CN103650073A - NdFeB系烧结磁体和该NdFeB系烧结磁体的制造方法 - Google Patents

NdFeB系烧结磁体和该NdFeB系烧结磁体的制造方法 Download PDF

Info

Publication number
CN103650073A
CN103650073A CN201280021386.3A CN201280021386A CN103650073A CN 103650073 A CN103650073 A CN 103650073A CN 201280021386 A CN201280021386 A CN 201280021386A CN 103650073 A CN103650073 A CN 103650073A
Authority
CN
China
Prior art keywords
sintered magnet
based sintered
ndfeb
ndfeb based
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280021386.3A
Other languages
English (en)
Other versions
CN103650073B (zh
Inventor
佐川真人
沟口彻彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Inta Metal K K
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inta Metal K K filed Critical Inta Metal K K
Priority to CN201510685013.1A priority Critical patent/CN105206372A/zh
Publication of CN103650073A publication Critical patent/CN103650073A/zh
Application granted granted Critical
Publication of CN103650073B publication Critical patent/CN103650073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明提供NdFeB系烧结磁体和该NdFeB系烧结磁体的制造方法,所述烧结磁体在用作晶界扩散法的基材时,RH容易穿过富稀土相而扩散,进而基材本身的矫顽力、最大磁能积和矩形比高。本发明的NdFeB系烧结磁体的特征在于,NdFeB系烧结磁体中的主相粒子的平均粒径为4.5μm以下,前述NdFeB系烧结磁体整体的含碳率为1000ppm以下,前述NdFeB系烧结磁体中的晶界三重点的、富稀土相中的富碳相的总体积相对于该富稀土相的总体积的比率为50%以下。

Description

NdFeB系烧结磁体和该NdFeB系烧结磁体的制造方法
技术领域
本发明涉及适合于晶界扩散法的基材的NdFeB系(钕-铁-硼)烧结磁体和该NdFeB系烧结磁体的制造方法。
背景技术
NdFeB系烧结磁体于1982年被佐川(本发明人之一)等发现,其具有显著超越当时的永久磁体的特性,具有能够由Nd(稀土类的一种)、铁和硼这样的较丰富且廉价的原料来制造的优点。因此,NdFeB系烧结磁体被应用于混合动力汽车或电动汽车的驱动用马达、电动辅助型汽车用马达、产业用马达、硬盘等的音圈马达、高级扬声器、耳机、永久磁体式磁共振诊断装置等各种制品中。这些用途中使用的NdFeB系烧结磁体要求具有高矫顽力HcJ、高最大磁能积(BH)max和高矩形比SQ。此处的矩形比SQ如下定义:在从横轴为磁场、纵轴为磁化强度的图表的第1象限横穿第2象限的磁化强度曲线中,与磁场为0相对应的磁化强度值降低10%时的磁场绝对值Hk除以矫顽力HcJ所得的值Hk/HcJ
作为用于提高NdFeB系烧结磁体的矫顽力的方法,有在制作起始合金的阶段中添加Dy和/或Tb(以下,将“Dy和/或Tb”记为“RH”)的方法(单合金法)。另外,有如下方法:制造不含RH的主相系合金和添加有RH的晶界相系合金这两种起始合金的粉末,将它们相互混合并使其烧结(双合金法)。进而,还有如下方法:在制作NdFeB系烧结磁体后,将其作为基材,通过对表面涂布、蒸镀等而使RH附着,并进行加热,由此使RH从基材表面穿过基材中的晶界而扩散至该基材内部(晶界扩散法)(专利文献1)。
通过上述方法能够提高NdFeB系烧结磁体的矫顽力,但另一方面,已知烧结磁体中的主相粒子内存在RH时,最大磁能积降低。对于单合金法而言,由于在起始合金粉末的阶段中主相粒子内就包含RH,因此导致基于其而制作的烧结磁体的主相粒子内也包含RH。因此,通过单合金法制作的烧结磁体的矫顽力提高,但最大磁能积降低。
与此相对,对于双合金法而言,RH大多能够存在于主相粒子间的晶界中。因此,与单合金法相比能够抑制最大磁能积的降低。另外,与单合金法相比能够减少作为稀有金属的RH的用量。
对于晶界扩散法而言,附着在基材表面的RH穿过因加热而液化的基材内的晶界并向其内部扩散。因此,晶界中的RH的扩散速度明显比从晶界向主相粒子内部的扩散速度快,RH被迅速地供给至基材内的深处。与此相对,由于主相粒子仍为固体,因此从晶界向主相粒子内的扩散速度慢。通过利用该扩散速度之差,调整热处理温度和时间,能够实现如下理想状态:仅在非常接近基材中的主相粒子的表面(晶界)的区域中RH浓度高,在主相粒子的内部RH浓度低。由此能够提高矫顽力,并且与双合金法相比更加能够抑制最大磁能积(BH)max的降低。另外,与双合金法相比更加能够抑制作为稀有金属的RH的用量。
另一方面,作为用于制造NdFeB系烧结磁体的方法,有加压磁体制造方法和无加压磁体制造方法。加压磁体制造方法为如下方法:将起始合金的微粉末(以下记为“合金粉末”)填充到模具中,利用压制机对合金粉末施加压力,并且施加磁场,由此同时进行压缩成形体的制作和该压缩成形体的取向处理,加热从模具中取出的压缩成形体并使其烧结。无加压磁体制造方法为如下方法:对填充到规定填充容器中的合金粉末不进行压缩成型,而是以填充在该填充容器中的状态直接进行取向并烧结。
对于加压磁体制造方法而言,为了制作压缩成形体而需要大型的压制机,因此难以在密闭空间内进行,而与此相对,由于无加压磁体制造工序中不使用压制机,因此具有能够在密闭空间内进行从填充起到烧结为止的操作的优点。
现有技术文献
专利文献
专利文献1:国际公开WO2006/043348号公报
专利文献2:国际公开WO2011/004894号公报
发明内容
发明要解决的问题
晶界扩散法中,通过蒸镀/涂布等而附着在基材表面的RH向基材内的扩散容易程度、能够进行扩散的从基材表面起的深度等明显受到晶界状态的影响。本发明人发现:存在于晶界中的富稀土相(与主相粒子相比稀土元素的比率更高的相)成为通过晶界扩散法使RH扩散时的主要通路,为了使RH从基材表面扩散至充分的深度,理想的是,在基材的晶界中,富稀土相连续而在中途无中断(专利文献2)。
其后,本发明人进一步进行实验时,发现了以下内容。在NdFeB系烧结磁体的制造中,从减小合金粉末的粒子间的摩擦、进行取向时,粒子容易旋转等的理由出发,向合金粉末中添加有机系润滑剂,该润滑剂中含有碳。该碳大多在烧结时氧化而被释放到NdFeB系烧结磁体的外部,但一部分残留在NdFeB系烧结磁体中。其中,残留在晶界三重点(被3个以上主相粒子包围的晶界部分)的碳相互聚集,在富稀土相中形成富碳相(碳浓度比NdFeB系烧结磁体整体的平均更高的相)。如上所述,如上所述,存在于晶界中的富稀土相成为使RH向NdFeB系烧结磁体的内部扩散时的主要通路。然而,富稀土相中的富碳相发挥了像将RH的扩散通路堵塞的堤坝那样的作用,阻碍RH经由晶界的扩散。
本发明要解决的问题是:提供NdFeB系烧结磁体和该NdFeB系烧结磁体的制造方法,所述烧结磁体在用作晶界扩散法的基材时,RH容易穿过富稀土相而扩散,可获得更高的矫顽力。
用于解决问题的方案
为了解决上述问题而成的、本发明的NdFeB系烧结磁体的特征在于,
a)NdFeB系烧结磁体中的主相粒子的平均粒径为4.5μm以下;
b)前述NdFeB系烧结磁体整体的含碳率为1000ppm以下;
c)前述NdFeB系烧结磁体中的晶界三重点的、富稀土相中的富碳相的总体积相对于该富稀土相的总体积的比率为50%以下。
本发明人根据各种实验的结果发现,NdFeB系烧结磁体满足上述条件时,将该NdFeB系烧结磁体作为基材而应用于晶界扩散法时,RH变得容易穿过富稀土相而扩散至基材内部。
本发明的NdFeB系烧结磁体中,以主相粒子的平均粒径达到4.5μm以下的方式来制造,由此提高了基材本身的矫顽力。另外,以将NdFeB系烧结磁体中的碳含量抑制为1000ppm以下、且富碳相的体积比率(上述的“晶界三重点的、富稀土相中的富碳相的总体积相对于该富稀土相的总体积的比率”)停留在50%以下的方式来制造,由此来防止富稀土相的通路被富碳相完全堵塞。其结果,RH不会在中途被阻塞,能够使RH穿过富稀土相而扩散至基材内部。
另外,本发明的NdFeB系烧结磁体即使在应用晶界扩散法之前的状态也可获得高的矫顽力,并且通过实验显示最大磁能积和矩形比也比以往的NdFeB系烧结磁体变高。关于该实验结果在之后叙述。
另外,用于制造上述NdFeB系烧结磁体的、本发明的NdFeB系烧结磁体的制造方法的特征在于:
其为用于制造上述NdFeB系烧结磁体的方法,该方法具备如下工序:
a)氢破碎工序:通过使NdFeB系合金吸存氢而将该NdFeB系合金粗破碎;
b)微粉碎工序:对粗破碎的NdFeB系合金进行微粉碎,使得利用激光衍射法测定的粒度分布的中值D50达到3.2μm以下;以及
c)无加压磁体制造工序:将前述NdFeB系合金的微粉末填充到填充容器中,其后,在填充在填充容器中的状态下进行该微粉末的取向和烧结,
不进行用于使在前述氢破碎工序中吸存的氢脱离的脱氢加热,而进行前述微粉碎工序和前述无加压磁体制造工序,
从前述氢破碎工序开始到前述无加压磁体制造工序为止均在无氧气氛下进行。
如前所述,作为NdFeB系烧结磁体的制造方法,有加压磁体制造方法和无加压磁体制造方法,该加压磁体制造方法中,从以下两个原因出发进行用于使氢脱离的脱氢加热。第1个原因是因为包含氢化合物的合金粉末容易氧化、制造后的磁体的磁特性降低。第2个原因是因为利用压制机制作了压缩成形体后,氢自然地或因烧结时的加热而脱离,成为分子和气体而在完全烧结前的压缩成形体内部膨胀,有时会损坏压缩成形体。
另外,即使是无加压磁体制造方法,从上述第1个原因出发,也进行脱氢加热。
本发明人为了制造磁特性更高的NdFeB系烧结磁体,重新回顾了各工序。其结果发现,合金粉末包含氢化合物时,在进行取向前(将合金粉末填充到填充容器中时等)通过添加在合金粉末中的润滑剂而混入的碳与该氢化合物在烧结时反应,成为CH4气体而被去除。因此,在晶界扩散处理前的烧结体中,碳含量和富稀土相中的富碳相的体积减少,在晶界扩散处理时,能够使RH穿过晶界中的富稀土相而扩散到烧结体内部的充分深度而不会被富碳相阻碍。在利用本发明的制造方法制造的NdFeB系烧结磁体中,能够将含碳率和富碳相的体积比率分别抑制在1000ppm以下、50%以下这一非常低的水平。
另外,在无加压磁体制造工序中,能够在密闭空间内进行从起始合金的粉碎开始至烧结为止的一系列工序,因此,在本发明中通过使其为无氧气氛而防止了包含氢化合物的合金粉末的氧化。另外,在无加压磁体制造工序中,由于在填充在填充容器中的状态下进行烧结,因此也不会产生压缩成形体损坏这样的问题。
已知在NdFeB系烧结磁体中,越减小合金粉末的粒径,则越能够提高矫顽力。另一方面,粒径小的合金粉末粒子容易氧化,由此有磁特性降低或产生起火等事故的担心。
本发明的NdFeB系烧结磁体的制造方法中,如上所述,从NdFeB系合金的粉碎开始至烧结为止的工序均在无氧气氛下进行,因此即便使合金粉末的平均粒径为3.2μm以下这样的非常小的粒径,也能够抑制由氧化导致的磁特性的降低、事故的发生。由此,能够制造具有高矫顽力的NdFeB系烧结磁体。
另外,通过使合金粉末的平均粒径为3.2μm以下,能够使烧结后的磁体中的主相粒子的平均粒径为4.5μm以下。
进而,脱氢加热通常需要数小时左右的时间,本发明的NdFeB系烧结磁体的制造方法由于不进行脱氢加热,因此能够省略脱氢加热所需的时间。即,能够进行制造工序的简略化、制造时间的缩短和制造成本的削减。
另外,由实验结果可知,本发明的NdFeB系烧结磁体的制造方法中,能够使微粉碎工序中的起始合金的粉碎速度比以往提高;在无加压工序的烧结处理中,能够使最佳烧结温度比以往降低5~20℃左右。粉碎速度变高与制造时间的缩短相关,而最佳烧结温度变低与能量的节约、填充容器的长寿命化相关。
本发明人对不进行脱氢加热会对合金粉末粒子产生何种影响进行详细的研究时得知,与进行脱氢加热时相比,合金粉末粒子的各向异性降低。然而由此可知,取向时由粉末粒子彼此的排斥导致的混乱减少、可获得烧结后的NdFeB系烧结磁体的取向度提高这样的效果。另外,也可知,与合金粉末粒子反应的氢由于烧结时的加热而与碳反应并脱离,因此合金粉末粒子与氢反应所导致的各向异性的降低不会对烧结后的磁体的磁特性造成影响。
发明的效果
本发明的NdFeB系烧结磁体具有通过晶界扩散法而RH容易向内部扩散的性质,因此即使作为晶界扩散法的基材也能够适宜地使用。另外,本发明的NdFeB系烧结磁体的制造方法中,除了能够制造作为晶界扩散法的基材的适宜的NdFeB系烧结磁体之外,还能够获得制造工序的简略化、制造时间的缩短、制造成本的削减等各种效果。进而,能够减少由取向时的粉末粒子彼此的排斥导致的混乱。
附图说明
图1是表示本发明的NdFeB系烧结磁体的制造方法的一个实施例的流程图。
图2是表示比较例的NdFeB系烧结磁体的制造方法的流程图。
图3是表示本实施例的NdFeB系烧结磁体的制造方法中的氢破碎工序的温度历程的图表。
图4是表示比较例的NdFeB系烧结磁体的制造方法中的氢破碎工序的温度历程的图表。
图5是通过本实施例的NdFeB系烧结磁体的制造方法制造的、本发明的NdFeB系烧结磁体的一个实施例的、磁体表面的基于俄歇电子能谱法的映射图像。
图6是通过比较例的NdFeB系烧结磁体的制造方法制造的、NdFeB系烧结磁体表面的基于俄歇电子能谱法的映射图像。
图7是本实施例的NdFeB系烧结磁体表面的基于俄歇电子能谱法的映射图像。
图8是通过比较例的NdFeB系烧结磁体的制造方法制造的、NdFeB系烧结磁体表面的基于俄歇电子能谱法的映射图像。
图9是本实施例的NdFeB系烧结磁体的光学显微镜照片。
具体实施方式
以下,说明本发明的NdFeB系烧结磁体及其制造方法的实施例。
实施例
针对制造本实施例和比较例的NdFeB系烧结磁体的方法,使用图1和图2的流程图进行说明。
如图1所示,本实施例的NdFeB系烧结磁体的制造方法具备如下工序:氢破碎工序(步骤A1):通过使氢吸存到利用薄带铸造(Strip Casting)法预先制作的NdFeB系合金中来进行粗破碎;微粉碎工序(步骤A2):向在氢破碎工序中进行氢破碎后未进行脱氢加热的NdFeB系合金中混合0.05~0.1wt%的辛酸甲酯等润滑剂,使用喷射式粉碎机装置在氮气气流中进行微粉碎,使得利用激光衍射法测定的粒度分布的中值(D50)达到3.2μm以下;填充工序(步骤A3):向进行过微粉碎的合金粉末中混合0.05~0.15wt%的月桂酸甲酯等润滑剂,并以3.0~3.5g/cm3的密度填充到模具(填充容器)内;取向工序(步骤A4):使模具内的合金粉末在室温下在磁场中取向;以及,烧结工序(步骤A5):对进行过取向的模具内的合金粉末进行烧结。
需要说明的是,步骤A3~A5的工序通过不加压工序进行。另外,步骤A1~A5的工序始终在无氧气氛下进行。
比较例的NdFeB系烧结磁体的制造方法如图2所示,除了以下方面之外,与图1的流程图相同:在氢破碎工序(步骤B1)中,使氢吸存到NdFeB系合金中以后进行用于使该氢脱离的脱氢加热的方面;以及,在取向工序(步骤B4)中,在磁场中取向的前后或过程中进行加热合金粉末的升温取向的方面。
需要说明的是,升温取向是指通过在取向工序时加热合金粉末而使合金粉末的各粒子的矫顽力降低、抑制取向后的粒子间的排斥的方法。通过该方法,能够使制造后的NdFeB系烧结磁体的取向度提高。
首先,使用氢破碎工序的温度历程来说明本实施例与比较例的NdFeB系烧结磁体的制造方法的不同。图3是本实施例的NdFeB系烧结磁体的制造方法中的氢破碎工序(步骤A1)的温度历程,图4是比较例的NdFeB系烧结磁体的制造方法中的氢破碎工序(步骤B1)的温度历程。
图4是进行脱氢加热的、通常的氢破碎工序的温度历程。氢破碎工序中,使氢吸存到NdFeB系合金的薄片中。该氢吸存过程是放热反应,因此NdFeB系合金的温度上升至200~300℃左右。其后,边进行真空脱气边使其自然冷却至室温。其间,吸存在合金内的氢膨胀,在合金内部产生大量开裂(裂纹)而破碎。该过程中,氢的一部分与合金反应。为了使该与合金反应的氢脱离而加热至500℃左右,然后自然冷却至室温。在图4的例子中,包括使氢脱离所需的时间在内,氢破碎工序需要约1400分钟的时间。
另一方面,本实施例的NdFeB系烧结磁体的制造方法中不进行脱氢加热。因此,如图3所示,在伴随着放热的温度上升后,即使略微延长了边进行真空脱气边使其冷却至室温的时间,也能够用约400分钟结束氢破碎工序。因此,与图4的例子相比,能够将制造时间缩短约1000分钟(16.7小时)。
这样,本实施例的NdFeB系烧结磁体的制造方法中,能够进行制造工序的简略化和制造时间的大幅缩短。
另外,将对表1所示的组成编号1~4的各组成的合金应用本实施例的NdFeB系烧结磁体的制造方法和比较例的NdFeB系烧结磁体的制造方法的结果示于表2。
需要说明的是,表2的结果是任意微粉碎后的合金粉末的粒径均调整至激光衍射法的D50达到2.82μm的情况。另外,用于微粉碎工序的喷射式粉碎机装置使用了Hosokawa Micron Corporation制造的100AFG型喷射式粉碎机装置。磁特性的测定使用了日本电磁测器株式会社制造的脉冲磁化测定装置(商品名:PULSE BH Curve Tracers PBH-1000)。
另外,表2的无脱氢、无升温取向的结果表示本实施例的NdFeB系烧结磁体的制造方法,有脱氢、有升温取向的结果表示比较例的NdFeB系烧结磁体的制造方法。
[表1]
组成编号 Nd Pr Dy Co B Al Cu Fe
1 25.8 4.88 0.29 0.99 0.94 0.22 0.11 bal.
2 24.7 5.18 1.15 0.98 0.94 0.22 0.11 bal.
3 23.6 5.08 2.43 0.98 0.95 0.19 0.12 bal.
4 22.0 5.17 3.88 0.99 0.95 0.21 0.11 bal.
注:各数值的单位为wt%。
[表2]
Figure BDA0000406374280000101
如表2所示,即使是不进行脱氢加热的情况、使用任意组成的合金的情况,微粉碎工序中的合金的粉碎速度均比进行了脱氢加热的情况有所提高。认为这是因为在进行了脱氢加热的情况下,由于吸存氢而脆化的合金中的组织因脱氢加热而略微恢复韧性,与此相对,在不进行脱氢加热的情况下,合金组织仍处于脆化的状态。像这样不进行脱氢加热的本实施例的制造方法中,与进行脱氢加热的现有制造方法相比,还能够获得制造时间得以缩短这样的效果。
另外,本实施例的制造方法中,尽管未进行升温取向,仍然可获得与进行了升温取向的比较例的制造方法基本同程度且95%以上的高取向度Br/Js。本发明人在详细研究时了解到,在不进行脱氢加热时,合金粉末粒子的磁各向异性(即每个粒子的矫顽力)降低。各粒子的矫顽力低时,使合金粉末取向后,在施加磁场的减少的同时各粒子内产生反向磁畴并发生多磁畴化。由此,各粒子的磁化强度减少,因此相邻粒子间的磁相互作用导致的取向度的劣化得以缓和,可获得高取向度。其与通过升温取向而使制造后的NdFeB系烧结磁体的取向度变高是相同的原理。
即,本实施例的NdFeB系烧结磁体的制造方法中,不进行升温取向也可获得与升温取向同样高的取向度,因此能够进行制造工序的简略化和制造时间的缩短。
表2中记载的烧结温度表示在各组成和各制造方法中,使烧结体的密度最接近NdFeB系烧结磁体的理论密度时的温度。如表2所示,可知烧结温度在本实施例中有与比较例相比变低的倾向。烧结温度变低与制造NdFeB系烧结磁体时的能量消耗变低、即能量的节约(节能)相关。另外,还具有与合金粉末共同加热的模具的寿命延长这一效果。
进而,由表2的结果还可知:与利用比较例的制造方法制造的NdFeB系烧结磁体相比,利用本实施例的制造方法制造的NdFeB系烧结磁体可获得高矫顽力HcJ
接着,为了调查利用本实施例的制造方法制造的NdFeB系烧结磁体和利用比较例的制造方法制造的NdFeB系烧结磁体的微细组织,利用俄歇电子能谱法(Auger Electron Spectroscopy;AES)进行测定。测定装置为日本电子株式会社制造的俄歇微型探针(商品名:JAMP-9500F)。
针对俄歇电子能谱法的原理简单地进行说明。俄歇电子能谱法是向被测定物的表面照射电子射线,并测定因照射了电子的原子与该电子的相互作用而产生的俄歇电子的能量分布的方法。俄歇电子对各元素具有固有的能量值,因此通过测定俄歇电子的能量分布,能够进行存在于被测定物的表面(更具体而言,是从表面起数nm的深度)的元素的鉴定(定性分析)。另外,能够由峰强度比对元素进行定量(定量分析)。
进而,通过对被测定物的表面进行离子溅射(例如基于Ar离子的溅射),能够调查被测定物的深度方向的元素分布。
实际的分析方法如下所示。为了去除样品表面的脏污,在实际测定前倾斜至Ar溅射用的角度(相对于水平面为30度),对样品表面进行2~3分钟溅射。接着,选择多个能够检测到C、O的晶界三重点中的富Nd相,取得俄歇光谱,以此为基础确定检测用的阈值(ROI设定)。其取得条件为电压20kV、电流2×10-8A、(相对于水平面为)55度的角度。接着,以与上述相同的条件进行主测定,取得Nd、C相关的俄歇图像。
在本次的分析中,对于表1的组成编号2的合金,扫描利用本实施例和比较例的制造方法制造的NdFeB系烧结磁体的表面10,分别取得Nd和C的俄歇图像(图5和图6)。需要说明的是,Nd存在于NdFeB系烧结磁体表面的几乎整个区域(图5的(a)和图6的(a)),通过图像处理提取出浓度比NdFeB系烧结磁体整体的平均值高的区域11来作为富含Nd的晶界三重点区域(图5的(b)和图6的(b))。另外,从图5的(c)和图6的(c)的图像中提取出富含C的区域12(图5的(d)和图6的(d))。
分别求出如以上那样提取出的富含Nd的晶界三重点区域11的面积以及该富含Nd的晶界三重点区域11中的富含C的区域12内的合计面积,将它们定义为两部分的体积,算出两者的比率C/Nd。在多个视野中进行以上操作。
将与组成编号2相对应的本实施例和比较例的NdFeB系烧结磁体的表面划分为24μm×24μm的小区域,分析各小区域的Nd和C的分布以及C/Nd,结果分别示于图7和图8(需要说明的是,图7和图8中仅示出代表性的3个小区域)。
本实施例的NdFeB系烧结磁体中,在大部分的小区域中,获得了20%以下的低C/Nd。在一部分的小区域中,可观察到显示出50%的C/Nd的分布,没有显示出超过50%的C/Nd的小区域。另外,区域整体(将全部小区域合并的区域)的C/Nd为26.5%。
另一方面,比较例的NdFeB系烧结磁体中,基本所有的小区域中均获得了90%以上的高C/Nd。另外,区域整体的C/Nd为93.1%。
需要说明的是,存在于富稀土相中的碳以碳单质或碳化合物的形式存在。作为碳化合物,大量存在稀土类碳化物。
NdFeB系烧结磁体中的含碳率在每种制造方法中均为基本相同的值。对于与表1的组成编号3相对应的NdFeB系烧结磁体,利用LECO公司制造的CS-230型碳/硫分析装置测定含碳率时,比较例的制造方法中为约1100ppm、本实施例的制造方法中为约800ppm。另外,从多个视野拍摄利用本实施例的制造方法制造的上述各NdFeB系烧结磁体的显微镜照片(图9的显微镜照片是其中的一张),利用图像分析装置(Nireco Corporation制造的LUZEX AP)进行粒度分布测定时,在2.6~2.9μm的范围内获得主相粒子的平均粒径。
以下,将(i)NdFeB系烧结磁体的主相粒子的平均粒径为4.5μm以下、(ii)该NdFeB系烧结磁体中的含碳率为1000ppm以下、(iii)富含C的区域的体积相对于富含Nd的晶界三重点区域的体积的体积比率为50%以下的NdFeB系烧结磁体称为“本实施例的NdFeB系烧结磁体”。另外,将不具有上述(i)~(iii)的特征的一部分或全部的NdFeB系烧结磁体称为“比较例的NdFeB系烧结磁体”。
接着,将本实施例的NdFeB系烧结磁体和比较例的NdFeB系烧结磁体的磁特性、以及作为晶界扩散法的基材应用后的磁特性示于表3和表4。
表3的实施例1~4是具有上述(i)~(iii)的特征、分别对组成编号1~4的合金利用本实施例的制造方法制造的、厚度方向为磁化方向的纵7mm×横7mm×厚3mm的NdFeB系烧结磁体。另外,表3的比较例1~4是不具有上述(ii)和(iii)的特征、分别由组成编号1~4的合金利用比较例的制造方法制造的、与实施例1~4大小相同的NdFeB系烧结磁体。这些实施例1~4和比较例1~4的NdFeB系烧结磁体作为后述的晶界扩散法的基材而使用。
[表3]
Figure BDA0000406374280000141
需要说明的是,表中的Br表示残留磁通密度(磁化强度曲线(J-H曲线)或退磁曲线(B-H曲线)的磁场H为0时的磁化强度J或磁通密度B的大小)、Js表示饱和磁化强度(磁化强度J的最大值)、HcB表示根据退磁曲线定义的矫顽力、HcJ表示根据磁化强度曲线定义的矫顽力、(BH)max表示最大磁能积(退磁曲线中的磁通密度B与磁场H之积的极大值)、Br/Js表示取向度、SQ表示矩形比。这些数值越大,则表示获得越良好的磁体特性。
如表3所示,对于相同的组成,与比较例的NdFeB系烧结磁体相比,本实施例的NdFeB系烧结磁体获得了更高的矫顽力HcJ。另外,取向度Br/Js基本相同,但对于矩形比SQ,与比较例的NdFeB系烧结磁体相比,本实施例的NdFeB系烧结磁体获得了极高的数值。
接着,以表3的各NdFeB系烧结磁体作为基材、使用Tb作为RH而进行晶界扩散处理,将其后的磁特性示于表4。
[表4]
Figure BDA0000406374280000151
需要说明的是,晶界扩散处理(Grain Boundary Diffusion:GBD)如下进行。
首先,向按照以重量比计为80:20的比率混合Tb:92wt%、Ni:4.3wt%、Al:3.7wt%的TbNiAl合金粉末与有机硅润滑脂而成的混合物10g中添加0.07g硅油,将由此获得的糊剂在基材的两磁极面(7mm×7mm的面)分别涂布10mg。
接着,将涂布有上述糊剂的长方体基材载置于设置有多个尖形的支撑部的钼制托盘中,用该支撑部支撑长方体基材,并在10-4Pa的真空中加热。加热温度和加热时间分别设为880℃、10小时。其后,急速冷却至室温附近,接着以500℃加热2小时,再次急速冷却至室温。
如表4所式,具有上述(i)~(iii)的特征的本实施例的烧结磁体与不具有上述(i)~(iii)的特征的比较例的烧结磁体相比,矫顽力HcJ大幅提高。另外,在表3中虽然也存在比较例的NdFeB系烧结磁体比本实施例的NdFeB系烧结磁体(在组成相同时)的最大磁能积(BH)max高的例子,但在表4的全部例子中,与比较例的NdFeB系烧结磁体相比,本实施例的NdFeB系烧结磁体的最大磁能积(BH)max更高。即,与比较例的NdFeB系烧结磁体相比,本实施例的NdFeB系烧结磁体更加抑制了(BH)max的降低。进而,矩形比SQ非常高。
像这样,本实施例的晶界扩散处理前和晶界扩散处理后的NdFeB系烧结磁体的磁特性高的原因如下:认为第一是因为NdFeB系烧结磁体中的含碳率低,因此抑制在富含Nd的晶界三重点区域内产生富含碳的区域。认为第二是因为富含Nd的晶界三重点区域中富含C的区域的量少,因此充分量的RH(本实施例中为Tb)穿过富Nd相的通路而扩散至基材内部。
本实施例的NdFeB系烧结磁体的富Nd相中的富碳相的比率低,因此穿过晶界中的富Nd相的RH的扩散性高。本发明人通过实验进行证实时,在相对的两面涂布RH时,即使是各5mm、共计10mm的厚度,也能使RH扩散至中心部。以下的表5中示出以3mm、6mm、10mm的厚度制造的、与组成编号1、3的合金相对应的本实施例的NdFeB系烧结磁体、以及与组成编号2的合金相对应的比较例的NdFeB系烧结磁体进行晶界扩散处理时的、矫顽力从晶界扩散前的状态增加的量。
[表5]
Figure BDA0000406374280000161
由该表所示,在厚度3mm下,本实施例的NdFeB系烧结磁体与比较例的NdFeB系烧结磁体之间未观察到大的差异,但随着磁体变厚,本实施例的NdFeB系烧结磁体的矫顽力的增量占优。例如对于厚度6mm的矫顽力的增量,本实施例的NdFeB系烧结磁体与厚度3mm时基本同等,但比较例的NdFeB系烧结磁体大幅降低。矫顽力的增量大表示RH扩散至磁体的中心部,由此可知,利用本实施例的制造方法制造的NdFeB系烧结磁体作为通过晶界扩散处理来制造具有厚度、具有高磁特性的磁体时的基材也是适合的。
附图标记说明
10…NdFeB系烧结磁体的表面
11…存在富Nd相的区域
12…C分布的区域

Claims (2)

1.一种NdFeB系烧结磁体,其特征在于,
a)NdFeB系烧结磁体中的主相粒子的平均粒径为4.5μm以下;
b)所述NdFeB系烧结磁体整体的含碳率为1000ppm以下;
c)所述NdFeB系烧结磁体中的晶界三重点的、富稀土相中的富碳相的总体积相对于该富稀土相的总体积的比率为50%以下。
2.一种NdFeB系烧结磁体的制造方法,其特征在于,其为用于制造权利要求1所述的NdFeB系烧结磁体的方法,该方法具备如下工序:
a)氢破碎工序:通过使NdFeB系合金吸存氢而将该NdFeB系合金粗破碎;
b)微粉碎工序:对粗破碎的NdFeB系合金进行微粉碎,使得利用激光衍射法测定的粒度分布的中值D50达到3.2μm以下;以及
c)无加压磁体制造工序:将所述NdFeB系合金的微粉末填充到填充容器中,其后,在填充在填充容器中的状态下进行该微粉末的取向和烧结,
不进行用于使在所述氢破碎工序中吸存的氢脱离的脱氢加热,而进行所述微粉碎工序和所述无加压磁体制造工序,
从所述氢破碎工序开始到所述无加压磁体制造工序为止均在无氧气氛下进行。
CN201280021386.3A 2011-12-27 2012-12-27 NdFeB系烧结磁体和该NdFeB系烧结磁体的制造方法 Active CN103650073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510685013.1A CN105206372A (zh) 2011-12-27 2012-12-27 NdFeB系烧结磁体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-286864 2011-12-27
JP2011286864 2011-12-27
PCT/JP2012/083786 WO2013100008A1 (ja) 2011-12-27 2012-12-27 NdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510685013.1A Division CN105206372A (zh) 2011-12-27 2012-12-27 NdFeB系烧结磁体

Publications (2)

Publication Number Publication Date
CN103650073A true CN103650073A (zh) 2014-03-19
CN103650073B CN103650073B (zh) 2015-11-25

Family

ID=48697487

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510685013.1A Pending CN105206372A (zh) 2011-12-27 2012-12-27 NdFeB系烧结磁体
CN201280021386.3A Active CN103650073B (zh) 2011-12-27 2012-12-27 NdFeB系烧结磁体和该NdFeB系烧结磁体的制造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510685013.1A Pending CN105206372A (zh) 2011-12-27 2012-12-27 NdFeB系烧结磁体

Country Status (6)

Country Link
US (1) US9028624B2 (zh)
EP (2) EP3059743B1 (zh)
JP (1) JP5400255B1 (zh)
KR (1) KR101338663B1 (zh)
CN (2) CN105206372A (zh)
WO (1) WO2013100008A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845304A (zh) * 2015-02-04 2016-08-10 Tdk株式会社 R-t-b系烧结磁铁
CN106463223A (zh) * 2014-06-02 2017-02-22 因太金属株式会社 RFeB系磁体及RFeB系磁体的制造方法
CN110619984A (zh) * 2018-06-19 2019-12-27 厦门钨业股份有限公司 一种低B含量的R-Fe-B系烧结磁铁及其制备方法
WO2021135142A1 (zh) * 2019-12-31 2021-07-08 厦门钨业股份有限公司 一种r-t-b系永磁材料、原料组合物、制备方法、应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9837207B2 (en) 2012-07-24 2017-12-05 Intermetallics Co., Ltd. Method for producing NdFeB system sintered magnet
JP6303356B2 (ja) * 2013-09-24 2018-04-04 大同特殊鋼株式会社 RFeB系磁石の製造方法
CN107112125A (zh) * 2015-01-09 2017-08-29 因太金属株式会社 RFeB系烧结磁体的制造方法
KR101711859B1 (ko) * 2015-12-21 2017-03-03 주식회사 포스코 희토류 영구 자석의 제조 방법
US10784028B2 (en) * 2016-02-26 2020-09-22 Tdk Corporation R-T-B based permanent magnet
US10529473B2 (en) * 2016-03-28 2020-01-07 Tdk Corporation R-T-B based permanent magnet
CN106158339B (zh) * 2016-06-22 2019-01-11 北京科技大学 烧结钕铁硼回收废料经扩渗处理制备高性能永磁体的方法
EP3534529B1 (en) * 2016-10-31 2020-11-25 Mitsubishi Electric Corporation Drive device and air-conditioner, and compressor control method
JP7251053B2 (ja) * 2017-06-27 2023-04-04 大同特殊鋼株式会社 RFeB系磁石及びRFeB系磁石の製造方法
US11328845B2 (en) 2017-06-27 2022-05-10 Daido Steel Co., Ltd. RFeB-based magnet and method for producing RFeB-based magnet
JP7205318B2 (ja) * 2018-03-29 2023-01-17 Tdk株式会社 R-t-b系永久磁石
US11527340B2 (en) 2018-07-09 2022-12-13 Daido Steel Co., Ltd. RFeB-based sintered magnet
US20210366635A1 (en) 2020-05-19 2021-11-25 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method
CN111968813B (zh) * 2020-07-10 2023-11-07 瑞声科技(南京)有限公司 NdFeB系磁粉、NdFeB系烧结磁体及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263265A (ja) * 1994-03-18 1995-10-13 Hitachi Metals Ltd 希土類金属間化合物永久磁石およびその製造方法
CN1698142A (zh) * 2003-06-30 2005-11-16 Tdk株式会社 R-t-b系稀土类永磁体及其制造方法
JP2008266767A (ja) * 2007-03-29 2008-11-06 Hitachi Chem Co Ltd フッ化物コート膜形成処理液およびフッ化物コート膜形成方法
JP2008270699A (ja) * 2007-03-29 2008-11-06 Hitachi Ltd 希土類磁石及びその製造方法
WO2010109760A1 (ja) * 2009-03-27 2010-09-30 株式会社日立製作所 焼結磁石及びそれを用いた回転電機
WO2011004894A1 (ja) * 2009-07-10 2011-01-13 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法
WO2011125591A1 (ja) * 2010-03-31 2011-10-13 日東電工株式会社 永久磁石及び永久磁石の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297622A (ja) 2002-03-28 2003-10-17 Tdk Corp 水素吸収方法、水素粉砕方法および希土類永久磁石の製造方法
JP4215240B2 (ja) 2003-02-26 2009-01-28 Tdk株式会社 水素粉砕方法、希土類永久磁石の製造方法
BRPI0506147B1 (pt) 2004-10-19 2020-10-13 Shin-Etsu Chemical Co., Ltd método para preparar um material de ímã permanente de terra rara
JP4702542B2 (ja) * 2005-12-02 2011-06-15 信越化学工業株式会社 R−t−b−c型焼結磁石の製造方法
US7988795B2 (en) * 2005-12-02 2011-08-02 Shin-Etsu Chemical Co., Ltd. R-T-B—C rare earth sintered magnet and making method
US7806991B2 (en) * 2005-12-22 2010-10-05 Hitachi, Ltd. Low loss magnet and magnetic circuit using the same
JP4831074B2 (ja) 2006-01-31 2011-12-07 日立金属株式会社 R−Fe−B系希土類焼結磁石およびその製造方法
US8206516B2 (en) 2006-03-03 2012-06-26 Hitachi Metals, Ltd. R—Fe—B rare earth sintered magnet and method for producing same
JP4840606B2 (ja) 2006-11-17 2011-12-21 信越化学工業株式会社 希土類永久磁石の製造方法
US20080241513A1 (en) 2007-03-29 2008-10-02 Matahiro Komuro Rare earth magnet and manufacturing method thereof
US20080241368A1 (en) 2007-03-29 2008-10-02 Matahiro Komuro Treating solution for forming fluoride coating film and method for forming fluoride coating film
JP4998096B2 (ja) 2007-06-06 2012-08-15 日立金属株式会社 R−Fe−B系永久磁石の製造方法
JP5509850B2 (ja) 2007-07-02 2014-06-04 日立金属株式会社 R−Fe−B系希土類焼結磁石およびその製造方法
JP5328161B2 (ja) 2008-01-11 2013-10-30 インターメタリックス株式会社 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
JP5870522B2 (ja) 2010-07-14 2016-03-01 トヨタ自動車株式会社 永久磁石の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263265A (ja) * 1994-03-18 1995-10-13 Hitachi Metals Ltd 希土類金属間化合物永久磁石およびその製造方法
CN1698142A (zh) * 2003-06-30 2005-11-16 Tdk株式会社 R-t-b系稀土类永磁体及其制造方法
JP2008266767A (ja) * 2007-03-29 2008-11-06 Hitachi Chem Co Ltd フッ化物コート膜形成処理液およびフッ化物コート膜形成方法
JP2008270699A (ja) * 2007-03-29 2008-11-06 Hitachi Ltd 希土類磁石及びその製造方法
WO2010109760A1 (ja) * 2009-03-27 2010-09-30 株式会社日立製作所 焼結磁石及びそれを用いた回転電機
WO2011004894A1 (ja) * 2009-07-10 2011-01-13 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法
WO2011125591A1 (ja) * 2010-03-31 2011-10-13 日東電工株式会社 永久磁石及び永久磁石の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463223A (zh) * 2014-06-02 2017-02-22 因太金属株式会社 RFeB系磁体及RFeB系磁体的制造方法
CN105845304A (zh) * 2015-02-04 2016-08-10 Tdk株式会社 R-t-b系烧结磁铁
CN105845304B (zh) * 2015-02-04 2018-10-19 Tdk株式会社 R-t-b系烧结磁铁
CN110619984A (zh) * 2018-06-19 2019-12-27 厦门钨业股份有限公司 一种低B含量的R-Fe-B系烧结磁铁及其制备方法
CN110619984B (zh) * 2018-06-19 2021-12-07 厦门钨业股份有限公司 一种低B含量的R-Fe-B系烧结磁铁及其制备方法
WO2021135142A1 (zh) * 2019-12-31 2021-07-08 厦门钨业股份有限公司 一种r-t-b系永磁材料、原料组合物、制备方法、应用

Also Published As

Publication number Publication date
EP2696355A4 (en) 2014-07-30
WO2013100008A1 (ja) 2013-07-04
KR20130105763A (ko) 2013-09-25
EP2696355A1 (en) 2014-02-12
US9028624B2 (en) 2015-05-12
JP5400255B1 (ja) 2014-01-29
CN105206372A (zh) 2015-12-30
EP2696355B1 (en) 2016-07-06
US20140327503A1 (en) 2014-11-06
EP3059743A1 (en) 2016-08-24
KR101338663B1 (ko) 2013-12-06
EP3059743B1 (en) 2020-11-25
CN103650073B (zh) 2015-11-25
JPWO2013100008A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
CN103650073B (zh) NdFeB系烧结磁体和该NdFeB系烧结磁体的制造方法
CN103650072B (zh) NdFeB系烧结磁体
JP6005768B2 (ja) NdFeB焼結磁石及びその製造方法
CN103797549B (zh) NdFeB系烧结磁体
JP2005011973A (ja) 希土類−鉄−ホウ素系磁石及びその製造方法
CN111636035B (zh) 重稀土合金、钕铁硼永磁材料、原料和制备方法
JP5120710B2 (ja) RL−RH−T−Mn−B系焼結磁石
CN103985533B (zh) 共晶合金氢化物掺杂提高烧结钕铁硼磁体矫顽力的方法
CN109940139A (zh) R-t-b系稀土烧结磁铁用合金和r-t-b系稀土烧结磁铁
CN103503087B (zh) NdFeB系烧结磁体
JP6642184B2 (ja) R−t−b系焼結磁石
JP2020155634A (ja) R−t−b系永久磁石
CN111724955B (zh) R-t-b系永久磁铁
JP2006179963A (ja) Nd−Fe−B系磁石
JP7424126B2 (ja) R-t-b系永久磁石
JP2013115156A (ja) R−t−b系永久磁石の製造方法
US10428408B2 (en) R-T-B-based rare earth sintered magnet and alloy for R-T-B-based rare earth sintered magnet
CN105529123B (zh) 晶界扩散材料和稀土永磁材料及其制备方法
JP2016169438A (ja) R−t−b系希土類焼結磁石及びr−t−b系希土類焼結磁石用合金
US20200303100A1 (en) R-t-b based permanent magnet
JP6511779B2 (ja) R−t−b系焼結磁石
JP2020161812A (ja) R−t−b系永久磁石

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Japan's Gifu County Nakatsugawa eggplant Sichuan 1642 times 144

Applicant after: Inta Metal K. K.

Address before: Kyoto Prefecture

Applicant before: Inta Metal K. K.

COR Change of bibliographic data
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200330

Address after: Aichi

Patentee after: DAIDO STEEL Co.,Ltd.

Address before: 1642 Fandi, kanzichuan, zhongjinchuan, Gifu County, Japan 144

Patentee before: INTERMETALLICS Co.,Ltd.