WO2017075934A1 - 一种半导体泵浦放电气体激光器 - Google Patents

一种半导体泵浦放电气体激光器 Download PDF

Info

Publication number
WO2017075934A1
WO2017075934A1 PCT/CN2016/077104 CN2016077104W WO2017075934A1 WO 2017075934 A1 WO2017075934 A1 WO 2017075934A1 CN 2016077104 W CN2016077104 W CN 2016077104W WO 2017075934 A1 WO2017075934 A1 WO 2017075934A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge tube
gas
laser
discharge
helium
Prior art date
Application number
PCT/CN2016/077104
Other languages
English (en)
French (fr)
Inventor
陈汉元
秦应雄
彭浩
万辰皓
龙思琛
巫详曦
唐霞辉
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US15/493,106 priority Critical patent/US9948055B2/en
Publication of WO2017075934A1 publication Critical patent/WO2017075934A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/032Constructional details of gas laser discharge tubes for confinement of the discharge, e.g. by special features of the discharge constricting tube
    • H01S3/0323Constructional details of gas laser discharge tubes for confinement of the discharge, e.g. by special features of the discharge constricting tube by special features of the discharge constricting tube, e.g. capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0388Compositions, materials or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0404Air- or gas cooling, e.g. by dry nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0943Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a gas laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • H01S3/09713Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited with auxiliary ionisation, e.g. double discharge excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/2207Noble gas ions, e.g. Ar+>, Kr+>
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094084Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light with pump light recycling, i.e. with reinjection of the unused pump light, e.g. by reflectors or circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Definitions

  • the invention relates to a semiconductor laser pumped discharge gas laser, in particular to a laser output with ultra high power, high pulse energy, good beam quality, high quantum efficiency, good atmospheric and optical fiber transmission characteristics and high processing efficiency.
  • a hybrid laser that combines a solid-state laser with a gas laser.
  • the gain medium is the heart of the laser and determines the wavelength of the output beam, which has a decisive influence on the power level and beam mode of the laser.
  • the gain medium of the high-power laser source mainly experiences the YAG rod-shaped gain medium (it is difficult to obtain the fundamental mode output)---CO 2 gas gain medium (several kilowatt-level fundamental mode)---the development of the fiber gain medium (kilowatt-level fundamental mode) course.
  • the high-power CO 2 laser uses a gas gain medium, the fundamental mode output power is high, and the beam quality is good, but the electro-optical conversion efficiency is low, the structure is large, and the far-infrared wavelength is not suitable for the flexible transmission of the optical fiber, and the thin plate and the medium plate thickness in the kilowatt class.
  • high-power fiber lasers gradually replace high-power CO 2 lasers as the main source of light, but due to thermal effects and nonlinear effects in the fiber, the output power of single-fiber lasers is further limited.
  • the semiconductor pumped alkali metal vapor laser that has been proposed has a low output power; its working substance is solid at normal temperature, and it is necessary to convert the solid working substance into a gaseous state by heating, which brings the laser system to the laser system.
  • the additional waste heat also poses a challenge to the temperature control of the alkali metal vapor pool and the control of the alkali metal chemical activity; its working substance not only pollutes the laser output window but also poisons the human body and the environment during the output laser process. Substance.
  • the present invention provides a semiconductor laser pumped discharge gas laser having high quantum efficiency, high pulse energy, good beam quality, good atmospheric and optical fiber transmission characteristics, and ultra high output power.
  • the purpose is to solve the problems that the existing semiconductor pumped gas medium laser structure has low output power, the working material pollutes the laser output window, and generates harmful substances to the human body and the environment.
  • the invention provides a semiconductor laser pumped discharge gas laser comprising a semiconductor laser, an optical shaping system, an electrode pair, a discharge tube, an electrode pair, a tail mirror and an output mirror:
  • the electrode pair is composed of two electrodes, which are placed in parallel on the outer layer of the discharge tube in parallel and symmetrically connected to the RF power source through a matching network for performing RF discharge on the working gas in the discharge tube;
  • the tail mirror and the output mirror are respectively located at two end faces of the discharge tube, and the two form a resonant cavity together with the discharge tube, and the output mirror is used for outputting the laser beam;
  • the outer wall of the discharge tube is adjacent to one side of the optical shaping system (ie, the pump light incident surface) is plated with a high transmittance film adapted to the shape and size of the pump light, and the remaining portion of the outer wall is plated with a pump.
  • High-reflectivity film in the optical band, the inner wall of the discharge tube is not coated or coated with a high-transmittance film for the pump light band;
  • the discharge tube is filled with a working gas, and the working gas is a mixture of a rare gas or a rare gas and other auxiliary gases. gas;
  • the semiconductor laser is used to generate pump light, and the emitted pump light is concentrated into a narrow strip-shaped spot through an optical shaping system, and is injected into the discharge tube through a high transmittance film on the outer wall of the discharge tube; the pump light
  • the center wavelength matches the absorption line of the gas particles generated by the RF discharge of the working gas in the discharge tube.
  • the working gas in the discharge tube of the semiconductor laser pumped discharge gas laser is a mixed gas of argon gas and helium gas, the gas pressure is 0.5 to 2.0 atmospheres, and the volume ratio of argon gas to helium gas is 1:50 to 1 :4.
  • the working gas in the discharge tube of the semiconductor laser pumped discharge gas laser may be one of helium, argon, helium or neon, or helium and neon, argon and helium.
  • the electrode pair of the semiconductor laser pumped discharge gas laser is made of aluminum or copper material, and the contact surface of the electrode pair with the discharge tube is a plane or a curved surface which is in good agreement with the outer wall of the discharge tube, so that the discharge is more uniform.
  • the electrode of the semiconductor laser pumped discharge gas laser is internally provided with a water-cooled flow path, which can reduce the deformation caused by the temperature rise.
  • the shielding cavity of the semiconductor laser pumped discharge gas laser is installed outside the electrode pair, is made of a metal material, and is filled with a high ionization energy gas or vacuumed to prevent the working gas in the discharge tube from being at a threshold value.
  • the breakdown occurs under the shielding cavity; the shielding cavity is provided with a shielding cavity window at a position opposite to the semiconductor laser for pumping light transmission.
  • the discharge tube of the semiconductor laser pumped discharge gas laser is provided with an air inlet and an exhaust port, and a fan and a heat exchanger are connected in series between the air inlet and the exhaust port to make the working gas
  • the formation of a gas circulation can further improve the heat dissipation effect.
  • a plurality of discharge tubes are connected in series, and the electrode pairs of the adjacent discharge tubes are perpendicular to each other, which can further increase the output power of the laser.
  • the discharge tube of the semiconductor laser pumped discharge gas laser is cylindrical, and the discharge effect is better.
  • the laser combines the advantages of a gas laser and an all-solid-state laser to effectively solve the nonlinear effect of a solid-state gain medium at high power, and can achieve a perfect combination of high power, high beam quality, and short-wavelength laser output. It can effectively prevent the nonlinear effect of high-power continuous single-mode laser and high-power picosecond femtosecond laser. It has ultra-high power laser output and high pulse energy, good beam quality, high quantum efficiency, good atmospheric and optical fiber transmission characteristics, The high processing efficiency is an important potential light source for high-energy laser weapons, space energy transmission, remote laser processing, and ultra-short pulse laser large-scale industrial applications.
  • semiconductor pumped discharge gas laser lasing laser is a two-stage pumping process, that is, the RF discharge process and the collision process of the pumped semiconductor laser in the discharge tube and the gas particles after the RF discharge, the structure can improve the discharge stability, the pump Efficiency and conversion efficiency to increase output power.
  • the laser has the following advantages:
  • the working substance used is a single mixed gas which is chemically stable, non-toxic and harmless, or a binary mixed gas mixed with two kinds of rare gases or a multi-component mixed gas composed of a rare gas and other auxiliary gases.
  • the working substance is in a gaseous state, which is favorable for circulating flow, provides strong support for realizing high-power laser output, and does not produce substances harmful to humans and the environment during laser output.
  • the working gas is argon gas and helium gas
  • the gas pressure is 0.5 to 2.0 atmospheres
  • the ratio of argon gas to helium gas is 1:50 to 1:4, which has high electro-optical conversion efficiency and good for pumping semiconductor laser. Absorption characteristics help to improve pumping efficiency and thus laser output power.
  • the discharge tube used in the RF discharge process adopts the coating technology to make it have high anti-characteristics to the pump semiconductor laser without affecting its airtightness, so as to realize the similarity of the pump semiconductor laser in the discharge tube.
  • the multi-pass reflection process of black body absorption increases the collision probability of the pump laser and the gas particles in the tube after discharge, which can improve the pumping efficiency of the laser system and thereby increase the power of the output laser.
  • the electrode pair used in the RF discharge process is made of common metal such as aluminum or copper, and the processing is simple and cheap; the water cooling channel is arranged inside, and the waste heat is taken away by water cooling to reduce the deformation of the electrode pair, thereby Improving the stability of the laser is beneficial to the output of ultra-high power lasers.
  • Increasing the pressure of the working gas is beneficial to increase the power of the output laser.
  • the discharge tube Under high pressure conditions (about 0.5 to 2.0 atmospheres), the discharge tube is sealed with the electrode pair using a gas-tight shielding cavity. Internally charged with high ionization gas or pumped to near vacuum to prevent excessive discharge The electric voltage first breaks through the air outside the discharge tube to ensure that the discharge voltage is fully and efficiently applied to the discharge process of the working gas, thereby improving the stability and uniformity of the gas discharge, and facilitating the output of the high power laser.
  • the intake port and the exhaust port are added in the discharge tube, and the fan and the heat exchanger are connected in series between the intake port and the exhaust port to take the working gas into a circulation loop. Waste heat helps to obtain ultra-high power laser output.
  • the semiconductor pump discharge gas laser is formed by connecting a plurality of discharge tubes in series, and the positions of the electrode pairs are arranged in a cross arrangement. This structure can improve the power of the laser output while improving discharge uniformity.
  • FIG. 1 is a schematic end view of an embodiment of a semiconductor laser pumped discharge gas laser provided by the present invention
  • FIG. 2 is a plan view showing a half cross-sectional view of an embodiment of a semiconductor laser pumped discharge gas laser provided by the present invention
  • FIG. 3 is a schematic structural view of a shielding cavity of a semiconductor laser pumped discharge gas laser provided by the present invention
  • 4(a) and 4(b) are schematic diagrams showing the structure of a discharge tube of a semiconductor pump discharge gas laser provided by the present invention.
  • FIG. 5 is a schematic diagram of a gas circulation flow structure of a semiconductor pump discharge gas laser provided by the present invention.
  • FIG. 6 is a schematic diagram of a series structure of a plurality of discharge tubes provided by the present invention.
  • the working mode of the semiconductor laser pumped discharge gas laser provided by the present invention is as follows:
  • the semiconductor laser pumped discharge gas laser includes a semiconductor laser 1 as a pump source, and an optical shaping system 2. Electrode pair 4, discharge tube 5 coated with high transmittance film 12 and high reflectivity film 13, shielding cavity 6, tail mirror 9, output mirror 10, air inlet 14, exhaust port 15, fan 16, heat exchanger 17. Matching network 7, RF power supply 8 connected to electrode pair 4 via matching network 7. Wherein, the discharge tube 5 is coated by the coating technology to ensure that the pump semiconductor laser is better injected into the discharge tube 5 and has high reflection characteristics to the semiconductor laser, and is plated at the incident surface of the pump semiconductor laser on the outer surface of the discharge tube 5.
  • the high transmittance film 12 of the semiconductor laser band enables the semiconductor laser to sufficiently enter the discharge tube 5, and the other outer surface of the discharge tube 5 is plated with a high reflectivity film 13 of the semiconductor laser band, and at the same time in the discharge tube 5
  • the inner wall is not coated or coated with a high transmittance film 12, so that the discharge tube 5 has a high reflection characteristic to the pump semiconductor laser, so that it forms a pumping process similar to the black body absorption multi-path reflection, and increases the pump semiconductor laser.
  • the probability of collision with the gas particles in the discharge tube 5 after the RF discharge, thereby improving the pumping efficiency and the pumping quality, and achieving the effect of improving the laser output power; the working substance inside the discharge tube 5 is chemically stable, and is at normal temperature.
  • a gaseous rare gas whose composition may be a single rare gas or a binary mixed gas composed of two rare gases or a rare gas and other auxiliary a multi-component gas composed of a body;
  • the electrode pair 4 is provided with a water-cooling passage inside, which is beneficial to the cooling effect on the electrode pair 4 during the ultra-high power laser output, reduces the deformation of the electrode, and increases the stability of the radio frequency discharge;
  • Optical shaping system 2 The semiconductor laser is formed into a narrow strip spot, so that the pump semiconductor laser can be injected into the discharge tube 5 more fully, and the pumping efficiency of the system is improved;
  • the shielding cavity 6 is a sealed chamber with good air tightness.
  • the stability and uniformity of the radio frequency discharge during the ultra-high power laser output prevent the radio frequency radiation from polluting the external environment;
  • the tail mirror 9 and the output mirror 10 are respectively located at the front and rear ends of the discharge tube 5 to form a resonant cavity;
  • the air inlet 14 and the exhaust port 15 are respectively disposed inside the discharge tube 5, and the fan 16 and the heat exchanger 17 are connected in series between the two, so that the working gas in the discharge tube 5 forms a gas circulation, reducing the laser output process.
  • the waste heat in the laser increases the stability of the laser and increases the power of the laser output.
  • the present invention provides a semiconductor laser pumping discharge gas laser from the viewpoint of efficiently outputting high beam quality and ultra high power laser.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

一种半导体激光泵浦放电气体激光器,包括半导体激光器(1),光学整形系统(2),电极对(4),放电管(5),匹配网络(7),射频电源(8),尾镜(9)和输出镜(10)。放电管内充有工作气体,电极对平行对称放置于放电管外,半导体激光为泵浦光,泵浦光中心波长与放电管内工作气体射频放电后产生的气体粒子吸收谱线相匹配,从放电管与电极对之间的侧面注入至放电管内。放电管内腔具有对半导体泵浦激光的高反特性。这样,可以有效克服高功率连续单模激光、高功率皮秒飞秒激光的非线性效应,降低碱金属蒸汽激光器对人和环境的不利影响,同时可以实现具有高脉冲能量、高光束质量、高量子效率、高泵浦效率、良好的大气与光纤传输特性的超高功率激光输出。

Description

一种半导体泵浦放电气体激光器 [技术领域]
本发明涉及一种半导体激光泵浦放电气体激光器,特别涉及一种具有超高功率的激光输出、脉冲能量高、光束质量好、量子效率高、良好的大气与光纤传输特性和加工效率高的全固态激光器与气体激光器相结合的混合型激光器。
[背景技术]
随着科技的发展,激光能源工业和激光工业加工以及航空航天和国防领域对于高光束质量、高效率和高功率的激光器需求与日俱增。基于上述需求,提出一种半导体激光泵浦放电气体激光器。
增益介质是激光器的心脏,决定了输出光束的波长,对激光器的功率水平和光束模式有决定性的影响。高功率激光光源的增益介质主要经历了YAG棒状增益介质(难以获得基模输出)---CO2气体增益介质(数千瓦级基模)---光纤增益介质(千瓦级基模)的发展历程。高功率CO2激光器采用气体增益介质,基模输出功率高,光束质量好,但存在电光转换效率低,结构庞大,远红外波长不适合光纤柔性传输等不足,在千瓦级的薄板及中等板厚的激光切割焊接应用中,高功率光纤激光器逐步取代高功率CO2激光器成为主力光源,但是由于热效应以及光纤中非线性效应的影响,限制了单光纤激光器输出功率的进一步提升。另外,目前已经提出的半导体泵浦碱金属蒸汽激光器存在其输出功率不高;其工作物质在常温下为固态,需要通过加热的方式将固态的工作物质转换为气态,该过程给激光系统带来额外的废热的同时对碱金属蒸气池的温度控制和碱金属化学活性的控制也带来了挑战;其在输出激光过程中其工作物质不仅会污染激光输出窗口,还产生对人体和环境有毒有害的物质。
[发明内容]
针对现有技术的以上缺陷和改进需求,本发明提供一种量子效率高、脉冲能量高、光束质量好、良好的大气与光纤传输特性、超高输出功率的半导体激光泵浦放电气体激光器。其目的在于解决现有半导体泵浦气体介质激光器结构存在输出功率不高,工作物质污染激光输出窗口以及产生对人体和环境有害物质等问题。
本发明提出一种半导体激光泵浦放电气体激光器,包括半导体激光器、光学整形系统、电极对、放电管、电极对、尾镜和输出镜:
所述电极对由两块电极组成,平行对称紧贴放置于放电管外层,通过匹配网络与射频电源相连,用于对放电管内的工作气体进行射频放电;
所述尾镜和输出镜分别位于放电管两个端面,两者与放电管共同组成谐振腔,输出镜用于激光束输出;
所述放电管的外壁靠近光学整形系统一面(即泵浦光入射面)镀有与泵浦光形状尺寸相适应、对该泵浦光波段的高透射率膜,外壁其余部分镀有对泵浦光波段的高反射率膜,放电管内壁不镀膜或者镀有一层对泵浦光波段的高透射率膜;放电管内注有工作气体,工作气体为稀有气体或稀有气体与其他辅助气体组成的混合气体;
所述半导体激光器用于产生泵浦光,发出的泵浦光通过光学整形系统,会聚成一个窄长条状的光斑,通过放电管外壁的高透射率膜,注入放电管内;所述泵浦光的中心波长与放电管内工作气体射频放电后产生的气体粒子的吸收谱线相匹配。
进一步的,所述半导体激光泵浦放电气体激光器的放电管中的工作气体为氩气与氦气的混合气体,气压在0.5~2.0个大气压,氩气与氦气体积比为1:50~1:4。
进一步的,所述半导体激光泵浦放电气体激光器的放电管中的工作气体可以为氖气、氩气、氪气或氙气中的一种,或为氖气与氦气、氩气与氦 气、氪气与氦气或氙气与氦气的二元混合气体,或为氖气、氩气、氪气、氙气或氦气同其他辅助气体的多元混合气体。
进一步的,所述半导体激光泵浦放电气体激光器的电极对为铝或铜材料制成,电极对与放电管接触面为平面或与放电管外壁吻合较好的曲面,使得放电更加均匀。
进一步的,所述半导体激光泵浦放电气体激光器的电极对内部设置有水冷流道,可以减少温度上升带来的形变。
进一步的,所述半导体激光泵浦放电气体激光器的屏蔽腔安装在电极对外部,由金属材料制成,其内部充有高电离能气体或抽成真空,用于防止放电管内工作气体在阈值之下发生击穿;屏蔽腔与半导体激光器相对位置设有屏蔽腔窗口,用于泵浦光透射。
进一步的,所述半导体激光泵浦放电气体激光器的放电管内设有进气口和排气口,在进气口和排气口之间的外部管路串联有风机和热交换器,使工作气体形成气体循环,可进一步改进散热效果。
进一步的,所述半导体激光泵浦放电气体激光器的屏蔽腔内有多个放电管串联,各相邻放电管外壁的电极对布放方向相互垂直,可进一步提高激光器输出功率。
进一步的,所述半导体激光泵浦放电气体激光器的放电管是圆柱形,放电效果更好。
本激光器结合气体激光器和全固态激光器的优点,有效解决了固态增益介质在高功率下的非线性效应,可以实现高功率、高光束质量、短波长激光输出的完美结合,这种新型结构的激光器可以有效防止高功率连续单模激光、高功率皮秒飞秒激光的非线性效应,具有超高功率的激光输出和脉冲能量高、光束质量好、量子效率高、良好的大气与光纤传输特性、加工效率高等特点,是未来高能激光武器、太空能量传输、远程激光加工、超短脉冲激光大规模工业应用等领域的重要潜在光源。其不同于常规激光 器,半导体泵浦放电气体激光器激射激光是一个两级泵浦过程,即射频放电过程和泵浦半导体激光在放电管内与射频放电后气体粒子的碰撞过程,该结构可以提高放电稳定性、泵浦效率和转换效率,从而提高输出功率。与现有技术相比,本激光器具有如下优点:
(1)使用的工作物质为化学特性稳定、无毒无害的单一稀有气体或两种稀有气体混合的二元混合气体或稀有气体与其他辅助气体组成的多元混合气体。在常温下该类工作物质为气态,有利于循环流动,为实现高功率激光输出提供强有力支撑,且在激光输出过程中不会产生对人和环境有毒有害的物质。在工作气体采用氩气与氦气时,气压在0.5~2.0个大气压,氩气与氦气比例为1:50~1:4时,具有很高的电光转换效率和对泵浦半导体激光的良好吸收特性,有利于提高泵浦效率,从而激光输出功率。
(2)在射频放电过程中使用的放电管通过采用镀膜技术,在不影响其气密性的同时使其具备对泵浦半导体激光的高反特性,以实现泵浦半导体激光在放电管内进行类似黑体吸收的多程反射过程,增加泵浦激光与放电后管内气体粒子的碰撞概率,可以提高本激光系统的泵浦效率,从而提高输出激光的功率。
(3)在射频放电过程中使用的电极对,由铝或铜等常用金属制成,加工简单便宜;其内部设有水冷流道,通过水冷方式带走废热,减小电极对的形变,从而提高激光器的稳定性,有利于超高功率激光的输出。
(4)泵浦半导体激光经过光学整形系统后汇聚成一个窄长条状光斑,使其更好地注入至放电管内,提高了其泵浦强度和均匀性,增加了其与射频放电后气体粒子的碰撞面积,从而增加了两者的碰撞概率,因此大大提高半导体激光的泵浦质量和泵浦效率。
(5)提高工作气体的气压有利于提高输出激光的功率,在高气压条件下(约0.5~2.0个大气压),使用一个气密性好的屏蔽腔将放电管与电极对密封起来,在其内部充入高电离能气体或抽至接近真空状态,防止过高的放 电电压率先击穿放电管外部的空气,以保证放电电压充分高效的作用于工作气体的放电过程,从而提高气体放电的稳定性和均匀性,有利于高功率激光的输出。
(6)借助现有的轴快流技术,在放电管内增加进气口和排气口,并在进气口和排气口之间串联风机和热交换器,使工作气体形成循环回路带走废热,有利于得到超高功率的激光输出。
(7)半导体泵浦放电气体激光器由多个放电管串联而成,电极对的位置交叉排列,该种结构在提高放电均匀性的同时,可以提高激光输出的功率。
[附图说明]
图1是本发明提供的半导体激光泵浦放电气体激光器实施例的端面示意图;
图2是本发明提供的半导体激光泵浦放电气体激光器实施例的半剖结构俯视图;
图3是本发明提供的半导体激光泵浦放电气体激光器的屏蔽腔结构示意图;
图4(a)和(b)是本发明提供的半导体泵浦放电气体激光器的放电管结构示意图;
图5是本发明提供的半导体泵浦放电气体激光器的气体循环流动结构示意图;
图6是本发明提供的多个放电管串联结构的示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1-半导体激光器,2-光学整形系统,3-屏蔽腔窗口,4-电极对,5-放电管,6-屏蔽腔,7-匹配网络,8-射频电源,9-尾镜,10-输出镜,11-输出激光,12-高透射率膜层,13-高反射率膜层,14-进气口,15-排气口,16-风机,17-热交换器。
[具体实施方式]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
在本发明的实施例中,采用本发明提供的半导体激光泵浦放电气体激光器的工作方式,具体如下:
请参阅图1、图2、图3、图4和图5所示,由图可见,本实施例中,半导体激光泵浦放电气体激光器包括作为泵浦源的半导体激光器1、光学整形系统2、电极对4、镀有高透射率膜12和高反射率膜13的放电管5、屏蔽腔6、尾镜9、输出镜10、进气口14、排气口15、风机16、热交换器17、匹配网络7、通过匹配网络7与电极对4连接的射频电源8。其中,所述放电管5通过镀膜技术使其保证泵浦半导体激光更好注入放电管5内并具有对该半导体激光的高反射特性,在放电管5的外表面泵浦半导体激光入射处镀一层对该半导体激光波段的高透射率膜12,使得半导体激光能够充分进入放电管5内,在放电管5的其他外表面镀有一层该半导体激光波段的高反射率膜13,同时在放电管5内壁不镀膜或镀有一层高透射率膜12,使放电管5具备对泵浦半导体激光的高反射特性,使其形成类似于黑体吸收的多程反射的泵浦过程,增加泵浦半导体激光与射频放电后放电管5内气体粒子的碰撞概率,从而提高泵浦效率和泵浦质量,达到提高激光输出功率的效果;所述放电管5内部的工作物质为化学稳定性好、常温下为气态的稀有气体,其成份可以是单一稀有气体或由两种稀有气体组成的二元混合气体或由稀有气体与其他辅助气体组成的多元混合气体;所述电极对4内部设有水冷通道,有利于在超高功率激光输出过程中对电极对4的冷却效果,减少电极的形变,增加射频放电的稳定性;所述光学整形系统2可 以将半导体激光整形成一个窄条状光斑,使得泵浦半导体激光能够更充分注入至放电管5内,提高系统的泵浦效率;所述屏蔽腔6为一个气密性很好的密闭腔体,将放电管与电极对密封起来,并在其内部充入高电离能气体或抽至接近真空状态,防止由于放电管内气压过高,过高的放电电压率先击穿放电管外部的空气,增加超高功率激光输出时射频放电的稳定性和均匀性,防止射频辐射对外界环境的污染;所述尾镜9和输出镜10分别位于放电管5的前、后两端,形成一个谐振腔;所述进气口14和排气口15分别设置于放电管5内部,并在两者之间串联风机16和热交换器17,使得放电管5内的工作气体形成气体循环,减少激光输出过程中的废热,增加激光器的稳定性,提高激光输出的功率。
总体而言,本发明从以高效的输出高光束质量和超高功率的激光等方面考虑,提供了一种半导体激光泵浦放电气体的激光器。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种半导体激光泵浦放电气体激光器,包括半导体激光器(1)、光学整形系统(2)、电极对(4)、放电管(5)、电极对(4)、尾镜(9)和输出镜(10),其特征在于:
    所述电极对(4)由两块电极组成,平行对称紧贴放置于放电管(5)外层,通过匹配网络(7)与射频电源(8)相连,用于对放电管(5)内的工作气体进行射频放电;
    所述尾镜(9)和输出镜(10)分别位于放电管(5)两个端面,两者与放电管(5)共同组成谐振腔,输出镜(10)用于激光束输出;
    所述放电管(5)的外壁靠近光学整形系统(2)一面镀有与泵浦光形状尺寸相适应、对该泵浦光波段的高透射率膜(12),外壁其余部分镀有对泵浦光波段的高反射率膜(13),放电管(5)内壁不镀膜或者镀有一层对泵浦光波段的高透射率膜(12);放电管(5)内注有工作气体,工作气体为稀有气体或稀有气体与其他辅助气体组成的混合气体;
    所述半导体激光器(1)用于产生泵浦光,发出的泵浦光通过光学整形系统(2),会聚成一个窄长条状的光斑,通过放电管(5)外壁的高透射率膜(12),注入放电管(5)内;所述泵浦光的中心波长与放电管(5)内工作气体射频放电后产生的气体粒子的吸收谱线相匹配。
  2. 根据权利要求1所述的激光器,其特征在于,所述放电管(5)中的工作气体为氩气与氦气的混合气体,气压在0.5~2.0个大气压,氩气与氦气体积比为1:50~1:4。
  3. 根据权利要求1或2所述的激光器,其特征在于,所述放电管(5)中的工作气体可以为氖气、氩气、氪气或氙气中的一种,或为氖气与氦气、氩气与氦气、氪气与氦气或氙气与氦气的二元混合气体,或为氖气、氩气、氪气、氙气或氦气同其他辅助气体的多元混合气体。
  4. 根据权利要求1或2所述的激光器,其特征在于,所述电极对(4)为铝或铜材料制成,电极对(4)与放电管(5)接触面为平面或与放电管(5)外壁吻合较好的曲面;
  5. 根据权利要求1或2所述的激光器,其特征在于,所述电极对(4)内部设置有水冷流道。
  6. 根据权利要求1或2所述的激光器,其特征在于,所述屏蔽腔(6)安装在电极对(4)外部,由金属材料制成,其内部充有高电离能气体或抽成真空,用于防止放电管(5)内工作气体在阈值之下发生击穿;屏蔽腔(6)与半导体激光器(1)相对位置设有屏蔽腔窗口(3),用于泵浦光透射。
  7. 根据权利要求1、2或6所述的激光器,其特征在于,所述放电管(5)内设有进气口(14)和排气口(15),在进气口(14)和排气口(15)之间的外部管路串联有风机(16)和热交换器(17),使工作气体形成气体循环。
  8. 根据权利要求1、2或6所述的激光器,其特征在于,其屏蔽腔(5)内有多个放电管(5)串联,各相邻放电管(5)外壁的电极对(4)布放方向相互垂直。
  9. 根据权利要求1、2或6所述的激光器,其特征在于,所述放电管(5)是圆柱形。
PCT/CN2016/077104 2015-11-06 2016-03-23 一种半导体泵浦放电气体激光器 WO2017075934A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/493,106 US9948055B2 (en) 2015-11-06 2017-04-20 Gas laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510755529.9A CN105261923A (zh) 2015-11-06 2015-11-06 一种半导体泵浦放电气体激光器
CN201510755529.9 2015-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/493,106 Continuation-In-Part US9948055B2 (en) 2015-11-06 2017-04-20 Gas laser

Publications (1)

Publication Number Publication Date
WO2017075934A1 true WO2017075934A1 (zh) 2017-05-11

Family

ID=55101481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077104 WO2017075934A1 (zh) 2015-11-06 2016-03-23 一种半导体泵浦放电气体激光器

Country Status (3)

Country Link
US (1) US9948055B2 (zh)
CN (1) CN105261923A (zh)
WO (1) WO2017075934A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261923A (zh) * 2015-11-06 2016-01-20 华中科技大学 一种半导体泵浦放电气体激光器
CN106669047A (zh) * 2016-12-08 2017-05-17 赵岭江 一种激光皮肤治疗系统
US10438790B2 (en) * 2017-05-04 2019-10-08 The Trustees Of Columbia University In The City Of New York Efficient mid-infrared sources
CN109462137B (zh) * 2018-12-12 2019-10-08 华中科技大学 一种皮秒太瓦co2激光放大器泵浦装置
CN110006492A (zh) * 2019-03-26 2019-07-12 北京科益虹源光电技术有限公司 一种用于准分子激光器的气体采集监测方法和系统
CN110052718B (zh) * 2019-04-26 2021-09-17 重庆新知创科技有限公司 一种逆反射制品的氪灯泵浦光源的防伪双曲线打标器
CN112413809B (zh) * 2020-11-25 2021-11-30 珠海格力电器股份有限公司 中央空调冷站运行评价方法、装置和系统
CN114122886B (zh) * 2021-11-21 2022-05-31 中国人民解放军国防科技大学 基于等离子体射流的半导体泵浦亚稳态惰性气体激光系统
CN116526260A (zh) * 2023-07-03 2023-08-01 中国科学院合肥物质科学研究院 一种应用于真空环境中的氦氖激光管

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1514693A1 (de) * 1966-03-03 1969-11-06 Siemens Ag Gaslaser
DE9218324U1 (de) * 1992-08-04 1994-02-24 Lambda Physik Forschungsgesellschaft mbH, 37079 Göttingen Gasentladungslaser mit Vorionisierung
JPH08167753A (ja) * 1994-12-15 1996-06-25 Nec Corp X線予備電離放電励起ガスレーザ装置及びその発振方法
DE102010026695A1 (de) * 2010-07-06 2012-01-12 Heiko Kersten Verfahren zur Erzeugung einer Laserstrahlmatrix beliebig hoher Auflösung und hoher optischer Laserleistung mittels elektrisch gepumpten Gaslasern ohne mechanische Ablenkvorrichtung
CN103701028A (zh) * 2013-06-15 2014-04-02 孙栋 基于双色相干调控等离子体的高重复频率高强度太赫兹源
CN105261923A (zh) * 2015-11-06 2016-01-20 华中科技大学 一种半导体泵浦放电气体激光器
CN205265030U (zh) * 2015-11-06 2016-05-25 华中科技大学 一种半导体泵浦放电气体激光器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756002A (en) * 1986-06-23 1988-07-05 Mcdonnell Douglas Corporation Laser diode coupler
FR2641422B1 (fr) * 1989-01-04 1994-09-30 Comp Generale Electricite Laser a barreau avec pompage optique par source a plage d'emission etroite
US5117436A (en) * 1990-03-29 1992-05-26 The United States Of America As Represented By The Secretary Of The Navy Optics for diode array transverse pumped laser rod
JPH06104515A (ja) * 1992-09-21 1994-04-15 Kokusai Denshin Denwa Co Ltd <Kdd> 固体レーザ
US5796770A (en) * 1995-10-11 1998-08-18 Raytheon Company Compact diode pumped solid state laser
DE19854004A1 (de) * 1998-11-18 2000-05-31 Jenoptik Jena Gmbh Festkörperlaser mit monolithischer Pumpkavität
US6603792B1 (en) * 2000-03-23 2003-08-05 Doron Chomsky High power pulsed medium pressure CO2 laser
CN2598215Y (zh) * 2003-02-21 2004-01-07 华中科技大学 一种激光二极管固体激光侧面泵浦模块
EP2158652A4 (en) * 2007-05-17 2010-11-10 Gen Atomics ALKALIDAMPFLASER WITH TRANSVERSAL PUMPING
SE532114C2 (sv) * 2007-05-22 2009-10-27 Jensen Devices Ab Gasurladdningsrör
DE102011103286A1 (de) * 2011-06-04 2012-12-06 Roland Berger Anregungseinheit für einen Faserlaser
CN102354905A (zh) * 2011-10-19 2012-02-15 华中科技大学 一种射频激励气体激光器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1514693A1 (de) * 1966-03-03 1969-11-06 Siemens Ag Gaslaser
DE9218324U1 (de) * 1992-08-04 1994-02-24 Lambda Physik Forschungsgesellschaft mbH, 37079 Göttingen Gasentladungslaser mit Vorionisierung
JPH08167753A (ja) * 1994-12-15 1996-06-25 Nec Corp X線予備電離放電励起ガスレーザ装置及びその発振方法
DE102010026695A1 (de) * 2010-07-06 2012-01-12 Heiko Kersten Verfahren zur Erzeugung einer Laserstrahlmatrix beliebig hoher Auflösung und hoher optischer Laserleistung mittels elektrisch gepumpten Gaslasern ohne mechanische Ablenkvorrichtung
CN103701028A (zh) * 2013-06-15 2014-04-02 孙栋 基于双色相干调控等离子体的高重复频率高强度太赫兹源
CN105261923A (zh) * 2015-11-06 2016-01-20 华中科技大学 一种半导体泵浦放电气体激光器
CN205265030U (zh) * 2015-11-06 2016-05-25 华中科技大学 一种半导体泵浦放电气体激光器

Also Published As

Publication number Publication date
CN105261923A (zh) 2016-01-20
US9948055B2 (en) 2018-04-17
US20170222389A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
WO2017075934A1 (zh) 一种半导体泵浦放电气体激光器
US9252557B2 (en) Single cavity dual-electrode discharge cavity and excimer laser
CN110086070B (zh) 一种高泵浦吸收、高功率输出的新型薄片激光器结构
CN113078534B (zh) 一种基于复合结构增益介质的腔内级联泵浦激光器
CN105305215B (zh) 一种激光器
JP2002502548A (ja) Rf放電励起による超音波及び亜音波レーザ
CN117856018A (zh) 一种基于梯度掺杂激光陶瓷的单块非平面环形腔激光器
CN205265030U (zh) 一种半导体泵浦放电气体激光器
Nath et al. Operational characteristics of a pulse-sustained dc-excited transverse-flow cw CO 2 laser of 5-kW output power
JP2010186978A (ja) チャープパルス増幅を利用した光発振器内での強光電磁場発生器
CN114400491A (zh) 一种激光放大器
CN113783093B (zh) 一种基于介质阻挡放电的泵浦约束型DPRGLs系统
Nagai et al. CW 20-kW SAGE CO/sub 2/laser for industrial use
CN114400490A (zh) 一种全光泵浦气体激光器
CN110739201B (zh) 一种大功率微波双谱紫外灯装置
Fischer et al. High Harmonic Generation Inside Thin-Disk Laser Oscillators–An Efficient and Single-Stage XUV Source
CN115693367A (zh) 一种采用激光诱导预电离的光泵浦亚稳态惰性气体激光器
CN113783084B (zh) 一种基于电磁驱动模式的半导体泵浦气体激光系统
US20170179668A1 (en) Gas Flow Laser
Li et al. High Electrical-to-Green Efficiency 123 W Average-Power Quasicontinuous-Wave Laser at 532 nm in Compact Design
CN207183784U (zh) 射频激励的二氧化碳激光器光斑整形镜头
Khorasani et al. Air as a buffer gas in metal-vapor lasers
CN116722429A (zh) 一种高光束质量的长脉宽绿光激光器
CN112582869A (zh) 一种灯泵中红外激光器
CN113783094A (zh) 一种端面泵浦激光多级再生放大系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861207

Country of ref document: EP

Kind code of ref document: A1