WO2013127111A1 - 单腔双电极放电腔及准分子激光器 - Google Patents

单腔双电极放电腔及准分子激光器 Download PDF

Info

Publication number
WO2013127111A1
WO2013127111A1 PCT/CN2012/073018 CN2012073018W WO2013127111A1 WO 2013127111 A1 WO2013127111 A1 WO 2013127111A1 CN 2012073018 W CN2012073018 W CN 2012073018W WO 2013127111 A1 WO2013127111 A1 WO 2013127111A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
chamber
electrode
discharge
discharge chamber
Prior art date
Application number
PCT/CN2012/073018
Other languages
English (en)
French (fr)
Inventor
王宇
周翊
丁金滨
刘斌
张立佳
赵江山
沙鹏飞
Original Assignee
中国科学院光电研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院光电研究院 filed Critical 中国科学院光电研究院
Priority to EP12869793.5A priority Critical patent/EP2690723B1/en
Priority to KR1020137020724A priority patent/KR101493807B1/ko
Priority to JP2014501423A priority patent/JP2014511036A/ja
Priority to RU2013146022/07A priority patent/RU2592065C2/ru
Priority to DK12869793.5T priority patent/DK2690723T3/en
Publication of WO2013127111A1 publication Critical patent/WO2013127111A1/zh
Priority to US14/040,490 priority patent/US9252557B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0385Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • H01S3/073Gas lasers comprising separate discharge sections in one cavity, e.g. hybrid lasers
    • H01S3/076Folded-path lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2333Double-pass amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0384Auxiliary electrodes, e.g. for pre-ionisation or triggering, or particular adaptations therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0388Compositions, materials or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • H01S3/08068Holes; Stepped surface; Special cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • H01S3/09713Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited with auxiliary ionisation, e.g. double discharge excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • H01S3/10092Coherent seed, e.g. injection locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/235Regenerative amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Definitions

  • the present invention relates to the field of laser technologies, and in particular to a single-cavity two-electrode discharge chamber for lithography and an excimer laser including the same, and the discharge chamber of the present invention can also It is applied to devices where other gases are excited to generate energy radiation.
  • Excimer lasers are conventional gas lasers for ultraviolet characterization applications and are currently considered to be the best source of light for lithography and are the primary source of work for the lithography industry of integrated circuits.
  • the conventional discharge excitation excimer laser adopts a single cavity single electrode structure design.
  • light sources are required to have narrower spectral widths (linewidths), higher repetition rates, and higher average power.
  • Traditional single-cavity structures are difficult to meet these three requirements at the same time, which often leads to serious constraints on the pursuit of performance and cost-effectiveness in laser research.
  • the difficulties in improving the single-cavity structure of conventional lasers are mainly due to the large energy loss of the linewidth narrowing module and the damage and life of optical components under high power laser radiation.
  • a dual cavity structure is introduced into the design of the laser.
  • the basic idea of this structure is to narrow the line width and increase the laser output power in different gas discharge modules (seed chamber, amplification chamber).
  • the working process is as follows: The seed cavity generates narrow line width seed light with a certain repetition frequency to realize low power laser oscillation radiation; the amplification cavity completes the pulse energy amplification after the seed light is incident.
  • the laser output based on the dual cavity design provides the narrow spectral control and higher single pulse energy output characteristics necessary for the lithographic light source.
  • Lasers based on dual-cavity design can continuously optimize the main and amplification modules, and improve system output indicators, such as optimizing the composition and pressure of the working gas mixture and excitation operating voltage to obtain laser output with narrow linewidth and high power.
  • the power amplifier based on the amplification cavity The large mechanism, the relatively low laser output in the main oscillator, can significantly increase the lifetime of the optical components in the linewidth narrowing module. Since the laser based on the dual cavity structure design has the above advantages, the "seed-amplification" mechanism laser structure design is widely used in the development of modern laser lithography light sources.
  • the dual-cavity structure design is mainly divided into the following three categories: main oscillation cavity - double-cavity structure (MOPA, Master Oscillator Power Amplifier) of the main oscillation cavity power oscillation cavity (MOPO, Master Oscillator Power Oscillator) and Main Oscillator Power Regenerative Amplifier (MOPRA) based on the dual-cavity structure of the power amplifying cavity.
  • MOPA main oscillation cavity - double-cavity structure
  • MOPO Master Oscillator Power Oscillator
  • MOPRA Main Oscillator Power Regenerative Amplifier
  • a dual-cavity MOPA excimer laser includes a main oscillation cavity (MO cavity) 101, a power amplification cavity (PA cavity) 102, and a line width voltage.
  • Narrow module (LNM) 103 wavelength analysis module (LAM) 104, MO optical path conversion control module (MO web) 105, PA optical path conversion control module (PA web) 106, optical pulse stretcher (OPS) 107, line width analysis module (BAM) 108, pentaprism 109, automatic shutter 110 and the like.
  • the MOPA structure is the earliest application of the laser system design for the development of high-end lithographic light sources, which is described in the patents US2002/0044586A1, US20060126697AK US6690704B2. According to the literature "Development of ArF Excimer Laser Technology for Photolithography", pp. 523-524, in the MOPA structure, due to the limited magnification of the cavity, the limitation of the laser energy amplification makes the MO cavity (main oscillation cavity) more The high laser energy output can meet the requirements of the index parameters of the light source system.
  • the MO cavity output needs about lmJ to transmit the seed light to the PA cavity (power amplification cavity), and the higher energy introduced by the line width narrowing mechanism Loss, conversion efficiency is relatively low, and high-energy discharge excitation makes the life of the MO cavity significantly lower.
  • the output of the PA cavity is affected by the accuracy of the discharge of the MO cavity and the PA cavity, and the stability of the laser energy output needs to be further improved.
  • the MOPO structure based on Injection Lock Technology and the MOPRA structure using Recirculating Ring Technology compensate for the above-mentioned shortcomings of the MOPA structure.
  • 2 is a structural diagram of a prior art dual-cavity MOPO excimer laser.
  • the dual-cavity MOPO excimer laser includes: a power oscillation cavity (PO cavity) 201, a power amplification cavity (PA cavity) 202, and a line width.
  • Patent US2008/0285602A1 adopts MOPO double cavity structure design.
  • FIG. 3 is a structural diagram of a prior art dual-cavity MOPRA excimer laser.
  • the dual-cavity MOPRA excimer laser structure is an improvement on the MOPA structure, and the structure is like MOPA, but the PA optical path conversion control module is only
  • the (PA web) 306 is aligned with the position of the linewidth analysis module (BAM) 308 so that the seed light can obtain multi-pass gain.
  • BAM linewidth analysis module
  • Patent US2010098120A1 adopts MOPRA annular cavity structure design.
  • the seed light In the MOPA structure, the seed light only obtains a finite multi-pass gain in the PA cavity, and the MO cavity needs to inject about lmJ seed light into the PA cavity to obtain a laser output of about 10 mJ.
  • the amplification cavity uses multi-pass power amplification technology instead of the finite multi-pass amplification such as the MOPA structure
  • the PO cavity And the PRA cavity power regeneration cavity
  • the seed light obtains the multi-pass gain, and only 15-200 ⁇ seed light injection is required to obtain the 15mJ laser output.
  • the remarkable feature of the injection locking technique and the annular cavity technology is that after the seed light is injected, the resonance reciprocates in the amplification cavity, and the amplification cavity operates in a deep saturation state. Compared with MOPA technology, their advantages are mainly reflected in: greater energy and more stable output.
  • the MOPA, MOPO, and MOPRA systems are all based on a dual discharge cavity type design.
  • lasers with dual-cavity designs are more expensive, larger, and more complex to fabricate and operate.
  • the laser designed based on the dual-cavity structure is required to ensure good energy amplification characteristics, and the discharge performance of the same is relatively high, which improves the technical difficulty in achieving the same-state discharge.
  • the operation difficulty of peripheral mounting and the like is increased to some extent.
  • the technical problem to be solved by the present invention is to propose a novel single-cavity two-electrode discharge chamber and a corresponding laser to solve the problem based on the double cavity.
  • the structure of the laser has the disadvantages of high price, large volume, complicated manufacturing process and operation method, and can realize high-quality laser beam output with narrow line width and high power.
  • the single-chamber two-electrode discharge chamber comprises a cavity and two sets of main discharge electrodes, the cavity comprising two left and right chambers to form a symmetrical double-chamber structure cavity shape, and each chamber has a cross-sectional shape that is small and small.
  • the large shape, the left and right chambers meet and communicate at the symmetry plane of the entire discharge chamber; the two sets of main discharge electrodes are respectively located in the left and right chambers, and the discharge areas thereof are respectively located at the upper portions of the left and right chambers.
  • Each of the main discharge electrodes includes an anode and a cathode, and a discharge region is formed between the anode and the discharge surface of the cathode.
  • Each of the cathodes is mounted on an insulating plate, and the insulating plate is suspended from the top ends of the left and right chambers; each of the anodes is fixed on an anode base, and the anode base is fixed to the cavity Above, its position is such that the anode is parallel and facing the cathode.
  • the single-chamber two-electrode discharge chamber of the present invention further includes a bead and a peaking capacitor, and the peaking capacitor (10) is used for discharging energy storage; the insulating plate is fixed to the discharge chamber by the bead; the bead is located at the The outer side of the insulating plate is connected to one end of the peaking capacitor through a copper piece, and forms a ground loop with the cavity.
  • the other end of the peaking capacitor is connected to a high voltage pulse power supply through a metal strip.
  • the single-chamber two-electrode discharge chamber of the present invention further includes a pre-ionization device located on both sides of the main discharge electrode.
  • the pre-ionization device has two sets, which are respectively located on two sides of each set of main discharge electrodes.
  • the pre-ionization device has a set that is located on either side of the main discharge electrode of the upstream discharge zone.
  • the pre-ionization device includes upper and lower portions, each portion including a ceramic tube and a pre-ionization electrode, and the pre-ionization electrode is located inside the ceramic tube.
  • the ceramic tube of the upper pre-ionization device is fixed to the cathode by an insulator, and the ceramic tube of the lower pre-ionization device is fixed to the anode through an insulator.
  • Each of the anodes is coupled to a cavity of the discharge chamber by a set of copper sheets.
  • the single-chamber two-electrode discharge chamber of the present invention also includes a fan system that drives the gas within the discharge chamber.
  • the single-chamber two-electrode discharge chamber of the present invention further includes a heat dissipation system that dissipates heat from the discharge chamber.
  • the single-chamber two-electrode discharge chamber of the present invention further includes a dust removal system that dedusts the gas in the discharge chamber.
  • the single-chamber two-electrode discharge chamber of the present invention further includes a noise reduction system for performing noise reduction processing on the discharge chamber.
  • the present invention also provides a single cavity dual electrode MOPA laser comprising the single cavity dual electrode discharge chamber previously described.
  • the present invention also provides a single cavity dual electrode MOPO laser comprising the single cavity dual electrode discharge chamber previously described.
  • the present invention also provides a single cavity dual electrode MOPRA laser comprising the single cavity dual electrode discharge chamber previously described.
  • the invention changes two single-cavity single-electrode structures in a MOPA, MOPRA or MOPO laser system into a single-chamber two-electrode structure, so that MOPA (single-cavity MOPA) and MOPO (single-chamber MOPO) can be realized by a single-chamber structure.
  • MOPA single-cavity MOPA
  • MOPO single-chamber MOPO
  • the dual-cavity function of the structure not only reduces the complexity of the system, but also ensures the discharge homogeneity of the discharge chamber.
  • the use of a single-cavity structure facilitates the integration and assembly of optical components on the periphery of the discharge chamber, which simplifies the laser system.
  • a single-cavity, two-electrode laser can also achieve two laser outputs simultaneously.
  • the single-chamber two-electrode structure can effectively reduce the complexity of the laser system, thereby Reduce the difficulty of peripheral adjustment operations.
  • a single-cavity, two-electrode laser can achieve the output of two narrow linewidth, high power, superior laser beams.
  • FIG. 1 is a structural diagram of a prior art dual cavity MOPA excimer laser
  • FIG. 2 is a structural diagram of a prior art dual cavity MOPO excimer laser
  • FIG. 3 is a structural diagram of a prior art dual cavity MOPRA excimer laser
  • FIG. 4 is a structural diagram of a discharge chamber of a single-cavity two-electrode excimer laser according to an embodiment of the present invention
  • FIG. 5 is a detailed structural view of a discharge region of a laser according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of noise reduction of a discharge region of a laser according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of pre-ionization of a laser discharge chamber of an embodiment of the present invention.
  • FIG. 8 is a structural diagram of a single-cavity MOPA excimer laser according to an embodiment of the present invention
  • FIG. 9 is a structural diagram of a single-cavity MOPRA excimer laser according to an embodiment of the present invention
  • FIG. 10 is a single-chamber MOPO excimer laser structure according to an embodiment of the present invention.
  • 11 is a two-channel laser output system of a single-cavity two-electrode excimer laser according to an embodiment of the invention.
  • the discharge chamber mainly comprises a discharge chamber body 1, two sets of main discharge electrodes, two sets of gas circulation systems, a heat dissipation system, a dust removal device and a high voltage pulse charging module 4.
  • the discharge chamber 1 is a closed gas container designed to perform a relevant standard for a pressure vessel for storing a corrosive mixed gas of 3 to 6 atm, such as an excimer-containing halogen gas including F 2 gas. .
  • the discharge chamber of the present invention comprises two chambers on the left and the right to form a symmetrical bi-chamber structure, and the cross-sectional shape of each chamber is a shape that is small and large, such as a "pear" shape as shown in Fig. 4.
  • the dual chambers interface and communicate at the symmetry plane of the entire discharge chamber.
  • the discharge chamber of the present invention comprises two sets of main discharge electrodes, which are respectively located in the left and right chambers.
  • the main discharge electrode is positioned to ensure that its discharge zone 2 is located at the upper portion of the left and right chambers.
  • Each set of main discharge electrodes includes an anode 6 and a cathode 3, the cathode is mounted on the insulating plate 5 by bolts, the insulating plate 5 is hoisted at the top end of the left and right chambers, and the anode 6 is fixed to the anode base 14 by screws,
  • the anode base is fixed to the cavity 1 of the discharge chamber in such a position that the anode 6 and the cathode 3 are mounted in parallel with each other.
  • the spacing between the two sets of main discharge electrodes ensures that the gas in the discharge zone 2 has sufficient energy density and can meet the output size requirements of the laser, and usually needs to be set to 10 ⁇ 30mm.
  • the discharge chamber of the present invention further includes a high voltage pulse charging module 4 as a high voltage power source for injecting sufficient energy into the discharge region 2 of the discharge chamber, the high voltage pulse charging module 4 being located above the main discharge electrode and passing through the peaking capacitor 10 Energy is injected into the cathodes of the two sets of main discharge electrodes to provide a discharge voltage sufficient to break the working gas in the discharge zone.
  • the high voltage pulse charging module 4 uses a related design based on all solid state pulsed power technology.
  • the discharge region 2 refers to a space region between the anode and the cathode discharge surface, the length of which is approximately equal to the length of the electrode, and the height is equal to the cathode and anode working surfaces.
  • the pitch is slightly larger than the width of the discharge surface of the electrode.
  • each of the main discharge electrodes includes a cathode 3 and an anode 6, and the cathode 3 is connected to the high voltage pulse charging module 4.
  • Each of the cathodes 3 is fixed to an insulating plate 5 by bolts and supported by the insulating plate 5, which is made of a material resistant to corrosion by F 2 or the like, such as a high-purity A1 2 3 3 ceramic.
  • Each anode 6 is connected to a cavity 1 of a discharge chamber through a set of copper sheets 13 while the discharge chamber is grounded. At the same time, the copper sheet 13 also has the effect of homogenizing the flow field and reducing the impedance between the anode 6 and the ground.
  • the discharge chamber of the present invention further comprises a bead 9 and a peaking capacitor 10, each of the insulating plates 5 being fixed to the discharge chamber by two bead 9 and sealed by a 0-ring, the bead 9 being located outside the insulating plate, and
  • the copper piece is connected to one end of the peaking capacitor 10 to form a ground loop with the discharge cavity, the peaking capacitor 10 is used for discharging energy storage, and the other end is connected to the high voltage pulse power source 4 through the metal bus bar 21.
  • the discharge chamber of the present invention further includes a pre-ionization device, and the pre-ionization device is located on both sides of each of the main discharge electrodes.
  • the pre-ionization device comprises upper and lower parts, each part comprising a ceramic tube 7 and a pre-ionization electrode 8, the ceramic tube 7 being an insulator material, and the pre-ionization electrode 8 is located inside the ceramic tube 7, upper portion
  • the ceramic tube 7 of the pre-ionization device is fixed to the cathode 3 through an insulator 17 to ensure the accuracy of the mounting position.
  • the ceramic tube 7 of the lower pre-ionization device is fixed to the anode 6 through an insulator 20 to ensure the accuracy of the mounting position.
  • the working gas in the laser cavity is a highly corrosive gas
  • all the cavities, insulators, electrodes, etc. in contact with the gas are made of corrosion-resistant materials, wherein the cavity 1 can be made of alloy aluminum material, electrodes 3, 6, 8 Brass or aluminum bronze materials can be used, which can react with highly corrosive gases to form a dense oxide film to prevent them from reacting with highly corrosive gases for protection purposes.
  • the newly produced laser cavity requires a period of passivation of the cavity 1 of the discharge chamber, such as fluorine passivation.
  • pre-ionization device of the laser discharge chamber of the embodiment of the present invention Before the formation of the main discharge, a certain amount of initial electron distribution is generated by pre-ionization, causing the electrons to collapse uniformly distributed in the discharge space.
  • the purpose of pre-ionization is to prevent the formation of a stream and achieve a uniform discharge.
  • the flow direction of the working gas in the discharge zone is defined as upstream and downstream, wherein, in the A diagram of FIG. 7, a pre-ionization device is disposed in both the upstream discharge zone 2 and the downstream discharge zone 2,
  • the so-called upstream and downstream refer to the position of the working gas in the flow process according to the sequence of the discharge zone.
  • the pre-ionization device shown in Figure 7 of Figure 7 has the advantage of fully ionizing the working gas and ensuring discharge. More even. Found in the test, In the downstream discharge zone, heat accumulation is more likely to occur, so we can also use the pre-ionization apparatus shown in FIG.
  • the pre-ionization apparatus employs a structure in which the insulated ceramic tube 7 has the pre-ionization electrode 8 built therein.
  • the single chamber dual electrode discharge chamber in accordance with the present invention also includes a fan system. Since the laser is a pulsed discharge, in order to ensure that the gas in the discharge section is continuously updated to fresh gas during discharge, the embodiment of the present invention provides two sets of fan impellers 15 in the cavity 1 of the discharge chamber to drive the gas 16 to ensure that each The gas passing through the discharge zone 2 is a fresh gas.
  • each impeller 15 is driven by a single motor or a dual motor, and the main and passive magnetic couplers are used for non-contact transmission to ensure that corrosive harmful gases in the discharge chamber are not leaked.
  • the fan impeller 15 uses a cross-flow fan impeller.
  • the cross-flow fan impeller is a very mature product.
  • the preferred arrangement in the selection is a continuation or symmetrical structure to improve the uniformity of the flow field.
  • the energy injected into the discharge chamber is relatively high, so it is required to be actively cooled.
  • the present invention adopts a water-cooling method, including a heat sink 11, which is fabricated by copper processing, and the number of the heat sink 11 is based on the heat dissipation requirement. For one, it can be multiple.
  • the mounting position of the heat sink can be installed at the air inlet of the impeller 15 or downstream of the flow field channel of the discharge area to ensure good heat dissipation.
  • the embodiment of the heat sink is shown in the embodiment shown in FIG. Location, but the invention is not limited thereto. 5. Dust removal system for single-chamber two-electrode discharge chamber
  • the gas stored in the discharge chamber generates consumables of the cavity and the electrode material during the discharge process. These impurities are irreversible and exist in the form of particles.
  • electrostatic dust removal in the discharge chamber.
  • Device 12 to ensure that the discharge product does not act on the electrode, Contamination caused by optical components such as Brewster windows.
  • the dust removing device 12 is disposed at the downwind of the flow path of the discharge zone, as shown in FIG.
  • the present invention performs noise reduction processing on the discharge chamber, and the cavity structure member near the discharge region 2 is processed into a bump.
  • the uneven surface 18 prevents the shock generated by the discharge from being reflected back to the discharge area.
  • a corresponding sound absorbing device 19 such as a sound absorbing plate or a sound wire mesh, is provided for absorbing shock waves generated by the discharge.
  • the dual-chamber structure optical system schemes suitable for the existing MOPA, MOPO, etc. are all adapted to the single-chamber two-electrode discharge chamber of the present invention, and the discharge chamber can realize all functions of MOPA and MOPO, and also simplify the structure of the discharge chamber.
  • the system improves the reliability of the system.
  • Figure 8 is a structural diagram of a single-chamber two-electrode MOPA laser
  • Figure 9 is a structural diagram of a single-chamber two-electrode MOPRA laser
  • Figure 10 is a structural diagram of a single-chamber two-electrode MOPO laser.
  • Each of the three single-chamber two-electrode lasers introduces a single-chamber two-electrode discharge chamber in place of the prior art dual-chamber structure.
  • FIG. 8 is a block diagram of a single-cavity MOPA excimer laser incorporating a single-chamber two-electrode discharge chamber.
  • the system includes a single-chamber two-electrode discharge chamber (DDC) 801, a linewidth narrowing module (LNM) 802, and a wavelength analysis module (LAM).
  • DDC single-chamber two-electrode discharge chamber
  • LNM linewidth narrowing module
  • LAM wavelength analysis module
  • MO web MO optical path conversion control module
  • PA optical path conversion control module PA optical path conversion control module (PAweb) 805, optical pulse stretcher (OPS) 806, line width analysis module (BAM) 807, pentaprism 808, automatic shutter 809, etc.
  • PPS optical pulse stretcher
  • the single-chamber two-electrode discharge chamber (DDC) 801 mainly comprises a discharge chamber cavity, two sets of main discharge electrodes, two sets of gas circulation systems, a heat dissipation system, a dust removal device and a high-voltage pulse charging module.
  • FIG. 9 is a structural diagram of a dual-cavity MOPO excimer laser incorporating a single-chamber two-electrode laser, the system comprising: a single-cavity two-electrode discharge chamber 901, a power oscillation chamber (PO cavity), a power amplification cavity (PA cavity), and a line width pressure a narrow module (LNM) 902, a concave mirror 903, a convex mirror 904, wherein the single-chamber two-electrode discharge chamber 901 mainly comprises a discharge chamber cavity, two sets of main discharge electrodes, two sets of gas circulation systems, a heat dissipation system, a dust removal device and a high voltage Pulse charging module.
  • the single-chamber two-electrode discharge chamber 901 mainly comprises a discharge chamber cavity, two sets of main discharge electrodes, two sets of gas circulation systems, a heat dissipation system, a dust removal device and a high voltage Pulse charging module.
  • Figure 10 is a structural diagram of a single-cavity MOPRA excimer laser introduced into a single-cavity two-electrode discharge chamber.
  • the system composition is like MOPA, but the position of the PA optical path conversion control module (PA web) 1005 and the line width analysis module (BAM) 1007 is made. The alignment is adjusted so that the seed light can obtain multi-path gain.
  • PA web PA optical path conversion control module
  • BAM line width analysis module
  • the output of the two lasers is realized by the single-cavity two-electrode laser.
  • the system includes two high-reflection mirrors HR1102 and 1103, two output mirrors 1104 and 1105, and a single-chamber two-electrode discharge chamber 1101. .
  • the output of the laser also includes two pairs of Brewster windows, as well as an output mirror, which uses the prior art to achieve the output of the two lasers.
  • the single-cavity, two-electrode laser power supply is based on an all-solid-state pulsed power supply technology.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

公开了一种单腔双电极放电腔以及采用放电腔的准分子激光器。单腔双电极放电腔包括腔体(1)和两套主放电电极,腔体(1)包括左右两室,以形成对称的双室结构腔形。每个室的截面形状均为上小下大的"梨"形形状,左右两室在整个放电腔的对称面处交界并连通。两套主放电电极分别位于左右两室的上侧。该单腔双电极放电腔通过一个单腔结构实现了MOPA、MOPO、MOPRA的双腔功能,既降低了系统的复杂性,又保证了放电腔的放电同步性。

Description

单腔双电极放电腔及准分子激光器 技术领域 本发明属于激光器技术领域, 具体涉及一种光刻用的单腔双电极放 电腔及包含该放电腔的准分子激光器, 本发明的放电腔也可应用于其它 气体受激励产生能量辐射的装置。
背景技术 准分子激光器是一种面向紫外特征应用的常规气体激光器, 目前被 认为是用于光刻的最佳光源选择, 是集成电路平板印刷光刻工业的主力 工作光源。
传统的放电激励准分子激光器采用单腔单电极结构设计。 随着光学 光刻技术的进一歩发展, 要求光源具有更窄的光谱宽度 (线宽)、 更高 的重复频率以及更高的平均功率。 传统单腔结构很难同时满足这三个要 求, 这往往导致激光器的研究在追求性能和成本效益之间存在严重的制 约关系。 改进传统激光器单腔结构所面临的困难主要在于线宽压窄模块 的较大能量损失问题以及高功率激光辐射作用下光学元件的损伤和寿 命问题。
为了有效的实现光谱宽度窄化和激光输出功率的提高, 双腔结构被 引入到激光器的设计中。 这一结构的基本思想是使线宽压窄和提高激光 输出功率在不同的气体放电模块 (种子腔、 放大腔) 中得以实现。 其工 作过程如下: 种子腔产生具有一定重复频率的窄线宽种子光, 实现低功 率激光振荡辐射; 放大腔完成种子光入射后的脉冲能量放大。 基于双腔 结构设计的激光器输出具备了光刻光源所必需的窄化光谱控制和较高 单脉冲能量输出特性。
基于双腔结构设计的激光器可以不断优化主振和放大模块, 完善系 统输出指标, 比如优化工作气体混合物的组份和压强以及激励工作电压 等来获得具有窄线宽和大功率的激光输出。 此外, 基于放大腔的功率放 大机制, 主振荡器中相对较低的激光输出可以显著提高线宽压窄模块中 的光学元件的寿命。由于基于双腔结构设计的激光器具有以上优点, "种 子一放大"机制激光器结构设计在现代激光光刻光源研发中得到广泛的 应用。
双腔结构设计主要分以下三类: 主振荡腔——功率放大腔的双腔结 构(MOPA, Master Oscillator Power Amplifier ) 主振荡腔 功率振荡 腔的双腔结构 (MOPO, Master Oscillator Power Oscillator) 以及以主振 荡腔——功率放大腔的双腔结构为基础而发展出来的环形腔结构 (MOPRA, Master Oscillator Power Regenerative Amplifier)。 相应具体 结构细节分别如图 1、 2、 3所示。
图 1是现有技术的双腔 MOPA准分子激光器结构图, 如图 1所示, 双腔 MOPA准分子激光器包括主振荡腔(MO腔) 101、功率放大腔(PA 腔) 102、 线宽压窄模块(LNM) 103、 波长分析模块(LAM) 104、 MO 光路转换控制模块 (MO web) 105、 PA光路转换控制模块 (PA web) 106、 光学脉冲展宽器 (OPS) 107、 线宽分析模块 (BAM) 108、 五棱 镜 109、 自动快门 110等组成。
MOPA结构是最早应用于高端光刻光源研发的激光系统设计, 该结 构在专利 US2002/0044586A1、 US20060126697AK US6690704B2中已 作描述。 根据文献 《近期光刻用 ArF准分子激光技术发展》第 523-524 页, MOPA结构机型中, 由于有限次通过放大腔体, 激光能量放大能力 的限制使得 MO腔(主振荡腔) 需要更高的激光能量输出才能满足光源 系统指标参数需求,经线宽压窄处理后 MO腔输出需要约 lmJ左右种子 光传递到 PA腔(功率放大腔), 由于线宽压窄机制所引入的较高能量损 耗, 转换效率相对较低, 大能量的放电激励使 MO腔的寿命明显偏低。 另外, PA腔输出受 MO腔和 PA腔放电同歩精度影响, 激光能量输出稳 定性需要进一歩提高。
基于注入锁定技术(Injection Lock Technology)的 MOPO结构和采 用了环形腔技术 (Recirculating Ring Technology) 的 MOPRA结构, 弥 补了 MOPA结构的上述不足。 图 2是现有技术的双腔 MOPO准分子激光器结构图, 如图 2所示, 双腔 MOPO准分子激光器包括: 功率振荡腔(PO腔) 201、 功率放大腔 (PA腔) 202、 线宽压窄模块(LNM) 203, 以及包括凹面镜 204、 凸面 镜 205在内的光学回路系统。
专利 US2008/0285602A1采用 MOPO双腔结构设计。
图 3是现有技术的双腔 MOPRA准分子激光器结构图,如图 3所示, 双腔 MOPRA准分子激光器结构是在 MOPA结构上做的改进,结构组成 如同 MOPA, 只是将 PA光路转换控制模块 (PA web) 306与线宽分析 模块 (BAM) 308的位置做了对调, 由此种子光可以获得多程增益。
专利 US2010098120A1采用 MOPRA环形腔结构设计。
在 MOPA结构中, 种子光在 PA腔中只获得有限次多程增益, MO 腔需向 PA腔注入约 lmJ种子光才能得到约 10mJ激光输出。 在采用注 入锁定技术的 MOPO结构和环形腔技术的 MOPRA结构中,由于放大腔 采用了多程的功率放大技术, 而不是如 MOPA结构的有限次多程放大, 在 MOPO和 MOPRA结构中, PO腔和 PRA腔(功率再生腔)工作在振 荡放大状态, 种子光获得多程增益, 只需 100-200μ 种子光注入便可得 到 15mJ激光输出。 注入锁定技术和环形腔技术的显著特点就是种子光 注入后, 在放大腔中往复运转谐振, 且放大腔工作在深度饱和状态。 相 比 MOPA技术, 他们的优点主要表现在: 能量更大、 输出更稳定。
MOPA, MOPO、 MOPRA系统均基于双放电腔型结构设计。 与传 统的基于单腔结构的激光器相比, 采用双腔结构设计的激光器价格更高、 体积更大、 制造过程和操作方法都更加复杂。 具体而言, 基于双腔结构 设计的激光器为保证良好的能量放大特性, 对同歩放电性能要求比较高, 这就提高了实现同歩放电时的技术难度。 除此之外, 基于双腔结构设计 的激光器由于结构复杂, 一定程度上增加了外围装调等操作上的难度。
发明内容
(一) 要解决的技术问题 针对现有双腔准分子激光器采用的 MOPA、 MOPRA、 MOPO系统 结构复杂的缺点, 本发明所要解决的技术问题是提出一种新型的单腔双 电极放电腔及相应的激光器, 以解决基于双腔结构的激光器价格高、 体 积大、 制造过程和操作方法复杂的缺点, 并可以实现窄线宽、 大功率的 优质激光束输出。
(二) 技术方案
为实现窄线宽、 大功率的优质激光束输出, 同时保证放电腔的放电 同歩性, 我们采用单腔双电极放电腔实现双腔 MOPA、 MOPO, MOPRA 的功能。
根据本发明的单腔双电极放电腔包括腔体和两套主放电电极, 所述 腔体包括左右两室, 以形成对称的双室结构腔形, 每个室的截面形状均 为上小下大的形状, 所述左右两室在整个放电腔的对称面处交界并连通; 所述两套主放电电极分别位于左右两室且其放电区分别位于左右两室 的上部。
所述每套主放电电极都包括一个阳极和一个阴极, 所述阳极与所述 阴极的放电表面之间形成一个放电区。
所述每个阴极安装在一个绝缘板上, 所述绝缘板吊装在所述左右两 室的顶端; 所述每个阳极固定在一个阳极基座上, 所述阳极基座固定在 所述腔体上, 其位置使得所述阳极与所述阴极平行且正对。
本发明的单腔双电极放电腔还包括压条和峰化电容, 所述峰化电容 ( 10) 用于放电储能; 所述绝缘板通过所述压条与放电腔进行固定; 所 述压条位于所述绝缘板的外侧, 并通过铜片与峰化电容的一端连通, 与 所述腔体构成接地回路。
所述峰化电容的另一端通过金属导电条与高压脉冲电源相连。
本发明的单腔双电极放电腔还包括预电离装置, 该预电离装置位于 所述主放电电极的两侧。
所述预电离装置具有两套, 其分别位于所述每套主放电电极的两侧。 所述预电离装置具有一套, 其位于上游放电区主放电电极的两侧。 所述预电离装置包括上下两部分, 每个部分都包括一个陶瓷管和一 个预电离电极, 且所述预电离电极位于所述陶瓷管的内部。
所述上部预电离装置的陶瓷管通过一个绝缘体与所述阴极固定, 下 部预电离装置的陶瓷管通过一个绝缘体与所述阳极固定。
每个所述阳极通过一组铜片与放电腔的腔体连接。
本发明的单腔双电极放电腔还包括驱动所述放电腔内的气体的风 机系统。
本发明的单腔双电极放电腔还包括对所述放电腔进行散热的散热 系统。
本发明的单腔双电极放电腔还包括对所述放电腔内的气体进行除 尘的除尘系统。
本发明的单腔双电极放电腔还包括对所述放电腔进行降噪处理的 降噪系统。
本发明还提出一种单腔双电极 MOPA激光器,其包括前面所述的单 腔双电极放电腔。
本发明还提出一种单腔双电极 MOPO激光器,其包括前面所述的单 腔双电极放电腔。
本发明还提出一种单腔双电极 MOPRA激光器, 其包括前面所述的 单腔双电极放电腔。
(三) 有益效果
本发明将 MOPA、 MOPRA或 MOPO激光系统中的两个单腔单电极 结构改为一个单腔双电极结构, 这样即可通过一个单腔结构实现 MOPA (单腔 MOPA)及 MOPO (单腔 MOPO)结构的双腔功能, 既降低了系 统的复杂性, 又保证了放电腔的放电同歩性。
同时, 采用单腔结构有利于放电腔外围的光学元器件的整合与装调, 可进一歩简化激光系统。
单腔双电极结构激光器还可同时实现两路激光输出。
此外, 单腔双电极结构可以有效降低激光器系统的复杂程度, 从而 减小外围装调操作的难度。
总体而言, 单腔双电极结构激光器可实现两路窄线宽、 大功率的优 质激光束的输出。
附图说明 图 1是现有技术的双腔 MOPA准分子激光器结构图;
图 2是现有技术的双腔 MOPO准分子激光器结构图;
图 3是现有技术的双腔 MOPRA准分子激光器结构图;
图 4是本发明实施例的单腔双电极准分子激光器放电腔结构图; 图 5是本发明实施例的激光器放电区结构详图;
图 6是本发明实施例的激光器放电区降噪结构图;
图 7是本发明实施例的激光器放电腔的预电离示意图;
图 8是本发明实施例的单腔 MOPA准分子激光器结构图; 图 9是本发明实施例的单腔 MOPRA准分子激光器结构图; 图 10本发明实施例的单腔 MOPO准分子激光器结构。
图 11 本发明实施例的单腔双电极准分子激光器两路激光输出系统
具体实施方式 为使本发明的目的、 技术方案和优点更加清楚明白, 以下结合具体 实施例, 并参照附图, 对本发明进一歩详细说明。
1. 单腔双电极放电腔的基本结构
图 4是根据本发明的实施例的一种单腔双电极放电腔的结构图。 如 图 4所示, 该放电腔主要包括一个放电腔腔体 1、 两套主放电电极、 两 套气体循环系统、 散热系统、 除尘装置和一个高压脉冲充电模块 4。 所述放电腔腔体 1为一封闭的气体容器, 其设计执行压力容器的相 关标准, 用来储存 3~6atm具有腐蚀性的混合气体, 例如包括 F2气体在 内产生准分子的卤素气体等。
本发明中的放电腔包括左右两室, 以形成对称的双室结构腔形, 每 个室的截面形状均为上小下大的的形状, 例如如图 4所示的 "梨"形。 双室在整个放电腔的对称面处交界并连通。
本发明的放电腔包括两套主放电电极, 分别位于左右两室。 所述主 放电电极的位置设置成保证其放电区 2位于左右两室的上部。 每套主放 电电极都包括一个阳极 6和一个阴极 3, 阴极通过螺栓安装在绝缘板 5 上, 绝缘板 5吊装在左右两室的顶端, 阳极 6通过螺钉固定在阳极基座 14上, 所述阳极基座固定在放电腔的腔体 1上, 其位置使得阳极 6与阴 极 3平行正对安装。 两套主放电电极的间距设置保证放电区 2气体具有 足够的能量密度, 并能满足激光的输出尺寸要求, 通常需设置为 10~30mm。
本发明的放电腔还包括一个高压脉冲充电模块 4, 作为一个高压电 源, 为放电腔的放电区 2注入足够的能量, 该高压脉冲充电模块 4位于 主放电电极的上方, 并通过峰化电容 10将能量注入两套主放电电极的 阴极, 为其提供足够击穿放电区工作气体的放电电压。 高压脉冲充电模 块 4采用全固态脉冲电源技术为基础的相关设计。
图 5是本发明实施例的激光器放电区结构详图, 如图 5所示, 放电 区 2 指阳极与阴极放电表面之间的空间区域, 其长度约等于电极长度, 高度等于阴极与阳极工作表面的间距, 其宽度略大于电极的放电表面宽 度。
继续参考图 5, 每个主放电电极包括阴极 3和阳极 6, 阴极 3接高 压脉冲充电模块 4。 所述的每个阴极 3通过螺栓固定在一绝缘板 5上, 并由该绝缘板 5支撑, 该绝缘板 5采用耐 F2等腐蚀的的材料制作, 例如 高纯 A1203陶瓷。每个阳极 6与通过一组铜片 13与放电腔的腔体 1连接, 同时放电腔接地。 同时铜片 13还有匀化流场、 减少阳极 6与地之间的 阻抗的作用。 本发明的放电腔还包括压条 9和峰化电容 10,所述每个绝缘板 5通 过两个压条 9与放电腔进行固定, 并通过 0型圈进行密封, 压条 9位于 绝缘板的外侧, 并通过铜片与峰化电容 10 的一端连通, 与放电腔腔体 构成接地回路, 峰化电容 10用于放电储能, 其另一端通过金属导电条 21与高压脉冲电源 4相连。
如图 6所示, 本发明的放电腔还包括预电离装置, 预电离装置位于 所述每套主放电电极的两侧。 预电离装置包括上下两部分, 每个部分都 包括一个陶瓷管 7和一个预电离电极 8, 所述陶瓷管 7为绝缘体材料, 并且所述预电离电极 8位于所述陶瓷管 7的内部, 上部预电离装置的陶 瓷管 7通过一个绝缘体 17与阴极 3固定, 保证安装位置的精度, 下部 预电离装置的陶瓷管 7通过一个绝缘体 20与阳极 6固定, 保证安装位 置的精度。
由于激光腔内的工作气体为具有高腐蚀性的气体, 因此所有与气体 接触的腔体、 绝缘件、 电极等均采用耐腐蚀材料, 其中腔体 1可以采用 合金铝材料、 电极 3、 6、 8可以采用黄铜或铝青铜材料, 它们均能与高 腐蚀性气体反应表面生成一层致密的氧化膜, 阻止其进一歩与高腐蚀性 气体反应, 从而达到防护的目的。 基于材料的这个特征, 新生产的激光 腔均需要对放电腔的腔体 1进行一段时间钝化, 例如氟钝化。 2. 单腔双电极放电腔的预电离装置的设置
下面参照图 7来描述是本发明的实施例的激光器放电腔的预电离装 置的设置。 在主放电形成之前, 通过预电离会产生一定数量的初始电子 分布, 促使电子崩在放电空间内均匀重叠分布。 预电离的目的是阻止流 注形成, 实现均匀放电。
如图 7所示, 将气流在放电区的工作气体的流向定义为上下游, 其 中, 在图 7的 A图中, 在上游放电区 2与下游放电区 2均设置了一套预 电离装置, 所谓的上游和下游分别指的是工作气体在流动过程中按照经 过放电区的先后顺序而命名的位置, 图 7的 A图所示的预电离装置的优 点是能够充分对工作气体电离, 保证放电更均匀。 在进行试验时发现, 在下游放电区更容易造成热积累, 因此我们也可采用了图 7的 B图所示 预电离装置, 即仅在上游放电区设置预电离装置, 这样能避免下游放电 区的热积累扩大。 如前所述, 预电离装置采用绝缘的陶瓷管 7内置预电 离电极 8的结构。
3. 单腔双电极放电腔的风机系统
根据本发明的单腔双电极放电腔还包括风机系统。 由于激光器为脉 冲式放电, 为保证放电区间的气体在放电时不断更新为新鲜气体, 本发 明的实施例在放电腔的腔体 1内设置了两套风机叶轮 15来驱动气体 16, 以保证每次经过放电区 2的气体为新鲜气体。
每个叶轮 15 的驱动均采用单电机或双电机驱动, 同时采用主被动 磁耦合器进行非接触式传动, 以确保放电腔内的腐蚀性有害气体不外泄。
风机叶轮 15采用贯流风机叶轮,贯流风机叶轮是非常成熟的产品, 在选择时优先选择的布置形式采用顺延式或对称式结构, 用以提高流场 的均匀性。
4. 单腔双电极放电腔的散热系统
放电腔内注入的能量较高, 因此需要对其进行主动冷却, 本发明采 用水冷方式, 包括散热器 11, 该散热器 11采用铜加工制造, 散热器 11 的数量以满足散热需求为基础, 可以为一个, 也可以为多个。 散热器的 安装位置可以安装在叶轮 15 的入风口处也可以安装在放电区流场通道 的下游, 以保证良好的散热, 如图 4所示实施例给出了 5个散热器 11 的大致布局位置, 但本发明并不限于此。 5. 单腔双电极放电腔的除尘系统
贮存在放电腔内的气体在放电过程中会产生腔体及电极材料的消 耗物, 这些杂质是不可逆的, 并以粒子的形式存在, 为提高放电气体的 寿命,需在放电腔内设置静电除尘装置 12,以保证放电产物不会对电极、 布儒斯特 (Brewster) 窗等光学元件造成污染。 除尘装置 12设置在放电 区流道的下风口处, 如图 4所示。
6. 单腔双电极放电腔的降噪处理
在高频运转条件下, 激光工作气体在快放电激励的时候, 放电腔内 气体的局部温度变化会产生声学激波, 此声学激波将在放电腔内传播, 并经由放电腔的内壁产生反射, 这会引起腔内工作气体密度分布不均, 导致放电不均匀, 进而使得激光输出质量降低。
如图 6所示, 为降低放电区 2产生的激波对下一次放电的影响, 本 发明对其放电腔进行降噪处理, 在放电区 2附近的腔体结构件, 我们将 其处理成凹凸不平的面 18, 避免放电产生的激波反射回放电区。另外在 放电区 2的前后方向均设置了相应的吸声装置 19,如吸声孔板或为声丝 网, 用以吸收放电产生的激波。
7. 单腔双电极激光器的光学系统
适用于现有的 MOPA、 MOPO等双腔结构光学系统方案均适应于本 发明中的单腔双电极放电腔, 利用该放电腔可以实现 MOPA及 MOPO 的所有功能, 同时还简化了放电腔的结构系统, 提高了系统的可靠性。
图 8 为单腔双电极 MOPA激光器的结构图, 图 9 为单腔双电极 MOPRA激光器的结构图,图 10为单腔双电极 MOPO激光器的结构图。 这三种单腔双电极激光器均引入单腔双电极放电腔代替现有技术中的 双腔结构。
图 8是引入单腔双电极放电腔的单腔 MOPA准分子激光器结构图, 其系统包括单腔双电极放电腔(DDC) 801、线宽压窄模块(LNM) 802、 波长分析模块 (LAM) 803、 MO光路转换控制模块 (MO web) 804、 PA光路转换控制模块(PAweb) 805、 光学脉冲展宽器(OPS) 806、 线 宽分析模块 (BAM) 807、 五棱镜 808、 自动快门 809等组成, 其中单 腔双电极放电腔 (DDC) 801主要包括一个放电腔腔体、 两套主放电电 极、 两套气体循环系统、 散热系统、 除尘装置和高压脉冲充电模块。 图 9是引入单腔双电极激光器的双腔 MOPO准分子激光器结构图, 其系统包括: 单腔双电极放电腔 901、 功率振荡腔 (PO腔)、 功率放大 腔(PA腔)、 线宽压窄模块 (LNM) 902、 凹面镜 903、 凸面镜 904, 其 中单腔双电极放电腔 901 主要包括一个放电腔腔体、 两套主放电电极、 两套气体循环系统、 散热系统、 除尘装置和高压脉冲充电模块。
图 10是引入单腔双电极放电腔的单腔 MOPRA准分子激光器结构 图, 其系统组成如同 MOPA, 只是将 PA光路转换控制模块 (PA web) 1005与线宽分析模块 (BAM) 1007的位置做了对调, 由此种子光可以 获得多程增益。
上述三种系统结构均采用了单腔双电极结构的准分子激光器放电 腔, 简化了系统的结构。
另外, 通过本单腔双电极激光器实现了两路激光的输出, 如图 11 所示, 系统包括两个高反镜 HR1102、 1103, 两个输出镜 1104、 1105以 及一个单腔双电极放电腔 1101。
激光器的输出端还包括了两对布儒斯特 (Brewster) 窗、 以及输出 镜等, 该部分结构采用现有技术来实现两路激光的输出。
8. 单腔双电极激光器的电源系统
该单腔双电极激光器的电源采用全固态脉冲电源技术为基础的相 关设计。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进 行了进一歩详细说明, 应理解的是, 以上所述仅为本发明的具体实施例 而已, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的任 何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种单腔双电极放电腔, 包括腔体 (1 ) 和两套主放电电极, 其 特征在于:
所述腔体 (1 ) 包括左右两室, 以形成对称的双室结构腔形, 每个 室的截面形状均为上小下大的形状, 所述左右两室在整个放电腔的对称 面处交界并连通;
所述两套主放电电极分别位于左右两室, 且其放电区 (2) 分别位 于所述左右两室的上部。
2、 如权利要求 1所述的单腔双电极放电腔, 其特征在于: 所述每套主放电电极都包括一个阳极 (6) 和一个阴极 (3 ), 所述 阳极 (6) 与所述阴极 (3 ) 的放电表面之间形成一个放电区 (2)。
3、 如权利要求 2所述的单腔双电极放电腔, 其特征在于: 所述阴极 (3 ) 安装在一个绝缘板 (5 ) 上, 所述绝缘板 (5 ) 吊装 在所述左右两室的顶端;
所述阳极 (6) 固定在一个阳极基座 (14) 上, 所述阳极基座固定 在所述腔体 (1 ) 上, 其位置使得所述阳极 (6) 与所述阴极 (3 ) 平行 且正对。
4、 如权利要求 3所述的单腔双电极放电腔, 其特征在于: 还包括压条 (9) 和峰化电容 (10), 所述峰化电容 (10) 用于放电 储能;
所述绝缘板 (5) 通过所述压条 (9) 与放电腔进行固定;
所述压条 (9 ) 位于所述绝缘板 (5 ) 的外侧, 并与峰化电容 (10) 的一端连通, 与所述腔体 (1 ) 构成接地回路。
5、 如权利要求 4所述的单腔双电极放电腔, 其特征在于: 所述峰化电容的另一端通过金属导电条 (21 ) 与一个高压脉冲电源
(4) 相连。
6、 如权利要求 1所述的单腔双电极放电腔, 其特征在于: 还包括预电离装置, 该预电离装置位于所述主放电电极的两侧。
7、 如权利要求 6所述的单腔双电极放电腔, 其特征在于:
所述预电离装置具有两套, 其分别位于所述每套主放电电极的两侧。
8、 如权利要求 6所述的单腔双电极放电腔, 其特征在于:
所述预电离装置具有一套, 其位于上游放电区 (2) 主放电电极的 两侧。
9、 如权利要求 6所述的单腔双电极放电腔, 其特征在于:
所述预电离装置包括上下两部分,每个部分都包括一个陶瓷管(7) 和一个预电离电极 (8), 且所述预电离电极 (8) 位于所述陶瓷管 (7 ) 的内部。
10、 如权利要求 6所述的单腔双电极放电腔, 其特征在于: 所述上部预电离装置的陶瓷管 (7 ) 通过一个绝缘体 (17 ) 与所述 阴极 (3 ) 固定, 下部预电离装置的陶瓷管 (7 ) 通过一个绝缘体 (20 ) 与所述阳极 (6) 固定。
11、 如权利要求 2所述的单腔双电极放电腔, 其特征在于: 每个所述阳极(6)通过一组铜片(13 )与放电腔的腔体(1 )连接。
12、 如权利要求 1所述的单腔双电极放电腔, 其特征在于: 还包括驱动所述放电腔内的气体的风机系统。
13、 如权利要求 1所述的单腔双电极放电腔, 其特征在于: 还包括对所述放电腔进行散热的散热系统。
14、 如权利要求 1所述的单腔双电极放电腔, 其特征在于: 还包括对所述放电腔内的气体进行除尘的除尘系统。
15、 如权利要求 1所述的单腔双电极放电腔, 其特征在于: 还包括对所述放电腔进行降噪处理的降噪系统。
16、 一种单腔双电极 MOPA激光器, 其特征在于:
包括权利要求 1-15中的任一项所述的单腔双电极放电腔。
17、 一种单腔双电极 MOPO激光器, 其特征在于:
包括权利要求 1-15中的任一项所述的单腔双电极放电腔。
18、 一种单腔双电极 MOPRA激光器, 其特征在于:
包括权利要求 1-15中的任一项所述的单腔双电极放电腔。
PCT/CN2012/073018 2012-03-02 2012-03-26 单腔双电极放电腔及准分子激光器 WO2013127111A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12869793.5A EP2690723B1 (en) 2012-03-02 2012-03-26 Single-cavity dual-electrode discharge cavity and excimer laser
KR1020137020724A KR101493807B1 (ko) 2012-03-02 2012-03-26 단일 챔버 이중 전극 형태의 방전 챔버 및 엑시머 레이저 기기
JP2014501423A JP2014511036A (ja) 2012-03-02 2012-03-26 単一チャンバの二重電極放電チャンバ及びエキシマレーザー
RU2013146022/07A RU2592065C2 (ru) 2012-03-02 2012-03-26 Однополостная двухэлектродная разрядная камера и эксимерный лазер
DK12869793.5T DK2690723T3 (en) 2012-03-02 2012-03-26 SINGLE Cavity Dual Electrode Discharge Cavity and EXCIMER LASER
US14/040,490 US9252557B2 (en) 2012-03-02 2013-09-27 Single cavity dual-electrode discharge cavity and excimer laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100530579A CN102810810A (zh) 2012-03-02 2012-03-02 单腔双电极放电腔及准分子激光器
CN201210053057.9 2012-03-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/040,490 Continuation US9252557B2 (en) 2012-03-02 2013-09-27 Single cavity dual-electrode discharge cavity and excimer laser

Publications (1)

Publication Number Publication Date
WO2013127111A1 true WO2013127111A1 (zh) 2013-09-06

Family

ID=47234446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073018 WO2013127111A1 (zh) 2012-03-02 2012-03-26 单腔双电极放电腔及准分子激光器

Country Status (8)

Country Link
US (1) US9252557B2 (zh)
EP (1) EP2690723B1 (zh)
JP (1) JP2014511036A (zh)
KR (1) KR101493807B1 (zh)
CN (2) CN102810810A (zh)
DK (1) DK2690723T3 (zh)
RU (1) RU2592065C2 (zh)
WO (1) WO2013127111A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180212397A1 (en) * 2015-07-22 2018-07-26 Academy Of Opto-Electronics, Chinese Academy Of Sciences Excimer laser systems with a ring cavity structure
CN115912022A (zh) * 2021-08-31 2023-04-04 北京科益虹源光电技术有限公司 一种双腔准分子激光器及其能量调节方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102810810A (zh) * 2012-03-02 2012-12-05 中国科学院光电研究院 单腔双电极放电腔及准分子激光器
CN102969645B (zh) 2012-11-21 2015-07-15 中国科学院光电研究院 双电极放电腔的导流装置及应用其的放电腔、准分子激光器
WO2014094262A1 (zh) * 2012-12-20 2014-06-26 中国科学院光电研究院 准分子激光器复合腔
CN103199422A (zh) * 2013-02-20 2013-07-10 中国科学院光电研究院 气体激光器的种子光注入锁定放大系统和功率放大腔
CN104064944B (zh) * 2013-03-22 2017-02-08 中国科学院大连化学物理研究所 一种种子注入放大环形腔化学激光装置
CN103199412A (zh) * 2013-03-26 2013-07-10 中国科学院光电研究院 具有微流道结构的单腔双电极放电腔
CN103296572B (zh) * 2013-06-05 2015-07-15 中国科学院光电研究院 一种采用环形腔结构的气体激光器放大系统
CN104242030B (zh) * 2013-06-08 2018-02-27 中国科学院光电研究院 一种采用mopa结构的气体激光器放大系统
JP6411120B2 (ja) * 2014-08-04 2018-10-24 株式会社アマダミヤチ レーザ装置
WO2016143105A1 (ja) * 2015-03-11 2016-09-15 ギガフォトン株式会社 エキシマレーザチャンバ装置
JP6701198B2 (ja) * 2015-08-05 2020-05-27 ギガフォトン株式会社 レーザチャンバ
CN105098580B (zh) * 2015-09-01 2018-10-19 西北核技术研究所 一种气体放电预电离装置
CN105375327B (zh) * 2015-11-03 2020-09-22 北京热刺激光技术有限责任公司 四腔室结构射频激光器
CN105375242A (zh) * 2015-11-24 2016-03-02 大族激光科技产业集团股份有限公司 二氧化碳激光器电极板的表面处理方法及激光器
WO2019083722A1 (en) 2017-10-24 2019-05-02 Cymer, Llc METHOD AND APPARATUS FOR LIFTING THE LIFE OF AN ELECTRODE IN A LASER CHAMBER
KR102500134B1 (ko) * 2017-11-01 2023-02-15 삼성전자주식회사 무선 통신 시스템에서 패킷 데이터 정보를 송수신하기 위한 장치 및 방법
CN108183383B (zh) * 2018-01-22 2020-03-17 中国科学院合肥物质科学研究院 一种应用于白癜风治疗的准分子激光器
RU2693542C1 (ru) * 2018-08-08 2019-07-03 Общество с ограниченной ответственностью "Троицкий инженерный центр" Лазерная система и способ генерации ик излучения
CN112397987B (zh) * 2019-08-15 2022-01-18 中国科学院大连化学物理研究所 一种多气室气体池
CN112397986B (zh) * 2019-08-15 2021-09-21 中国科学院大连化学物理研究所 一种轮转式拉曼池的拉曼激光器
CN114688205B (zh) * 2020-12-31 2023-08-29 北京科益虹源光电技术有限公司 一种隔振结构及用于激光器的叶轮转子系统
WO2024100743A1 (ja) * 2022-11-07 2024-05-16 ギガフォトン株式会社 ガスレーザ装置のチャンバ、ガスレーザ装置、及び電子デバイスの製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118261U (ja) * 1984-01-18 1985-08-09 株式会社日立製作所 ガスレ−ザ発生装置
JPS622678A (ja) * 1985-06-28 1987-01-08 Toshiba Corp ガスレ−ザ発振装置
JPS6295884A (ja) * 1985-10-23 1987-05-02 Hitachi Ltd ガスレ−ザ発振器
JPS63229876A (ja) * 1987-03-19 1988-09-26 Komatsu Ltd ガスレ−ザ装置
JP2718379B2 (ja) * 1994-10-20 1998-02-25 日本電気株式会社 エキシマレーザ装置
US20020044586A1 (en) 1999-12-10 2002-04-18 Myers David W. Very narrow band, two chamber, high rep rate gas discharge laser system
US6690704B2 (en) 2001-04-09 2004-02-10 Cymer, Inc. Control system for a two chamber gas discharge laser
CN1596492A (zh) * 2001-11-30 2005-03-16 西默股份有限公司 双室气体放电激光系统的时序控制
US20060126697A1 (en) 1999-12-10 2006-06-15 Cymer, Inc. Very narrow band, two chamber, high rep-rate gas discharge laser system
US20080285602A1 (en) 2004-07-09 2008-11-20 Komatsu Ltd. Narrow-Spectrum Laser Device
US20100098120A1 (en) 2008-10-21 2010-04-22 Hong Ye Very high power laser chamber optical improvements

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288756A (en) * 1977-06-17 1981-09-08 United Kingdom Atomic Energy Authority CO2 Laser
JPS594247A (ja) 1982-06-29 1984-01-11 Fujitsu Ltd 遠隔監視方式
JPS60118261A (ja) 1983-11-30 1985-06-25 Hitachi Zosen Corp 塗装装置
JPH02240980A (ja) * 1989-03-14 1990-09-25 Toshiba Corp ガスレーザ装置
JPH0582879A (ja) * 1991-09-24 1993-04-02 Toshiba Corp ガスレ−ザ装置
JPH06152004A (ja) * 1992-11-13 1994-05-31 Komatsu Ltd パルスレーザ装置
US5377215A (en) * 1992-11-13 1994-12-27 Cymer Laser Technologies Excimer laser
US6381257B1 (en) * 1999-09-27 2002-04-30 Cymer, Inc. Very narrow band injection seeded F2 lithography laser
JP3399517B2 (ja) * 1999-12-08 2003-04-21 ウシオ電機株式会社 紫外線を放出するガスレーザ装置
JP2001298229A (ja) * 2000-02-22 2001-10-26 Tuilaser Ag モジュール型ガスレーザ
JP2002026429A (ja) * 2000-07-03 2002-01-25 Nidek Co Ltd ガスレーザ装置
JP2003298155A (ja) * 2002-04-03 2003-10-17 Gigaphoton Inc パルス発振型放電励起レーザ装置
US20050002427A1 (en) * 2003-05-28 2005-01-06 Igor Bragin Cooled electrodes for high repetition excimer or molecular fluorine lasers
US20050083984A1 (en) * 2003-10-17 2005-04-21 Igor Bragin Laser system sealing
JP2005183427A (ja) * 2003-12-16 2005-07-07 Sumitomo Heavy Ind Ltd 放電電極及びレーザ発振装置
US20060170361A1 (en) 2005-01-31 2006-08-03 Osram Sylvania Inc. Single-ended Arc Discharge Vessel with a Divider Wall
US7471708B2 (en) * 2005-03-31 2008-12-30 Cymer, Inc. Gas discharge laser output light beam parameter control
US20060222034A1 (en) * 2005-03-31 2006-10-05 Cymer, Inc. 6 Khz and above gas discharge laser system
DE102005025624B4 (de) * 2005-06-01 2010-03-18 Xtreme Technologies Gmbh Anordnung zur Erzeugung von intensiver kurzwelliger Strahlung auf Basis eines Gasentladungsplasmas
JP4899026B2 (ja) * 2006-02-20 2012-03-21 株式会社小松製作所 レーザ装置
US8014432B2 (en) * 2009-03-27 2011-09-06 Cymer, Inc. Regenerative ring resonator
CN102777416B (zh) * 2011-10-20 2014-10-22 中国科学院光电研究院 一种准分子激光器用贯流风机叶轮
CN102810810A (zh) * 2012-03-02 2012-12-05 中国科学院光电研究院 单腔双电极放电腔及准分子激光器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118261U (ja) * 1984-01-18 1985-08-09 株式会社日立製作所 ガスレ−ザ発生装置
JPS622678A (ja) * 1985-06-28 1987-01-08 Toshiba Corp ガスレ−ザ発振装置
JPS6295884A (ja) * 1985-10-23 1987-05-02 Hitachi Ltd ガスレ−ザ発振器
JPS63229876A (ja) * 1987-03-19 1988-09-26 Komatsu Ltd ガスレ−ザ装置
JP2718379B2 (ja) * 1994-10-20 1998-02-25 日本電気株式会社 エキシマレーザ装置
US20020044586A1 (en) 1999-12-10 2002-04-18 Myers David W. Very narrow band, two chamber, high rep rate gas discharge laser system
US20060126697A1 (en) 1999-12-10 2006-06-15 Cymer, Inc. Very narrow band, two chamber, high rep-rate gas discharge laser system
US6690704B2 (en) 2001-04-09 2004-02-10 Cymer, Inc. Control system for a two chamber gas discharge laser
CN1596492A (zh) * 2001-11-30 2005-03-16 西默股份有限公司 双室气体放电激光系统的时序控制
US20080285602A1 (en) 2004-07-09 2008-11-20 Komatsu Ltd. Narrow-Spectrum Laser Device
US20100098120A1 (en) 2008-10-21 2010-04-22 Hong Ye Very high power laser chamber optical improvements

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RECENT DEVELOPMENTS IN ARF EXCIMER LASER TECHNOLOGY FOR PHOTOLITHOGRAPHY, pages 523 - 524
See also references of EP2690723A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180212397A1 (en) * 2015-07-22 2018-07-26 Academy Of Opto-Electronics, Chinese Academy Of Sciences Excimer laser systems with a ring cavity structure
CN115912022A (zh) * 2021-08-31 2023-04-04 北京科益虹源光电技术有限公司 一种双腔准分子激光器及其能量调节方法
CN115912022B (zh) * 2021-08-31 2024-03-29 北京科益虹源光电技术有限公司 一种双腔准分子激光器及其能量调节方法

Also Published As

Publication number Publication date
EP2690723B1 (en) 2018-11-21
KR101493807B1 (ko) 2015-02-16
US9252557B2 (en) 2016-02-02
RU2013146022A (ru) 2015-04-20
CN103151679B (zh) 2016-03-16
JP2014511036A (ja) 2014-05-01
CN102810810A (zh) 2012-12-05
EP2690723A1 (en) 2014-01-29
US20140023101A1 (en) 2014-01-23
DK2690723T3 (en) 2019-03-11
KR20140019319A (ko) 2014-02-14
EP2690723A4 (en) 2014-12-31
CN103151679A (zh) 2013-06-12
RU2592065C2 (ru) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2013127111A1 (zh) 单腔双电极放电腔及准分子激光器
WO2017075934A1 (zh) 一种半导体泵浦放电气体激光器
WO2011097974A1 (zh) 一种气体激光器
US8587863B2 (en) Wavelength conversion device, solid-state laser apparatus, and laser system
US20090034574A1 (en) Slab laser with stand-off for ceramic spacers
CN1816951A (zh) 具有混合式非稳定环形谐振腔的激光器
JP2002502548A (ja) Rf放電励起による超音波及び亜音波レーザ
JP5590741B2 (ja) 高出力co2スラブレーザーミラーの粒子による損傷の防止
JP2006203008A (ja) 2ステージレーザシステム
CN103199412A (zh) 具有微流道结构的单腔双电极放电腔
Akiba et al. Gain characteristics of an atmospheric sealed CW CO 2 laser
CN113783093B (zh) 一种基于介质阻挡放电的泵浦约束型DPRGLs系统
Biswas et al. Indigenous development of a 2 kW RF-excited fast axial flow CO 2 laser
CN114122886B (zh) 基于等离子体射流的半导体泵浦亚稳态惰性气体激光系统
JP2009111313A (ja) 放電励起ガスレーザ装置における予備電離機構の冷却機構
JP4845538B2 (ja) 露光用2ステージエキシマレーザ装置
JP2003142758A (ja) フッ素分子レーザ装置
CN115693367A (zh) 一种采用激光诱导预电离的光泵浦亚稳态惰性气体激光器
JPS63228775A (ja) ガスレ−ザ装置
JPS5850786A (ja) 横方向励起型ガスレ−ザ装置
KR101037771B1 (ko) 레이저장치
Yu et al. Transverse RF excited, table-top, fast-axial-flow CO laser with 1-kW output power
JP2001230473A (ja) ガスレーザ装置
Su et al. Parameter study of RF excited diffusively cooled all-metal slab waveguide CO2 laser
JPS61160984A (ja) Co↓2レ−ザ発振装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20137020724

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014501423

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012869793

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013146022

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE