WO2013100008A1 - NdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法 - Google Patents

NdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法 Download PDF

Info

Publication number
WO2013100008A1
WO2013100008A1 PCT/JP2012/083786 JP2012083786W WO2013100008A1 WO 2013100008 A1 WO2013100008 A1 WO 2013100008A1 JP 2012083786 W JP2012083786 W JP 2012083786W WO 2013100008 A1 WO2013100008 A1 WO 2013100008A1
Authority
WO
WIPO (PCT)
Prior art keywords
ndfeb
sintered magnet
based sintered
manufacturing
magnet
Prior art date
Application number
PCT/JP2012/083786
Other languages
English (en)
French (fr)
Inventor
眞人 佐川
徹彦 溝口
Original Assignee
インターメタリックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターメタリックス株式会社 filed Critical インターメタリックス株式会社
Priority to CN201280021386.3A priority Critical patent/CN103650073B/zh
Priority to JP2013536351A priority patent/JP5400255B1/ja
Priority to EP16162932.4A priority patent/EP3059743B1/en
Priority to EP12861799.0A priority patent/EP2696355B1/en
Priority to KR1020137023814A priority patent/KR101338663B1/ko
Priority to US14/113,961 priority patent/US9028624B2/en
Publication of WO2013100008A1 publication Critical patent/WO2013100008A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the present invention relates to an NdFeB-based (neodymium / iron / boron) sintered magnet suitable for a base material for a grain boundary diffusion method and a method for producing the NdFeB-based sintered magnet.
  • NdFeB-based sintered magnets were discovered by Sagawa (one of the present inventors) in 1982, but have characteristics far exceeding those of permanent magnets, and Nd (a kind of rare earth) It can be produced from relatively abundant and inexpensive raw materials such as iron and boron. Therefore, NdFeB-based sintered magnets are used for hybrid and electric vehicle drive motors, motor-assisted bicycle motors, industrial motors, voice coil motors such as hard disks, luxury speakers, headphones, permanent magnet magnetic resonance diagnostic devices, etc. Used in various products. The NdFeB based sintered magnet used for these applications is required to have a high coercive force H cJ , a high maximum energy product (BH) max and a high squareness ratio SQ.
  • H cJ coercive force
  • BH maximum energy product
  • the squareness ratio SQ is the magnetic field when the magnetization value corresponding to zero magnetic field drops 10% in the magnetization curve crossing the second quadrant from the first quadrant of the graph with the horizontal axis representing the magnetic field and the vertical axis representing the magnetization. It is defined by the value H k / H cJ obtained by dividing the absolute value H k by the coercive force H cJ .
  • a method for increasing the coercive force of the NdFeB-based sintered magnet a method of adding Dy and / or Tb (hereinafter, “Dy and / or Tb” is referred to as “R H ”) at the stage of producing the starting alloy ( One alloy method). Also, to prepare 2 kinds powder of the starting alloy of the addition of the main phase alloy and R H not containing R H grain boundary phase alloy, method of sintering a mixture of these with each other (two alloy method) is there.
  • the coercive force of the NdFeB-based sintered magnet can be increased by the above method
  • the presence of RH in the main phase particles in the sintered magnet is known to reduce the maximum energy product.
  • R H is contained in the main phase particles at the stage of the starting alloy powder, and therefore R H is also contained in the main phase particles even in a sintered magnet produced based on the R H.
  • a sintered magnet produced by the one-alloy method has an improved coercive force but a reduced maximum energy product.
  • the magnet manufacturing method with a press includes filling a mold with a fine powder of a starting alloy (hereinafter referred to as “alloy powder”), and applying a magnetic field while applying pressure to the alloy powder with a press machine.
  • alloy powder a starting alloy
  • the production and the orientation treatment of the compression molded body are simultaneously performed, and the compression molded body taken out from the mold is heated and sintered.
  • an alloy powder filled in a predetermined filling container is oriented and sintered in a state of being filled in the filling container without compression molding.
  • the press-produced magnet manufacturing method requires a large press to produce a compression-molded body, so it is difficult to carry out in a sealed space, whereas the press-free magnet manufacturing process does not use a press. There is a feature that operations from filling to sintering can be performed in a sealed space.
  • the ease of diffusion of RH that adheres to the substrate surface by vapor deposition / coating, etc., the depth from the substrate surface that can be diffused, etc. is the state of the grain boundary.
  • the rare earth-rich phase present at the grain boundary is the main path for diffusing RH into the NdFeB-based sintered magnet, but the carbon-rich phase in the rare earth-rich phase is the diffusion of RH . It acts as a weir to block the passage and inhibits diffusion of RH via grain boundaries.
  • the problem to be solved by the present invention is that when used as a base material for a grain boundary diffusion method, RH is easily diffused through a rare earth-rich phase, and a higher coercive force can be obtained, and the NdFeB-based sintered magnet. It is providing the manufacturing method of a magnet.
  • the NdFeB-based sintered magnet according to the present invention made to solve the above problems is a) The average particle size of the main phase particles in the NdFeB-based sintered magnet is 4.5 ⁇ m or less, b) The carbon content of the entire NdFeB-based sintered magnet is 1000 ppm or less, c) The ratio of the total volume of the carbon-rich phase in the rare earth-rich phase to the total volume of the rare earth-rich phase at the grain boundary triple point in the NdFeB-based sintered magnet is 50% or less, It is characterized by being.
  • the present inventor found that when the grain boundary diffusion method was applied using the NdFeB-based sintered magnet as a base material, R H was passed through the rare earth-rich phase. It has been found that it becomes easy to diffuse inside the substrate.
  • the coercive force of the base material itself was increased by manufacturing the main phase particles so that the average particle size was 4.5 ⁇ m or less.
  • the carbon content in the NdFeB-based sintered magnet is suppressed to 1000 ppm or less, and the volume ratio of the carbon-rich phase (the carbon ratio in the rare-earth-rich phase relative to the total volume of the rare-earth-rich phase at the grain boundary triple point described above)
  • the ratio of the total volume of the rich phase was kept at 50% or less, thereby preventing the passage of the rare earth-rich phase from being completely blocked by the carbon-rich phase.
  • the NdFeB-based sintered magnet according to the present invention can obtain a high coercive force even before the grain boundary diffusion method is applied, and the conventional NdFeB-based sintered magnet with respect to the maximum energy product and the squareness ratio. Experiments have shown that it is higher. The results of this experiment will be described later.
  • the method for producing the NdFeB-based sintered magnet according to the present invention for producing the above-mentioned NdFeB-based sintered magnet A method for producing the NdFeB-based sintered magnet, a) a hydrogen crushing step of roughly crushing the NdFeB-based alloy by occluding hydrogen in the NdFeB-based alloy; b) a pulverizing step of pulverizing the coarsely crushed NdFeB-based alloy so that the median D 50 of the particle size distribution measured by the laser diffraction method is 3.2 ⁇ m or less; c) filling the fine powder of the NdFeB-based alloy into a filling container, and then performing the orientation and sintering of the fine powder while filling the filling container; Have Without performing the dehydrogenation heating for desorbing the hydrogen occluded in the hydrogen crushing step, the fine pulverization step and the pressless magnet manufacturing step are performed, From the hydrogen cracking step to the pressless magnet manufacturing
  • a magnet manufacturing method with a press and a magnet manufacturing method without a press as a method for manufacturing an NdFeB-based sintered magnet.
  • dehydrogenation heating for desorbing hydrogen is performed as follows. I went there for one reason. The first reason is that the alloy powder containing the hydrogen compound is easily oxidized, and the magnetic properties of the magnet after manufacture are deteriorated. The second reason is that after the compression molded body is produced by a press machine, hydrogen is desorbed naturally or by heating at the time of sintering, and before it is completely sintered as molecules and gases, This is because it may expand and break the compression molded body. Further, in the magnet manufacturing method without a press, dehydrogenation heating is performed for the first reason described above.
  • the present inventor has reviewed each process in order to produce an NdFeB-based sintered magnet with higher magnetic properties.
  • the carbon mixed through the lubricant added to the alloy powder before orientation (for example, when the alloy powder is filled in the filling container) is burned with the hydrogen compound. It has been found that it reacts at the time of crystallization and is removed as CH 4 gas. Therefore, in the sintered body before the grain boundary diffusion treatment, the carbon content and the volume of the carbon rich phase in the rare earth-rich phase are reduced, and the grain boundary diffusion process is not hindered by the carbon rich phase during the grain boundary diffusion treatment. It becomes possible to diffuse RH to a sufficient depth inside the sintered body through the rare earth-rich phase.
  • the carbon content and the volume ratio of the carbon-rich phase can be suppressed to very low levels of 1000 ppm or less and 50% or less, respectively.
  • the present invention includes a hydrogen compound by making it an oxygen-free atmosphere. The oxidation of the alloy powder was prevented. Further, in the magnet manufacturing process without a press, since the sintering is performed while filling the filled container, there is no problem that the compression molded body is broken.
  • NdFeB-based sintered magnets it is known that the coercive force can be increased as the particle size of the alloy powder is reduced.
  • alloy powder particles having a small particle size are likely to be oxidized, which may cause a decrease in magnetic properties and an accident such as ignition.
  • the method for producing an NdFeB-based sintered magnet according to the present invention as described above, all steps from pulverization to sintering of the NdFeB-based alloy are performed in an oxygen-free atmosphere, so the average particle size of the alloy powder is 3.2 ⁇ m or less. Even if it is very small, it is possible to suppress the deterioration of magnetic properties and the occurrence of accidents due to oxidation. Thereby, an NdFeB system sintered magnet having a high coercive force can be manufactured.
  • the average particle size of the alloy powder can be set to 4.5 ⁇ m or less.
  • the method for producing the NdFeB-based sintered magnet of the present invention does not perform this, so the time required for the dehydrogenation heating can be omitted. That is, the manufacturing process can be simplified, the manufacturing time can be shortened, and the manufacturing cost can be reduced.
  • the method for producing a NdFeB-based sintered magnet according to the present invention it is possible to increase the pulverization rate of the starting alloy in the fine pulverization step as compared with the conventional method, and optimum for the sintering process in the pressless step. It has been found that the sintering temperature can be lowered by about 5 to 20 ° C. compared to the conventional case. Increasing the grinding speed leads to shortening of the production time, and lowering the optimum sintering temperature leads to energy saving and longer life of the filled container.
  • the present inventor has examined in detail how the alloy powder particles are affected by not performing the dehydrogenation heating, and compared with the case of performing the dehydrogenation heating, the anisotropy of the alloy powder particles.
  • it has been found that the effect of repulsion between the powder particles during orientation is reduced, and the degree of orientation of the sintered NdFeB-based sintered magnet is improved.
  • hydrogen reacting with the alloy powder particles reacts with carbon and desorbs by heating during sintering, the decrease in anisotropy due to the reaction between the alloy powder particles and hydrogen is reduced. It was also found that it does not affect the magnetic properties of the magnet after concatenation.
  • the NdFeB-based sintered magnet according to the present invention has the property that RH is easily diffused into the inside by the grain boundary diffusion method, it can be suitably used as a base material for the grain boundary diffusion method. Further, in the method for producing a NdFeB-based sintered magnet according to the present invention, it is possible to produce a suitable NdFeB-based sintered magnet as a base material for the grain boundary diffusion method, simplification of the production process, shortening of the production time, Various effects such as reduction in manufacturing cost can be obtained. Furthermore, disturbance due to repulsion between powder particles during orientation can be reduced.
  • mapping image by the Auger electron spectroscopy in the surface of the NdFeB type sintered magnet manufactured by the manufacturing method of the NdFeB type sintered magnet of a comparative example The mapping image by the Auger electron spectroscopy in the surface of the NdFeB type sintered magnet of a present Example.
  • the manufacturing method of the NdFeB-based sintered magnet of this example is a hydrogen crushing step (step) in which hydrogen is occluded by occluding hydrogen in a NdFeB-based alloy prepared in advance by a strip cast method.
  • step A1 and NdFeB alloy that was not dehydrogenated after hydrogen cracking in the hydrogen cracking process was mixed with 0.05 to 0.1 wt% of a lubricant such as methyl caprylate, and nitrogen gas was used using a jet mill device.
  • a fine pulverization step (step A2) in which the median particle size distribution (D 50 ) measured by laser diffraction method is 3.2 ⁇ m or less in an air stream, and 0.05 to 0.15 wt.
  • step A3 in which a lubricant such as 1% methyl laurate is mixed and filled in the mold (filling container) at a density of 3.0 to 3.5 g / cm 3 , and the alloy powder in the mold is placed in a magnetic field at room temperature Alignment process (step A4) to align, and alignment A sintering step (step A5), the of sintering the alloy powder of the mold.
  • the steps A3 to A5 are performed by a pressless process.
  • steps A1 to A5 are performed consistently in an oxygen-free atmosphere.
  • the method for producing the NdFeB-based sintered magnet of the comparative example includes dehydration for desorbing the hydrogen after the hydrogen is stored in the NdFeB-based alloy in the hydrogen crushing step (step B1). It is the same as the flowchart of FIG. 1 except that the element heating is performed and the temperature increasing alignment is performed in which the alloy powder is heated before, during, or during the alignment in the magnetic field in the alignment step (step B4). is there.
  • the temperature-programmed orientation is a method for suppressing repulsion between particles after orientation by heating the alloy powder during the orientation step to reduce the coercivity of each particle of the alloy powder. By this method, the degree of orientation of the manufactured NdFeB-based sintered magnet can be improved.
  • FIG. 3 shows the temperature history of the hydrogen crushing step (step A1) in the method of manufacturing the NdFeB-based sintered magnet of this example
  • FIG. 4 shows the hydrogen crushing step in the method of manufacturing the NdFeB-based sintered magnet of the comparative example ( It is a temperature history of step B1).
  • FIG. 4 is a temperature history of a general hydrogen cracking process in which dehydrogenation heating is performed.
  • hydrogen is occluded in the NdFeB alloy flakes. Since this hydrogen storage process is an exothermic reaction, the temperature of the NdFeB alloy rises to about 200-300 ° C. Then, it cools naturally to room temperature, carrying out vacuum deaeration. During this time, the hydrogen occluded in the alloy expands and a large number of cracks (cracks) are generated inside the alloy and are crushed. In this process, some of the hydrogen reacts with the alloy. In order to desorb the hydrogen that has reacted with this alloy, it is heated to about 500 ° C. and then naturally cooled to room temperature.
  • the hydrogen crushing process can be completed in about 400 minutes even if the time for cooling to room temperature is reduced while vacuum degassing after the temperature rise due to heat generation. Therefore, compared with the example of FIG. 4, the manufacturing time can be shortened by about 1000 minutes (16.7 hours).
  • the method of manufacturing the NdFeB-based sintered magnet of this embodiment it is possible to simplify the manufacturing process and significantly reduce the manufacturing time.
  • Table 1 also shows the results of applying the manufacturing method of the NdFeB-based sintered magnet of this example and the manufacturing method of the NdFeB-based sintered magnet of the comparative example to the alloys having the composition numbers 1 to 4 shown in Table 1. It is shown in 2.
  • the results in Table 2 are for the case where the particle size of the finely pulverized alloy powder is adjusted to be 2.82 ⁇ m by the laser diffraction method D 50 . Further, a Hosokawa Micron 100AFG type jet mill apparatus was used as the jet mill apparatus used in the fine pulverization step.
  • a pulse magnetization measuring device (trade name: Pulse BH Curve Tracer PBH-1000) manufactured by Nippon Electromagnetic Instrument Co., Ltd.
  • the degree of orientation B r / J s was almost the same as the manufacturing method of the comparative example in which the temperature rising alignment was performed and was 95% or more. Is obtained.
  • the magnetic anisotropy of the alloy powder particles that is, the coercive force for each particle
  • the coercive force of each particle was low, after the alloy powder is oriented, a reverse magnetic domain is generated in each particle with a decrease in the applied magnetic field, resulting in a multi-domain.
  • a high degree of orientation can be obtained in the same manner as the temperature rising orientation without performing the temperature rising orientation, so that the manufacturing process is simplified and the manufacturing time is shortened. be able to.
  • the sintering temperature shown in Table 2 indicates the temperature when the density of the sintered body is closest to the theoretical density of the NdFeB-based sintered magnet in each composition and each manufacturing method. As shown in Table 2, it was found that the sintering temperature tends to be lower in this example than in the comparative example. Lowering the sintering temperature leads to lower energy consumption when manufacturing the NdFeB-based sintered magnet, that is, energy saving (energy saving). In addition, there is an effect that the life of the mold heated together with the alloy powder is extended.
  • the NdFeB-based sintered magnet manufactured by the manufacturing method of the present example has a higher coercive force H cJ than the NdFeB-based sintered magnet manufactured by the manufacturing method of the comparative example. I understood.
  • Auger Electron Spectroscopy (AES ).
  • the measuring apparatus is an Auger micro probe (trade name: JAMP-9500F) manufactured by JEOL Ltd.
  • Auger electron spectroscopy is a technique for irradiating the surface of an object to be measured with an electron beam and measuring the energy distribution of Auger electrons generated by the interaction between the electrons and the electrons.
  • Auger electrons have energy values that are unique to each element. Therefore, by measuring the energy distribution of Auger electrons, it exists on the surface of the object to be measured (more specifically, a depth of several nm from the surface).
  • the element to be identified can be performed. Further, the element can be quantified (quantitative analysis) from the peak intensity ratio. Further, the element distribution in the depth direction of the object to be measured can be examined by performing ion sputtering (for example, sputtering with Ar ions) on the surface of the object to be measured.
  • the actual analysis method is as follows. In order to remove the dirt on the sample surface, tilt the sample at an Ar sputtering angle (30 degrees with respect to the horizontal plane) and sputter the sample surface for 2 to 3 minutes before the actual measurement. Next, several Nd-rich phases in the grain boundary triple point where C and O can be detected are selected to obtain an Auger spectrum, and a detection threshold is determined based on this (ROI setting).
  • the acquisition conditions were a voltage of 20 kV, a current of 2 ⁇ 10 ⁇ 8 A, and an angle of 55 degrees (relative to the horizontal plane). Subsequently, the main measurement is performed under the same conditions as described above, and Auger images for Nd and C are acquired.
  • the surface 10 of the NdFeB sintered magnet manufactured by the manufacturing method of the present example and the comparative example is scanned for the alloy of composition number 2 in Table 1 to obtain the Auger images of Nd and C, respectively.
  • Nd is present over almost the entire surface of the NdFeB-based sintered magnet (FIGS. 5A and 6A), but the region 11 has a concentration higher than the average value of the entire NdFeB-based sintered magnet by image processing.
  • the C-rich region 12 was extracted from the images shown in FIGS. 5C and 6C (FIGS. 5D and 6D).
  • the total area of the Nd-rich grain boundary triple point region 11 extracted as described above and the total area in the C-rich region 12 in the Nd-rich grain boundary triple point region 11 are obtained, and these are determined as the volume of both parts. And the ratio C / Nd between the two was calculated. The above was performed with multiple fields of view.
  • the surfaces of the NdFeB-based sintered magnets of this example and comparative example corresponding to composition number 2 are divided into small areas of 24 ⁇ m ⁇ 24 ⁇ m, and the distribution of Nd and C in each small area and C / The results of analyzing Nd are shown respectively (Note that only three representative small regions are shown in FIGS. 7 and 8).
  • a low C / Nd of 20% or less was obtained in almost all small regions.
  • a distribution showing 50% C / Nd was seen in some subregions, but there was no subregion showing C / Nd above 50%.
  • C / Nd in the entire region (region combining all the small regions) was 26.5%.
  • the NdFeB-based sintered magnet of the comparative example a high C / Nd of 90% or more was obtained in almost all small regions.
  • C / Nd of the entire region was 93.1%.
  • the carbon present in the rare earth-rich phase exists as a single carbon or as a carbon compound.
  • the carbon content in the NdFeB-based sintered magnet is almost the same value for each manufacturing method.
  • the carbon content of the NdFeB sintered magnet corresponding to composition number 3 in Table 1 was measured with a CS-230 type carbon / sulfur analyzer manufactured by LECO. It was about 800 ppm by the manufacturing method of Further, micrographs of each of the above NdFeB-based sintered magnets manufactured by the manufacturing method of this example were taken from a plurality of fields of view (the micrograph of FIG. 9 is one of them), and an image analyzer (manufactured by Nireco) When the particle size distribution was measured with LUZEX AP), the average particle size of the main phase particles was found to be in the range of 2.6 to 2.9 ⁇ m.
  • the average particle size of the main phase particles of the NdFeB-based sintered magnet is 4.5 ⁇ m or less, (ii) the carbon content in the NdFeB-based sintered magnet is 1000 ppm or less, and (iii) three Nd-rich grain boundaries
  • An NdFeB-based sintered magnet in which the volume ratio of the C-rich region to the volume of the priority region is 50% or less is referred to as “NdFeB-based sintered magnet of this example”.
  • An NdFeB-based sintered magnet that does not have some or all of the features (i) to (iii) is referred to as a “comparative NdFeB-based sintered magnet”.
  • Table 3 and Table 4 show the magnetic properties of the NdFeB-based sintered magnet of this example and the comparative NdFeB-based sintered magnet and the magnetic properties after being applied as a base material for the grain boundary diffusion method.
  • the thickness direction is the direction of magnetization produced by the production method of this example for the alloys having composition numbers 1 to 4 having the characteristics (i) to (iii), respectively.
  • This is a NdFeB-based sintered magnet with a length of 7 mm, a width of 7 mm, and a thickness of 3 mm.
  • Comparative Examples 1 to 4 in Table 3 are the same as Examples 1 to 4 manufactured from the alloys having composition numbers 1 to 4 and having the characteristics (ii) and (iii), respectively, by the manufacturing method of the comparative example.
  • NdFeB based sintered magnet of the same size are used as a base material for a grain boundary diffusion method described later.
  • Br is the residual magnetic flux density (magnetization J or magnetic flux density B when the magnetic field H of the magnetization curve (JH curve) or demagnetization curve (BH curve) is 0)
  • Js is the saturation magnetization.
  • H cB is the coercivity defined by the demagnetization curve
  • H cJ is the coercivity defined by the magnetization curve
  • (BH) max is the maximum energy product (the magnetic flux density B in the demagnetization curve The maximum value of the product of the magnetic field H), B r / J s is the degree of orientation, and SQ is the squareness ratio. The larger these values are, the better magnet characteristics are obtained.
  • the NdFeB-based sintered magnet of this example has a higher coercive force H cJ than the NdFeB-based sintered magnet of the comparative example.
  • the degree of orientation B r / J s is almost the same, but the squareness ratio SQ of the NdFeB-based sintered magnet of this example is much higher than that of the comparative NdFeB-based sintered magnet. It has been.
  • Table 4 shows the magnetic characteristics after performing the grain boundary diffusion treatment using each NdFeB-based sintered magnet of Table 3 as a base material and Tb as RH .
  • the grain boundary diffusion process (Grain Boundary Diffusion: GBD) was performed as follows. First, a paste in which 0.07 g of silicone oil was added to 10 g of a mixture of TbNiAl alloy powder of Tb: 92 wt%, Ni: 4.3 wt%, Al: 3.7 wt% and silicone grease in a weight ratio of 80:20 was used. 10 mg each was applied to both magnetic pole faces (7 mm x 7 mm faces) of the material. Next, the cuboid base material coated with the paste is placed on a molybdenum tray provided with a plurality of point-shaped support portions, and the cuboid base material is supported by the support portions while being in a vacuum of 10 ⁇ 4 Pa. And heated. The heating temperature and heating time were 880 ° C. and 10 hours, respectively. Thereafter, it was rapidly cooled to near room temperature, then heated at 500 ° C. for 2 hours, and then rapidly cooled to room temperature.
  • the sintered magnet of the present example having the characteristics (i) to (iii) has a greatly improved coercive force H cJ compared to the sintered magnet of the comparative example that is not so.
  • Table 3 there is an example in which the NdFeB-based sintered magnet of the comparative example has a higher maximum energy product (BH) max (with the same composition) than the NdFeB-based sintered magnet of this example.
  • the NdFeB-based sintered magnet of this example has a higher maximum energy product (BH) max than the NdFeB-based sintered magnet of the comparative example.
  • the decrease in (BH) max is suppressed as compared with the NdFeB-based sintered magnet of the comparative example. Furthermore, the squareness ratio SQ is extremely high.
  • the cause of the high magnetic properties of the NdFeB-based sintered magnet before and after the grain boundary diffusion treatment of this example is that the carbon content in the NdFeB-based sintered magnet is low. For this reason, it is considered that the formation of a carbon-rich region in the Nd-rich grain boundary triple point region is suppressed.
  • the NdFeB-based sintered magnet of this example has a low ratio of the carbon-rich phase in the Nd-rich phase, the diffusibility of RH through the Nd-rich phase in the grain boundary is high.
  • Table 5 shows the NdFeB-based sintered magnet of this example corresponding to the alloys of composition numbers 1 and 3 manufactured in thicknesses of 3 mm, 6 mm, and 10 mm, and the comparative example corresponding to the alloy of composition number 2.
  • the increment of the coercive force at a thickness of 6 mm is almost the same as that at the thickness of 3 mm in the NdFeB-based sintered magnet of this example, but is greatly decreased in the NdFeB-based sintered magnet in the comparative example.
  • a large increase in coercive force indicates that R H is diffused to the center of the magnet, and from this, the NdFeB-based sintered magnet manufactured by the manufacturing method of this example has a thickness of It turns out that it is suitable also as a base material when manufacturing the magnet which has a certain high magnetic characteristic by a grain-boundary diffusion process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 粒界拡散法の基材として使用したとき、希土類リッチ相を通してRHが拡散しやすく、さらに基材そのものの保磁力、最大エネルギー積及び角型比の高いNdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法を提供する。本発明に係るNdFeB系焼結磁石は、NdFeB系焼結磁石中の主相粒子の平均粒径が4.5μm以下、前記NdFeB系焼結磁石全体の炭素含有率が1000ppm以下、前記NdFeB系焼結磁石中の粒界三重点における希土類リッチ相の体積の総計に対する、該希土類リッチ相中の炭素リッチ相の体積の総計の比率が50%以下、であることを特徴とする。

Description

NdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法
 本発明は、粒界拡散法の基材に適したNdFeB系(ネオジム・鉄・硼素)焼結磁石及び該NdFeB系焼結磁石の製造方法に関する。
 NdFeB系焼結磁石は、1982年に佐川(本発明者の一人)らによって見出されたものであるが、それまでの永久磁石をはるかに凌駕する特性を有し、Nd(希土類の一種)、鉄及び硼素という比較的豊富で廉価な原料から製造することができるという特長を有する。そのため、NdFeB系焼結磁石はハイブリッド自動車や電気自動車の駆動用モータ、電動補助型自転車用モータ、産業用モータ、ハードディスク等のボイスコイルモータ、高級スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。これらの用途に使用されるNdFeB系焼結磁石は高い保磁力HcJ、高い最大エネルギー積(BH)max及び高い角型比SQを有することが要求される。ここで角型比SQは、横軸を磁界、縦軸を磁化とするグラフの第1象限から第2象限を横切る磁化曲線において磁界ゼロに対応する磁化の値が10%低下したときの磁界の絶対値Hkを保磁力HcJで除した値Hk/HcJで定義される。
 NdFeB系焼結磁石の保磁力を高めるための方法として、出発合金を作製する段階でDy及び/又はTb (以下、「Dy及び/又はTb」を「RH」とする)を添加する方法(一合金法)がある。また、RHを含まない主相系合金とRHを添加した粒界相系合金の2種類の出発合金の粉末を作製し、これらを互いに混合して焼結させる方法(二合金法)がある。更に、NdFeB系焼結磁石を作製した後、それを基材として表面に塗布や蒸着等によりRHを付着させ、加熱することにより、基材表面から基材中の粒界を通じて該基材内部にRHを拡散させる方法(粒界拡散法)がある(特許文献1)。
 上記の方法によりNdFeB系焼結磁石の保磁力を高めることができるが、その一方で、焼結磁石中の主相粒子内にRHが存在すると、最大エネルギー積が低下することが知られている。一合金法では、出発合金粉末の段階で主相粒子内にRHが含まれるため、それを基に作製した焼結磁石においても主相粒子内にRHを含んでしまう。そのため、一合金法によって作製された焼結磁石は、保磁力は向上するものの最大エネルギー積が低下してしまう。
 これに対し、二合金法では、RHの多くを主相粒子間の粒界に存在させることができる。そのため、一合金法に比べて最大エネルギー積の低下を抑えることが可能となる。また、一合金法に比べてレアメタルであるRHの使用量を減らすことができる。
 粒界拡散法では、加熱により液化した基材内の粒界を通じて、基材表面に付着させたRHをその内部に拡散させる。そのため、粒界中のRHの拡散速度は、粒界から主相粒子内部への拡散速度よりもずっと速く、RHは速やかに基材内の深くまで供給される。それに対し、主相粒子は固体のままであるため、粒界から主相粒子内への拡散速度は遅い。この拡散速度の差を利用して、熱処理温度と時間を調整することにより、基材中の主相粒子の表面(粒界)にごく近い領域においてのみRHの濃度が高く、主相粒子の内部ではRHの濃度が低いという理想的な状態を実現することができる。これにより、保磁力を高めつつ、二合金法よりも最大エネルギー積(BH)maxの低下を抑えることが可能となる。また、レアメタルであるRHの使用量を二合金法よりも抑えることができる。
 一方、NdFeB系焼結磁石を製造するための方法として、プレス有り磁石製造方法とプレスなし磁石製造方法がある。プレス有り磁石製造方法は、出発合金の微粉末(以下、「合金粉末」とする)を金型に充填し、合金粉末にプレス機で圧力を加えつつ磁界を印加することにより、圧縮成形体の作製と該圧縮成形体の配向処理を同時に行い、金型から取り出した圧縮成形体を加熱して焼結させるというものである。プレスなし磁石製造方法は、所定の充填容器に充填した合金粉末を、圧縮成形することなく、該充填容器に充填したままの状態で、配向させ、焼結させるというものである。
 プレス有り磁石製造方法では、圧縮成形体を作製するために大型のプレス機が必要となるため、密閉空間内で行うことが難しいのに対し、プレスなし磁石製造工程ではプレス機を用いないことから、密閉空間内で充填から焼結までの作業を行うことができるという特長がある。
国際公開WO2006/043348号公報 国際公開WO2011/004894号公報
 粒界拡散法では、蒸着・塗布等により基材表面に付着させるRHの基材内への拡散のしやすさ、拡散させることのできる基材表面からの深さ等は、粒界の状態の影響を大きく受ける。本発明者は、粒界中に存在する希土類リッチ相(主相粒子より希土類元素の比率の高い相)が粒界拡散法によりRHを拡散させる際の主要な通路となること、基材表面から十分な深さにまでRHを拡散させるためには、基材の粒界において、希土類リッチ相が途中で途切れることなく繋がっていることが望ましいことを見出した(特許文献2)。
 その後、本発明者が更に実験を行ったところ、次のことを見出した。NdFeB系焼結磁石の製造では、合金粉末の粒子間の摩擦を小さくし、配向を行う際に粒子を回転しやすくする等の理由から、合金粉末に有機系潤滑剤を添加するが、これには炭素が含まれている。この炭素のほとんどは焼結時に酸化してNdFeB系焼結磁石の外部に放出されるが、一部はNdFeB系焼結磁石中に残留する。そのうち粒界三重点(3つ以上の主相粒子により囲まれる粒界部分)に残留した炭素は、互いに凝集し、希土類リッチ相の中に炭素リッチ相(NdFeB系焼結磁石全体の平均よりも炭素濃度が高い相)を形成する。上記のように、粒界に存在する希土類リッチ相は、RHをNdFeB系焼結磁石の内部に拡散させる際の主要な通路となるが、希土類リッチ相中の炭素リッチ相はRHの拡散通路を塞ぐ堰のような役割を果たし、RHの粒界経由の拡散を阻害する。
 本発明が解決しようとする課題は、粒界拡散法の基材として使用したとき、希土類リッチ相を通してRHが拡散しやすく、より高い保磁力が得られるNdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法を提供することである。
 上記課題を解決するために成された本発明に係るNdFeB系焼結磁石は、
 a)NdFeB系焼結磁石中の主相粒子の平均粒径が4.5μm以下、
 b)前記NdFeB系焼結磁石全体の炭素含有率が1000ppm以下、
 c)前記NdFeB系焼結磁石中の粒界三重点における希土類リッチ相の体積の総計に対する、該希土類リッチ相中の炭素リッチ相の体積の総計の比率が50%以下、
 であることを特徴とする。
 本発明者は、様々な実験の結果、NdFeB系焼結磁石が上記の条件を満たすとき、該NdFeB系焼結磁石を基材として粒界拡散法を適用した際に希土類リッチ相を通してRHが基材内部に拡散しやすくなることを見出した。
 本発明に係るNdFeB系焼結磁石では、主相粒子の平均粒径が4.5μm以下となるように製造することにより、基材そのものの保磁力を高くした。また、NdFeB系焼結磁石中の炭素の含有量を1000ppm以下に抑え、炭素リッチ相の体積比率(上記の「粒界三重点における希土類リッチ相の体積の総計に対する、該希土類リッチ相中の炭素リッチ相の体積の総計の比率」のこと)が50%以下に留まるように製造することにより、希土類リッチ相の通路が炭素リッチ相によって完全に塞がれることを防いだ。その結果、RHが途中で堰き止められることなく、希土類リッチ相を通してRHを基材内部にまで拡散させることが可能となる。
 また、本発明に係るNdFeB系焼結磁石は、粒界拡散法を適用する前の状態でも、高い保磁力が得られると共に、最大エネルギー積及び角型比についても、従来のNdFeB系焼結磁石より高くなることが実験により示されている。この実験結果については後述する。
 また、上記のNdFeB系焼結磁石を製造するための本発明に係るNdFeB系焼結磁石の製造方法は、
 上記NdFeB系焼結磁石を製造するための方法であって、
 a)NdFeB系合金に水素を吸蔵させることにより該NdFeB系合金を粗解砕する水素解砕工程と、
 b)粗解砕されたNdFeB系合金を、レーザ回折法で測定される粒度分布の中央値D50で3.2μm以下になるように微粉砕する微粉砕工程と、
 c)前記NdFeB系合金の微粉末を充填容器に充填し、その後、充填容器に充填したまま該微粉末の配向及び焼結を行うプレスなし磁石製造工程と、
 を有し、
 前記水素解砕工程において吸蔵された水素を脱離させるための脱水素加熱を行うことなく、前記微粉砕工程と前記プレスなし磁石製造工程を行い、
 前記水素解砕工程から前記プレスなし磁石製造工程までを無酸素雰囲気下で行う、
 ことを特徴とする。
 前記のとおり、NdFeB系焼結磁石の製造方法としてプレス有り磁石製造方法とプレスなし磁石製造方法があるが、このプレス有り磁石製造方法では、水素を脱離するための脱水素加熱を次の2つの理由から行っていた。第1の理由は、水素化合物を含む合金粉末は酸化しやすく、製造後の磁石の磁気特性が低下するためである。第2の理由は、プレス機によって圧縮成形体を作製した後に、自然に又は焼結の際の加熱によって水素が脱離し、分子及び気体となって完全に焼結される前の圧縮成形体内部で膨張し、圧縮成形体を壊すことがあるためである。
 また、プレスなし磁石製造方法でも上記の第1の理由から脱水素加熱が行われていた。
 本発明者は、より磁気特性の高いNdFeB系焼結磁石を製造するために、各工程の見直しを行った。その結果、合金粉末が水素化合物を含んでいると、配向を行う前(合金粉末を充填容器に充填する際など)に合金粉末に添加される潤滑剤を通じて混入する炭素が、該水素化合物と焼結の際に反応し、CH4ガスとなって除去されることを見出した。そのため、粒界拡散処理前の焼結体において、炭素含有量及び希土類リッチ相中の炭素リッチ相の体積が減少し、粒界拡散処理の際、炭素リッチ相に阻害されることなく、粒界中の希土類リッチ相を通じて、RHを焼結体内部の十分な深さにまで拡散させることが可能となる。本発明の製造方法によって製造されたNdFeB系焼結磁石では、炭素含有率及び炭素リッチ相の体積比率を、それぞれ1000ppm以下、50%以下という非常に低いレベルにまで抑えることができる。
 また、プレスなし磁石製造工程では、出発合金の粉砕から焼結までの一連の工程を密閉空間内でを行うことができるため、本発明ではそこを無酸素雰囲気とすることにより、水素化合物を含む合金粉末の酸化を防止した。また、プレスなし磁石製造工程では充填容器に充填したまま焼結を行うため、圧縮成形体が壊れるという問題も生じない。
 NdFeB系焼結磁石においては、合金粉末の粒径を小さくするほど保磁力を高めることができることが知られている。一方、粒径の小さい合金粉末粒子は酸化しやすく、それによって磁気特性が低下したり、発火等の事故が生じたりするおそれがある。
 本発明に係るNdFeB系焼結磁石の製造方法では、上記の通り、NdFeB系合金の粉砕から焼結までの工程をすべて無酸素雰囲気下で行うため、合金粉末の平均粒径を3.2μm以下という非常に小さなものとしても、酸化による磁気特性の低下や事故の発生を抑えることができる。これにより、高い保磁力を有するNdFeB系焼結磁石を製造することができる。
 また、合金粉末の平均粒径を3.2μm以下にすることで、焼結後の磁石中の主相粒子の平均粒径を4.5μm以下にすることができる。
 さらに、脱水素加熱には、通常、数時間程度の時間を要するが、本発明のNdFeB系焼結磁石の製造方法ではこれを行わないため、脱水素加熱に要する時間を省略することができる。すなわち、製造工程の簡略化と製造時間の短縮と製造コストの削減を行うことができる。
 また、実験の結果、本発明に係るNdFeB系焼結磁石の製造方法では、微粉砕工程における出発合金の粉砕速度を従来よりも高くすることができること、プレスなし工程中の焼結処理において、最適な焼結温度を従来よりも5~20℃程度下げることができることが分かった。粉砕速度が高くなることは製造時間の短縮に、最適焼結温度が低くなることはエネルギーの節約や充填容器の長寿命化に、それぞれ繋がる。
 本発明者が、脱水素加熱を行わないことによって、合金粉末粒子にどのような影響が生じるか詳細に検討したところ、脱水素加熱を行った場合と比較して、合金粉末粒子の異方性が低下していることが分かった。しかしながら、それによって、配向の際の粉末粒子同士の反発による乱れが減少し、焼結後のNdFeB系焼結磁石の配向度が向上するという効果が得られることが分かった。また、合金粉末粒子と反応している水素は、焼結の際の加熱によって炭素と反応して脱離するため、合金粉末粒子と水素が反応していることによる異方性の低下は、焼結後の磁石の磁気特性に影響を及ぼさないことも分かった。
 本発明に係るNdFeB系焼結磁石では、粒界拡散法によりRHが内部に拡散しやすい性質を有しているため、粒界拡散法の基材としても好適に用いることができる。また、本発明に係るNdFeB系焼結磁石の製造方法では、粒界拡散法の基材として好適なNdFeB系焼結磁石を製造することができる他、製造工程の簡略化、製造時間の短縮、製造コストの削減等の様々な効果を得ることができる。さらに、配向の際の粉末粒子同士の反発による乱れを減少させることができる。
本発明に係るNdFeB系焼結磁石の製造方法の一実施例を示すフローチャート。 比較例のNdFeB系焼結磁石の製造方法を示すフローチャート。 本実施例のNdFeB系焼結磁石の製造方法における水素解砕工程の温度履歴を示すグラフ。 比較例のNdFeB系焼結磁石の製造方法における水素解砕工程の温度履歴を示すグラフ。 本実施例のNdFeB系焼結磁石の製造方法により製造された本発明に係るNdFeB系焼結磁石の一実施例の、磁石表面におけるオージェ電子分光法によるマッピング画像。 比較例のNdFeB系焼結磁石の製造方法により製造されたNdFeB系焼結磁石の表面におけるオージェ電子分光法によるマッピング画像。 本実施例のNdFeB系焼結磁石の表面におけるオージェ電子分光法によるマッピング画像。 比較例のNdFeB系焼結磁石の製造方法により製造されたNdFeB系焼結磁石の表面におけるオージェ電子分光法によるマッピング画像。 本実施例のNdFeB系焼結磁石の光学顕微鏡写真。
 以下、本発明に係るNdFeB系焼結磁石及びその製造方法の実施例を説明する。
 本実施例及び比較例のNdFeB系焼結磁石を製造する方法について図1及び図2のフローチャートを用いて説明する。
 本実施例のNdFeB系焼結磁石の製造方法は、図1に示すように、ストリップキャスト法により予め作製されたNdFeB系合金に水素を吸蔵させることにより、粗解砕する水素解砕工程(ステップA1)と、水素解砕工程で水素解砕された後に脱水素加熱されなかったNdFeB系合金に0.05~0.1wt%のカプリル酸メチル等の潤滑剤を混合させ、ジェットミル装置を用いて窒素ガス気流中で、レーザ回折法で測定した粒度分布の中央値(D50)で3.2μm以下になるように微粉砕する微粉砕工程(ステップA2)と、微粉砕された合金粉末に0.05~0.15wt%のラウリン酸メチル等の潤滑剤を混合し、モールド(充填容器)内に3.0~3.5g/cm3の密度で充填する充填工程(ステップA3)と、モールド内の合金粉末を室温で磁界中配向させる配向工程(ステップA4)と、配向されたモールド内の合金粉末を焼結させる焼結工程(ステップA5)と、を有する。
 なお、ステップA3~A5の工程はプレスなし工程により行われる。また、ステップA1~A5の工程は、一貫して無酸素雰囲気下で行われる。
 比較例のNdFeB系焼結磁石の製造方法は、図2に示すように、水素解砕工程(ステップB1)において、NdFeB系合金に水素を吸蔵させた後、該水素を脱離させるための脱水素加熱を行っている点と、配向工程(ステップB4)において、磁界中配向の前後又は途中で合金粉末を加熱する昇温配向を行っている点を除いては、図1のフローチャートと同じである。
 なお、昇温配向とは、配向工程の際に合金粉末を加熱することにより、合金粉末の各粒子の保磁力を低下させ、配向後の粒子間の反発を抑える方法のことである。この方法により、製造後のNdFeB系焼結磁石の配向度を向上させることができる。
 本実施例と比較例のNdFeB系焼結磁石の製造方法の違いを、まず、水素解砕工程の温度履歴を用いて説明する。図3は、本実施例のNdFeB系焼結磁石の製造方法における水素解砕工程(ステップA1)の温度履歴、図4は、比較例のNdFeB系焼結磁石の製造方法における水素解砕工程(ステップB1)の温度履歴である。
 図4は、脱水素加熱を行う一般的な水素解砕工程の温度履歴である。水素解砕工程では、NdFeB系合金の薄片に水素を吸蔵させる。この水素吸蔵過程は発熱反応なのでNdFeB系合金は200~300℃程度まで温度上昇する。その後、真空脱気しつつ室温まで自然に冷却させる。この間に、合金内に吸蔵された水素が膨張し、合金内部で多数のひび割れ(クラック)が生じて解砕される。この過程で、水素の一部は合金と反応する。この合金と反応した水素を脱離させるために500℃程度まで加熱し、それから室温まで自然に冷却させる。図4の例では、水素を脱離するのに要する時間を含め、水素解砕工程に約1400分の時間が必要となる。
 一方、本実施例のNdFeB系焼結磁石の製造方法では脱水素加熱を行わない。そのため、図3に示すように、発熱に伴う温度上昇後、真空脱気しつつ室温まで冷却させる時間を多少長めに取っても、約400分で水素解砕工程を終了することができる。従って、図4の例と比べると、約1000分(16.7時間)ほど製造時間を短縮することができる。
 このように、本実施例のNdFeB系焼結磁石の製造方法では、製造工程の簡略化と、製造時間の大幅な短縮を行うことが可能となる。
 また、表1に示す組成番号1~4の各組成の合金に対して、本実施例のNdFeB系焼結磁石の製造方法と比較例のNdFeB系焼結磁石の製造方法を適用した結果を表2に示す。
 なお、表2の結果は、いずれも微粉砕後の合金粉末の粒径が、レーザ回折法のD50で2.82μmになるように調整した場合のものである。また、微粉砕工程に用いるジェットミル装置には、ホソカワミクロン製100AFG型ジェットミル装置を用いた。磁気特性の測定には、日本電磁測器株式会社製のパルス磁化測定装置(商品名:パルスBHカーブトレーサPBH-1000)を用いた。
 また、表2の脱水素無し、昇温配向無しの結果が、本実施例のNdFeB系焼結磁石の製造方法を、脱水素有り、昇温配向有りの結果が、比較例のNdFeB系焼結磁石の製造方法を、それぞれ示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、脱水素加熱を行わなかった場合、いずれの組成の合金を用いた場合でも、微粉砕工程における合金の粉砕速度が脱水素加熱を行った場合よりも向上する。これは、脱水素加熱を行った場合では、水素吸蔵によって脆化した合金中の組織が、脱水素加熱によって靭性を多少回復するのに対し、脱水素加熱を行わなかった場合では、合金組織が脆化したままであるためと考えられる。このように脱水素加熱を行わない本実施例の製造方法では、脱水素加熱を行う従来の製造方法と比較して、製造時間が短縮されるという効果も得られる。
 また、本実施例の製造方法では、昇温配向を行わなかったにもかかわらず、昇温配向を行った比較例の製造方法とほぼ同程度且つ95%以上の高い配向度Br/Jsが得られている。本発明者が詳細に検討したところ、脱水素加熱を行わなかった場合では合金粉末粒子の磁気異方性(すなわち粒子毎の保磁力)が低下していることが分かった。各粒子の保磁力が低い場合、合金粉末を配向させた後、印加磁界の減少と共に各粒子内に逆磁区が発生し、多磁区化する。これにより各粒子の磁化が減少するため、隣接粒子間の磁気的相互作用による配向度の劣化が緩和され、高い配向度が得られる。これは昇温配向によって、製造後のNdFeB系焼結磁石の配向度が高くなることと同じ原理である。
 すなわち、本実施例のNdFeB系焼結磁石の製造方法では、昇温配向を行うことなく、昇温配向と同様に高い配向度が得られるため、製造工程の簡略化と製造時間の短縮を行うことができる。
 表2に記載の焼結温度は、各組成及び各製造方法において、焼結体の密度がNdFeB系焼結磁石の理論密度に最も近くなるようにしたときの温度を示したものである。表2に示すように、焼結温度は、本実施例の方が、比較例よりも低くなる傾向になることが分かった。焼結温度が低くなるということは、NdFeB系焼結磁石を製造する際のエネルギー消費が低くなること、すなわちエネルギーの節約(省エネ)に繋がる。また、合金粉末と共に加熱するモールドの寿命が延びるという効果もある。
 さらに、本実施例の製造方法で製造されたNdFeB系焼結磁石は、比較例の製造方法で製造されたNdFeB系焼結磁石より、保磁力HcJが高く得られることも表1の結果より分かった。
 続いて、本実施例の製造方法により製造したNdFeB系焼結磁石と、比較例の製造方法により製造したNdFeB系焼結磁石の微細組織を調べるために、オージェ電子分光法(Auger Electron Spectroscopy; AES)により測定を行った。測定装置は、日本電子株式会社製のオージェマイクロプローブ(商品名:JAMP-9500F)である。
 オージェ電子分光法の原理について簡単に説明する。オージェ電子分光法は、被測定物の表面に電子線を照射し、電子が照射された原子と該電子の相互作用により生じるオージェ電子のエネルギー分布を測定する手法である。オージェ電子は、各元素に固有のエネルギー値を有しているため、オージェ電子のエネルギー分布を測定することで、被測定物の表面(より具体的には表面から数nmの深さ)に存在する元素の同定(定性分析)を行うことができる。また、ピーク強度比から元素を定量(定量分析)することができる。
 さらに、被測定物の表面をイオンスパッタ(例えばArイオンによるスパッタ)していくことで、被測定物の深さ方向の元素分布を調べることができる。
 実際の分析方法は以下のとおりである。サンプル表面の汚れを取り除くため、実際の測定前にArスパッタリング用の角度(水平面に対して30度)に傾け、2~3分間サンプル表面をスパッタリングする。次に、C、Oが検出できる粒界三重点中のNdリッチ相を数点選んでオージェスペクトルを取得し、これを基に検出用の閾値を決定する(ROI設定)。その取得条件は、電圧20kV、電流2×10-8A、(水平面に対して)角度55度であった。続いて、上記と同一条件にて本測定を行いNd、Cについてのオージェ像を取得する。
 今回の分析では、表1の組成番号2の合金に対して本実施例と比較例の製造方法により製造されたNdFeB系焼結磁石の表面10を走査し、NdとCのオージェ像をそれぞれ取得した(図5及び図6)。なお、NdはNdFeB系焼結磁石表面のほぼ全域にわたって存在するが(図5(a)及び図6(a))、画像処理によって濃度がNdFeB系焼結磁石全体の平均値よりも高い領域11をNdリッチな粒界三重点領域として抽出した(図5(b)及び図6(b))。また、Cリッチな領域12を、図5(c)及び図6(c)の画像より抽出した(図5(d)及び図6(d))。
 以上のように抽出したNdリッチな粒界三重点領域11の面積及び該Ndリッチな粒界三重点領域11中のCリッチな領域12内の面積合計をそれぞれ求め、これらを両部分の体積と定義し、両者の比率C/Ndを算出した。以上を、複数の視野で行った。
 図7及び図8に、組成番号2に対応する本実施例と比較例のNdFeB系焼結磁石の表面を24μm×24μmの小領域に区分し、各小領域のNdとCの分布及びC/Ndを分析した結果を、それぞれ示す(なお、図7及び図8には代表的な3つの小領域のみ示している)。
本実施例のNdFeB系焼結磁石では、殆どの小領域において、20%以下の低いC/Ndが得られた。一部の小領域で50%のC/Ndを示す分布が見られたが、50%を超えるC/Ndを示す小領域はなかった。また、領域全体(全ての小領域を合わせた領域)でのC/Ndは26.5%であった。
 一方、比較例のNdFeB系焼結磁石では、ほぼ全ての小領域で90%以上という高いC/Ndが得られた。また、領域全体のC/Ndは93.1%であった。
 なお、希土類リッチ相中に存在する炭素は、炭素単体で又は炭素化合物として存在する。炭素化合物としては、希土類炭化物が多く存在する。
 NdFeB系焼結磁石中の炭素含有率は、製造方法毎にほぼ同じ値となる。表1の組成番号3に対応するNdFeB系焼結磁石に対して炭素含有率をLECO社製CS-230型炭素・硫黄分析装置により測定したところ、比較例の製造方法で約1100ppm、本実施例の製造方法で約800ppmであった。また、本実施例の製造方法により製造された上記各NdFeB系焼結磁石の顕微鏡写真を複数の視野から撮り(図9の顕微鏡写真はそのうちの一枚である)、画像解析装置(ニレコ社製LUZEX AP)にて粒度分布測定を行ったところ、主相粒子の平均粒径は2.6~2.9μmの範囲内で得られていた。
 以下、(i)NdFeB系焼結磁石の主相粒子の平均粒径が4.5μm以下、(ii)該NdFeB系焼結磁石中の炭素含有率が1000ppm以下、(iii)Ndリッチな粒界三重点領域の体積に対するCリッチな領域の体積比率が50%以下のNdFeB系焼結磁石を「本実施例のNdFeB系焼結磁石」と呼びことにする。また、上記(i)~(iii)の特徴の一部又は全てを有さないNdFeB系焼結磁石を「比較例のNdFeB系焼結磁石」と呼ぶ。
 次に、本実施例のNdFeB系焼結磁石と、比較例のNdFeB系焼結磁石の磁気特性及び、粒界拡散法の基材として適用した後の磁気特性を、表3及び表4に示す。
 表3の実施例1~4は、上記(i)~(iii)の特徴を有する、それぞれ組成番号1~4の合金に対して本実施例の製造方法により製造した、厚さ方向が磁化方向である縦7mm×横7mm×厚さ3mmのNdFeB系焼結磁石である。また、表3の比較例1~4は、上記(ii)及び(iii)の特徴を有さない、それぞれ組成番号1~4の合金から比較例の製造方法により製造した実施例1~4と同じ大きさのNdFeB系焼結磁石である。これら実施例1~4及び比較例1~4のNdFeB系焼結磁石は、後述する粒界拡散法の基材として使用される。
Figure JPOXMLDOC01-appb-T000003
なお、表中のBrは残留磁束密度(磁化曲線(J-H曲線)又は減磁曲線(B-H曲線)の磁場Hが0のときの磁化J又は磁束密度Bの大きさ)、Jsは飽和磁化(磁化Jの最大値)、HcBは減磁曲線によって定義される保磁力、HcJは磁化曲線によって定義される保磁力、(BH)maxは最大エネルギー積(減磁曲線における磁束密度Bと磁場Hの積の極大値)、Br/Jsは配向度、SQは角型比を示している。これらの数値が大きいほど、良い磁石特性が得られていることを意味する。
 表3に示すように、同じ組成では、本実施例のNdFeB系焼結磁石の方が、比較例のNdFeB系焼結磁石よりも高い保磁力HcJが得られている。また、配向度Br/Jsはほぼ同じであるが、角型比SQについては、本実施例のNdFeB系焼結磁石は、比較例のNdFeB系焼結磁石に比べて極めて高い数値が得られている。
 続いて、表3の各NdFeB系焼結磁石を基材とし、RHとしてTbを用いて粒界拡散処理を行った後の磁気特性を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 なお、粒界拡散処理(Grain Boundary Diffusion: GBD)は以下のように行った。
まず、Tb:92wt%、Ni:4.3wt%、Al:3.7wt%のTbNiAl合金粉末とシリコーングリースを重量比で80:20の割合で混合した混合物10gにシリコーンオイルを0.07g添加したペーストを基材の両磁極面(7mm×7mmの面)にそれぞれ10mgずつ塗布した。
 次に、上記ペーストを塗布した直方体基材を、複数の尖形状の支持部が設けられたモリブデン製のトレイに載せ、直方体基材を該支持部によって支持しつつ、10-4Paの真空中で加熱した。加熱温度と加熱時間はそれぞれ880℃、10時間とした。その後室温付近まで急冷して、次に500℃で2時間加熱して、再度室温まで急冷した。
 表4に示すように、上記(i)~(iii)の特徴を有する本実施例の焼結磁石は、そうでない比較例の焼結磁石に比べて、保磁力HcJが大きく向上している。また、表3では本実施例のNdFeB系焼結磁石よりも比較例のNdFeB系焼結磁石の方が、(同じ組成で)最大エネルギー積(BH)maxが高い例もあるが、表4では、全ての例において、本実施例のNdFeB系焼結磁石の方が比較例のNdFeB系焼結磁石よりも最大エネルギー積(BH)maxが高い。すなわち、本実施例のNdFeB系焼結磁石では、比較例のNdFeB系焼結磁石よりも(BH)maxの低下が抑えられている。さらに、角型比SQが極めて高い。
 このように本実施例の粒界拡散処理前及び粒界拡散処理後のNdFeB系焼結磁石の磁気特性が高いことの要因は、第一に、NdFeB系焼結磁石中の炭素含有率が低いため、Ndリッチな粒界三重点領域内に炭素リッチな領域が生成されることが抑制されるためと考えられる。第二に、Ndリッチな粒界三重点領域におけるCリッチな領域の量が少ないため、Ndリッチ相の通路を通って、十分な量のRH(本実施例ではTb)が基材内部まで拡散するためであると考えられる。
 本実施例のNdFeB系焼結磁石はNdリッチ相中の炭素リッチ相の割合が低いため、粒界中のNdリッチ相を通したRHの拡散性が高い。本発明者が実験により確かめたところ、対向する両面にRHを塗布した場合では、それぞれ5mmずつ、計10mmの厚さであっても中心部にまでRHを拡散させることができた。以下の表5は、3mm、6mm、10mmの厚みで製造される、組成番号1、3の合金に対応する本実施例のNdFeB系焼結磁石と、組成番号2の合金に対応する比較例のNdFeB系焼結磁石に粒界拡散処理を行ったときの、粒界拡散前の状態からの保磁力の増分を示したものである。
Figure JPOXMLDOC01-appb-T000005
 この表に示すように、3mmの厚みでは本実施例のNdFeB系焼結磁石と比較例のNdFeB系焼結磁石の間で大きな差異は見られないが、磁石が厚くなるに従って本実施例のNdFeB系焼結磁石の保磁力の増分が勝ってくる。例えば6mmの厚みにおける保磁力の増分は、本実施例のNdFeB系焼結磁石では3mmの厚みのときとほぼ同等であるが比較例のNdFeB系焼結磁石では大きく低下している。保磁力の増分が大きいことは磁石の中心部にまでRHが拡散していることを示しており、このことから、本実施例の製造方法により製造されるNdFeB系焼結磁石は、厚みのある、高い磁気特性を有する磁石を粒界拡散処理により製造するときの基材としても適していることが分かる。
10…NdFeB系焼結磁石の表面
11…Ndリッチ相の存在する領域
12…Cが分布する領域

Claims (2)

  1.  a)NdFeB系焼結磁石中の主相粒子の平均粒径が4.5μm以下、
     b)前記NdFeB系焼結磁石全体の炭素含有率が1000ppm以下、
     c)前記NdFeB系焼結磁石中の粒界三重点における希土類リッチ相の体積の総計に対する、該希土類リッチ相中の炭素リッチ相の体積の総計の比率が50%以下、
     であることを特徴とするNdFeB系焼結磁石。
  2.  請求項1に記載のNdFeB系焼結磁石を製造するための方法であって、
     a)NdFeB系合金に水素を吸蔵させることにより該NdFeB系合金を粗解砕する水素解砕工程と、
     b)粗解砕されたNdFeB系合金を、レーザ回折法で測定される粒度分布の中央値D50で3.2μm以下になるように微粉砕する微粉砕工程と、
     c)前記NdFeB系合金の微粉末を充填容器に充填し、その後、充填容器に充填したまま該微粉末の配向及び焼結を行うプレスなし磁石製造工程と、
     を有し、
     前記水素解砕工程において吸蔵された水素を脱離させるための脱水素加熱を行うことなく、前記微粉砕工程と前記プレスなし磁石製造工程を行い、
     前記水素解砕工程から前記プレスなし磁石製造工程までを無酸素雰囲気下で行う、
     ことを特徴とするNdFeB系焼結磁石の製造方法。
PCT/JP2012/083786 2011-12-27 2012-12-27 NdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法 WO2013100008A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280021386.3A CN103650073B (zh) 2011-12-27 2012-12-27 NdFeB系烧结磁体和该NdFeB系烧结磁体的制造方法
JP2013536351A JP5400255B1 (ja) 2011-12-27 2012-12-27 NdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法
EP16162932.4A EP3059743B1 (en) 2011-12-27 2012-12-27 Ndfeb system sintered magnet
EP12861799.0A EP2696355B1 (en) 2011-12-27 2012-12-27 Manufacturing method for a sintered neodymium magnet
KR1020137023814A KR101338663B1 (ko) 2011-12-27 2012-12-27 NdFeB계 소결 자석 및 상기 NdFeB계 소결 자석의 제조 방법
US14/113,961 US9028624B2 (en) 2011-12-27 2012-12-27 NdFeB system sintered magnet and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-286864 2011-12-27
JP2011286864 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013100008A1 true WO2013100008A1 (ja) 2013-07-04

Family

ID=48697487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083786 WO2013100008A1 (ja) 2011-12-27 2012-12-27 NdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法

Country Status (6)

Country Link
US (1) US9028624B2 (ja)
EP (2) EP3059743B1 (ja)
JP (1) JP5400255B1 (ja)
KR (1) KR101338663B1 (ja)
CN (2) CN105206372A (ja)
WO (1) WO2013100008A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065218A (ja) * 2013-09-24 2015-04-09 大同特殊鋼株式会社 RFeB系磁石の製造方法
WO2015186550A1 (ja) * 2014-06-02 2015-12-10 インターメタリックス株式会社 RFeB系磁石及びRFeB系磁石の製造方法
JP2017157834A (ja) * 2016-02-26 2017-09-07 Tdk株式会社 R−t−b系永久磁石
US9837207B2 (en) 2012-07-24 2017-12-05 Intermetallics Co., Ltd. Method for producing NdFeB system sintered magnet
JP2019009421A (ja) * 2017-06-27 2019-01-17 大同特殊鋼株式会社 RFeB系磁石及びRFeB系磁石の製造方法
US10522276B2 (en) 2015-02-04 2019-12-31 Tdk Corporation R-T-B based sintered magnet
EP3913644A1 (en) 2020-05-19 2021-11-24 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method
US11328845B2 (en) 2017-06-27 2022-05-10 Daido Steel Co., Ltd. RFeB-based magnet and method for producing RFeB-based magnet

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112125A (zh) * 2015-01-09 2017-08-29 因太金属株式会社 RFeB系烧结磁体的制造方法
KR101711859B1 (ko) * 2015-12-21 2017-03-03 주식회사 포스코 희토류 영구 자석의 제조 방법
US10529473B2 (en) * 2016-03-28 2020-01-07 Tdk Corporation R-T-B based permanent magnet
CN106158339B (zh) * 2016-06-22 2019-01-11 北京科技大学 烧结钕铁硼回收废料经扩渗处理制备高性能永磁体的方法
EP3534529B1 (en) * 2016-10-31 2020-11-25 Mitsubishi Electric Corporation Drive device and air-conditioner, and compressor control method
JP7205318B2 (ja) * 2018-03-29 2023-01-17 Tdk株式会社 R-t-b系永久磁石
CN110619984B (zh) * 2018-06-19 2021-12-07 厦门钨业股份有限公司 一种低B含量的R-Fe-B系烧结磁铁及其制备方法
US11527340B2 (en) 2018-07-09 2022-12-13 Daido Steel Co., Ltd. RFeB-based sintered magnet
CN111048273B (zh) * 2019-12-31 2021-06-04 厦门钨业股份有限公司 一种r-t-b系永磁材料、原料组合物、制备方法、应用
CN111968813B (zh) * 2020-07-10 2023-11-07 瑞声科技(南京)有限公司 NdFeB系磁粉、NdFeB系烧结磁体及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043348A1 (ja) 2004-10-19 2006-04-27 Shin-Etsu Chemical Co., Ltd. 希土類永久磁石材料の製造方法
JP2008266767A (ja) * 2007-03-29 2008-11-06 Hitachi Chem Co Ltd フッ化物コート膜形成処理液およびフッ化物コート膜形成方法
JP2008270699A (ja) * 2007-03-29 2008-11-06 Hitachi Ltd 希土類磁石及びその製造方法
WO2010109760A1 (ja) * 2009-03-27 2010-09-30 株式会社日立製作所 焼結磁石及びそれを用いた回転電機
WO2011004894A1 (ja) 2009-07-10 2011-01-13 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263265A (ja) * 1994-03-18 1995-10-13 Hitachi Metals Ltd 希土類金属間化合物永久磁石およびその製造方法
JP2003297622A (ja) 2002-03-28 2003-10-17 Tdk Corp 水素吸収方法、水素粉砕方法および希土類永久磁石の製造方法
JP4215240B2 (ja) 2003-02-26 2009-01-28 Tdk株式会社 水素粉砕方法、希土類永久磁石の製造方法
US7618497B2 (en) * 2003-06-30 2009-11-17 Tdk Corporation R-T-B based rare earth permanent magnet and method for production thereof
JP4702542B2 (ja) * 2005-12-02 2011-06-15 信越化学工業株式会社 R−t−b−c型焼結磁石の製造方法
US7988795B2 (en) * 2005-12-02 2011-08-02 Shin-Etsu Chemical Co., Ltd. R-T-B—C rare earth sintered magnet and making method
US7806991B2 (en) * 2005-12-22 2010-10-05 Hitachi, Ltd. Low loss magnet and magnetic circuit using the same
JP4831074B2 (ja) 2006-01-31 2011-12-07 日立金属株式会社 R−Fe−B系希土類焼結磁石およびその製造方法
US8206516B2 (en) 2006-03-03 2012-06-26 Hitachi Metals, Ltd. R—Fe—B rare earth sintered magnet and method for producing same
JP4840606B2 (ja) 2006-11-17 2011-12-21 信越化学工業株式会社 希土類永久磁石の製造方法
US20080241513A1 (en) 2007-03-29 2008-10-02 Matahiro Komuro Rare earth magnet and manufacturing method thereof
US20080241368A1 (en) 2007-03-29 2008-10-02 Matahiro Komuro Treating solution for forming fluoride coating film and method for forming fluoride coating film
JP4998096B2 (ja) 2007-06-06 2012-08-15 日立金属株式会社 R−Fe−B系永久磁石の製造方法
JP5509850B2 (ja) 2007-07-02 2014-06-04 日立金属株式会社 R−Fe−B系希土類焼結磁石およびその製造方法
JP5328161B2 (ja) 2008-01-11 2013-10-30 インターメタリックス株式会社 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
JP4923152B2 (ja) * 2010-03-31 2012-04-25 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP5870522B2 (ja) 2010-07-14 2016-03-01 トヨタ自動車株式会社 永久磁石の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043348A1 (ja) 2004-10-19 2006-04-27 Shin-Etsu Chemical Co., Ltd. 希土類永久磁石材料の製造方法
JP2008266767A (ja) * 2007-03-29 2008-11-06 Hitachi Chem Co Ltd フッ化物コート膜形成処理液およびフッ化物コート膜形成方法
JP2008270699A (ja) * 2007-03-29 2008-11-06 Hitachi Ltd 希土類磁石及びその製造方法
WO2010109760A1 (ja) * 2009-03-27 2010-09-30 株式会社日立製作所 焼結磁石及びそれを用いた回転電機
WO2011004894A1 (ja) 2009-07-10 2011-01-13 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2696355A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9837207B2 (en) 2012-07-24 2017-12-05 Intermetallics Co., Ltd. Method for producing NdFeB system sintered magnet
JP2015065218A (ja) * 2013-09-24 2015-04-09 大同特殊鋼株式会社 RFeB系磁石の製造方法
WO2015186550A1 (ja) * 2014-06-02 2015-12-10 インターメタリックス株式会社 RFeB系磁石及びRFeB系磁石の製造方法
JP2015228431A (ja) * 2014-06-02 2015-12-17 インターメタリックス株式会社 RFeB系磁石及びRFeB系磁石の製造方法
US10522276B2 (en) 2015-02-04 2019-12-31 Tdk Corporation R-T-B based sintered magnet
JP2017157834A (ja) * 2016-02-26 2017-09-07 Tdk株式会社 R−t−b系永久磁石
JP2019009421A (ja) * 2017-06-27 2019-01-17 大同特殊鋼株式会社 RFeB系磁石及びRFeB系磁石の製造方法
US11328845B2 (en) 2017-06-27 2022-05-10 Daido Steel Co., Ltd. RFeB-based magnet and method for producing RFeB-based magnet
JP7251053B2 (ja) 2017-06-27 2023-04-04 大同特殊鋼株式会社 RFeB系磁石及びRFeB系磁石の製造方法
EP3913644A1 (en) 2020-05-19 2021-11-24 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method

Also Published As

Publication number Publication date
EP2696355A4 (en) 2014-07-30
CN103650073A (zh) 2014-03-19
KR20130105763A (ko) 2013-09-25
EP2696355A1 (en) 2014-02-12
US9028624B2 (en) 2015-05-12
JP5400255B1 (ja) 2014-01-29
CN105206372A (zh) 2015-12-30
EP2696355B1 (en) 2016-07-06
US20140327503A1 (en) 2014-11-06
EP3059743A1 (en) 2016-08-24
KR101338663B1 (ko) 2013-12-06
EP3059743B1 (en) 2020-11-25
CN103650073B (zh) 2015-11-25
JPWO2013100008A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5400255B1 (ja) NdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法
JP5553461B2 (ja) NdFeB系焼結磁石
TWI673730B (zh) R-Fe-B系燒結磁石及其製造方法
JP5503086B2 (ja) NdFeB系焼結磁石
EP2484464B1 (en) Powder for magnetic member, powder compact, and magnetic member
JP6221233B2 (ja) R−t−b系焼結磁石およびその製造方法
WO2013146781A1 (ja) NdFeB系焼結磁石
WO2018101239A1 (ja) R-Fe-B系焼結磁石及びその製造方法
JP5400256B1 (ja) NdFeB系焼結磁石
JP6511844B2 (ja) R−t−b系焼結磁石
JP2016169438A (ja) R−t−b系希土類焼結磁石及びr−t−b系希土類焼結磁石用合金

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013536351

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137023814

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14113961

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012861799

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012861799

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE