WO2013133352A1 - ポリエステル系樹脂組成物及びその製造方法、並びに該樹脂組成物を用いた成形体 - Google Patents

ポリエステル系樹脂組成物及びその製造方法、並びに該樹脂組成物を用いた成形体 Download PDF

Info

Publication number
WO2013133352A1
WO2013133352A1 PCT/JP2013/056230 JP2013056230W WO2013133352A1 WO 2013133352 A1 WO2013133352 A1 WO 2013133352A1 JP 2013056230 W JP2013056230 W JP 2013056230W WO 2013133352 A1 WO2013133352 A1 WO 2013133352A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
mass
polyester resin
resin composition
dicarboxylic acid
Prior art date
Application number
PCT/JP2013/056230
Other languages
English (en)
French (fr)
Inventor
高徳 宮部
加藤 智則
三田寺 淳
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201380013160.3A priority Critical patent/CN104159970B/zh
Priority to US14/383,885 priority patent/US20150030793A1/en
Priority to KR1020147025044A priority patent/KR101991502B1/ko
Priority to RU2014140749A priority patent/RU2623261C2/ru
Priority to EP13758503.0A priority patent/EP2824145B1/en
Publication of WO2013133352A1 publication Critical patent/WO2013133352A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/14Gas barrier composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1397Single layer [continuous layer]

Definitions

  • the present invention relates to a polyester-based resin composition and a molded body using the resin composition, and more specifically, a resin composition containing a specific polyester resin as a main component and containing a specific polyamide resin, and the resin composition. It relates to the molded body used.
  • polyesters represented by polyethylene terephthalate (PET) are transparent, mechanical performance, melt stability, aroma retention, recycling It is widely used for various packaging materials such as films, sheets and hollow containers.
  • PET polyethylene terephthalate
  • polyester has insufficient gas barrier properties against oxygen, carbon dioxide gas, etc.
  • the range of use of packaging containers made of polyester has been limited.
  • As a means for improving the gas barrier property of polyester a method of depositing aluminum oxide or silicon oxide on a molded body or packaging container made of polyester, or a resin having a gas barrier performance higher than that of polyester on a molded body or packaging container made of polyester. The method of apply
  • coating etc. are mentioned.
  • there are problems such as requiring a complicated manufacturing process and recyclability and mechanical performance being impaired, the range of use has been limited.
  • thermoplastic resin having a high gas barrier property As a means for simply improving the gas barrier property of the polyester while solving the above problems, there is a method of melt-mixing a thermoplastic resin having a high gas barrier property into the polyester resin.
  • a resin having a high gas barrier property is an ethylene-vinyl alcohol copolymer resin, but the ethylene-vinyl alcohol copolymer resin has poor compatibility with polyesters due to the characteristics of its molecular structure.
  • the resin composition obtained by mixing the resin is cloudy and has the disadvantage of impairing the transparency characteristic of polyester.
  • ethylene-vinyl alcohol copolymer resins deteriorate rapidly when exposed to processing temperatures suitable for polyethylene terephthalate, which is the most widely used polyester, and may cause foreign matters such as gels and koges.
  • Examples of the gas barrier resin other than the ethylene-vinyl alcohol copolymer include polyamides represented by nylon 6, nylon 66 and the like, and in particular, a diamine component mainly composed of metaxylylenediamine and adipic acid as a major component.
  • Polymetaxylylene adipamide (MXD6) obtained by polymerizing a dicarboxylic acid component to be produced is a polyamide having particularly excellent gas barrier properties, and polyethylene terephthalate, glass transition temperature, melting point, crystallinity, which are particularly widely used among polyesters Therefore, the processability of the polyester is not impaired. From this, it can be said that polymetaxylylene adipamide is a very suitable resin as a material for improving the gas barrier property of polyester.
  • JP 58-160344 A Japanese Patent Laid-Open No. 03-130125 JP 58-90033 A Japanese Patent Laid-Open No. 08-183092 JP 2011-37989 A JP 2011-132394 A
  • the problem to be solved by the present invention is to provide a polyester resin composition excellent in gas barrier properties and transparency, and a molded body using the resin composition.
  • the inventors have a polyester resin as a main component, and by blending a specific epoxy functional polymer with a resin component containing a specific polyamide resin, the gas barrier property is excellent. It was also found that a resin composition with improved transparency can be provided. In particular, it has been found that transparency is excellent when a molded body is drawn using the resin composition. The present invention has been completed based on such findings.
  • this invention relates to the following polyester-type resin compositions, its manufacturing method, and the molded object using this resin composition.
  • Step 1 A master batch (X) is prepared by melt-kneading 10 to 40 parts by mass of an epoxy-functional polymer (C) to 100 parts by mass of a polyester resin (A) containing an aromatic dicarboxylic acid unit and a diol unit. Process.
  • Step 2 Polyester resin (A) containing aromatic dicarboxylic acid unit and diol unit (A) 80 to 98% by mass, diamine unit containing metaxylylenediamine unit 70 mol% or more, and ⁇ , ⁇ -aliphatic dicarboxylic acid unit
  • the master batch (X) obtained in step 1 is added in an amount of 0.055 to 1.5 with respect to 100 parts by mass of the resin component containing 20 to 2% by mass of the polyamide resin (B) containing 70 mol% or more of the dicarboxylic acid unit.
  • the molded resin of the present invention having at least one layer composed of the polyester resin composition of the present invention and the resin composition is excellent in gas barrier properties and transparency.
  • the stretched molded article is excellent in transparency.
  • the polyester resin (A) used in the present invention contains an aromatic dicarboxylic acid unit and a diol unit.
  • the aromatic dicarboxylic acid unit is preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 to 100 mol% from the viewpoint of the crystallinity of the polyester resin and the ease of drying before use. Contains mol%.
  • the diol unit preferably contains an aliphatic glycol unit having 2 to 4 carbon atoms in an amount of 70 mol% or more, more preferably 80 mol% or more, and further preferably 90 to 100 mol%.
  • aromatic dicarboxylic acids that can be used in addition to terephthalic acid and its derivatives that can constitute the aromatic dicarboxylic acid unit of the polyester resin (A) include aromatics such as benzene, naphthalene, diphenyl, oxydiphenyl, sulfonyldiphenyl, and methylenediphenyl. Dicarboxylic acids having a nucleus and derivatives thereof can be used.
  • isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, naphthalenedicarboxylic acid such as 2,7-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 3,4′-biphenyldicarboxylic acid Acids and the like and derivatives thereof are preferred, and among these, isophthalic acid, 2,6-naphthalenedicarboxylic acid and derivatives thereof are more preferably used.
  • the proportion is 1 to 10 mol%, preferably 1 to 8 mol%, more preferably 1 to 6 mol%, based on the total amount of the dicarboxylic acid component.
  • a copolymer resin obtained by adding the above-mentioned amount of isophthalic acid as a dicarboxylic acid component has a low crystallization rate and can improve moldability.
  • dicarboxylic acids having an aromatic nucleus in which a sulfonic acid metal base is bonded to a benzene, naphthalene, diphenyl, oxydiphenyl, sulfonyldiphenyl, or methylenediphenyl nucleus, and these derivatives can also be used as the dicarboxylic acid constituting the polyester resin (A).
  • alkali metal ions such as lithium, sodium and potassium as alkaline metal ions of sulfonate, alkaline earth metal ions such as magnesium and calcium, zinc, sulfophthalic acid, sulfoterephthalic acid, sulfoisophthalic acid as aromatic acid nuclei, 4 -Dicarboxylic acid compounds obtained by combining sulfonaphthalene-2,7-dicarboxylic acid and derivatives thereof, among which metal salts of sulfoisophthalic acid such as sodium 5-sulfoisophthalate and zinc 5-sulfoisophthalate and derivatives thereof Is preferably used.
  • the ratio of these dicarboxylic acids is preferably 0.01 to 2 mol%, more preferably 0.03 to 1.5 mol%, still more preferably 0.06 to 1 mol, based on all dicarboxylic acids. 0.0 mol%. By setting it as this range, compatibility can be improved, without impairing the characteristic of a polyester resin (A).
  • aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid
  • monocarboxylic acids such as benzoic acid, propionic acid, butyric acid, trimellitic acid, pyromellitic acid, etc.
  • Carboxylic acid anhydrides such as monovalent carboxylic acid, trimellitic anhydride and pyromellitic anhydride can be used.
  • the at least one glycol selected from aliphatic glycols having 2 to 4 carbon atoms that can constitute the diol unit of the polyester resin (A) ethylene glycol and butylene glycol are preferably used, and ethylene glycol is particularly preferably used.
  • the diol component that can be used in addition to the aliphatic glycol having 2 to 4 carbon atoms include 1,4-cyclohexanedimethanol, 1,6-hexanediol, and the like, and ester-forming derivatives thereof.
  • monoalcohols such as butyl alcohol, hexyl alcohol and octyl alcohol, polyhydric alcohols such as trimethylolpropane, glycerin and pentaerythritol, diol components having a cyclic acetal skeleton, etc. are used within a range not impairing the effects of the present invention. You can also.
  • the polyester resin (A) is obtained by polymerizing an aromatic dicarboxylic acid and a diol, and a known method such as a direct esterification method or a transesterification method can be applied to the polyester resin (A).
  • a known method such as a direct esterification method or a transesterification method can be applied to the polyester resin (A).
  • the polycondensation catalyst during the production of polyester include known antimony compounds such as antimony trioxide and antimony pentoxide, and germanium compounds such as germanium oxide.
  • polyesters in the present invention include polyethylene terephthalate, ethylene terephthalate-isophthalate copolymer, ethylene-1,4-cyclohexanedimethylene-terephthalate copolymer, polyethylene-2,6-naphthalene dicarboxylate, ethylene- There are 2,6-naphthalenedicarboxylate-terephthalate copolymer and ethylene-terephthalate-4,4′-biphenyldicarboxylate copolymer.
  • Particularly preferred polyesters are polyethylene terephthalate and ethylene terephthalate-isophthalate copolymer.
  • the polyester resin (A) used in the present invention is preferably dried to a moisture content in the polymer of 200 ppm or less, preferably 100 ppm or less, more preferably 50 ppm or less before use.
  • the intrinsic viscosity is in the range of 0.6 to 2.0 dl / g
  • the molecular weight of the polyester is sufficiently high and the viscosity at the time of melting is not too high. Can be easily produced, and can exhibit the mechanical properties required as a structure.
  • the polyamide resin (B) used for this invention provides the effect which improves the gas barrier property of a polyester resin (A).
  • the diamine unit in the polyamide resin (B) contains a metaxylylenediamine unit of 70 mol% or more, preferably 80 mol% or more, more preferably 90 to 100 mol%.
  • the gas barrier property of the polyamide obtained by using metaxylylenediamine as the main component of the diamine unit can be improved efficiently.
  • Diamines that can be used in addition to metaxylylenediamine include paraxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, tetramethylenediamine, hexamethylenediamine, and nonanemethylenediamine. , 2-methyl-1,5-pentanediamine and the like, but are not limited thereto.
  • the dicarboxylic acid unit in the polyamide resin (B) contains ⁇ , ⁇ -aliphatic dicarboxylic acid in an amount of 70 mol% or more, preferably 75 mol% or more, more preferably 80 to 100 mol%.
  • ⁇ , ⁇ -aliphatic dicarboxylic acid By setting the content of ⁇ , ⁇ -aliphatic dicarboxylic acid to 70 mol% or more, it is possible to avoid a decrease in gas barrier properties and an excessive decrease in crystallinity.
  • Examples of the ⁇ , ⁇ -aliphatic dicarboxylic acid include suberic acid, adipic acid, azelaic acid, sebacic acid and the like, and adipic acid and sebacic acid are preferably used.
  • dicarboxylic acid units other than ⁇ , ⁇ -aliphatic dicarboxylic acids include alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, xylylene diene
  • aromatic dicarboxylic acids such as carboxylic acid and naphthalenedicarboxylic acid, but are not limited thereto.
  • the units constituting the polyamide resin (B) may be lactams such as ⁇ -caprolactam and laurolactam, aminocaproic acid, aminoundecanoic acid as long as the effects of the present invention are not impaired.
  • lactams such as ⁇ -caprolactam and laurolactam
  • aminocaproic acid aminoundecanoic acid as long as the effects of the present invention are not impaired.
  • Aliphatic aminocarboxylic acids such as para-aminomethylbenzoic acid and the like can also be used as copolymerized units.
  • the polyamide resin (B) is produced by a melt polycondensation (melt polymerization) method.
  • the melt polycondensation method for example, there is a method in which a nylon salt composed of diamine and dicarboxylic acid is heated in the presence of water under pressure and polymerized in a molten state while removing added water and condensed water. It can also be produced by a method in which diamine is directly added to a molten dicarboxylic acid and polycondensed. In this case, in order to keep the reaction system in a uniform liquid state, diamine is continuously added to the dicarboxylic acid, while the reaction system is heated up so that the reaction temperature does not fall below the melting point of the generated oligoamide and polyamide. The polycondensation proceeds.
  • a phosphorus atom-containing compound may be added in order to obtain an effect of promoting an amidation reaction and an effect of preventing coloring during polycondensation.
  • phosphorus atom-containing compounds include dimethylphosphinic acid, phenylmethylphosphinic acid, hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, ethyl hypophosphite, phenylphosphonous acid, Sodium phenylphosphonite, potassium phenylphosphonite, lithium phenylphosphonite, ethyl phenylphosphonite, phenylphosphonic acid, ethylphosphonic acid, sodium phenylphosphonate, potassium phenylphosphonate, lithium phenylphosphonate, phenylphosphonic acid Examples include diethyl, sodium ethylphosphonate, potassium ethylphosphonate, phosphorous acid,
  • hypophosphorous Hypophosphite metal salts such as sodium, potassium hypophosphite, lithium hypophosphite and the like are preferably used because they have a high effect of promoting amidation reaction and are excellent in anti-coloring effect, especially sodium hypophosphite.
  • the phosphorus atom-containing compounds that can be used in the present invention are not limited to these compounds.
  • the amount of the phosphorus atom-containing compound added to the polycondensation system of the polyamide resin (B) is preferably 1 to 500 ppm, more preferably 5 to 450 ppm in terms of the phosphorus atom concentration in the polyamide resin (B). Yes, more preferably 10 to 400 ppm.
  • an alkali metal compound in combination with the phosphorus atom-containing compound.
  • a sufficient amount of the phosphorus atom-containing compound needs to be present, but in some cases, the gelation of the polyamide may be accelerated, so the amidation reaction rate is adjusted. Therefore, it is preferable to coexist an alkali metal compound or an alkaline earth metal compound.
  • lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide and other alkali metal / alkaline earth metal hydroxides lithium acetate
  • Examples include sodium acetate, potassium acetate, rubidium acetate, cesium acetate, magnesium acetate, calcium acetate, barium acetate, and other alkali metal / alkaline earth metal acetates, etc., but these compounds can be used without limitation. .
  • the value obtained by dividing the number of moles of the compound by the number of moles of the phosphorus atom-containing compound should be 0.5 to 2.0. Is more preferably 0.6 to 1.8, and still more preferably 0.7 to 1.5. By setting it as the above-mentioned range, it becomes possible to suppress the formation of gel while obtaining the amidation reaction promoting effect by the phosphorus atom-containing compound.
  • the polyamide resin (B) obtained by melt polycondensation is once taken out, pelletized, and dried before use.
  • solid phase polymerization may be performed.
  • a heating device used in drying or solid phase polymerization a continuous heating drying device, a rotary drum type heating device called a tumble dryer, a conical dryer, a rotary dryer or the like, and a rotary blade inside a nauta mixer are used.
  • a conical heating apparatus provided with can be used suitably, a well-known method and apparatus can be used without being limited to these.
  • the rotating drum type heating device can seal the inside of the system, and it is easy to proceed with polycondensation in a state where oxygen causing coloring is removed.
  • the rotating drum type heating device can seal the inside of the system, and it is easy to proceed with polycondensation in a state where oxygen causing coloring is removed.
  • the polyamide resin (B) obtained through the above-mentioned steps has little coloration and little gel.
  • b in the color difference test of JIS-K-7105 is preferably used, more preferably 3 or less, and still more preferably 1 or less.
  • the relative viscosity is generally used.
  • a preferred relative viscosity is 1.5 to 4.2, more preferably 1.6 to 4.0, and still more preferably 1.7 to 3.8.
  • the terminal amino group concentration of the polyamide resin (B) used in the present invention is preferably 10 to 40 ⁇ eq / g, more preferably 12 to 35 ⁇ eq / g, and further preferably 15 to 30 ⁇ eq / g. .
  • the content of metaxylylenediamine remaining in the polyamide resin (B) is preferably 10 ppm or less, more preferably 5 ppm or less, and further preferably 1 ppm.
  • the residual amount of metaxylylenediamine is 10 ppm or less, yellowing of the appearance caused by the reaction between the acetaldehyde generated from the polyester resin (A) and the terminal amino group is suppressed.
  • the means for reducing the content of metaxylylenediamine to 10 ppm or less include a method of heating the polyamide after polymerization under reduced pressure, a method of melting it with an extruder and the like, and reducing the pressure inside the system. Various methods can be used without being limited to the above.
  • an oligomer composed of a dicarboxylic acid unit and a diamine unit may be mixed.
  • a monomer (cyclic monomer) in which metaxylylenediamine and adipic acid are cyclized may float on the surface of the molded container during melt processing and impair the appearance of the container.
  • the amount of the cyclic monomer contained in the polyamide resin (B) is preferably 1% by mass or less, more preferably 0.8% by mass or less, and still more preferably 0.5% by mass or less. is there.
  • the polyamide resin (B) is washed with water, treated at a high temperature and under a high vacuum, or removed by reducing the pressure inside the extrusion apparatus during melt extrusion.
  • the present invention is not limited to these methods, and known methods for removing low molecular weight or volatile components can be appropriately employed.
  • the method for measuring the content of the cyclic monomer in the present invention can be obtained by pulverizing polyamide by freeze pulverization, extracting it at 80 ° C. for 1 hour with methanol as a solvent, and analyzing it by liquid chromatography. .
  • the mass ratio of the polyester resin (A) to the polyamide resin (B) is mechanical strength and gas barrier property. From the viewpoint, when the total mass of the polyester resin (A) and the polyamide resin (B) is 100, it is 80 to 98/20 to 2, preferably 82 to 97/18 to 3, more preferably 85 to 96. / 15 to 4, more preferably 87 to 95/13 to 5.
  • the resin component of the polyester resin composition of the present invention may contain a resin other than the polyester resin (A) and the polyamide resin (B) as long as the effects of the present invention are not impaired.
  • a resin other than the polyester resin (A) and the polyamide resin (B) examples include nylon 6 and nylon 66, various polyamides such as amorphous nylon using aromatic dicarboxylic acid as a monomer, modified resins thereof, polyolefin and modified resins thereof, and styrene in the skeleton. And the like.
  • Epoxy functional polymer (C) The epoxy functional polymer (C) used in the present invention has at least a styrene unit represented by the following general formula (c1) and a glycidyl (meth) acrylate unit represented by the following general formula (c2), preferably Furthermore, it has a (meth) acrylate unit represented by the following general formula (c3).
  • R 1 to R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms
  • R 6 represents an alkyl group having 1 to 12 carbon atoms.
  • R 1 to R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and when R 1 to R 5 are alkyl groups, Is 1 to 12, preferably 1 to 6, and may be linear, branched or cyclic. Specific examples of the alkyl group include a methyl group, an ethyl group, and a propyl group, and a methyl group is particularly preferable.
  • R 6 represents an alkyl group having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, and may be linear, branched or cyclic.
  • alkyl group examples include a methyl group, an ethyl group, and a propyl group, and a methyl group is particularly preferable.
  • R 4 in the general formula (c2) is a methyl group
  • R 5 in the general formula (c3) is a methyl group
  • a polyester resin composition containing the epoxy functional polymer Since the molded object which consists of is excellent in transparency, it is especially preferable.
  • the number x of styrene units represented by the general formula (c1) and the number y of glycidyl (meth) acrylate units represented by the general formula (c2) contained in the epoxy functional polymer are each independently 1 From the viewpoint of transparency, y is preferably 2 to 30, and more preferably 4 to 25. x + y is preferably 10 to 70, more preferably 15 to 60.
  • the number y of acrylate units and the number z of (meth) acrylate units represented by the general formula (c3) are each independently 1 to 20, and y is preferably 2 to 20, from the viewpoint of transparency. More preferably, it is 3-10.
  • x + z is preferably greater than 10.
  • the respective structural units can be bonded in any order, and the epoxy functional polymer represented by the general formula (I) may be a block copolymer or a random copolymer.
  • epoxy functional polymer represented by the general formula (I) Commercially available products can be used as the epoxy functional polymer represented by the general formula (I), and examples thereof include “Joncry ADR” (trade name) manufactured by BASF.
  • the epoxy functional polymer (C) is contained in an amount of 0.005 to 0.1 parts by mass, preferably 0.02 to 0.05 parts by mass, with respect to 100 parts by mass of the resin component. If it is less than 0.005 parts by mass, the transparency cannot be improved, and if it exceeds 0.1 parts by mass, the melt viscosity of the resulting polyester resin composition is remarkably increased and there is a concern of gelation. Absent.
  • the transparency can be improved without deteriorating the gas barrier property. Can be improved.
  • the mechanism of action is not clear, but the polymer end groups of the polyester resin (A) and the polyamide resin (B) are chemically reacted with the epoxy functional polymer (C) and bonded to each other. It is estimated that the island of polyamide resin (B) can be finely dispersed in the sea.
  • the resin composition of the present invention includes an antioxidant, a matting agent, a heat stabilizer, a weather stabilizer, a UV absorber, a nucleating agent, a plasticizer, a flame retardant, and an antistatic agent as long as the effects of the present invention are not impaired.
  • Additives such as anti-coloring agents, lubricants and anti-gelling agents, clays such as layered silicates, nanofillers, and the like can also be blended.
  • a cobalt compound can be blended with the resin composition of the present invention for the purpose of inducing an oxidation reaction of the polyamide resin (B) and enhancing the oxygen absorption function.
  • cobalt carboxylates such as cobalt octoate, cobalt naphthenate, cobalt acetate, and cobalt stearate are preferably used.
  • the amount of the cobalt compound added is preferably 10 to 1000 ppm, more preferably 30 to 600 ppm, and still more preferably 50 to 50 ppm as the concentration of cobalt metal with respect to the total mass of the resin composition from the viewpoint of providing an effective oxygen absorption function. 400 ppm.
  • the above-described cobalt compound functions not only as a polyamide resin (B) but also as a catalyst for an oxidation reaction of an organic compound having an unsaturated carbon bond or a compound having secondary or tertiary hydrogen in the molecule. Therefore, in order to further enhance the oxygen absorption function, the resin composition of the present invention includes polymers of unsaturated hydrocarbons such as polybutadiene and polyisoprene or oligomers thereof, xylylenediamine in addition to the above-described cobalt compound. And various compounds exemplified by a compound having a functional group added to enhance the compatibility between the compound and the polyester.
  • the method for producing the polyester resin composition is not particularly limited.
  • a desired resin composition can be obtained by melt-kneading a polyester resin (A), a polyamide resin (B), and an epoxy functional polymer (C) in an extruder.
  • a polyester resin (A) or polyamide resin (B) and an epoxy functional polymer (C) are melt-kneaded in advance to prepare a master batch, and the polyester resin (A) and polyamide resin (B) are melted.
  • Step 1 A master batch (X) is prepared by melt-kneading 10 to 40 parts by mass of an epoxy-functional polymer (C) to 100 parts by mass of a polyester resin (A) containing an aromatic dicarboxylic acid unit and a diol unit. Process.
  • Step 2 Polyester resin (A) containing aromatic dicarboxylic acid unit and diol unit (A) 80 to 98% by mass, diamine unit containing metaxylylenediamine unit 70 mol% or more, and ⁇ , ⁇ -aliphatic dicarboxylic acid unit
  • the master batch (X) obtained in step 1 is added in an amount of 0.055 to 1.5 with respect to 100 parts by mass of the resin component containing 20 to 2% by mass of the polyamide resin (B) containing 70 mol% or more of the dicarboxylic acid unit.
  • the polyester-based resin composition of the present invention can be used in various applications that require gas barrier properties such as various packaging materials and industrial materials, and can be formed into molded articles such as films, sheets, and thin-walled hollow containers.
  • the molded article of the present invention has at least one layer made of the polyester resin composition.
  • the molded body of the present invention may have a single-layer structure made of the polyester resin composition, and another thermoplastic resin layer (for example, a polyester resin layer or an adhesive) is attached to at least one of the layers made of the polyester resin composition. Resin layer) or a multilayer structure in which two or more polyester resin composition layers are laminated.
  • the film or sheet can be formed by extruding the resin composition melted through a T die, a circular die or the like from an extruder.
  • the obtained film can be processed into a stretched film by stretching.
  • a bottle-shaped packaging container can be obtained by injecting a molten resin composition into a mold from an injection molding machine to produce a preform, heating to a stretching temperature, and blow-drawing.
  • Containers such as trays and cups can be obtained by injecting a molten resin composition into a mold from an injection molding machine, or by forming a sheet by a molding method such as vacuum molding or pressure molding. .
  • a molded body using the resin composition of the present invention can be produced through various methods regardless of the production method described above.
  • the haze is preferably 5% or less, more preferably 4% or less.
  • the haze becomes like this. Preferably it is 9.5% or less, More preferably, it is 9.0% or less, More preferably, it is 8.5% or less.
  • the measuring method of haze is as having described in the Example mentioned later.
  • the packaging container using the polyester resin composition of the present invention can store and store various articles.
  • various articles such as beverages, seasonings, cereals, liquids and solid processed foods that require aseptic filling or heat sterilization, chemicals, liquid daily necessities, pharmaceuticals, semiconductor integrated circuits, and electronic devices can be stored. it can.
  • the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
  • the material used for the Example and the comparative example, the analysis / measurement method, and the manufacturing method of a molded object are as follows.
  • Polyester resin The following materials were used in Examples and Comparative Examples.
  • Polyester resin The following PET resins were used. In use, pellets dried at 150 ° C. for 6 hours in a dehumidifying dryer were used.
  • Epoxy functional polymer (C), masterbatch (X) An epoxy functional polymer (manufactured by BASF, trade name: “Joncry ADR-4368”, weight average molecular weight 6,800, epoxy value 285 g / mol) was used.
  • the polymer used in this example has at least the units represented by the general formulas (c1) and (c2), R 1 to R 3 are each a hydrogen atom, R 4 is a methyl group, and x is 31 to 34, y is 22-25.
  • a resin composition (masterbatch (X)) obtained by melt-kneading 30 parts by mass of an epoxy functional polymer (C) with 100 parts by mass of a PET resin (A) is obtained by using a vacuum dryer. What was dried at 5 ° C. for 5 hours was used.
  • Terminal carboxyl group concentration [COOH] mmol / kg) 0.5 g of polyamide resin was precisely weighed, and polyamide was dissolved in 30 ml of benzyl alcohol with stirring at 160 to 180 ° C. in a nitrogen stream. After the polyamide was completely dissolved, it was cooled to 80 ° C. under a nitrogen stream, 10 ml of methanol was added with stirring, and neutralization titration with an aqueous N / 100 sodium hydroxide solution was performed.
  • Oxygen permeability measurement of polyester-based container About an unstretched sheet and a biaxially stretched film, an oxygen permeability measuring device (manufactured by MOCON, trade name: “OX-TRAN 2 / 21SH”) is used. The oxygen permeability of the 0.3 mm sheet and 35 ⁇ m film was measured under the conditions of 60 ° C. and 60% RH. The lower the value, the less oxygen permeation is preferable.
  • an oxygen transmission rate measuring device manufactured by MOCON, trade name: “OX-TRAN 2/21”
  • the internal humidity of the container is 100% RH
  • the external humidity 50% RH
  • the temperature is 23 ° C.
  • the oxygen permeability was measured under the conditions. The lower the value, the less oxygen permeation is preferable.
  • master batch (X) prepared in advance 0.0231 part by mass as epoxy functional polymer (C)
  • Example 2 Unstretched sheet and biaxially stretched film in the same manner as in Example 1 except that the addition amount of the master batch (X) was changed to 0.2 parts by mass (0.0462 parts by mass as the epoxy functional polymer (C)). Got.
  • Comparative Example 1 An unstretched sheet and a biaxially stretched film were obtained in the same manner as in Example 1 except that the master batch (X) was not added.
  • Table 1 shows the haze and oxygen permeability of unstretched sheets and biaxially stretched films obtained in Examples and Comparative Examples.
  • the unstretched sheet and biaxially stretched film of Examples 1 and 2 to which a predetermined amount of the epoxy functional polymer (C) was added were the unstretched sheet and the biaxially stretched film of Comparative Example 1 to which the epoxy functional polymer (C) was not added.
  • the transparency could be greatly improved while maintaining the gas barrier property.
  • the biaxially stretched film is excellent in transparency without increasing haze.
  • Example 4 A single layer bottle was obtained in the same manner as in Example 3 except that the addition amount of the master batch (X) was changed to 0.2 parts by mass (0.0462 parts by mass as the epoxy functional polymer (C)).
  • Comparative Example 2 A single-layer bottle was obtained in the same manner as in Example 3 except that the master batch (X) was not added.
  • Comparative Example 3 A single layer bottle was obtained in the same manner as in Example 3 except that the addition amount of the master batch (X) was changed to 0.005 parts by mass (0.0012 parts by mass as the epoxy functional polymer (C)).
  • Table 2 shows the haze and oxygen permeability of the single layer bottles obtained in Examples and Comparative Examples.
  • the single-layer bottles of Examples 3 and 4 to which a predetermined amount of the epoxy-functional polymer (C) was added had a gas barrier property compared to the single-layer bottle of Comparative Example 2 to which no epoxy-functional polymer (C) was added. Transparency could be greatly improved while maintaining. Also, the single-layer bottle of Comparative Example 3 in which the epoxy functional polymer (C) was slightly added, unlike the single-layer bottles of Examples 3 and 4, could not improve the transparency.
  • Example 5 A single layer bottle was obtained in the same manner as in Example 3 except that PET2 was used as the polyester resin (A).
  • Example 6 A single layer bottle was obtained in the same manner as in Example 4 except that PET2 was used as the polyester resin (A).
  • Comparative Example 4 A single-layer bottle was obtained in the same manner as in Comparative Example 2 except that PET2 was used as the polyester resin (A).
  • Table 3 shows the haze and oxygen permeability of the single-layer bottles obtained in Examples and Comparative Examples.
  • the single-layer bottles of Examples 5 and 6 to which a predetermined amount of the epoxy-functional polymer (C) was added had a gas barrier property as compared with the single-layer bottle of Comparative Example 4 to which no epoxy-functional polymer (C) was added. Transparency could be greatly improved while maintaining.
  • the polyester-based resin composition and molded body of the present invention can achieve both excellent gas barrier properties and transparency, and can be used for sheets, films, packaging containers, other various molded products, and composite materials (for example, multilayer films, multilayer containers). ) And so on.

Abstract

 芳香族ジカルボン酸単位とジオール単位とを含むポリエステル樹脂(A)80~98質量%、及びメタキシリレンジアミン単位を70モル%以上含むジアミン単位と、α,ω-脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位とを含むポリアミド樹脂(B)20~2質量%を含む樹脂成分100質量部に対し、特定のエポキシ官能性ポリマー(C)0.005~0.1質量部を含有する、ポリエステル系樹脂組成物。

Description

ポリエステル系樹脂組成物及びその製造方法、並びに該樹脂組成物を用いた成形体
 本発明は、ポリエステル系樹脂組成物及び該樹脂組成物を用いた成形体に関し、詳しくは、特定のポリエステル樹脂を主成分とし、かつ特定のポリアミド樹脂を含有する樹脂組成物及び該樹脂組成物を用いた成形体に関する。
 芳香族ジカルボン酸化合物と脂肪族ジオール化合物をモノマーとして使用して得られるポリマー、例えばポリエチレンテレフタレート(PET)等に代表されるポリエステルは、透明性、機械的性能、溶融安定性、保香性、リサイクル性等に優れるという特長を有することから、現在フィルム、シート、中空容器等の各種包装材料に広く利用されている。しかしながら、ポリエステルは酸素、炭酸ガス等に対するガスバリア性が必ずしも十分ではないため、ポリエステルからなる包装容器の利用範囲には制限があった。
 ポリエステルのガスバリア性を改善する手段としては、酸化アルミニウムや酸化ケイ素をポリエステルからなる成形体や包装容器に蒸着する方法や、ポリエステルよりも高いガスバリア性能を有する樹脂をポリエステルからなる成形体や包装容器に塗布する方法等が挙げられる。しかし、複雑な製造工程を必要としたり、リサイクル性や機械的性能が損なわれたりする等の問題点があるため、その利用範囲は限定されたものであった。
 上記のような問題を解決しつつ、ポリエステルのガスバリア性を簡易的に改善する手段として、高いガスバリア性を有する熱可塑性樹脂をポリエステル樹脂に溶融混合する方法が挙げられる。そのような高いガスバリア性を有する樹脂の一つとしてはエチレン-ビニルアルコール共重合樹脂が挙げられるが、エチレン-ビニルアルコール共重合樹脂は、その分子構造の特徴からポリエステルとの相溶性に乏しく、両樹脂を混合してなる樹脂組成物は白濁し、ポリエステルの特徴である透明性を損なう欠点があった。またエチレン-ビニルアルコール共重合樹脂はポリエステルの中でも最も汎用的に利用されるポリエチレンテレフタレートに適した加工温度に曝されると急激に劣化し、ゲルやコゲ等の異物を生じることがあり、それが製品に混入して製品の外観や歩留まりを悪化させる要因となることがあった。さらにはその異物を装置内部から除去するために、生産機の分解清掃を頻度高く行う必要があり、工業的に実施するには大きな問題があった。
 エチレン-ビニルアルコール共重合体以外のガスバリア性樹脂としては、ナイロン6,ナイロン66等に代表されるポリアミドが挙げられるが、とりわけメタキシリレンジアミンを主成分とするジアミン成分とアジピン酸を主成分とするジカルボン酸成分とを重合して得られるポリメタキシリレンアジパミド(MXD6)は特にガスバリア性に優れるポリアミドであり、ポリエステルの中でも特に広く利用されているポリエチレンテレフタレートとガラス転移温度、融点、結晶性が近似していることから、ポリエステルの加工性を損なうことがない。このことから、ポリエステルのガスバリア性を改善するための材料として、ポリメタキシリレンアジパミドは非常に適した樹脂であるといえる。
 PETとMXD6との混合物は、ポリエチレンテレフタレートの成形加工条件をほぼそのまま適用して加工できるため、フィルムやボトル等、様々な包装材料への適用が開示されている(例えば、特許文献1~6参照)。
 しかしながら、PETとMXD6とのブレンドからなる従来の成形体は、未延伸の状態では比較的透明性を有するが、延伸するとヘイズ(曇り値)が増加し、透明性が低下するという問題を有する。
特開昭58―160344号公報 特開平03-130125号公報 特開昭58-90033号公報 特開平08-183092号公報 特開2011-37989号公報 特開2011-132394号公報
 本発明が解決しようとする課題は、ガスバリア性及び透明性に優れるポリエステル系樹脂組成物及び該樹脂組成物を用いた成形体を提供することにある。
 本発明者らは、鋭意研究を重ねた結果、ポリエステル樹脂を主成分とし、特定のポリアミド樹脂を含有する樹脂成分に対して、特定のエポキシ官能性ポリマーを配合することで、ガスバリア性に優れ、かつ透明性が改善された樹脂組成物を提供できることを見出した。特に、該樹脂組成物を用いて延伸された成形体とした場合に透明性が優れることを見出した。本発明は、このような知見に基づき完成するに至ったものである。
 すなわち本発明は、以下のポリエステル系樹脂組成物、その製造方法、及び該樹脂組成物を用いた成形体に関する。
<1>芳香族ジカルボン酸単位とジオール単位とを含むポリエステル樹脂(A)80~98質量%、及びメタキシリレンジアミン単位を70モル%以上含むジアミン単位と、α,ω-脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位とを含むポリアミド樹脂(B)20~2質量%を含む樹脂成分100質量部に対し、下記一般式(c1)で表されるスチレン単位及び下記一般式(c2)で表されるグリシジル(メタ)アクリレート単位を含むエポキシ官能性ポリマー(C)0.005~0.1質量部を含有する、ポリエステル系樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
[式中、R1~R4はそれぞれ独立して水素原子又は炭素数1~12のアルキル基を表す。]
<2>下記工程1及び2を含む、上記<1>に記載のポリエステル系樹脂組成物の製造方法。
 工程1:芳香族ジカルボン酸単位とジオール単位とを含むポリエステル樹脂(A)100質量部に対してエポキシ官能性ポリマー(C)10~40質量部を溶融混練してマスターバッチ(X)を調製する工程。
 工程2:芳香族ジカルボン酸単位とジオール単位とを含むポリエステル樹脂(A)80~98質量%、及びメタキシリレンジアミン単位を70モル%以上含むジアミン単位と、α,ω-脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位とを含むポリアミド樹脂(B)20~2質量%を含む樹脂成分100質量部に対し、工程1で得られたマスターバッチ(X)を0.055~1.1質量部を溶融混練する工程。
<3>上記<1>に記載のポリエステル系樹脂組成物からなる層を少なくとも1層有する成形体。
 本発明のポリエステル系樹脂組成物及び該樹脂組成物からなる層を少なくとも1層有する本発明の成形体は、ガスバリア性及び透明性に優れる。特に延伸された成形体の透明性に優れる。
[ポリエステル樹脂(A)]
 本発明に用いられるポリエステル樹脂(A)は、芳香族ジカルボン酸単位とジオール単位を含む。芳香族ジカルボン酸単位は、ポリエステル樹脂の結晶性、及び使用前の乾燥の容易さの観点から、テレフタル酸単位を好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90~100モル%含む。また、ジオール単位は、同様の観点から、炭素数2~4の脂肪族グリコール単位を好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90~100モル%含む。
 ポリエステル樹脂(A)の芳香族ジカルボン酸単位を構成しうるテレフタル酸及びその誘導体以外に使用できる芳香族ジカルボン酸としては、ベンゼン、ナフタレン、ジフェニル、オキシジフェニル、スルホニルジフェニル、又はメチレンジフェニル等の芳香族核を有するジカルボン酸及びこれらの誘導体が使用できる。その中でもイソフタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等のナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、3,4’-ビフェニルジカルボン酸等及びこれらの誘導体が好ましく、これらの中でもイソフタル酸、2,6-ナフタレンジカルボン酸及びそれらの誘導体がより好ましく用いられる。なお、イソフタル酸を構成成分として使用する場合、その割合はジカルボン酸成分の総量に対して1~10モル%、好ましくは1~8モル%、更に好ましくは1~6モル%である。イソフタル酸をジカルボン酸成分として上記に示した量を添加して得た共重合樹脂は結晶化速度が遅くなり、成形性を向上させることが可能となる。
 また、ポリアミド樹脂(B)との相溶性を改良するために、ベンゼン、ナフタレン、ジフェニル、オキシジフェニル、スルホニルジフェニル、又はメチレンジフェニル核にスルホン酸金属塩基が結合した芳香族核を有するジカルボン酸及びこれらの誘導体もポリエステル樹脂(A)を構成するジカルボン酸として使用することができる。例えば、スルホン酸塩の金属イオンとしてリチウム、ナトリウム、カリウム等のアルカリ金属イオン、マグネシウム、カルシウム等のアルカリ土類金属イオン、亜鉛、芳香族酸核としてスルホフタル酸、スルホテレフタル酸、スルホイソフタル酸、4-スルホナフタレン-2,7-ジカルボン酸及びそれらの誘導体を組み合わせたジカルボン酸化合物が挙げられ、その中でも、5-スルホイソフタル酸ナトリウム、5-スルホイソフタル酸亜鉛等のスルホイソフタル酸金属塩及びその誘導体が好ましく用いられる。これらのジカルボン酸の比率は全てのジカルボン酸に対して0.01~2モル%であることが好ましく、より好ましくは0.03~1.5モル%であり、更に好ましくは0.06~1.0モル%である。この範囲とすることでポリエステル樹脂(A)の特性を損なうことなく相溶性を高めることができる。
 更に本発明の効果を損なわない範囲でアジピン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸や、安息香酸、プロピオン酸、酪酸等のモノカルボン酸や、トリメリット酸、ピロメリット酸等の多価カルボン酸や、無水トリメリット酸、無水ピロメリット酸等のカルボン酸無水物を用いることができる。
 ポリエステル樹脂(A)のジオール単位を構成しうる炭素数2~4の脂肪族グリコールから選ばれる少なくとも一種のグリコールとしては、エチレングリコールやブチレングリコールが好ましく用いられ、特にエチレングリコールが好ましく用いられる。炭素数2~4の脂肪族グリコール以外に使用できるジオール成分としては、1,4-シクロヘキサンジメタノール、1,6-ヘキサンジオール等及びこれらのエステル形成性誘導体が例示できる。更に本発明の効果を損なわない範囲でブチルアルコール、ヘキシルアルコール、オクチルアルコール等のモノアルコール類や、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価アルコール類、環状アセタール骨格を有するジオール成分等を用いることもできる。
 ポリエステル樹脂(A)は、芳香族ジカルボン酸とジオールとを重合して得られるものであり、その製造には、公知の方法である直接エステル化法やエステル交換法を適用することができる。ポリエステル製造時の重縮合触媒としては、公知の三酸化アンチモン、五酸化アンチモン等のアンチモン化合物、酸化ゲルマニウム等のゲルマニウム化合物等が例示できる。また必要に応じて分子量を高めるために従来公知の方法によって固相重合してもよい。
 本発明において好ましいポリエステルを例示すると、ポリエチレンテレフタレート、エチレンテレフタレート-イソフタレート共重合体、エチレン-1,4-シクロヘキサンジメチレン-テレフタレート共重合体、ポリエチレン-2,6-ナフタレンジカルボキシレート体、エチレン-2,6-ナフタレンジカルボキシレート-テレフタレート共重合体、エチレン-テレフタレート-4,4’-ビフェニルジカルボキシレート共重合体がある。特に好ましいポリエステルは、ポリエチレンテレフタレート、エチレンテレフタレート-イソフタレート共重合体である。
 本発明に用いるポリエステル樹脂(A)は、使用する前にポリマー中の水分率を200ppm以下、好ましくは100ppm以下、更に好ましくは50ppm以下に乾燥させることが好ましい。本発明で用いるポリエステル樹脂(A)の極限粘度(フェノール/1,1,2,2-テトラクロロエタン=60/40質量比の混合溶媒中、25℃で測定した値)には、特に制限はないが、通常0.6~2.0dl/g、好ましくは0.7~1.8dl/gであることが望ましい。極限粘度が0.6~2.0dl/gの範囲であると、ポリエステルの分子量が充分に高くかつ溶融時の粘度が高すぎないために、これを使用して得られるポリエステル系樹脂組成物からなる成形体や包装容器を容易に製造でき、かつ構造物として必要な機械的性質を発現することができる。
[ポリアミド樹脂(B)]
 本発明に用いられるポリアミド樹脂(B)は、ポリエステル樹脂(A)のガスバリア性を改善する効果を付与する。
 ポリアミド樹脂(B)におけるジアミン単位としては、メタキシリレンジアミン単位を70モル%以上、好ましくは80モル%以上、より好ましくは90~100モル%含む。メタキシリレンジアミンをジアミン単位の主成分とすることで得られるポリアミドのガスバリア性を効率良く高めることができる。
 メタキシリレンジアミン以外に使用できるジアミンとしては、パラキシリレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナンメチレンジアミン、2-メチル-1,5-ペンタンジアミン等が例示できるが、これらに限定されるものではない。
 ポリアミド樹脂(B)におけるジカルボン酸単位としては、α,ω-脂肪族ジカルボン酸を70モル%以上、好ましくは75モル%以上、より好ましくは80~100モル%含む。α,ω-脂肪族ジカルボン酸の含有量を70モル%以上とすることで、ガスバリア性の低下や結晶性の過度の低下を避けることができる。
 α,ω-脂肪族ジカルボン酸としてはスベリン酸、アジピン酸、アゼライン酸、セバシン酸等が挙げられるが、アジピン酸やセバシン酸が好ましく用いられる。
 α,ω-脂肪族ジカルボン酸以外のジカルボン酸単位としては、1,3-シクロヘキサンジカルボン酸や1,4-シクロヘキサンジカルボン酸等の脂環族ジカルボン酸、テレフタル酸、イソフタル酸、オルソフタル酸、キシリレンジカルボン酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸等が例示できるが、これらに限定されるものではない。
 また前記のジアミン単位、ジカルボン酸単位以外にも、ポリアミド樹脂(B)を構成する単位として、本発明の効果を損なわない範囲でε-カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類、パラ-アミノメチル安息香酸のような芳香族アミノカルボン酸等も共重合単位として使用できる。
 ポリアミド樹脂(B)は溶融重縮合(溶融重合)法により製造される。溶融重縮合法としては、例えばジアミンとジカルボン酸からなるナイロン塩を水の存在下に、加圧下で昇温し、加えた水及び縮合水を除きながら溶融状態で重合させる方法がある。また、ジアミンを溶融状態のジカルボン酸に直接加えて、重縮合する方法によっても製造される。この場合、反応系を均一な液状状態に保つために、ジアミンをジカルボン酸に連続的に加え、その間、反応温度が生成するオリゴアミド及びポリアミドの融点よりも下回らないように反応系を昇温しつつ、重縮合が進められる。
 ポリアミド樹脂(B)の重縮合系内にはアミド化反応を促進する効果や、重縮合時の着色を防止する効果を得るために、リン原子含有化合物を添加してもよい。リン原子含有化合物としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸、次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸エチル、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウム、フェニル亜ホスホン酸エチル、フェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウム、亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等が挙げられ、これらの中でも特に次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム等の次亜リン酸金属塩がアミド化反応を促進する効果が高く、かつ着色防止効果にも優れるため好ましく用いられ、特に次亜リン酸ナトリウムが好ましいが、本発明で使用できるリン原子含有化合物はこれらの化合物に限定されない。
 ポリアミド樹脂(B)の重縮合系内に添加するリン原子含有化合物の添加量は、ポリアミド樹脂(B)中のリン原子濃度換算で1~500ppmであることが好ましく、より好ましくは5~450ppmであり、更に好ましくは10~400ppmである。上述の範囲内にリン原子化合物の添加量を設定することで重縮合中のポリアミドの着色を防止するとともにポリアミドのゲル化を抑制することができるため、成形品の外観を良好に保つことができる。
 また、ポリアミド樹脂(B)の重縮合系内には、リン原子含有化合物と併用してアルカリ金属化合物を添加することが好ましい。重縮合中のポリアミドの着色を防止するためにはリン原子含有化合物を十分な量存在させる必要があるが、場合によってはポリアミドのゲル化を促進するおそれがあるため、アミド化反応速度を調整するためにもアルカリ金属化合物又はアルカリ土類金属化合物を共存させることが好ましい。例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ金属/アルカリ土類金属水酸化物や、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム、酢酸マグネシウム、酢酸カルシウム、酢酸バリウム等のアルカリ金属/アルカリ土類金属酢酸塩等が挙げられるが、これらの化合物に限定されることなく用いることができる。
 ポリアミド樹脂(B)の重縮合系内にアルカリ金属化合物を添加する場合、該化合物のモル数をリン原子含有化合物のモル数で除した値が0.5~2.0となるようにすることが好ましく、より好ましくは0.6~1.8であり、更に好ましくは0.7~1.5である。上述の範囲とすることでリン原子含有化合物によるアミド化反応促進効果を得つつゲルの生成を抑制することが可能となる。
 溶融重縮合で得られたポリアミド樹脂(B)は一旦取り出され、ペレット化された後、乾燥して使用される。また更に重合度を高めるために固相重合してもよい。乾燥乃至固相重合で用いられる加熱装置としては、連続式の加熱乾燥装置やタンブルドライヤー、コニカルドライヤー、ロータリードライヤー等と称される回転ドラム式の加熱装置及びナウタミキサーと称される内部に回転翼を備えた円錐型の加熱装置が好適に使用できるが、これらに限定されることなく公知の方法、装置を使用することができる。特にポリアミドの固相重合を行う場合は、上述の装置の中でも、回転ドラム式の加熱装置が、系内を密閉化でき、着色の原因となる酸素を除去した状態で重縮合を進めやすいことから、好ましく用いられる。
 上述の工程を経て得られるポリアミド樹脂(B)は着色が少なく、ゲルの少ないものであるが、本発明では上述の工程を経て得られたポリアミドのうち、JIS-K-7105の色差試験におけるb*値が5以下のものが好ましく用いられ、より好ましくは3以下のものであり、更に好ましくは1以下のものである。ポリアミドのb*値を5以下と設定することで、後加工によって得られる成形品の白色度は優れたものとなり、その商品価値を保つことができる。
 ポリアミド樹脂(B)の重合度の指標としてはいくつかあるが、相対粘度は一般的に使われるものである。ポリアミド樹脂(B)において好ましい相対粘度は1.5~4.2であり、より好ましくは1.6~4.0、更に好ましくは1.7~3.8である。ポリアミド樹脂(B)の相対粘度を上述の範囲に設定することで成形加工が安定し、外観の良好な成形品を得ることができる。
 なお、ここで言う相対粘度は、ポリアミド1gを96%硫酸100mLに溶解し、キャノンフェンスケ型粘度計にて25℃で測定した落下時間(t)と、同様に測定した96%硫酸そのものの落下時間(t0)との比であり、次式で示される。
  相対粘度=t/t0
 本発明で用いるポリアミド樹脂(B)の末端アミノ基濃度は10~40μ当量/gであることが好ましく、より好ましくは12~35μ当量/gであり、更に好ましくは15~30μ当量/gである。上述の範囲内に末端アミノ基濃度を設定することにより、ポリアミド樹脂(B)の熱履歴増大によるゲル化が抑制され、かつポリエステル樹脂(A)から発生するアセトアルデヒドと末端アミノ基との反応により生じる外観の黄変が抑制される。末端アミノ基濃度を上述の範囲にするための手段としては、ジアミン単位とジカルボン酸単位とのモル比をジカルボン酸が若干過剰になるように重合を進める方法や、反応終了後にモノカルボン酸化合物やジカルボン酸無水物等を添加することで末端アミノ基を封止する方法が挙げられるが、これらの方法に限定されることなく様々な方法を用いることができる。
 またポリアミド樹脂(B)中に残存するメタキシリレンジアミンの含有率は10ppm以下になるようにすることが好ましく、より好ましくは5ppm以下であり、更に好ましくは1ppmである。メタキシリレンジアミンの残存量を10ppm以下にすることで、ポリエステル樹脂(A)から発生するアセトアルデヒドと末端アミノ基との反応により生じる外観の黄変が抑制される。メタキシリレンジアミンの含有率を10ppm以下にする手段としては、重合後のポリアミドを減圧下で加熱する方法や、押出機等で溶融させ、系内を減圧にする方法等が挙げられるが、これらに限定されることなく様々な方法を用いることができる。
 またポリアミド樹脂(B)中にはジカルボン酸単位とジアミン単位とからなるオリゴマーが混在していることがある。特にメタキシリレンジアミンとアジピン酸とが環化した単量体(サイクリックモノマー)は溶融加工時に成形容器の表面に浮き出て容器の外観を損なうことがある。本発明においては、ポリアミド樹脂(B)に含まれる上記環状モノマー量を1質量%以下とすることが好ましく、より好ましくは0.8質量%以下であり、更に好ましくは0.5質量%以下である。本発明の範囲に環状モノマーの含有量を調整することで良好な外観をもつ成形品を長時間に連続して成形することができる。環状モノマーの含有量を低減させるためには、ポリアミド樹脂(B)を水で洗浄する方法や、高温かつ高真空下で処理する、もしくは溶融押出時に押出装置内を減圧にして除去する等の方法を採ることができるが、これらの方法に限定されることなく、低分子量もしくは揮発成分を除去するための公知の方法を適宜採用することができる。なお、本発明における環状モノマーの含有量の測定方法としては、ポリアミドを凍結粉砕により粉砕後、メタノールを溶媒として1時間80℃で抽出を行い、液体クロマトグラフィーにて分析することにより求めることができる。
 本発明のポリエステル系樹脂組成物の樹脂成分において、ポリエステル樹脂(A)とポリアミド樹脂(B)との質量比(ポリエステル樹脂(A)/ポリアミド樹脂(B))は、機械的強度及びガスバリア性の観点から、ポリエステル樹脂(A)とポリアミド樹脂(B)との合計質量を100としたとき、80~98/20~2であり、好ましくは82~97/18~3、より好ましくは85~96/15~4、更に好ましくは87~95/13~5である。
 本発明のポリエステル系樹脂組成物の樹脂成分には、本発明の効果を損なわない範囲で、ポリエステル樹脂(A)及びポリアミド樹脂(B)以外の樹脂を含有してもよい。そのような他の樹脂としては、例えばナイロン6やナイロン66、芳香族ジカルボン酸をモノマーとして利用している非晶性ナイロン等の各種ポリアミドやその変性樹脂、ポリオレフィンやその変性樹脂、スチレンを骨格内に有するエラストマー等が挙げられる。
[エポキシ官能性ポリマー(C)]
 本発明に用いられるエポキシ官能性ポリマー(C)は、下記一般式(c1)で表されるスチレン単位及び下記一般式(c2)で表されるグリシジル(メタ)アクリレート単位を少なくとも有し、好ましくは更に下記一般式(c3)で表される(メタ)アクリレート単位を有する。
Figure JPOXMLDOC01-appb-C000004
[式中、R1~R5はそれぞれ独立して水素原子又は炭素数1~12のアルキル基を表し、R6は炭素数1~12のアルキル基を表す。]
 前記一般式(c1)~(c3)中、R1~R5はそれぞれ独立して水素原子又は炭素数1~12のアルキル基を表すが、R1~R5がアルキル基の場合は炭素数が1~12、好ましくは1~6であり、直鎖状、分岐状又は環状であってもよい。該アルキル基の具体例としては、メチル基、エチル基、プロピル基等が挙げられ、メチル基が特に好ましい。
 また、R6は炭素数1~12のアルキル基を表し、好ましくは炭素数1~6であり、直鎖状、分岐状又は環状であってもよい。該アルキル基の具体例としては、メチル基、エチル基、プロピル基等が挙げられ、メチル基が特に好ましい。
 なかでも、前記一般式(c2)中のR4がメチル基である場合、並びに前記一般式(c3)中のR5がメチル基である場合、該エポキシ官能性ポリマーを含むポリエスエル系樹脂組成物からなる成形体は透明性に優れることから、特に好ましい。
 エポキシ官能性ポリマー中に含まれる、前記一般式(c1)で表されるスチレン単位の数x及び前記一般式(c2)で表されるグリシジル(メタ)アクリレート単位の数yは、それぞれ独立に1~35であり、yは、透明性の観点から好ましくは2~30、より好ましくは4~25である。x+yは、好ましくは10~70、より好ましくは15~60である。
 また、前記一般式(c3)で表される(メタ)アクリレート単位を有する場合、前記一般式(c1)で表されるスチレン単位の数x、前記一般式(c2)で表されるグリシジル(メタ)アクリレート単位の数y及び前記一般式(c3)で表される(メタ)アクリレート単位の数zは、それぞれ独立に1~20であり、yは、透明性の観点から好ましくは2~20、より好ましくは3~10である。x+zは、好ましくは10より大きい。
 各構成単位は任意の順序で結合でき、前記一般式(I)で表されるエポキシ官能性ポリマーは、ブロック共重合体であってもランダム共重合体であってもよい。
 前記一般式(I)で表されるエポキシ官能性ポリマーは、市販品を使用することができ、例えば、BASF社製「Joncryl ADR」(商品名)が挙げられる。
 エポキシ官能性ポリマー(C)は、前記樹脂成分100質量部に対し、0.005~0.1質量部、好ましくは0.02~0.05質量部含有される。0.005質量部未満では透明性を向上させることができず、0.1質量部を超えると、得られるポリエステル系樹脂組成物の溶融粘度が著しく増大し、ゲル化の懸念があるため、好ましくない。
 本発明においては、ポリエステル樹脂(A)及びポリアミド樹脂(B)を含有する樹脂成分に対して特定量のエポキシ官能性ポリマー(C)を配合することで、ガスバリア性を低下させることなく透明性を向上させることができる。その作用機序は定かではないが、ポリエステル樹脂(A)及びポリアミド樹脂(B)のポリマー末端基が、エポキシ官能性ポリマー(C)と化学反応して結合することで、ポリエステル樹脂(A)の海の中にポリアミド樹脂(B)の島を微分散させることが可能なためと推定される。
[添加剤等]
 本発明の樹脂組成物には、本発明の効果を損なわない範囲で酸化防止剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、核剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、滑剤、ゲル化防止剤等の添加剤、層状珪酸塩等のクレイやナノフィラー等を配合することもできる。
 また、本発明の樹脂組成物には、ポリアミド樹脂(B)の酸化反応を誘起させて酸素吸収機能を高める目的で、コバルト化合物を配合することもできる。コバルト化合物としては、オクタン酸コバルト、ナフテン酸コバルト、酢酸コバルト、ステアリン酸コバルト等のコバルトカルボキシレート類が好ましく用いられる。コバルト化合物の添加量は、効果的な酸素吸収機能の付与の観点から、樹脂組成物の総質量に対するコバルト金属の濃度として、好ましくは10~1000ppm、より好ましくは30~600ppm、更に好ましくは50~400ppmである。
 上述したコバルト化合物はポリアミド樹脂(B)だけではなく、不飽和炭素結合を有する有機化合物や、分子内に2級もしくは3級水素を有する化合物の酸化反応の触媒としても機能する。そのため、本発明の樹脂組成物には、酸素吸収機能をより高めるために、上述したコバルト化合物に加えて、ポリブタジエンやポリイソプレン等の不飽和炭化水素類の重合物乃至それらのオリゴマー、キシリレンジアミンを骨格として有する化合物、あるいは前記化合物とポリエステルの相溶性を高めるための官能基を付加した化合物等に例示される各種化合物を配合することもできる。
[ポリエステル系樹脂組成物の製造方法]
 前記ポリエステル系樹脂組成物を製造する方法は特に限定されない。例えば、ポリエステル樹脂(A)とポリアミド樹脂(B)とエポキシ官能性ポリマー(C)とを押出機内で溶融混練して所望の樹脂組成物を得ることができる。また、あらかじめポリエステル樹脂(A)又はポリアミド樹脂(B)とエポキシ官能性ポリマー(C)とを溶融混練してマスターバッチを調製し、これとポリエステル樹脂(A)とポリアミド樹脂(B)とを溶融混練してもよい。分散性の観点からは、下記工程1及び2を含む方法が好ましい。
 工程1:芳香族ジカルボン酸単位とジオール単位とを含むポリエステル樹脂(A)100質量部に対してエポキシ官能性ポリマー(C)10~40質量部を溶融混練してマスターバッチ(X)を調製する工程。
 工程2:芳香族ジカルボン酸単位とジオール単位とを含むポリエステル樹脂(A)80~98質量%、及びメタキシリレンジアミン単位を70モル%以上含むジアミン単位と、α,ω-脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位とを含むポリアミド樹脂(B)20~2質量%を含む樹脂成分100質量部に対し、工程1で得られたマスターバッチ(X)を0.055~1.1質量部を溶融混練する工程。
[成形体]
 本発明のポリエステル系樹脂組成物は、各種包装材料、工業用材料などのガスバリア性を要求されるあらゆる用途に利用でき、フィルム、シート、薄肉中空容器等の成形体に成形できる。
 本発明の成形体は、前記ポリエステル系樹脂組成物からなる層を少なくとも1層有する。本発明の成形体は、前記ポリエステル系樹脂組成物からなる単層構造であってもよく、前記ポリエステル系樹脂組成物からなる層の少なくとも一方に他の熱可塑性樹脂層(例えばポリエステル樹脂層や接着性樹脂層)を積層してもよく、前記ポリエステル系樹脂組成物層を2層以上積層した多層構造を有するものでもよい。
 本発明の成形体の製造方法については特に限定されず、任意の方法を利用することができる。例えば、フィルムやシートの成形については、Tダイ、サーキュラーダイ等を通して溶融させた該樹脂組成物を押出機から押し出して製造することができる。得られたフィルムを延伸することにより延伸フィルムに加工することもできる。ボトル形状の包装容器については、射出成形機から金型中に溶融した樹脂組成物を射出してプリフォームを製造後、延伸温度まで加熱してブロー延伸することにより得ることができる。
 また、トレイやカップ等の容器は射出成形機から金型中に溶融した樹脂組成物を射出して製造する方法や、シートを真空成形や圧空成形等の成形法によって成形して得ることができる。本発明の樹脂組成物を利用してなる成形体は上述の製造方法によらず、様々な方法を経て製造することが可能である。
 本発明の成形体がシート又はフィルムである場合、そのヘイズは好ましくは5%以下、より好ましくは4%以下である。また、本発明の成形体がボトルである場合、そのヘイズは好ましくは9.5%以下、より好ましくは9.0%以下、更に好ましくは8.5%以下である。なお、ヘイズの測定方法は、後述する実施例に記載のとおりである。
 本発明のポリエステル系樹脂組成物を利用してなる包装容器には様々な物品を収納、保存することができる。例えば、飲料、調味料、穀類、無菌での充填もしくは加熱殺菌の必要な液体及び固体加工食品、化学薬品、液体生活用品、医薬品、半導体集積回路並びに電子デバイス等、種々の物品を収納することができる。
 以下に、実施例に基づいて本発明を更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、実施例及び比較例に使用した材料、分析・測定方法、及び成形体の製造方法は以下の通りである。
1.材料
 実施例及び比較例では以下の材料を使用した。
(1)ポリエステル樹脂(A)
 以下のPET樹脂を使用した。使用に際しては、除湿乾燥機にて150℃6時間乾燥したペレットを用いた。
 PET1(日本ユニペット(株)製、商品名:「RT-543C」、固有粘度=0.75dl/g、ホモPET)
 PET2(日本ユニペット(株)製、商品名:「BK-2180」、固有粘度=0.83dl/g、1.5モル%イソフタル酸共重合PET)
(2)ポリアミド樹脂(B)
 ポリメタキシリレンアジパミド(三菱ガス化学(株)製、商品名:「MXナイロンS6007」、数平均分子量Mn=23,000)のペレットを使用した。
(3)エポキシ官能性ポリマー(C)、マスターバッチ(X)
 エポキシ官能性ポリマー(BASF社製、商品名:「Joncryl ADR-4368」、重量平均分子量6,800、エポキシ価285g/mol)を使用した。本実施例で使用したポリマーは、少なくとも前記一般式(c1)及び(c2)で表される単位をそれぞれ有し、R1~R3がそれぞれ水素原子、R4がメチル基、xが31~34、yが22~25である。使用に際しては、PET樹脂(A)100質量部に対してエポキシ官能性ポリマー(C)30質量部を溶融混練して得られる樹脂組成物(マスターバッチ(X))を、真空乾燥機にて140℃5時間乾燥したものを用いた。
2.分析方法及び測定方法
 実施例及び比較例で使用した材料の物性並びにポリエステル系容器の物性は、以下の方法によって分析及び測定を行った。
(1)ポリアミド樹脂の末端基濃度
(a)末端アミノ基濃度([NH2]mmol/kg)
 ポリアミド樹脂0.5gを精秤し、フェノール/エタノール=4/1容量溶液30mlにポリアミドを撹拌下に溶解した。ポリアミドが完全に溶解した後、N/100塩酸で中和滴定して求めた。
(b)末端カルボキシル基濃度([COOH]mmol/kg)
 ポリアミド樹脂0.5gを精秤し、ベンジルアルコール30mlに窒素気流下160~180℃でポリアミドを撹拌下に溶解した。ポリアミドが完全に溶解した後、窒素気流下80℃まで冷却し、撹拌しながらメタノール10mlを加え、N/100水酸化ナトリウム水溶液で中和滴定して求めた。
(2)ポリアミド樹脂の数平均分子量
 ポリアミド樹脂のアミノ基濃度([NH2]mmol/kg)及びカルボキシル基濃度([COOH]mmol/kg)から、下式により数平均分子量(Mn)を算出した。
  Mn=2×106/([NH2]+[COOH])
(3)ポリエステル樹脂及びポリアミド樹脂の融点
 示差走査熱量計((株)島津製作所製、商品名:「DSC-60」)を用い、窒素気流下にて昇温速度10℃/minにて測定を行い、融解ピーク温度を融点とした。
(4)ヘイズ
 未延伸シート及び二軸延伸フィルムのヘイズは、JIS K7105に準じて、5cm×5cmに切出し、色彩・濁度同時測定器(日本電色工業(株)製、商品名:「COH-400」)を用いて測定した。
 ポリエステル系容器のヘイズは、JIS K7105に準じて、ボトル胴部を5cm×5cmに切出し、上記と同様に測定した。
(5)ポリエステル系容器の酸素透過率測定
 未延伸シート及び二軸延伸フィルムについては、酸素透過率測定装置(MOCON社製、商品名:「OX-TRAN 2/21SH」)を使用して、23℃、60%RHの条件にて0.3mmシート及び35μmフィルムの酸素透過率の測定を行った。数値が低いほど酸素の透過量が少なく好ましい。
 単層ボトルについては、酸素透過率測定装置(MOCON社製、商品名:「OX-TRAN 2/21」)を使用して、容器内部湿度100%RH、外湿度50%RH、温度23℃の条件にて酸素透過率の測定を行った。数値が低いほど酸素の透過量が少なく好ましい。
実施例1
 タンブラーに、ポリエステル樹脂(A)のPET1の乾燥したペレットとポリアミド樹脂(B)のペレットとを、ポリエステル樹脂/ポリアミド樹脂=95/5の質量比で添加し、それらのペレット全量100質量部に対し、予め作製しておいたマスターバッチ(X)0.1質量部(エポキシ官能性ポリマー(C)として0.0231質量部)を添加した後、10分間混合した。
 次いで、二軸押出機((株)プラスチック工学研究所製、スクリュー径:30mmφ、L/D=27)を用い、Tダイ法によりシリンダー温度250~275℃、Tダイ温度270℃、スクリュー回転数100rpm、冷却ロール温度75℃の条件下で成膜し、未延伸シート(幅25mm、厚さ約0.3mm)を得た。
 さらに、二軸延伸機((株)東洋精機製作所製)を用いて、上記未延伸シートを100℃で1分間予備加熱した後、線延伸速度3000mm/分、縦及び横方向の延伸倍率がそれぞれ3.0倍の条件で、縦及び横方向に同時に延伸し、厚さ約35μmの二軸延伸フィルムを得た。
実施例2
 マスターバッチ(X)の添加量を0.2質量部(エポキシ官能性ポリマー(C)として0.0462質量部)に変更したこと以外は実施例1と同様にして未延伸シート及び二軸延伸フィルムを得た。
比較例1
 マスターバッチ(X)を添加しなかったこと以外は実施例1と同様にして未延伸シート及び二軸延伸フィルムを得た。
 実施例及び比較例で得られた未延伸シート及び二軸延伸フィルムのヘイズ及び酸素透過率を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 所定量のエポキシ官能性ポリマー(C)を添加した実施例1及び2の未延伸シート及び二軸延伸フィルムは、エポキシ官能性ポリマー(C)を添加しなかった比較例1の未延伸シート及び二軸延伸フィルムに比べて、ガスバリア性を維持しつつ、透明性を大きく改善することができた。特に、二軸延伸フィルムではヘイズが増加せず透明性に優れることがわかる。
実施例3
 タンブラーに、ポリエステル樹脂(A)のPET1の乾燥したペレットとポリアミド樹脂(B)のペレットとを、ポリエステル樹脂/ポリアミド樹脂=95/5の質量比で添加し、それらのペレット全量100質量部に対し、マスターバッチ(X)0.1質量部(エポキシ官能性ポリマー(C)として0.0231質量部)を添加した後、10分間混合した。
 次いで、射出成形機(名機製作所(株)製、型式:「M200」、4個取り)を用いて、上記の混合したペレットを下記条件により射出成形し、単層プリフォーム(全長95mm、外径22mm、肉厚3.0mm)を得た。
<単層プリフォーム成形条件>
 射出シリンダー温度:260℃
 金型内樹脂流路温度:260℃
 金型冷却水温度  :22℃
 さらに、得られた単層プリフォームを冷却後、ブロー成形装置((株)フロンティア製、型式:「EFB1000ET」)を用いて、下記条件にて二軸延伸ブロー成形し、単層ボトル(高さ223mm、胴径65mm、容量500ml、肉厚0.3mm)を得た。
(二軸延伸ブロー成形条件)
 プリフォーム加熱温度:103℃
 延伸ロッド用圧力:0.5MPa
 一次ブロー圧力:0.5MPa
 二次ブロー圧力:2.5MPa
 一次ブロー遅延時間:0.32sec
 一次ブロー時間:0.28sec
 二次ブロー時間:2.0sec
 ブロー排気時間:0.6sec
 金型温度:30℃
実施例4
 マスターバッチ(X)の添加量を0.2質量部(エポキシ官能性ポリマー(C)として0.0462質量部)に変更したこと以外は実施例3と同様にして単層ボトルを得た。
比較例2
 マスターバッチ(X)を添加しなかったこと以外は実施例3と同様にして単層ボトルを得た。
比較例3
 マスターバッチ(X)の添加量を0.005質量部(エポキシ官能性ポリマー(C)として0.0012質量部)に変更したこと以外は実施例3と同様にして単層ボトルを得た。
 実施例及び比較例で得られた単層ボトルのヘイズ及び酸素透過率を表2に示す。
Figure JPOXMLDOC01-appb-T000006
 所定量のエポキシ官能性ポリマー(C)を添加した実施例3及び4の単層ボトルは、エポキシ官能性ポリマー(C)を添加しなかった比較例2の単層ボトルに比べて、ガスバリア性を維持しつつ、透明性を大きく改善することができた。また、エポキシ官能性ポリマー(C)をわずかに添加した比較例3の単層ボトルは、実施例3及び4の単層ボトルと異なり、透明性を改善することはできなかった。
実施例5
 ポリエステル樹脂(A)としてPET2を用いた以外は実施例3と同様にして単層ボトルを得た。
実施例6
 ポリエステル樹脂(A)としてPET2を用いた以外は実施例4と同様にして単層ボトルを得た。
比較例4
 ポリエステル樹脂(A)としてPET2を用いた以外は比較例2と同様にして単層ボトルを得た。
 実施例及び比較例で得られた単層ボトルのヘイズ及び酸素透過率を表3に示す。
Figure JPOXMLDOC01-appb-T000007
 所定量のエポキシ官能性ポリマー(C)を添加した実施例5及び6の単層ボトルは、エポキシ官能性ポリマー(C)を添加しなかった比較例4の単層ボトルに比べて、ガスバリア性を維持しつつ、透明性を大きく改善することができた。
 本発明のポリエステル系樹脂組成物及び成形体は、優れたガスバリア性及び透明性を両立することができ、シート、フィルム、包装容器、その他の各種成形品、複合材料(例えば、多層フィルム、多層容器)などとして有用である。

Claims (10)

  1.  芳香族ジカルボン酸単位とジオール単位とを含むポリエステル樹脂(A)80~98質量%、及びメタキシリレンジアミン単位を70モル%以上含むジアミン単位と、α,ω-脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位とを含むポリアミド樹脂(B)20~2質量%を含む樹脂成分100質量部に対し、下記一般式(c1)で表されるスチレン単位及び下記一般式(c2)で表されるグリシジル(メタ)アクリレート単位を含むエポキシ官能性ポリマー(C)0.005~0.1質量部を含有する、ポリエステル系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1~R4はそれぞれ独立して水素原子又は炭素数1~12のアルキル基を表す。]
  2.  前記エポキシ官能性ポリマー(C)が、下記一般式(c1)で表されるスチレン単位、下記一般式(c2)で表されるグリシジル(メタ)アクリレート単位、及び下記一般式(c3)で表される(メタ)アクリレート単位を含むポリマーである、請求項1に記載のポリエステル系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1~R5はそれぞれ独立して水素原子又は炭素数1~12のアルキル基を表し、R6は炭素数1~12のアルキル基を表す。]
  3.  前記ポリエステル樹脂(A)が、テレフタル酸単位を70モル%以上含む芳香族ジカルボン酸単位と、炭素数2~4の脂肪族グリコール単位を70モル%以上含むジオール単位とを含む、請求項1又は2に記載のポリエステル系樹脂組成物。
  4.  前記ポリエステル樹脂(A)が、芳香族ジカルボン酸単位中にスルホイソフタル酸金属塩単位を0.01~2モル%含む、請求項1~3のいずれかに記載のポリエステル系樹脂組成物。
  5.  前記一般式(c2)のR4が水素原子又はメチル基を表す、請求項1~4のいずれかに記載のポリエステル系樹脂組成物。
  6.  前記一般式(c3)中R5が水素原子又はメチル基を表す、請求項2~5のいずれかに記載のポリエステル系樹脂組成物。
  7.  前記一般式(c3)中のR6がメチル基を表す、請求項2~6のいずれかに記載のポリエステル系樹脂組成物。
  8.  下記工程1及び2を含む、請求項1~7のいずれかに記載のポリエステル系樹脂組成物の製造方法。
     工程1:芳香族ジカルボン酸単位とジオール単位とを含むポリエステル樹脂(A)100質量部に対してエポキシ官能性ポリマー(C)10~40質量部を溶融混練してマスターバッチ(X)を調製する工程。
     工程2:芳香族ジカルボン酸単位とジオール単位とを含むポリエステル樹脂(A)80~98質量%、及びメタキシリレンジアミン単位を70モル%以上含むジアミン単位と、α,ω-脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位とを含むポリアミド樹脂(B)20~2質量%を含む樹脂成分100質量部に対し、工程1で得られたマスターバッチ(X)を0.055~1.1質量部を溶融混練する工程。
  9.  請求項1~7のいずれかに記載のポリエステル系樹脂組成物からなる層を少なくとも1層有する成形体。
  10.  フィルム、シート又は容器である、請求項9に記載の成形体。
PCT/JP2013/056230 2012-03-09 2013-03-07 ポリエステル系樹脂組成物及びその製造方法、並びに該樹脂組成物を用いた成形体 WO2013133352A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380013160.3A CN104159970B (zh) 2012-03-09 2013-03-07 聚酯系树脂组合物以及其制造方法、以及使用该树脂组合物的成型体
US14/383,885 US20150030793A1 (en) 2012-03-09 2013-03-07 Polyester-based resin composition, method for producing same, and molding using resin composition
KR1020147025044A KR101991502B1 (ko) 2012-03-09 2013-03-07 폴리에스테르계 수지 조성물 및 그 제조 방법, 그리고 이 수지 조성물을 이용한 성형체
RU2014140749A RU2623261C2 (ru) 2012-03-09 2013-03-07 Композиция на основе полиэфирной смолы, способ ее получения и формованное изделие с использованием такой композиции
EP13758503.0A EP2824145B1 (en) 2012-03-09 2013-03-07 Polyester-based resin composition, method for producing same, and molding using resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-053778 2012-03-09
JP2012053778A JP6028343B2 (ja) 2012-03-09 2012-03-09 ポリエステル系樹脂組成物

Publications (1)

Publication Number Publication Date
WO2013133352A1 true WO2013133352A1 (ja) 2013-09-12

Family

ID=49116821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056230 WO2013133352A1 (ja) 2012-03-09 2013-03-07 ポリエステル系樹脂組成物及びその製造方法、並びに該樹脂組成物を用いた成形体

Country Status (8)

Country Link
US (1) US20150030793A1 (ja)
EP (1) EP2824145B1 (ja)
JP (1) JP6028343B2 (ja)
KR (1) KR101991502B1 (ja)
CN (1) CN104159970B (ja)
RU (1) RU2623261C2 (ja)
TW (1) TW201343778A (ja)
WO (1) WO2013133352A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094542A1 (ja) * 2015-12-01 2017-06-08 三菱瓦斯化学株式会社 ポリエステル系樹脂組成物及びその製造方法、成形体及びその製造方法、並びに、マスターバッチ
WO2017150109A1 (ja) * 2016-02-29 2017-09-08 三菱瓦斯化学株式会社 塩素系液体漂白剤組成物用容器及び漂白剤物品
US10066099B2 (en) * 2013-12-25 2018-09-04 Mitsubishi Gas Chemical Company, Inc. Polyester-based resin composition, and molded body using the resin composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201502B2 (ja) * 2013-08-09 2017-09-27 東洋製罐株式会社 透明性に優れた樹脂組成物及びその製造方法
JP6013553B1 (ja) * 2015-04-30 2016-10-25 株式会社イノアックコーポレーション 樹脂組成物と中空成形体
US11441028B2 (en) 2017-05-03 2022-09-13 Solvay Specialty Polymers Usa, Llc Polyamide polymer compositions
KR20190055573A (ko) * 2017-11-15 2019-05-23 에스케이케미칼 주식회사 폴리아미드 수지 조성물 및 이를 포함하는 수지 성형품
SE543550C2 (en) * 2018-10-04 2021-03-23 Stora Enso Oyj Paper and paperboard coated with a pet copolymer resin
ES2937083T3 (es) * 2019-02-14 2023-03-23 Basf Se Composición hilable (sc) y fibras de poliéster (pf) fabricadas a partir de las mismas
WO2023153522A1 (ja) * 2022-02-14 2023-08-17 東洋インキScホールディングス株式会社 ポリエステル樹脂成形体の製造方法、並びにマスターバッチおよびその製造方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890033A (ja) 1981-11-13 1983-05-28 株式会社吉野工業所 ポリエチレンテレフタレート樹脂製壜体
JPS58160344A (ja) 1982-03-17 1983-09-22 Toyobo Co Ltd ガスバリア−性の優れたポリエステル中空成形体
JPS62187761A (ja) * 1985-12-23 1987-08-17 ゼネラル・エレクトリツク・カンパニイ ポリアミドとエポキシ官能性化合物を含有する熱可塑性ブレンド
JPH03130125A (ja) 1989-07-27 1991-06-03 Ajinomoto Co Inc ガスバリヤー性を有する樹脂構成体およびその製造方法ならびに製造に使用される樹脂組成物
JPH04239056A (ja) * 1991-01-11 1992-08-26 Daicel Chem Ind Ltd 熱可塑性樹脂組成物
JPH055058A (ja) * 1991-06-27 1993-01-14 Daicel Chem Ind Ltd フイルムまたはシート
JPH05214223A (ja) * 1992-01-31 1993-08-24 Polyplastics Co ブロー成形用樹脂組成物およびその中空成形品
JPH05214244A (ja) * 1992-01-31 1993-08-24 Polyplastics Co 成形用樹脂組成物
JPH08183092A (ja) 1994-12-28 1996-07-16 Unitika Ltd 2軸配向ポリエステルフイルムおよびその製造方法
JPH093308A (ja) * 1995-06-22 1997-01-07 Kanegafuchi Chem Ind Co Ltd 合成樹脂製電気・電子部品
JP2002128999A (ja) * 2000-10-31 2002-05-09 Mitsubishi Engineering Plastics Corp ポリエステル樹脂組成物およびこの樹脂組成物よりなる自動車用部品
JP2002161199A (ja) * 2000-11-24 2002-06-04 Daicel Chem Ind Ltd 難燃性樹脂組成物
JP2006206921A (ja) * 2006-04-27 2006-08-10 Denso Corp ポリエステル樹脂組成物よりなる自動車用部品
JP2010235804A (ja) * 2009-03-31 2010-10-21 Teijin Chem Ltd 自動車燃料部品用の熱可塑性樹脂材料
JP2011037989A (ja) 2009-08-11 2011-02-24 Mitsubishi Gas Chemical Co Inc ポリエステル系容器
JP2011132394A (ja) 2009-12-25 2011-07-07 Mitsubishi Gas Chemical Co Inc 二軸延伸中空容器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3018272A (en) * 1955-06-30 1962-01-23 Du Pont Sulfonate containing polyesters dyeable with basic dyes
ATE356842T1 (de) * 2002-02-01 2007-04-15 Basf Corp Oligomere kettenverlängerer zur behandlung und nachbehandlung sowie dem recycling von kondensationspolymeren, darauf basierende zusammensetzungen und anwendungen derselben
US7195820B2 (en) * 2003-12-09 2007-03-27 Arkema Inc. Core-shell polymers having hydrophilic shells for improved shell coverage and anti-blocking properties
JP4645809B2 (ja) * 2004-12-24 2011-03-09 東亞合成株式会社 熱可塑性樹脂組成物
EP2505354B1 (en) * 2005-07-08 2016-10-19 Mitsubishi Gas Chemical Company, Inc. Multi-layered bottle
US8465818B2 (en) * 2005-10-07 2013-06-18 M & G Usa Corporation Polyamides and polyesters blended with a lithium salt interfacial tension reducing agent
CN102348761A (zh) * 2009-03-13 2012-02-08 巴斯夫欧洲公司 聚酯和聚酰胺的稳定共混物

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890033A (ja) 1981-11-13 1983-05-28 株式会社吉野工業所 ポリエチレンテレフタレート樹脂製壜体
JPS58160344A (ja) 1982-03-17 1983-09-22 Toyobo Co Ltd ガスバリア−性の優れたポリエステル中空成形体
JPS62187761A (ja) * 1985-12-23 1987-08-17 ゼネラル・エレクトリツク・カンパニイ ポリアミドとエポキシ官能性化合物を含有する熱可塑性ブレンド
JPH03130125A (ja) 1989-07-27 1991-06-03 Ajinomoto Co Inc ガスバリヤー性を有する樹脂構成体およびその製造方法ならびに製造に使用される樹脂組成物
JPH04239056A (ja) * 1991-01-11 1992-08-26 Daicel Chem Ind Ltd 熱可塑性樹脂組成物
JPH055058A (ja) * 1991-06-27 1993-01-14 Daicel Chem Ind Ltd フイルムまたはシート
JPH05214223A (ja) * 1992-01-31 1993-08-24 Polyplastics Co ブロー成形用樹脂組成物およびその中空成形品
JPH05214244A (ja) * 1992-01-31 1993-08-24 Polyplastics Co 成形用樹脂組成物
JPH08183092A (ja) 1994-12-28 1996-07-16 Unitika Ltd 2軸配向ポリエステルフイルムおよびその製造方法
JPH093308A (ja) * 1995-06-22 1997-01-07 Kanegafuchi Chem Ind Co Ltd 合成樹脂製電気・電子部品
JP2002128999A (ja) * 2000-10-31 2002-05-09 Mitsubishi Engineering Plastics Corp ポリエステル樹脂組成物およびこの樹脂組成物よりなる自動車用部品
JP2002161199A (ja) * 2000-11-24 2002-06-04 Daicel Chem Ind Ltd 難燃性樹脂組成物
JP2006206921A (ja) * 2006-04-27 2006-08-10 Denso Corp ポリエステル樹脂組成物よりなる自動車用部品
JP2010235804A (ja) * 2009-03-31 2010-10-21 Teijin Chem Ltd 自動車燃料部品用の熱可塑性樹脂材料
JP2011037989A (ja) 2009-08-11 2011-02-24 Mitsubishi Gas Chemical Co Inc ポリエステル系容器
JP2011132394A (ja) 2009-12-25 2011-07-07 Mitsubishi Gas Chemical Co Inc 二軸延伸中空容器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066099B2 (en) * 2013-12-25 2018-09-04 Mitsubishi Gas Chemical Company, Inc. Polyester-based resin composition, and molded body using the resin composition
WO2017094542A1 (ja) * 2015-12-01 2017-06-08 三菱瓦斯化学株式会社 ポリエステル系樹脂組成物及びその製造方法、成形体及びその製造方法、並びに、マスターバッチ
JPWO2017094542A1 (ja) * 2015-12-01 2018-09-13 三菱瓦斯化学株式会社 ポリエステル系樹脂組成物及びその製造方法、成形体及びその製造方法、並びに、マスターバッチ
US11130859B2 (en) 2015-12-01 2021-09-28 Mitsubishi Gas Chemical Company, Inc. Polyester-based resin composition and production process therefor, molded object and production process therefor, and masterbatch
WO2017150109A1 (ja) * 2016-02-29 2017-09-08 三菱瓦斯化学株式会社 塩素系液体漂白剤組成物用容器及び漂白剤物品
JPWO2017150109A1 (ja) * 2016-02-29 2018-12-20 三菱瓦斯化学株式会社 塩素系液体漂白剤組成物用容器及び漂白剤物品

Also Published As

Publication number Publication date
EP2824145A4 (en) 2015-10-21
CN104159970A (zh) 2014-11-19
TW201343778A (zh) 2013-11-01
RU2623261C2 (ru) 2017-06-23
US20150030793A1 (en) 2015-01-29
RU2014140749A (ru) 2016-04-27
KR101991502B1 (ko) 2019-06-20
CN104159970B (zh) 2016-05-25
EP2824145A9 (en) 2015-04-29
JP2013185138A (ja) 2013-09-19
EP2824145A1 (en) 2015-01-14
JP6028343B2 (ja) 2016-11-16
EP2824145B1 (en) 2018-08-29
KR20140135970A (ko) 2014-11-27

Similar Documents

Publication Publication Date Title
JP6028343B2 (ja) ポリエステル系樹脂組成物
EP1046674B1 (en) Polyester resin composition
JP4573060B2 (ja) ポリエステル系樹脂組成物および成形体
JP5609039B2 (ja) ポリエステル系容器
KR102200506B1 (ko) 폴리에스테르계 수지조성물 및 이 수지조성물을 이용한 성형체
JP5446571B2 (ja) ポリエステル系容器
JP5396692B2 (ja) ポリエステル樹脂組成物の製造法
JP2011132394A (ja) 二軸延伸中空容器
KR101302924B1 (ko) 폴리에스테르 수지 조성물 및 그 제조 방법, 및 성형체
JP5585024B2 (ja) ポリエステル系容器
JP5564851B2 (ja) ポリエステル系容器
JP2003113295A (ja) ポリエステル系樹脂組成物および成形体
JP5549046B2 (ja) ポリエステル樹脂組成物
JP5098373B2 (ja) ポリエステル樹脂組成物の製造法
JP2018053033A (ja) ポリアミド樹脂組成物および多層成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147025044

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14383885

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013758503

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014140749

Country of ref document: RU

Kind code of ref document: A