WO2013129520A1 - 水系コーティング剤およびガスバリア性フィルム - Google Patents

水系コーティング剤およびガスバリア性フィルム Download PDF

Info

Publication number
WO2013129520A1
WO2013129520A1 PCT/JP2013/055232 JP2013055232W WO2013129520A1 WO 2013129520 A1 WO2013129520 A1 WO 2013129520A1 JP 2013055232 W JP2013055232 W JP 2013055232W WO 2013129520 A1 WO2013129520 A1 WO 2013129520A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gas barrier
polyurethane resin
film
inorganic layered
Prior art date
Application number
PCT/JP2013/055232
Other languages
English (en)
French (fr)
Inventor
神永 純一
陽美 松本
沙耶佳 星
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to CN201380011253.2A priority Critical patent/CN104136560A/zh
Priority to KR1020147023640A priority patent/KR20140130138A/ko
Priority to JP2014502334A priority patent/JP6176239B2/ja
Publication of WO2013129520A1 publication Critical patent/WO2013129520A1/ja
Priority to US14/470,139 priority patent/US9657195B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3275Hydroxyamines containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/722Combination of two or more aliphatic and/or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8048Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/34
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/251Mica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof

Definitions

  • the present invention relates to water-based coating agents and gas barrier properties used in the packaging field of foods that do not like moisture and oxygen, such as dried foods, confectionery, bread, delicacy, and pharmaceuticals such as disposable warmers, tablets, powdered drugs, poultices, patches, etc.
  • the present invention relates to a water-based coating agent, a gas barrier film, and a gas barrier laminate that are used in the packaging field that requires high gas barrier properties and transparency that allows the contents to be recognized.
  • a property (gas barrier property) for blocking the ingress of gas is required.
  • the gas barrier layer has been provided on a substrate such as a film or paper by a sputtering method, a vapor deposition method, a wet coating method, a printing method, or the like.
  • a metal foil made of a metal such as aluminum, a metal vapor deposition film, a resin film such as polyvinyl alcohol, an ethylene-vinyl alcohol copolymer, or polyvinylidene chloride is used (for example, Patent Documents 1 to 4). 5).
  • metal foil and metal vapor-deposited film are excellent in gas barrier properties, they are opaque, so the contents cannot be confirmed, or because they are inferior in elasticity, cracks occur at a few percent elongation, and gas barrier There are a number of problems, such as reduced performance and the need to dispose of it as non-combustible material upon disposal after use.
  • a gas barrier film having a resin film such as polyvinyl alcohol or ethylene-vinyl alcohol copolymer shows excellent gas barrier properties under low humidity, but the gas barrier properties decrease with increasing humidity, and the humidity is 70% RH. Since the gas barrier property is lost as described above, there is a limit in use.
  • a method has been proposed in which an inorganic layered compound is added to polyvinyl alcohol, ethylene-vinyl alcohol copolymer or the like to reduce the humidity dependency.
  • this method does not lead to a sufficient improvement, has the adverse effect of lowering the adhesion between the base material and the resin film, and it is difficult to obtain sufficient strength as a packaging material.
  • a gas barrier film having a resin film such as polyvinylidene chloride has low humidity dependency and excellent gas barrier properties. However, it may become a source of harmful substances during disposal, etc.
  • a gas barrier material that does not contain a system material There is a need for a gas barrier material that does not contain a system material. Accordingly, there has been a strong demand for a gas barrier resin film that is a material that does not contain a chlorine-based substance, has a high gas barrier property even in a high humidity atmosphere, and has good adhesion to a substrate.
  • a gas barrier film is proposed in which water-based polyurethane is added to a composite of the above-mentioned polyvinyl alcohol or ethylene-vinyl alcohol copolymer and an inorganic layered compound to improve the adhesion between the gas barrier resin film and the substrate.
  • this gas barrier film has insufficient gas barrier properties in a high humidity atmosphere of 80% RH or higher.
  • a gas barrier resin laminated film having a low humidity dependency and a polyurethane resin having a high urethane group concentration and a urea group concentration, and a polyamine compound has been proposed (for example, (See Patent Document 7).
  • this gas barrier resin laminated film is inferior in gas barrier property to the resin film made of polyvinylidene chloride and the like, and its application range as a gas barrier packaging material is limited. Furthermore, in a laminate in which a heat-sealable resin layer is laminated via an adhesive on a gas barrier film, the initial laminate strength is good, but if it is stored for a long time in a high-humidity atmosphere, the time elapses. Along with this, the laminate strength is lowered, and a problem that peeling occurs in a part of the laminated film (hereinafter referred to as “delamination”) is also considered.
  • JP 2001-287294 A JP-A-11-165369 JP-A-6-93133 JP-A-9-150484 Japanese Patent No. 3764109 Japanese Patent No. 3351208 Japanese Patent No. 4434907
  • the present invention has been made in view of the above circumstances, and is excellent in gas barrier properties in a high-humidity atmosphere, and also has good adhesion to a base film, an aqueous coating agent, a gas barrier film, and delamination. It aims at providing the gas-barrier laminated body which does not generate
  • the aqueous coating agent according to the first aspect of the present invention mainly comprises an aqueous polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound, a water-soluble polymer (B), and an inorganic layered mineral (C).
  • the solid content ratio of the water-based polyurethane resin (A), the water-soluble polymer (B) and the inorganic layered mineral (C) contained as a component in the total solid content is in the following range, and the total solid content
  • the partial concentration is 5% by mass or more, and the viscosity at 23 ° C. is 50 mPa ⁇ s or less.
  • the water-soluble polymer (B) is preferably a polyvinyl alcohol resin having a saponification degree of 95% or more and a polymerization degree of 300 to 2000.
  • the inorganic layered mineral (C) is preferably water-swellable synthetic mica.
  • the gas barrier film according to the second aspect of the present invention is a water base polyurethane resin comprising a base film made of a plastic material, a polyurethane resin having an acid group and a polyamine compound formed on one or both sides of the base film.
  • A a water-soluble polymer (B) and a film mainly composed of an inorganic layered mineral (C), the aqueous polyurethane resin (A) occupying in the film, the water-soluble polymer (B) ) And the ratio of the inorganic layered mineral (C) are in the following ranges.
  • the water-soluble polymer (B) is preferably a polyvinyl alcohol resin having a saponification degree of 95% or more and a polymerization degree of 300 to 2000.
  • the inorganic layered mineral (C) is preferably water-swellable synthetic mica.
  • the gas barrier laminate according to the third aspect of the present invention is a laminate in which at least a gas barrier layer, a protective layer, an adhesive layer, and a heat sealable resin layer are sequentially laminated on a base film made of a plastic material
  • the gas barrier layer is a film mainly composed of an aqueous polyurethane resin (A1) containing a polyurethane resin having an acid group and a polyamine compound, a water-soluble polymer (B1) and an inorganic layered mineral (C1),
  • the blending ratio of the water-based polyurethane resin (A1), the water-soluble polymer (B1) and the inorganic layered mineral (C1) in the film is in the range described below.
  • the water-soluble polymer (B1) is preferably a polyvinyl alcohol resin having a saponification degree of 95% or more and a polymerization degree of 300 to 2000.
  • the inorganic layered mineral (C1) is preferably water-swellable synthetic mica.
  • the protective layer is formed by wet coating of any one of polyurethane, isocyanate, polybutadiene, polyethyleneimine, polyester, or acrylic polyol. preferable.
  • the water-based coating agent of the first aspect of the present invention contains an aqueous polyurethane resin (A), a water-soluble polymer (B), and an inorganic layered mineral (C) as main components, and the solid content blending ratio thereof is within a predetermined range.
  • the film made of an aqueous coating agent has excellent gas barrier properties in a high-humidity atmosphere, and also has good adhesion to the substrate and cohesion. Therefore, a gas barrier film having the above film is used as a packaging material. By using it, the quality maintenance of the contents can be improved and used as various packaging materials.
  • the viscosity of the aqueous coating agent of the first aspect of the present invention is low despite the high solid content concentration, the productivity can be increased in the coating process on the substrate.
  • the gas barrier film according to the second aspect of the present invention has a film mainly composed of an aqueous polyurethane resin (A), a water-soluble polymer (B), and an inorganic layered mineral (C), and the blending ratio of these solid components.
  • A aqueous polyurethane resin
  • B water-soluble polymer
  • C inorganic layered mineral
  • the gas barrier laminate of the third aspect of the present invention is a laminate in which at least a gas barrier layer, a protective layer, an adhesive layer, and a heat sealable resin layer are sequentially laminated on a base film made of a plastic material
  • the gas barrier layer is a film mainly composed of an aqueous polyurethane resin (A1) containing a polyurethane resin having an acid group and a polyamine compound, a water-soluble polymer (B1) and an inorganic layered mineral (C1).
  • A1 aqueous polyurethane resin
  • B1 water-soluble polymer
  • C1 inorganic layered mineral
  • the protective layer is formed by forming a polyurethane-based, isocyanate-based, polybutadiene-based, polyethyleneimine-based, polyester-based, or acrylic polyol-based material by a wet coating method. It can be easily and inexpensively manufactured using conventional general materials and processing machines without deteriorating gas barrier properties and laminate strength in a high humidity atmosphere.
  • the water-based coating agent of the first embodiment of the present invention mainly comprises an aqueous polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound, a water-soluble polymer (B), and an inorganic layered mineral (C).
  • the solid content blending ratio of the aqueous polyurethane resin (A), the water-soluble polymer (B) and the inorganic layered mineral (C) in the total solid content is as follows, and the total solid content concentration is as follows: The viscosity at 23 ° C. is 5% by mass or more and 50 mPa ⁇ s or less.
  • Examples of the acid group of the polyurethane resin (anionic self-emulsifying polyurethane resin) constituting the aqueous polyurethane resin (A) include a carboxyl group and a sulfonic acid group.
  • the acid group may be located at the end of the polyurethane resin or the side chain of the polyurethane resin, but it needs to be located at least in the side chain of the polyurethane resin.
  • This acid group can usually be neutralized with a neutralizing agent (base) and may form a salt with the base.
  • the acid group can be bonded to the amino group (imino group or tertiary nitrogen atom) of the polyamine compound constituting the aqueous polyurethane resin (A).
  • the acid value of the polyurethane resin can be selected within a range where water solubility or water dispersibility can be imparted, but is usually 5 to 100 mgKOH / g, and is 10 to 70 mgKOH / g (for example, 10 to 60 mgKOH / g). It is preferably 15 to 60 mg KOH / g (for example, 16 to 50 mg KOH / g).
  • the total concentration of urethane groups and urea groups (urea groups) in the polyurethane resin is usually preferably 15% by mass or more, more preferably 20 to 60% by mass from the viewpoint of gas barrier properties.
  • the urethane group concentration and the urea group concentration are the molecular weight of the urethane group (59 g / equivalent) or the molecular weight of the urea group (primary amino group (amino group): 58 g / equivalent, secondary amino group (imino group): 57 g / (Equivalent)) is a value obtained by dividing the molecular weight of the repeating structural unit of the polyurethane resin.
  • the urethane group concentration and the urea group concentration can be calculated based on the charging ratio of each reaction component, that is, the use ratio of each component.
  • Polyurethane resins usually have at least rigid units (units composed of hydrocarbon rings) and short chain units (for example, units composed of hydrocarbon chains). That is, the repeating structural unit of the polyurethane resin is usually derived from a polyisocyanate component, a polyhydroxy acid component, a polyol component or a chain extender component (especially at least a polyisocyanate component), and a hydrocarbon ring (aromatic and / or Non-aromatic hydrocarbon ring).
  • the proportion of units composed of hydrocarbon rings in the repeating structural unit of the polyurethane resin is usually 10 to 70% by mass, preferably 15 to 65% by mass, and more preferably 20 to 60% by mass.
  • the number average molecular weight of the polyurethane resin can be appropriately selected, but is preferably 800 to 1,000,000, more preferably 800 to 200,000, and further preferably 800 to 100,000. preferable.
  • the polyurethane resin may be a crystalline polyurethane resin in order to improve gas barrier properties.
  • the glass transition point of the polyurethane resin is preferably 100 ° C. or higher (eg, about 100 to 200 ° C.), more preferably 110 ° C. or higher (eg, about 110 to 180 ° C.), and 120 ° C. or higher. More preferably (for example, about 120 to 150 ° C.).
  • the aqueous polyurethane resin (A) usually contains a neutralizing agent and is formed in a state where the polyurethane resin is dissolved or dispersed in an aqueous medium.
  • the aqueous medium include water, a water-soluble solvent, a hydrophilic solvent, and a mixed solvent thereof.
  • the aqueous medium is usually water or an aqueous solvent containing water as a main component.
  • the hydrophilic solvent include alcohols such as ethanol and isopropanol; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; cellosolves; carbitols; and nitriles such as acetonitrile.
  • the aqueous polyurethane resin (A) may be in any form of an aqueous solution in which the above polyurethane resin is dissolved in an aqueous medium, or an aqueous dispersion in which the above polyurethane resin is dispersed in an aqueous medium.
  • the average particle diameter of the dispersed particles (polyurethane resin particles) is not particularly limited, and is, for example, 20 to 500 nm, preferably 25 to 300 nm, and more preferably 30 to 200 nm.
  • the production method of the water-based polyurethane resin (A) is not particularly limited, and usual polyurethane resin water-based technologies such as an acetone method and a prepolymer method are used.
  • a urethanization catalyst such as an amine catalyst, a tin catalyst, or a lead catalyst may be used as necessary.
  • a polyisocyanate compound for example, in an inert organic solvent such as ketones such as acetone, ethers such as tetrahydrofuran, and nitriles such as acetonitrile, a polyisocyanate compound, a polyhydroxy acid, and, if necessary, a polyol component and / or a chain extender
  • An aqueous polyurethane resin (A) can be prepared by reacting the components. More specifically, a polyisocyanate compound, a polyhydroxy acid, and a polyol component are reacted in an inert organic solvent (especially a hydrophilic or water-soluble organic solvent), and a prepolymer having an isocyanate group at the terminal is reacted.
  • An aqueous polyurethane resin (A) can be prepared by forming a polymer, neutralizing with a neutralizing agent, dissolving or dispersing in an aqueous medium, adding a chain extender component to react, and removing an organic solvent. .
  • the gas barrier property is expressed by bonding a polyamine compound as a crosslinking agent and an acid group of the polyurethane resin.
  • the bond between the polyamine compound and the acid group of the polyurethane resin may be an ionic bond (for example, an ionic bond between a tertiary amino group and a carboxyl group) or a covalent bond (for example, an amide bond).
  • a polyamine compound various polyamines having two or more basic nitrogen atoms selected from the group consisting of a primary amino group, a secondary amino group, and a tertiary amino group are used.
  • the polyamine compound constituting the aqueous polyurethane resin (A) is not particularly limited as long as it is a polyamine compound that can bind to an acid group and improve gas barrier properties, and various compounds are used.
  • the polyamine compound usually has an amine value of 100 to 1900 mgKOH / g, preferably 150 to 1900 mgKOH / g (for example, 200 to 1700 mgKOH / g), more preferably 200 to 1900 mgKOH / g (for example, 300 to 1500 mgKOH / g). These polyamines are used.
  • the amine value of the polyamine compound may be about 300 to 1900 mgKOH / g.
  • the water-soluble polymer (B) is a polymer that can be completely dissolved or finely dispersed in water at room temperature.
  • the water-soluble polymer (B) is not particularly limited as long as it is a compound that can penetrate and coordinate (intercalate) between unit crystal layers of the inorganic layered mineral (C) described later,
  • polyvinyl alcohol and derivatives thereof cellulose derivatives such as carboxymethylcellulose and hydroxyethylcellulose, starches such as oxidized starch, etherified starch and dextrin, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid or esters thereof, salts and their Polymers, copolymer polyesters containing polar groups such as sulfoisophthalic acid, vinyl polymers such as polyhydroxyethyl methacrylate and copolymers thereof, urethane polymers, or functional groups such as carboxyl groups of these various polymers Group modification weight Body and the like.
  • the water-soluble polymer (B) at least one kind is preferably a polyvinyl alcohol polymer and a derivative of the polyvinyl alcohol polymer, and particularly preferably a polyvinyl alcohol having a saponification degree of 95% or more and a polymerization degree of 300 to 2000. Resin. The higher the degree of saponification and polymerization, the lower the hygroscopic swelling property of the polyvinyl alcohol resin. If the saponification degree of the polyvinyl alcohol resin is lower than 95%, it is difficult to obtain a sufficient gas barrier property. On the other hand, when the polymerization degree of the polyvinyl alcohol resin is lower than 300, the gas barrier property is lowered.
  • the inorganic layered mineral (C) is an inorganic compound in which ultrathin unit crystal layers overlap to form one layered particle.
  • the inorganic layered mineral (C) those which swell and cleave in water are preferable, and among these, clay compounds having swelling properties in water are particularly preferably used. More specifically, it is a clay compound having the property of coordinating and absorbing / swelling water between ultrathin unit crystal layers, and generally has a tetrahedral structure in which Si 4+ is coordinated to O 2 ⁇ . And a layer in which Al 3+ , Mg 2+ , Fe 2+ , Fe 3+, etc. are coordinated to O 2 ⁇ and OH ⁇ to form an octahedral structure are 1: 1 or 2: 1. It is a compound that forms a layered structure. This clay compound may be a natural compound or a synthesized compound.
  • Representative inorganic layered minerals (C) include hydrated silicates such as phyllosilicate minerals, kaolinite clay minerals such as halloysite, kaolinite, enderite, dickite, nacrite, antigolite, chrysotile, etc.
  • Antigolite clay minerals montmorillonite, beidellite, nontronite, saponite, hectorite, saconite, stevensite and other smectite clay minerals, vermiculite and other vermiculite clay minerals, muscovite and phlogopite mica, margarite Mica or mica clay minerals such as tetrasilic mica and teniolite.
  • inorganic layered minerals (C) are used alone or in combination of two or more.
  • smectite group clay minerals such as montmorillonite and mica group clay minerals such as water-swellable mica are particularly preferable.
  • the size of the inorganic layered mineral (C) is preferably an average particle size of 10 ⁇ m or less and a thickness of 500 nm or less.
  • the inorganic layered minerals (C) at least one of them is particularly preferably a water-swellable synthetic mica having an average particle diameter of 1 to 10 ⁇ m and a thickness of 10 to 100 nm.
  • the water-swellable synthetic mica is highly compatible with the water-based polyurethane resin (A) and the water-soluble polymer (B), Since there are few impurities compared with mica, the gas barrier property and the film cohesive force derived from impurities are not reduced.
  • the water-swellable synthetic mica since the water-swellable synthetic mica has a fluorine atom in the crystal structure, it contributes to reducing the humidity dependence of the gas barrier property of the film made of the aqueous coating agent. Furthermore, the water-swellable synthetic mica has a higher aspect ratio than other water-swellable inorganic layered minerals, so the maze effect works more effectively, especially for the gas barrier property of a film made of an aqueous coating agent. Contributes to high expression.
  • the solid content ratio of the aqueous polyurethane resin (A) in the total solid content is less than 50% by mass, the wettability, adhesion, water resistance, and moisture resistance of the film made of the aqueous coating agent to the base film , Film cohesive strength is insufficient.
  • the solid content blending ratio of the aqueous polyurethane resin (A) exceeds 80% by mass, the gas barrier property of the film made of the aqueous coating agent is lowered.
  • the solid content blending ratio of the water-soluble polymer (B) in the total solid content is less than 5% by mass, the cohesive strength as a film made of an aqueous coating agent is lowered.
  • the gas barrier property of the film made of the aqueous coating agent in a high humidity condition is lowered.
  • the solid content ratio of the inorganic layered mineral (C) in the total solid content is less than 10% by mass, sufficient gas barrier properties cannot be obtained for a film made of an aqueous coating agent.
  • the solid content blending ratio of the inorganic layered mineral (C) exceeds 30% by mass, the adhesion of the film made of the aqueous coating agent to the base film and the cohesive strength of the film made of the aqueous coating agent are lowered.
  • water-based coating agent of the first embodiment of the present invention when added with a water-soluble or water-dispersible reactive curing agent, it further improves substrate adhesion, film cohesive strength, water / solvent resistance. Can do.
  • reactive curing agents include water-dispersible (water-soluble) polyisocyanates, water-dispersible (water-soluble) carbodiimides, water-soluble epoxy compounds, water-dispersible (water-soluble) oxazolidone compounds, water-soluble aziridine compounds, and the like.
  • the aqueous coating agent of the first embodiment of the present invention may contain various additives as long as the gas barrier property and the strength as a laminated film for packaging are not impaired.
  • additives include antioxidants, weathering agents, heat stabilizers, lubricants, crystal nucleating agents, ultraviolet absorbers, plasticizers, antistatic agents, colorants, fillers, surfactants, and silane coupling agents. Can be mentioned.
  • the water-based coating agent of the first embodiment of the present invention may contain a solvent that contains water as a main component and is dissolved or uniformly mixed in water.
  • the solvent include alcohols such as methanol, ethanol and isopropanol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran, nitriles such as cellosolves, carbitols and acetonitrile.
  • the aqueous coating agent according to the first embodiment of the present invention has a total solid content concentration of 5% by mass or more including the aqueous polyurethane resin (A), the water-soluble polymer (B), and the inorganic layered mineral (C). Since the viscosity at 23 ° C. is 50 mPa ⁇ s or less, it can be applied to various coating methods described later and exhibits good coatability.
  • the aqueous coating agent of the first embodiment of the present invention preferably has a total solid content concentration of 8% by mass or more, a viscosity at 23 ° C. of 10 to 50 mPa ⁇ s, and a total solid content concentration of 10% by mass or more. More preferably, the viscosity at 10 ° C. is 10 to 40 mPa ⁇ s.
  • the aqueous coating agent of the first embodiment of the present invention contains an aqueous polyurethane resin (A), a water-soluble polymer (B), and an inorganic layered mineral (C) as main components, and is an aqueous solution that occupies the total solid content.
  • the solid content ratio of the polyurethane resin (A), the water-soluble polymer (B) and the inorganic layered mineral (C) is 50 to 80% by mass of the water-based polyurethane resin (A), and 5 to 20 mass of the water-soluble polymer (B). %,
  • the inorganic layered mineral (C) is 10 to 30% by mass, and does not contain any material that may be a source of harmful substances when discarded.
  • the water-based polyurethane resin (A) has a gas barrier property due to its rigid molecular skeleton, unlike a general polyurethane resin, and, like a general polyurethane resin, a dry film is insoluble in water. It becomes a gas barrier film with low dependency.
  • the gas barrier property of the aqueous polyurethane resin (A) alone is greatly inferior to that of polyvinylidene chloride resin and the like. Therefore, by adding the inorganic layered mineral (C), the gas barrier property is improved according to the amount added, and a gas barrier property equal to or higher than that of the polyvinylidene chloride resin is obtained.
  • a gas barrier film in which a water-soluble polymer (B) (for example, a polyvinyl alcohol resin) and a water-swellable inorganic layered mineral (C) are combined has been conventionally known. Since the cohesive strength and adhesion strength to the substrate are reduced, it is necessary to add a crosslinking component. However, the addition of the cross-linking component hinders uniform molecular arrangement with high gas barrier properties, and increases the film thickness obtained by combining the water-soluble polymer (B) and the water-swellable inorganic layered mineral (C). It was extremely difficult to achieve both high gas barrier properties and sufficient adhesion strength in a humidity atmosphere.
  • the water-based coating agent of the first embodiment of the present invention includes an aqueous polyurethane resin (A), a water-soluble polymer (B), and an inorganic layered mineral (C) as main components, and the solid content blending ratio thereof is within a predetermined range.
  • A aqueous polyurethane resin
  • B water-soluble polymer
  • C inorganic layered mineral
  • the film made of the aqueous coating agent according to the first embodiment of the present invention has excellent gas barrier properties in a high humidity atmosphere and has good adhesion to the substrate and cohesion, the gas barrier film having the above film By using as a packaging material, it is possible to improve the quality retention of the contents and to utilize it as various packaging materials.
  • the aqueous coating agent of 1st Embodiment of this invention has a low viscosity in spite of high solid content concentration, it also has the effect of improving productivity in the coating process to a base material etc.
  • the aqueous coating agent according to the first embodiment of the present invention can reduce the generation of harmful substances at the time of disposal.
  • the gas barrier film according to the second embodiment of the present invention is a water base polyurethane resin (a polyurethane film having an acid group and a polyamine compound formed on one or both sides of a base film made of a plastic material and a base film.
  • A a film comprising water-soluble polymer (B) and inorganic layered mineral (C) as main constituents, and water-based polyurethane resin (A), water-soluble polymer (B) and inorganic layered material in the film
  • the ratio of mineral (C) is in the following range.
  • the amount of the aqueous polyurethane resin (A) is less than 50% by mass, the adhesion between the film and the base film, water resistance, moisture resistance, and film cohesive strength are insufficient.
  • the amount of the aqueous polyurethane resin (A) exceeds 80% by mass, the gas barrier property of the film is lowered.
  • the water-soluble polymer (B) is less than 5% by mass, the cohesive strength as a film is lowered.
  • the water-soluble polymer (B) exceeds 20% by mass the gas barrier property of the film in a high humidity atmosphere is lowered.
  • the inorganic layered mineral (C) is less than 10% by mass, sufficient gas barrier properties of the film cannot be obtained.
  • inorganic layered mineral (C) exceeds 30 mass%, the adhesiveness of a membrane
  • coat will fall.
  • the base film made of a plastic material examples include olefin resins such as poly C2-10 such as polyethylene, polypropylene, propylene-ethylene copolymer, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, nylon 6, and nylon.
  • Polyamide resins such as aliphatic polyamide such as 66, aromatic polyamide such as polymetaxylylene adipamide, polystyrene, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, etc.
  • Examples thereof include a film made of an acrylic resin such as a vinyl resin, polymethyl methacrylate, polyacrylonitrile, or a (meth) acrylic monomer or a copolymer, cellophane, or the like. These resins are used alone or in combination of two or more.
  • an acrylic resin such as a vinyl resin, polymethyl methacrylate, polyacrylonitrile, or a (meth) acrylic monomer or a copolymer, cellophane, or the like.
  • the base film a single layer film made of a single resin or a single layer or a laminated film using a plurality of resins is used.
  • a laminated substrate obtained by laminating these resins on another substrate may also be used.
  • a polyolefin resin film especially a polypropylene film
  • a polyester resin film especially a polyethylene terephthalate resin film
  • a polyamide resin film especially a nylon film
  • the base film may be an unstretched film, may be a uniaxial or biaxially oriented film, or may be a film subjected to surface treatment (such as corona discharge treatment) or an anchor coat or undercoat treatment. Furthermore, the base film may be a laminated film in which a plurality of resins or metals are laminated.
  • the substrate film is provided with good wettability with respect to the coating agent and adhesive strength with respect to the coating by subjecting the surface to be coated (surface on which the coating is formed) to corona treatment, low-temperature plasma treatment, and the like.
  • the thickness of the base film is not particularly limited, and is appropriately selected depending on the price and application, taking into consideration the suitability as a packaging material and the suitability of other films, but practically 3 to 200 ⁇ m. It is preferably 5 to 120 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the gas barrier film of the second embodiment of the present invention may have a printed layer, an anchor coat layer, an overcoat layer, a light shielding layer, an adhesive layer, a heat seal layer, and the like as necessary.
  • a film mainly composed of an aqueous polyurethane resin (A), a water-soluble polymer (B) and an inorganic layered mineral (C) is formed on the base film by at least the aqueous polyurethane resin (A) by a known wet coating method. After coating a coating agent containing the water-soluble polymer (B) and the inorganic layered mineral (C) as main components, the solvent component is dried and removed.
  • the coating agent for example, the above aqueous coating agent is used.
  • the wet coating method roll coating, gravure coating, reverse coating, die coating, screen printing, spray coating or the like is used. Using these wet coating methods, a coating agent is applied to one side or both sides of the base film.
  • a known drying method such as hot air drying, hot roll drying, or infrared irradiation is used.
  • the thickness of the dry film formed on the base film is set according to the required gas barrier properties, but is preferably 0.1 to 5 ⁇ m, and more preferably 0.2 to 2 ⁇ m.
  • the thickness of the dry film is less than 0.1 ⁇ m, it is difficult to obtain a sufficient gas barrier property.
  • the thickness of the dry film exceeds 5 ⁇ m, it is not only difficult to provide a uniform coating film surface, but also an increase in drying load and an increase in production cost are undesirable.
  • the gas barrier film of the second embodiment of the present invention may contain various additives as long as the gas barrier property and the strength as a laminated film for packaging are not impaired.
  • additives include reactive curing agents such as polyisocyanates, carbodiimides, epoxy compounds, oxazolidone compounds, aziridine compounds, antioxidants, weathering agents, thermal stabilizers, lubricants, crystal nucleating agents, ultraviolet absorbers, plasticizers.
  • the gas barrier film of 2nd Embodiment of this invention can form the laminated
  • heat that can be heat-sealed by a known dry lamination method, an extrusion lamination method, or the like using a known adhesive such as polyurethane, polyester, or polyether. It is possible to laminate a fusion layer.
  • the gas barrier film of the second embodiment of the present invention has a film mainly composed of an aqueous polyurethane resin (A), a water-soluble polymer (B), and an inorganic layered mineral (C), and contains these solid components. By adjusting the ratio to the specified range, it has excellent gas barrier properties in a high humidity atmosphere, and the adhesion and cohesion of the film to the substrate are also good. Can be used as various packaging materials. In addition, the gas barrier film of the second embodiment of the present invention can reduce the generation of harmful substances at the time of disposal.
  • A aqueous polyurethane resin
  • B water-soluble polymer
  • C inorganic layered mineral
  • the gas barrier laminate of the third embodiment of the present invention includes a base film made of a plastic material, a gas barrier layer, a protective layer, an adhesive layer, and a heat sealable resin layer, and the gas barrier layer is an acid barrier.
  • the blending ratio of (A1), water-soluble polymer (B1) and inorganic layered mineral (C1) is in the range described below.
  • the water-soluble polymer (B1) When the water-soluble polymer (B1) is less than 5% by mass, the cohesive strength as a film is lowered. On the other hand, when the water-soluble polymer (B1) exceeds 20% by mass, the gas barrier property of the film in a high humidity atmosphere is lowered.
  • inorganic layered mineral (C1) is less than 10% by mass, a sufficient gas barrier property of the film cannot be obtained.
  • inorganic layered mineral (C1) exceeds 30 mass%, the adhesiveness of a membrane
  • the base film made of a plastic material examples include olefin resins such as poly C2-10 such as polyethylene, polypropylene, propylene-ethylene copolymer, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, nylon 6, and nylon.
  • Polyamide resins such as aliphatic polyamide such as 66, aromatic polyamide such as polymetaxylylene adipamide, polystyrene, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, etc.
  • Examples thereof include a film made of an acrylic resin such as a vinyl resin, polymethyl methacrylate, polyacrylonitrile, or a (meth) acrylic monomer or a copolymer, cellophane, or the like. These resins are used alone or in combination of two or more.
  • an acrylic resin such as a vinyl resin, polymethyl methacrylate, polyacrylonitrile, or a (meth) acrylic monomer or a copolymer, cellophane, or the like.
  • the base film a single layer film made of a single resin or a single layer or a laminated film using a plurality of resins is used.
  • a laminated substrate obtained by laminating these resins on another substrate may also be used.
  • a polyolefin resin film especially a polypropylene film
  • a polyester resin film especially a polyethylene terephthalate resin film
  • a polyamide resin film especially a nylon film
  • the base film may be an unstretched film, may be a uniaxial or biaxially oriented film, or may be a film subjected to surface treatment (such as corona discharge treatment) or an anchor coat or undercoat treatment. Furthermore, the base film may be a laminated film in which a plurality of resins or metals are laminated. Further, the substrate film can be provided with good wettability with respect to the coating agent and adhesive strength with respect to the coating by subjecting the surface to be coated (surface on which the coating is formed) to corona discharge treatment, low-temperature plasma treatment, and the like.
  • the thickness of the base film is not particularly limited, and is appropriately adjusted according to the price and application while considering the appropriateness as a packaging material and the properness of lamination of other films. It is ⁇ 200 ⁇ m, preferably 5 to 120 ⁇ m, more preferably 10 to 100 ⁇ m.
  • a gas barrier layer mainly composed of an aqueous polyurethane resin (A1) containing a polyurethane resin having an acid group and a polyamine compound, a water-soluble polymer (B1) and an inorganic layered mineral (C1) is formed by a known wet coating method.
  • a coating agent comprising an aqueous polyurethane resin (A1) containing at least an acid group-containing polyurethane resin and a polyamine compound, a water-soluble polymer (B1) and an inorganic layered mineral (C1) as main components on a base film. After coating, the solvent component is removed by drying.
  • the coating agent for example, the above three components can be blended at the above blending ratio and dissolved or dispersed in water or a water / alcohol mixture.
  • aqueous polyurethane resin (A1) containing a polyurethane resin having an acid group and a polyamine compound unlike a general polyurethane resin, it is rigid by bonding a polyamine compound as a crosslinking agent and an acid group of the polyurethane resin.
  • a molecular skeleton is formed to exhibit gas barrier properties, and the dry film is insoluble in water, like a general polyurethane resin, and thus becomes a gas barrier film having low humidity dependency.
  • the bond between the polyamine compound and the acid group of the polyurethane resin may be an ionic bond (for example, an ionic bond between a tertiary amino group and a carboxyl group) or a covalent bond (for example, an amide bond). Also good. Therefore, as the polyamine compound, various polyamines having two or more basic nitrogen atoms selected from the group consisting of a primary amino group, a secondary amino group, and a tertiary amino group are used.
  • the water-soluble polymer (B1) is a polymer that can be completely dissolved or finely dispersed in water at room temperature.
  • the water-soluble polymer (B1) is not particularly limited as long as it is a compound that can penetrate and coordinate (intercalate) between unit crystal layers of the inorganic layered mineral (C1) described later.
  • polyvinyl alcohol and derivatives thereof cellulose derivatives such as carboxymethylcellulose and hydroxyethylcellulose, starches such as oxidized starch, etherified starch and dextrin, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid or esters thereof, salts and their Polymers, copolymer polyesters containing polar groups such as sulfoisophthalic acid, vinyl polymers such as polyhydroxyethyl methacrylate and copolymers thereof, urethane polymers, or functional groups such as carboxyl groups of these various polymers Fundamental change Such as polymers and the like.
  • the water-soluble polymer (B1) is preferably at least one of which is a polyvinyl alcohol polymer and derivatives thereof, particularly preferably a polyvinyl alcohol resin having a saponification degree of 95% or more and a polymerization degree of 300 to 2000. .
  • the inorganic layered mineral (C1) is an inorganic compound in which ultrathin unit crystal layers overlap to form one layered particle.
  • the inorganic layered mineral (C1) is preferably one that swells and cleaves in water, and among these, a clay compound having swellability in water is particularly preferably used. More specifically, it is a clay compound having the property of coordinating and absorbing / swelling water between ultrathin unit crystal layers, and generally has a tetrahedral structure in which Si 4+ is coordinated to O 2 ⁇ . And a layer in which Al 3+ , Mg 2+ , Fe 2+ , Fe 3+, etc. are coordinated to O 2 ⁇ and OH ⁇ to form an octahedral structure are 1: 1 or 2: 1. Are joined together to form a layered structure. This clay compound may be natural or synthesized.
  • inorganic layered mineral (C1) include hydrous silicates such as phyllosilicate minerals, kaolinite clay minerals such as halloysite, kaolinite, enderite, dickite and nacrite, antigolite, Antigolite clay minerals such as chrysotile, smectite group clay minerals such as montmorillonite, beidellite, nontronite, saponite, hectorite, saconite, stevensite, vermiculite clay minerals such as vermiculite, mica such as muscovite, phlogopite, etc. Examples include mica or mica group clay minerals such as margarite, tetrasilic mica, and teniolite.
  • hydrous silicates such as phyllosilicate minerals, kaolinite clay minerals such as halloysite, kaolinite, enderite, dickite and nacrite, antigolite, Antigolite clay minerals such as chrysotile, smect
  • inorganic layered minerals (C1) are used alone or in combination of two or more.
  • smectite clay minerals such as montmorillonite and mica clay minerals such as water-swellable mica are particularly preferable.
  • the inorganic layered mineral (C1) preferably has an average particle size of 10 ⁇ m or less and a thickness of 500 nm or less.
  • the inorganic layered minerals (C1) at least one of them is particularly preferably a water-swellable synthetic mica having an average particle diameter of 1 to 10 ⁇ m and a thickness of 10 to 100 nm.
  • the water-swellable synthetic mica has high compatibility with the water-based polyurethane resin (A1) and the water-soluble polymer (B1), Since there are few impurities compared with mica, the gas barrier property and the film cohesive force derived from impurities are not reduced.
  • the water-swellable synthetic mica since the water-swellable synthetic mica has a fluorine atom in the crystal structure, it contributes to reducing the humidity dependence of the gas barrier property of the film made of the water-based coating agent, and other water-swellable inorganic mica. Since it has a high aspect ratio compared to the layered mineral, the maze effect works more effectively, and contributes to the high expression of the gas barrier property of a film made of an aqueous coating agent.
  • the coating agent for forming the gas barrier layer according to the third embodiment of the present invention includes various additives as long as the gas barrier property of the gas barrier laminate and the strength as a packaging material are not impaired. Also good.
  • additives include reactive curing agents such as polyisocyanates, carbodiimides, epoxy compounds, oxazolidone compounds, aziridine compounds, antioxidants, weathering agents, thermal stabilizers, lubricants, crystal nucleating agents, ultraviolet absorbers, plasticizers. Agents, antistatic agents, colorants, fillers, surfactants, silane coupling agents and the like.
  • the coating agent for forming the gas barrier layer according to the third embodiment of the present invention may include a solvent that contains water as a main component and is dissolved or uniformly mixed in water.
  • the solvent include alcohols such as methanol, ethanol and isopropanol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran, nitriles such as cellosolves, carbitols and acetonitrile.
  • the coating agent for forming the gas barrier layer of the third embodiment of the present invention preferably has a total solid content concentration of 8 mass% or more, a viscosity at 23 ° C. of 10 to 50 mPa ⁇ s, and a total solid content concentration of 10 mass. More preferably, the viscosity at 23 ° C. is 10 to 40 mPa ⁇ s.
  • the wet coating method for forming the gas barrier layer of the third embodiment of the present invention roll coating, gravure coating, reverse coating, die coating, screen printing, spray coating, or the like is used. After coating a coating agent that forms a gas barrier layer on one or both sides of a base film made of a plastic material, a dry film is formed using a known drying method such as hot air drying, hot roll drying, infrared irradiation, etc. A layer is obtained.
  • the thickness of the gas barrier layer is set according to the required gas barrier property, but is preferably 0.1 to 5 ⁇ m, and more preferably 0.2 to 2 ⁇ m. If the thickness of the gas barrier layer is less than 0.1 ⁇ m, it is difficult to obtain sufficient gas barrier properties. On the other hand, if the thickness of the gas barrier layer exceeds 5 ⁇ m, it is not only difficult to provide a uniform coating surface, but also an increase in drying load and an increase in production cost are undesirable.
  • the gas barrier laminate of the third embodiment of the present invention has a protective layer on the surface of the gas barrier layer, and a wet coating method similar to the formation of the gas barrier layer can be used as a method for forming the protective layer.
  • a multicolor coater it can also carry out in-line simultaneously with the coating process of a gas barrier layer, or can carry out in-line before the adhesive coating of the lamination process mentioned later.
  • the material for forming the protective layer is not particularly limited as long as the gas barrier property and the laminate strength of the gas barrier laminate are not deteriorated.
  • polyurethane, isocyanate, polybutadiene, polyethyleneimine, Polyester, acrylic polyol, epoxy, styrene acrylic, polyacrylic acid, polyamide, polysiloxane, and the like can be used.
  • polyurethane, isocyanate, polybutadiene, polyethyleneimine, polyester, and acrylic polyol are particularly preferred.
  • the protective layer is interposed between the gas barrier layer and the adhesive layer, whereby the stability over time of the laminate strength is improved.
  • the laminate In a laminate having a gas barrier layer made of an inorganic layered compound and a resin, the laminate is often peeled off due to cohesive failure of the gas barrier layer.
  • the gas barrier layer and the adhesive layer are in direct contact with each other, the gas barrier layer component and the adhesive component interact in the vicinity of the adhesive interface of the gas barrier layer, thereby forming a layer different from the original gas barrier layer.
  • changes in physical properties such as an expansion coefficient occur, strain accumulates between layers with the passage of time, and causes a decrease in laminate strength with the passage of time.
  • the protective layer shields the gas barrier layer and the adhesive layer, thereby effectively suppressing the formation of a layer resulting from the interaction between the gas barrier layer component and the adhesive component. It has the effect of maintaining the laminate strength and reducing the occurrence of delamination defects.
  • the gas barrier laminate of the third embodiment of the present invention is obtained by laminating with a heat-sealable resin layer via an adhesive layer.
  • a heat-sealable resin layer polyolefin films such as low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, and polypropylene, polyester copolymer films, polyacrylonitrile films, vinyl acetate copolymer films, and the like are used.
  • a polyolefin film is particularly preferable because it is excellent in low-temperature heat sealability and inexpensive.
  • a laminating method a known dry laminating method, extrusion laminating method, non-sol laminating method or the like can be used.
  • various adhesives can be selected according to various laminating methods, for example, polyurethane, polyester, polyether, epoxy, polyethyleneimine, polybutadiene, etc. A known adhesive can be used.
  • the gas barrier laminate of the third embodiment of the present invention may have a printing layer, an anchor coat layer, a light shielding layer, other functional layers, and the like as necessary.
  • the gas barrier laminate of the third embodiment of the present invention is a laminate in which at least a gas barrier layer, a protective layer, an adhesive layer, and a heat sealable resin layer are sequentially laminated on a base film made of a plastic material,
  • the gas barrier layer is a film mainly composed of an aqueous polyurethane resin (A1) containing a polyurethane resin having an acid group and a polyamine compound, a water-soluble polymer (B1) and an inorganic layered mineral (C1).
  • the gas barrier property in a high humidity atmosphere is excellent and the adhesion to the substrate Even if it has good cohesion and cohesion and is stored for a long time in a high humidity atmosphere, there is little decrease in laminate strength over time, and delamination Does not generate good, as a packaging material, improve the quality retention of a long period of time over the contents, it can be used as various packaging materials. In addition, the generation of harmful substances during disposal can be reduced.
  • this carboxyl group-containing urethane prepolymer solution was neutralized with 9.6 g of triethylamine at 40 ° C.
  • This carboxyl group-containing urethane prepolymer solution is dispersed in 624.8 g of water with a homodisper and subjected to a chain extension reaction with 21.1 g of 2-[(2-aminoethyl) amino] ethanol to distill off methyl ethyl ketone.
  • a polyurethane resin having a water-dispersed acid group having a solid content of 25% by mass, an average particle size of 90 nm, and an acid value of 26.9 mgKOH / g was obtained.
  • ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane (amine number 544 mgKOH / g) is used as the polyamine compound, and the mixture is mixed at a ratio such that the molar ratio of acid groups to basic nitrogen atoms is 1/1.
  • An aqueous polyurethane resin of Production Example 1 was obtained.
  • this carboxyl group-containing urethane prepolymer solution was neutralized with 10.6 g of triethylamine at 40 ° C. 278.9 g of this carboxyl group-containing urethane prepolymer solution was dispersed in 655.8 g of water with a homodisper and subjected to a chain extension reaction with 23.4 g of 2-[(2-aminoethyl) amino] ethanol.
  • a polyurethane resin having a water-dispersed acid group having a solid content of 25% by mass, an average particle size of 110 nm, and an acid value of 28.2 mgKOH / g was obtained.
  • Examples 1 to 21 As an aqueous polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound (hereinafter sometimes referred to as component (A)), the aqueous polyurethane resins of Production Examples 1 to 3 manufactured by Mitsui Chemicals, Inc. Polyurethane dispersion Takelac WPB-341 or polyurethane dispersion Takelac WPB-363 manufactured by Mitsui Chemicals, Inc. was used. As the water-soluble polymer (B) (hereinafter sometimes referred to as component (B)), the following five types of polyvinyl alcohol resins and carboxymethyl cellulose (CMC) were used. PVA PVA-103 manufactured by Kuraray Co., Ltd.
  • component (C) As inorganic layered mineral (C) (hereinafter, sometimes referred to as component (C)), two types of water-swelling synthetic mica (Somasif MEB-3 manufactured by Corp Chemical, NTS-5 manufactured by Topy Industries), sodium hect Wright (Ntop-sol B2 manufactured by Topy Industries, Ltd.) and purified montmorillonite (Kunimine Industries Co., Ltd. Kunipia-F) were used.
  • Component (A), component (B) and component (C) were blended at the solid content blending ratios shown in Tables 1 and 2, heated and mixed at 80 ° C., and then cooled to room temperature.
  • the mixture of components A to C was diluted with ion-exchanged water and isopropanol so that 10% by mass in the solvent was isopropanol and the final solid content was the solid content shown in Tables 1 and 2, and immediately before coating.
  • the aqueous coating agents of Examples 1 to 21 were prepared by adding the curing agents shown in Tables 1 and 2 (water-soluble polysocyanate Takelac WD-725 manufactured by Mitsui Chemicals, Inc.).
  • a general water-soluble polyurethane resin may be used instead of the water-based polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound (hereinafter sometimes referred to as component (A)).
  • a general water-soluble polyurethane resin may be used instead of the water-based polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound (hereinafter sometimes referred to as component (A)
  • a polyurethane resin aqueous solution hydran HW350 and a polyether polyurethane resin aqueous solution estrane H-38 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. were used.
  • component (B) As the water-soluble polymer (B) (hereinafter sometimes referred to as “component (B)”), Kuraray's polyvinyl alcohol resin Poval PVA-124 (saponification degree 98-99%, polymerization degree 2400) was used.
  • component (C) As the inorganic layered mineral (hereinafter sometimes referred to as component (C)), water-swellable synthetic mica (NTS-5 manufactured by Topy Industries) and purified montmorillonite (Kunipia-F manufactured by Kunimine Industries) was used.
  • component (A), component (B) and component (C) were blended at the solid content blending ratio shown in Table 3, heated and mixed at 80 ° C., and then cooled to room temperature.
  • Kuraray polyvinyl alcohol resin Poval PVA-110 (saponification degree 98-99%, polymerization degree 1000)
  • Kuraray polyvinyl Alcohol resin Poval PVA-124 (saponification degree 98-99%, polymerization degree 2400)
  • Kuraray polyvinyl alcohol resin Poval PVA-102 (saponification degree 98-99%, polymerization degree 200) was used.
  • component (C) As the inorganic layered mineral (C) (hereinafter sometimes referred to as component (C)), water-swellable synthetic mica (Somasif MEB-3 manufactured by Corp Chemical Co.) and purified montmorillonite (Kunipia F manufactured by Kunimine Industries Co., Ltd.) ) was used.
  • Ingredient (A), ingredient (B) and ingredient (C) were blended at the solid content blending ratios shown in Tables 3 and 4, heated and mixed at 80 ° C., then cooled to room temperature, It was diluted with ion-exchanged water and isopropanol so that 10% was isopropanol and the final solid concentration was the solid concentration shown in Tables 3 and 4, and Comparative Examples 11 to 21 were displayed immediately before coating.
  • the curing agents described in 3 and 4 water-soluble polysocyanate Takelac WD-725 manufactured by Mitsui Chemicals, Inc.
  • Comparative Examples 7-21 were displayed immediately before coating.
  • the aqueous coating agents of Examples 1 to 21 and Comparative Examples 1 to 21 were biaxially stretched polyethylene terephthalate film P-60 (thickness 12 ⁇ m, PET) manufactured by Toray Industries, Inc.
  • the biaxially stretched polypropylene film U-1 was coated on the corona-treated surface so as to have the dry coating amount shown in Tables 1 to 4, and dried by passing through an oven at 90 ° C. for 10 seconds.
  • Gas barrier films of Examples 1 to 21 and Comparative Examples 1 to 21 were obtained.
  • Polyester urethane adhesives (Takelac A-525, Mitsui Chemicals / Takenate A-52, Mitsui Chemicals) were applied on the coating surfaces of the gas barrier films of Examples 1 to 21 and Comparative Examples 1 to 21 by dry lamination. Then, an unstretched polypropylene film (CPP GLC, manufactured by Mitsui Chemicals, Inc.) was laminated and cured (aging) at 40 ° C. for 48 hours to obtain a laminated film. This laminated film was cut into a strip shape having a width of 15 mm, and the gas barrier film was peeled 90 ° at a rate of 300 mm / min with a tensile tester Tensilon, and the laminate strength was measured. The results are shown in Tables 1 to 4.
  • the aqueous coating agents of Comparative Examples 8 to 10 have low viscosity, and thus can be coated at a high concentration (high coating amount), but have poor oxygen gas barrier properties.
  • the oxygen gas barrier property was improved, but the laminate strength was greatly reduced.
  • the gas barrier films of Comparative Examples 14 to 21 were inferior in both oxygen gas barrier properties and laminate strength in an atmosphere of 20 ° C. and RH, and both properties were not compatible.
  • the water-based coating agents of Examples 1 to 21 were all confirmed to have good gravure coating suitability, and the gas barrier films of Examples 1 to 21 were 20 ° C. and 80% RH.
  • the oxygen permeability in the atmosphere was 5 cc / m 2 ⁇ day or less, the laminate strength was 1.0 N / 15 mm or more, and the characteristics applicable as a gas barrier packaging material were obtained.
  • aqueous polyurethane resin (A1) containing a polyurethane resin having an acid group and a polyamine compound (hereinafter sometimes referred to as “component (A1)”) an aqueous polyurethane resin of a polyurethane resin production example (hereinafter, referred to in the table) In this case, it is referred to as “Production Example A1”), and polyurethane dispersion Takelac WPB-341 manufactured by Mitsui Chemical Co., Ltd., and for comparison, an aqueous polyester polyurethane resin aqueous solution hydran HW350 manufactured by DIC, which is a general water-soluble polyurethane resin. Using.
  • component (B1) As the water-soluble polymer (B1) (hereinafter sometimes referred to as “component (B1)”), the following five types of polyvinyl alcohol resins were used.
  • PVA PVA-103 manufactured by Kuraray Co., Ltd. degree of saponification 98-99%, degree of polymerization 300
  • PVA PVA-110 manufactured by Kuraray Co., Ltd. degree of saponification 98-99%, degree of polymerization 1000
  • PVA PVA-117 manufactured by Kuraray Co., Ltd. degree of saponification 98-99%, degree of polymerization 1700
  • POVAL PVA-124 manufactured by Kuraray Co., Ltd.
  • C1 inorganic layered mineral
  • component (C1) two types of water-swelling synthetic mica (Somasif MEB-3 manufactured by Corp Chemical Co., Ltd., NTS-5 manufactured by Topy Industries Co., Ltd.), And refined montmorillonite (Kunimine Industries Co., Ltd. Kunipia-F) was used.
  • Ingredient (A1), ingredient (B1) and ingredient (C1) were blended at the solid content blending ratios shown in Tables 5 to 8, heated and mixed at 80 ° C., then cooled to room temperature, The mixture of components A1 to C1 is diluted with ion-exchanged water and isopropanol so that 10% by mass is isopropanol and the final solid content concentration is the solid content concentration shown in Tables 5 to 8. 8 (water-soluble polysocyanate Takenate WD-725 manufactured by Mitsui Chemical Co., Ltd. and N-methylolated melamine MW-12LF manufactured by Sanwa Chemical Co., Ltd.) An aqueous coating agent was prepared.
  • the aqueous coating agent of Coating Agent Production Examples 101 to 111 was applied to the corona-treated surface of a biaxially stretched polypropylene film U-1 (thickness 20 ⁇ m, OPP) manufactured by Mitsui Chemicals, Inc. An oven was passed through for 10 seconds to dry, thereby obtaining a gas barrier film in which a gas barrier layer having a thickness of 1.0 ⁇ m was formed on the OPP film.
  • Example 101 to 116 Comparative examples 101 to 105
  • the following 6 types of protective layer forming coating agents were applied using a gravure coater, dried by passing through an oven at 90 ° C. for 10 seconds, and a film thickness of 0. A 3 ⁇ m protective layer was formed.
  • (Polyurethane system) DIC Hydran HW350 / Sanwa Chemical Co.
  • Coronate L / ethyl acetate 10/1/60 solution manufactured by Nippon Polyurethane / Dry laminating on the protective layer forming surface
  • an unstretched polypropylene film CPP GLC, Mitsui Chemicals Tosero Co., Ltd.
  • a polyester urethane adhesive Takelac A-525, Mitsui Chemicals, Takenate A-52, Mitsui Chemicals
  • aged for 48 hours at 40 ° C. to obtain gas barrier laminates of Examples 101 to 116 and Comparative Examples 101 to 105 shown in Tables 5 to 8.
  • the gas barrier laminates of Examples 101 to 116 and Comparative Examples 101 to 116 were cut into strips having a width of 15 mm, and the gas barrier films were peeled 90 ° at a rate of 300 mm / min with a tensile tester Tensilon. The laminate strength was measured. Further, the gas barrier laminates of Examples 101 to 116 and Comparative Examples 101 to 116 were stored in a constant temperature and humidity chamber at 40 ° C. and 75% RH, and taken out of the constant temperature bath after 1 month and 3 months. The laminate strength after the passage of time was measured. The results are shown in Tables 5-8.
  • the gas barrier laminates of Comparative Examples 101, 103, 104, 106, 108, and 109 have an oxygen permeability value of 10 cm 3 / (m in an atmosphere of 20 ° C. and 80% RH. 2 ⁇ 24 h ⁇ atm) or more, and it could not be said that there was a sufficient oxygen gas barrier property.
  • the gas barrier laminates of Comparative Examples 102, 105, 107, and 110 to 116 have a laminate strength of 3 months when stored in an atmosphere of 40 ° C. and 75% RH for 3 months. It decreased to 0.4 N / 15 mm or less.
  • the gas barrier laminates of Examples 101 to 116 have a laminate strength of 0.6 N / 15 mm or more even after being stored in an atmosphere of 40 ° C. and 75% RH for 3 months. And sufficient strength as a packaging material under general distribution conditions. _
  • the present invention relates to water-based coating agents and gas barrier properties used in the packaging field of foods that do not like moisture and oxygen, such as dried foods, confectionery, bread, delicacy, and pharmaceuticals such as disposable warmers, tablets, powdered drugs, poultices, patches, etc. Applicable to film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

 本発明の水系コーティング剤は、酸基を有するポリウレタン樹脂と、ポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含み、全固形分中に占める前記水性ポリウレタン樹脂(A)を50~80質量%、前記水溶性高分子(B)を5~20質量%、および前記無機層状鉱物(C)を10~30質量%含み、全固形分濃度が5質量%以上、23℃における粘度が50mPa・s以下である。

Description

水系コーティング剤およびガスバリア性フィルム
 本発明は、乾燥食品・菓子・パン・珍味などの湿気や酸素を嫌う食品、および、使い捨てカイロ、錠剤・粉末薬または湿布・貼付剤などの医薬品の包装分野に用いられる水系コーティング剤およびガスバリア性フィルムに関する。さらに、詳しくは、高いガスバリア性と内容物の認識が可能な透明性を必要とされる包装分野に用いられる水系コーティング剤、ガスバリア性フィルム、およびガスバリア性積層体に関する。
 本願は、2012年2月28日に、日本に出願された特願2012-041251号に基づき優先権を主張し、その内容をここに援用する。
 食品や医薬品などの包装に用いられる包装材料には、内容物の変質や腐敗などを抑制し、食品や医薬品などの機能や性質を保持するために、水蒸気、酸素、その他の内容物を変質させる気体の進入を遮断する性質(ガスバリア性)が必要である。
 そのため、従来、これら包装材料には、ガスバリア性を有する材料からなるガスバリア層が設けられていた。これまで、ガスバリア層は、フィルムや紙などの基材上に、スパッタリング法や蒸着法、ウェットコーティング法や印刷法などにより設けられていた。また、ガスバリア層としては、アルミニウムなどの金属からなる金属箔や金属蒸着膜、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリ塩化ビニリデンなどの樹脂膜が用いられている(例えば、特許文献1~5参照)。
 しかしながら、金属箔や金属蒸着フィルムは、ガスバリア性には優れるものの、不透明であるため、内容物を確認することができなかったり、伸縮性に劣るため、数%の伸びでクラックが生じて、ガスバリア性が低下したり、使用後の廃棄時に、不燃物として処理する必要があるなど、数々の問題があった。
 また、ポリビニルアルコールやエチレン-ビニルアルコール共重合体等の樹脂膜を有するガスバリア性フィルムは、低湿度下では優れたガスバリア性を示すが、湿度上昇と共にガスバリア性が低下していき、湿度70%RH以上ではガスバリア性が失われてしまうため、使用の際に制限があった。これを改善するために、ポリビニルアルコールやエチレン-ビニルアルコール共重合体などに、無機層状化合物を添加し、湿度依存性を低下させる方法などが提案されている。しかしながら、この方法では十分な改善には至らず、基材と樹脂膜との密着性が低下する弊害を有し、包装材料としての十分な強度が得られ難かった。
 一方、ポリ塩化ビニリデンなどの樹脂膜を有するガスバリア性フィルムは、湿度依存性が低く、優れたガスバリア性を示すが、廃棄処理などの際に、有害物質の発生源となる可能性があり、塩素系物質を含有しないガスバリア材料が求められている。
 したがって、塩素系物質を含まない材料で、高湿度雰囲気下でも高いガスバリア性を有し、基材への密着性も良好な、ガスバリア性樹脂膜が強く求められていた。
 前記のポリビニルアルコールやエチレン-ビニルアルコール共重合体などと、無機層状化合物との複合体に、水系ポリウレタンを添加して、ガスバリア性樹脂膜と基材との密着性を改善したガスバリア性フィルムが提案されている(例えば、特許文献6参照)。しかしながら、このガスバリア性フィルムは、80%RH以上の高湿度雰囲気においてガスバリア性が十分ではなかった。
 また、ウレタン基の濃度やウレア基の濃度が高いポリウレタン樹脂と、ポリアミン化合物とからなり、基材に対する密着性が良好な、湿度依存性の低いガスバリア性樹脂積層フィルムが提案されている(例えば、特許文献7参照)。しかしながら、このガスバリア性樹脂積層フィルムは、前記のポリ塩化ビニリデンなどからなる樹脂膜に比べてガスバリア性が劣り、ガスバリア性包装材料としての適用範囲が限られていた。
 さらに、ガスバリア性フィルム上に接着剤を介して、ヒートシール性樹脂層をラミネートした積層体においては、初期のラミネート強度は良好であるものの、高湿度雰囲気下に長期間保管すると、時間の経過に伴ってラミネート強度が低下し、積層フィルムの一部に剥離が生じる(以下、「デラミネーション」と呼ぶ)課題も考慮される。
特開2001-287294号公報 特開平11-165369号公報 特開平6-93133号公報 特開平9-150484号公報 特許第3764109号公報 特許第3351208号公報 特許第4434907号公報
 本発明は、上記事情に鑑みてなされたものであって、高湿度雰囲気下におけるガスバリア性に優れ、また、基材フィルムへの密着性も良好な水系コーティング剤、ガスバリア性フィルム、及びデラミネーションの不良が発生することのないガスバリア性積層体を提供することを目的とする。
 本発明の第1態様に係る水系コーティング剤は、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を主たる構成成分として含み、全固形分中に占める前記水性ポリウレタン樹脂(A)、前記水溶性高分子(B)および前記無機層状鉱物(C)の固形分配合比率が以下の範囲であり、かつ、全固形分濃度が5質量%以上、23℃における粘度が50mPa・s以下である。
水性ポリウレタン樹脂(A)50~80質量%
水溶性高分子(B)5~20質量%
無機層状鉱物(C)10~30質量%
 本発明の第1態様においては、前記水溶性高分子(B)が、鹸化度が95%以上かつ重合度が300~2000のポリビニルアルコール樹脂であることが好ましい。
 本発明の第1態様においては、前記無機層状鉱物(C)が、水膨潤性合成雲母であることが好ましい。
 本発明の第2態様に係るガスバリア性フィルムは、プラスチック材料からなる基材フィルムと、前記基材フィルムの片面あるいは両面に形成され、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を主たる構成成分とする皮膜と、を備え、前記皮膜中に占める前記水性ポリウレタン樹脂(A)、前記水溶性高分子(B)および前記無機層状鉱物(C)の比率が以下の範囲である。
  水性ポリウレタン樹脂(A)50~80質量%
  水溶性高分子(B)5~20質量%
  無機層状鉱物(C)10~30質量%
 本発明の第2態様に係るガスバリア性フィルムは、前記水溶性高分子(B)が、鹸化度が95%以上かつ重合度が300~2000のポリビニルアルコール樹脂であることが好ましい。
 本発明の第2態様においては、前記無機層状鉱物(C)が、水膨潤性合成雲母であることが好ましい。
 本発明の第3態様に係るガスバリア性積層体は、プラスチック材料からなる基材フィルム上に、少なくともガスバリア層、保護層、接着剤層、ヒートシール性樹脂層を順に積層した積層体であって、前記ガスバリア層は、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A1)、水溶性高分子(B1)および無機層状鉱物(C1)を主たる構成成分とした皮膜であり、前記皮膜中に占める前記水性ポリウレタン樹脂(A1)、前記水溶性高分子(B1)および前記無機層状鉱物(C1)の配合比率が以下に記載の範囲である。
 水性ポリウレタン樹脂(A1)50~80質量%
 水溶性高分子(B1)5~20質量%
 無機層状鉱物(C1)10~30質量%
 本発明の第3態様においては、前記水溶性高分子(B1)が、鹸化度が95%以上かつ重合度が300~2000のポリビニルアルコール樹脂であることが好ましい。
 本発明の第3態様においては、前記無機層状鉱物(C1)が、水膨潤性合成雲母であることが好ましい。
 本発明の第3態様においては、前記保護層が、ポリウレタン系、イソシアネート系、ポリブタジエン系、ポリエチレンイミン系、ポリエステル系またはアクリルポリオール系のいずれかの材料をウェットコーティング法により形成したものであることが好ましい。
 本発明の第1態様の水系コーティング剤は、水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を主たる構成成分として含み、これらの固形分配合比率を所定範囲に調整することにより、水系コーティング剤からなる皮膜が、高湿度雰囲気下におけるガスバリア性に優れ、基材への密着性や凝集力も良好であるので、前記の皮膜を有するガスバリア性フィルムを包装用材料として用いることにより、内容物の品質保持性を高め、様々な包装用資材として活用することができる。
 さらに、本発明の第1態様の水系コーティング剤は、固形分濃度が高いにもかかわらず、粘度が低いので、基材へのコーティング工程において、生産性を高めることができる。
 本発明の第2態様のガスバリア性フィルムは、水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を主たる構成成分とする皮膜を有し、これらの固形分配合比率を所定範囲に調整することにより、高湿度雰囲気下におけるガスバリア性に優れ、皮膜の基材への密着性や凝集力も良好であるので、包装用材料として用いることにより、内容物の品質保持性を高め、様々な包装用資材として活用することができる。
 本発明の第3態様のガスバリア性積層体は、プラスチック材料からなる基材フィルム上に、少なくともガスバリア層、保護層、接着剤層、ヒートシール性樹脂層を順に積層した積層体であって、そのガスバリア層が、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A1)、水溶性高分子(B1)および無機層状鉱物(C1)を主たる構成成分とする皮膜であり、これらの固形分配合比率を所定範囲に調整するとともに、このガスバリア層と接着剤層との間に保護層を介在させることにより、高湿度雰囲気下におけるガスバリア性に優れ、時間の経過に伴うラミネート強度低下が少なく、デラミネーション不良を発生しないので、包装用材料として、長期間に渡り内容物の品質保持性を高め、様々な包装用資材として活用することができる。また、廃棄時の有害物質の発生を少なく抑えることができる。
 本発明の第3態様のガスバリア性積層体は、保護層を、ポリウレタン系、イソシアネート系、ポリブタジエン系、ポリエチレンイミン系、ポリエステル系またはアクリルポリオール系のいずれかの材料をウェットコーティング法により形成したことにより、高湿度雰囲気下におけるガスバリア性やラミネート強度を損なうことなく、従来の一般的な材料や加工機を用いて容易かつ安価に製造することができる。
 本発明の第1実施形態の水系コーティング剤、本発明の第2実施形態のガスバリア性フィルム、及び本発明の第3実施形態のガスバリア性積層体について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
「水系コーティング剤」
 本発明の第1実施形態の水系コーティング剤は、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を主たる構成成分として含み、全固形分中に占める水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)の固形分配合比率が以下の範囲であり、かつ、全固形分濃度が5質量%以上、23℃における粘度が50mPa・s以下である。
  水性ポリウレタン樹脂(A)50~80質量%
  水溶性高分子(B)5~20質量%
  無機層状鉱物(C)10~30質量%
 水性ポリウレタン樹脂(A)を構成するポリウレタン樹脂(アニオン性自己乳化型ポリウレタン樹脂)の酸基としては、カルボキシル基、スルホン酸基などが挙げられる。
 酸基は、ポリウレタン樹脂の末端またはポリウレタン樹脂の側鎖に位置していてもよいが、少なくともポリウレタン樹脂の側鎖に位置している必要がある。この酸基は、通常、中和剤(塩基)により中和可能であり、塩基と塩を形成していてもよい。なお、酸基は、水性ポリウレタン樹脂(A)を構成するポリアミン化合物のアミノ基(イミノ基または第三級窒素原子)と結合可能である。
 ポリウレタン樹脂の酸価は、水溶性または水分散性を付与できる範囲で選択することができるが、通常、5~100mgKOH/gであり、10~70mgKOH/g(例えば、10~60mgKOH/g)であることが好ましく、15~60mgKOH/g(例えば、16~50mgKOH/g)であることがより好ましい。
 また、ポリウレタン樹脂のウレタン基およびウレア基(尿素基)の合計濃度は、ガスバリア性の観点から、通常、15質量%以上であることが好ましく、20~60質量%であることがより好ましい。
 なお、ウレタン基濃度およびウレア基濃度とは、ウレタン基の分子量(59g/当量)またはウレア基の分子量(一級アミノ基(アミノ基):58g/当量、二級アミノ基(イミノ基):57g/当量)を、ポリウレタン樹脂の繰り返し構成単位の分子量で除した値を意味する。
 なお、ポリウレタン樹脂として混合物を用いる場合、ウレタン基濃度およびウレア基濃度は、各反応成分の仕込み比、すなわち、各成分の使用割合に基づき算出できる。
 ポリウレタン樹脂は、通常、少なくとも剛直な単位(炭化水素環で構成された単位)と短鎖単位(例えば、炭化水素鎖で構成された単位)とを有している。すなわち、ポリウレタン樹脂の繰り返し構成単位は、通常、ポリイソシアネート成分、ポリヒドロキシ酸成分、ポリオール成分や鎖伸長剤成分(特に、少なくともポリイソシアネート成分)に由来して、炭化水素環(芳香族および/または非芳香族炭化水素環)を含んでいる。
 ポリウレタン樹脂の繰り返し構成単位における炭化水素環で構成された単位の割合は、通常、10~70質量%であり、好ましくは15~65質量%であり、より好ましくは20~60質量%である。
 ポリウレタン樹脂の数平均分子量は、適宜選択可能であるが、800~1,000,000であることが好ましく、800~200,000であることがより好ましく、800~100,000であることがさらに好ましい。
 ポリウレタン樹脂は、ガスバリア性を高めるため、結晶性のポリウレタン樹脂であってもよい。
 また、ポリウレタン樹脂のガラス転移点は、100℃以上(例えば、100~200℃程度)であることが好ましく、110℃以上(例えば、110~180℃程度)であることがより好ましく、120℃以上(例えば、120~150℃程度)であることがさらに好ましい。
 水性ポリウレタン樹脂(A)は、通常、中和剤を含み、上記のポリウレタン樹脂が水性媒体中に溶解あるいは分散した状態で形成される。
 水性媒体としては、水、水溶性溶媒、親水性溶媒、あるいは、これらの混合溶媒が挙げられる。水性媒体は、通常、水または水を主成分として含む水性溶媒である。
 親水性溶媒としては、例えば、エタノール、イソプロパノールなどのアルコール類;アセトン、メチルエチルケトンなどのケトン類;テトラヒドロフランなどのエーテル類;セロソルブ類;カルビトール類;アセトニトリルなどのニトリル類などが挙げられる。
 水性ポリウレタン樹脂(A)は、水性媒体に上記のポリウレタン樹脂を溶解した水溶液、または、水性媒体に上記のポリウレタン樹脂を分散した水分散体のいずれの形態であってもよい。
 水分散体において、分散粒子(ポリウレタン樹脂粒子)の平均粒径は特に限定されるものではなく、例えば、20~500nmであり、好ましくは25~300nmであり、より好ましくは30~200nmである。
 水性ポリウレタン樹脂(A)の製造方法は、特に限定されるものではなく、アセトン法、プレポリマー法など、通常のポリウレタン樹脂の水性化技術が用いられる。
 また、ウレタン化反応では、必要に応じてアミン系触媒、錫系触媒、鉛系触媒などのウレタン化触媒を用いてもよい。
 例えば、アセトンなどのケトン類、テトラヒドロフランなどのエーテル類、アセトニトリルなどのニトリル類などの不活性有機溶媒中、ポリイソシアネート化合物と、ポリヒドロキシ酸と、必要に応じて、ポリオール成分および/または鎖伸長剤成分と、を反応させることにより、水性ポリウレタン樹脂(A)を調製できる。より具体的には、不活性有機溶媒(特に、親水性または水溶性の有機溶媒)中、ポリイソシアネート化合物と、ポリヒドロキシ酸と、ポリオール成分と、を反応させて、末端にイソシアネート基を有するプレポリマーを生成し、中和剤で中和して水性媒体に溶解または分散した後、鎖伸長剤成分を添加して反応させ、有機溶媒を除去することにより、水性ポリウレタン樹脂(A)を調製できる。
 水性ポリウレタン樹脂(A)では、架橋剤としてのポリアミン化合物と、ポリウレタン樹脂の酸基とを結合させることにより、ガスバリア性を発現させている。
 なお、ポリアミン化合物とポリウレタン樹脂の酸基との結合は、イオン結合(例えば、第三級アミノ基とカルボキシル基とのイオン結合など)であってもよく、共有結合(例えば、アミド結合など)であってもよい。
 そのため、ポリアミン化合物としては、第1級アミノ基、第2級アミノ基および第3級アミノ基よりなる群から選択される2種以上の塩基性窒素原子を有する種々のポリアミン類が用いられる。
 水性ポリウレタン樹脂(A)を構成するポリアミン化合物としては、酸基と結合し、かつ、ガスバリア性を向上できるポリアミン化合物であれば特に限定されるものではなく、種々の化合物が用いられる。
 ポリアミン化合物としては、通常、アミン価が100~1900mgKOH/g、好ましくは150~1900mgKOH/g(例えば、200~1700mgKOH/g)、より好ましくは200~1900mgKOH/g(例えば、300~1500mgKOH/g)のポリアミンが用いられる。ポリアミン化合物のアミン価は、300~1900mgKOH/g程度であってもよい。
 水溶性高分子(B)は、常温で水に完全に溶解もしくは微分散可能な高分子のことである。
 水溶性高分子(B)としては、後述する無機層状鉱物(C)の単位結晶層間に侵入、配位(インターカレーション)することが可能な化合物であれば、特に限定されるものではなく、例えば、ポリビニルアルコールおよびその誘導体、カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロース誘導体、酸化でんぷん、エーテル化でんぷん、デキストリンなどのでんぷん類、ポリビニルピロリドン、ポリアクリル酸、ポリメタクリル酸またはそのエステル、塩類およびそれらの共重合体、スルホイソフタル酸などの極性基を含有する共重合ポリエステル、ポリヒドロキシエチルメタクリレートおよびその共重合体などのビニル系重合体、ウレタン系高分子、あるいは、これらの各種重合体のカルボキシル基など官能基変性重合体などが挙げられる。
 水溶性高分子(B)は、少なくとも1種類がポリビニルアルコール系重合体および前記ポリビニルアルコール系重合体の誘導体が好ましく、特に好ましくは、鹸化度が95%以上かつ重合度が300~2000のポリビニルアルコール樹脂である。
 ポリビニルアルコール樹脂は、鹸化度や重合度が高い程、吸湿膨潤性が低くなる。
 ポリビニルアルコール樹脂の鹸化度が95%より低いと、十分なガスバリア性が得られ難い。
 また、ポリビニルアルコール樹脂の重合度が300より低いと、ガスバリア性の低下を招く。一方、ポリビニルアルコール樹脂の重合度が2000を超えると、水系コーティング剤の粘度が上がり、ポリビニルアルコール樹脂と他の成分とを均一に混合することが難しい。その結果、ガスバリア性や密着性の低下といった不具合を招いたり、固形分濃度を下げることによって相対的な塗布量が増加するため、乾燥エネルギーの増大、生産性の低下を招いたりするため好ましくない。すなわち、重合度が2000以下のポリビニルアルコール樹脂を用いることにより、水系コーティング剤の粘度の上昇を抑え、他の成分と均一に混合、分散することができる。そのため、高濃度での水系コーティング剤の低粘度化を実現し、水系コーティング剤の特性の安定化と、水系コーティング剤の高濃度化による塗布量の低減や乾燥負荷の低減とを可能にし、生産性の向上にも寄与している。
 無機層状鉱物(C)は、極薄の単位結晶層が重なって1つの層状粒子を形成している無機化合物である。
 無機層状鉱物(C)としては、水中で膨潤・へき開するものが好ましく、これらの中でも、特に水への膨潤性を有する粘土化合物が好ましく用いられる。より具体的には、極薄の単位結晶層間に水を配位し、吸収・膨潤する性質を有する粘土化合物であり、一般には、Si4+がO2-に対して配位して四面体構造を構成する層と、Al3+、Mg2+、Fe2+、Fe3+などが、O2-およびOHに対して配位して八面体構造を構成する層とが、1対1あるいは2対1で結合し、積み重なって層状構造をなす化合物である。この粘土化合物は、天然の化合物であっても、合成された化合物であってもよい。
 代表的な無機層状鉱物(C)としては、フィロケイ酸塩鉱物などの含水ケイ酸塩、例えば、ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライトなどのカオリナイト族粘土鉱物、アンチゴライト、クリソタイルなどのアンチゴライト族粘土鉱物、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイトなどのスメクタイト族粘土鉱物、バーミキュライトなどのバーミキュライト族粘土鉱物、白雲母、金雲母などの雲母、マーガライト、テトラシリリックマイカ、テニオライトなど雲母またはマイカ族粘土鉱物などが挙げられる。
 これらの無機層状鉱物(C)は、1種または2種以上が組み合わせられて用いられる。
 これらの無機層状鉱物(C)の中でも、モンモリロナイトなどのスメクタイト族粘土鉱物、水膨潤性雲母などのマイカ族粘土鉱物が特に好ましい。
 無機層状鉱物(C)の大きさは、平均粒径10μm以下、厚さ500nm以下が好ましい。無機層状鉱物(C)の中でも、少なくとも1種類が平均粒径1~10μm、厚さ10~100nmの水膨潤性の合成雲母が特に好ましい。
 無機層状鉱物(C)として、水膨潤性の合成雲母を用いると、水膨潤性の合成雲母は、水性ポリウレタン樹脂(A)および水溶性高分子(B)との相溶性が高く、天然系の雲母に比べて不純物が少ないため、不純物に由来するガスバリア性の低下や膜凝集力の低下を招くことがない。また、水膨潤性の合成雲母は、結晶構造内にフッ素原子を有することから、水系コーティング剤からなる皮膜のガスバリア性の湿度依存性を低く抑えることにも寄与する。さらに、水膨潤性の合成雲母は、他の水膨潤性の無機層状鉱物に比べて、高いアスペクト比を有することから、迷路効果がより効果的に働き、特に水系コーティング剤からなる皮膜のガスバリア性が高く発現するのに寄与する。
 また、全固形分中に占める水性ポリウレタン樹脂(A)の固形分配合比率が50質量%より少ないと、水系コーティング剤からなる皮膜の基材フィルムへの濡れ性、密着性、耐水性、耐湿性、膜凝集強度が不足する。一方、水性ポリウレタン樹脂(A)の固形分配合比率が80質量%を超えると、水系コーティング剤からなる皮膜のガスバリア性の低下を招く。
 全固形分中に占める水溶性高分子(B)の固形分配合比率が5質量%より少ないと、水系コーティング剤からなる皮膜としての凝集強度が低下する。一方、水溶性高分子(B)の固形分配合比率が20質量%を超えると、高湿度条件における、水系コーティング剤からなる皮膜のガスバリア性が低下する。
 全固形分中に占める無機層状鉱物(C)の固形分配合比率が10質量%より少ないと、水系コーティング剤からなる皮膜に、十分なガスバリア性が得られない。一方、無機層状鉱物(C)の固形分配合比率が30質量%を超えると、水系コーティング剤からなる皮膜の基材フィルムへの密着性、前記水系コーティング剤からなる皮膜の凝集強度が低下する。
 また、本発明の第1実施形態の水系コーティング剤は、水溶性または水分散性の反応性硬化剤を添加すると、さらに、基材密着性、膜凝集強度、耐水・耐溶剤性を向上させることができる。
 反応性硬化剤としては、水分散性(水溶性)ポリイソシアネート、水分散性(水溶性)カルボジイミド、水溶性エポキシ化合物、水分散性(水溶性)オキサゾリドン化合物、水溶性アジリジン系化合物などが挙げられる。
 さらに、本発明の第1実施形態の水系コーティング剤は、ガスバリア性や包装用積層フィルムとしての強度を損なわない範囲内であれば、各種の添加剤が含まれていてもよい。
 添加剤としては、例えば、酸化防止剤、耐候剤、熱安定剤、滑剤、結晶核剤、紫外線吸収剤、可塑剤、帯電防止剤、着色剤、フィラー、界面活性剤、シランカップリング剤などが挙げられる。
 本発明の第1実施形態の水系コーティング剤は、溶媒としては、水を主成分として、水に溶解あるいは均一に混合する溶媒を含んでいてもよい。
 溶媒としては、例えば、メタノール、エタノール、イソプロパノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類、テトラヒドロフランなどのエーテル類、セロソルブ類、カルビトール類、アセトニトリルなどのニトリル類などが挙げられる。
 また、従来の水性樹脂と無機層状鉱物を組み合わせた水系バリアーコーティング剤では、コーティング適性を有する粘度に抑えるため、固形分濃度を5%以下に調整する必要があった。
 これに対して、本発明の第1実施形態の水系コーティング剤は、水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を含む全固形分濃度が5質量%以上、23℃における粘度が50mPa・s以下であるので、後述する多様なコーティング手法に対応できるとともに、良好な塗布性を示す。また、所望の膜厚の乾燥皮膜を形成するためのwet塗布量を低く設定することができるので、乾燥エネルギーの低減、加工速度の向上に寄与する。
 本発明の第1実施形態の水系コーティング剤は、全固形分濃度が8質量%以上、23℃における粘度が10~50mPa・sであることが好ましく、全固形分濃度が10質量%以上、23℃における粘度が10~40mPa・sであることがより好ましい。
 また、本発明の第1実施形態の水系コーティング剤は、水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を主たる構成成分として含み、全固形分中に占める水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)の固形分配合比率が、水性ポリウレタン樹脂(A)50~80質量%、水溶性高分子(B)5~20質量%、無機層状鉱物(C)10~30質量%であるので、廃棄時に有害物質の発生源となる可能性のある材料を含まない。
 水性ポリウレタン樹脂(A)は、一般的なポリウレタン樹脂と異なり、その剛直な分子骨格からガスバリア性を有し、かつ、一般的なポリウレタン樹脂と同様に、乾燥皮膜は水に不溶であるため、湿度依存性の低いガスバリア性の皮膜となる。しかし、水性ポリウレタン樹脂(A)単体のガスバリア性は、ポリ塩化ビニリデン樹脂などに比べると大きく劣る。そこで、無機層状鉱物(C)を添加することにより、その添加量に応じてガスバリア性が向上し、ポリ塩化ビニリデン樹脂と同等以上のガスバリア性が得られる。しかし、無機層状鉱物(C)の添加量が増えるに従って、皮膜の凝集力が急激に弱まり、包装用積層フィルムとしての密着強度を維持できない。
 また、水溶性高分子(B)(例えば、ポリビニルアルコール樹脂など)と、水膨潤性の無機層状鉱物(C)とを複合化した、ガスバリア性皮膜は従来から知られていたが、やはり、皮膜の凝集力や基材への密着強度が低下するため、架橋成分を加える必要があった。
 しかし、架橋成分の添加は、ガスバリア性の高い、均一な分子配列を妨げることになり、水溶性高分子(B)と、水膨潤性の無機層状鉱物(C)とを複合化した皮膜の高湿度雰囲気下における高いガスバリア性と十分な密着強度の両立は極めて困難であった。
 本発明の第1実施形態の水系コーティング剤は、水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を主たる構成成分として含み、これらの固形分配合比率を所定範囲に調整することにより、水系コーティング剤からなる皮膜の高湿度雰囲気下における高いガスバリア性と、包装用積層フィルムとして十分な密着強度(膜凝集力)を両立することができる。
 また、本発明の第1実施形態の水系コーティング剤からなる皮膜が、高湿度雰囲気下におけるガスバリア性に優れ、基材への密着性や凝集力も良好であるので、前記の皮膜を有するガスバリア性フィルムを包装用材料として用いることによって、内容物の品質保持性を高め、様々な包装用資材として活用することができる。
 また、本発明の第1実施形態の水系コーティング剤は、固形分濃度が高いにも関わらず、粘度が低いので、基材などへのコーティング工程における生産性を高める効果も有する。
 さらに、本発明の第1実施形態の水系コーティング剤は、廃棄時における有害物質の発生を少なくすることができる。
「ガスバリア性フィルム」
 本発明の第2実施形態のガスバリア性フィルムは、プラスチック材料からなる基材フィルムと、基材フィルムの片面あるいは両面に形成され、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を主たる構成成分とする皮膜と、を備え、皮膜中に占める水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)の比率が以下の範囲であるものである。
  水性ポリウレタン樹脂(A)50~80質量%
  水溶性高分子(B)5~20質量%
  無機層状鉱物(C)10~30質量%
 水性ポリウレタン樹脂(A)が50質量%より少ないと、皮膜と基材フィルムとの密着性、耐水性、耐湿性、膜凝集強度が不足する。一方、水性ポリウレタン樹脂(A)が80質量%を超えると、皮膜のガスバリア性の低下を招く。
 水溶性高分子(B)が5質量%より少ないと、皮膜としての凝集強度が低下する。一方、水溶性高分子(B)が20質量%を超えると、高湿度雰囲気下における皮膜のガスバリア性が低下する。
 無機層状鉱物(C)が10質量%より少ないと、皮膜の十分なガスバリア性が得られない。一方、無機層状鉱物(C)が30質量%を超えると、皮膜と基材フィルムとの密着性、皮膜の凝集強度が低下する。
 プラスチック材料からなる基材フィルムとしては、例えば、ポリエチレン、ポリプロピレン、プロピレン-エチレン共重合体などのポリC2-10などのオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂、ナイロン6、ナイロン66などの脂肪族系ポリアミド、ポリメタキシリレンアジパミドなどの芳香族ポリアミドなどのポリアミド系樹脂、ポリスチレン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、エチレン-ビニルアルコール共重合体などのビニル系樹脂、ポリメチルメタクリレート、ポリアクリロニトリルなどの(メタ)アクリル系単量体の単独または共重合体などのアクリル系樹脂、セロファンなどからなるフィルムが挙げられる。これらの樹脂は、1種または2種以上が組み合わせられて用いられる。
 基材フィルムとしては、単一の樹脂で構成された単層フィルムや複数の樹脂を用いた単層または積層フィルムが用いられる。また、これらの樹脂を他の基材(金属、木材、紙、セラミックスなど)に積層した積層基材を用いてもよい。
 これらの中でも、基材フィルムとしては、ポリオレフィン系樹脂フィルム(特に、ポリプロピレンフィルムなど)、ポリエステル系樹脂フィルム(特に、ポリエチレンテレフタレート系樹脂フィルム)、ポリアミド系樹脂フィルム(特に、ナイロンフィルム)などが好適に用いられる。
 基材フィルムは、未延伸フィルムであってもよく、一軸または二軸延伸配向フィルムであってもよく、表面処理(コロナ放電処理など)やアンカーコートまたはアンダーコート処理したフィルムであってもよい。さらに、基材フィルムは、複数の樹脂や金属などを積層した積層フィルムであってもよい。
 また、基材フィルムは、コーティングする面(皮膜を形成する面)に、コロナ処理、低温プラズマ処理などを施すことにより、コーティング剤に対する良好な濡れ性と、皮膜に対する接着強度とが得られる。
 基材フィルムの厚さは、特に限定されるものではなく、包装材料としての適性や他の皮膜の積層適性を考慮しつつ、価格や用途によって適宜選択されるが、実用的には3~200μmであり、好ましくは5~120μmであり、より好ましくは10~100μmである。
 さらに、本発明の第2実施形態のガスバリア性フィルムは、必要に応じて、印刷層、アンカーコート層、オーバーコート層、遮光層、接着剤層、ヒートシール層などを有していてもよい。
 水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を主たる構成成分とする皮膜は、公知の湿式コーティング方法により、基材フィルム上に、少なくとも水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を主たる構成成分として含むコーティング剤を塗工した後、溶媒成分を乾燥除去して形成される。
 コーティング剤としては、例えば、上記の水系コーティング剤が用いられる。
 湿式コーティング方法としては、ロールコート、グラビアコート、リバースコート、ダイコート、スクリーン印刷、スプレーコートなどが用いられる。
 これらの湿式コーティング方法を用いて、基材フィルムの片面あるいは両面に、コーティング剤を塗布する。
 コーティング剤を乾燥する方法としては、熱風乾燥、熱ロール乾燥、赤外線照射など、公知の乾燥方法が用いられる。
 基材フィルム上に形成した乾燥皮膜の厚さは、求められるガスバリア性に応じて設定されるが、0.1~5μmであることが好ましく、0.2~2μmであることがより好ましい。
 乾燥皮膜の厚さが0.1μm未満では、十分なガスバリア性が得られ難い。一方、乾燥皮膜の厚さが5μmを超えると、均一な塗膜面を設けることが難しいばかりでなく、乾燥負荷の増大、製造コストの増大をもたらすため好ましくない。
 本発明の第2実施形態のガスバリア性フィルムは、ガスバリア性や包装用積層フィルムとしての強度を損なわない範囲内であれば、各種の添加剤が含まれていてもよい。
 添加剤としては、例えば、ポリイソシアネート、カルボジイミド、エポキシ化合物、オキサゾリドン化合物、アジリジン系化合物などの反応性硬化剤、酸化防止剤、耐候剤、熱安定剤、滑剤、結晶核剤、紫外線吸収剤、可塑剤、帯電防止剤、着色剤、フィラー、界面活性剤、シランカップリング剤などが挙げられる。
 また、本発明の第2実施形態のガスバリア性フィルムは、ヒートシール可能な熱融着層を積層することにより、熱シールによって密封可能なガスバリア性包装用積層フィルムを形成できる。
 本発明の第2実施形態のガスバリア性フィルムでは、ポリウレタン系、ポリエステル系、ポリエーテル系などの公知の接着剤を用いて、公知のドライラミネート法、エクストルージョンラミネート法などにより、ヒートシール可能な熱融着層を積層することが可能である。
 本発明の第2実施形態のガスバリア性フィルムは、水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を主たる構成成分とする皮膜を有し、これらの固形分配合比率を所定範囲に調整することにより、高湿度雰囲気下におけるガスバリア性に優れ、皮膜の基材への密着性や凝集力も良好であるので、包装用材料として用いることにより、内容物の品質保持性を高め、様々な包装用資材として活用することができる。
 また、本発明の第2実施形態のガスバリア性フィルムは、廃棄時における有害物質の発生を少なくすることができる。
 本発明の第3実施形態のガスバリア性積層体は、プラスチック材料からなる基材フィルムと、ガスバリア層と、保護層と、接着剤層と、ヒートシール性樹脂層とを備え、ガスバリア層が、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A1)、水溶性高分子(B1)および無機層状鉱物(C1)を主たる構成成分とする皮膜であり、皮膜中に占める水性ポリウレタン樹脂(A1)、水溶性高分子(B1)および無機層状鉱物(C1)の配合比率が以下に記載の範囲であるものである。
  水性ポリウレタン樹脂(A1)50~80質量%
  水溶性高分子(B1)5~20質量%
  無機層状鉱物(C1)10~30質量%
 水溶性高分子(B1)が5質量%より少ないと、皮膜としての凝集強度が低下する。一方、水溶性高分子(B1)が20質量%を超えると、高湿度雰囲気下における皮膜のガスバリア性が低下する。
 無機層状鉱物(C1)が10質量%より少ないと、皮膜の十分なガスバリア性が得られない。一方、無機層状鉱物(C1)が30質量%を超えると、皮膜と基材フィルムとの密着性、皮膜の凝集強度が低下する。
 プラスチック材料からなる基材フィルムとしては、例えば、ポリエチレン、ポリプロピレン、プロピレン-エチレン共重合体などのポリC2-10などのオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂、ナイロン6、ナイロン66などの脂肪族系ポリアミド、ポリメタキシリレンアジパミドなどの芳香族ポリアミドなどのポリアミド系樹脂、ポリスチレン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、エチレン-ビニルアルコール共重合体などのビニル系樹脂、ポリメチルメタクリレート、ポリアクリロニトリルなどの(メタ)アクリル系単量体の単独または共重合体などのアクリル系樹脂、セロファンなどからなるフィルムが挙げられる。これらの樹脂は、1種または2種以上が組み合わされて用いられる。
 基材フィルムとしては、単一の樹脂で構成された単層フィルムや複数の樹脂を用いた単層または積層フィルムが用いられる。また、これらの樹脂を他の基材(金属、木材、紙、セラミックスなど)に積層した積層基材を用いてもよい。
これらの中でも、基材フィルムとしては、ポリオレフィン系樹脂フィルム(特に、ポリプロピレンフィルムなど)、ポリエステル系樹脂フィルム(特に、ポリエチレンテレフタレート系樹脂フィルム)、ポリアミド系樹脂フィルム(特に、ナイロンフィルム)などが好適に用いられる。
 基材フィルムは、未延伸フィルムであってもよく、一軸または二軸延伸配向フィルムであってもよく、表面処理(コロナ放電処理など)やアンカーコートまたはアンダーコート処理したフィルムであってもよい。さらに、基材フィルムは、複数の樹脂や金属などを積層した積層フィルムであってもよい。
 また、基材フィルムは、コーティングする面(皮膜を形成する面)に、コロナ放電処理、低温プラズマ処理などを施すことにより、コーティング剤に対する良好な濡れ性と、皮膜に対する接着強度とが得られる。
 基材フィルムの厚さは、特に限定されるものではなく、包装材料としての適正や他の皮膜の積層適正を考慮しつつ、価格や用途に応じて適宜調整されるが、実用的には3~200μmであり、好ましくは5~120μmであり、より好ましくは10~100μmである。
 酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A1)、水溶性高分子(B1)および無機層状鉱物(C1)を主たる構成成分とするガスバリア層は、公知の湿式コーティング法により、基材フィルム上に、少なくとも酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A1)、水溶性高分子(B1)および無機層状鉱物(C1)を主たる構成成分として含むコーティング剤を塗工した後、溶媒成分を乾燥除去して形成される。
 コーティング剤としては、例えば、上記の3成分を上記の配合比率で配合し、水または水/アルコール混合液に溶解あるいは分散させて調製することができる。
 酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A1)では、一般的なポリウレタン樹脂と異なり、架橋剤としてのポリアミン化合物と、ポリウレタン樹脂の酸基とを結合させることで剛直な分子骨格を形成し、ガスバリア性を発現させており、乾燥皮膜は、一般的なポリウレタン樹脂と同様に、水に不溶であるため、湿度依存性の低いガスバリア性の皮膜となる。
 ポリアミン化合物とポリウレタン樹脂の酸基との結合は、イオン結合(例えば、第三級アミノ基とカルボキシル基とのイオン結合など)であってもよく、共有結合(例えば、アミド結合など)であってもよい。
 そのため、ポリアミン化合物としては、第1級アミノ基、第2級アミノ基および第3級アミノ基よりなる群から選択される2種以上の塩基性窒素原子を有する種々のポリアミン類が用いられる。
 水溶性高分子(B1)は、常温で水に完全に溶解もしくは微分散可能な高分子のことである。
 水溶性高分子(B1)としては、後述する無機層状鉱物(C1)の単位結晶層間に侵入、配位(インターカレーション)することが可能な化合物であれば、特に限定されるものではなく、例えば、ポリビニルアルコールおよびその誘導体、カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロース誘導体、酸化でんぷん、エーテル化でんぷん、デキストリンなどのでんぷん類、ポリビニルピロリドン、ポリアクリル酸、ポリメタクリル酸またはそのエステル、塩類およびそれらの共重合体、スルホイソフタル酸などの極性基を含有する共重合ポリエステル、ポリヒドロキシエチルメタクリレートおよびその共重合体などのビニル系重合体、ウレタン系高分子、あるいは、これらの各種重合体のカルボキシル基など官能基変性重合体などが挙げられる。
 水溶性高分子(B1)は、少なくとも1種類がポリビニルアルコール系重合体およびその誘導体であるものが好ましく、特に好ましくは、鹸化度が95%以上かつ重合度が300~2000のポリビニルアルコール樹脂である。
 ポリビニルアルコール樹脂は、鹸化度や重合度が高い程、吸湿膨潤性が低くなる。
 ポリビニルアルコール樹脂の鹸化度が95%より低いと、十分なガスバリア性が得られ難い。
 また、ポリビニルアルコール樹脂の重合度が300より低いと、ガスバリア性の低下を招く。一方、ポリビニルアルコール樹脂の重合度が2000を超えると、水系コーティング剤の粘度が上がり、他の成分と均一に混合することが難しく、ガスバリア性や密着性の低下といった不具合を招いたりするため好ましくない。
 無機層状鉱物(C1)は、極薄の単位結晶層が重なって1つの層状粒子を形成している無機化合物のことである。
 無機層状鉱物(C1)としては、水中で膨潤・へき開するものが好ましく、これらの中でも、特に水への膨潤性を有する粘土化合物が好ましく用いられる。より具体的には、極薄の単位結晶層間に水を配位し、吸収・膨潤する性質を有する粘土化合物であり、一般には、Si4+がO2-に対して配位して四面体構造を構成する層と、Al3+、Mg2+、Fe2+、Fe3+などが、O2-およびOHに対して配位して八面体構造を構成する層とが、1対1あるいは2対1で結合し、積み重なって層状構造をなすものである。この粘土化合物は、天然のものであっても、合成されたものであってもよい。
 無機層状鉱物(C1)の代表的なものとしては、フィロケイ酸塩鉱物などの含水ケイ酸塩、例えば、ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライトなどのカオリナイト族粘土鉱物、アンチゴライト、クリソタイルなどのアンチゴライト族粘土鉱物、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイトなどのスメクタイト族粘土鉱物、バーミキュライトなどのバーミキュライト族粘土鉱物、白雲母、金雲母などの雲母、マーガライト、テトラシリリックマイカ、テニオライトなど雲母またはマイカ族粘土鉱物などが挙げられる。
 これらの無機層状鉱物(C1)は、1種または2種以上が組み合わせられて用いられる。
 これらの無機層状鉱物(C1)の中でも、モンモリロナイトなどのスメクタイト族粘土鉱物、水膨潤性雲母などのマイカ族粘土鉱物が特に好ましい。
 無機層状鉱物(C1)の大きさは、平均粒径10μm以下、厚さ500nm以下が好ましい。無機層状鉱物(C1)の中でも、少なくとも1種類が平均粒径1~10μm、厚さ10~100nmの水膨潤性の合成雲母が特に好ましい。
 無機層状鉱物(C1)として、水膨潤性の合成雲母を用いると、水膨潤性の合成雲母は、水性ポリウレタン樹脂(A1)および水溶性高分子(B1)との相溶性が高く、天然系の雲母に比べて不純物が少ないため、不純物に由来するガスバリア性の低下や膜凝集力の低下を招くことがない。また、水膨潤性の合成雲母は、結晶構造内にフッ素原子を有することから、水系コーティング剤からなる皮膜のガスバリア性の湿度依存性を低く抑えることにも寄与し、他の水膨潤性の無機層状鉱物に比べて、高いアスペクト比を有することから、迷路効果がより効果的に働き、特に水系コーティング剤からなる皮膜のガスバリア性が高く発現するのに寄与する。
 本発明の第3実施形態のガスバリア層を形成するコーティング剤には、ガスバリア性積層体のガスバリア性や包装用材料としての強度を損なわない範囲内であれば、各種の添加剤が含まれていてもよい。
 添加剤としては、例えば、ポリイソシアネート、カルボジイミド、エポキシ化合物、オキサゾリドン化合物、アジリジン系化合物などの反応性硬化剤、酸化防止剤、耐候剤、熱安定剤、滑剤、結晶核剤、紫外線吸収剤、可塑剤、帯電防止剤、着色剤、フィラー、界面活性剤、シランカップリング剤などが挙げられる。
 本発明の第3実施形態のガスバリア層を形成するコーティング剤は、溶媒としては、水を主成分として、水に溶解あるいは均一に混合する溶媒を含んでいてもよい。
 溶媒としては、例えば、メタノール、エタノール、イソプロパノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類、テトラヒドロフランなどのエーテル類、セロソルブ類、カルビトール類、アセトニトリルなどのニトリル類などが挙げられる。
 本発明の第3実施形態のガスバリア層を形成するコーティング剤は、全固形分濃度が8質量%以上、23℃における粘度が10~50mPa・sであることが好ましく、全固形分濃度が10質量%以上、23℃における粘度が10~40mPa・sであることがより好ましい。
 本発明の第3実施形態のガスバリア層を形成するためのウェットコーティング法としては、ロールコート、グラビアコート、リバースコート、ダイコート、スクリーン印刷、スプレーコートなどが用いられる。
プラスチック材料からなる基材フィルムの片面あるいは両面に、ガスバリア層を形成するコーティング剤をコーティング後、熱風乾燥、熱ロール乾燥、赤外線照射など、公知の乾燥方法を用いて、乾燥皮膜を形成し、ガスバリア層が得られる。
 ガスバリア層の厚さは、求められるガスバリア性に応じて設定されるが、0.1~5μmであることが好ましく、0.2~2μmであることがより好ましい。
ガスバリア層の厚さが0.1μm未満では、十分なガスバリア性が得られ難い。一方、ガスバリア層の厚さが5μmを超えると、均一な塗膜面を設けることが難しいばかりでなく、乾燥負荷の増大、製造コストの増大につながり好ましくない。
 本発明の第3実施形態のガスバリア性積層体では、ガスバリア層の表面に保護層を有し、当該保護層の形成方法としては、ガスバリア層の形成と同様のウェットコーティング法を用いることができる。なお、多色コーターを用いることにより、ガスバリア層のコーティング工程と同時にインラインで行ったり、後述するラミネート工程の接着剤塗工の前にインラインで行ったりすることもできる。
 保護層を形成する材料としては、ガスバリア性積層体のガスバリア性とラミネート強度を劣化させない範囲であれば、特に限定されるものではなく、例えば、ポリウレタン系、イソシアネート系、ポリブタジエン系、ポリエチレンイミン系、ポリエステル系、アクリルポリオール系、エポキシ系、スチレンアクリル系、ポリアクリル酸系、ポリアミド系、ポリシロキサン系などを用いることができる。安価な市販材が豊富で、時間の経過に伴うラミネート強度低下を抑える上では、ポリウレタン系、イソシアネート系、ポリブタジエン系、ポリエチレンイミン系、ポリエステル系、アクリルポリオール系が特に好ましい。
 本発明の第3実施形態のガスバリア性積層体では、保護層がガスバリア層と接着剤層の間に介在することで、ラミネート強度の経時安定性が向上する。無機層状化合物と樹脂からなるガスバリア層を有する積層体では、ガスバリア層の凝集破壊により剥離することが多い。ここで、ガスバリア層と接着剤層が直に接すると、ガスバリア層の接着剤界面近傍で、ガスバリア層成分と接着剤成分とが相互作用し、本来のガスバリア層と異質の層が形成されることで、膨張係数などの物性に変化が生じ、時間の経過に伴って層間に歪みが蓄積し、時間の経過に伴うラミネート強度低下を引き起こしているものと推察される。本実施形態のガスバリア性積層体は、保護層がガスバリア層と接着剤層を遮蔽することにより、ガスバリア層成分と接着剤成分との相互作用の結果生じる層の形成を効果的に抑え、初期のラミネート強度を維持して、デラミネーション不良の発生を低減させる効果を有する。
 さらに、接着剤層を介してヒートシール性樹脂層とラミネート加工することにより、本発明の第3実施形態のガスバリア性積層体が得られる。ここで、ヒートシール性樹脂層としては、低密度ポリエチレン、直鎖低密度ポリエチレン、中密度ポリエチレン、ポリプロピレンなどのポリオレフィンフィルム、ポリエステル系共重合フィルム、ポリアクリロニトリルフィルム、酢酸ビニル系共重合フィルムなどを用いることができるが、ポリオレフィンフィルムは低温ヒートシール性に優れ、安価なため特に好ましい。
 ラミネート加工方法としては、公知のドライラミネート法、エクストルージョンラミネート法、ノンソルラミネート法などを用いることができる。
 接着剤層に用いられる接着剤としては、各種ラミネート加工方法に応じて、様々な接着剤を選択でき、例えば、ポリウレタン系、ポリエステル系、ポリエーテル系、エポキシ系、ポリエチレンイミン系、ポリブタジエン系などの公知の接着剤を用いることができる。
 なお、本発明の第3実施形態のガスバリア性積層体は、必要に応じて、印刷層、アンカーコート層、遮光層、その他の機能層などを有していてもよい。
 本発明の第3実施形態のガスバリア性積層体は、プラスチック材料からなる基材フィルム上に、少なくともガスバリア層、保護層、接着剤層、ヒートシール性樹脂層を順に積層した積層体であって、そのガスバリア層が、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A1)、水溶性高分子(B1)および無機層状鉱物(C1)を主たる構成成分とする皮膜であり、これらの固形分配合比率を所定範囲に調整することにより、さらにこのガスバリア層と接着剤層との間に保護層を介在させることにより、高湿度雰囲気下におけるガスバリア性に優れ、基材への密着性や凝集力も良好で、かつ高湿度雰囲気下で長期間保管されても、時間の経過に伴うラミネート強度低下が少なく、デラミネーション不良を発生しないので、包装材料として、長期間に渡り内容物の品質保持性を高め、様々な包装用資材として活用することができる。また、廃棄時の有害物質の発生を少なく抑えることができる。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 以下、実施例および比較例により本発明の第1実施形態及び第2実施形態をさらに具体的に説明する。
[製造例1]
 mXDI(メタキシリレンジイソシアネート)45.5g、水添XDI(1,3-ビス(イソシアネートメチル)シクロヘキサン)93.9g、エチレングリコール24.8g、ジメチロールプロピオン酸13.4gおよび溶剤としてメチルエチルケトン80.2gを混合し、窒素雰囲気下、70℃にて5時間反応させ、カルボキシル基含有ウレタンプレポリマー溶液を調製した。
 次いで、このカルボキシル基含有ウレタンプレポリマー溶液を、40℃にて、トリエチルアミン9.6gにより中和した。
 このカルボキシル基含有ウレタンプレポリマー溶液を、ホモディスパーにより、水624.8gに分散させて、2-[(2-アミノエチル)アミノ]エタノール21.1gで鎖伸長反応を行い、メチルエチルケトンを留去することにより、固形分25質量%、平均粒径90nm、酸価26.9mgKOH/gの水分散型の酸基を有するポリウレタン樹脂を得た。
 次いで、ポリアミン化合物としてγ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン(アミン価544mgKOH/g)を用い、酸基と塩基性窒素原子のモル比が1/1となる比率で混合して、製造例1の水性ポリウレタン樹脂を得た。
[製造例2]
 製造例1のポリアミン化合物を、下記の化合物に変更した以外は製造例1と同様にして、製造例2の水性ポリウレタン樹脂を得た。
 水添XDI(1,3-ビス(イソシアネートメチル)シクロヘキサン)97.1g、ジメチルエタノールアミン93.6gを滴下して混合し、窒素雰囲気下、60℃にて2時間反応させて得られたポリアミン化合物。
[製造例3]
 製造例1の酸基を有するポリウレタン樹脂を、下記の化合物に変更した以外は製造例1と同様にして、製造例3の水性ポリウレタン樹脂を得た。
 水添XDI(1,3-ビス(イソシアネートメチル)シクロヘキサン)145.7g、エチレングリコール24.2g、ジメチロールプロピオン酸14.8gおよび溶剤としてアセトン83.6gを混合し、窒素雰囲気下、55℃にて6時間反応させ、カルボキシル基含有ウレタンプレポリマー溶液を調製した。
 次いで、このカルボキシル基含有ウレタンプレポリマー溶液を、40℃にて、トリエチルアミン10.6gにより中和した。
 このカルボキシル基含有ウレタンプレポリマー溶液278.9gを、ホモディスパーにより、水655.8gに分散させて、2-[(2-アミノエチル)アミノ]エタノール23.4gで鎖伸長反応を行い、アセトンを留去することにより、固形分25質量%、平均粒径110nm、酸価28.2mgKOH/gの水分散型の酸基を有するポリウレタン樹脂を得た。
[実施例1~21]
 酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)(以下、成分(A)と記すことがある。)として、製造例1~3の水性ポリウレタン樹脂、三井化学社製のポリウレタンディスパージョン タケラックWPB-341、または、三井化学社製のポリウレタンディスパージョン タケラックWPB-363を用いた。
 水溶性高分子(B)(以下、成分(B)と記すことがある。)として、以下に示す5種類のポリビニルアルコール樹脂、および、カルボキシルメチルセルロース(CMC)を用いた。
  クラレ社製ポバールPVA-103(鹸化度98~99%、重合度300)
  クラレ社製ポバールPVA-110(鹸化度98~99%、重合度1000)
  クラレ社製ポバールPVA-117(鹸化度98~99%、重合度1700)
  クラレ社製ポバールPVA-124(鹸化度98~99%、重合度2400)
  クラレ社製ポバールPVA-210(鹸化度88~89%、重合度1000)
 無機層状鉱物(C)(以下、成分(C)と記すことがある。)として、水膨潤性合成雲母2種(コープケミカル社製ソマシフMEB-3、トピー工業社製NTS-5)、ナトリウムヘクトライト(トピー工業社製NHT-ゾルB2)、および、精製モンモリロナイト(クニミネ工業社製クニピア-F)を用いた。
 成分(A)、成分(B)および成分(C)を、表1および2に示す固形分配合比率で配合して、80℃にて加熱、混合した後、室温まで冷却した。溶媒中の10質量%がイソプロパノール、最終的な固形分濃度が表1および2に記載の固形分濃度になるよう、イオン交換水とイソプロパノールで成分A~Cの混合物を希釈し、塗工直前に表1および2に記載の硬化剤(三井化学社製水溶性ポリソシアネート タケラックWD-725)を添加して、実施例1~21の水系コーティング剤を調製した。
[比較例1~7]
 酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)(以下、成分(A)と記すことがある。)の代わりに、一般的な水溶性ポリウレタン樹脂として、DIC社製ポリエステルポリウレタン樹脂水溶液ハイドランHW350、および、第一工業製薬社製ポリエーテルポリウレタン樹脂水溶液エストランH-38を用いた。
 水溶性高分子(B)(以下、成分(B)と記すことがある。)として、クラレ社製ポリビニルアルコール樹脂 ポバールPVA-124(鹸化度98~99%、重合度2400)を用いた。
 無機層状鉱物(C)(以下、成分(C)と記すことがある。)として、水膨潤性合成雲母(トピー工業社製NTS-5)、および、精製モンモリロナイト(クニミネ工業社製クニピア-F)を用いた。
 成分(A)、成分(B)および成分(C)を、表3に示す固形分配合比率で配合して、80℃にて加熱、混合した後、室温まで冷却した。溶媒中の10%がイソプロパノール、最終的な固形分濃度が表3に記載の固形分濃度になるように、イオン交換水とイソプロパノールで成分A~Cの混合物を希釈し、比較例3のみ、塗工直前に表3に記載の硬化剤(三和ケミカル社製N-メチロール化メラミンMW-12LF)を添加して、比較例1~7の水系コーティング剤を調製した。
[比較例8~21]
 酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)(以下、成分(A)と記すことがある。)として、製造例1~3の水性ポリウレタン樹脂、および、三井化学社製のポリウレタンディスパージョン タケラックWPB-341を用いた。
 水溶性高分子(B)(以下、成分(B)と記すことがある。)として、クラレ社製ポリビニルアルコール樹脂 ポバールPVA-110(鹸化度98~99%、重合度1000)、クラレ社製ポリビニルアルコール樹脂 ポバールPVA-124(鹸化度98~99%、重合度2400)、または、クラレ社製ポリビニルアルコール樹脂 ポバールPVA-102(鹸化度98~99%、重合度200)を用いた。
 無機層状鉱物(C)(以下、成分(C)と記すことがある。)として、水膨潤性合成雲母(コープケミカル社製ソマシフMEB-3)、および、精製モンモリロナイト(クニミネ工業社製クニピア-F)を用いた。
 成分(A)、成分(B)および成分(C)を、表3および4に示す固形分配合比率で配合して、80℃にて加熱、混合した後、室温まで冷却して、溶媒中の10%がイソプロパノール、最終的な固形分濃度が表3および4に記載の固形分濃度になるように、イオン交換水とイソプロパノールで希釈して、比較例11~21については、塗工直前に表3および4に記載の硬化剤(三井化学社製水溶性ポリソシアネート タケラックWD-725)を添加して、比較例7~21の水系コーティング剤を調製した。
 実施例1~21、比較例1~21の水系コーティング剤を、グラビアコーターを用いて、東レ社製二軸延伸ポリエチレンテレフタレートフィルムP-60(厚さ12μm、PET)、あるいは、三井化学東セロ社製二軸延伸ポリプロピレンフィルムU-1(厚さ20μm、OPP)のコロナ処理面に、表1~4に記載のdry塗布量となるように塗布し、90℃のオーブンを10秒間通過させて乾燥し、実施例1~21および比較例1~21のガスバリア性フィルムを得た。
[評価]
(粘度測定)
 実施例1~21、比較例1~21の水系コーティング剤について、振動式粘度計を用いて、23℃における粘度を測定した。結果を表1~4に示す。
(酸素ガスバリア性)
 実施例1~21、比較例1~21のガスバリア性フィルムについて、酸素透過度測定装置(MOCON社製OXTRAN-2/20)を用いて、20℃、80%RHの雰囲気下、酸素ガスバリア性を測定した。結果を表1~4に示す。
(ラミネート強度)
 実施例1~21、比較例1~21のガスバリア性フィルムのコーティング面上に、ドライラミネーション加工により、ポリエステルウレタン系接着剤(三井化学社製タケラックA-525/三井化学社製タケネートA-52)を介して、厚さ30μmの未延伸ポリプロピレンフィルム(三井化学東セロ社製CPP GLC)をラミネートし、40℃にて48時間養生(エージング)し、積層フィルムを得た。
 この積層フィルムを15mm幅の短冊状にカットし、引張試験機テンシロンにより、ガスバリア性フィルムを、300mm/分の速度で90°剥離させて、ラミネート強度を測定した。結果を表1~4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3の結果から、比較例1~6の水系コーティング剤は、固形分濃度が低いため、dry塗布量を上げると乾燥不十分となり、均一に製膜できなかった。また、20℃、80%RHの雰囲気下における酸素透過度の値も5cc/m・day以上であり、十分な酸素ガスバリア性があるとは言えなかった。
表3の結果から、比較例7の水系コーティング剤は、固形分濃度を4質量%に上げて調製したが、粘度が高く塗工性が悪化して、かえって酸素ガスバリア性が低下する結果が得られた。
 表3および4の結果から、比較例8~10の水系コーティング剤は、粘度が低いため、高濃度(高塗布量)におけるコーティングが可能であるが、酸素ガスバリア性が劣っていた。
 これに無機層状鉱物(C)を添加した比較例11~13は、酸素ガスバリア性は向上するが、ラミネート強度が大きく低下した。
 表4の結果から、比較例14~21のガスバリア性フィルムは、20℃、RHの雰囲気下における酸素ガスバリア性あるいはラミネート強度の何れかが悪く、両特性の両立ができていなかった。
 一方、表1および2の結果から、実施例1~21の水系コーティング剤は、いずれも良好なグラビアコート適性が確認され、実施例1~21のガスバリア性フィルムは、20℃、80%RHの雰囲気下における酸素透過度が5cc/m・day以下、かつ、ラミネート強度が1.0N/15mm以上であり、ガスバリア性包装材として適用できる特性が得られた。
 以下、実施例および比較例により本発明の第3実施形態をさらに具体的に説明する。
[ポリウレタン樹脂製造例]
 水添XDI(1,4-ビス(イソシアネートメチル)シクロヘキサン)439.1g、エチレングリコール61.5g、ジメチロールプロピオン酸35.4gおよび溶剤としてアセトニトリル140gを混合し、窒素雰囲気下、70℃にて3時間反応させ、カルボキシル基含有ウレタンプレポリマー溶液を調製した。
次いで、このカルボキシル基含有ウレタンプレポリマー溶液を、50℃にて、トリエチルアミン24.0gにより中和した。
 このカルボキシル基含有ウレタンプレポリマー溶液267.9gを、ホモディスパーにより、水750gに分散させて、2-[(2-アミノエチル)アミノ]エタノール35.7gで鎖伸長反応を行い、アセトニトリルを留去することにより、固形分25質量%、平均粒径90nmの酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂を得た。
[コーティング剤製造例101~111]
 酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A1)(以下、「成分(A1)」と記すことがある。)として、ポリウレタン樹脂製造例の水性ポリウレタン樹脂(以下、表中では「製造例A1」とする。)、および、三井化学社製のポリウレタンディスパージョン タケラックWPB-341、さらに比較として、一般的な水溶性ポリウレタン樹脂である、DIC社製ポリエステルポリウレタン樹脂水溶液ハイドランHW350を用いた。
水溶性高分子(B1)(以下、「成分(B1)」と記すことがある。)として、以下に示す5種類のポリビニルアルコール樹脂を用いた。
  クラレ社製ポバールPVA-103(鹸化度98~99%、重合度300)
  クラレ社製ポバールPVA-110(鹸化度98~99%、重合度1000)
  クラレ社製ポバールPVA-117(鹸化度98~99%、重合度1700)
  クラレ社製ポバールPVA-124(鹸化度98~99%、重合度2400)
  クラレ社製ポバールPVA-210(鹸化度88~89%、重合度1000)
 無機層状鉱物(C1)(以下、「成分(C1)」と記すことがある。)として、水膨潤性合成雲母2種(コープケミカル社製ソマシフMEB-3、トピー工業社製NTS-5)、および、精製モンモリロナイト(クニミネ工業社製クニピア-F)を用いた。
 成分(A1)、成分(B1)および成分(C1)を、表5~8に示す固形分配合比率で配合して、80℃にて加熱、混合した後、室温まで冷却して、溶媒中の10質量%がイソプロパノール、最終的な固形分濃度が表5~8に記載の固形分濃度になるよう、イオン交換水とイソプロパノールで成分A1~C1の混合物を希釈し、塗工直前に表5~8に記載の硬化剤(三井化学社製水溶性ポリソシアネート タケネートWD-725、および、三和ケミカル社製N-メチロール化メラミンMW-12LF)を添加して、コーティング剤製造例101~111の水系コーティング剤を調製した。
 コーティング剤製造例101~111の水系コーティング剤を、グラビアコーターを用いて、三井化学東セロ社製二軸延伸ポリプロピレンフィルムU-1(厚さ20μm、OPP)のコロナ処理面に塗布し、90℃のオーブンを10秒間通過させて乾燥し、OPPフィルム上に、それぞれ膜厚1.0μmのガスバリア層が形成されたガスバリア性フィルムを得た。
[実施例101~116、比較例101~105]
 これらのガスバリア性フィルムのガスバリア層上に、グラビアコーターを用いて、以下に示す6種類の保護層形成用コーティング剤を塗布し、90℃のオーブンを10秒間通過させて乾燥し、膜厚0.3μmの保護層を形成した。
  (ポリウレタン系)DIC社製ハイドランHW350/三和ケミカル社製MW-12LF/イオン交換水/イソプロパノール=10/2/78/10溶液
(イソシアネート系)三井化学社製タケネートA-65/酢酸エチル=9/1溶液
  (ポリブタジエン系)東洋モートン社製EL451/メタノール=1/1溶液
  (ポリエチレンイミン系)日本触媒社製エポミンP-1000/メタノール=1/6溶液
  (ポリエステル系)日清紡社製バイロン50AS/日本ポリウレタン工業社製コロネート-L/酢酸エチル=10/1/60溶液
  (アクリルポリオール系)三菱レーヨン社製ダイヤナールLR209/日本ポリウレタン社製コロネートL/酢酸エチル=10/1/60溶液
 さらに、ガスバリア層/保護層形成面側に、ドライラミネーション加工により、ポリエステルウレタン系接着剤(三井化学社製タケラックA-525/三井化学社製タケネートA-52)を介して、厚さ30μmの未延伸ポリプロピレンフィルム(三井化学東セロ社製CPP GLC)をラミネートし、40℃にて48時間養生(エージング)し、表5~8に示す、実施例101~116および比較例101~105のガスバリア性積層体を得た。
[比較例106~116]
 前記のガスバリア性フィルムのガスバリア層上に保護層を設けることなく、前記の実施例と同様にラミネート加工して、比較例106~116のガスバリア性積層体を得た。
[評価]
(酸素ガスバリア性)
 実施例101~116、比較例101~116のガスバリア性積層体について、酸素透過度測定装置(MOCON社製OXTRAN-2/20)を用いて、20℃、80%RHの雰囲気下、酸素ガス透過度を測定し、酸素ガスバリア性を評価した。結果を表5~8に示す。
(ラミネート強度)
 実施例101~116、比較例101~116のガスバリア性積層体を、15mm幅の短冊状にカットし、引張試験機テンシロンにより、ガスバリア性フィルムを、300mm/分の速度で90°剥離させて、ラミネート強度を測定した。さらに、実施例101~116、比較例101~116のガスバリア性積層体を40℃、75%RHの恒温恒湿槽内に保管し、1ヶ月後および3ヶ月後に恒温槽から出して、同様に時間の経過後のラミネート強度を測定した。結果を表5~8に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表7および表8の結果から、比較例101、103、104、106、108、109のガスバリア性積層体は、20℃、80%RHの雰囲気下における酸素透過度の値が10cm/(m・24h・atm)以上であり、十分な酸素ガスバリア性があるとは言えなかった。
 表7および表8の結果から、比較例102、105、107、110~116の比較例のガスバリア性積層体は、40℃、75%RHの雰囲気に3ヶ月間保管されると、ラミネート強度が0.4N/15mm以下まで低下した。これは包装材料として流通した過程でデラミネーション不良を発生する可能性が高い強度であり、ガスバリア性と時間の経過に伴うラミネート強度とを両立できていなかった。
 一方、表5および表6の結果から、実施例101~116のガスバリア性積層体は、成分(A1)、成分(B1)、成分(C1)が、表5および表6に示す固形分配合比率で配合されているため、20℃、80%RHの雰囲気下における酸素透過度の値が5cm/(m・24h・atm)以下と、良好な酸素ガスバリア性を有していた。
 また、表5および表6の結果から、実施例101~116のガスバリア性積層体は、40℃、75%RHの雰囲気に3ヵ月間保管した後においても、0.6N/15mm以上のラミネート強度を維持しており、一般的な流通条件における包装材料としては十分な強度を維持していた。
_
 本発明は、乾燥食品・菓子・パン・珍味などの湿気や酸素を嫌う食品、および、使い捨てカイロ、錠剤・粉末薬または湿布・貼付剤などの医薬品の包装分野に用いられる水系コーティング剤およびガスバリア性フィルムに適用できる。

Claims (10)

  1.  水系コーティング剤であって、
     酸基を有するポリウレタン樹脂と、ポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、
     水溶性高分子(B)、および
     無機層状鉱物(C)を主たる構成成分として含み、
     全固形分中に占める前記水性ポリウレタン樹脂(A)、
     前記水溶性高分子(B)、および
     前記無機層状鉱物(C)の固形分配合比率が以下に記載の範囲であり、
     全固形分濃度が5質量%以上、23℃における粘度が50mPa・s以下である
     ことを特徴とする水系コーティング剤。
     水性ポリウレタン樹脂(A)50~80質量%
     水溶性高分子(B)5~20質量%
     無機層状鉱物(C)10~30質量%
  2.  前記水溶性高分子(B)は、鹸化度が95%以上かつ重合度が300~2000のポリビニルアルコール樹脂である
     ことを特徴とする請求項1に記載の水系コーティング剤。
  3.  前記無機層状鉱物(C)は、水膨潤性合成雲母である
     ことを特徴とする請求項1または2に記載の水系コーティング剤。
  4.  ガスバリア性フィルムであって、
     プラスチック材料からなる基材フィルムと、
     前記基材フィルムの片面あるいは両面に形成され、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分とする皮膜と、
     を備え、
     前記皮膜中に占める前記水性ポリウレタン樹脂(A)、前記水溶性高分子(B)、および前記無機層状鉱物(C)の比率が以下の範囲である
     ことを特徴とするガスバリア性フィルム。
     水性ポリウレタン樹脂(A)50~80質量%
     水溶性高分子(B)5~20質量%
     無機層状鉱物(C)10~30質量%
  5.  前記水溶性高分子(B)は、鹸化度が95%以上かつ重合度が300~2000のポリビニルアルコール樹脂である
     ことを特徴とする請求項4に記載のガスバリア性フィルム。
  6.  前記無機層状鉱物(C)は、水膨潤性合成雲母である
     ことを特徴とする請求項4または5に記載のガスバリア性フィルム。
  7.  ガスバリア性積層体であって、
     プラスチック材料からなる基材フィルム上に、少なくともガスバリア層、保護層、接着剤層、ヒートシール性樹脂層を順に積層した積層体であって、
     前記ガスバリア層は、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A1)、水溶性高分子(B1)および無機層状鉱物(C1)を主たる構成成分とする皮膜であり、
     前記皮膜中に占める前記水性ポリウレタン樹脂(A1)、前記水溶性高分子(B1)および前記無機層状鉱物(C1)の配合比率が以下に記載の範囲である
     ことを特徴とするガスバリア性積層体。
     水性ポリウレタン樹脂(A1)50~80質量%
     水溶性高分子(B1)5~20質量%
     無機層状鉱物(C1)10~30質量%
  8.  前記水溶性高分子(B1)は、鹸化度が95%以上かつ重合度が300~2000のポリビニルアルコール樹脂である
     ことを特徴とする請求項7に記載のガスバリア性積層体。
  9.  前記無機層状鉱物(C1)は、水膨潤性合成雲母である
     ことを特徴とする請求項7または8に記載のガスバリア性積層体。
  10.  前記保護層は、ポリウレタン系、イソシアネート系、ポリブタジエン系、ポリエチレンイミン系、ポリエステル系またはアクリルポリオール系のいずれかの材料をウェットコーティング法により形成した
     ことを特徴とする請求項7~9のいずれか1項に記載のガスバリア性積層体。
     
     
PCT/JP2013/055232 2012-02-28 2013-02-27 水系コーティング剤およびガスバリア性フィルム WO2013129520A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380011253.2A CN104136560A (zh) 2012-02-28 2013-02-27 水系涂覆剂及阻气性膜
KR1020147023640A KR20140130138A (ko) 2012-02-28 2013-02-27 수계 코팅제 및 가스 배리어성 필름
JP2014502334A JP6176239B2 (ja) 2012-02-28 2013-02-27 ガスバリア性積層体
US14/470,139 US9657195B2 (en) 2012-02-28 2014-08-27 Aqueous coating agent and gas barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-041251 2012-02-28
JP2012041251 2012-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/470,139 Continuation US9657195B2 (en) 2012-02-28 2014-08-27 Aqueous coating agent and gas barrier film

Publications (1)

Publication Number Publication Date
WO2013129520A1 true WO2013129520A1 (ja) 2013-09-06

Family

ID=49082714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055232 WO2013129520A1 (ja) 2012-02-28 2013-02-27 水系コーティング剤およびガスバリア性フィルム

Country Status (6)

Country Link
US (1) US9657195B2 (ja)
JP (2) JP2013208901A (ja)
KR (1) KR20140130138A (ja)
CN (1) CN104136560A (ja)
TW (1) TWI614316B (ja)
WO (1) WO2013129520A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208901A (ja) * 2012-02-28 2013-10-10 Toppan Printing Co Ltd ガスバリア性積層体
WO2015163450A1 (ja) * 2014-04-25 2015-10-29 凸版印刷株式会社 ガスバリア性フィルムおよびガスバリア性積層体
WO2015174492A1 (ja) * 2014-05-15 2015-11-19 凸版印刷株式会社 ガスバリア性包装材料
JP2016060507A (ja) * 2014-09-17 2016-04-25 凸版印刷株式会社 紙カップ
CN105682920A (zh) * 2013-10-28 2016-06-15 凸版印刷株式会社 阻气性膜
CN106232347A (zh) * 2014-04-25 2016-12-14 凸版印刷株式会社 阻气性膜及阻气性层叠体
JP2019188783A (ja) * 2018-04-27 2019-10-31 凸版印刷株式会社 ガスバリア性フィルム
JP2019195936A (ja) * 2018-05-09 2019-11-14 凸版印刷株式会社 ガスバリア性フィルム
WO2020039988A1 (ja) 2018-08-22 2020-02-27 凸版印刷株式会社 耐水性ガスバリアフィルム及び耐水性ガスバリアフィルムの製造方法
JP2021503037A (ja) * 2017-11-02 2021-02-04 凸版印刷株式会社 ガスバリアフィルムおよび包装材料

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191221B2 (ja) * 2013-04-25 2017-09-06 凸版印刷株式会社 水系コーティング剤およびガスバリア性フィルム
JP6165038B2 (ja) * 2013-11-29 2017-07-19 三井化学株式会社 積層体
JP6306448B2 (ja) * 2014-06-25 2018-04-04 三井化学株式会社 ポリウレタンディスパージョンおよびポリウレタン積層体
KR101648052B1 (ko) * 2014-12-12 2016-08-12 도레이첨단소재 주식회사 광학용 폴리에스테르 적층 필름
JP6537266B2 (ja) * 2014-12-24 2019-07-03 ユニチカ株式会社 積層体
KR101861411B1 (ko) * 2015-01-22 2018-05-28 (주)엘지하우시스 자동차용 시트커버 및 이의 제조방법
EP3287500B1 (en) * 2015-04-22 2023-05-10 Toppan Printing Co., Ltd. Coating agent and gas barrier film
CN105949984B (zh) * 2016-05-24 2018-06-22 江苏裕兴薄膜科技股份有限公司 通用型聚酯薄膜用在线涂布液及其制作方法
JP6948327B2 (ja) 2016-08-04 2021-10-13 凸版印刷株式会社 テープ材用支持フィルムおよびテープ材
JP7060946B2 (ja) * 2017-11-29 2022-04-27 住友化学株式会社 ガスバリア層を形成するための塗工液
EP3872127A4 (en) * 2018-10-22 2022-08-10 Toyo Seikan Group Holdings, Ltd. GAS BARRIER COMPOSITION
JP6645562B1 (ja) 2018-11-30 2020-02-14 株式会社明電舎 分解性樹脂成形体および分解性樹脂成形体の製造方法
EP3892463A4 (en) * 2018-12-05 2022-01-05 Toppan Printing Co., Ltd. GAS BARRIER FILM
KR102192687B1 (ko) * 2019-03-20 2020-12-17 도레이첨단소재 주식회사 가스 배리어 필름 및 그의 제조방법
CN114716929A (zh) * 2019-06-28 2022-07-08 浙江欧仁新材料有限公司 易清洁型电磁屏蔽膜
WO2021043860A1 (en) * 2019-09-03 2021-03-11 Thai Polyethylene Co., Ltd. Water-based barrier adhesive
CN111040121B (zh) * 2019-12-31 2021-08-24 江南大学 一种水性聚氨酯/聚乙烯醇/蒙脱土纳米复合乳液的制备
JP7148853B1 (ja) * 2020-12-24 2022-10-06 日産化学株式会社 ガスバリア膜形成組成物、ガスバリア膜、及びその製造方法
CN113929867B (zh) * 2021-09-15 2023-08-11 深圳市力合科创股份有限公司 铸膜液及其制备方法、以及高阻隔复合膜及其制备方法
JP7425242B1 (ja) 2023-03-09 2024-01-30 三井化学株式会社 水系ディスパージョンおよびガスバリア性コート材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151265A (ja) * 1995-11-30 1997-06-10 Toray Ind Inc ガスバリアフィルム
JP2005059329A (ja) * 2003-08-11 2005-03-10 Toppan Printing Co Ltd ガスバリア性を有する積層材料
JP2005139436A (ja) * 2003-10-15 2005-06-02 Mitsui Takeda Chemicals Inc ガスバリア性水性樹脂組成物及びそれを用いた積層フィルム
JP2005138581A (ja) * 2003-10-15 2005-06-02 Futamura Chemical Co Ltd ガスバリアフィルム
JP2008143103A (ja) * 2006-12-12 2008-06-26 Dainippon Printing Co Ltd ガスバリア性積層フィルム
JP2009241359A (ja) * 2008-03-31 2009-10-22 Unitika Ltd 多層フィルムおよび同フィルムを用いた包装用袋

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817274B2 (ja) 1992-07-29 2006-09-06 住友化学株式会社 積層ガスバリア材
JP3824028B2 (ja) 1995-09-29 2006-09-20 東レ株式会社 ガスバリアフィルム
JPH11165369A (ja) 1997-12-02 1999-06-22 Toppan Printing Co Ltd ガスバリアフィルム
JP4524463B2 (ja) * 1999-07-27 2010-08-18 三井化学株式会社 ガスバリア性ポリウレタン樹脂及びこれを含むガスバリア性フィルム
JP2001121659A (ja) * 1999-10-26 2001-05-08 Tohcello Co Ltd ガスバリア性フィルム
JP2001287294A (ja) 2000-04-10 2001-10-16 Toppan Printing Co Ltd 腰強度と耐衝撃性に優れた透明ガスバリア性積層体
JP2003213205A (ja) * 2002-01-28 2003-07-30 Nicca Chemical Co Ltd 水性アンカー剤組成物及びガスバリヤー性積層体
JP3764109B2 (ja) 2002-02-13 2006-04-05 ダイセル化学工業株式会社 カイロ用包装フィルム
JP4434907B2 (ja) 2003-10-15 2010-03-17 三井化学ポリウレタン株式会社 水性ポリウレタン樹脂組成物及び積層フィルム
US9006338B2 (en) * 2003-10-15 2015-04-14 Mitsui Takeda Chemicals, Inc. Aqueous resin composition having gas barrier properties and laminated film using the same
JP5081416B2 (ja) * 2005-09-26 2012-11-28 ユニチカ株式会社 ガスバリア性積層体
JP5081417B2 (ja) * 2005-09-26 2012-11-28 ユニチカ株式会社 ガスバリア性積層体および積層物
JP2013208901A (ja) * 2012-02-28 2013-10-10 Toppan Printing Co Ltd ガスバリア性積層体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151265A (ja) * 1995-11-30 1997-06-10 Toray Ind Inc ガスバリアフィルム
JP2005059329A (ja) * 2003-08-11 2005-03-10 Toppan Printing Co Ltd ガスバリア性を有する積層材料
JP2005139436A (ja) * 2003-10-15 2005-06-02 Mitsui Takeda Chemicals Inc ガスバリア性水性樹脂組成物及びそれを用いた積層フィルム
JP2005138581A (ja) * 2003-10-15 2005-06-02 Futamura Chemical Co Ltd ガスバリアフィルム
JP2008143103A (ja) * 2006-12-12 2008-06-26 Dainippon Printing Co Ltd ガスバリア性積層フィルム
JP2009241359A (ja) * 2008-03-31 2009-10-22 Unitika Ltd 多層フィルムおよび同フィルムを用いた包装用袋

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208901A (ja) * 2012-02-28 2013-10-10 Toppan Printing Co Ltd ガスバリア性積層体
US10221334B2 (en) 2013-10-28 2019-03-05 Toppan Printing Co., Ltd. Gas barrier film
CN105682920A (zh) * 2013-10-28 2016-06-15 凸版印刷株式会社 阻气性膜
EP3064351A4 (en) * 2013-10-28 2017-05-17 Toppan Printing Co., Ltd. Film with gas barrier properties
WO2015163450A1 (ja) * 2014-04-25 2015-10-29 凸版印刷株式会社 ガスバリア性フィルムおよびガスバリア性積層体
CN106232347A (zh) * 2014-04-25 2016-12-14 凸版印刷株式会社 阻气性膜及阻气性层叠体
CN106232347B (zh) * 2014-04-25 2019-02-12 凸版印刷株式会社 阻气性膜及阻气性层叠体
JP2015208923A (ja) * 2014-04-25 2015-11-24 凸版印刷株式会社 ガスバリア性フィルムおよびガスバリア性積層体
US10654631B2 (en) 2014-04-25 2020-05-19 Toppan Printing Co., Ltd. Gas barrier film and gas barrier laminate
CN106457787B (zh) * 2014-05-15 2019-12-20 凸版印刷株式会社 阻气性包装材料
CN106457787A (zh) * 2014-05-15 2017-02-22 凸版印刷株式会社 阻气性包装材料
WO2015174492A1 (ja) * 2014-05-15 2015-11-19 凸版印刷株式会社 ガスバリア性包装材料
JP2016060507A (ja) * 2014-09-17 2016-04-25 凸版印刷株式会社 紙カップ
JP7337082B2 (ja) 2017-11-02 2023-09-01 凸版印刷株式会社 ガスバリアフィルムおよび包装材料
JP2021503037A (ja) * 2017-11-02 2021-02-04 凸版印刷株式会社 ガスバリアフィルムおよび包装材料
JP2019188783A (ja) * 2018-04-27 2019-10-31 凸版印刷株式会社 ガスバリア性フィルム
JP2019195936A (ja) * 2018-05-09 2019-11-14 凸版印刷株式会社 ガスバリア性フィルム
JP7110709B2 (ja) 2018-05-09 2022-08-02 凸版印刷株式会社 ガスバリア性フィルム
US11932772B2 (en) 2018-08-22 2024-03-19 Toppan Printing Co., Ltd. Water-resistant gas barrier film, and method for producing water-resistant gas barrier film
WO2020039988A1 (ja) 2018-08-22 2020-02-27 凸版印刷株式会社 耐水性ガスバリアフィルム及び耐水性ガスバリアフィルムの製造方法

Also Published As

Publication number Publication date
TW201343816A (zh) 2013-11-01
JPWO2013129520A1 (ja) 2015-07-30
TWI614316B (zh) 2018-02-11
CN104136560A (zh) 2014-11-05
JP6176239B2 (ja) 2017-08-09
KR20140130138A (ko) 2014-11-07
US20140370270A1 (en) 2014-12-18
US9657195B2 (en) 2017-05-23
JP2013208901A (ja) 2013-10-10

Similar Documents

Publication Publication Date Title
JP6176239B2 (ja) ガスバリア性積層体
JP6191221B2 (ja) 水系コーティング剤およびガスバリア性フィルム
JP6326740B2 (ja) グラビア印刷用水系コーティング剤およびガスバリア性フィルム
JP6210145B2 (ja) 包装容器
JP6287064B2 (ja) ガスバリア性フィルム
CN107960093B (zh) 涂布剂及阻气性膜
JP2015044943A (ja) グラビア印刷用水系コーティング剤およびガスバリア性フィルム
WO2015163450A1 (ja) ガスバリア性フィルムおよびガスバリア性積層体
JP6524781B2 (ja) コーティング剤およびガスバリア性フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502334

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147023640

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755625

Country of ref document: EP

Kind code of ref document: A1