の斜視図である。
図2および図3に示すように、赤外線ランプ38は、円環状の(円弧状の)円環部43と、円環部43の両端から、円環部43の中心軸線に沿うように鉛直上方に延びる一対の直線部44,45とを有する1本の赤外線ランプヒータであり、主として、円環部43が赤外線を放射する発光部として機能する。この実施形態では、円環部43の直径(外径)は、たとえば約60mmに設定されている。赤外線ランプ38が支持部材42に支持された状態で、円環部43の中心軸線は、鉛直方向に延びている。換言すると、円環部43の中心軸線は、ウエハ回転機構3に保持されたウエハWの表面に垂直な軸線である。また、赤外線ランプ38はほぼ水平面内に配置される。
赤外線ランプ38は、フィラメントを石英配管内に収容して構成されている。赤外線ランプ38として、ハロゲンランプやカーボンヒータに代表される短・中・長波長の赤外線ヒータを採用することができる。赤外線ランプ38には、電圧供給のためのアンプ54が接続されている。
図4は、ヒータアーム34およびヒータヘッド35の斜視図である。
図2および図4に示すように、蓋41は円板状をなし、ヒータアーム34の長手方向に沿う姿勢で固定されている。蓋41は、PTFE(ポリテトラフルオロエチレン)などのフッ素樹脂材料を用いて形成されている。この実施形態では、蓋41はヒータアーム34と一体に形成されている。しかしながら、蓋41をヒータアーム34と別に形成してもよい。また、蓋41の材料として、PTFE等の樹脂材料以外にも、セラミックスや石英などの材料を採用できる。
図2に示すように、蓋41の下面49には、(略円筒状の)溝部51が形成されている。溝部51は水平平坦面からなる上底面50を有し、上底面50に支持部材42の上面42Aが接触固定されている。図2および図4に示すように、蓋41には、上底面50および下面42Bを鉛直方向に貫通する挿通孔58,59が形成されている。各挿通孔58,59は、赤外線ランプ38の直線部44,45の各上端部が挿通するためのものである。なお、図4では、赤外線ランプ38をヒータヘッド35から取り除いた状態を示している。
図2に示すように、ヒータヘッド35のランプハウジング40は有底円筒容器状をなしている。ランプハウジング40は石英を用いて形成されている。
ヒータヘッド35では、ランプハウジング40は、その開口部39を上方に向けた状態で、蓋41の下面49(この実施形態では、溝部51を除く下面)に固定されている。ランプハウジング40の開口側の周端縁からは、円環状のフランジ40Aが径方向外方に向けて(水平方向に)突出している。ボルト等の固定手段(図示しない)を用いて、フランジ40Aが蓋41の下面49に固定されることにより、ランプハウジング40が蓋41に支持されている。
ランプハウジング40の底板部52は、水平姿勢の円板状をなしている。底板部52の上面52Aおよび下面52Bは、それぞれ水平平坦面をなしている。ランプハウジング40内において、赤外線ランプ38は、その円環部43の下部が底板部52の上面52Aに近接して対向配置されている。また、円環部43と底板部52とは互いに平行に設けられている。また、見方を変えると、円環部43の下方は、ランプハウジング40の底板部52によって覆われている。なお、この実施形態では、ランプハウジング40の外径は、たとえば約85mmに設定されている。また、赤外線ランプ38(円環部43の下部)の下端縁と上面52Aとの間の上下方向の間隔はたとえば約2mmに設定されている。
支持部材42は厚肉の略円板状をなしており、ボルト56等によって、蓋41にその下方から、水平姿勢で取付け固定されている。支持部材42は、耐熱性を有する材料(たとえばセラミックスや石英)を用いて形成されている。支持部材42は、その上面42Aおよび下面42Bを、鉛直方向に貫通する挿通孔46,47を2つ有している。各挿通孔46,47は、赤外線ランプ38の直線部44,45が挿通するためのものである。
各直線部44,45の途中部には、Oリング48が外嵌固定されている。直線部44,45を挿通孔46,47に挿通させた状態では、各Oリング48の外周が挿通孔46,47の内壁に圧接し、これにより、直線部44,45の各挿通孔46,47に対する抜止めが達成され、赤外線ランプ38が支持部材42によって吊り下げ支持される。
アンプ54から赤外線ランプ38に電圧が供給されると、赤外線ランプ38が赤外線を放射し、赤外線が、ランプハウジング40を介して、ヒータヘッド35の下方に向けて出射される。後述するレジスト除去処理の際に、ヒータヘッド35の下端面を構成するランプハウジング40の底板部52が、ウエハ回転機構3に保持されているウエハWの表面に対向して配置された状態では、ランプハウジング40の底板部52を介して出射された赤外線が、ウエハWおよびウエハW上のSPM液を加熱する。また、赤外線ランプ38の円環部43が水平姿勢であるので、同じく水平姿勢にあるウエハWの表面に対し均一に赤外線を照射することができ、これにより、赤外線を、ウエハW、およびウエハW上のSPM液に、効率良く照射することができる。
ヒータヘッド35では、赤外線ランプ38の周囲がランプハウジング40によって覆われている。また、ランプハウジング40のフランジ40Aと蓋41の下面49とは、ランプハウジング40の全周にわたって密着している。さらに、ランプハウジング40の開口部39が蓋41によって閉塞されている。これらにより、後述するレジスト除去処理の際、ウエハWの表面付近のSPM液の液滴を含む雰囲気が、ランプハウジング40内に進入して、赤外線ランプ38に悪影響を及ぼすのを防止することができる。また、赤外線ランプ38の石英管の管壁にSPM液の液滴が付着するのを防止することができるので、赤外線ランプ38から放射される赤外線の光量を長期にわたって安定的に保つことができる。
また、蓋41内には、ランプハウジング40の内部にエアを供給するための給気経路60と、ランプハウジング40の内部の雰囲気を排気するための排気経路61とが形成されている。給気経路60および排気経路61は、蓋41の下面に開口する給気ポート62および排気ポート63を有している。給気経路60には、給気配管64の一端が接続されている。給気配管64の他端は、エアの給気源に接続されている。排気経路61には、排気配管65の一端が接続されている。排気配管65の他端は、排気源に接続されている。
給気配管64および給気経路60を通して、給気ポート62からランプハウジング40内にエアを供給しつつ、ランプハウジング40内の雰囲気を、排気ポート63および排気経路61を通して排気配管65へ排気することにより、ランプハウジング40内の高温雰囲気を換気することができる。これにより、ランプハウジング40の内部を冷却することができ、その結果、赤外線ランプ38やランプハウジング40、とくに支持部材42を良好に冷却することができる。
なお、図4に示すように、給気配管64および排気配管65(図4では図示していない。図2参照)は、ヒータアーム34の一方の側面に配設された板状の給気配管ホルダ66、およびヒータアーム34の他方の側面に配設された板状の排気配管ホルダ67に、それぞれ支持されている。
図5は、ヒータヘッド35の配置位置を示す平面図である。
揺動駆動機構36および昇降駆動機構37が制御されることにより、ヒータヘッド35が、ウエハWの表面上を、ウエハWの回転方向と交差する円弧状の軌跡を描くように移動可能に設けられている。
ヒータヘッド35の赤外線ランプ38により、ウエハWおよびウエハW上のSPM液を加熱する場合、ヒータヘッド35は、その下端面を構成する底板部52がウエハWの表面と微小間隔(たとえば3mm)を隔てて対向する近接位置に配置される。そして、その加熱中は、底板部52(下面52B)とウエハWの表面との間が、その微小間隔に保たれる。
ヒータヘッド35の近接位置として、ミドル近接位置(図5に実線で示す位置)やエッジ近接位置(図5に二点鎖線で示す位置)、センター近接位置(図5に一点鎖線で示す位置)を例示することができる。
ミドル近接位置は、ウエハWの表面における半径方向の中央位置(回転中心(回転軸線C上)と周縁部との間の中央位置)に、平面視円形状のヒータヘッド35の中心が対向するとともに、ヒータヘッド35の底板部52とウエハWの表面との間が微小間隔(たとえば3mm)になるヒータヘッド35の位置である。
エッジ近接位置は、ウエハWの表面における周縁部に、平面視円形状のヒータヘッド35の中心が対向するとともに、ヒータヘッド35の底板部52とウエハWの表面との間が微小間隔(たとえば3mm)になるヒータヘッド35の位置である。
センター近接位置は、ウエハWの表面における回転中心(回転軸線C上)に、平面視円形状のヒータヘッド35の中心が対向するとともに、ヒータヘッド35の底板部52とウエハWの表面との間が微小間隔(たとえば3mm)になるヒータヘッド35の位置である。
図6は、基板処理装置1の電気的構成を示すブロック図である。基板処理装置1は、さらに、マイクロコンピュータを含む構成の制御装置55を備えている。制御装置55には、モータ6、アンプ54、揺動駆動機構36、昇降駆動機構37、SPM液アーム揺動機構12、SC1アーム揺動機構29、有機溶媒アーム揺動機構71、硫酸バルブ18、過酸化水素水バルブ20、SPM液バルブ23、リンス液バルブ27、SC1バルブ31、有機溶媒バルブ73、流量調節バルブ19,21等が制御対象として接続されている。
図7は、基板処理装置1で実行されるレジスト除去処理の第1処理例を示す工程図である。図8は、主として、次に述べるステップS3のIPA液膜形成工程、ステップS4のSPM液供給工程およびステップS5の赤外線照射工程における制御装置55による制御内容を説明するためのタイムチャートである。図9A〜図9Dは、IPA液膜形成工程、SPM液供給工程および赤外線照射工程を説明するための図解的な図である。
以下、図1〜図9Dを参照しつつ、レジスト除去処理の第1処理例について説明する。
レジスト除去処理に際しては、搬送ロボット(図示しない)が制御されて、処理室2(図1参照)内にイオン注入処理後のウエハWが搬入される(ステップS1:ウエハ搬入)。ウエハWは、レジストをアッシングするための処理を受けていないものとする。ウエハWは、その表面を上方に向けた状態でウエハ回転機構3に受け渡される。このとき、ウエハWの搬入の妨げにならないように、ヒータヘッド35、SPM液ノズル4、有機溶媒ノズル5およびSC1ノズル25は、それぞれホームポジションに配置されている。
ウエハ回転機構3にウエハWが保持されると、制御装置55はモータ6を制御して、ウエハWを回転開始させる(ステップS2)。ウエハWは予め定める液盛り回転速度まで上昇され、その液盛り回転速度に維持される。液盛り回転速度は、ウエハWの表面全域をIPA液やSPM液でカバレッジ可能な速度であり、たとえば30〜300rpmの範囲に設定されている。この第1処理例では、たとえば60rpmに設定されている。また、制御装置55は、有機溶媒アーム揺動機構71を制御して、有機溶媒ノズル5をウエハWの上方位置に移動させ、図9Aに示すように、有機溶媒ノズル5をウエハWの回転中心(回転軸線C)上に配置させる。
また、制御装置55は、有機溶媒バルブ73を開いて、有機溶媒ノズル5からIPA液をウエハWの表面に向けて吐出する。このときのIPA液の吐出流量はたとえば0.6(リットル/分)である。
ウエハWの回転速度が低速であるので、ウエハWの表面に供給されるIPA液は、ウエハWの表面上に溜められていき、また、ウエハWの表面の全域に行き渡る。これにより、ウエハWの表面上に、その表面の全域を覆うIPA液の液膜80(有機溶媒の液膜)が形成される(ステップS3:IPA液膜形成工程(有機溶媒液膜形成工程))。
IPA液の吐出開始から予め定めるIPA液吐出時間が経過すると、制御装置55は、有機溶媒バルブ73を閉じて、有機溶媒ノズル5からのIPA液の吐出を停止するとともに、有機溶媒アーム揺動機構71を制御して、IPA液の吐出停止後の有機溶媒ノズル5を、そのホームポジションに戻す。IPA液吐出時間は、ウエハWの表面の全域を覆うIPA液の液膜80が形成されるまでに要する期間であれば足り、IPA液の吐出流量や液盛り回転速度によって異なるが、3〜10秒間の範囲で、たとえば5秒間である。
次いで、制御装置55は、SPM液アーム揺動機構12を制御して、SPM液ノズル4をウエハWの上方位置に移動させ、図9Bに示すように、SPM液ノズル4をウエハWの回転中心(回転軸線C)上に配置させる。
また、図9Bに示すように、制御装置55は、硫酸バルブ18、過酸化水素水バルブ20およびSPM液バルブ23を開いて、SPM液ノズル4からSPM液を吐出する。このときのSPM液の吐出流量はたとえば0.6(リットル/分)である(ステップS4:SPM液供給工程(硫酸含有液供給工程))。また、ステップS4のIPA液供給工程に並行して、ヒータヘッド35が、ウエハ回転機構3の側方に設定されたホームポジションから、ミドル近接位置(図5に実線で示す位置)の上方に移動される。
SPM液ノズル4からのSPM液の吐出により、IPA液の液膜80が形成されているウエハWの表面に、SPM液が供給される。すなわち、多量のIPA液で構成される液膜80に、比較的小流量のSPM液が供給される。これにより、図9Cに示すように、ウエハWの表面に、黒色の微粒子95を含む、SPM液とIPA液との混合液(以下、SPM/IPA混合液という)の液膜90が形成される。SPM/IPA混合液の液膜90では、SPM液中の硫酸の脱水反応が進行し、黒色の微粒子95が多量に析出し、そのため液膜90全体が黒色化している。析出する黒色炭化物の微粒子95は、その大部分が炭素により構成されている。なお、液膜90におけるSPM液とIPA液との混合比は、たとえば10:1程度である。
図10は、黒色炭化物の生成メカニズムを示す図である。このような黒色炭化物の析出は、次のような生成メカニズムで生じていると考えられる。すなわち、IPA液がSPM液中の硫酸と反応することによりIPA液が脱水されて、エーテルやエステル等が生じる。図10(a)には、SPM液が低温(130〜140℃程度)である場合を示し、図10(b)には、SPM液が高温(160〜170℃程度)である場合を示す。そして、これら生成物であるエーテルやエステル等が、それぞれSPM液中の硫酸によってさらに炭化されることにより、炭素を中心とした黒色の微粒子95が生成されて、析出するようになる。
SPM液の吐出開始から予め定めるSPM液吐出時間が経過すると、制御装置55は、硫酸バルブ18、過酸化水素水バルブ20およびSPM液バルブ23を閉じて、SPM液ノズル4からのSPM液の吐出を停止するとともに、SPM液アーム揺動機構12を制御して、SPM液の吐出停止後のSPM液ノズル4をホームポジションに戻す。SPM液供給時間は、ウエハWの表面の全域を覆うSPM/IPA混合液の液膜90が形成されるとともに、ウエハWの表面からIPA液が完全に排除されないような期間であり、SPM液ノズル4からのSPM液の吐出流量や液盛り回転速度によって異なるが、3〜10秒間の範囲で、たとえば5秒間である。
また、制御装置55はアンプ54を制御して、ヒータヘッド35の赤外線ランプ38から赤外線を放射するとともに、昇降駆動機構37を制御して、ヒータヘッド35をミドル近接位置(図5に実線で示す位置)の上方位置から下降させ、ミドル近接位置に配置させる。これにより、SPM/IPA混合液の液膜90を保持しているウエハWの表面に向けて、ウエハWの表面に近接して対向配置されているヒータヘッド35からの赤外線が照射される(S5:赤外線照射工程)。
また、図9Dに示すように、制御装置55は、モータ6を制御して、ウエハWの回転速度を、液膜保持回転速度まで下げる。液膜保持回転速度は、ウエハWの表面への新たな液(SPM液)の供給がなくても、ウエハWの表面上にSPM/IPA混合液の液膜90を保持可能な速度(1〜30rpmの範囲で、たとえば15rpm)である。ステップS5の赤外線照射工程ではウエハWの表面へのSPM液の新たな供給がないが、ウエハWの回転速度が極めて遅いために、ウエハW上のSPM/IPA混合液にほとんど遠心力が作用しない。そのため、ウエハWの表面上に、SPM/IPA混合液の液膜が保持され続ける。
図9Dに示すように、ステップS5の赤外線照射工程では、赤外線ランプ38による赤外線の照射により、ウエハWのヒータヘッド35の下面52Bに対向する部分に存在するSPM/IPA混合液の液膜90が加熱される。赤外線照射工程は、所定の赤外線照射時間(2〜90秒間の範囲で、たとえば約15秒間)の間実行される。
ステップS5の赤外線照射工程では、赤外線ランプ38による赤外線の照射により、SPM/IPA混合液の液膜90とウエハWとが温められる。赤外線照射工程の間に、ウエハWの表面上のレジストと、液膜90に含まれるSPM液との反応が進み、ウエハWの表面からのレジストの除去が進行する。
赤外線照射工程中は、図9Dに矢印で示すように、制御装置55は、揺動駆動機構36を制御してヒータヘッド35を、ミドル近接位置(図5に実線で示す位置)とセンター近接位置(図5に一点鎖線で示す位置)との間で往復移動させる。これにより、ウエハWの中心部(半径方向の中央部よりも内側の領域)を除く領域にあるSPM/IPA混合液の液膜90の全域にヒータヘッド35からの赤外線が照射される。
予め定める赤外線照射時間が経過すると、制御装置55はアンプ54を制御して、赤外線ランプ38からの赤外線の放射を停止させる。また、制御装置55は、揺動駆動機構36および昇降駆動機構37を制御して、ヒータヘッド35をホームポジションに戻す。そして、制御装置55は、モータ6を制御して、ウエハWの回転速度を所定の液処理回転速度(300〜1500rpmの範囲で、たとえば1000rpm)に上げるとともに、リンス液バルブ27を開いて、リンス液ノズル24の吐出口からウエハWの回転中心付近に向けてDIWを供給する(ステップS6:中間リンス工程)。ウエハWの表面に供給されたDIWは、ウエハWの回転による遠心力を受けて、ウエハWの表面上をウエハWの周縁に向けて流れる。これにより、ウエハWの表面に付着しているSPM液がDIWによって洗い流される。
DIWの供給が所定の中間リンス時間にわたって続けられると、リンス液バルブ27が閉じられて、ウエハWの表面へのDIWの供給が停止される。
ウエハWの回転速度を液処理回転速度に維持しつつ、制御装置55は、SC1バルブ31を開いて、SC1ノズル25からSC1をウエハWの表面に供給する(ステップS7:SC1供給工程)。また、制御装置55は、SC1アーム揺動機構29を制御して、SC1アーム28を所定角度範囲内で揺動させて、SC1ノズル25を、ウエハWの回転中心上と周縁部上との間で往復移動させる。これによって、SC1ノズル25からのSC1が導かれるウエハWの表面上の供給位置は、ウエハWの回転中心からウエハWの周縁部に至る範囲内を、ウエハWの回転方向と交差する円弧状の軌跡を描きつつ往復移動する。これにより、ウエハWの表面の全域に、SC1がむらなく供給され、SC1の化学的能力により、ウエハWの表面に付着しているレジスト残渣およびパーティクルなどの異物を除去することができる。
とくに、ステップS6の中間リンス工程の実行後には、ウエハWの表面に黒色炭化物の微粒子95が付着していることが考えられる。ウエハWの表面を洗浄することなくウエハWを乾燥させたのでは、この黒色炭化物の微粒子がパーティクルとなって、ウエハWの汚染の原因となるおそれがある。しかしながら、この処理例1では、ステップS7のSC1供給工程においてSC1の化学的能力によって、ウエハWの表面に付着している黒色炭化物の微粒子95は除去される。
SC1の供給が所定のSC1供給時間にわたって続けられると、制御装置55は、SC1バルブ31を閉じるとともに、SC1アーム揺動機構29を制御して、SC1ノズル25をホームポジションに戻す。また、ウエハWの回転速度が液処理回転速度に維持された状態で、制御装置55は、リンス液バルブ27を開いて、リンス液ノズル24の吐出口からウエハWの回転中心付近に向けてDIWを供給する(ステップS8:最終リンス工程)。ウエハWの表面に供給されたDIWは、ウエハWの回転による遠心力を受けて、ウエハWの表面上をウエハWの周縁に向けて流れる。これにより、ウエハWの表面に付着しているSC1がDIWによって洗い流される。
DIWの供給が所定のリンス時間にわたって続けられると、リンス液バルブ27が閉じられて、ウエハWの表面へのDIWの供給が停止される。
その後、制御装置55は、モータ6を駆動して、ウエハWの回転速度を所定の高回転速度(たとえば1500〜2500rpm)に上げて、ウエハWに付着しているDIWを振り切って乾燥されるスピンドライ処理が行われる(ステップS9)。ステップS9のスピンドライ処理によって、ウエハWに付着しているDIWが除去される。なお、ステップS6の中間リンス工程やステップS8の最終リンス工程において、リンス液として、DIWに限らず、炭酸水、電解イオン水、オゾン水、還元水(水素水)、磁気水などを採用することもできる。
スピンドライ処理が予め定めるスピンドライ処理時間にわたって行われると、制御装置55は、モータ6を駆動して、ウエハ回転機構3の回転を停止させる。これにより、1枚のウエハWに対するレジスト除去処理が終了し、搬送ロボットによって、処理済みのウエハWが処理室2から搬出される(ステップS10)。
以上によりこの実施形態によれば、SPM/IPA混合液の液膜90がウエハWの表面に形成される。SPM/IPA混合液の液膜90では、黒色の炭化物の微粒子95が析出し、そのため液膜90全体が黒色化している。析出する炭化物の微粒子95は、その大部分が炭素により構成されているから、赤外線の吸収率が極めて高い。そのため、SPM/IPA混合液の液膜90は、その赤外線の吸収率が高く、加熱効率が高い。したがって、ウエハWの表面にSPM/IPA混合液の液膜90を形成することにより、ステップS5の赤外線照射工程において、SPM液を含むSPM/IPA混合液を、より一層良好に温めることができる。これにより、レジスト除去の処理効率をより一層高めることができ、その結果、レジスト除去処理全体の処理時間を短縮化することができる。
この場合、豊富な量のIPA液に対してSPM液を供給するので、豊富な量のSPM液にIPA液を供給する場合と比較して、SPM液とIPA液との混触に伴う反応を緩やかなものに抑制することができる。これにより、SPM液とIPA液との混触によって、激しい反応が生じるのを防止することができる。
また、万が一、SPM液とIPA液との混触に伴い激しい反応が生じたとしても、SPM液とIPA液とがウエハWの表面で混合されるから、その反応はウエハWの表面で生じ、配管内等で生じることはない。そのため、基板処理装置1に大きな損傷が生じるのを防止することができる。
以上により、SPM液の消費量を低減しつつ、ウエハWの表面からレジストを良好に除去することができる。
また、ステップS5の赤外線照射工程の後、ウエハWの表面がSC1によって洗浄される。これにより、ウエハWの表面から、黒色の炭化物の微粒子を完全に除去することができ、その結果、ウエハWの乾燥後においてパーティクルの発生を防止することができる。
図11は、本発明に係るレジスト除去処理の第2処理例を説明するための工程図である。
図12Aおよび図12Bは、次に述べるステップS13のSPM液膜形成工程およびステップS14のIPA液供給工程を説明するための図解的な図である。
レジスト除去処理の第2処理例が、図7に示す第1処理例と相違する点は、ステップS3のIPA液膜形成工程およびステップS4のSPM液供給工程に代えて、ステップS13のSPM液膜形成工程(硫酸含有液液膜形成工程)およびステップS14のIPA液供給工程(有機溶媒供給工程)を設けた点である。
以下、図1、図6、図7、図12Aおよび図12Bを参照しつつ、レジスト除去処理の第2処理例について説明する。
レジスト除去処理の第2処理例では、アッシングするための処理を受けていないウエハWが搬入された後(ステップS11)、ウエハWが回転開始される(ステップS12)。図12Aに示すように、ウエハWの回転速度が予め定める液盛り回転速度(たとえば60rpm)まで上昇される。また、SPM液アーム揺動機構12が制御されて、SPM液ノズル4がウエハWの回転中心(回転軸線C)上に配置される。
そして、図12Aに示すように、制御装置55は、硫酸バルブ18、過酸化水素水バルブ20およびSPM液バルブ23を開いて、SPM液ノズル4からSPM液をウエハWの表面に向けて吐出する(吐出流量はたとえば0.6(リットル/分))。これにより、ウエハWの表面上に、その表面の全域を覆うSPM液の液膜120が形成される(ステップS13:SPM液膜形成工程)。SPM液の吐出開始から予め定めるSPM液吐出時間(3〜10秒間の範囲で、たとえば5秒間)が経過すると、SPM液の吐出が停止される。また、SPM液アーム揺動機構12が制御されて、SPM液の吐出停止後のSPM液ノズル4が、そのホームポジションに戻される。
次いで、制御装置55は、有機溶媒アーム揺動機構71を制御して、有機溶媒ノズル5をウエハWの上方位置に移動させ、有機溶媒ノズル5をウエハWの回転中心(回転軸線C)上に配置させる。
また、制御装置55は、有機溶媒バルブ73を開いて、有機溶媒ノズル5からIPA液を吐出する(ステップS14:IPA液供給工程。吐出流量はたとえば0.6(リットル/分))。IPA液吐出時間は、3〜10秒間の範囲で、たとえば5秒間)。また、ステップS14のIPA液供給工程に並行して、ヒータヘッド35が、ウエハ回転機構3の側方に設定されたホームポジションから、ミドル近接位置(図5に実線で示す位置)の上方に移動される。
有機溶媒ノズル5からのIPA液の吐出により、SPM液の液膜120が形成されているウエハWの表面に、IPA液が供給される。これにより、ウエハWの表面に、黒色炭化物の微粒子95を含む、SPM/IPA混合液の液膜が形成される。SPM/IPA混合液中には、黒色炭化物の微粒子95(図9C等参照)が多量に析出している。SPM液の吐出停止後、SPM液アーム揺動機構12が制御されて、SPM液ノズル4がホームポジションに戻される。
SPM液の吐出停止後、赤外線ランプ38から赤外線が放射されるとともに、ヒータヘッド35がミドル近接位置(図5に実線で示す位置)に配置される(S15:赤外線照射工程)。ステップS15の赤外線照射工程では、赤外線ランプ38による赤外線の照射により、ウエハWのヒータヘッド35の下面52Bに対向する部分に存在するSPM/IPA混合液の液膜が加熱される。予め定める赤外線照射時間が経過すると、赤外線ランプ38からの赤外線の放射が停止される。また、ヒータヘッド35がホームポジションに戻される。
次いで、リンス液ノズル24からウエハWにDIWが供給される(ステップS16:中間リンス工程)。DIWの供給が所定の中間リンス時間にわたって続けられると、DIWの供給が停止される。
次いで、SC1ノズル25からウエハWにSC1が吐出される(ステップS17:SC1供給工程)。また、SC1アーム揺動機構29が制御されて、SC1アーム28が所定角度範囲内で揺動させられる。これにより、SC1ノズル25が、ウエハWの回転中心上と周縁部上との間で往復移動される。SC1の供給が所定のSC1供給時間にわたって続けられると、SC1の供給が停止される。また、SC1ノズル25がホームポジションに戻される。
次いで、リンス液ノズル24からウエハWにDIWが供給される(ステップS18:最終リンス工程)。DIWの供給が所定のリンス時間にわたって続けられると、DIWの供給が停止される。
その後、ウエハWの回転速度を所定の高回転速度に加速されて、ウエハWに付着しているDIWを振り切って乾燥されるスピンドライ処理が行われる(ステップS19)。スピンドライ処理の終了後は、ウエハ回転機構3の回転が停止され、処理済みのウエハWが、搬送ロボットによって処理室2から搬出される(ステップS20)。
これらステップS11,S12,S15,S16,S17,S18,S19,S20の各処理は、それぞれ、図7のステップS1,S2,S5,S6,S7,S8,S9,S10の各処理と同様の処理である。
図13は、第2処理例の変形例を示す図解的な図である。
図13では、ストレートノズルからなる有機溶媒ノズル5(図1参照)に代えて、IPA液の液滴を噴霧するスプレーノズルからなる有機溶媒ノズル100が設けられている。この場合、有機溶媒ノズル100から、IPA液の液滴が噴霧される。たとえば、ウエハWの表面にSPM液の液膜120が形成されている状態で、ウエハWの表面にIPA液の液滴が噴霧される。これにより、SPM液の液膜120に広範囲かつ均一にIPA液の液滴を供給することができる。また、IPA液の液滴が微小液滴であるので、SPM液とIPA液との混触のために生じる反応が、激しくなることを抑制することができる。
図14は、本発明に係るレジスト除去処理の第3処理例を説明するための工程図である。
レジスト除去処理の第3処理例が、図7に示す第1処理例と相違する点は、次に述べるステップS25の赤外線照射工程の後に、過酸化水素水供給工程(ステップS46)を追加で設けた点である。ステップS46の過酸化水素水供給工程では、ウエハWの回転速度が予め定める液処理回転速度(たとえば1000rpm)まで上昇されるとともに、SPM液ノズル4がウエハWの回転中心(回転軸線C)上に配置させられる。そして、硫酸バルブ18、過酸化水素水バルブ20およびSPM液バルブ23が開かれて、SPM液ノズル4からSPM液が吐出され、このSPM液がウエハWの表面に供給される。ウエハWの表面に黒色炭化物の微粒子95(図9C等参照)が付着している場合には、その微粒子95はSPM液によって洗い流される。
なお、図14においてステップS21,S22,S23,S24,S25,S27,S28,S29,S30,S31の各処理は、それぞれ、図7のステップS1,S2,S3,S4,S5,S6,S7,S8,S9,S10の各処理と同様の処理である。
図15は、本発明に係るレジスト除去処理の第4処理例を説明するための工程図である。
レジスト除去処理の第4処理例が、図7に示す第1処理例と相違する点は、次に述べるステップS45の赤外線照射工程の後に、過酸化水素水供給工程(ステップS26)を追加で設けた点である。ステップS46の過酸化水素水供給工程では、ウエハWの回転速度が予め定める液処理回転速度(たとえば1000rpm)まで上昇されるとともに、SPM液ノズル4がウエハWの回転中心(回転軸線C)上に配置させられる。そして、硫酸バルブ18およびSPM液バルブ23が閉じられた状態で、過酸化水素水バルブ20のみが開かれて、SPM液ノズル4から過酸化水素水が吐出され、この過酸化水素水がウエハWの表面に供給される。ウエハWの表面に黒色炭化物の微粒子95(図9C等参照)が付着している場合には、その微粒子95は過酸化水素水によって洗い流される。
なお、図15においてステップS41,S42,S43,S44,S45,S47,S48,S49,S50,S51の各処理は、それぞれ、図7のステップS1,S2,S3,S4,S5,S6,S7,S8,S9,S10の各処理と同様の処理である。
図16は、本発明の他の実施形態に係る基板処理装置101の構成を模式的に示す図である。図17は、基板処理装置101で実行される処理例を説明するための工程図である。
図16および図17の実施形態において、基板処理装置101が図1等に示す基板処理装置1と相違する点は、SPM液ノズル4に代えて、SPM/IPA混合液ノズル110を設けた点である。図16および図17の実施形態において、図1〜図15に示す構成と同等の構成については同一の参照符号を付し、説明を省略する。
SPM液アーム11の先端には、SPM液ノズル4に代えて、SPM/IPA混合液ノズル110が、その吐出口を下方に向けた状態で取り付けられている。SPM/IPA混合液ノズル110は、たとえば、連続流の状態でSPM/IPA混合液を吐出するストレートノズルである。SPM/IPA混合液ノズル110には、SPM/IPA混合液供給機構113からのSPM/IPA混合液が供給されるようになっている。
SPM/IPA混合液ノズル110にSPM液を供給するためのSPM液供給機構113は、第2混合部112と、第2混合部112とSPM/IPA混合液ノズル110との間に接続されたSPM/IPA混合液供給管115とを備えている。第2混合部112には、SPM液供給機構13のSPM液供給管15および有機溶媒供給管116が接続されている。有機溶媒供給管116の途中部には、有機溶媒供給管116の開閉を切り換えるための有機溶媒バルブ117が介装されている。SPM/IPA混合液供給管115には、SPM/IPA混合液供給管115の開閉を切り換えるためのSPM/IPA混合液バルブ111が介装されている。
有機溶媒供給管116を介して、有機溶媒供給源からのIPA液が第2混合部112に供給されるようになっている。SPM/IPA混合液バルブ111および有機溶媒バルブ117は、制御装置55(図6参照)に、制御対象として接続されている。なお、SPM液供給管15を介して第2混合部112に供給されるSPM液と、有機溶媒供給管116を介して第2混合部112に供給されるIPA液との流量比(重量)は10:1程度である。
SPM/IPA混合液バルブ111が開かれた状態で、硫酸バルブ18、過酸化水素水バルブ20および有機溶媒バルブ117が開かれると、SPM液供給管15からのSPM液および有機溶媒供給管116が第2混合部112に流入し、SPM液とIPA液とが第2混合部112で混合されて、SPM/IPA混合液が生成される。SPM/IPA混合液中には、黒色炭化物の微粒子95が多量に析出し、そのためSPM/IPA混合液全体が黒色化している。SPM/IPA混合液は、SPM/IPA混合液供給管115を通ってSPM/IPA混合液ノズル110に供給され、SPM/IPA混合液ノズル110から吐出される。
レジスト除去処理の第2処理例では、アッシングするための処理を受けていないウエハWが搬入された後(ステップS61)、ウエハWが回転開始される(ステップS62)。ウエハWの回転速度が予め定める液盛り回転速度(たとえば60rpm)まで上昇されるとともに、SPM液アーム揺動機構12が制御されて、SPM/IPA混合液ノズル110がウエハWの回転中心(回転軸線C)上に配置させられる。
そして、制御装置55(図6参照)は、硫酸バルブ18、過酸化水素水バルブ20、IPAバルブ117およびSPM/IPA混合液バルブ111を開いて、SPM/IPA混合液ノズル110からSPM/IPA混合液をウエハWの表面に向けて吐出する(ステップS63:SPM/IPA混合液液膜形成工程。吐出流量はたとえば0.9(リットル/分))。また、ステップS63のSPM/IPA混合液液膜形成工程に並行して、ヒータヘッド35が、ウエハ回転機構3の側方に設定されたホームポジションから、ミドル近接位置(図5に実線で示す位置)の上方に移動される。
SPM/IPA混合液ノズル110からSPM/IPA混合液の吐出により、ウエハWの表面上に、その表面の全域を覆うSPM/IPA混合液の液膜が形成される。SPM/IPA混合液の吐出開始から予め定めるSPM/IPA混合液吐出時間(3〜10秒間の範囲で、たとえば5秒間)が経過すると、SPM/IPA混合液の吐出が停止される。また、SPM液アーム揺動機構12が制御されて、SPM/IPA混合液の吐出停止後のSPM/IPA混合液ノズル110を、そのホームポジションに戻す。
SPM/IPA混合液の吐出停止後、赤外線ランプ38から赤外線が放射されるとともに、ヒータヘッド35がミドル近接位置(図5に実線で示す位置)に配置される(S64:赤外線照射工程)。予め定める赤外線照射時間が経過すると、赤外線ランプ38からの赤外線の放射が停止される。また、ヒータヘッド35がホームポジションに戻される。
次いで、リンス液ノズル24からウエハWにDIWが供給される(ステップS65:中間リンス工程)。DIWの供給が所定の中間リンス時間にわたって続けられると、DIWの供給が停止される。
次いで、SC1ノズル25からウエハWにSC1が吐出される(ステップS66:SC1供給工程)。また、SC1アーム揺動機構29が制御されて、SC1アーム28が所定角度範囲内で揺動させられる。これにより、SC1ノズル25が、ウエハWの回転中心上と周縁部上との間で往復移動される。SC1の供給が所定のSC1供給時間にわたって続けられると、SC1の供給が停止される。また、SC1ノズル25がホームポジションに戻される。
次いで、リンス液ノズル24からウエハWにDIWが供給される(ステップS67:最終リンス工程)。DIWの供給が所定のリンス時間にわたって続けられると、DIWの供給が停止される。
その後、ウエハWの回転速度を所定の高回転速度に加速されて、ウエハWに付着しているDIWを振り切って乾燥されるスピンドライ処理が行われる(ステップS68)。スピンドライ処理の終了後は、ウエハ回転機構3の回転が停止され、処理済みのウエハWが、搬送ロボットによって処理室2から搬出される(ステップS69)。
これらステップS61,S62,S64,S65,S66,S67,S68,S69の各処理は、それぞれ、図7のステップS1,S2,S5,S6,S7,S8,S9,S10の各処理と同様の処理である。
以上、この発明の2つの実施形態について説明したが、この発明は他の形態で実施することもできる。
たとえば、第1実施形態において、第3処理例および第4処理例は、それぞれ、第2処理例と組み合わせることができる。すなわち、ウエハWの表面に先にSPM液の液膜120(図12A等参照)を形成し、形成したSPM液の液膜120にIPA液を供給するとともに、赤外線照射工程の後、ウエハWの表面に再度SPM液を供給してもよい。また、ウエハWの表面に先にSPM液の液膜120を形成し、形成したSPM液の液膜120にIPA液を供給するとともに、赤外線照射工程の後、ウエハWの表面に過酸化水素水を供給してもよい。
また、有機溶媒の一例としてIPA液を挙げたが、IPA液に限らず、エタノールやアセトンなど、硫酸の脱水・酸化作用により炭化する性質を有する有機溶媒を採用することができる。
また、第1〜第4処理例では、ヒータヘッド35を、ミドル近接位置(図5に実線で示す位置)とセンター近接位置(図5に一点鎖線で示す位置)との間で往復移動させているが、ヒータヘッド35を、エッジ近接位置(図5に二点鎖線で示す位置)とセンター近接位置との間で移動させたり、ミドル近接位置とエッジ近接位置との間で移動させたりすることもできる。
また、ヒータヘッド35を往復移動させる構成でなく、赤外線照射工程の実行中において、ヒータヘッド35をミドル近接位置で静止させた状態から、センター近接位置に移動させ、当該センター近接位置で静止させる構成(間欠移動)とすることもできる。このような間欠移動の場合、ヒータヘッド35を、ミドル近接位置とセンター近接位置との間で移動させる構成に限られず、ミドル近接位置とエッジ近接位置との間で移動させてもよいし、センター近接位置とエッジ近接位置との間で移動させてもよい。
また、赤外線ランプ38として、1つの円環状ランプを備えるものを例に挙げたが、これに限られずに、同心円状の複数の円環状ランプを備えるものとすることもできる。また、赤外線ランプ38として、水平面に沿って互いに平行に配置された複数本の直線状ランプを備えるものを採用することもできる。
また、ランプハウジング40として円筒状のものを採用したが、角筒状(たとえば四角筒状)のものを採用することもできる。この場合、底板部52の形状が矩形板状になる。
また、ランプハウジング40の底板部52とは別に、ウエハWの表面に対向する対向面を有するたとえば円板状や矩形板状の対向板を設けるようにしてもよい。この場合には、対向板の材料として、石英を採用することができる。
また、硫酸を含む液の一例としてSPM液を例示したが、硫酸を含む液として、硫酸や硫酸オゾン混合液(SOM)を採用することもできる。
また、前述の各処理例では、ステップS7、ステップS17、ステップS28、ステップS48およびステップS66等のSC1供給工程を設けた例を示したが、SC1供給工程を設けなくてもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1 基板処理装置
3 ウエハ回転機構(基板保持手段)
4 SPM液ノズル(硫酸含有液ノズル、混合液供給手段)
5 IPA液ノズル(有機溶媒ノズル、混合液供給手段)
35 ヒータヘッド(ヒータ)
38 赤外線ランプ
80 IPA液の液膜
90 SPM/IPA混合液の液膜
100 有機溶媒ノズル(噴霧ノズル)
101 基板処理装置
110 SPM/IPA混合液ノズル(混合液ノズル、混合液供給手段)
120 SPM液の液膜
W ウエハ(基板)

Claims (10)

  1. 基板の表面からレジストを除去するための基板処理方法であって、
    基板保持手段に保持されている基板の表面に、硫酸を含む液と、硫酸との反応により黒色炭化物を含む微粒子を生成する有機溶媒との混合液の液膜を形成する混合液液膜形成工程と、
    前記混合液の前記液膜を保持している基板の表面に向けて、当該表面に対向配置されたヒータから赤外線を照射する赤外線照射工程とを含む、基板処理方法。
  2. 前記有機溶媒は、硫酸の脱水作用および/または酸化作用により炭化する性質を有している、請求項1に記載の基板処理方法。
  3. 前記混合液液膜形成工程は、
    前記基板保持手段に保持されている基板の表面に、有機溶媒の液膜を形成する有機溶媒液膜形成工程と、
    前記有機溶媒液膜形成工程の実行後、前記有機溶媒の前記液膜を保持している基板の表面に、硫酸を含む液を供給する硫酸含有液供給工程とを含む、請求項1または2に記載の基板処理方法。
  4. 前記混合液液膜形成工程は、
    前記基板保持手段に保持されている基板の表面に、硫酸を含む液の液膜を形成する硫酸含有液液膜形成工程と、
    前記硫酸含有液液膜形成工程の実行後、前記硫酸を含む液の前記液膜を保持している基板の表面に、有機溶媒を供給する有機溶媒供給工程とを含む、請求項1または2に記載の基板処理方法。
  5. 前記赤外線照射工程の実行後に実行され、前記基板保持手段に保持されている基板の表面を洗浄する洗浄工程を含む、請求項1〜4のいずれか一項に記載の基板処理方法。
  6. 基板の表面からレジストを除去するための基板処理装置であって、
    基板を保持する基板保持手段と、
    前記基板保持手段に保持されている基板の表面に硫酸を含む液と、硫酸との反応により黒色炭化物を含む微粒子を生成する有機溶媒との混合液の液膜を形成するために、硫酸を含む液と有機溶媒との混合液を供給する混合液供給手段と、
    赤外線ランプを有し、前記基板保持手段に保持されている基板の表面に対向配置されて、当該表面に向けて赤外線を照射するヒータとを含む、基板処理装置。
  7. 前記有機溶媒は、硫酸の脱水作用および/または酸化作用により炭化する性質を有している、請求項6に記載の基板処理装置。
  8. 前記混合液供給手段は、
    前記基板保持手段に保持されている基板の表面に硫酸を含む液を吐出する硫酸含有液ノズルと、
    前記基板保持手段に保持されている基板の表面に有機溶媒を吐出する有機溶媒ノズルとを含む、請求項6または7に記載の基板処理装置。
  9. 前記有機溶媒ノズルは、有機溶媒の液滴を噴霧する噴霧ノズルである、請求項8に記載の基板処理装置。
  10. 前記混合液供給手段は、前記基板保持手段に保持されている基板の表面に、硫酸を含む液と有機溶媒との混合液を吐出する混合液ノズルを含む、請求項6または7に記載の基板処理装置。
JP2012188009A 2012-08-28 2012-08-28 基板処理方法および基板処理装置 Expired - Fee Related JP6094851B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012188009A JP6094851B2 (ja) 2012-08-28 2012-08-28 基板処理方法および基板処理装置
US13/961,923 US20140060573A1 (en) 2012-08-28 2013-08-08 Substrate treatment method and substrate treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188009A JP6094851B2 (ja) 2012-08-28 2012-08-28 基板処理方法および基板処理装置

Publications (2)

Publication Number Publication Date
JP2014045150A JP2014045150A (ja) 2014-03-13
JP6094851B2 true JP6094851B2 (ja) 2017-03-15

Family

ID=50185724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188009A Expired - Fee Related JP6094851B2 (ja) 2012-08-28 2012-08-28 基板処理方法および基板処理装置

Country Status (2)

Country Link
US (1) US20140060573A1 (ja)
JP (1) JP6094851B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11705350B2 (en) 2018-12-06 2023-07-18 Semes Co., Ltd. Apparatus and method for treating substrate

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707099B2 (en) 2013-08-12 2020-07-07 Veeco Instruments Inc. Collection chamber apparatus to separate multiple fluids during the semiconductor wafer processing cycle
JP6304592B2 (ja) * 2014-03-25 2018-04-04 株式会社Screenホールディングス 基板処理方法および基板処理装置
KR102343226B1 (ko) * 2014-09-04 2021-12-23 삼성전자주식회사 스팟 히터 및 이를 이용한 웨이퍼 클리닝 장치
KR102432858B1 (ko) * 2015-09-01 2022-08-16 삼성전자주식회사 약액 공급 장치 및 이를 구비하는 반도체 처리 장치
WO2018200398A1 (en) 2017-04-25 2018-11-01 Veeco Precision Surface Processing Llc Semiconductor wafer processing chamber
JP7340396B2 (ja) * 2019-09-24 2023-09-07 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP7082639B2 (ja) * 2020-04-23 2022-06-08 倉敷紡績株式会社 基板上の液体成分の測定方法および基板処理装置
TW202220027A (zh) * 2020-10-09 2022-05-16 日商東京威力科創股份有限公司 基板處理方法及基板處理裝置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147793A (ja) * 1998-11-12 2000-05-26 Mitsubishi Electric Corp フォトレジスト膜除去方法およびそのための装置
JP2003215002A (ja) * 2002-01-17 2003-07-30 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
US7138691B2 (en) * 2004-01-22 2006-11-21 International Business Machines Corporation Selective nitridation of gate oxides
JP4986565B2 (ja) * 2005-12-02 2012-07-25 大日本スクリーン製造株式会社 基板処理方法および基板処理装置
JP4795854B2 (ja) * 2006-06-05 2011-10-19 大日本スクリーン製造株式会社 基板処理方法および基板処理装置
JP2008028102A (ja) * 2006-07-20 2008-02-07 Fujifilm Corp レジストマスクの除去方法および除去装置
US20110217848A1 (en) * 2010-03-03 2011-09-08 Bergman Eric J Photoresist removing processor and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11705350B2 (en) 2018-12-06 2023-07-18 Semes Co., Ltd. Apparatus and method for treating substrate

Also Published As

Publication number Publication date
US20140060573A1 (en) 2014-03-06
JP2014045150A (ja) 2014-03-13

Similar Documents

Publication Publication Date Title
JP6094851B2 (ja) 基板処理方法および基板処理装置
US10573542B2 (en) Heater cleaning method
US10032654B2 (en) Substrate treatment apparatus
US9601357B2 (en) Substrate processing device and substrate processing method
JP6222818B2 (ja) 基板処理方法および基板処理装置
JP6222817B2 (ja) 基板処理方法および基板処理装置
JP6028892B2 (ja) 基板処理装置
JP2017175166A (ja) 基板処理方法および基板処理装置
JP2015115492A (ja) 基板処理装置
JP5999625B2 (ja) 基板処理方法
JP5852927B2 (ja) 基板処理方法
JP5801228B2 (ja) 基板処理装置
JP2015191952A (ja) 基板処理方法および基板処理装置
JP6324052B2 (ja) 基板処理装置
JP5963298B2 (ja) 基板処理装置およびヒータ洗浄方法
JP2013182958A (ja) 基板処理方法
JP6229939B2 (ja) 基板処理装置
JP2015162538A (ja) 基板処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170202

R150 Certificate of patent or registration of utility model

Ref document number: 6094851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees