WO2013099913A1 - 温度および湿度の調整を行う空調システム - Google Patents

温度および湿度の調整を行う空調システム Download PDF

Info

Publication number
WO2013099913A1
WO2013099913A1 PCT/JP2012/083586 JP2012083586W WO2013099913A1 WO 2013099913 A1 WO2013099913 A1 WO 2013099913A1 JP 2012083586 W JP2012083586 W JP 2012083586W WO 2013099913 A1 WO2013099913 A1 WO 2013099913A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
cooling
amount
heating
heat
Prior art date
Application number
PCT/JP2012/083586
Other languages
English (en)
French (fr)
Inventor
岡本 康令
石田 耕一
善博 中川
内田 秀樹
岩田 哲郎
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP12863585.1A priority Critical patent/EP2806223B1/en
Priority to US14/369,170 priority patent/US9261288B2/en
Priority to CN201280065121.3A priority patent/CN104024749B/zh
Publication of WO2013099913A1 publication Critical patent/WO2013099913A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioning system for adjusting temperature and humidity.
  • Japanese Patent Application Laid-Open No. 2010-243005 discloses an air conditioning system installed in a semiconductor manufacturing factory or the like.
  • air supplied to the room is cooled by a cooling heat exchanger in which cold water supplied from the chiller unit flows as a heat medium, and air is cooled and dehumidified.
  • air can be heated by an electric heater and air can be humidified by a sprinkler, and temperature adjustment and humidity adjustment are performed by combining these cooling, dehumidification, heating, and humidification.
  • Patent Document 1 Japanese Patent Laid-Open No. 2010-243005
  • 30 ° C. air is cooled to 10 ° C. by a cooling heat exchanger, dehumidified, and the cooled / dehumidified air is heated by an electric heater.
  • a so-called reheat dehumidification operation is also described which is supplied to the indoor space by a blower fan.
  • the reheat dehumidification operation in which the air is reheated with an electric heater is necessary to adjust the temperature while ensuring the dehumidifying capacity.
  • Driving However, in the reheat dehumidification operation, power is consumed because reheating is performed by an electric heater.
  • An object of the present invention is to suppress the amount of reheat and reduce energy consumption in an air conditioning system that adjusts temperature and humidity.
  • the air conditioning system is an air conditioning system that processes a sensible heat load and a latent heat load of a target space by a necessary amount and adjusts the temperature and humidity of the target space to target values.
  • the air conditioning system includes a cooling heat exchanger, a heater, a blower fan, and a control unit.
  • a heat medium for cooling the air blown into the target space flows through the cooling heat exchanger.
  • the cooling heat exchanger performs heat exchange between the heat medium and the air to cool and dehumidify the air.
  • the heater heats the air cooled and dehumidified by the cooling heat exchanger.
  • the control unit includes a cold heat amount adjusting unit, a heating amount adjusting unit, and an air blowing amount adjusting unit.
  • the cold heat amount adjusting unit adjusts the cold heat amount supplied from the heat medium to the air in the cooling heat exchanger.
  • the heating amount adjusting unit adjusts the heating amount supplied to the air from the heater.
  • the blower amount adjusting unit adjusts the blower amount by the blower fan.
  • the control unit also includes a first combination and a combination of a cooling amount, a heating amount, and a blowing amount that can be processed by the required amount of sensible heat load and latent heat load, and a blowing amount that is smaller than that of the first combination. When there is a combination of two, the second combination is selected to adjust the amount of cooling, heating and blowing.
  • the cooling heat exchanger is responsible for cooling and dehumidifying the air blown into the target space
  • the heater is responsible for heating.
  • the cooling heat is supplied from the heat medium to the air in the cooling heat exchanger, the temperature of the air is lowered, and moisture contained in the air is condensed to reduce the humidity of the air. Therefore, accompanying the dehumidification of air in order to process only the necessary amount of latent heat load in the target space, there is a phenomenon that the sensible heat load in the target space is processed more than necessary and the temperature of the air becomes too low. At that time, the air is reheated by a heater, and the sensible heat load and latent heat load of the target space are processed by a necessary amount.
  • the inventor of the present application pays attention to the blast amount, and the first combination and the first combination among the combinations of the cold amount, the heating amount, and the blast amount that can handle the required amount of sensible heat load and latent heat load. It has been devised to select the second combination and adjust the amount of cooling, heating and blowing when there is a second combination having a smaller blowing rate than the combination.
  • the excess processing amount can be kept small, and as a result, the reheating heating by the heater The amount can be reduced, and the energy saving of the system can be achieved.
  • the amount of cooling, heating and blowing of the second combination for example, the amount of sensible heat treatment (cooling treatment) and the amount of latent heat treatment (dehumidification) of the cooling heat exchanger based on the amount of blowing and cooling
  • the amount of sensible heat treatment (cooling treatment) and the amount of latent heat treatment (dehumidification) of the cooling heat exchanger based on the amount of blowing and cooling
  • the air conditioning system according to the second aspect of the present invention is the air conditioning system according to the first aspect, and further includes a cooling device and a heat medium circuit.
  • the cooling device cools the heat medium exchanged with air.
  • the heat medium circuit includes a pump and circulates the heat medium between the cooling device and the cooling heat exchanger. Then, the cooling heat amount adjustment unit supplies at least one of the cooling amount of the heating medium by the cooling device and the flow rate of the heating medium flowing through the cooling heat exchanger to supply air from the heating medium to the air in the cooling heat exchanger. Adjust the amount of cold heat.
  • the required amount of sensible heat load and latent heat load are processed by increasing the amount of cold heat.
  • the amount of cooling heat per unit time supplied to the air can be increased by increasing the amount of cooling of the heat medium by the cooling device and / or the flow rate of the heat medium flowing through the cooling heat exchanger.
  • the heat medium is water
  • an increase in the temperature of the water flowing through the cooling heat exchanger and / or an increase in the amount of water can be performed to increase the amount of cold per unit time.
  • the air conditioning system according to the third aspect of the present invention is the air conditioning system according to the second aspect, and the heat medium circuit further includes a flow rate adjusting valve capable of adjusting the flow rate of the heat medium.
  • the capacity of the pump can be adjusted.
  • the heater is an electric heater capable of changing the output stepwise.
  • the blower fan is a fan capable of changing the rotational speed in a stepwise manner.
  • the cold heat amount adjusting unit adjusts the flow rate of the heat medium flowing through the cooling heat exchanger by changing the capacity of the pump and / or the opening of the flow rate adjusting valve.
  • the heating amount adjustment unit adjusts the heating amount of the air by changing the output of the heater.
  • the air flow rate adjusting unit adjusts the air flow rate by changing the rotation speed of the air blowing fan.
  • the air conditioning system includes a flow rate adjustment valve in addition to a pump capable of adjusting the capacity, so that the flow rate of the heat medium flowing through the cooling heat exchanger can be easily adjusted per unit time. .
  • the amount of heating can be adjusted simply by changing the output of the heater, and the amount of air blow can also be easily adjusted by changing the number of fan rotations.
  • the electric heater with comparatively low energy efficiency is employ
  • An air conditioning system is the air conditioning system according to any one of the first to third aspects, wherein the control unit is capable of processing a required amount of sensible heat load and latent heat load, and a cooling energy amount and a heating amount. And the combination with the smallest airflow rate is selected from the combinations of airflow rates, and the amount of cooling, heating and airflow are adjusted.
  • the air conditioning system based on the inventor's knowledge that the sensible heat ratio changes depending on the amount of air blown, in order to reduce the heating amount by the heater as much as possible, the required amount of sensible heat load and Among the combinations of the amount of cooling heat, the amount of heating, and the amount of blown air that can be processed by the latent heat load, the combination having the smallest amount of blown air is selected. Thereby, the heating amount of the reheating by the heater can be suppressed to be very small, and the energy saving of the system can be achieved. In addition, since it is necessary to process the required amount of sensible heat load and latent heat load, a certain amount of air flow is required unless the load is zero. If the load cannot be processed as a result of reducing the air flow, the air flow is increased.
  • the air conditioning system instead of selecting the first combination from the combinations of the amount of cooling, heating and blowing that can handle the required amount of sensible heat load and latent heat load.
  • select the second combination whose airflow is smaller than that of the first combination and adjust the amount of cooling, heating and airflow Even in the case of processing more than the amount, the excess processing amount can be reduced, and the heating amount of reheating by the heater can be suppressed, so that the system can save energy.
  • the amount of cooling heat per unit time supplied to the air by increasing the cooling amount of the heat medium by the cooling device and / or the flow rate of the heat medium flowing through the cooling heat exchanger. Can be increased.
  • the electric heater with relatively low energy efficiency is employed, the amount of reheating by the electric heater can be suppressed, so that energy saving of the entire air conditioning system can be achieved. Can be planned.
  • the heating amount of reheating by the heater can be suppressed to be extremely small, and energy saving of the system can be achieved.
  • FIG. 1 is a schematic configuration diagram of an air conditioning system according to an embodiment of the present invention.
  • the wet air diagram which shows air cooling and dehumidification at the time of air_conditioning
  • the humid air line figure which shows air cooling and dehumidification at the time of air_conditioning
  • the humid air diagram which shows air cooling and dehumidification at the time of heating humidification driving
  • A The figure which shows the time change of each conventional output value in the transfer from a 1st condition (dehumidification heating operation) to a 2nd condition (cooling humidification operation).
  • B The figure which shows the time change of the conventional temperature and humidity in the transfer from a 1st condition (dehumidification heating operation) to a 2nd condition (cooling humidification operation).
  • C The figure which shows the time change of each output value in the transfer from a 1st condition (dehumidification heating operation) to a 2nd condition (cooling humidification operation).
  • (D) The figure which shows the time change of the temperature in the transition from a 1st condition (dehumidification heating operation) to a 2nd condition (cooling humidification operation).
  • (A) The figure which shows the time change of each conventional output value in the transfer from a 2nd condition (cooling humidification operation) to a 1st condition (dehumidification heating operation).
  • (B) The figure which shows the time change of the conventional temperature and humidity in the transition from a 2nd condition (cooling humidification operation) to a 1st condition (dehumidification heating operation).
  • (C) The figure which shows the time change of each output value in the transfer from a 2nd condition (cooling humidification operation) to a 1st condition (dehumidification heating operation).
  • the air conditioning system 10 processes the sensible heat load and latent heat load of the indoor space RM by a necessary amount, and adjusts the humidity and temperature of the indoor space RM.
  • the system is configured to be capable of being installed in a clean room such as a semiconductor manufacturing factory.
  • the air conditioning system 10 takes in indoor air RA from the indoor space RM, and sends the air after adjusting the humidity and temperature to the indoor space RA as supply air SA.
  • the air conditioning system 10 mainly includes a chiller unit 50 and an air conditioning unit 20, and includes a refrigerant circuit 51, a heat dissipation circuit 60, and a heat medium circuit 40.
  • the refrigerant circuit 51 is a closed circuit that is included in the chiller unit 50 and performs a vapor compression refrigeration cycle by circulating the refrigerant.
  • the refrigerant circuit 51 is connected with a compressor 52, a radiator 54, an expansion valve 56, an evaporator 58, and the like.
  • the compressor 52 can adjust the operating capacity. Electric power is supplied to the motor of the compressor 52 via an inverter. When the output frequency of the inverter is changed, the rotational speed (rotational speed) of the motor is changed, and the operating capacity of the compressor 52 is changed.
  • the radiator 54 includes a first heat transfer tube connected to the refrigerant circuit 51 and a second heat transfer tube connected to the heat dissipation circuit 60, and the refrigerant flowing through the first heat transfer tube on the refrigerant circuit 51 side. And a heat medium flowing through the second heat transfer tube on the side of the heat radiation circuit 60 are exchanged.
  • the evaporator 58 includes a first heat transfer tube connected to the refrigerant circuit 51 and a second heat transfer tube connected to the heat medium circuit 40, and flows through the first heat transfer tube on the refrigerant circuit 51 side. Heat exchange is performed between the refrigerant and the heat medium flowing through the second heat transfer tube on the heat medium circuit 40 side.
  • the heat dissipation circuit 60 is filled with water as a heat medium.
  • the heat radiator 54, the water pump 62, and the cooling tower 70 are connected to the heat radiation circuit 60.
  • the water pump 62 can adjust the discharge flow rate and circulates water in the heat dissipation circuit 60.
  • the cooling tower 70 water circulating in the heat dissipation circuit 60 is cooled.
  • the arrow attached to the water pump 62 means the direction in which water flows in the heat dissipation circuit 60.
  • the heat medium circuit 40 constitutes a closed circuit filled with water as a heat medium.
  • the evaporator 58, the circulation pump 42, and the air cooling heat exchanger 22 described above are connected to the heat medium circuit 40.
  • the circulation pump 42 can adjust the capacity and can adjust the discharge flow rate, and circulates water in the heat medium circuit 40.
  • the heat medium circulating in the heat medium circuit 40 is cooled.
  • the arrow attached to the circulation pump 42 means the direction of water flow in the heat medium circuit 40.
  • FIG. 1 shows only one air conditioning unit 20 and its air cooling heat exchanger 22, but the heat medium circuit 40 includes air cooling heat exchangers 22 and evaporators of a plurality of air conditioning units. 58, the overall flow rate is determined by the discharge flow rate of the circulation pump 42, and the flow rate of the heat medium flowing to each air cooling heat exchanger 22 is determined by the opening degree of the flow rate adjustment valve 44.
  • the air conditioning unit 20 has a substantially rectangular parallelepiped casing 21. An air passage through which air flows is formed inside the casing 21. One end of the suction duct 32 is connected to the inflow end of the air passage. The other end of the suction duct 32 is connected to the indoor space RM. One end of the air supply duct 31 is connected to the outflow end of the air passage. The other end of the air supply duct 31 is connected to the indoor space RM.
  • an air cooling heat exchanger 22 an electric heater 24, a watering humidifier 26, and a blower fan 28 are arranged in order from the upstream side to the downstream side. The electric heater 24 heats the air that has passed through the air cooling heat exchanger 22.
  • the electric heater 24 is a device for raising the temperature of air, can change the output stepwise, and can adjust the amount of heating of air.
  • the watering type humidifier 26 humidifies the air flowing in the casing 21 by spraying water in a tank (not shown) installed outside the casing 21 from the nozzle into the air.
  • the watering type humidifier 26 is a device for increasing the humidity of the air and can adjust the amount of humidification to the air.
  • the blower fan 28 is a blower that can change the rotation speed stepwise by inverter control and can adjust the amount of blown air.
  • the blower fan 28 generates a flow of air that is blown out to the indoor space RM via the air cooling heat exchanger 22, the electric heater 24, and the watering humidifier 26.
  • the air-cooling heat exchanger 22 is a device that cools the air to lower the temperature of the air or dehumidifies the air to lower the humidity. That is, the air cooling heat exchanger 22 has both an air cooling function and a dehumidifying function, and can cool the air to a dew point temperature or lower.
  • the air cooling heat exchanger 22 is a fin-and-tube heat exchanger having a plurality of heat transfer fins and a heat transfer tube penetrating the heat transfer fins. As described above, cold water that is a heat medium circulating in the heat medium circuit 40 flows through the heat transfer tubes of the air cooling heat exchanger 22, and the cold heat of the cold water is supplied to the air through the heat transfer tubes and the heat transfer fins. This cools the air.
  • the air conditioning system 10 further includes an air conditioning system controller 80 as control means.
  • the controller 80 will be described in detail later.
  • the air conditioning system 10 includes a cooling and dehumidifying operation for cooling and dehumidifying air (see FIG. 6), a cooling and humidifying operation for cooling and humidifying air (see FIG. 7), and a dehumidifying and heating operation for dehumidifying and heating air (see FIG. 6). 8) and heating / humidifying operation for heating and humidifying air (see FIG. 9), for example, the temperature and humidity of the indoor space RM are set to 23 ° C. which is a set temperature (target temperature). Air conditioning is performed so that the humidity (target humidity) is 50%. In the cooling and dehumidifying operation shown in FIG.
  • the compressor 52, the water pump 62, the circulation pump 42, and the blower fan 28 are operated.
  • the cooling and dehumidifying operation basically, the electric heater 24 is stopped, and the watering of the watering humidifier 26 is also stopped.
  • a refrigeration cycle is performed in the refrigerant circuit 51. Specifically, the refrigerant compressed by the compressor 52 dissipates heat into the water flowing through the heat dissipation circuit 60 and condenses in the heat radiator 54.
  • the refrigerant cooled by the radiator 54 is depressurized by the expansion valve 56 and then evaporates by absorbing heat from the water flowing through the heat medium circuit 40 in the evaporator 58.
  • the refrigerant evaporated in the evaporator 58 is sucked into the compressor 52 and compressed.
  • the water flowing through the heat dissipation circuit 60 heated by the radiator 54 radiates heat to the outdoor air in the cooling tower 70.
  • the water cooled by the evaporator 58 of the refrigerant circuit 51 cools the air flowing through the air passage in the casing 21 in the air cooling heat exchanger 22.
  • the water that has passed through the air cooling heat exchanger 22 returns to the evaporator 58 of the refrigerant circuit 51 and is cooled again.
  • cold heat obtained from the refrigerant by the water in the evaporator 58 is conveyed to the air cooling heat exchanger 22 and supplied to the air.
  • the air is cooled and dehumidified by the water in the heat medium circuit 40 in the air cooling heat exchanger 22.
  • the air cooled / dehumidified by the air cooling heat exchanger 22 is supplied to the indoor space RM as the supply air SA via the air supply duct 31.
  • the sensible heat load and the latent heat load of the room air are just processed by the required amount by cooling / dehumidification by the air cooling heat exchanger 22, and this cooling and dehumidifying operation is performed when air reheating and humidification are not required. It will be.
  • the cooling / humidifying operation shown in FIG. 7 is an operation in which humidification by watering of the watering humidifier 26 is performed in addition to the cooling / dehumidifying operation. Until the air is cooled by the water of the heat medium circuit 40 in the air cooling heat exchanger 22 and dehumidified, it is the same as the above-described cooling and dehumidifying operation, and water sprayed by the watering humidifier 26 is applied to the cooled / dehumidified air. Is done.
  • the cooling / humidifying operation is an operation performed when the set temperature is achieved by cooling / dehumidifying by the air cooling heat exchanger 22 but the humidity of the indoor space RM is lower than the set humidity due to the dehumidifying effect accompanying cooling. is there.
  • the dehumidifying and heating operation shown in FIG. 8 is an operation also called a reheat dehumidifying operation, and the set humidity is achieved by dehumidification / cooling by the air cooling heat exchanger 22, but the temperature of the indoor space RM is reduced by the cooling effect accompanying dehumidification. This operation is performed when the temperature falls below the set temperature.
  • the electric heater 24 is activated to reheat the air. .
  • the electric heater 24, the watering humidifier 26 and the blower fan 28 are operated.
  • the compressor 52, the water pump 62, and the circulation pump 42 are stopped.
  • the air taken from the indoor space RM is first heated by the electric heater 24, then humidified by the watering humidifier 26, and supplied to the indoor space RM as supply air SA.
  • the controller 80 provided in the air-conditioning system 10 as a control means includes a compressor 52, an expansion valve 56, a water pump 62, a circulation pump 42, a flow rate adjustment valve 44, an electric heater 24, a watering humidifier 26, and a blower.
  • the fan 28, etc. are controlled.
  • the controller 80 controls not only the devices of the air conditioning unit 20 and the heat medium circuit 40 but also the devices of the refrigerant circuit 51 and the heat dissipation circuit 60 of the chiller unit 50.
  • the devices of the air conditioning unit 20 and the heat medium circuit 40 are controlled. The explanation will focus on control.
  • the output and opening degree of the compressor 52, the expansion valve 56, and the water pump 62 are adjusted, and the temperature of the cold water flowing out from the evaporator 58 in the heat medium circuit 40 is the target.
  • the explanation is made on the assumption that the temperature of the cold water is controlled to a constant target value.
  • the controller 80 receives inputs from an indoor temperature sensor 95 that measures the temperature of the air in the indoor space RM, an indoor humidity sensor 96 that measures the humidity of the air in the indoor space RM, and other various sensors.
  • the electric heater 24 of the air conditioning unit 20, the watering type humidifier 26, the blower fan 28, the circulation pump 42 of the heat medium circuit 40, and the flow rate adjustment valve 44 are controlled.
  • the controller 80 also has a memory 81 as a storage unit. This memory 81 stores the set temperature and set humidity of the indoor space RM input by the user.
  • the controller 80 controls each device by the CPU executing a program written in the memory 81 or the like, and the controller 80 has various functions when the CPU executes the program.
  • the functions of these controllers 80 are referred to as a cold heat amount adjustment unit 82, a heating amount adjustment unit 84, a humidification amount adjustment unit 86, and an air blowing amount adjustment unit 88, as shown in FIG.
  • the controller 80 is represented as including two PID adjusters.
  • the one that receives the set temperature and the measured value of the room temperature by the room temperature sensor 95 and outputs the required cooling output value TcMV or the required heating output value ThMV is called the temperature PID controller 101.
  • a device that receives the measured value of indoor humidity by 96 and outputs the dehumidification request output value HcMV or the humidification request output value HhMV is called a humidity PID controller 102.
  • the temperature PID adjuster 101 includes a heating PID 101a that outputs a required heating output value ThMV, and a cooling PID 101b that outputs a required cooling output value TcMV.
  • the humidity PID controller 102 includes a dehumidification PID 102a that outputs a dehumidification request output value HcMV, and a humidification PID 102b that outputs a humidification request output value HhMV. Then, the cold energy adjustment unit 82 sends the larger value of the cooling request output value TcMV and the dehumidification request output value HcMV to the circulation pump 42 and the flow rate adjustment valve 44 as the cold output instruction value.
  • the heating amount adjusting unit 84 sends the heating request output value ThMV to the electric heater 24 as a heating output instruction value.
  • the humidification amount adjustment unit 86 sends the humidification request output value HhMV to the watering humidifier 26 as a humidification output instruction value.
  • the blower amount adjusting unit 88 sends the blower output instruction value to the blower fan 28.
  • the temperature PID controller 101 is a PID controller having a control input (PV), a setting input (SV) and a control output (MV). It is a device that performs calculations based on standard PID control basic equations.
  • the current temperature PVt which is a measured value of the room temperature by the room temperature sensor 95, is input as the control input (PV)
  • the set temperature SVt stored in the memory 81 is input as the set input (SV)
  • the control output (MV) The cooling request output value TcMV and the heating request output value ThMV are output. As shown in FIG.
  • the temperature PID adjuster 101 is based on a deviation between the current temperature PVt measured by the indoor temperature sensor 95 and the set temperature SVt, and performs proportional operation (P operation), integration operation (I operation), and differentiation.
  • P operation proportional operation
  • I operation integration operation
  • ThMV heating required output value
  • u (n) u (u ⁇ 1) + ⁇ u (n)
  • ⁇ u (n) Kp ⁇ [e (n) ⁇ e (n ⁇ 1)] + (T / Tl) ⁇ e (n) + (TD / T) ⁇ [e (n) ⁇ 2 ⁇ e (n ⁇ 1) + e (n-2)]
  • u (n) is the output value calculated in the current sensible heat load calculation
  • u (n-1) is the output value calculated in the previous sensible heat load calculation
  • ⁇ u (n) is the correction value.
  • Kp represents a proportional gain
  • Tl represents an integration time
  • TD represents a differentiation time
  • T represents a time step.
  • e (n) is the difference between the measured value of the indoor temperature sensor 95 in the current sensible heat load calculation and the set temperature
  • e (n ⁇ 1) is the measured value of the indoor temperature sensor 95 in the previous sensible heat load calculation.
  • the difference from the set temperature, e (n ⁇ 2), represents the difference between the measured value of the room temperature sensor 95 and the set temperature in the previous sensible heat load calculation.
  • the humidity PID controller 102 is also a PID controller similar to the temperature PID controller 101, and has room humidity as a control input (PV).
  • the current humidity PVh which is the measured value of the room humidity by the sensor 96, is input, the set humidity SVh stored in the memory 81 is input as the setting input (SV), the dehumidification request output value HcMV and the humidification are output as the control output (MV).
  • the requested output value HhMV is output. As shown in FIG.
  • the humidity PID controller 102 uses a PID control logic similar to the temperature PID controller 101 based on the deviation between the current humidity PVh measured by the indoor humidity sensor 96 and the set humidity SVh.
  • the dehumidification request output value HcMV and the humidification request output value HhMV are calculated. Since the calculation method is the same as that of the temperature PID controller 101, description thereof is omitted.
  • the cooling energy adjustment unit 82 adjusts the amount of cooling energy supplied from the heat medium to the air in the air cooling heat exchanger 22.
  • the controller 80 is a functional unit of the controller 80, and sends the cooling output instruction value to the circulation pump 42 and the flow rate adjustment valve 44 to adjust the flow rate of the heat medium flowing through the air cooling heat exchanger 22.
  • the cooling is performed according to the flow rate of the heat medium (cold water) flowing through the air cooling heat exchanger 22.
  • the amount of cold heat supplied from the heat medium to the air in the heat exchanger 22 changes.
  • the larger one of the cooling request output value TcMV and the dehumidification request output value HcMV is sent from the cooling heat amount adjustment unit 82 to the circulation pump 42 and the flow rate adjustment valve 44 as the cooling heat output instruction value.
  • the cooling heat amount adjustment unit 82 corrects the cooling request output value TcMV and the dehumidification request output value HcMV.
  • the cooling request output value TcMV and the heating request output value ThMV are values related to conflicting demands, so one of them must be a non-zero value. For example, correction by the cold energy adjustment unit 82 is performed so that the other becomes zero (see FIGS. 3 to 5). In addition, since the dehumidification request output value HcMV and the humidification request output value HhMV are values related to conflicting requests, the correction by the heat quantity adjustment unit 82 is performed so that if one is not zero, the other is zero. Is done.
  • the dehumidification request output value HcMV is set. Set to zero (see FIG. 4). Further, when the increment value ⁇ TcMV of the cooling request output value TcMV is equal to or less than zero and the increment value ⁇ HcMV of the dehumidification request output value HcMV is greater than zero, the cooling request output value TcMV is set to zero (see FIG. 5).
  • cooling request output value TcMV and the dehumidification request output value HcMV both of which are control parameters of the air cooling heat exchanger 22
  • monitoring the increment value ⁇ TcMV and the increment value ⁇ HcMV which of cooling / dehumidification is dominant Can be determined.
  • the cooling heat amount adjusting unit 82 is corrected to set the larger one of the cooling request output value TcMV and the dehumidification request output value HcMV to the new cooling request output value TcMV.
  • the cooling request output The cooling amount adjustment unit 82 is made to correct the larger output value of the value TcMV and the dehumidification request output value HcMV to a new dehumidification request output value.
  • the larger output value of the cooling request output value TcMV and the dehumidification request output value HcMV is the larger one of the current cooling request output value TcMV and the dehumidification request output value HcMV, or the previous time. If the required cooling output value TcMV or the dehumidification required output value HcMV is large, it is the value.
  • the cooling heat amount adjustment unit 82 is the cooling request output value output from the cooling PID 101b of the temperature PID controller 101.
  • the dehumidification request output value HcMV output from the dehumidification PID 102a of the TcMV and humidity PID controller 102 is corrected.
  • the cooling energy adjustment unit 82 is different from the PID operation (calculation) performed at intervals of several seconds (refer to the time interval Tp in FIG. 12) (intervals of several minutes or more in FIG. 12).
  • the output value is also corrected based on the cooling load estimation process and the dehumidification load estimation process that are periodically performed at the time interval Tb).
  • the cooling load estimation process and the dehumidification load estimation process, and the correction of the output value based thereon will be described with reference to FIG.
  • the heat quantity adjustment unit 82 periodically estimates the cooling load and the dehumidifying load of the indoor space RM, and determines that it is necessary to change the cooling request output value TcMV and the dehumidification request output value HcMV based on the estimated loads. Sometimes, the cooling request output value TcMV and the dehumidification request output value HcMV are rewritten. FIG.
  • the cooling load estimation process is periodically performed at a time interval Tb of several minutes.
  • Tb the cooling request output value TcMV calculated by the PID operation
  • Qsload the optimum control value Qsload
  • Qsload (i ⁇ 1) represents the optimum control value in the previous estimation process
  • Qsc represents the rated capacity of the air cooling heat exchanger 22.
  • the rated capacity Qsc if the value is too large, the load increase / decrease amount becomes large, which causes hunting, and if it is too small, the responsiveness will be adversely affected, so the sensible heat capacity value and latent heat capacity value under the operating temperature and humidity conditions. Is used. Even if the air cooling heat exchanger 22 and the chiller unit 50 are excessively designed, the sensible heat capacity value and the latent heat capacity value based on the excessively designed values are used.
  • TcMVpv (i) is the cooling request output value TcMV received this time
  • TcMVmv (i-1) is the optimum control value (the previous cooling request output value TcMV after rewriting) transmitted to the cooling PID 101b in the previous estimation process. Represents each. However, when the optimum control value is not transmitted to the cooling PID 101b in the previous estimation process, TcMVmv (i-1) becomes the cooling request output value TcMVpv (i-1) received in the previous estimation process.
  • (Gac / Ga) raised to the 0.5th power (square root) is a correction coefficient according to the air volume of the blower fan 28.
  • Gac represents the rated air volume of the blower fan 28, and Ga represents the current air volume.
  • the inverter frequency of the motor of the circulation pump 42, the opening degree of the flow rate adjusting valve 44, the amount of water flowing into the air cooling heat exchanger 22 and the water supply head are calculated from the piping model of the heat medium circuit 40.
  • the capacity is calculated from the inlet conditions (inlet air amount, air temperature / humidity) of the air conditioning unit 20 and the input values of heating and humidification, and is set as the current cooling load.
  • the previous Qsload (i-1) other than at the start of control for example, considering the time delay of the control operation (water supply pressure), the same calculation is performed from the previous opening of the flow rate adjustment valve 44 and the current water supply pressure. Sometimes you want.
  • the control value at the load of 5 kW was transmitted to the circulation pump 42 last time, but the water supply pressure did not increase and the capacity of 4 kW was only available, but the temperature of the indoor space RM was too low and the opening of the flow rate adjustment valve 44 If the current capacity becomes 4 kW or more even if the load increase / decrease is subtracted from the previous 5 kW, it becomes a disturbance factor, so replace the previous load with the capacity at the current water supply pressure. It may be calculated again.
  • Qlload (i ⁇ 1) represents the optimum control value in the previous estimation process
  • Qlc represents the rated capacity of the air cooling heat exchanger 22.
  • HcMVpv (i) is the dehumidification request output value HcMV received this time
  • HcMVmv (i-1) is the optimum control value (previous dehumidification request output value HcMV after rewriting) transmitted to the dehumidification PID 102a in the previous estimation process. Represents each. However, when the optimal control value is not transmitted to the dehumidification PID 102a in the previous estimation process, the HcMVmv (i-1) becomes the dehumidification request output value HcMVpv (i-1) received in the previous estimation process.
  • cooling quantity adjustment unit 82 uses the larger value of the cooling request output value TcMV and the dehumidification request output value HcMV as the cooling output instruction value.
  • the circulation pump 42 and the flow rate adjusting valve 44 uses the larger value of the cooling request output value TcMV and the dehumidification request output value HcMV as the cooling output instruction value.
  • the circulation pump 42 and the flow rate adjusting valve 44 uses the larger value of the cooling request output value TcMV and the dehumidification request output value HcMV as the cooling output instruction value.
  • the heating amount adjusting unit 84 is a functional unit of the controller 80 provided for adjusting the heating amount supplied from the electric heater 24 to the air.
  • the heating output instruction value is sent to the electric heater 24.
  • the heating amount adjustment unit 84 sends the heating output instruction value based on the heating request output value ThMV output from the heating PID 101a to the electric heater 24, but before that, the heating request output value ThMV is corrected.
  • Cooling request output value TcMV and heating request output value ThMV are values related to conflicting demands, so if one is not zero, the other is zero. In this way, the heating request output value ThMV is corrected (corrected to zero) by the heating amount adjusting unit 84 (see FIGS. 3 to 5).
  • the heating amount adjustment unit 84 periodically estimates the heating load of the indoor space RM, and based on the estimated load, calculates the heating request output value ThMV. When it is determined that a change is necessary, the heating request output value ThMV is rewritten. Although the estimation process of the heating load of the indoor space RM and the correction of the required heating output value ThMV are the same as the estimation process of the cooling load of the indoor space RM and the correction of the required cooling output value TcMV, the optimum control value Eload Only the calculation formula is shown below. (Formula 5):
  • Eload (i-1) represents the optimum control value in the previous estimation process
  • Ec represents the rated capacity of the electric heater 24, respectively.
  • ThMVpv (i) is the heating request output value ThMV received this time
  • ThMVmv (i-1) is the optimum control value (previous heating request output value ThMV after rewriting) transmitted to the heating PID 101a in the previous estimation process. Represents each.
  • ThMVmv (i-1) becomes the heating request output value ThMVpv (i-1) received in the previous estimation process. Since the heating capacity of the electric heater 24 is hardly affected by the air volume of the blower fan 28, the correction coefficient of (Gac / Ga) of 0.5th power used in the cooling load estimation process is not used.
  • the heating amount adjustment unit 84 sends the heating request output value ThMV output from the heating PID 101a to the electric heater 24 as a heating output instruction value. Based on this, the output of the electric heater 24 is automatically adjusted, and the amount of heating supplied from the electric heater 24 to the air is adjusted.
  • the humidification amount adjustment unit 86 is a functional unit of the controller 80 provided for adjusting the humidification amount supplied to the air from the watering humidifier 26. Yes, the humidification output instruction value is sent to the watering humidifier 26. The humidification amount adjustment unit 86 sends a humidification output instruction value based on the humidification request output value HhMV output from the humidification PID 102b to the watering humidifier 26, but before that, the humidification request output value HhMV is corrected.
  • the humidification amount adjustment unit 86 periodically estimates the humidification load of the indoor space RM, and based on the estimated load, the humidification request output value HhMV When it is determined that a change is necessary, the humidification request output value HhMV is rewritten.
  • the estimation process of humidification of the indoor space RM and the correction of the humidification request output value HhMV are the same as the estimation process of the cooling load of the indoor space RM and the correction of the cooling request output value TcMV, the optimal control value Kload Only the calculation formula is shown below. (Formula 6):
  • Kload (i ⁇ 1) represents the optimum control value in the previous estimation process
  • Kc represents the rated capacity of the watering humidifier 26.
  • HhMVpv (i) is the humidification request output value HhMV received this time
  • HhMVmv (i-1) is the optimal control value (the previous humidification request output value HhMV after rewriting) transmitted to the humidification PID 102b in the previous estimation process. Represents each.
  • HhMVmv (i-1) becomes the humidification request output value HhMVpv (i-1) received in the previous estimation process.
  • the correction coefficient of 0.5 (Gac / Ga) used in the cooling load estimation process is not used. .
  • the humidification amount adjustment unit 86 sends the humidification request output value HhMV output from the humidification PID 102b to the watering humidifier 26 as a humidification output instruction value. Based on this, the watering amount of the watering humidifier 26 is automatically adjusted, and the amount of humidification supplied to the air from the watering humidifier 26 is adjusted.
  • the blowing amount adjustment unit 88 is a functional unit of the controller 80 provided to adjust the blowing amount by the blower fan 28, and the blowing output instruction value is The amount of air blown to the indoor space RM through the air cooling heat exchanger 22, the electric heater 24, and the watering type humidifier 26 is adjusted by changing the rotational speed of the blower fan 28 to the blower fan 28. .
  • the fan step of the blower fan 28 that has received the blowout output instruction value is adjusted according to the instruction value.
  • the air flow rate adjustment unit 88 includes a first combination and a first combination of the cooling amount, heating amount, humidification amount, and air blowing amount that can handle the sensible heat load and latent heat load of the required amount of the indoor space RM.
  • the second combination is selected when there is a second combination having a smaller air flow rate than the combination.
  • the cooling amount adjustment unit 82, the heating amount adjustment unit 84, and the humidification amount adjustment unit 86 have the cooling request output value TcMV, the dehumidification request output value HcMV, The required output value ThMV and the humidification required output value HhMV are obtained, and the cooling output instruction value, the heating output instruction value, and the humidification output instruction value are determined.
  • the air flow rate adjusting unit 88 selects the combination that minimizes the air flow rate from the combinations of the cooling heat amount, heating amount, humidification amount, and air flow rate that can handle the required amount of sensible heat load and latent heat load.
  • the amount of cooling, heating and humidification are determined on the premise of the amount of air blown.
  • the target set temperature and set humidity are 23 ° C./50%, and the air is 27 ° C./60%.
  • the amount of water contained in the air is reduced by cooling to / 95% and reheated to 23 ° C / 50% with an electric heater (the amount of water at 27 ° C and 60% relative humidity) Less water at 12 ° C. and 95% relative humidity).
  • the ratio of the energy consumed by the electric heater to the total energy consumption of the air conditioning system is 20% to 40%, and the electric heater is less energy efficient than the heat pump. The overall energy consumption is large.
  • the inventor of the present application uses the sensible heat load and the sensible heat ratio of the latent heat load to be processed by the air cooling heat exchanger 22 from the sensible heat ratio (SHF) which is the ratio of the sensible heat load to the latent heat load. It has been found that whether or not is greatly deviated depends on the air volume. When the cooling capacity is the same, the sensible heat ratio increases as the air volume increases, and the sensible heat ratio decreases as the air volume decreases.
  • SHF sensible heat ratio
  • this inventor has created the model formula or data of the amount of sensible heat processing (cooling processing amount) and the amount of latent heat processing (dehumidification processing amount) of the cooling heat exchanger by the air volume (air flow) and the amount of cooling in advance, For each fan step of the blower fan 28, the amount of cooling, heating and humidification required for load processing are obtained, and the amount of blown air is kept within the range of the capabilities of the air cooling heat exchanger 22, the electric heater 24 and the watering humidifier 26. It is inventing to calculate a combination of the amount of cooling, heating and humidification that can be minimized.
  • the air flow rate adjustment unit 88 and the controller 80 determine the air flow output instruction value from the smallest air flow rate that can be processed by the required amount of sensible heat load and latent heat load, and the above-described cooling output is based on the air flow rate.
  • An instruction value, a heating output instruction value, and a humidification output instruction value are determined.
  • the refrigerant amount, heating amount, and humidification that can minimize the air flow rate over several times A combination of amounts may be calculated and each indicated value may be determined.
  • blowout output instruction value since there is only one combination of the refrigerant amount and the heating amount in the fan step of one blower fan for the same sensible heat load and latent heat load, it is not a change in only the blowout output instruction value, but the blowout output instruction value is changed. When it is changed, the cooling output instruction value and the heating output instruction value are always changed.
  • the air cooling heat exchanger 22 is responsible for two operations of air cooling and dehumidification, and the controller 80 outputs the larger output value of the cooling request output value TcMV and the dehumidification request output value HcMV. Accordingly, the amount of cold supplied from the heat medium to the air is controlled in the air cooling heat exchanger 22.
  • cooling and heating are operations that are opposite to each other, and dehumidification and humidification are also operations that are opposite, heating by the electric heater 24 corresponding to the heating request output value ThMV is not performed unless the cooling request output value TcMV is zero. If the dehumidification request output value HcMV is not zero, the watering humidifier 26 according to the humidification request output value HhMV is not humidified.
  • the cooling request output value TcMV that has become larger than the dehumidification request output value HcMV until then.
  • the amount of cooling heat adjusted based on the air temperature is supplied from the heat medium to the air, and a dehumidifying operation exceeding the dehumidifying request amount may be performed. This is because the humidity of the indoor space RM is already much lower than the target humidity. Further, as shown in FIG. 11 (a), when a load change that needs to shift from the second situation to the first situation occurs, heating is performed after the cooling request output value TcMV becomes zero.
  • the amount of cooling heat adjusted based on the dehumidification request output value HcMV that is larger than the cooling request output value TcMV is supplied from the heat medium to the air in the air cooling heat exchanger 22, and the cooling request amount This is because the above cooling operation may be performed, and in that case, the temperature of the indoor space RM is already much lower than the target temperature when heating is started (see FIG. 11B). .
  • the cooling request output is output when the increment value ⁇ TcMV of the cooling request output value TcMV is less than zero and the increment value ⁇ HcMV of the dehumidification request output value HcMV is greater than zero.
  • the value TcMV is set to zero (see FIG. 5).
  • the cooling request output value TcMV and the dehumidification request output value HcMV that determine the control of the amount of cooling for the air cooling heat exchanger 22 that performs two operations of air cooling and dehumidification are either cooling or dehumidifying.
  • the controller 80 determines whether the output becomes dominant, and performs control to set the output value that is not dominant to zero. Specifically, the increment value ⁇ TcMV of the cooling request output value TcMV and the increment value ⁇ HcMV of the dehumidification request output value HcMV are monitored, and when one is greater than zero and the other is less than zero, the increment value is less than zero. The output value is forcibly rewritten to zero.
  • the dehumidifying operation that becomes dominant is given priority. Since the cooling request output value TcMV and the dehumidification request output value HcMV are rewritten at the same time, the delay of the heating operation is suppressed, and the dehumidification request output value is appropriately corrected to follow the load fluctuation of sensible heat and latent heat. (See FIGS. 11C and 11D).
  • this air conditioning system 10 basically, output values (heating request output value ThMV, cooling request output value TcMV, dehumidification request output value HcMV, humidification request) based on the deviation of the current temperature and current humidity with respect to the set temperature and set humidity.
  • the output value HhMV is determined by the temperature PID controller 101 and the humidity PID controller 102, and each device (circulation pump 42, flow rate adjustment valve 44, electric heater 24, watering type humidifier 26) is controlled. .
  • the air conditioning system 10 periodically estimates the cooling load, the dehumidifying load, the heating load, and the humidifying load of the indoor space RM in order to further increase the estimation accuracy of the latent heat load and the sensible heat load and perform appropriate control.
  • the cooling request output value TcMV of the cooling PID 101b is corrected (rewritten). Is called.
  • the output values hereinating request output value ThMV, cooling request output value TcMV, dehumidification request output value HcMV, humidification request output value HhMV
  • appropriate air conditioning control corresponding to the load is performed.
  • the periodic load estimation process is performed at intervals of several minutes of one minute or more, it is taken into consideration that the PID operation performed at intervals of several seconds in the temperature PID controller 101 and the humidity PID controller 102 cannot be considered. Since the estimation is performed, the merit that the estimation accuracy of the latent heat load and the sensible heat load becomes high is obtained. That is, the disadvantage of the estimation method that only the minute time change is considered in the determination of the output value based on the deviation in the temperature PID controller 101 and the humidity PID controller 102 is mitigated by the periodic load estimation process. As a result, load estimation accuracy is improved and appropriate air conditioning control is performed.
  • the optimum control value Qsload for the cooling load and the optimum control value Qlload for the dehumidifying load are calculated using a correction coefficient according to the air volume of the blower fan 28 that is (Gac / Ga) to the 0.5th power (square root). It is carried out.
  • a correction coefficient based on the air volume is used in an apparatus that exchanges heat between the heat medium and air.
  • a more appropriate optimum control value is obtained, and appropriate air conditioning control can be performed.
  • the air cooling heat exchanger 22 is responsible for cooling and dehumidifying the air blown into the indoor space RM, and the electric heater 24 is responsible for heating.
  • cold heat is supplied from the cold water, which is a heat medium, to the air in the air cooling heat exchanger 22, the temperature of the air is lowered, and moisture contained in the air is condensed to reduce the humidity of the air. Therefore, accompanying the dehumidification of the air in order to process the latent heat load of the indoor space RM by a necessary amount, the sensible heat load of the indoor space RM is processed more than necessary, and the temperature of the air is too low.
  • the air is reheated by the electric heater 24, and the sensible heat load and the latent heat load of the indoor space RM are processed by a necessary amount (see FIG. 8).
  • the required amount of latent heat load in the indoor space RM is processed, when the amount of air blown by the blower fan 28 is large, the amount of cold heat from the heat medium to air per unit time in the air cooling heat exchanger 22.
  • the amount of blown air is small, a large amount of cold heat per unit time is required. Therefore, until now, in order to give a margin to the control, control for securing a certain amount of air flow has been often employed.
  • the inventor of the present application shows that the ratio of the sensible heat load processing amount to the total amount of the sensible heat load and latent heat load processed by the air cooling heat exchanger 22 when the blast amount is larger than when the blast amount is small ( I noticed that the amount of sensible heat load that was processed at the same time when the latent heat load was processed increased. Therefore, the inventor of the present application pays attention to the blast amount, and the first combination and the first combination among the combinations of the cold amount, the heating amount, and the blast amount that can handle the required amount of sensible heat load and latent heat load. It has been devised to select the second combination and adjust the amount of cooling, heating and blowing when there is a second combination having a smaller blowing rate than the combination. As a result, even when the air cooling heat exchanger 22 processes the sensible heat load of air beyond the required amount, the excess processing amount can be kept small. The amount of heating can be suppressed, and energy saving of the air conditioning system 10 can be achieved.
  • the reheat amount by the electric heater 24 becomes the first reheat amount.
  • the reheat amount by the electric heater 24 becomes the second reheat amount.
  • the second reheat amount is smaller than the first reheat amount.
  • the power consumption of the chiller unit 50 slightly increases, but the power consumption of the electric heater 24 decreases, and the power consumption is suppressed as a whole.
  • the efficiency of the chiller unit 50 that performs the vapor compression refrigeration cycle is higher than the efficiency of the electric heater 24. That is, even if the electric heater 24 having relatively low energy efficiency is employed, the air conditioning system 10 that restricts the air blowing amount of the blower fan 28 as much as possible can suppress the heating amount of reheating by the electric heater 24, and the entire air conditioning system 10. Energy saving can be achieved.
  • the parameter of the temperature of the cold water flowing out from the evaporator 58 in the heat medium circuit 40 is further used to adjust the amount of cold heat supplied from the heat medium to the air in the air cooling heat exchanger 22 according to the temperature of the cold water and the flow rate of the cold water. Can also be done. In this case, when adjusting the temperature of the chilled water, the output and opening of the compressor 52, the expansion valve 56, and the water pump 62 of the chiller unit 50 are adjusted. The amount of reheat of the electric heater 24 can be suppressed by lowering the temperature and further reducing the air volume.
  • the PID control logic is used in the temperature PID controller 101 and the humidity PID controller 102.
  • a derivative such as PI control or I-PD is used. It is also possible to use another known control logic such as PID control.
  • the indoor air RA taken from the indoor space RM flows through the air passage in the casing 21 of the air conditioning unit 20 and is supplied to the indoor space RM as the supply air SA after air conditioning.
  • the outdoor air OA taken from the outside is taken into the casing 21 through the outside air intake duct 33, and the air is conditioned and supplied to the indoor space RM.
  • the present invention can also be applied to an air conditioning system that takes both indoor air RA and outdoor air OA into the air conditioning unit 20 and supplies the air to the indoor space RM.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 温度および湿度の調整を行う空調システムにおいて、再熱量を小さく抑え、エネルギー消費量を低減する。空調システムは、空気の冷却および除湿を行う冷却熱交換器(22)と、空気を加熱する電気ヒータ(24)と、送風ファン(28)と、コントローラ(80)とを備える。コントローラ(80)は、冷熱量調整部(82)と、加熱量調整部(84)と、送風量調整部(88)とを有し、必要量の顕熱負荷および潜熱負荷が処理できる冷熱量、加熱量および送風量の組合せの中に、第1の組合せと、その第1の組合せよりも送風量が小さい第2の組合せとが存在するときに、第2の組合せを選択して冷熱量、加熱量および送風量を調整する。

Description

温度および湿度の調整を行う空調システム
 本発明は、温度および湿度の調整を行う空調システムに関する。
 対象空間の温度を調整するだけではなく湿度も調整できる空調システムが、従来から存在している。例えば、特許文献1(特開2010-243005号公報)には、半導体の製造工場等に設置される空調システムが開示されている。この空調システムでは、空調ユニットにおいて、チラーユニットから供給される冷水が熱媒体として流れる冷却熱交換器によって室内に供給される空気を冷却し、空気の冷却や除湿を行う。また、この空調システムでは、電気ヒータによる空気の加熱および散水器による空気の加湿も行うことができ、これらの冷却、除湿、加熱、加湿を組み合わせることによって、温度調整および湿度調整をしている。
 上記の特許文献1(特開2010-243005号公報)の空調システムでは、30℃の空気を冷却熱交換器によって10℃まで冷却して除湿を行い、冷却/除湿された空気を電気ヒータで加熱して室内空間に送風ファンによって供給する、いわゆる再熱除湿運転についても記述されている。除湿のために一旦空気を十分に冷却し、それでは目標温度を下回ることになるので電気ヒータで空気を再加熱するという再熱除湿運転は、除湿能力を確保しつつ温度調整も行うために必要な運転である。しかし、再熱除湿運転では、電気ヒータによる再加熱を行うため、消費電力が大きくなる。
 本発明の課題は、温度および湿度の調整を行う空調システムにおいて、再熱量を小さく抑え、エネルギー消費量を低減することにある。
 本発明の第1観点に係る空調システムは、対象空間の顕熱負荷および潜熱負荷を必要量だけ処理し、対象空間の温度および湿度を目標値に調整する空調システムである。この空調システムは、冷却熱交換器と、加熱器と、送風ファンと、制御部とを備えている。冷却熱交換器には、対象空間に吹き出す空気を冷却するための熱媒体が流れる。そして、冷却熱交換器は、熱媒体と空気との間で熱交換を行わせ、空気の冷却および除湿を行う。加熱器は、冷却熱交換器で冷却および除湿された空気を、加熱する。送風ファンは、冷却熱交換器および加熱器を経て対象空間へと吹き出される空気の流れを、生成する。制御部は、冷熱量調整部と、加熱量調整部と、送風量調整部とを有している。冷熱量調整部は、冷却熱交換器において熱媒体から空気へと供給される冷熱量を、調整する。加熱量調整部は、加熱器から空気に供給される加熱量を、調整する。送風量調整部は、送風ファンによる送風量を、調整する。また、制御部は、必要量の顕熱負荷および潜熱負荷が処理できる冷熱量、加熱量および送風量の組合せの中に、第1の組合せと、その第1の組合せよりも送風量が小さい第2の組合せとが存在するときに、第2の組合せを選択して冷熱量、加熱量および送風量を調整する。
 この第1観点に係る空調システムでは、対象空間に吹き出される空気の冷却および除湿を冷却熱交換器が担い、加熱を加熱器が担う。冷却熱交換器において熱媒体から空気へと冷熱が供給されると、空気の温度が下がるとともに、空気に含まれる水分が結露することで空気の湿度が下がる。したがって、対象空間の潜熱負荷を必要量だけ処理するために空気の除湿を行ったことに付随して、対象空間の顕熱負荷を必要量以上に処理してしまい空気の温度が下がりすぎる現象が起こることがあるが、そのときには加熱器によって空気を再加熱し、対象空間の顕熱負荷および潜熱負荷を必要量だけ処理する。ここで、対象空間の潜熱負荷を必要量だけ処理することについて考えると、送風量が多い場合には冷却熱交換器における単位時間当たりの熱媒体から空気への冷熱量が少なくても大丈夫であるが、送風量が少ない場合には単位時間当たりの空気への冷熱量が多く必要となる。したがって、これまでは、制御に余裕を持たせるために、送風量をある程度確保する制御を採ることが多かった。しかし、送風量が多くなると、送風量が少ない場合に較べて、冷却熱交換器が処理する顕熱負荷および潜熱負荷の総量に対する顕熱負荷の処理量の割合(Sensible Heat Factor;以下、顕熱比という。)が大きくなり、潜熱負荷を処理したときに同時に処理される顕熱負荷の処理量が増えてしまう。そこで、本願の発明者は、送風量に着目し、必要量の顕熱負荷および潜熱負荷が処理できる冷熱量、加熱量および送風量の組合せの中に、第1の組合せと、その第1の組合せよりも送風量が小さい第2の組合せとが存在するときに、第2の組合せを選択して冷熱量、加熱量および送風量を調整することを考え出した。これにより、冷却熱交換器で空気の顕熱負荷を必要量以上に処理してしまう場合にも、その超過処理量を小さく抑えることができるようになり、その結果、加熱器による再加熱の加熱量が抑えられてシステムの省エネルギー化を図ることができるようになる。
 なお、第2の組合せの冷熱量、加熱量および送風量を選択する方法としては、例えば、予め送風量および冷熱量による冷却熱交換器の顕熱処理量(冷却処理量)および潜熱処理量(除湿処理量)のモデル式又はデータを作成しておき、潜熱負荷に一致する処理量を実現できる第1の組合せの送風量よりも小さい送風量での冷媒量を計算することで実現する方法がある。
 本発明の第2観点に係る空調システムは、第1観点に係る空調システムであって、冷却装置と、熱媒体回路とをさらに備えている。冷却装置は、空気と熱交換した熱媒体を冷やす。熱媒体回路は、ポンプを有しており、冷却装置と冷却熱交換器との間で熱媒体を循環させる。そして、冷熱量調整部は、冷却装置による熱媒体の冷却量と、冷却熱交換器を流れる熱媒体の流量との少なくとも一方を変化させることで、冷却熱交換器において熱媒体から空気へと供給される冷熱量を調整する。
 送風量が比較的少なく加熱量が小さくなる第2の組合せを選択したときには、冷熱量を増やすことで必要量の顕熱負荷および潜熱負荷の処理を行うことになるが、この第2観点に係る空調システムでは、冷却装置による熱媒体の冷却量および/または冷却熱交換器を流れる熱媒体の流量を増加させて、空気に供給する単位時間当たりの冷熱量を増やすことができる。例えば、熱媒体が水である場合、冷却熱交換器を流れる水温の上昇および/または水量の増加を実施して、単位時間当たりの冷熱量を増やすことができる。
 本発明の第3観点に係る空調システムは、第2観点に係る空調システムであって、熱媒体回路は、熱媒体の流量を調整できる流量調整弁をさらに有している。ポンプは、容量調整が可能である。加熱器は、出力を段階的に変化させることが可能な電気ヒータである。送風ファンは、回転数を段階的に変化させることが可能なファンである。冷熱量調整部は、ポンプの容量および/または流量調整弁の開度を変化させることで、冷却熱交換器を流れる熱媒体の流量を調整する。加熱量調整部は、加熱器の出力を変化させることで、空気の加熱量を調整する。送風量調整部は、送風ファンの回転数を変化させることで、送風量を調整する。
 この第3観点に係る空調システムでは、容量調整が可能なポンプに加え、流量調整弁も備えているため、単位時間当たりに冷却熱交換器を流れる熱媒体の流量を容易に調整することができる。また、加熱器の出力を変化させるだけで加熱量の調整ができ、送風量もファン回転数を変化させることで容易に調整ができる。そして、比較的エネルギー効率が悪い電気ヒータを採用しているけれども、ここでは加熱器による再加熱の加熱量が抑えられるため、空調システム全体の省エネルギー化を図ることができる。
 本発明の第4観点に係る空調システムは、第1~第3観点のいずれかに係る空調システムであって、制御部は、必要量の顕熱負荷および潜熱負荷が処理できる冷熱量、加熱量および送風量の組合せの中から、送風量が最も小さくなる組合せを選択して、冷熱量、加熱量および送風量を調整する。
 この第4観点に係る空調システムでは、送風量の違いによって顕熱比が変化するという本願の発明者の知見に基づき、できるだけ加熱器による加熱量を小さくするために、必要量の顕熱負荷および潜熱負荷が処理できる冷熱量、加熱量および送風量の組合せの中から、送風量が最も小さくなる組合せを選択している。これにより、加熱器による再加熱の加熱量が非常に小さく抑えられるようになり、システムの省エネルギー化が図られる。
 なお、必要量の顕熱負荷および潜熱負荷を処理する必要があるため、負荷がゼロでなければ、ある程度の送風量が必要である。送風量を絞った結果、負荷が処理できなくなったときには、送風量を増やすことになる。
 本発明の第1観点に係る空調システムによれば、必要量の顕熱負荷および潜熱負荷が処理できる冷熱量、加熱量および送風量の組合せの中から、第1の組合せを選択するのではなく、その第1の組合せよりも送風量が小さい第2の組合せを選択して冷熱量、加熱量および送風量を調整するため、除湿をするために冷却熱交換器で空気の顕熱負荷を必要量以上に処理してしまう場合にも、その超過処理量を小さく抑えることができるようになり、加熱器による再加熱の加熱量が抑えられてシステムの省エネルギー化を図ることができる。
 本発明の第2観点に係る空調システムによれば、冷却装置による熱媒体の冷却量および/または冷却熱交換器を流れる熱媒体の流量を増加させて、空気に供給する単位時間当たりの冷熱量を増やすことができる。
 本発明の第3観点に係る空調システムによれば、比較的エネルギー効率が悪い電気ヒータを採用しているけれども、その電気ヒータによる再加熱の加熱量が抑えられるため、空調システム全体の省エネルギー化を図ることができる。
 本発明の第4観点に係る空調システムによれば、加熱器による再加熱の加熱量が非常に小さく抑えられるようになり、システムの省エネルギー化が図られる。
本発明の一実施形態に係る空調システムの概略構成図。 空調システムのコントローラのブロック図。 各PIDの入力、出力を示す図。 各PIDの出力値の増分値の比較結果に基づく修正を示す図。 各PIDの出力値の増分値の比較結果に基づく修正を示す図。 冷房除湿運転のときの空気の冷却および除湿を示す湿り空気線図。 冷房加湿運転のときの空気の冷却および除湿を示す湿り空気線図。 除湿暖房運転のときの空気の冷却および除湿を示す湿り空気線図。 暖房加湿運転のときの空気の冷却および除湿を示す湿り空気線図。 (a)第1状況(除湿暖房運転)から第2状況(冷房加湿運転)への移行における従来の各出力値の時間変化を示す図。(b)第1状況(除湿暖房運転)から第2状況(冷房加湿運転)への移行における従来の温度および湿度の時間変化を示す図。(c)第1状況(除湿暖房運転)から第2状況(冷房加湿運転)への移行における各出力値の時間変化を示す図。(d)第1状況(除湿暖房運転)から第2状況(冷房加湿運転)への移行における温度および湿度の時間変化を示す図。 (a)第2状況(冷房加湿運転)から第1状況(除湿暖房運転)への移行における従来の各出力値の時間変化を示す図。(b)第2状況(冷房加湿運転)から第1状況(除湿暖房運転)への移行における従来の温度および湿度の時間変化を示す図。(c)第2状況(冷房加湿運転)から第1状況(除湿暖房運転)への移行における各出力値の時間変化を示す図。(d)第2状況(冷房加湿運転)から第1状況(除湿暖房運転)への移行における温度および湿度の時間変化を示す図。 定期的な冷却負荷推定処理および冷却PIDの冷却要求出力値を示す図。 風量の大小と再熱量との関係を示す湿り空気線図。
 (1)空調システムの全体構成
 本発明の一実施形態に係る空調システム10は、室内空間RMの顕熱負荷および潜熱負荷を必要量だけ処理し、室内空間RMの湿度と温度とを調節することができるように構成されたシステムであり、半導体の製造工場などのクリーンルームに設置される。図1に示すように、空調システム10は、室内空間RMから室内空気RAを取り込み、湿度や温度を調節した後の空気を、供給空気SAとして室内空間RAへ送る。空調システム10は、主として、チラーユニット50と空調ユニット20とを備え、冷媒回路51と放熱回路60と熱媒体回路40とを有している。
 (2)空調システムの詳細構成
 (2-1)冷媒回路
 冷媒回路51は、チラーユニット50に含まれており、冷媒を循環させて蒸気圧縮式の冷凍サイクルを行う閉回路である。冷媒回路51には、圧縮機52、放熱器54、膨張弁56、蒸発器58などが接続されている。
 圧縮機52は、運転容量の調節が可能である。圧縮機52のモータには、インバータを介して電力が供給される。インバータの出力周波数を変更すると、モータの回転数(回転速度)が変更され、圧縮機52の運転容量が変わる。
 放熱器54は、冷媒回路51と接続されている第1伝熱管と、放熱回路60と接続されている第2伝熱管とを有しており、冷媒回路51側の第1伝熱管を流れる冷媒と放熱回路60側の第2伝熱管を流れる熱媒体との間で熱交換を行わせる。
 蒸発器58は、冷媒回路51と接続されている第1伝熱管と、熱媒体回路40と接続されている第2伝熱管とを有しており、冷媒回路51側の第1伝熱管を流れる冷媒と熱媒体回路40側の第2伝熱管を流れる熱媒体との間で熱交換を行わせる。
 (2-2)放熱回路
 放熱回路60には、熱媒体としての水が充填されている。放熱回路60には、上述した放熱器54と水ポンプ62とクーリングタワー70とが接続されている。水ポンプ62は、吐出流量の調節が可能であり、放熱回路60の水を循環させる。クーリングタワー70では、放熱回路60を循環する水が冷却される。なお、図1において、水ポンプ62に付した矢印は、放熱回路60における水の流れる方向を意味している。
 (2-3)熱媒体回路
 熱媒体回路40は、熱媒体としての水が充填された閉回路を構成している。熱媒体回路40には、上述した蒸発器58と循環ポンプ42と空気冷却熱交換器22とが接続されている。循環ポンプ42は、容量調整が可能であって吐出流量を調節することができ、熱媒体回路40の水を循環させる。蒸発器58では、熱媒体回路40を循環する熱媒体が冷却される。なお、図1において、循環ポンプ42に付した矢印は、熱媒体回路40における水の流通方向を意味している。
 また、図1には、1つの空調ユニット20とその空気冷却熱交換器22とだけが示されているが、熱媒体回路40は、複数の空調ユニットそれぞれの空気冷却熱交換器22と蒸発器58とを結んでおり、全体流量は循環ポンプ42の吐出流量によって決まり、各空気冷却熱交換器22に流す熱媒体の流量は流量調整弁44の開度によって決まる。
 (2-4)空調ユニットの構成
 空調ユニット20は、概ね直方体形状のケーシング21を有している。ケーシング21の内部には、空気が流通する空気通路が形成されている。空気通路の流入端には、吸込ダクト32の一端が接続している。吸込ダクト32の他端は室内空間RMにつながっている。空気通路の流出端には、給気ダクト31の一端が接続している。給気ダクト31の他端は室内空間RMにつながっている。
 ケーシング21内の空気通路には、上流側から下流側に向かって順に、空気冷却熱交換器22、電気ヒータ24、散水式加湿器26、及び送風ファン28が配備されている。電気ヒータ24は、空気冷却熱交換器22を通過した空気を加熱する。電気ヒータ24は、空気の温度を上げるための機器であり、出力を段階的に変化させることが可能で、空気の加熱量を調節できる。散水式加湿器26は、ケーシング21の外部に設置されたタンク(図示省略)の水をノズルから空気中へ散布することで、ケーシング21内を流れる空気を加湿する。散水式加湿器26は、空気の湿度を高めるための機器であり、空気への加湿量を調節できる。送風ファン28は、インバータ制御によって回転数を段階的に変化させることが可能で、送風量を調節できる送風機である。送風ファン28は、空気冷却熱交換器22、電気ヒータ24および散水式加湿器26を経て室内空間RMへと吹き出される空気の流れを生成する。
 空気冷却熱交換器22は、空気を冷却して、空気の温度を下げたり空気を除湿して湿度を低めたりする機器である。すなわち、空気冷却熱交換器22は、空気の冷却機能および除湿機能を併せ持っており、空気を露点温度以下まで冷却することができる。空気冷却熱交換器22は、複数の伝熱フィンと、それらの伝熱フィンを貫通する伝熱管とを有する、フィンアンドチューブ式の熱交換器である。前述のように、空気冷却熱交換器22の伝熱管には、熱媒体回路40を循環する熱媒体である冷水が流れ、伝熱管および伝熱フィンを介して冷水の冷熱が空気に供給されることで空気が冷却される。
 (2-5)空調システムコントローラの構成
 空調システム10は、制御手段としての空調システムコントローラ80をさらに備えている。コントローラ80については、後に詳述する。
 (3)空調システムの基本動作
 次に、空調システム10の運転動作について説明する。空調システム10は、空気の冷却と除湿を行う冷房除湿運転(図6参照)、空気の冷却と加湿を行う冷房加湿運転(図7参照)、空気の除湿と加熱とを行う除湿暖房運転(図8参照)および空気の加熱と加湿とを行う暖房加湿運転(図9参照)のいずれかを行うことで、例えば室内空間RMの温度および湿度を、設定温度(目標温度)である23℃および設定湿度(目標湿度)である50%になるように空気調和を行う。
 図6に示す冷房除湿運転では、圧縮機52、水ポンプ62、循環ポンプ42、および送風ファン28の運転が行われる。冷房除湿運転では、基本的には、電気ヒータ24が停止状態となり、散水式加湿器26の散水も停止状態となる。冷房除湿運転では、冷媒回路51において冷凍サイクルが行われる。具体的に、圧縮機52で圧縮された冷媒が、放熱器54において、放熱回路60を流れる水に放熱して凝縮する。放熱器54で冷却された冷媒は、膨張弁56で減圧された後に、蒸発器58において、熱媒体回路40を流れる水から吸熱して蒸発する。蒸発器58で蒸発した冷媒は、圧縮機52に吸入されて圧縮される。なお、放熱器54で加熱された放熱回路60を流れる水は、クーリングタワー70において室外空気へ放熱する。熱媒体回路40では、冷媒回路51の蒸発器58で冷却された水が、空気冷却熱交換器22において、ケーシング21内の空気通路を流れる空気を冷却する。空気冷却熱交換器22を通過した水は、冷媒回路51の蒸発器58に戻って再び冷却される。熱媒体回路40では、蒸発器58において水が冷媒から得た冷熱が、空気冷却熱交換器22に搬送され空気に供給される。空調ユニット20では、吸込ダクト32によって室内空間RMから取り込まれた室内空気RAが、ケーシング21内の空気通路を流れる。この空気は、空気冷却熱交換器22において熱媒体回路40の水によって冷却されて除湿される。空気冷却熱交換器22で冷却/除湿された空気は、給気ダクト31を経由して、供給空気SAとして室内空間RMへ供給される。なお、室内空気の顕熱負荷および潜熱負荷が、空気冷却熱交換器22による冷却/除湿によって必要量だけ丁度処理され、空気の再加熱や加湿が必要ない場合に、この冷房除湿運転が行われることになる。
 図7に示す冷房加湿運転は、冷房除湿運転に加えて散水式加湿器26の散水による加湿が行われる運転である。空気冷却熱交換器22において熱媒体回路40の水によって空気が冷却されて除湿されるまでは、上述の冷房除湿運転と同じであり、その冷却/除湿された空気に散水式加湿器26による散水が行われる。この冷房加湿運転は、空気冷却熱交換器22による冷却/除湿で、設定温度は達成されるが、冷却に伴う除湿効果によって室内空間RMの湿度が設定湿度を下回るようなときに行われる運転である。
 図8に示す除湿暖房運転は、再熱除湿運転とも呼ばれる運転で、空気冷却熱交換器22による除湿/冷却で、設定湿度は達成されるが、除湿に伴う冷却効果によって室内空間RMの温度が設定温度を下回るようなときに行われる運転である。この除湿暖房運転では、空気冷却熱交換器22において除湿のために空気に供給された冷熱量が大きく、必要以上に空気が冷やされた場合に、電気ヒータ24が作動して空気を再加熱する。
 図9に示す暖房加湿運転では、電気ヒータ24、散水式加湿器26及び送風ファン28の運転が行われる。一方、圧縮機52、水ポンプ62、及び循環ポンプ42は、停止される。暖房加湿運転では、空調ユニット20において、室内空間RMから取り込まれた空気が、まず電気ヒータ24によって加熱され、次に散水式加湿器26によって加湿されて、供給空気SAとして室内空間RMへ供給される。
 (4)空調システムのコントローラによる詳細制御
 上述の空調システムの基本動作は、図2に示すコントローラ80によって制御される。制御手段としての空調システム10に備わるコントローラ80は、具体的には、圧縮機52、膨張弁56、水ポンプ62、循環ポンプ42、流量調整弁44、電気ヒータ24、散水式加湿器26、送風ファン28、等を制御する。コントローラ80は、空調ユニット20や熱媒体回路40の機器だけではなく、チラーユニット50の冷媒回路51や放熱回路60の機器の制御も行うが、ここでは空調ユニット20や熱媒体回路40の機器の制御に焦点を当てて説明を行う。冷媒回路51や放熱回路60の機器の制御では、圧縮機52、膨張弁56、水ポンプ62の出力や開度を調節して、熱媒体回路40において蒸発器58から流出する冷水の温度が目標値になるようにするが、ここでは冷水の温度を一定の目標値に制御しているという前提で説明を進める。
 コントローラ80は、図2に示すように、室内空間RMの空気の温度を測る室内温度センサ95、室内空間RMの空気の湿度を測る室内湿度センサ96、その他の各種センサからの入力を受けて、空調ユニット20の電気ヒータ24、散水式加湿器26および送風ファン28や熱媒体回路40の循環ポンプ42および流量調整弁44の制御を行う。また、コントローラ80は、記憶部としてのメモリ81を有している。このメモリ81には、ユーザーによって入力された室内空間RMの設定温度や設定湿度が記憶されている。
 コントローラ80は、メモリ81等に書き込まれているプログラムをCPUが実行することにより各機器の制御を行うが、CPUがプログラムを実行することで、コントローラ80は種々の機能を持つことになる。ここでは、それらのコントローラ80の機能を、図2に示すように、冷熱量調整部82、加熱量調整部84、加湿量調整部86、送風量調整部88と称することにする。また、図2において、コントローラ80を、2つのPID調節器を含むものとして表現している。このうち、設定温度と室内温度センサ95による室内温度の計測値とが入力され冷却要求出力値TcMVや加熱要求出力値ThMVを出力するものを温度PID調節器101と呼び、設定湿度と室内湿度センサ96による室内湿度の計測値とが入力され除湿要求出力値HcMVや加湿要求出力値HhMVを出力するものを湿度PID調節器102と呼ぶ。温度PID調節器101は、加熱要求出力値ThMVを出力する加熱PID101aと、冷却要求出力値TcMVを出力する冷却PID101bとを含んでいる。湿度PID調節器102は、除湿要求出力値HcMVを出力する除湿PID102aと、加湿要求出力値HhMVを出力する加湿PID102bとを含んでいる。そして、冷熱量調整部82は、冷却要求出力値TcMVおよび除湿要求出力値HcMVの大きなほうの値を、冷熱出力指示値として循環ポンプ42および流量調整弁44に送る。加熱量調整部84は、加熱要求出力値ThMVを、加熱出力指示値として電気ヒータ24に送る。加湿量調整部86は、加湿要求出力値HhMVを、加湿出力指示値として散水式加湿器26に送る。また、送風量調整部88は、送風出力指示値を送風ファン28に送る。
 (4-1)温度PID調節器による冷却要求出力値および加熱要求出力値の決定
 温度PID調節器101は、制御入力(PV)、設定入力(SV)および制御出力(MV)を備えるPIDコントローラであって、標準的なPID制御基本式による演算を行う機器である。制御入力(PV)として室内温度センサ95による室内温度の計測値である現在温度PVtが入力され、設定入力(SV)としてメモリ81に記憶されている設定温度SVtが入力され、制御出力(MV)として冷却要求出力値TcMVおよび加熱要求出力値ThMVを出力する。
 温度PID調節器101は、図3に示すように、室内温度センサ95で計測された現在温度PVtと設定温度SVtとの偏差に基づき、比例動作(P動作)、積分動作(I動作)および微分動作(D動作)を組み合わせたPID制御ロジックを用いて、冷却要求出力値TcMVおよび加熱要求出力値ThMVを演算する。PID制御ロジックには、下記の式1および式2が用いられる。式2はPID動作の演算式である。
(式1):
u(n)=u(u-1)+Δu(n)
(式2):
Δu(n)=Kp×[e(n)-e(n-1)]+(T/Tl)×e(n)+(TD/T)×[e(n)-2×e(n-1)+e(n-2)]
 u(n)は、今回の顕熱負荷計算で算出される出力値、u(n-1)は、前回の顕熱負荷計算で算出された出力値、Δu(n)は、修正値、をそれぞれ表している。Kpは、比例ゲイン、Tlは、積分時間、TDは、微分時間、Tは、タイムステップ、をそれぞれ表している。e(n)は、今回の顕熱負荷計算における室内温度センサ95の計測値と設定温度との差、e(n-1)は、前回の顕熱負荷計算における室内温度センサ95の計測値と設定温度との差、e(n-2)は、前々回の顕熱負荷計算における室内温度センサ95の計測値と設定温度との差、をそれぞれ表している。
 (4-2)湿度PID調節器による除湿要求出力値および加湿要求出力値の決定
 湿度PID調節器102も、温度PID調節器101と同様のPIDコントローラであって、制御入力(PV)として室内湿度センサ96による室内湿度の計測値である現在湿度PVhが入力され、設定入力(SV)としてメモリ81に記憶されている設定湿度SVhが入力され、制御出力(MV)として除湿要求出力値HcMVおよび加湿要求出力値HhMVを出力する。
 湿度PID調節器102は、図3に示すように、室内湿度センサ96で計測された現在湿度PVhと設定湿度SVhとの偏差に基づき、温度PID調節器101と同様のPID制御ロジックを用いて、除湿要求出力値HcMVおよび加湿要求出力値HhMVを演算する。演算方法については、温度PID調節器101と同様であるため説明は省略する。
 (4-3)冷熱量調整部による冷却要求出力値および除湿要求出力値の修正
 冷熱量調整部82は、空気冷却熱交換器22において熱媒体から空気へと供給される冷熱量を調整するために設けられたコントローラ80の機能部であり、冷熱出力指示値を循環ポンプ42および流量調整弁44に送り、空気冷却熱交換器22を流れる熱媒体の流量を調節する。ここでは、熱媒体回路40において蒸発器58から流出する冷水の温度を一定の目標値に制御しているという前提なので、空気冷却熱交換器22を流れる熱媒体(冷水)の流量に応じて冷却熱交換器22における熱媒体から空気へと供給される冷熱量が変わる。
 上述のように、冷却要求出力値TcMVおよび除湿要求出力値HcMVの大きなほうの値が、冷熱量調整部82から循環ポンプ42および流量調整弁44に冷熱出力指示値として送られるが、その前に、冷熱量調整部82は、冷却要求出力値TcMVおよび除湿要求出力値HcMVの修正を行う。
 (4-3-1)加熱要求出力値および加湿要求出力値による修正
 冷却要求出力値TcMVおよび加熱要求出力値ThMVは、相反する要求に関する値であるため、一方がゼロではない値になっていれば他方はゼロになるように、冷熱量調整部82による修正が行われる(図3~図5参照)。
 また、除湿要求出力値HcMVおよび加湿要求出力値HhMVは、相反する要求に関する値であるため、一方がゼロではない値になっていれば他方はゼロになるように、冷熱量調整部82による修正が行われる。
 (4-3-2)増分値の比較結果に基づく修正
 上記のように、冷却要求出力値TcMVおよび加熱要求出力値ThMVは、一方がゼロにならなければ他方に値が入らないため、室内空間RMの負荷変動によって除湿暖房運転から冷房加湿運転に移行するような場合に、加湿動作が遅れて室内空間RMの湿度が設定湿度を大きく下回ってしまうことが想定される(図10(a),(b)参照)。また、逆に冷房加湿運転から除湿暖房運転に移行するような場合に、加熱動作が遅れて室内空間RMの温度が設定温度を大きく下回ってしまうことが想定される(図11(a),(b)参照)。こうなってしまうと、加湿を行う散水式加湿器26や加熱を行う電気ヒータ24を余分に動かす必要が生じ、無駄なエネルギーを消費してしまうことになる。
 このような事態を回避するために、ここでは、冷却要求出力値TcMVの増分値ΔTcMVがゼロより大きく且つ除湿要求出力値HcMVの増分値ΔHcMVがゼロ以下であるときに、除湿要求出力値HcMVをゼロにする(図4参照)。さらに、冷却要求出力値TcMVの増分値ΔTcMVがゼロ以下であり且つ除湿要求出力値HcMVの増分値ΔHcMVがゼロより大きいときに、冷却要求出力値TcMVをゼロにする(図5参照)。
 また、ともに空気冷却熱交換器22の制御パラメータである冷却要求出力値TcMVおよび除湿要求出力値HcMVについては、それらの増分値ΔTcMVおよび増分値ΔHcMVを監視することによって、冷却/除湿のどちらが支配的になるのかを判断できる。このような本願発明者の新しい知見に基づき、ここでは、冷却要求出力値TcMVの増分値ΔTcMVがゼロより大きく且つ除湿要求出力値HcMVの増分値ΔHcMVがゼロ以下であるときに、除湿要求出力値HcMVをゼロにするという修正に加え、冷却要求出力値TcMVおよび除湿要求出力値HcMVのうち大きいほうの出力値を新しい冷却要求出力値TcMVにするという修正を、冷熱量調整部82に行わせている。また、冷却要求出力値TcMVの増分値ΔTcMVがゼロ以下であり且つ除湿要求出力値HcMVの増分値ΔHcMVがゼロより大きいときに、冷却要求出力値TcMVをゼロにするという修正に加え、冷却要求出力値TcMVおよび除湿要求出力値HcMVのうち大きいほうの出力値を新しい除湿要求出力値にするという修正を、冷熱量調整部82に行わせている。ここで、冷却要求出力値TcMVおよび除湿要求出力値HcMVのうち大きいほうの出力値は、今の冷却要求出力値TcMVおよび除湿要求出力値HcMVのうち大きいほうの出力値、或いは、それよりも前回の冷却要求出力値TcMVまたは除湿要求出力値HcMVが大きければその値、である。
 (4-3-3)定期的な冷却負荷推定処理,除湿負荷推定処理に基づく修正
 以上のように、冷熱量調整部82は、温度PID調節器101の冷却PID101bから出力される冷却要求出力値TcMVおよび湿度PID調節器102の除湿PID102aから出力される除湿要求出力値HcMVの修正を行う。これに加え、冷熱量調整部82は、数秒単位の間隔(図12の時間間隔Tpを参照)で行われるPID動作(演算)とは異なる、1分以上の数分単位の間隔(図12の時間間隔Tbを参照)で定期的に行われる冷却負荷推定処理および除湿負荷推定処理に基づく出力値修正も行っている。この冷却負荷推定処理および除湿負荷推定処理と、それに基づく出力値の修正について、図12を参照しながら説明する。
 冷熱量調整部82は、定期的に、室内空間RMの冷却負荷および除湿負荷を推定し、それらの推定負荷に基づき、冷却要求出力値TcMVおよび除湿要求出力値HcMVの変更が必要だと判断したときに、冷却要求出力値TcMVおよび除湿要求出力値HcMVを書き換える。図12に、室内空間RMの冷却負荷の推定処理およびそれに基づく冷却要求出力値TcMVの修正(書き換え)の概要を示す。冷却負荷の推定処理は、数分の時間間隔Tbで定期的に行われる。この推定処理では、まず冷却PID101bからPID動作で演算された冷却要求出力値TcMVを受信し、最適制御値Qsloadの計算を行う。この計算は、以下の計算式を用いて行われる。
(式3):
Figure JPOXMLDOC01-appb-I000001
 Qsload(i-1)は、前回の推定処理における最適制御値、Qscは、空気冷却熱交換器22の定格能力、をそれぞれ表している。定格能力Qscについては、値を大きくしすぎると負荷増減量が大きくなりハンチングの要因になり、小さすぎると逆に応答性がわるくなるので、運転温湿度条件での顕熱能力値、潜熱能力値を用いる。もし空気冷却熱交換器22やチラーユニット50が過剰設計されている場合でも、その過剰に設計された設計値に基づいた顕熱能力値、潜熱能力値を用いる。
 TcMVpv(i)は、今回受信した冷却要求出力値TcMV、TcMVmv(i-1)は、前回の推定処理で冷却PID101bに送信した最適制御値(書き換え後の前回の冷却要求出力値TcMV)、をそれぞれ表している。但し、前回の推定処理で冷却PID101bへの最適制御値の送信が行われなかったときには、TcMVmv(i-1)は前回の推定処理で受信した冷却要求出力値TcMVpv(i-1)となる。
 また、(Gac/Ga)の0.5乗(平方根)は、送風ファン28の風量による修正係数である。Gacは、送風ファン28の定格風量、Gaは、現在の風量を、それぞれ表している。
 以上のようにして求めた最適制御値Qsloadは、今回冷却PID101bから受信した冷却要求出力値TcMVとの差が大きければ、冷却PID101bに送信されて冷却要求出力値TcMVの書き換えが行われる。最適制御値Qsloadと冷却要求出力値TcMVとの差が小さければ、冷却PID101bへの最適制御値Qsloadの送信は行われず、冷却要求出力値TcMVの修正(書き換え)も行われない。
 なお、制御開始時においては、循環ポンプ42のモータのインバータ周波数、流量調整弁44の開度および熱媒体回路40の配管モデルから空気冷却熱交換器22に流れている水量と送水ヘッドを計算し、空調ユニット20の入口条件(入口空気量、空気温湿度)や加熱、加湿の入力値から能力を計算して、それを現在の冷却負荷とする。制御開始時以外の前回のQsload(i-1)についても、例えば制御操作(送水圧)の時間遅れを考慮して、前回の流量調整弁44の開度と現在の送水圧から同様の計算で求めることもある。例えば、前回に循環ポンプ42へ負荷5kwでの制御値を送信したが、送水圧が増加せず4kWの能力しかでていないのに室内空間RMの温度が下がりすぎて流量調整弁44の開度を下げていくような場合があり、前回の5kWから負荷増減分を引いても現在能力4kW以上となれば外乱要因になるため、前回の負荷を現在の送水圧での能力に置き換えて換えて再度計算することもある。
 次に、室内空間RMの除湿負荷の推定処理や除湿要求出力値HcMVの修正であるが、上記の室内空間RMの冷却負荷の推定処理や冷却要求出力値TcMVの修正と同様であるため、最適制御値Qlloadの計算式だけを以下に示す。
(式4):
Figure JPOXMLDOC01-appb-I000002
 Qlload(i-1)は、前回の推定処理における最適制御値、Qlcは、空気冷却熱交換器22の定格能力、をそれぞれ表している。
 HcMVpv(i)は、今回受信した除湿要求出力値HcMV、HcMVmv(i-1)は、前回の推定処理で除湿PID102aに送信した最適制御値(書き換え後の前回の除湿要求出力値HcMV)、をそれぞれ表している。但し、前回の推定処理で除湿PID102aへの最適制御値の送信が行われなかったときには、HcMVmv(i-1)は前回の推定処理で受信した除湿要求出力値HcMVpv(i-1)となる。
 (4-4)冷熱量調整部による冷熱出力指示値の決定
 上述のように、冷熱量調整部82は、冷却要求出力値TcMVおよび除湿要求出力値HcMVの大きなほうの値を、冷熱出力指示値として循環ポンプ42および流量調整弁44に送る。これに応じて、循環ポンプ42の吐出流量および流量調整弁44の開度が調整され、空気冷却熱交換器22を流れる熱媒体(冷水)の流量が調整される。
 (4-5)加熱量調整部による加熱要求出力値の修正
 加熱量調整部84は、電気ヒータ24から空気に供給される加熱量を調整するために設けられたコントローラ80の機能部であり、加熱出力指示値を電気ヒータ24に送る。
 加熱量調整部84は、加熱PID101aから出力される加熱要求出力値ThMVに基づいた加熱出力指示値を電気ヒータ24に送るが、その前に、加熱要求出力値ThMVの修正を行う。
 (4-5-1)冷却要求出力値による修正
 冷却要求出力値TcMVおよび加熱要求出力値ThMVは、相反する要求に関する値であるため、一方がゼロではない値になっていれば他方はゼロになるように、加熱量調整部84による加熱要求出力値ThMVの修正(ゼロにする修正)が行われる(図3~図5参照)。
 (4-5-2)定期的な加熱負荷推定処理に基づく修正
 加熱量調整部84は、定期的に、室内空間RMの加熱負荷を推定し、その推定負荷に基づき、加熱要求出力値ThMVの変更が必要だと判断したときに、加熱要求出力値ThMVを書き換える。
 室内空間RMの加熱負荷の推定処理や加熱要求出力値ThMVの修正であるが、上記の室内空間RMの冷却負荷の推定処理や冷却要求出力値TcMVの修正と同様であるため、最適制御値Eloadの計算式だけを以下に示す。
(式5):
Figure JPOXMLDOC01-appb-I000003
 Eload(i-1)は、前回の推定処理における最適制御値、Ecは、電気ヒータ24の定格能力、をそれぞれ表している。
 ThMVpv(i)は、今回受信した加熱要求出力値ThMV、ThMVmv(i-1)は、前回の推定処理で加熱PID101aに送信した最適制御値(書き換え後の前回の加熱要求出力値ThMV)、をそれぞれ表している。但し、前回の推定処理で加熱PID101aへの最適制御値の送信が行われなかったときには、ThMVmv(i-1)は前回の推定処理で受信した加熱要求出力値ThMVpv(i-1)となる。
 なお、電気ヒータ24の加熱能力は送風ファン28の風量による影響を殆ど受けないため、冷却負荷の推定処理で用いた(Gac/Ga)の0.5乗という修正係数は使用していない。
 (4-6)加熱量調整部による加熱出力指示値の決定
 加熱量調整部84は、加熱PID101aから出力される加熱要求出力値ThMVを加熱出力指示値として電気ヒータ24に送る。それに基づいて電気ヒータ24の出力が自動的に調節され、電気ヒータ24から空気に供給される加熱量が調整される。
 (4-7)加湿量調整部による加湿要求出力値の修正
 加湿量調整部86は、散水式加湿器26から空気に供給される加湿量を調整するために設けられたコントローラ80の機能部であり、加湿出力指示値を散水式加湿器26に送る。
 加湿量調整部86は、加湿PID102bから出力される加湿要求出力値HhMVに基づいた加湿出力指示値を散水式加湿器26に送るが、その前に、加湿要求出力値HhMVの修正を行う。
 (4-7-1)除湿要求出力値による修正
 除湿要求出力値HcMVおよび加湿要求出力値HhMVは、相反する要求に関する値であるため、一方がゼロではない値になっていれば他方はゼロになるように、加湿量調整部86による加湿要求出力値HhMVの修正(ゼロにする修正)が行われる(図3~図5参照)。
 (4-7-2)定期的な加湿負荷推定処理に基づく修正
 加湿量調整部86は、定期的に、室内空間RMの加湿負荷を推定し、その推定負荷に基づき、加湿要求出力値HhMVの変更が必要だと判断したときに、加湿要求出力値HhMVを書き換える。
 室内空間RMの加湿の推定処理や加湿要求出力値HhMVの修正であるが、上記の室内空間RMの冷却負荷の推定処理や冷却要求出力値TcMVの修正と同様であるため、最適制御値Kloadの計算式だけを以下に示す。
(式6):
Figure JPOXMLDOC01-appb-I000004
 Kload(i-1)は、前回の推定処理における最適制御値、Kcは、散水式加湿器26の定格能力、をそれぞれ表している。
 HhMVpv(i)は、今回受信した加湿要求出力値HhMV、HhMVmv(i-1)は、前回の推定処理で加湿PID102bに送信した最適制御値(書き換え後の前回の加湿要求出力値HhMV)、をそれぞれ表している。但し、前回の推定処理で加湿PID102bへの最適制御値の送信が行われなかったときには、HhMVmv(i-1)は前回の推定処理で受信した加湿要求出力値HhMVpv(i-1)となる。
 なお、散水式加湿器26の加湿能力は送風ファン28の風量による影響を殆ど受けないため、冷却負荷の推定処理で用いた(Gac/Ga)の0.5乗という修正係数は使用していない。
 (4-8)加湿量調整部による加湿出力指示値の決定
 加湿量調整部86は、加湿PID102bから出力される加湿要求出力値HhMVを加湿出力指示値として散水式加湿器26に送る。それに基づいて散水式加湿器26の散水量が自動的に調節され、散水式加湿器26から空気に供給される加湿量が調整される。
 (4-9)送風量調整部による送風出力指示値の決定
 送風量調整部88は、送風ファン28による送風量を調整するために設けられたコントローラ80の機能部であり、送風出力指示値を送風ファン28に送り送風ファン28の回転数を変化させることで、空気冷却熱交換器22、電気ヒータ24および散水式加湿器26を経て室内空間RMへと吹き出される空気の送風量を調整する。送風出力指示値を受けた送風ファン28は、その指示値に応じてファンステップが調節される。
 送風量調整部88は、必要量の室内空間RMの顕熱負荷および潜熱負荷が処理できる冷熱量、加熱量、加湿量および送風量の組合せの中に、第1の組合せと、その第1の組合せよりも送風量が小さい第2の組合せとが存在するときに、第2の組合せを選択する。そのようにして決まった送風ファン28の送風量を前提として、上記の冷熱量調整部82、加熱量調整部84および加湿量調整部86は、冷却要求出力値TcMV、除湿要求出力値HcMV、加熱要求出力値ThMVおよび加湿要求出力値HhMVを求め、冷熱出力指示値、加熱出力指示値および加湿出力指示値を決定している。
 具体的には、送風量調整部88は、必要量の顕熱負荷および潜熱負荷が処理できる冷熱量、加熱量、加湿量および送風量の組合せの中から、送風量が最も小さくなる組合せを選択し、その送風量を前提として冷熱量、加熱量および加湿量を決めている。
 これは、例えば、従来は次のような状況が生じていることに本願発明者が気づいて発明した送風量の決定方法である。その状況とは、クリーンルームの空調において、目標となる設定温度および設定湿度が23℃/50%であり、空気が27℃/60%であったときに、例えば所定風量のときには一旦空気を12℃/95%まで冷却することによって空気中に含まれる水分量を減らし、電気ヒータで再加熱して23℃/50%にするような状況である(27℃で相対湿度60%のときの水分量よりも12℃で相対湿度95%のときの水分量のほうが少ない)。この状況では、電気ヒータの消費エネルギーが空調システム全体の消費エネルギーに占める割合が20%~40%にもなり、ヒートポンプに較べてエネルギー効率の悪い電気ヒータに高い出力を出させており、空調システム全体の消費エネルギーが大きい。
 このような状況について本願発明者は、顕熱負荷および潜熱負荷に対する顕熱負荷の比である顕熱比(SHF)から空気冷却熱交換器22が処理する顕熱負荷および潜熱負荷の顕熱比が大きく外れるか小さく外れるかは、風量によって変わるということを見いだした。同一の冷却能力のときには、風量が大きいほど顕熱比が大きく、風量が小さいほど顕熱比が小さくなる。そして、本願発明者は、予め風量(送風量)および冷熱量による冷却熱交換器の顕熱処理量(冷却処理量)および潜熱処理量(除湿処理量)のモデル式又はデータを作成しておき、送風ファン28のファンステップごとに負荷処理に必要となる冷熱量、加熱量および加湿量を求め、空気冷却熱交換器22、電気ヒータ24および散水式加湿器26の能力の範囲で送風量を一番小さくできる冷熱量、加熱量および加湿量の組合せを算出することを発明している。
 以上のように、送風量調整部88およびコントローラ80は、必要量の顕熱負荷および潜熱負荷が処理できる最も小さい送風量から送風出力指示値を決め、その送風量を前提として、上述の冷熱出力指示値、加熱出力指示値および加湿出力指示値を決めている。
 なお、計算時間の短縮のため、全てのファンステップごとの計算ではなく、現在値のファンステップの上下1ステップのみの計算し、数回にかけて送風量を一番小さくできる冷媒量、加熱量および加湿量の組合せを算出および各指示値を決めてもよい。
 また、同じ顕熱負荷および潜熱負荷に対する一つの送風ファンのファンステップにおける冷媒量、加熱量の組合せは、ただ1つでしかないので、送風出力指示値のみの変更ではなく、送風出力指示値を変更したときには必ず冷熱出力指示値および加熱出力指示値を変更することになる。
 (5)空調システムの特徴
 (5-1)
 この空調システム10では、空気の冷却および除湿の2つの動作を空気冷却熱交換器22に担わせており、コントローラ80は、冷却要求出力値TcMVおよび除湿要求出力値HcMVのうち大きいほうの出力値に応じて、空気冷却熱交換器22において熱媒体から空気へと供給される冷熱量を制御している。一方、冷却と加熱とは相反する動作であり、除湿と加湿とも相反する動作であるため、冷却要求出力値TcMVがゼロでなければ加熱要求出力値ThMVに応じた電気ヒータ24による加熱は行われず、除湿要求出力値HcMVがゼロでなければ加湿要求出力値HhMVに応じた散水式加湿器26による加湿は行われない。
 このような空調システム10において、もしも、上述のように冷却要求出力値TcMVの増分値ΔTcMVや除湿要求出力値HcMVの増分値ΔHcMVに基づいて冷却要求出力値TcMVや除湿要求出力値HcMVを強制的にゼロにする制御を行わなければ、室内空間RMの負荷変動が起こり加熱と除湿とが要求される第1状況(除湿暖房運転)から冷却と加湿とが要求される第2状況(冷房加湿運転)に移行する必要があるときに、現実には加熱や加湿の動作に遅れが出てしまい、不要なエネルギー消費が生じてしまうことになる(図10(a),(b)参照)。なぜなら、第1状況から第2状況に至って除湿要求出力値HcMVがゼロになってから加湿が行われるのでは、それまでの間に、除湿要求出力値HcMVよりも大きくなった冷却要求出力値TcMVに基づいて調整されている冷熱量が空気冷却熱交換器22において熱媒体から空気へと供給されて除湿要求量以上の除湿動作が行われることがあり、その場合には加湿が開始される時点で既に室内空間RMの湿度が目標湿度を大きく下回る状態になってしまうからである。また、図11(a)に示すように、第2状況から第1状況に移行する必要がある負荷変動が起こった場合、冷却要求出力値TcMVがゼロになってから加熱が行われるのでは、それまでの間に、冷却要求出力値TcMVよりも大きくなった除湿要求出力値HcMVに基づいて調整されている冷熱量が空気冷却熱交換器22において熱媒体から空気へと供給されて冷却要求量以上の冷却動作が行われることがあり、その場合には加熱が開始される時点で既に室内空間RMの温度が目標温度を大きく下回る状態になってしまうからである(図11(b)参照)。
 このような不要なエネルギー消費が生じることを回避するために、空調システム10では、冷却要求出力値TcMVの増分値ΔTcMVがゼロより大きく且つ除湿要求出力値HcMVの増分値ΔHcMVがゼロ以下であるときに、除湿要求出力値HcMVをゼロにし(図4参照)、冷却要求出力値TcMVの増分値ΔTcMVがゼロ以下であり且つ除湿要求出力値HcMVの増分値ΔHcMVがゼロより大きいときに、冷却要求出力値TcMVをゼロにしている(図5参照)。すなわち、空調システム10では、空気の冷却および除湿の2つの動作を担う空気冷却熱交換器22に対する冷熱量の制御を決める冷却要求出力値TcMVおよび除湿要求出力値HcMVについて、冷却と除湿との何れが支配的になっていくのかをコントローラ80が判断し、支配的ではないほうの出力値をゼロにする制御を行っている。具体的には、冷却要求出力値TcMVの増分値ΔTcMVおよび除湿要求出力値HcMVの増分値ΔHcMVを監視し、一方がゼロより大きく他方がゼロ以下であるときに、増分値がゼロ以下のほうの出力値を強制的にゼロに書き換えている。これにより、顕熱および潜熱の負荷変動への追従性が向上し、加熱や加湿の開始が遅れて不要なエネルギー消費が生じてしまうことが抑制される(図10(c),(d)および図11(c),(d)を参照)。
 (5-2)
 また、空調システム10では、冷却要求出力値TcMVの増分値ΔTcMVがゼロより大きく且つ除湿要求出力値HcMVの増分値ΔHcMVがゼロ以下であるときに、除湿よりも冷却のほうが支配的になってきていると判断し、除湿要求出力値HcMVを強制的にゼロに書き換えるとともに、冷却要求出力値TcMVおよび除湿要求出力値HcMVのうち大きいほうの出力値を新しい冷却要求出力値TcMVとして書き込む制御を行っている(図4参照)。このように、冷却と除湿のうち冷却が支配的になってきて除湿要求出力値HcMVの増分値がゼロ以下になったときに、支配的になってきている冷却の動作が優先されるように冷却要求出力値TcMVおよび除湿要求出力値HcMVを書き換えるため、加湿の動作が遅れることが抑制されるとともに、冷却要求出力値TcMVが適切に修正されて、顕熱および潜熱の負荷変動への追従性が向上している(図10(c),(d)を参照)。
 一方、冷却要求出力値TcMVの増分値ΔTcMVがゼロ以下であり且つ除湿要求出力値HcMVの増分値ΔHcMVがゼロより大きいときには、冷却よりも除湿のほうが支配的になってきていると判断し、冷却要求出力値TcMVを強制的にゼロに書き換えるとともに、冷却要求出力値TcMVおよび除湿要求出力値HcMVのうち大きいほうの出力値を新しい除湿要求出力値HcMVとして書き込む制御を行っている(図5参照)。このように、冷却と除湿のうち除湿が支配的になってきて冷却要求出力値TcMVの増分値ΔTcMVがゼロ以下になったときに、支配的になってきている除湿の動作が優先されるように冷却要求出力値TcMVおよび除湿要求出力値HcMVを書き換えるため、加熱の動作が遅れることが抑制されるとともに、除湿要求出力値が適切に修正されて、顕熱および潜熱の負荷変動への追従性が向上している(図11(c),(d)を参照)。
 (5-3)
 この空調システム10では、基本的には、設定温度および設定湿度に対する現在温度および現在湿度の偏差に基づいた出力値(加熱要求出力値ThMV、冷却要求出力値TcMV、除湿要求出力値HcMV、加湿要求出力値HhMV)の決定が温度PID調節器101や湿度PID調節器102で行われて、各機器(循環ポンプ42、流量調整弁44、電気ヒータ24、散水式加湿器26)の制御が行われる。ただ、更に潜熱負荷や顕熱負荷の推定精度を高めて適切な制御を行うために、空調システム10では、定期的に室内空間RMの冷却負荷、除湿負荷、加熱負荷および加湿負荷の推定が行われ、例えば冷却負荷推定処理においては、推定された最適制御値Qsloadと冷却PID101bから受信した冷却要求出力値TcMVとの差が大きければ、冷却PID101bの冷却要求出力値TcMVの修正(書き換え)が行われる。このように各負荷推定処理において、出力値(加熱要求出力値ThMV、冷却要求出力値TcMV、除湿要求出力値HcMV、加湿要求出力値HhMV)の修正が行われるため、単に温度PID調節器101や湿度PID調節器102だけを使って制御する場合に較べて、負荷に応じた適切な空調制御が行われることになる。
 定期的な負荷推定処理は、1分以上の数分単位の間隔で行われるため、温度PID調節器101や湿度PID調節器102における数秒単位の間隔で行われるPID動作では考慮できないことまで加味した推定が行われることになり、潜熱負荷や顕熱負荷の推定精度が高くなるというメリットが得られている。すなわち、温度PID調節器101や湿度PID調節器102での偏差に基づく出力値の決定では微小時間の変化だけしか考慮されていないという推定方法のデメリットが、定期的な負荷推定処理によって緩和され、結果として負荷の推定精度が向上し適切な空調制御が行われるようになっている。
 なお、空調システム10では、(Gac/Ga)の0.5乗(平方根)という送風ファン28の風量による修正係数を用いて、冷却負荷の最適制御値Qsloadや除湿負荷の最適制御値Qlloadの計算を行っている。空気冷却熱交換器22のように、熱媒体と空気との間で熱交換をさせるような機器では、通過する空気の風量によって能力が変わるが、ここでは風量による修正係数を用いているため、より適切な最適制御値が求まり、引いては適切な空調制御ができるようになっている。
 (5-4)
 空調システム10では、室内空間RMに吹き出される空気の冷却および除湿を空気冷却熱交換器22が担い、加熱を電気ヒータ24が担う。空気冷却熱交換器22において熱媒体である冷水から空気へと冷熱が供給されると、空気の温度が下がるとともに、空気に含まれる水分が結露することで空気の湿度が下がる。したがって、室内空間RMの潜熱負荷を必要量だけ処理するために空気の除湿を行ったことに付随して、室内空間RMの顕熱負荷を必要量以上に処理してしまい空気の温度が下がりすぎる現象が起こることがあるが、そのときには電気ヒータ24によって空気を再加熱し、室内空間RMの顕熱負荷および潜熱負荷を必要量だけ処理する(図8参照)。ここで、室内空間RMの潜熱負荷を必要量だけ処理することについて考えると、送風ファン28による送風量が多い場合には空気冷却熱交換器22における単位時間当たりの熱媒体から空気への冷熱量が少なくても大丈夫であるが、送風量が少ない場合には単位時間当たりの空気への冷熱量が多く必要となる。したがって、これまでは、制御に余裕を持たせるために、送風量をある程度確保する制御を採ることが多かった。
 しかし、本願の発明者は、送風量が多くなると、送風量が少ない場合に較べて、空気冷却熱交換器22が処理する顕熱負荷および潜熱負荷の総量に対する顕熱負荷の処理量の割合(Sensible Heat Factor;顕熱比)が大きくなり、潜熱負荷を処理したときに同時に処理される顕熱負荷の処理量が増えてしまうことに気づいた。そこで、本願の発明者は、送風量に着目し、必要量の顕熱負荷および潜熱負荷が処理できる冷熱量、加熱量および送風量の組合せの中に、第1の組合せと、その第1の組合せよりも送風量が小さい第2の組合せとが存在するときに、第2の組合せを選択して冷熱量、加熱量および送風量を調整することを考え出した。これにより、空気冷却熱交換器22で空気の顕熱負荷を必要量以上に処理してしまう場合にも、その超過処理量を小さく抑えることができるようになり、その結果、電気ヒータ24による再加熱の加熱量が抑えられて空調システム10の省エネルギー化を図ることができるようになっている。
 例えば、図13を参照すると、風量1、除湿量(冷却量)1、加熱量1という第1の組合せのときには電気ヒータ24による再熱量が第1再熱量となる。一方、風量1よりも小さい風量2、除湿量(冷却量)2、加熱量2という第2の組合せのときには電気ヒータ24による再熱量が第2再熱量となる。風量が少ない風量2の第2の組合せのときには、風量が少ない分だけ空気冷却熱交換器22に流す冷水の量を増やす必要があるけれども、電気ヒータ24による再熱量が、第1の組合せのときの第1再熱量よりも小さい第2再熱量になる。第2の組合せでは、冷水の量が増えるためにチラーユニット50の消費電力が少し増えてしまうが、電気ヒータ24の消費電力が減り、全体としては消費電力量が抑制される。ここでは、電気ヒータ24の効率よりも、蒸気圧縮式の冷凍サイクルを行うチラーユニット50の効率のほうが高いためである。すなわち、比較的エネルギー効率が悪い電気ヒータ24を採用していても、できるだけ送風ファン28の送風量を絞る空調システム10では、電気ヒータ24による再加熱の加熱量が抑えられ、空調システム10全体の省エネルギー化を図ることができている。
 (6)変形例
 (6-1)変形例1A
 上記の実施形態に係る空調システム10では、熱媒体回路40において蒸発器58から流出する冷水の温度が一定に制御されているという前提で、冷熱量調整部82の冷熱出力指示値に応じて循環ポンプ42の吐出流量および流量調整弁44の開度が調整され、空気冷却熱交換器22を流れる熱媒体(冷水)の流量が調整されて、空気冷却熱交換器22における熱媒体から空気へと供給される冷熱量の調整が行われるという説明をしている。
 しかし、更に熱媒体回路40において蒸発器58から流出する冷水の温度というパラメータを使い、冷水の温度および冷水の流量によって空気冷却熱交換器22における熱媒体から空気へと供給される冷熱量の調整を行うこともできる。この場合、冷水の温度を調整するときに、チラーユニット50の圧縮機52、膨張弁56、水ポンプ62の出力や開度が調節されることになり、チラーユニット50の能力を上げて冷水の温度を低くして、さらに風量を絞ることで電気ヒータ24の再熱量を抑制することができる。
 (6-2)変形例1B
 上記の実施形態に係る空調システム10では、温度PID調節器101や湿度PID調節器102においてPID制御ロジックを使っているが、このPID制御ロジックの他に、PI制御やI-PDなど派生的なPID制御など、別の公知の制御ロジックを用いることも可能である。
 (6-3)変形例1C
 上記の実施形態に係る空調システム10では、室内空間RMから取り込まれた室内空気RAが空調ユニット20のケーシング21内の空気通路を流れ、空気調和後に供給空気SAとして室内空間RMへ供給される形態を想定しているが、図1において破線で示すように、室外から取り込んだ室外空気OAを外気取り入れダクト33を介してケーシング21内に取り込み、その空気を空気調和して室内空間RMへ供給するように構成することもできる。また、室内空気RAおよび室外空気OAの両方を空調ユニット20に取り入れて室内空間RMへと供給する空調システムにおいても、本発明を適用することができる。
 (6-4)変形例1D
 上記の実施形態に係る空調システム10では、電気ヒータ24の加熱能力や散水式加湿器26の加湿能力が送風ファン28の風量による影響を殆ど受けないことに鑑み、定期的な負荷推定処理における最適制御値の計算において送風ファン28の風量による修正係数を使っていないが、加熱器として温水コイル(空気加熱熱交換器)を使ったり加湿器として蒸気コイルを使ったりする場合には、冷却負荷の最適制御値Qsloadや除湿負荷の最適制御値Qlloadの計算と同様に送風ファン28の風量による修正係数を使うことが望ましい。
  10  空調システム
  22  空気冷却熱交換器
  24  電気ヒータ
  26  散水式加湿器
  28  送風ファン
  42  循環ポンプ
  44  流量調整弁
  50  チラーユニット(冷却装置)
  80  コントローラ(制御部)
  81  メモリ(記憶部)
  82  冷熱量調整部
  84  加熱量調整部
  86  加湿量調整部
  88  送風量調整部
  95  室内温度センサ
  96  室内湿度センサ
 101  温度PID調節器
 102  湿度PID調節器
 HcMV  除湿要求出力値
 HhMV  加湿要求出力値
 TcMV  冷却要求出力値
 ThMV  加熱要求出力値
 ΔHcMV  除湿要求出力値の増分値
 ΔTcMV  冷却要求出力値の増分値
 Qsload  冷却負荷の最適制御値(冷却負荷)
 Qlload  除湿負荷の最適制御値(除湿負荷)
 Eload   加熱負荷の最適制御値(加熱負荷)
 Kload   加湿負荷の最適制御値(加湿負荷)
特開2010-243005号公報

Claims (4)

  1.  対象空間(RM)の顕熱負荷および潜熱負荷を必要量だけ処理し、前記対象空間の温度および湿度を目標値に調整する空調システム(10)であって、
     前記対象空間に吹き出す空気を冷却するための熱媒体が流れ、前記熱媒体と前記空気との間で熱交換を行わせ、前記空気の冷却および除湿を行う冷却熱交換器(22)と、
     前記冷却熱交換器で冷却および除湿された前記空気を加熱する加熱器(24)と、
     前記冷却熱交換器および前記加熱器を経て前記対象空間へと吹き出される前記空気の流れを生成する送風ファン(28)と、
     前記冷却熱交換器において前記熱媒体から前記空気へと供給される冷熱量を調整する冷熱量調整部(82)と、前記加熱器から前記空気に供給される加熱量を調整する加熱量調整部(84)と、前記送風ファンによる送風量を調整する送風量調整部(88)とを有し、前記必要量の顕熱負荷および潜熱負荷が処理できる前記冷熱量、前記加熱量および前記送風量の組合せの中に、第1の組合せと前記第1の組合せよりも前記送風量が小さい第2の組合せとが存在するときに、前記第2の組合せを選択して前記冷熱量、前記加熱量および前記送風量を調整する、制御部(80)と、
    を備えた空調システム。
  2.  前記空気と熱交換した前記熱媒体を冷やす冷却装置(50)と、
     ポンプ(42)を有し、前記冷却装置と前記冷却熱交換器との間で前記熱媒体を循環させる熱媒体回路(40)と、
    をさらに備え、
     前記冷熱量調整部は、前記冷却装置による前記熱媒体の冷却量と、前記冷却熱交換器を流れる前記熱媒体の流量との少なくとも一方を変化させることで、前記冷熱量を調整する、
    請求項1に記載の空調システム。
  3.  前記熱媒体回路(40)は、前記熱媒体の流量を調整できる流量調整弁(44)をさらに有し、
     前記ポンプ(42)は、容量調整が可能であり、
     前記加熱器(24)は、出力を段階的に変化させることが可能な電気ヒータであり、
     前記送風ファン(28)は、回転数を段階的に変化させることが可能なファンであり、
     前記冷熱量調整部(82)は、前記ポンプの容量および/または前記流量調整弁の開度を変化させることで前記冷却熱交換器を流れる前記熱媒体の流量を調整し、
     前記加熱量調整部(84)は、前記加熱器の出力を変化させることで前記空気の加熱量を調整し、
     前記送風量調整部(88)は、前記送風ファンの回転数を変化させることで前記送風量を調整する、
    請求項2に記載の空調システム。
  4.  前記制御部(80)は、前記必要量の顕熱負荷および潜熱負荷が処理できる前記冷熱量、前記加熱量および前記送風量の組合せの中から、前記送風量が最も小さくなる組合せを選択して前記冷熱量、前記加熱量および前記送風量を調整する、
    請求項1から3のいずれかに記載の空調システム。
PCT/JP2012/083586 2011-12-28 2012-12-26 温度および湿度の調整を行う空調システム WO2013099913A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12863585.1A EP2806223B1 (en) 2011-12-28 2012-12-26 Air-conditioning system that adjusts temperature and humidity
US14/369,170 US9261288B2 (en) 2011-12-28 2012-12-26 Air conditioning system for adjusting temperature and humidity
CN201280065121.3A CN104024749B (zh) 2011-12-28 2012-12-26 进行温度和湿度调整的空调系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011290074A JP5375945B2 (ja) 2011-12-28 2011-12-28 温度および湿度の調整を行う空調システム
JP2011-290074 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099913A1 true WO2013099913A1 (ja) 2013-07-04

Family

ID=48697397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083586 WO2013099913A1 (ja) 2011-12-28 2012-12-26 温度および湿度の調整を行う空調システム

Country Status (5)

Country Link
US (1) US9261288B2 (ja)
EP (1) EP2806223B1 (ja)
JP (1) JP5375945B2 (ja)
CN (1) CN104024749B (ja)
WO (1) WO2013099913A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104728934A (zh) * 2013-12-20 2015-06-24 丰田自动车株式会社 空调装置及空调控制方法
CN111219905A (zh) * 2020-02-21 2020-06-02 中国电力工程顾问集团西南电力设计院有限公司 发电厂集中制冷加热系统冷热源组合配置结构和操作方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI2734791T1 (sl) * 2011-07-18 2016-04-29 Phaza Energy Ltd. Naprava in postopek za uravnavanje okolja v rastlinjaku
JP5375945B2 (ja) * 2011-12-28 2013-12-25 ダイキン工業株式会社 温度および湿度の調整を行う空調システム
MX2016013215A (es) * 2014-04-09 2017-05-03 Roots Sustainable Agricultural Tech Ltd Sistema y metodo de suministro de calor.
US10502470B2 (en) 2016-03-22 2019-12-10 Vertiv Corporation System and method to maintain evaporator superheat during pumped refrigerant economizer operation
US10408515B2 (en) 2016-07-08 2019-09-10 Digi Charging Technology, LLC Digital monitoring and measuring air conditioner recharging system
CN107883601B (zh) * 2016-09-30 2020-07-07 大金工业株式会社 空调系统
US10557641B2 (en) 2016-10-07 2020-02-11 Vertiv Corporation Adaptive PID control for chilled water CRAC units
JP6685418B2 (ja) * 2016-10-24 2020-04-22 三菱電機株式会社 空調システム、空調制御装置、空調方法及びプログラム
CN106524419B (zh) * 2016-11-22 2019-04-19 广东美的暖通设备有限公司 空调控制方法及空调设备
JP6219549B1 (ja) * 2017-05-09 2017-10-25 伸和コントロールズ株式会社 空気調和装置
CN107560207B (zh) * 2017-08-15 2023-09-12 珠海格力电器股份有限公司 螺杆式冷水机组及其控制方法
ES2962563T3 (es) 2017-09-06 2024-03-19 Vertiv Corp Optimización energética de la unidad de enfriamiento mediante control inteligente del punto de consigna de la temperatura del aire de suministro
DE102017215818B4 (de) * 2017-09-07 2019-04-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Verbesserung der Photosynthese von Photosynthese durchführenden Lebewesen sowie Vorrichtung zur Durchführung des Verfahrens
EP3460349B1 (en) * 2017-09-21 2021-08-11 Siemens Schweiz AG Latent heat reduction
JP6835141B2 (ja) * 2019-05-31 2021-02-24 ダイキン工業株式会社 空調システム
CN110645645B (zh) * 2019-09-09 2021-10-08 青岛海纳云科技控股有限公司 一种地下车库防结露除湿装置的控制方法
CN111306691B (zh) * 2019-09-26 2021-10-08 宁波奥克斯电气股份有限公司 一种电加热控制方法、电加热装置及空调器
CN110878984B (zh) * 2019-12-02 2021-12-24 南京晶华智能科技有限公司 一种空调控制方法及装置
CN111520863B (zh) * 2020-05-12 2021-08-03 北京工业大学 一种针对分户热计量的室内加湿装置控制方法及系统
CN112050474B (zh) * 2020-08-24 2023-04-07 芜湖美的厨卫电器制造有限公司 热水器加热的补偿控制方法、补偿控制系统及存储介质
CN112361530B (zh) * 2020-10-19 2022-01-18 南京福加自动化科技有限公司 一种基于负荷预测的高精度环境智能控制系统及控制方法
US11022329B1 (en) * 2021-01-05 2021-06-01 Sub-Zero Group, Inc. Humidity control system
US11815280B2 (en) * 2022-01-31 2023-11-14 Mitsubishi Electric Us, Inc. System and method for controlling the operation of a fan in an air conditioning system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120042A (en) * 1981-01-20 1982-07-26 Toshiba Corp Method of controlling air conditioner
JPH02306045A (ja) * 1989-05-19 1990-12-19 Shimizu Corp ファンコイルユニット方式冷暖房システム
JPH04332331A (ja) * 1991-01-14 1992-11-19 Toppan Printing Co Ltd 湿度制御方法および空調機
JPH074724A (ja) * 1992-12-22 1995-01-10 Fujitsu Syst Constr Kk 空調設備の省エネルギー制御方式
JP2010242995A (ja) * 2009-04-02 2010-10-28 Daikin Ind Ltd 空調システム
JP2010243005A (ja) 2009-04-02 2010-10-28 Daikin Ind Ltd 除湿システム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444921A (en) * 1968-09-05 1969-05-20 Frank Carapico Jr Environmental control system
JPS62288444A (ja) * 1986-06-05 1987-12-15 Mitsubishi Heavy Ind Ltd ヒ−トポンプ式空気調和機の制御方法
AU597757B2 (en) * 1986-11-24 1990-06-07 Luminis Pty Limited Air conditioner and method of dehumidifier control
US5303561A (en) * 1992-10-14 1994-04-19 Copeland Corporation Control system for heat pump having humidity responsive variable speed fan
US5475986A (en) * 1992-08-12 1995-12-19 Copeland Corporation Microprocessor-based control system for heat pump having distributed architecture
JP3262288B2 (ja) * 1992-08-26 2002-03-04 東芝キヤリア株式会社 空気調和機の湿度制御装置
US5381669A (en) * 1993-07-21 1995-01-17 Copeland Corporation Overcharge-undercharge diagnostic system for air conditioner controller
US5450893A (en) * 1993-12-13 1995-09-19 Galmar Enterprises, Inc. Humidistat and interface
US5538471A (en) * 1994-11-15 1996-07-23 Innovative Air Systems, Inc. Dynamic particulate control system and method of operation
JP3747687B2 (ja) * 1999-05-12 2006-02-22 三菱電機株式会社 空気調和装置の室内機
JP2000356407A (ja) * 1999-06-17 2000-12-26 Rinnai Corp 空調装置
CA2480551A1 (en) * 2002-03-28 2003-10-09 Robertshaw Controls Company Energy management system and method
US6926079B2 (en) * 2002-11-25 2005-08-09 Honeywell International Inc. Humidity controller
JP2005037106A (ja) * 2003-07-15 2005-02-10 Kyohei Yamaguchi 変風量による温度及び湿度制御方法
US6978631B2 (en) * 2003-10-24 2005-12-27 Fuller Andrew C Dehumidification system
US20060004492A1 (en) * 2004-07-01 2006-01-05 Terlson Brad A Devices and methods for providing configuration information to a controller
JP3992051B2 (ja) * 2005-05-30 2007-10-17 ダイキン工業株式会社 空調システム
JP5055884B2 (ja) * 2006-08-03 2012-10-24 ダイキン工業株式会社 空気調和装置
JP4277895B2 (ja) * 2006-11-10 2009-06-10 ダイキン工業株式会社 空気調和機ならびに室内の湿度制御方法
CN101315211B (zh) * 2008-06-09 2014-07-30 洪国伟 温湿度独立控制空调机
JP4582243B2 (ja) * 2009-04-02 2010-11-17 ダイキン工業株式会社 除湿システム
JP5296655B2 (ja) * 2009-10-23 2013-09-25 株式会社日立ハイテクノロジーズ ガスの温湿度調節方法及びガス供給装置
JP5742459B2 (ja) 2011-05-18 2015-07-01 沖電気工業株式会社 媒体処理装置
JP5375945B2 (ja) * 2011-12-28 2013-12-25 ダイキン工業株式会社 温度および湿度の調整を行う空調システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120042A (en) * 1981-01-20 1982-07-26 Toshiba Corp Method of controlling air conditioner
JPH02306045A (ja) * 1989-05-19 1990-12-19 Shimizu Corp ファンコイルユニット方式冷暖房システム
JPH04332331A (ja) * 1991-01-14 1992-11-19 Toppan Printing Co Ltd 湿度制御方法および空調機
JPH074724A (ja) * 1992-12-22 1995-01-10 Fujitsu Syst Constr Kk 空調設備の省エネルギー制御方式
JP2010242995A (ja) * 2009-04-02 2010-10-28 Daikin Ind Ltd 空調システム
JP2010243005A (ja) 2009-04-02 2010-10-28 Daikin Ind Ltd 除湿システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2806223A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104728934A (zh) * 2013-12-20 2015-06-24 丰田自动车株式会社 空调装置及空调控制方法
CN111219905A (zh) * 2020-02-21 2020-06-02 中国电力工程顾问集团西南电力设计院有限公司 发电厂集中制冷加热系统冷热源组合配置结构和操作方法
CN111219905B (zh) * 2020-02-21 2024-04-16 中国电力工程顾问集团西南电力设计院有限公司 发电厂集中制冷加热系统冷热源组合配置结构和操作方法

Also Published As

Publication number Publication date
US20150115047A1 (en) 2015-04-30
JP2013139921A (ja) 2013-07-18
US9261288B2 (en) 2016-02-16
EP2806223A4 (en) 2016-01-13
EP2806223A1 (en) 2014-11-26
JP5375945B2 (ja) 2013-12-25
CN104024749B (zh) 2015-06-17
CN104024749A (zh) 2014-09-03
EP2806223B1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP5375945B2 (ja) 温度および湿度の調整を行う空調システム
JP6234574B2 (ja) 換気装置
JP6234575B2 (ja) 換気装置
JP6300921B2 (ja) 空調換気装置
JP6567183B2 (ja) 空気調和システム
JP6119141B2 (ja) 空調システム
WO2016013487A1 (ja) 室温調整システム
JP5391785B2 (ja) 空調システム
JP5737173B2 (ja) 温度および湿度の調整を行う空調システム
WO2015037434A1 (ja) 空調装置
JP6250148B2 (ja) 空気調和システム
JP6221198B2 (ja) 外調機の制御装置
JP5673524B2 (ja) 温度および湿度の調整を行う空調システム
JP7374633B2 (ja) 空気調和機及び空気調和システム
JP6024726B2 (ja) 外調機の制御装置
JP6213781B2 (ja) 外調機の制御方法
JP5318446B2 (ja) 外気取入システム
JP2014126234A (ja) 熱負荷処理システム
JP5940608B2 (ja) 熱媒体循環システム
JP7209485B2 (ja) 空気調和システム
JP2023137319A (ja) 空調システム
JP2022109494A (ja) 外気処理機
JP2014035100A (ja) 空調システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863585

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14369170

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012863585

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012863585

Country of ref document: EP