WO2013099716A1 - Iii族窒化物半導体素子およびその製造方法 - Google Patents
Iii族窒化物半導体素子およびその製造方法 Download PDFInfo
- Publication number
- WO2013099716A1 WO2013099716A1 PCT/JP2012/082855 JP2012082855W WO2013099716A1 WO 2013099716 A1 WO2013099716 A1 WO 2013099716A1 JP 2012082855 W JP2012082855 W JP 2012082855W WO 2013099716 A1 WO2013099716 A1 WO 2013099716A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iii nitride
- nitride semiconductor
- group iii
- layer
- electrode
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 156
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 144
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- 238000005530 etching Methods 0.000 claims description 87
- 230000015572 biosynthetic process Effects 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 37
- 239000000758 substrate Substances 0.000 claims description 36
- 230000001681 protective effect Effects 0.000 claims description 14
- 238000001039 wet etching Methods 0.000 claims description 9
- 239000012670 alkaline solution Substances 0.000 claims description 6
- 238000000206 photolithography Methods 0.000 claims description 6
- 238000001312 dry etching Methods 0.000 claims description 4
- 239000000243 solution Substances 0.000 description 22
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 14
- 229910004298 SiO 2 Inorganic materials 0.000 description 13
- 229910052594 sapphire Inorganic materials 0.000 description 12
- 239000010980 sapphire Substances 0.000 description 12
- 238000001020 plasma etching Methods 0.000 description 10
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical compound [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
- H01L21/30612—Etching of AIIIBV compounds
- H01L21/30617—Anisotropic liquid etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
- H01L21/30612—Etching of AIIIBV compounds
- H01L21/30621—Vapour phase etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
- H01L29/452—Ohmic electrodes on AIII-BV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
Definitions
- the present invention relates to a group III nitride semiconductor device and a manufacturing method thereof.
- Group III nitrides such as field effect transistors (FETs) and light emitting diodes (LEDs) in which element portions are formed of group III nitride semiconductors using Al, Ga, In or the like as group III elements and N as group V elements Semiconductor devices have been studied.
- FETs field effect transistors
- LEDs light emitting diodes
- an active element portion made of a group III nitride semiconductor layer is formed on the (0001) plane of an n-type GaN substrate, a p-electrode is formed on the active element portion, and
- a group III nitride semiconductor device in which an n electrode is formed on the (000-1) plane side a polygonal pyramid having a specific facet surface on the surface by wet etching or the like on the (000-1) plane side of the n-type GaN substrate.
- a technique is described in which a good ohmic contact is obtained by forming a protrusion and forming an n-electrode such as Ti / Al or Ti / Au so as to cover the protrusion.
- GaN substrates and SiC substrates are still expensive and are generally grown on sapphire substrates because there is no large-diameter and inexpensive conductive single crystal substrate.
- the sapphire substrate is insulative and no current flows.
- a part of the semiconductor stacked body including the n-type group III nitride semiconductor layer, the active layer, and the p-type group III nitride semiconductor layer, which are sequentially grown on the sapphire substrate is removed.
- the n-type group III nitride semiconductor layer is exposed.
- an n-side electrode and a p-side electrode are arranged on the exposed n-type group III nitride semiconductor layer and p-type group III nitride semiconductor layer, respectively, and a lateral structure is formed in which a current flows laterally. Adopted.
- a buffer layer is formed on a sapphire substrate to be removed by, for example, laser irradiation or etching, and then a semiconductor stacked body including an n-type group III nitride semiconductor layer, an active layer, and a p-type group III nitride semiconductor layer is formed. To do.
- the buffer layer is selectively dissolved by decomposition or etching by laser irradiation, and the sapphire substrate is peeled off (lifted off).
- the buffer layer here is a buffer layer for epitaxial growth of the semiconductor stacked body, and also serves as a lift-off layer for peeling the semiconductor stacked body from the sapphire substrate.
- Such a method for producing a group III nitride semiconductor device is called a laser lift-off method or a chemical lift-off method.
- both the n-side electrode and the p-side electrode are formed on the (0001) plane side of the n-type group III nitride semiconductor layer and the p-type group III nitride semiconductor layer, respectively.
- the p-side electrode is formed on the (0001) plane side of the p-type group III nitride semiconductor layer, but the n-side electrode is (000 ⁇ ) of the n-type group III nitride semiconductor layer. 1) It is formed on the surface side.
- a polygonal pyramid having a specific facet surface on the surface is obtained by performing wet etching on the (000-1) plane of the n-type group III nitride semiconductor layer exposed along with the removal of the lift-off layer.
- the present invention provides a group III nitride semiconductor device in which an electrode is formed on the (000-1) plane side of a group III nitride semiconductor, and the (000-1) plane side of the group III nitride semiconductor layer. It is an object of the present invention to provide a group III nitride semiconductor device that realizes a good ohmic contact between the electrode and the electrode and can operate at a lower voltage, and a method for manufacturing the same.
- the gist of the present invention is as follows. (1) A group III nitride semiconductor device having a group III nitride semiconductor layer, wherein a plurality of dome-shaped rounds are provided in a predetermined region on the (000-1) plane side of the group III nitride semiconductor layer. A group III nitride semiconductor device having a protrusion and an electrode on the upper surface of the predetermined region.
- a group III nitride semiconductor device having a support body, a first conductivity type group III nitride semiconductor layer, an active layer, and a second conductivity type group III nitride semiconductor layer sequentially disposed on the support body.
- the second conductive type group III nitride semiconductor layer has a (000-1) plane side opposite to the support body, and the (000-1) plane of the second conductive type group III nitride semiconductor layer.
- a group III nitride semiconductor device comprising a plurality of convex portions having a dome-shaped round shape in a predetermined region on the side, and an electrode on an upper surface of the predetermined region.
- a method for producing a group III nitride semiconductor device having a group III nitride semiconductor layer wherein anisotropic etching is performed on a predetermined region on the (000-1) plane side of the group III nitride semiconductor layer, A step of forming a plurality of polygonal pyramidal projections, a step of subjecting the predetermined region to isotropic etching to change the projection into a plurality of convex portions having a dome-shaped round shape, and a predetermined step having the convex portions And a step of forming an electrode on the upper surface of the region.
- a method of manufacturing a group III nitride semiconductor device comprising:
- the step of forming the electrode includes a step of forming a protective film on the upper surface of the predetermined region, a step of applying a resist on the protective film, and removing the resist at the electrode formation site by a photolithography method,
- Nitride semiconductor element The method of production.
- a plurality of convex portions having a dome-shaped round shape are provided in a predetermined region on the (000-1) plane side of the group III nitride semiconductor layer.
- An electrode was provided on the upper surface.
- anisotropic etching and subsequent isotropic etching are performed on a predetermined region on the (000-1) plane side of the group III nitride semiconductor layer.
- the surface of the convex portion can be effectively formed. Therefore, a good ohmic contact between the (000-1) plane side of the group III nitride semiconductor layer and the electrode can be realized, and a group III nitride semiconductor element operable at a lower voltage can be obtained.
- FIGS. 4A to 4G are schematic cross-sectional views showing each step of a method for manufacturing a group III nitride semiconductor device according to an embodiment of the present invention.
- (A), (B) is sectional drawing which shows typically the surface shape of the n-type group III nitride layer 110 in the process shown to FIG.2 (E), (F), respectively,
- (C) is ( It is a conceptual diagram which shows the measuring method of the convex part of B).
- A) and (B) schematically show the surface shape of the n-type group III nitride layer 110 in the conventional group III nitride semiconductor device, respectively.
- FIGS. 4A to 4F are schematic cross-sectional views illustrating an example of an electrode forming process illustrated in FIG. It is a SEM image of Example 1, (A) is what image
- Example 7 It is a SEM image of Example 7, (A) is what image
- a group III nitride semiconductor device 100 (hereinafter also simply referred to as “device” 100) according to an embodiment of the present invention will be described with reference to FIG.
- the element 100 includes a support body 116, a p-type group III nitride semiconductor layer 114 (hereinafter simply referred to as “p layer”), an active layer 112, and an n-type group III nitride semiconductor that are sequentially positioned on the support body 116.
- a layer 110 hereinafter, simply referred to as an “n layer”).
- An n-side electrode 128 is located on the n layer 110 and is electrically connected to the n layer.
- the support body 116 has conductivity, and also serves as a p-side electrode that is electrically connected to the p layer 114.
- the details of the superlattice buffer layer 108 and the AlN buffer layer 106 located on the outer periphery of the n layer 110 and the mask 118 covering the periphery of each semiconductor layer and the peripheral portion of the surface of the support body 116 will be described later.
- the n layer 110 has a (0001) plane on the support body 116 side and a (000-1) plane on the opposite side to the support body 116.
- the n layer 110 has a plurality of convex portions 124 having a dome-shaped roundness in a predetermined region 120 on the (000-1) plane side of the n layer 110, and an n-side electrode 128 on the upper surface of the predetermined region. .
- the inventors have shown that the (000-1) plane side of the n layer 110 is flat and the (000-1) plane is exposed, as shown in FIG.
- the n-layer 110 and the n-layer 110 have a projection of a polygonal pyramid on the (000-1) plane side and a facet plane other than the (000-1) plane is exposed. It has been found that the ohmic contact with the n-side electrode 128 can be improved and the device can be operated at a lower voltage.
- a lift-off layer 104 is formed on a growth substrate 102, an AlN buffer layer 106 and a superlattice buffer layer 108 are sequentially formed thereon, and an n-type is further formed thereon.
- a group III nitride semiconductor layer 110, an active layer 112, and a p-type group III nitride semiconductor layer 114 are formed in this order.
- the superlattice buffer layer 108 is formed to alleviate the lattice mismatch with the n layer 110 formed thereon and to improve the crystal quality of the n layer 110.
- FIG. 2B shows only one semiconductor structure section partitioned by grooves.
- a support body 116 is formed on the p layer 114. The support body 116 supports the stacked semiconductor layers after the growth substrate 102 described below is peeled off.
- the lift-off layer 104 is removed by a chemical lift-off method, so that the growth substrate 102 is separated from the n-layer 110, the superlattice buffer layer 108, the AlN buffer layer 106, and the like.
- a mask 118 is formed to cover the peripheral portion of the AlN buffer layer 106 surface, the periphery of each semiconductor layer, and the peripheral portion of the surface of the support body 116.
- the mask 118 is made of an insulating film such as SiO 2 or SiN, and protects the covered portion from anisotropic etching and isotropic etching described later.
- anisotropic etching for example, wet etching with an alkaline solution such as a 2.38 mass% tetramethylammonium hydroxide (TMAH) solution is not covered with the mask 118 and exposed.
- TMAH tetramethylammonium hydroxide
- the AlN buffer layer 106 in the predetermined region 120 is applied.
- the AlN buffer layer 106 and the superlattice buffer layer 108 are removed, and the n layer 110 is exposed.
- the (000-1) plane side of the n layer 110 is exposed.
- the layer grows in the c-axis direction, and the surface of the grown layer becomes a (0001) plane called a so-called Ga plane, which is the opposite side (side in contact with the support body). Becomes the (000-1) plane called the so-called N-plane. Therefore, in the layer formation stage of FIG. 2A, the surface of the n layer 110 in contact with the superlattice buffer layer 108 is the (000-1) plane, and the surface on which the active layer 112 is grown is the (0001) plane. It is.
- anisotropic etching is continuously performed on the predetermined region 120 of the exposed n layer 110 on the (000-1) plane side.
- anisotropic etching is performed on the (000-1) plane side of the n layer 110, a plurality of polygonal pyramid-shaped protrusions 122 are formed on the surface of the n layer 110 as shown in FIG. Since group III nitride semiconductors are hexagonal, hexagonal pyramidal protrusions are usually formed.
- the anisotropic etching is wet etching in which the surface of the protrusion 122 is a facet surface other than the (000-1) plane.
- the etching solution is an alkaline solution as in the present embodiment, it has been reported so far that the facet surface exposed on the surface of the protrusion 122 is a (10-1-1) surface or a surface equivalent thereto.
- Isotropic etching is, for example, dry etching such as reactive ion etching (RIE).
- RIE reactive ion etching
- the n-side electrode 128 is formed on the upper surface of the predetermined region 120 of the n layer 110 as shown in FIG. Form.
- the element 100 of this embodiment is completed through the above steps.
- the method for producing a group III nitride semiconductor device of the present invention comprises (000-1) of a group III nitride semiconductor layer. ) Applying anisotropic etching to a predetermined region on the surface side to form a plurality of polygonal pyramidal protrusions; applying isotropic etching to the predetermined region; and forming the protrusions into a plurality of dome-shaped rounded protrusions And a step of forming an electrode on the upper surface of the predetermined region having the convex portion.
- the group III nitride semiconductor device of the present invention can be obtained by, for example, the above manufacturing method, and has a dome-shaped roundness in a predetermined region on the (000-1) plane side of the group III nitride semiconductor layer. It has a some convex part and has an electrode on the upper surface of the said predetermined area
- the step of exposing the surface of the n layer 110 shown in FIG. 2E is performed only by isotropic etching, the surface of the n layer 110 becomes flat as shown in FIG. 1) The surface is exposed. Further, when the same process is performed only by anisotropic etching, the surface of the n layer 110 becomes a polygonal pyramid (hexagonal pyramidal) protrusion 122 as shown in FIG. It has been reported that the surface of the protrusion 122 is a (10-1-1) plane or a plane equivalent thereto. According to the study by the present inventors, when an n-side electrode is formed on each of the two n-layer 110 surfaces, a sufficient ohmic contact cannot be obtained, and the voltage between two n-side electrodes is measured. As a result, the voltage became high. This means that the voltage at which the element can operate is also high.
- the n-side electrode is arranged on the surface of the n layer 110 having a plurality of convex portions 124 having a dome-shaped roundness on the (000-1) plane side as in the element 100, good ohmic contact is achieved.
- the voltage between the two n-side electrodes was sufficiently low as compared with the above two cases.
- Such a convex surface can be effectively formed by applying anisotropic etching and subsequent isotropic etching to a predetermined region on the (000-1) plane side of the group III nitride semiconductor layer. It was.
- good ohmic contact between the (000-1) plane side of the group III nitride semiconductor layer and the electrode is realized, and the element can be operated at a lower voltage.
- isotropic etching may be performed for the purpose of removing all or part of the AlN layer 106 and the superlattice buffer layer 108 before anisotropic etching and subsequent isotropic etching. Good.
- the growth substrate 102 is preferably a sapphire substrate or an AlN template substrate in which an AlN film is formed on a sapphire substrate. What is necessary is just to select suitably by the kind of the lift-off layer to form, the composition of Al, Ga, In of the semiconductor laminated body which consists of a group III nitride semiconductor, the quality of a LED chip, cost, etc.
- the lift-off layer 104 is not particularly limited as long as it is a material that can be dissolved by an etching solution, and examples thereof include metals other than Group III such as CrN and metal nitride buffer layers.
- the AlN buffer layer 106, the superlattice buffer layer 108, the n layer 110, the active layer 112, and the p layer 114 can be sequentially epitaxially grown on the lift-off layer 104 by, for example, the MOCVD method.
- the superlattice buffer layer 108 is formed by alternately stacking two Al x Ga 1-x N (0 ⁇ x ⁇ 1) having different Al compositions x.
- the n layer 110 and the p layer 114 are made of any group III nitride semiconductor such as AlInGaN, and are made of a clad layer sandwiching the active layer and a contact layer in contact with the n side electrode and the p side electrode, respectively.
- the active layer 112 can be a light emitting layer in which a multiple quantum well (MQW) structure is formed of a group III nitride semiconductor.
- the element 100 is an LED.
- the thicknesses of the AlN buffer layer 106, the superlattice buffer layer 108, the n layer 110, the active layer 112, and the p layer 114 are 0.6 to 2 ⁇ m, 0.6 to 3 ⁇ m, 1 to 4 ⁇ m, 1 to 100 nm, The thickness is about 0.1 to 1 ⁇ m.
- the support body 116 may be formed by bonding a conductive silicon substrate, a CuW alloy substrate, a Mo substrate, or the like, or may be formed by wet or dry plating. For example, in the electroplating of Cu or Au, Cu, Ni, Au or the like can be used as the connection layer.
- the support body 116 can also serve as a p-side electrode.
- Etching solution usable for the chemical lift-off method is not particularly limited.
- an etchant having selectivity with respect to CrN such as ceric ammonium nitrate solution or potassium permanganate solution can be used.
- the lift-off layer is ScN, Hf, or Zr, a selective acidic etching solution can be used.
- the mask 118 for example, SiO 2 or SiN can be used.
- the formation method is not particularly limited. For example, after depositing SiO 2 by CVD on the entire surface of the AlN buffer layer 106, the periphery of each semiconductor layer, and the peripheral portion of the surface of the support body 116, only the predetermined region 120 is exposed. A state shown in FIG. 2D can be obtained by forming a metal mask (for example, Ni) and etching SiO 2 in the predetermined region 120 by RIE.
- a metal mask for example, Ni
- the anisotropic etching is not particularly limited as long as a polygonal pyramidal convex portion can be formed on the (000-1) plane side of the group III nitride semiconductor layer.
- TMAH tetramethylammonium hydroxide
- Wet etching with an alkaline solution such as a solution, NaOH solution or KOH solution.
- the convex portion has a hexagonal pyramid shape
- the surface of the convex portion (six side surfaces of the hexagonal pyramid) has a planar shape, and this surface is mainly a (10-1-1) plane.
- the literature Appl. Phys. Lett., Vol.
- the (10-1-2) plane and the (10-1-3) plane appear depending on other etching solutions (phosphoric acid and the like). .18, 2 November 1998).
- the (10-1-1) plane is more preferable because the angle of the convex portion is large and the valley is deep.
- the processing conditions for anisotropic etching are not particularly limited as long as a polygonal pyramidal convex portion can be formed on the (000-1) plane side of the group III nitride semiconductor layer.
- the anisotropic etching treatment time is preferably 1 minute or more, and 5 to 60 minutes. A range is more preferred.
- the etching proceeds at a uniform rate regardless of the position in the surface.
- the etching progresses at the top where physical adsorption and separation are easier than the bottom of the convex portion. Tend to be early. Therefore, in this manufacturing method, by performing isotropic etching following anisotropic etching, the protrusion 122 can be changed to a convex portion 124 having a round top.
- the dimensions of the protrusions are 0.1 to 3 ⁇ m in height, but are not necessarily uniform.
- the convex part is distributed over the whole area
- the round shape has uniformity, that is, the convex portions having roundness distributed over the whole area subjected to anisotropic etching and isotropic etching processing are similarly dome-shaped, and As shown in FIG. 3B, the bottom 126 of the valley formed by the adjacent convex portions 124 is a corner.
- the reason why the bottom 126 of the valley becomes a corner is that the anisotropic etching is performed in the first stage of the two-stage etching. That is, compared with the case where the convex portion is formed using a mask pattern or the like, the bottom of the valley formed at a depth of 3 ⁇ m at the maximum by the combination of anisotropic etching and isotropic etching in the present invention, The corners are formed by anisotropic etching, and a finer and more complicated random surface can be formed. Therefore, the area of the random surface in contact with the ohmic electrode is large, and the effect of improving the ohmic contact property is high.
- the convex portion 124 inherits part of the regularity of the shape by anisotropic etching and the bottom portion 126 of the valley is a corner, as shown in FIG. 3C, the bottom portion 126 of the valley is connected to the cross section of the convex portion. And a horizontal line is drawn to the height (h / 3) of one third of the height (h) from the bottom to the top of the convex portion, and the intersection of the convex portion and the bottom 126 of the valley You can draw a triangle with the straight line as the side. Therefore, the “dome-shaped roundness” in this specification means that the height from the bottom to the top of the convex portion is lower than the height from the bottom to the top of the circumscribed triangle, that is, circumscribes.
- the angle ⁇ 2 from the base of the triangle to the top of the convex portion is smaller than the angle ⁇ 1 from the base of the triangle to the top, and it is formed non-linearly from the base to the top of the convex portion.
- the difference ( ⁇ 1 ⁇ 2) between the two angles (average values) is, for example, 3 to 30 degrees.
- the cross section of the convex portion is preferably a shape that is rounded convex toward the outside of the convex portion from the bottom to the top of the convex portion.
- etching for example, dry etching such as reactive ion etching (RIE) can be used.
- RIE reactive ion etching
- a gas such as chlorine, silicon tetrachloride, or boron trichloride can be used when etching a nitride semiconductor.
- the treatment time for isotropic etching is preferably 3 minutes or more, more preferably 5 minutes or more, although depending on conditions other than time.
- the electrode material of the n-side electrode 1208 Al, Cr, Ti, Ni, Pt, Au or the like is used. However, since it is easy to obtain stable ohmic characteristics, a Ti / Al electrode is preferable, for example, formed by sputtering. can do.
- the first conductivity type is p-type
- the second conductivity type is n-type. This is because the resistance of the p-type layer is high and the current is difficult to spread, so that the light emission efficiency can be easily improved by using an n-type layer having a lower resistance as the light extraction side.
- a protective film 130 is formed on the upper surface of at least the predetermined region 120 of the n layer 110.
- the protective film 130 is formed by forming an insulating film of SiO 2 or SiN by the CVD method in the same manner as the mask 118.
- a resist 132 is applied on the protective film 130, and as shown in FIG. 5C, the resist at the electrode forming portion 134 is removed by photolithography.
- an alkaline solution such as 2.38 mass% TMAH used for removing the resist does not contact the n layer 110. Therefore, it is preferable because the surface state of the n layer 110, that is, the surface of the convex portion 124 can be maintained as a random surface formed by isotropic etching.
- the protective film 130 at the electrode forming portion 134 is removed. This removal can be performed by using any etching solution that does not erode the n-layer 110, although the protective film such as BHF or HF has etching properties.
- an n-side electrode 128 such as a Ti / Al electrode is formed on the electrode forming portion 134 by sputtering. Note that the electrode material deposited on the resist 132 can be removed while removing the resist 132 with acetone or the like as shown in FIG.
- annealing is performed at a temperature of about 400 to 600 ° C. in a vacuum.
- an AlN layer (thickness: 1 ⁇ m), a superlattice buffer layer (AlN / GaN laminate, thickness: 1 ⁇ m), an n-type group III nitride semiconductor layer (Al 0.3 Ga 0.7 N layer, thickness: 2 ⁇ m), light emitting layer (AlInGaN-based MQW layer, thickness: 0.2 ⁇ m), p-type group III nitride semiconductor layer (Al 0.3 Ga 0.7 N layer, thickness) Thickness: 0.4 ⁇ m) and a p-type GaN contact layer (thickness: 0.05 ⁇ m) were sequentially laminated.
- a part of the semiconductor layer is removed by RIE to form a lattice-shaped groove so that a part of the sapphire substrate is exposed, thereby forming a plurality of independent semiconductor structures having a square cross-sectional shape. Formed.
- the etching solution was a ceric ammonium nitrate solution having selectivity for the ScN layer.
- SiO 2 thickness: 3 ⁇ m
- SiO 2 thickness: 3 ⁇ m
- SiO 2 thinness: 3 ⁇ m
- a Ni mask is formed by sputtering.
- the Ni mask was formed by forming a resist pattern by photolithography and removing the Ni film by wet etching only at the portion where the n layer was exposed. Thereafter, SiO 2 exposed by RIE was etched and removed.
- etching was performed under the conditions shown in Table 1 using the formed SiO 2 as a mask to remove the AlN buffer layer and the superlattice buffer layer and to expose the surface of the n layer.
- the anisotropic etching of Table 1 used 2.38 mass% TMAH solution.
- the isotropic etching shown in Table 1 was RIE, and specific conditions were a pressure of 0.1 Pa, ICP and BIAS output of 400 W, Cl 2 gas of 7.5 sccm, and BCl 3 gas of 7.5 sccm.
- anisotropic etching was performed at 40 ° C. for 10 minutes, and then RIE was performed for 20 minutes. Thereafter, washing with pure water was performed. The above etching is performed on the side where the growth substrate is peeled off, and the exposed n layer is the (000-1) plane side of the n layer.
- a Ti / Al electrode was formed on the n layer exposed by the following method. First, SiO 2 (thickness: 0.1 [mu] m) by a plasma CVD method on the exposed n layer was formed. Thereafter, a photoresist was applied onto SiO 2 and the resist at the electrode forming portion was removed by a photolithography method. For removing the resist, a 2.38 mass% TMAH solution was used. Then, by treating for 1 min at BHF solution to remove SiO 2 electrode formation region. Thereafter, a Ti / Al (thickness: 20 nm / 600 nm) electrode was formed by sputtering. The photoresist and Ti / Al deposited thereon were removed with acetone.
- Example 1 since there is SiO 2 as a protective film, the n-layer is not subjected to anisotropic etching with a TMAH solution when the resist is removed.
- Examples 2-7 Comparative Examples 1-4
- a group III nitride semiconductor LED device was produced in the same manner as in Example 1 except that the formation process of the n-layer surface was as described in Table 1.
- Example 5 The formation process of the n-layer surface is as shown in Table 1, and a group III nitride semiconductor LED was formed in the same manner as in Example 1 except that SiO 2 was not formed and removed when forming the Ti / Al electrode. An element was produced. In this case, since the 2.38 mass% TMAH solution comes into contact with the n layer at the time of removing the resist at the electrode formation site, anisotropic etching is further performed on the surface of the n layer at the electrode formation site after the n layer formation process.
- FIGS. 6 to 10 representatively show SEM images of Example 1, Comparative Example 3, Comparative Example 4, Example 6, and Example 7, respectively.
- A is an image of an oblique view before forming the n-side electrode
- B is an image of a cross section after the heat treatment after forming the n-side electrode.
- FIG. 11 the image of the diagonal visual field before the n side electrode formation of the comparative example 5 is shown.
- Example 1 As shown in FIGS. 6A and 6B, a plurality of convex portions having a dome-shaped roundness were observed on the surface of the n layer. Further, as is apparent from FIG. 6B, the bottom of the valley formed by the adjacent convex portions is cornered. In order to measure the degree of roundness, the triangle described in FIG. 3C is drawn on this convex part, and an angle ⁇ 1 from the base of the triangle to the vertex of the triangle and a straight line from the base of the triangle to the top of the convex part. A total of 10 angles ⁇ 2 were measured, and the average value was calculated. In Example 1, ⁇ 1 was 62 degrees and ⁇ 2 was 51 degrees. In Example 6, ⁇ 1 was 64 degrees and ⁇ 2 was 50 degrees. Examples 2 to 5 and 7 also have the same angle, ⁇ 1 is approximately 60 degrees, and ⁇ 2 is approximately 50 degrees.
- Example 7 in which the processing time of isotropic etching is 1 minute, as shown in FIG. 10, a convex portion having a dome-shaped round shape and a convex portion having a triangular cross-sectional shape (FIG. 10 (A ) are relatively large convex portions, and the ratio is about 1/3). Although the shape change is insufficient when the treatment time is 1 minute, it is clear from the comparison with Comparative Example 2 that the convex portion having a dome-shaped roundness has a voltage reducing effect. On the other hand, in Examples 1 to 6 in which the processing time of isotropic etching was 5 minutes or more, almost all had a dome-shaped roundness.
- the surface of the dome-shaped rounded convex portion in the shape of Examples 1 to 7 is not considered to be a polar face or semipolar facet face as reported in anisotropic etching, It is clear that the surface is a random surface that cannot be specified.
- Comparative Example 3 since anisotropic etching was not performed after anisotropic etching, a plurality of hexagonal pyramidal projections were formed on the surface of the n layer as shown in FIGS. 7 (A) and (B). It has been reported so far that the (10-1-1) plane is exposed by wet etching, and from FIG. 7, the side surface of the protrusion has an angle of about 60 degrees with respect to the bottom, and the surface of the protrusion is (10-1- 1) It can be estimated that it is a surface. The same was true for Comparative Examples 1 and 2.
- the n-layer surface electrode formation site was changed to a 2.38 mass% TMAH solution when the resist at the site where the Ti / Al electrode was formed was removed by photolithography after the n-layer formation process. Contact and anisotropic etching is performed. As a result, as shown in FIG. 11, on the surface of the n layer after removing the resist at the electrode formation site, a finer convex portion is formed on the top of the convex portion, which is not a convex portion having a dome-shaped roundness. It was.
- This minute convex portion is considered to be generated because a portion of the random surface exposed by isotropic etching, which has a weak connection between atoms and is easily etched by an anisotropic etching solution, is preferentially etched.
- anisotropic etching time the time required for removing the resist at the electrode formation site (anisotropic etching time) is as short as 90 seconds, the voltage between n and n is larger than that in Example 5, so that it has the effect of reducing the contact resistance. It was confirmed that the surface was changed by anisotropic etching, and the surface mainly formed by anisotropic etching was regenerated on the surface.
- Example 7 the voltage between the n electrodes could be remarkably reduced as compared with the comparative example.
- Examples 1 to 6 in which almost all the convex portions have a dome shape were further reduced as compared with Example 7.
- a group III nitride semiconductor device that realizes good ohmic contact between the (000-1) plane side of the group III nitride semiconductor layer and the electrode and can operate at a lower voltage, and a method for manufacturing the same. Can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Led Devices (AREA)
- Electrodes Of Semiconductors (AREA)
- Semiconductor Lasers (AREA)
Abstract
Ⅲ族窒化物半導体層の(000-1)面側と電極との良好なオーミック接触を実現し、より低電圧で動作可能なⅢ族窒化物半導体素子を提供する。 本発明のⅢ族窒化物半導体素子(100)は、Ⅲ属窒化物半導体層(110)の(000-1)面側の所定領域(120)に、ドーム型形状の丸みを有する複数の凸部(124)を有し、この所定領域(120)の上面に電極(128)を有することを特徴とする。
Description
本発明は、III族窒化物半導体素子およびその製造方法に関する。
III族元素としてAl,Ga,In等を用い、V族元素としてNを用いたIII族窒化物半導体により素子部分を形成した電界効果トランジスタ(FET)、発光ダイオード(LED)などのIII族窒化物半導体素子が研究されている。
GaN,AlGaNなどのIII族窒化物半導体は、通常六方晶系のウルツ鉱型結晶構造を有している。そして、サファイア等の異種基板上に例えばGaNのようなIII族窒化物半導体をエピタキシャル成長させる場合、通常、層はc軸方向に成長させ、成長する層の表面がいわゆるGa面と呼ばれる(0001)面となり、反対側(基板と接する側)がいわゆるN面を呼ばれる(000−1)面となる。また、GaN基板のようなIII族窒化物半導体基板も、片側の表面が(0001)面で、反対側の表面が(000−1)面となるのが通常である。
ここで、特許文献1には、n型GaN基板の(0001)面上にIII族窒化物半導体層からなる能動素子部を形成し、能動素子部上にp電極を、n型GaN基板の(000−1)面側にn電極を形成するIII族窒化物半導体素子において、n型GaN基板の(000−1)面側にウェットエッチングなどで、特定のファセット面を表面に有する多角錐形の突起部を形成し、その突起部を覆うようにTi/AlやTi/Auなどのn電極を形成することで、良好なオーミック接触を得る技術が記載されている。
ところで、GaN基板やSiC基板は依然として高価であり、大口径で安価な導電性単結晶基板が無いという理由から、サファイア基板上に成長させるのが一般的である。
しかし、サファイア基板は絶縁性であって電流が流れない。このため、従来の素子では、サファイア基板上に順に成長させたn型のIII族窒化物半導体層、活性層およびp型のIII族窒化物半導体層からなる半導体積層体の一部を除去してn型のIII族窒化物半導体層を露出させる。そして、この露出させたn型のIII族窒化物半導体層およびp型のIII族窒化物半導体層の上にn側電極およびp側電極をそれぞれ配置して、電流を横方向に流す横型構造を採用していた。
これに対し、近年、以下のようにして縦型構造の素子を得る技術が研究されている。まず、サファイア基板上に例えばレーザー照射やエッチング等により除去するためのバッファ層を形成後、n型III族窒化物半導体層、活性層およびp型III族窒化物半導体層を含む半導体積層体を形成する。次に、この半導体積層体上に、これを支持する導電性のサポート体を形成した後、バッファ層をレーザー照射により分解またはエッチングにより選択的に溶解して、サファイア基板を剥離(リフトオフ)する。そして、これらサポート体と半導体積層体を一対の電極で挟むことで、素子を形成する。なお、ここで言うバッファ層は、半導体積層体のエピタキシャル成長のためのバッファ層であるとともに、サファイア基板から半導体積層体を剥離するためのリフトオフ層の役割も兼ねるものである。このようにIII族窒化物半導体素子を作製する方法を、レーザーリフトオフ法やケミカルリフトオフ法と呼ぶ。
上記横型構造の素子では、n側電極およびp側電極はともに、それぞれn型III族窒化物半導体層およびp型III族窒化物半導体層の(0001)面側に形成される。しかし、上記縦型構造の素子では、p側電極はp型III族窒化物半導体層の(0001)面側に形成されるが、n側電極はn型III族窒化物半導体層の(000−1)面側に形成される。
本発明者らの検討によれば、特許文献1のようなIII族窒化物半導体基板の場合だけでなく、III族窒化物半導体層上に電極を形成する場合にも、(0001)面側に形成するか、(000−1)面側に形成するかによって、得られるオーミック接触性が異なることが明らかになった。すなわち、上記縦型構造の場合には、(000−1)面側のn型III族窒化物半導体層とn側電極とのオーミック接触が十分に得られず、n側電極が高抵抗すなわち高電圧となってしまうという問題があった。
さらに本発明者らが検討したところ、リフトオフ層の除去に伴い露出したn型III族窒化物半導体層の(000−1)面にウェットエッチングを施して、特定のファセット面を表面に有する多角錐形の突起部を多数形成し、その上にn側電極を形成したところ、n型III族窒化物半導体層とn側電極とのオーミック接触が十分に得られず、むしろ、突起部を形成しない場合よりも高抵抗となってしまうことが判明した。
そこで本発明は、上記課題に鑑み、III族窒化物半導体の(000−1)面側に電極を形成するIII族窒化物半導体素子において、III族窒化物半導体層の(000−1)面側と電極との良好なオーミック接触を実現し、より低電圧で動作可能なIII族窒化物半導体素子およびその製造方法を提供することを目的とする。
上記目的を達成するため、本発明の要旨構成は以下のとおりである。
(1)III族窒化物半導体層を有するIII族窒化物半導体素子であって、前記III族窒化物半導体層の(000−1)面側の所定領域に、ドーム型形状の丸みを有する複数の凸部を有し、前記所定領域の上面に電極を有することを特徴とするIII族窒化物半導体素子。
(1)III族窒化物半導体層を有するIII族窒化物半導体素子であって、前記III族窒化物半導体層の(000−1)面側の所定領域に、ドーム型形状の丸みを有する複数の凸部を有し、前記所定領域の上面に電極を有することを特徴とするIII族窒化物半導体素子。
(2)隣接する前記凸部により形成される谷の底部が角になっている上記(1)に記載のIII族窒化物半導体素子。
(3)前記凸部の表面は、ファセット面が特定できないランダム面である上記(1)または(2)に記載のIII族窒化物半導体素子。
(4)サポート体と、該サポート体上に順次位置する第1導電型III族窒化物半導体層、活性層および第2導電型III族窒化物半導体層と、を有するIII族窒化物半導体素子であって、前記第2導電型III族窒化物半導体層の、前記サポート体と反対側が(000−1)面側であり、前記第2導電型III族窒化物半導体層の(000−1)面側の所定領域に、ドーム型形状の丸みを有する複数の凸部を有し、前記所定領域の上面に電極を有することを特徴とするIII族窒化物半導体素子。
(5)前記第2導電型がn型である上記(4)に記載のIII族窒化物半導体素子。
(6)前記電極がTi/Al電極である上記(4)または(5)に記載のIII族窒化物半導体素子。
(7)III族窒化物半導体層を有するIII族窒化物半導体素子の製造方法であって、前記III族窒化物半導体層の(000−1)面側の所定領域に異方性エッチングを施し、多角錐形の突起を複数形成する工程と、前記所定領域に等方性エッチングを施し、前記突起をドーム型形状の丸みを有する複数の凸部へと変化させる工程と、前記凸部を有する所定領域の上面に電極を形成する工程と、を有することを特徴とするIII族窒化物半導体素子の製造方法。
(8)前記異方性エッチングは、前記突起の表面を(000−1)面以外のファセット面とするウェットエッチングである上記(7)に記載のIII族窒化物半導体素子の製造方法。
(9)前記ファセット面は(10−1−1)面、(10−1−2)面、および(10−1−3)面のいずれかである上記(8)に記載のIII族窒化物半導体素子の製造方法。
(10)前記異方性エッチングには、アルカリ性の溶液を用いる上記(8)または(9)に記載のIII族窒化物半導体素子の製造方法。
(11)前記等方性エッチングは、前記凸部の表面をファセット面が特定できないランダム面とするドライエッチングである上記(8)~(10)のいずれか1項に記載のIII族窒化物半導体素子の製造方法。
(12)前記電極を形成する工程は、前記所定領域の上面に保護膜を形成する工程と、前記保護膜上にレジストを塗布し、フォトリソグラフィー法によって電極形成部位のレジストを除去する工程と、前記電極形成部位の前記保護膜を除去する工程と、前記電極形成部位に電極を形成する工程と、を有する上記(7)~(11)のいずれか1項に記載のIII族窒化物半導体素子の製造方法。
(13)成長用基板上にリフトオフ層、第2導電型III族窒化物半導体層、活性層および第1導電型III族窒化物半導体層をこの順に形成する工程と、前記第1導電型III族窒化物半導体層上に、サポート体を形成する工程と、前記リフトオフ層を除去することで、前記成長用基板を前記第2導電型III族窒化物半導体層から剥離する工程と、(000−1)面側である、露出した前記第2導電型III族窒化物半導体層の所定領域に異方性エッチングを施し、多角錐形の突起を複数形成する工程と、前記所定領域に等方性エッチングを施し、前記突起をドーム型形状の丸みを有する複数の凸部へと変化させる工程と、前記凸部を有する所定領域の上面に電極を形成する工程と、を有することを特徴とするIII族窒化物半導体素子の製造方法。
本発明のIII族窒化物半導体素子によれば、III族窒化物半導体層の(000−1)面側の所定領域に、ドーム型形状の丸みを有する複数の凸部を設け、この所定領域の上面に電極を設けた。これにより、III族窒化物半導体層の(000−1)面側と電極との良好なオーミック接触を実現し、より低電圧で動作可能なIII族窒化物半導体素子を得ることが可能となった。
また、本発明のIII族窒化物半導体素子の製造方法によれば、異方性エッチングおよびそれに続く等方性エッチングをIII族窒化物半導体層の(000−1)面側の所定領域に施すことによって、上記凸部表面を有効に形成することができる。よって、III族窒化物半導体層の(000−1)面側と電極との良好なオーミック接触を実現し、より低電圧で動作可能なIII族窒化物半導体素子を得ることが可能となった。
以下、図面を参照しつつ本発明をより詳細に説明する。なお、半導体素子の模式断面図においては、説明の便宜上、サポート体に対してその他の層を実状とは異なる比率で厚み方向に誇張して示す。
(III族窒化物半導体素子)
図1を用いて、本発明の一実施形態によるIII族窒化物半導体素子100(以下、単に「素子」100ともいう。)を説明する。素子100は、サポート体116と、このサポート体116上に順次位置するp型III族窒化物半導体層114(以下、単に「p層」という。)、活性層112およびn型III族窒化物半導体層110(以下、単に「n層」という。)と、を有する。n層110上にはn側電極128が位置し、n層と電気的に接続している。また、サポート体116は導電性を有し、p層114と電気的に接続するp側電極を兼ねている。なお、n層110の外周上に位置する超格子バッファ層108およびAlNバッファ層106、ならびに各半導体層の周囲およびサポート体116の表面の周縁部を覆うマスク118の詳細は後述する。
図1を用いて、本発明の一実施形態によるIII族窒化物半導体素子100(以下、単に「素子」100ともいう。)を説明する。素子100は、サポート体116と、このサポート体116上に順次位置するp型III族窒化物半導体層114(以下、単に「p層」という。)、活性層112およびn型III族窒化物半導体層110(以下、単に「n層」という。)と、を有する。n層110上にはn側電極128が位置し、n層と電気的に接続している。また、サポート体116は導電性を有し、p層114と電気的に接続するp側電極を兼ねている。なお、n層110の外周上に位置する超格子バッファ層108およびAlNバッファ層106、ならびに各半導体層の周囲およびサポート体116の表面の周縁部を覆うマスク118の詳細は後述する。
ここで、n層110は一対の表面のうち、サポート体116側が(0001)面であり、サポート体116と反対側が(000−1)面となっている。そして、n層110の(000−1)面側の所定領域120に、ドーム型形状の丸みを有する複数の凸部124を有し、この所定領域の上面にn側電極128を有している。
本発明者らは、この構成によれば、後述の図4(B)に示す、n層110の(000−1)面側が平坦で(000−1)面が露出している場合や、後述の図4(A)に示す、n層110の(000−1)面側に多角錐の突起があり(000−1)面以外のファセット面が露出している場合よりも、n層110とn側電極128とのオーミック接触を向上させ、素子をより低電圧で動作させることができることを見出した。
(III族窒化物半導体素子の製造方法)
上記素子100を好適に製造する、本発明の一実施形態によるIII族窒化物半導体素子の製造方法を、図2および図3により説明する。まず、図2(A)に示すように、成長用基板102上にリフトオフ層104を形成し、その上にAlNバッファ層106、超格子バッファ層108を順次形成し、さらにその上に、n型III族窒化物半導体層110、活性層112およびp型III族窒化物半導体層114をこの順に形成する。また、超格子バッファ層108は、その上に形成するn層110との格子不整合を緩和し、n層110の結晶品質を向上させるために形成する。
上記素子100を好適に製造する、本発明の一実施形態によるIII族窒化物半導体素子の製造方法を、図2および図3により説明する。まず、図2(A)に示すように、成長用基板102上にリフトオフ層104を形成し、その上にAlNバッファ層106、超格子バッファ層108を順次形成し、さらにその上に、n型III族窒化物半導体層110、活性層112およびp型III族窒化物半導体層114をこの順に形成する。また、超格子バッファ層108は、その上に形成するn層110との格子不整合を緩和し、n層110の結晶品質を向上させるために形成する。
次に、積層した半導体層106~114に対して成長用基板102が底面で露出する格子状の溝を形成し、互いに独立した半導体構造部を形成する。図2(B)には、溝で区画した1つの半導体構造部のみを示している。そして、図2(B)に示すように、p層114上にサポート体116を形成する。サポート体116は、次に述べる成長用基板102の剥離後に、積層した半導体層を支持する。
次に、図2(C)に示すように、ケミカルリフトオフ法によってリフトオフ層104を除去することで、成長用基板102をn層110、超格子バッファ層108、AlNバッファ層106などから剥離する。
次に、図2(D)に示すように、マスク118を形成して、AlNバッファ層106表面の周縁部、各半導体層の周囲およびサポート体116の表面の周縁部を覆う。マスク118は、SiO2、SiNなどの絶縁膜からなり、後述の異方性エッチングおよび等方性エッチングから被覆部分を保護する。
次に、図2(E)に示すように、異方性エッチング、例えば2.38質量%水酸化テトラメチルアンモニウム(TMAH)溶液のようなアルカリ溶液によるウェットエッチングを、マスク118に被覆されず露出した所定領域120のAlNバッファ層106に施す。エッチングが進行すると、AlNバッファ層106および超格子バッファ層108が除去され、n層110が露出する。
このとき露出するのは、n層110の(000−1)面側である。III族窒化物半導体をエピタキシャル成長させる場合、既述のとおり、層はc軸方向に成長し、成長する層の表面がいわゆるGa面と呼ばれる(0001)面となり、反対側(サポート体と接する側)がいわゆるN面を呼ばれる(000−1)面となる。そのため、図2(A)の層形成段階では、n層110のうち超格子バッファ層108と接する面が(000−1)面となり、活性層112が成長する面が(0001)面となるからである。
図2(E)では、(000−1)面側である、露出したn層110の所定領域120に対して引き続き異方性エッチングを施す。n層110の(000−1)面側に異方性エッチングを施すと、図3(A)にも示すように、n層110の表面には多角錐形の突起122が複数形成される。III族窒化物半導体は六方晶系であるため、通常六角錐形の突起が形成される。そして、この異方性エッチングは、突起122の表面を(000−1)面以外のファセット面とするウェットエッチングである。本実施形態のようにエッチング液をアルカリ溶液とした場合、突起122の表面に露出するファセット面は(10−1−1)面またはこれと等価な面となることがこれまで報告されている。
次に、図2(F)に示すように、所定領域120に等方性エッチングを施す。すると、図3(B)に示すように、複数の突起122は、ドーム型形状の丸みを有する複数の凸部124へと変化する。等方性エッチングは、例えば反応性イオンエッチング(RIE)のようなドライエッチングである。等方性エッチングの結果、図3(B)に示す凸部124の表面は、ファセット面が特定できないランダム面となる。
n層110が(000−1)面側に図3(B)の凸部124を有する状態で、図2(G)に示すように、n層110の所定領域120の上面にn側電極128を形成する。以上の工程を経て、本実施形態の素子100が完成する。
このような素子100およびその製造方法の実施形態に内在する本発明の特徴的構成を、その作用効果とともに説明する。
本発明のIII族窒化物半導体素子の製造方法は、図2(E)~(G)および図3(A),(B)に示したように、III族窒化物半導体層の(000−1)面側の所定領域に異方性エッチングを施し、多角錐形の突起を複数形成する工程と、前記所定領域に等方性エッチングを施し、前記突起をドーム型形状の丸みを有する複数の凸部へと変化させる工程と、前記凸部を有する所定領域の上面に電極を形成する工程と、を有することを特徴とする。そして、本発明のIII族窒化物半導体素子は、例えば上記の製造方法により得ることができ、III族窒化物半導体層の(000−1)面側の所定領域に、ドーム型形状の丸みを有する複数の凸部を有し、前記所定領域の上面に電極を有することを特徴とする。
図2(E)に示すn層110の表面を露出させる工程を、等方性エッチングのみで行った場合、図4(B)に示すように、n層110の表面は平坦となり、(000−1)面が露出する。また、同工程を異方性エッチングのみで行った場合、図4(A)に示すように、n層110の表面は多角錐形(六角錐形)の突起122となる。この突起122の表面は、(10−1−1)面またはそれと等価な面となることが報告されている。本発明者らの検討によれば、上記2通りのn層110表面上にそれぞれn側電極を形成した場合、いずれも十分なオーミック接触が得られず、n側電極2点間の電圧を測定したところ、高電圧となった。これは、素子が動作可能な電圧も高電圧となることを意味する。
一方、この素子100のように(000−1)面側にドーム型形状の丸みを有する複数の凸部124を有するn層110の表面上にn側電極を配置した場合、良好なオーミック接触が得られ、n側電極2点間の電圧が上記2通りの場合に比べて十分に低くなった。そして、このような凸部表面は、異方性エッチングおよびそれに続く等方性エッチングをIII族窒化物半導体層の(000−1)面側の所定領域に施すことによって有効に形成することができた。このような素子100およびその製造方法によって、III族窒化物半導体層の(000−1)面側と電極との良好なオーミック接触を実現し、より低電圧で素子が動作可能となった。
なお、上記特徴的構成によりn側電極2点間の電圧が低下する作用は完全に解明できていないが、少なくともn層のn側電極との接触面積とは関連性が低いと思われる。図4(A)の場合と本発明である図3(B)の場合とで、n層の表面積はそこまで大差がないと思われるが、n側電極2点間の電圧の差は顕著であるためである。
また、本製造方法では、異方性エッチングおよびそれに続く等方性エッチングの前に、AlN層106および超格子バッファ層108の全部または一部を除去する目的で、等方性エッチングを行ってもよい。
成長用基板102は、サファイア基板またはサファイア基板上にAlN膜を形成したAlNテンプレート基板を用いるのが好ましい。形成するリフトオフ層の種類やIII族窒化物半導体からなる半導体積層体のAl、Ga、Inの組成、LEDチップの品質、コストなどにより適宜選択すればよい。
リフトオフ層104は、エッチング液で溶解できる材料であれば特に限定されず、CrNなどのIII族以外の金属や金属窒化物バッファ層を挙げることができる。
AlNバッファ層106、超格子バッファ層108、n層110、活性層112およびp層114は、例えばMOCVD法によりリフトオフ層104上に順次エピタキシャル成長させることができる。超格子バッファ層108は、Al組成xが異なる2つのAlxGa1−xN(0≦x≦1)を交互に積層してなる。n層110およびp層114は、AlInGaN系など任意のIII族窒化物半導体からなり、活性層を挟むクラッド層や、それぞれn側電極およびp側電極と接触するコンタクト層からなる。活性層112は、III族窒化物半導体により多重量子井戸(MQW)構造を形成した発光層とすることができる。この場合、素子100はLEDとなる。通常、AlNバッファ層106、超格子バッファ層108、n層110、活性層112およびp層114のそれぞれの膜厚は0.6~2μm、0.6~3μm、1~4μm、1~100nm、0.1~1μm程度とする。
サポート体116は導電性シリコン基板やCuW合金基板、Mo基板などを接合法により形成してもよいし、湿式あるいは乾式めっきにより形成することもできる。たとえばCuまたはAuの電気めっきでは、接続層としてCu,Ni,Auなどを用いることができる。サポート体116はp側電極を兼ねることができる。
ケミカルリフトオフ法に使用可能なエッチング液は特に限定されない。リフトオフ層がCrNの場合、硝酸第二セリウムアンモン溶液や過マンガン酸カリウム系の溶液などのCrNに対して選択性のあるエッチング液を用いることができる。リフトオフ層がScNやHf、Zrの場合、選択性のある酸性のエッチング液を用いることができる。
マスク118は、例えばSiO2やSiNを用いることができる。形成方法は、特に限定されないが、例えばAlNバッファ層106の全面、各半導体層の周囲およびサポート体116の表面の周縁部に対してCVD法でSiO2を成膜後、所定領域120のみ露出させる金属マスク(例えばNi)を形成し、RIEにより所定領域120のSiO2をエッチングすることで、図2(D)に示す状態とすることができる。
異方性エッチングはIII族窒化物半導体層の(000−1)面側に多角錐形の凸部を形成可能であれば特に限定されないが、例えば2.38質量%水酸化テトラメチルアンモニウム(TMAH)溶液、NaOH溶液やKOH溶液のようなアルカリ溶液によるウェットエッチングとすることができる。この場合、凸部は六角錐形となり、凸部の表面(六角錐の六つの側面)は平面状となり、この表面は主に(10−1−1)面である。なお、他のエッチング液(リン酸など)によっては(10−1−2)面、および(10−1−3)面が出ると記載する文献(Appl.Phys.Lett.,Vol.73,No.18,2 November 1998)もある。ただし、(10−1−1)面の方が、凸部の角度が大きく谷が深くなるためより好ましい。
異方性エッチングの処理条件もIII族窒化物半導体層の(000−1)面側に多角錐形の凸部を形成可能であれば特に限定されない。本実施形態において、AlNバッファ層106および超格子バッファ層108を除去し、かつ、n層110に凸部を形成する必要がある。AlNバッファ層106および超格子バッファ層108の厚みにも依存するが、2.38質量%TMAH溶液の場合、異方性エッチングの処理時間が1分以上であることが好ましく、5~60分の範囲がより好ましい。
等方性エッチングは平坦な表面に対して施す場合、表面内の位置に依らず均一な速度でエッチングが進行する。しかし、本製造方法のように、図3(A)の多角錐形の凸部のある表面に対して施す場合、凸部の底部に比べて物理的吸着と離脱が容易な頂部でエッチングの進行が早い傾向がある。そのため、本製造方法では異方性エッチングに続いて等方性エッチングを行うことで、突起122を頂部が丸みを有する凸部124へと変化させることができる。
凸部の寸法は、高さが0.1~3μmであるが、必ずしも均一ではない。また、凸部は異方性エッチングおよび等方性エッチング処理を施した領域の全体に分布するが、局所的に見れば、必ずしも均一に分布しない領域も存在する。ただし、丸み形状には均一性があり、すなわち、異方性エッチングおよび等方性エッチング処理を施した領域の全体に分布する丸みを有する凸部は、いずれも同様にドーム型形状であり、かつ、図3(B)のように、隣接する凸部124により形成される谷の底部126が角になっている。
このように谷の底部126が角になるのは、2段階エッチングの1段階目に異方性エッチングを行うためである。すなわち、マスクパターン等を用いて凸部を形成する場合にくらべ、本発明では異方性エッチングと等方性エッチングの組み合わせにより、最大で3μmにもなる深さで形成される谷の底部は、異方性エッチングにより形成された角となり、より微細で複雑なランダム面を形成することができる。そのためオーミック電極と接触するランダム面の面積も大きく、オーミックコンタクト性の向上効果が高い。
凸部124は異方性エッチングによる形状の規則性を一部引き継いで谷の底部126が角であるため、図3(C)に示すように、凸部断面には、谷の底部126を繋いで底辺とし、底辺から凸部の頂点までの高さ(h)の3分の1の高さ(h/3)に底辺と水平な線を引き、凸部との交点と谷の底部126との直線を辺とする三角形を描くことができる。そのため、本明細書中における「ドーム型形状の丸み」とは、外接させた三角形の底辺から頂点までの高さに対して該底辺から凸部の頂部までの高さが低く、すなわち、外接する三角形の底辺から頂点に向けた角度θ1に対し、三角形の底辺から凸部の頂部に向けた角度θ2が小さく、さらに底辺から凸部の頂部にかけて非直線的に形成されることをいう。上記2つの角度(平均値)の差(θ1−θ2)は、例えば3~30度である。なお、凸部断面は該底辺から該凸部の頂部にかけて凸部の外方に向かって凸な丸みを帯びている形状が好ましい。
等方性エッチングは、例えば反応性イオンエッチング(RIE)のようなドライエッチングを用いることができる。RIEの場合、窒化物半導体をエッチングする際には、塩素、4塩化ケイ素、3塩化ホウ素などのガスを用いることができる。
上記のようなドーム型形状の凸部を確実に形成する観点から、時間以外の条件にも拠るが等方性エッチングの処理時間は3分以上であることが好ましく、5分以上がより好ましい。
n側電極128の電極材としてはAl、Cr、Ti、Ni、Pt、Auなどが用いられるが、安定したオーミック特性を得やすいため、Ti/Al電極とすることが好ましく、例えばスパッタ法により形成することができる。
なお、本実施形態では、第1導電型をp型とし、第2導電型をn型とした。これは、p型層の抵抗が高く電流が広がりにくいため、より抵抗が低いn型層を光取出し側とすることで発光効率を高めやすいからである。
図2(G)に示すn側電極128の形成方法は特に限定されないが、レジストをマスクとしたリフトオフ法により形成することができる。このリフトオフ法を用いる場合、特に図5に示す方法が好ましい。図5は、n層110上の電極形成部位を拡大した断面図である。
まず、図5(A)に示すように、n層110の少なくとも所定領域120の上面に保護膜130を形成する。保護膜130は、マスク118と同様にSiO2やSiNの絶縁膜をCVD法で成膜して形成する。
次に、図5(B)に示すように、保護膜130上にレジスト132を塗布し、図5(C)に示すように、フォトリソグラフィー法によって電極形成部位134のレジストを除去する。このとき、n層110表面が保護膜130に覆われているため、レジストを除去するために用いる、2.38質量%TMAHなどのアルカリ溶液がn層110に接触しない。このため、n層110の表面状態、すなわち凸部124の表面が等方性エッチングにより形成されたランダム面である状態を維持できるため好ましい。
次に、図5(D)に示すように、電極形成部位134の保護膜130を除去する。この除去は、BHF、HFなど保護膜のエッチング性はあるが、n層110を侵食しない任意のエッチング液を用いて行うことができる。
次に、図5(E)に示すように、スパッタ法により電極形成部位134にTi/Al電極などのn側電極128を形成する。なお、レジスト132上に堆積した電極材料は、図5(F)に示すようにアセトンなどによりレジスト132を除去するとともに除去可能である。
最後に、n層とn側電極との良好なオーミック接触形成のため、真空中で、400~600℃程度の温度でアニール処理を行う。
以上は代表的な実施形態の例を示したものであって、本発明はこの実施形態に限定されるものではなく、請求の範囲を逸脱しない範囲において適宜変更が可能である。
(実施例1)
図2および図3に示す製造方法で、図1に示すIII族窒化物半導体LED素子を作製した。具体的には、まず、成長用のサファイア基板上に、MOCVD法を用いてAlN単結晶層(厚さ:1μm)を成長させて、AlN(0001)テンプレートを作製した。この成長用基板上に、スパッタ法を用いて、Sc(厚さ:8nm)で成膜し、その後、MOCVD装置内で窒化処理を施し、リフトオフ層としてのScN層を形成した。
図2および図3に示す製造方法で、図1に示すIII族窒化物半導体LED素子を作製した。具体的には、まず、成長用のサファイア基板上に、MOCVD法を用いてAlN単結晶層(厚さ:1μm)を成長させて、AlN(0001)テンプレートを作製した。この成長用基板上に、スパッタ法を用いて、Sc(厚さ:8nm)で成膜し、その後、MOCVD装置内で窒化処理を施し、リフトオフ層としてのScN層を形成した。
その後、リフトオフ層上に半導体層として、AlN層(厚さ:1μm)、超格子バッファ層(AlN/GaNの積層体、厚さ:1μm)、n型III族窒化物半導体層(Al0.3Ga0.7N層、厚さ:2μm)、発光層(AlInGaN系MQW層、厚さ:0.2μm)、p型III族窒化物半導体層(Al0.3Ga0.7N層、厚さ:0.4μm)、p型GaNコンタクト層(厚さ:0.05μm)を順次積層した。
その後、サファイア基板の一部が露出するよう、半導体層の一部をRIEにより除去して格子状の溝を形成することで、横断面の形状が正方形の互いに独立した複数個の半導体構造部を形成した。
p型コンタクト層上にp型オーミック電極(Ni/Au、厚さ:200/3000Å)を形成した。その上に、接合層(Ti/Pt/Au、厚さ:100/2000/7000Å)層を形成した。その後、接合層としてTi/Pt/Au/Sn/Au、厚さ:100/2000/1000/2000/7000Åを形成したサポート体のSi基板と接合層同士を合わせて熱圧着することで、Si基板と半導体構造部とを接合した。
その後、ケミカルリフトオフ法を用いて成長用のサファイア基板を剥離した。エッチング液は、ScN層に選択性のある硝酸第二セリウムアンモン溶液とした。
次に、AlNバッファ層の全面、各半導体層の周囲およびサポート体の表面の周縁部に対してプラズマCVD法でSiO2(厚さ:3μm)を成膜後、さらにスパッタ法によりNiマスクを形成した。Niマスクは、フォトリソグラフィー法により、レジストパターンを形成し、n層を露出させる部位のみNi膜をウェットエッチングで除去して形成した。その後、RIEにより露出したSiO2をエッチング・除去した。
次に、n層表面の形成プロセスを説明する。形成したSiO2をマスクとして、表1に示す条件でエッチング処理を行い、AlNバッファ層および超格子バッファ層を除去するとともに、n層表面を露出させた。表1の異方性エッチングは、2.38質量%TMAH溶液を用いた。また、表1の等方性エッチングはRIEとし、具体的な条件は圧力0.1Pa、ICPおよびBIASの出力400W、Cl2ガス7.5sccm、BCl3ガス7.5sccmとした。表1に記載のとおり、実施例1では異方性エッチングを40℃で10分間行い、その後RIEを20分間行った。その後、純水での洗浄を行った。なお、上記のエッチングは成長用基板を剥離した側に行っており、露出するn層はn層の(000−1)面側となる。
その後、以下の方法で露出したn層上にTi/Al電極を形成した。まず、露出したn層上にプラズマCVD法でSiO2(厚さ:0.1μm)を成膜した。その後、SiO2上にフォトレジストを塗布し、フォトリソグラフィー法により電極形成部位のレジストを除去した。レジストの除去には、2.38質量%TMAH溶液を用いた。その後、BHF溶液で1分間処理することにより、電極形成部位のSiO2を除去した。その後、スパッタ法によりTi/Al(厚さ:20nm/600nm)の電極を形成した。アセトンでフォトレジストとその上に堆積したTi/Alを除去した。最後に、400℃、真空中でアニール処理した。実施例1では、保護膜としてのSiO2があるため、レジスト除去時にn層にTMAH溶液による異方性エッチングが施されることはない。
(実施例2~7,比較例1~4)
n層表面の形成プロセスを表1に記載のものとした以外は実施例1と同様にして、III族窒化物半導体LED素子を作製した。
n層表面の形成プロセスを表1に記載のものとした以外は実施例1と同様にして、III族窒化物半導体LED素子を作製した。
(比較例5)
n層表面の形成プロセスを表1に記載のものとし、Ti/Al電極の形成時に、SiO2の形成および除去を行わなかった以外は、実施例1と同様にして、III族窒化物半導体LED素子を作製した。この場合、電極形成部位のレジスト除去時に2.38質量%TMAH溶液がn層に接触するため、n層形成プロセスの後さらに電極形成部位のn層表面に異方性エッチングが施される。
n層表面の形成プロセスを表1に記載のものとし、Ti/Al電極の形成時に、SiO2の形成および除去を行わなかった以外は、実施例1と同様にして、III族窒化物半導体LED素子を作製した。この場合、電極形成部位のレジスト除去時に2.38質量%TMAH溶液がn層に接触するため、n層形成プロセスの後さらに電極形成部位のn層表面に異方性エッチングが施される。
<SEMによる観察>
各試験例について、走査型電子顕微鏡(SEM)により、n層表面の形成プロセスの後n側電極形成前に、n層表面を斜め視野から観察した。また、n側電極形成さらに熱処理後に、n側電極形成面付近の断面を撮影した。図6~10に、それぞれ実施例1、比較例3、比較例4、実施例6、実施例7のSEM画像を代表して示す。(A)がn側電極形成前の斜め視野の画像、(B)がn側電極形成後、熱処理後の断面の画像である。図11には、比較例5のn側電極形成前の斜め視野の画像を示す。
各試験例について、走査型電子顕微鏡(SEM)により、n層表面の形成プロセスの後n側電極形成前に、n層表面を斜め視野から観察した。また、n側電極形成さらに熱処理後に、n側電極形成面付近の断面を撮影した。図6~10に、それぞれ実施例1、比較例3、比較例4、実施例6、実施例7のSEM画像を代表して示す。(A)がn側電極形成前の斜め視野の画像、(B)がn側電極形成後、熱処理後の断面の画像である。図11には、比較例5のn側電極形成前の斜め視野の画像を示す。
実施例1では、図6(A),(B)に示すように、n層表面にドーム型形状の丸みを有する複数の凸部が観察できた。また、図6(B)から明らかなように、隣接する凸部により形成される谷の底部は角になっていた。丸みの程度を測定するため、この凸部に図3(C)で説明した三角形を描き、三角形の底辺から三角形の頂点に向けた角度θ1と、三角形の底辺から凸部の頂部に向けて直線をひいた角度θ2とを計10箇所測定し、その平均値を計算した。実施例1ではθ1が62度であり、θ2は51度であった。実施例6ではθ1が64度であり、θ2は50度であった。実施例2~5,7も同程度の角度を有しており、θ1はおよそ60度であり、θ2はおよそ50度であった。
また、等方性エッチングの処理時間が1分の実施例7では、図10に示すように、ドーム型形状の丸みを有する凸部と、断面形状が三角形のままの凸部(図10(A)中の比較的大きな凸部であって、割合としては約1/3)とが混在していた。処理時間が1分では形状変化は不十分ではあるものの、ドーム型形状の丸みを有する凸部が作られることにより、電圧の低減効果があることは比較例2との比較から明らかである。一方、等方性エッチングの処理時間が5分以上の実施例1~6では、ほぼ全てがドーム型形状の丸みを有していた。そして、これら実施例1~7の形状のドーム型形状の丸みを有する凸部の表面は、異方性エッチングで報告されるような極性面や半極性面のファセット面とは考えられず、ファセット面が特定できないランダム面となっていることは明らかである。
比較例3では、異方性エッチングの後等方性エッチングを行わないため、図7(A),(B)に示すように、n層表面に六角錐の突起が複数形成された。これまでにウェットエッチングで(10−1−1)面が露出するという報告があり、図7から突起の側面は底辺に対しおよそ60度の角度を有し、突起の表面は(10−1−1)面であると推定できる。比較例1,2も同様であった。
比較例4では、等方性エッチングのみを行ったため、図8(A),(B)に示すように、n層の表面は平坦となり(000−1)面が露出した。
なお、比較例5ではn層形成プロセスの後、フォトリソグラフィー法により、Ti/Al電極を形成する部位のレジストを除去する際に、n層表面の電極形成部位が2.38質量%TMAH溶液に接触し、異方性エッチングが施される。その結果、図11に示すように電極形成部位のレジスト除去後のn層表面には凸部の頂部にさらに微小な凸部が形成されており、ドーム型形状の丸みを有する凸部ではなくなっていた。この微小な凸部は、等方性エッチングにより露出したランダム面のうち、原子間の繋がりが弱く異方性エッチング液によりエッチングされやすい部分が優先的にエッチングされたために発生したと考えられる。電極形成部位のレジスト除去にかかる時間(異方性エッチングの時間)は90秒と短いが、実施例5に比べn−n間電圧が大きくなったことから、コンタクト抵抗を下げる効果のあったランダム面が異方性エッチングにより変化して、表面に主に異方性エッチングにより形成される面が再生されたことが確認された。
<n側電極2点間の電圧測定>
1辺が100μmの正方形の電極を、50μmの間隔をあけて配置した。その電極間に20mAの電流を流した際の電圧値を測定した。結果を表1に示す。
1辺が100μmの正方形の電極を、50μmの間隔をあけて配置した。その電極間に20mAの電流を流した際の電圧値を測定した。結果を表1に示す。
各実施例では、比較例よりもn電極間の電圧を顕著に低減することができた。特に、ほぼ全ての凸部がドーム型形状になっている実施例1~6は、実施例7よりもさらに低減していた。
本発明によれば、III族窒化物半導体層の(000−1)面側と電極との良好なオーミック接触を実現し、より低電圧で動作可能なIII族窒化物半導体素子およびその製造方法を提供することができる。
100 III族窒化物半導体素子
102 成長用基板
104 リフトオフ層
106 AlNバッファ層
108 超格子バッファ層
110 n型(第2導電型)III族窒化物半導体層
112 活性層
114 p型(第1導電型)III族窒化物半導体層
116 サポート体(p側電極)
118 マスク
120 所定領域
122 多角錐の突起
124 凸部
126 谷の底部
128 n側電極
130 保護膜
132 レジスト
134 電極形成部位
102 成長用基板
104 リフトオフ層
106 AlNバッファ層
108 超格子バッファ層
110 n型(第2導電型)III族窒化物半導体層
112 活性層
114 p型(第1導電型)III族窒化物半導体層
116 サポート体(p側電極)
118 マスク
120 所定領域
122 多角錐の突起
124 凸部
126 谷の底部
128 n側電極
130 保護膜
132 レジスト
134 電極形成部位
Claims (13)
- III族窒化物半導体層を有するIII族窒化物半導体素子であって、
前記III族窒化物半導体層の(000−1)面側の所定領域に、ドーム型形状の丸みを有する複数の凸部を有し、
前記所定領域の上面に電極を有することを特徴とするIII族窒化物半導体素子。 - 隣接する前記凸部により形成される谷の底部が角になっている請求項1に記載のIII族窒化物半導体素子。
- 前記凸部の表面は、ファセット面が特定できないランダム面である請求項1または2に記載のIII族窒化物半導体素子。
- サポート体と、
該サポート体上に順次位置する第1導電型III族窒化物半導体層、活性層および第2導電型III族窒化物半導体層と、
を有するIII族窒化物半導体素子であって、
前記第2導電型III族窒化物半導体層の、前記サポート体と反対側が(000−1)面側であり、
前記第2導電型III族窒化物半導体層の(000−1)面側の所定領域に、ドーム型形状の丸みを有する複数の凸部を有し、
前記所定領域の上面に電極を有することを特徴とするIII族窒化物半導体素子。 - 前記第2導電型がn型である請求項4に記載のIII族窒化物半導体素子。
- 前記電極がTi/Al電極である請求項4または5に記載のIII族窒化物半導体素子。
- III族窒化物半導体層を有するIII族窒化物半導体素子の製造方法であって、
前記III族窒化物半導体層の(000−1)面側の所定領域に異方性エッチングを施し、多角錐形の突起を複数形成する工程と、
前記所定領域に等方性エッチングを施し、前記突起をドーム型形状の丸みを有する複数の凸部へと変化させる工程と、
前記凸部を有する所定領域の上面に電極を形成する工程と、
を有することを特徴とするIII族窒化物半導体素子の製造方法。 - 前記異方性エッチングは、前記突起の表面を(000−1)面以外のファセット面とするウェットエッチングである請求項7に記載のIII族窒化物半導体素子の製造方法。
- 前記ファセット面は(10−1−1)面、(10−1−2)面、および(10−1−3)面のいずれかである請求項8に記載のIII族窒化物半導体素子の製造方法。
- 前記異方性エッチングには、アルカリ性の溶液を用いる請求項8または9に記載のIII族窒化物半導体素子の製造方法。
- 前記等方性エッチングは、前記凸部の表面をファセット面が特定できないランダム面とするドライエッチングである請求項8~10のいずれか1項に記載のIII族窒化物半導体素子の製造方法。
- 前記電極を形成する工程は、
前記所定領域の上面に保護膜を形成する工程と、
前記保護膜上にレジストを塗布し、フォトリソグラフィー法によって電極形成部位のレジストを除去する工程と、
前記電極形成部位の前記保護膜を除去する工程と、
前記電極形成部位に電極を形成する工程と、
を有する請求項7~11のいずれか1項に記載のIII族窒化物半導体素子の製造方法。 - 成長用基板上にリフトオフ層、第2導電型III族窒化物半導体層、活性層および第1導電型III族窒化物半導体層をこの順に形成する工程と、
前記第1導電型III族窒化物半導体層上に、サポート体を形成する工程と、
前記リフトオフ層を除去することで、前記成長用基板を前記第2導電型III族窒化物半導体層から剥離する工程と、
(000−1)面側である、露出した前記第2導電型III族窒化物半導体層の所定領域に異方性エッチングを施し、多角錐形の突起を複数形成する工程と、
前記所定領域に等方性エッチングを施し、前記突起をドーム型形状の丸みを有する複数の凸部へと変化させる工程と、
前記凸部を有する所定領域の上面に電極を形成する工程と、
を有することを特徴とするIII族窒化物半導体素子の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/369,584 US9287366B2 (en) | 2011-12-28 | 2012-12-12 | III nitride semiconductor device and method of producing the same |
EP12861839.4A EP2800152A4 (en) | 2011-12-28 | 2012-12-12 | GROUP III NITRIDE SEMICONDUCTOR ELEMENT AND METHOD OF MANUFACTURING THEREOF |
CN201280065179.8A CN104040736B (zh) | 2011-12-28 | 2012-12-12 | 第iii族氮化物半导体器件及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-288920 | 2011-12-28 | ||
JP2011288920A JP5292456B2 (ja) | 2011-12-28 | 2011-12-28 | Iii族窒化物半導体素子およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013099716A1 true WO2013099716A1 (ja) | 2013-07-04 |
Family
ID=48697208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/082855 WO2013099716A1 (ja) | 2011-12-28 | 2012-12-12 | Iii族窒化物半導体素子およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9287366B2 (ja) |
EP (1) | EP2800152A4 (ja) |
JP (1) | JP5292456B2 (ja) |
CN (1) | CN104040736B (ja) |
TW (1) | TWI528589B (ja) |
WO (1) | WO2013099716A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102108196B1 (ko) * | 2013-04-05 | 2020-05-08 | 서울바이오시스 주식회사 | 성장 기판이 분리된 자외선 발광소자 및 그 제조 방법 |
CN105453278B (zh) * | 2013-07-30 | 2019-02-12 | 同和电子科技有限公司 | 半导体发光元件的制造方法以及半导体发光元件 |
JP6160501B2 (ja) | 2014-02-12 | 2017-07-12 | 豊田合成株式会社 | 半導体装置の製造方法 |
JP6731590B2 (ja) * | 2016-05-02 | 2020-07-29 | 国立大学法人大阪大学 | 窒化物結晶基板の製造方法 |
US11257728B2 (en) * | 2017-06-02 | 2022-02-22 | Corning Incorporated | Fluidic assembly substrates and methods for making such |
CN111681946B (zh) * | 2020-05-21 | 2022-08-26 | 东莞市中镓半导体科技有限公司 | 氮化镓单晶衬底的制备方法 |
DE102021204214A1 (de) | 2021-04-28 | 2022-11-03 | Robert Bosch Gesellschaft mit beschränkter Haftung | Vertikales GaN-Leistungshalbleiterbauelement und Verfahren zum Herstellen eines vertikalen GaN-Leistungshalbleiterbauelements |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004071657A (ja) | 2002-08-01 | 2004-03-04 | Nec Corp | Iii族窒化物半導体素子、iii族窒化物半導体基板およびiii族窒化物半導体素子の製造方法 |
JP2006179511A (ja) * | 2004-12-20 | 2006-07-06 | Sumitomo Electric Ind Ltd | 発光装置 |
JP2006324324A (ja) * | 2005-05-17 | 2006-11-30 | Sumitomo Electric Ind Ltd | 発光装置、発光装置の製造方法および窒化物半導体基板 |
JP2010074008A (ja) * | 2008-09-19 | 2010-04-02 | Nichia Corp | 半導体発光素子 |
JP2010147056A (ja) * | 2008-12-16 | 2010-07-01 | Stanley Electric Co Ltd | Ii−vi族またはiii−v族化合物系半導体発光素子用エピタキシャルウエハ、および、その製造方法 |
JP2010205988A (ja) * | 2009-03-04 | 2010-09-16 | Panasonic Corp | 窒化物半導体素子及びその製造方法 |
JP2010212719A (ja) * | 2005-07-22 | 2010-09-24 | Samsung Electro-Mechanics Co Ltd | 垂直構造の窒化ガリウム系発光ダイオード素子の製造方法 |
JP2011082587A (ja) * | 2011-01-26 | 2011-04-21 | Regents Of The Univ Of California | 表面粗化による高効率窒化ガリウムベースの発光ダイオード |
JP2011243956A (ja) * | 2010-05-18 | 2011-12-01 | Seoul Opto Devices Co Ltd | 高効率発光ダイオード及びその製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6420735B2 (en) * | 1997-05-07 | 2002-07-16 | Samsung Electronics Co., Ltd. | Surface-emitting light-emitting diode |
KR101030068B1 (ko) | 2002-07-08 | 2011-04-19 | 니치아 카가쿠 고교 가부시키가이샤 | 질화물 반도체 소자의 제조방법 및 질화물 반도체 소자 |
JP4154731B2 (ja) * | 2004-04-27 | 2008-09-24 | 信越半導体株式会社 | 発光素子の製造方法及び発光素子 |
EP1741144A1 (de) | 2004-04-29 | 2007-01-10 | Osram Opto Semiconductors GmbH | Verfahren zum herstellen eines strahlungsemittierenden halbleiterchips |
JP2007103891A (ja) | 2005-09-06 | 2007-04-19 | Showa Denko Kk | 窒化ガリウム系化合物半導体発光素子及びその製造方法 |
JP2008130799A (ja) | 2006-11-21 | 2008-06-05 | Sharp Corp | 半導体発光素子および半導体発光素子の製造方法 |
EP2234182B1 (en) | 2007-12-28 | 2016-11-09 | Nichia Corporation | Semiconductor light emitting element and method for manufacturing the same |
JP2011192880A (ja) * | 2010-03-16 | 2011-09-29 | Toshiba Corp | 半導体発光素子及び液晶表示装置 |
WO2012058535A1 (en) * | 2010-10-28 | 2012-05-03 | The Regents Of The University Of California | Method for fabrication of (al, in, ga) nitride based vertical light emitting diodes with enhanced current spreading of n-type electrode |
TWI422068B (zh) * | 2011-02-18 | 2014-01-01 | Univ Nat Cheng Kung | 粗化方法及具粗化表面之發光二極體製備方法 |
-
2011
- 2011-12-28 JP JP2011288920A patent/JP5292456B2/ja active Active
-
2012
- 2012-12-12 US US14/369,584 patent/US9287366B2/en active Active
- 2012-12-12 WO PCT/JP2012/082855 patent/WO2013099716A1/ja active Application Filing
- 2012-12-12 EP EP12861839.4A patent/EP2800152A4/en not_active Withdrawn
- 2012-12-12 CN CN201280065179.8A patent/CN104040736B/zh active Active
- 2012-12-14 TW TW101147404A patent/TWI528589B/zh active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004071657A (ja) | 2002-08-01 | 2004-03-04 | Nec Corp | Iii族窒化物半導体素子、iii族窒化物半導体基板およびiii族窒化物半導体素子の製造方法 |
JP2006179511A (ja) * | 2004-12-20 | 2006-07-06 | Sumitomo Electric Ind Ltd | 発光装置 |
JP2006324324A (ja) * | 2005-05-17 | 2006-11-30 | Sumitomo Electric Ind Ltd | 発光装置、発光装置の製造方法および窒化物半導体基板 |
JP2010212719A (ja) * | 2005-07-22 | 2010-09-24 | Samsung Electro-Mechanics Co Ltd | 垂直構造の窒化ガリウム系発光ダイオード素子の製造方法 |
JP2010074008A (ja) * | 2008-09-19 | 2010-04-02 | Nichia Corp | 半導体発光素子 |
JP2010147056A (ja) * | 2008-12-16 | 2010-07-01 | Stanley Electric Co Ltd | Ii−vi族またはiii−v族化合物系半導体発光素子用エピタキシャルウエハ、および、その製造方法 |
JP2010205988A (ja) * | 2009-03-04 | 2010-09-16 | Panasonic Corp | 窒化物半導体素子及びその製造方法 |
JP2011243956A (ja) * | 2010-05-18 | 2011-12-01 | Seoul Opto Devices Co Ltd | 高効率発光ダイオード及びその製造方法 |
JP2011082587A (ja) * | 2011-01-26 | 2011-04-21 | Regents Of The Univ Of California | 表面粗化による高効率窒化ガリウムベースの発光ダイオード |
Non-Patent Citations (2)
Title |
---|
APPL. PHYS. LETT., vol. 73, no. 18, 2 November 1998 (1998-11-02) |
See also references of EP2800152A4 |
Also Published As
Publication number | Publication date |
---|---|
CN104040736B (zh) | 2017-03-29 |
TW201330324A (zh) | 2013-07-16 |
US9287366B2 (en) | 2016-03-15 |
JP2013138139A (ja) | 2013-07-11 |
EP2800152A1 (en) | 2014-11-05 |
EP2800152A4 (en) | 2015-05-27 |
TWI528589B (zh) | 2016-04-01 |
US20150069583A1 (en) | 2015-03-12 |
JP5292456B2 (ja) | 2013-09-18 |
CN104040736A (zh) | 2014-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5292456B2 (ja) | Iii族窒化物半導体素子およびその製造方法 | |
CN104011885B (zh) | 具有凹凸图案的基底、包括该基底的发光二极管以及制造该二极管的方法 | |
US7439091B2 (en) | Light-emitting diode and method for manufacturing the same | |
JP5313651B2 (ja) | 半導体素子の製造方法 | |
US9647183B2 (en) | Vertical light emitting diode with photonic nanostructures and method of fabrication thereof | |
KR101134810B1 (ko) | 발광소자 및 그 제조방법 | |
WO2013022365A1 (en) | Light emitting diode with nanostructured layer and methods of making and using | |
US20180277713A1 (en) | Red light emitting diodes having an indium gallium nitride template layer and method of making thereof | |
WO2017088546A1 (zh) | 发光二极管及其制作方法 | |
US20140322899A1 (en) | Substrate recycling method | |
US20110253972A1 (en) | LIGHT-EMITTING DEVICE BASED ON STRAIN-ADJUSTABLE InGaAIN FILM | |
JP2006261659A (ja) | 半導体発光素子の製造方法 | |
US9048381B1 (en) | Method for fabricating light-emitting diode device | |
KR20130086729A (ko) | 고효율 발광다이오드 제조방법 | |
KR101954145B1 (ko) | 무분극 이종 기판 및 그 제조방법, 이를 이용한 질화물계 발광 소자 | |
TW201513212A (zh) | 於平面層中在蝕刻3d結構後停止蝕刻之方法 | |
JP5514341B2 (ja) | Iii族窒化物半導体素子の製造方法 | |
WO2015027654A1 (zh) | 一种氮化镓基高压发光二极管的制作方法 | |
KR20140038785A (ko) | 요철 패턴을 갖는 기판을 구비하는 발광다이오드 및 그의 제조방법 | |
JP4644947B2 (ja) | 窒化物半導体素子及びその製造方法 | |
JP2007242669A (ja) | 半導体発光装置及びその製造方法 | |
JP5918367B2 (ja) | Iii族窒化物半導体発光素子およびその製造方法 | |
KR101701041B1 (ko) | 실리콘 다면체 상에 형성된 발광다이오드 및 이의 제조방법 | |
KR20150089548A (ko) | 다공성 GaN층을 포함하는 수직형 발광다이오드 및 이의 제조방법 | |
KR101005301B1 (ko) | 발광소자 및 이의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12861839 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012861839 Country of ref document: EP Ref document number: 14369584 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |