WO2013097800A1 - 一种制造硅橡胶拔罐器具的方法和装置 - Google Patents

一种制造硅橡胶拔罐器具的方法和装置 Download PDF

Info

Publication number
WO2013097800A1
WO2013097800A1 PCT/CN2012/088000 CN2012088000W WO2013097800A1 WO 2013097800 A1 WO2013097800 A1 WO 2013097800A1 CN 2012088000 W CN2012088000 W CN 2012088000W WO 2013097800 A1 WO2013097800 A1 WO 2013097800A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone rubber
blowing
mold cavity
mold
rubber cupping
Prior art date
Application number
PCT/CN2012/088000
Other languages
English (en)
French (fr)
Inventor
袁冰
Original Assignee
Yuan Bing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuan Bing filed Critical Yuan Bing
Priority to EP12861698.4A priority Critical patent/EP2799204B1/en
Publication of WO2013097800A1 publication Critical patent/WO2013097800A1/zh
Priority to US14/318,708 priority patent/US9573305B2/en
Priority to HK15104274.2A priority patent/HK1203895A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/4005Ejector constructions; Ejector operating mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/43Removing or ejecting moulded articles using fluid under pressure
    • B29C45/435Removing or ejecting moulded articles using fluid under pressure introduced between a mould core and a hollow resilient undercut article, e.g. bellows
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H9/00Pneumatic or hydraulic massage
    • A61H9/005Pneumatic massage
    • A61H9/0057Suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/43Removing or ejecting moulded articles using fluid under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/33Moulds having transversely, e.g. radially, movable mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/44Removing or ejecting moulded articles for undercut articles
    • B29C45/4407Removing or ejecting moulded articles for undercut articles by flexible movement of undercut portions of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • B29K2083/005LSR, i.e. liquid silicone rubbers, or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/703Bellows

Definitions

  • the present invention relates to a method and apparatus for making a cupping device, and more particularly to a method and apparatus for making a silicone rubber cupping device. Background technique
  • Cupping equipment is a traditional Chinese medicine medical device with a long history and remarkable results.
  • traditional cupping tools are usually made of hard materials such as ceramics, bamboo tubes, glass, and suction cupping made of plexiglass.
  • Cupping made of hard material usually needs to be ignited or pumped to form a certain negative pressure in the cavity to pull it in a certain part of the human body. Ignition cupping, easy to burn; pumping and cupping, operation is not convenient enough.
  • the cupping made of hard material is easy to fall off with the skin bulging after being pulled up, and it is difficult to pull out the uneven muscles such as joints and spine. They are not easy to carry.
  • cupping devices made of rubber or silicone rubber have also appeared. Compared with cupping devices made of hard materials, cupping made of rubber or silicone rubber has the following characteristics:
  • the existing manufacturing technique for rubber or silicone rubber cupping tools is by compression molding.
  • the general process of the press forming technology is as follows: After the solid silicone rubber is mixed by the mixer, the mixed film is cut into a size and thickness suitable for filling the cavity of the mold by the cutting machine, and the weighing is slightly more than The weight of the product is then placed in the mold cavity, the mold is mounted on a pressure forming machine, the pressure forming machine is started, held at a certain temperature for a certain period of time, molded, and finally the cupping device is completed by demolding.
  • Molding has the following disadvantages: First, the process is complicated, and it has to undergo multiple processes such as rubber mixing, mixing, cutting, weighing, discharging, molding, molding vulcanization, demoulding, and flashing, and the processing time is long. The production efficiency is low; the second is that the forming method is rough and not fine, it is difficult to avoid the deviation of product quality caused by manual operation in the molding process; the third is the difficulty of demoulding, the cupping utensil is vulnerable to damage during the strong demoulding process, and the scrap rate High, at the same time, the mold must be disassembled during the demoulding process, which is time-consuming and labor-intensive, increases labor intensity, and prolongs manufacturing time.
  • the present invention provides a method and a device for manufacturing a silicone rubber cupping device.
  • the liquid silicone rubber is used as a raw material, and the silicone rubber vulcanization molding technology is used to manufacture a silicone rubber cupping with high elasticity, high transparency and complicated shape.
  • the appliance has simple process, complete automation, high production efficiency, simple and quick demolding, and no need to disassemble the cleaning device during the demoulding process.
  • a device for manufacturing a silicone rubber cupping device comprising a nozzle, an inner core, a separable row position and a blow stripping device; the row position being composed of at least two separable row blocks, the row position Forming a mold cavity for forming a silicone rubber cupping device with the inner core; the nozzle is connected at one end to a channel for inputting a liquid silicone rubber material, and the other end is connected to the mold cavity; The device is in communication with the mold cavity through a blowhole opening disposed at the interface of the inner core and the mold cavity.
  • the row position includes a concave structure
  • the inner mold core includes a convex structure
  • a mold type for forming a silicone rubber cupping device is formed between the concave structure of the row position and the convex structure of the inner mold core Cavity.
  • a flow path is formed on the flow path of the nozzle communicating with the mold cavity, and the hot flow path is a flow path formed by the intersection block at the interface between the row blocks in the combined state.
  • the air blowout device may include a blowhole, one end of the blowhole is a blowhole opening, the opening is in communication with the mold cavity, and further includes: being located in the blowhole to control opening and closing of the blowhole opening a blowing needle; the blowing channel is a frustum hole structure near the opening of the blowing hole, and a cross-sectional diameter of the frustum hole structure near the opening of the blowing hole is smaller than an opening away from the blowing hole opening a cross-sectional diameter, the blow pin includes a hollow stem portion and a top portion adjacent to the blow hole opening, the stem portion having a gas hole communicating with the blow hole in the hollow portion, the top portion being the blow hole
  • the frustum hole structure of the track has the same taper angle and can be closely attached to the frustum structure.
  • the blow tunnel is disposed in the inner core, and a top surface of the top of the blow needle may be in a shape that is flush or smoothly transitioned with an inner mold surface of the mold cavity near the blow tunnel opening.
  • the air blow-off device may further include an air inlet for conveying the gas into the air blowing channel, one end of the air inlet is connected to the high-pressure air source through the air inlet, and the other end is opened in the hollow portion of the air-blowing needle .
  • the portion of the blowing tunnel outside the structure of the frustoconical hole is a two-stage variable diameter pipe, the section close to the structure of the frustum hole is a small diameter section, and the large diameter section is provided with a high pressure gas leakage prevention in the middle. Open hole gasket.
  • the apparatus for manufacturing a silicone rubber cupping device may further include a template for fixing and/or wrapping a row position and an inner core, the template including a front template and a rear template separable from each other; or The template is separable.
  • the apparatus for manufacturing a silicone rubber cupping device may further include at least one heat insulating panel for isolating the mold region, the mold region being an area composed of at least a row position, an inner core, and a mold cavity formed thereby.
  • the inner core may be a separable and/or detachable structure composed of an inner mold insert and an inner mold core holder, the inner mold insert having a plug structure, and the inner mold core having a socket structure
  • the plug structure is adapted to the slot structure.
  • the apparatus for manufacturing a silicone rubber cupping device may further include a heat generating device that heats the liquid silicone rubber material to be vulcanized.
  • the heat generating device may be a heat pipe or a heat generating plate.
  • the mold cavity may be in the shape of a gourd, the blow tunnel opening being in communication with the mold cavity at the top center of the gourd shape; and/or the mold cavity may have a thickness of 7 to 16 mm.
  • the high pressure gas pressure blown by the air blow release device may be 6 to 7.5 atmospheres; the mold cavity is two or more.
  • a method for manufacturing a silicone rubber cupping device using the above-described device for manufacturing a silicone rubber cupping device comprising the following steps:
  • preheating and cooling protection heating the mold area while cooling the passage through which the liquid silicone rubber material is to flow and/or the area around the passage; the mold area is at least by the row position, the inner core and The area formed by the mold cavity formed by it;
  • Vulcanization Stop feeding and keep warm for a certain period of time
  • Step 4) can include the following steps 4.1) to 4.3):
  • the separable rows are separated perpendicularly or approximately perpendicular to the axial direction of the mold cavity to expose the outer mold face of the silicone rubber cupping device in the mold cavity to the air;
  • Blowing and demoulding The high pressure gas enters between the inner mold surface of the mold cavity and the formed silicone rubber cupping device through the blow hole opening, and blows the solidified silicone rubber cupping device away from the inner mold surface;
  • step 5 Cycle production: Repeat steps 2) through 4) above.
  • the apparatus further includes a template for fixing and/or wrapping the row position and the inner core, the template may be a separable structure, and the step 4.1) is replaced by: the separable template is separated , separating the detachable rows from the two sides perpendicular or perpendicular to the axial direction of the mold cavity, exposing the outer mold surface of the silicone rubber cupping device in the mold cavity to the air, and blowing the mold release device to the mold type
  • the high pressure gas pressure blown from the inner die face of the chamber may be 6 to 7.5 atmospheres.
  • the method can be used to simultaneously produce one or more silicone rubber cupping devices.
  • a silicone rubber cupping device is produced by the above-described apparatus for manufacturing a silicone rubber cupping device, and/or the above method for producing a silicone rubber cupping device.
  • the silicone rubber cupping device may be an open, transparent, elastic silicone rubber cupping device.
  • the invention provides a device for manufacturing a silicone rubber cupping device, which is formed by forming a mold cavity for forming a silicone rubber cupping device between a row position and an inner core, and inputting the nozzle of the liquid silicone rubber material and the blowing gas.
  • the demolding device is respectively connected with the mold cavity to form an injection vulcanization molding device dedicated to preparing a silicone rubber cupping device, thereby being capable of using liquid silicone rubber
  • the silicone rubber cupping device with high elasticity, high transparency and complex shape can be manufactured by injection vulcanization molding technology, and the structure is simple, and the separable row position and the inner core separation can realize the whole process automation of injection molding and high production efficiency.
  • the blow-off release device makes the demolding process simple and quick, and the demolding process does not require disassembly and assembly of the cleaning device.
  • the liquid silicone rubber itself has better transparency than the solid silicone rubber, and is manufactured by the process of the invention. Due to the improved precision of the mold and the good surface finish, the shortcomings of the past elastic cupping opacity and translucency can be completely solved.
  • the silicone rubber cupping device produced by the present invention has a more obvious advantage over similar products.
  • the injection mold of the device for manufacturing a silicone rubber cupping device of the invention has high precision and good alignment, and the product does not have a misalignment phenomenon, and basically has no flash, and basically no subsequent manual treatment is required.
  • the hot runner is disposed at the interface of the separable row position, which can avoid the blockage of the liquid silicone rubber material to the hot runner, so that the solidified silicone rubber can be automatically removed during the demolding process. A separate cleaning step for the hot runner is eliminated.
  • a further aspect of the present invention preferably provides a demolding device including a blowing tunnel and a blowing needle, a frustum hole structure having the same taper angle and capable of closely fitting the blowing tunnel, and a cone at the top of the blowing needle
  • the structure of the table body can make the blowing needle completely close the opening of the blowing hole in the sealed state, and can prevent the liquid silicone rubber raw material from flowing into the blowing hole during injection.
  • the top of the blowing needle of the further aspect of the present invention has a shape similar to or smooth transition to the inner die face near the opening of the blowhole opening, and can avoid uneven protrusions or depressions at the opening position of the blowhole opening, thereby avoiding influence
  • the quality of the product ensures the uniformity of the silicone rubber cupping device after molding.
  • the inlet of the further aspect of the present invention separates the entry of the high pressure gas from the control of the blowing needle, and is separately controlled by the intake passage and the blowing passage, respectively, thereby simplifying the design and reducing the requirements for the blowing passage.
  • a further aspect of the invention provides a gasket at a suitable location on the blowhole to prevent leakage of high pressure gas.
  • the template of the further aspect of the invention is separable, and the template is integrated during injection molding to ensure sealing during injection; the template is separable during demolding, ensuring that the separable rows are not separated when separated The template is hampered.
  • the heat shield of the further aspect of the invention prevents solidification of the liquid silicone rubber material during the flow.
  • the inner core of the further aspect of the invention is separable and/or detachable, which facilitates the processing of the inner core, and can only replace the inner mold insert when the mold needs to be replaced, thereby reducing the cost and reducing the maintenance time. .
  • the mold cavity of the further aspect of the present invention is a gourd shape, so that the produced silicone rubber cupping device can achieve an excellent therapeutic effect.
  • a further aspect of the present invention provides a thickness range of the mold cavity, and the silicone rubber cupping device prepared by the mold cavity having the thickness range has a better therapeutic effect.
  • a further aspect of the present invention provides a cold runner that allows the inlet of the liquid silicone rubber material to be more flexible, and the raw material in the cold runner does not solidify, thereby reducing waste of raw materials in the product manufacturing process.
  • the thermal insulation device and/or the cooling water channel of a further aspect of the invention prevents solidification of the liquid silicone rubber material as it flows through the cold runner.
  • the sealant of the further aspect of the present invention can ensure that there is no residual silicone rubber in the passage through which the liquid silicone rubber material will flow after the injection of the liquid silicone rubber material, thereby avoiding possible cleaning steps in subsequent procedures.
  • a further aspect of the invention provides a preferred gas pressure that is blown out by the blow-off release device for more rapid demolding.
  • a further aspect of the present invention provides a method for fabricating a silicone rubber cupping device.
  • the raw material is replaced by a molded solid rubber into an injection-molded liquid silicone rubber as compared with the conventional press forming process, because the liquid silicone rubber has good fluidity.
  • the filler is uniform and there is no dead angle, which greatly reduces the defective products caused by uneven packing.
  • Use liquid silicone rubber The raw materials are manufactured by the method of the present invention, so that the products are fine, smooth, beautiful, and the performance is greatly improved. At the same time, it also solves the quality problems often caused by traditional molding processes such as bubbles, pitting, scratches, stains and impurities.
  • the method combines the rubber compound and the additive as a raw material input, and can complete the production once in a few seconds, and the first vulcanization molding eliminates the mixing, cutting, weighing, discharging, molding, etc. of the front end of the molding process. Process. Moreover, the charging is accurate, the raw materials are greatly saved, and the process is simple.
  • the detachable row position and the inner core are separated to realize full automation of injection molding, and the production efficiency is high, and the air stripping device makes the demoulding simple and quick, and the demoulding process does not need to be disassembled and cleaned.
  • Device Compared with the press forming process, the liquid silicone rubber injection process has a short curing time. For products of the same wall thickness, the curing time is only a fraction of the molding time, so the number of cavities using the mold is also Usually a fraction of the number of molded mold cavities also greatly increases production efficiency.
  • the production process is basically automated. All the processes require only one person to look at the machine. The time and personnel savings required to produce a set of products are more than 10 times. It also greatly reduces the waste of electrical energy.
  • a further aspect of the present invention provides a preferred demolding step by which the mold release can be facilitated and facilitated so that the apparatus for making a silicone rubber cupping apparatus does not require disassembly and cleaning during the demolding process.
  • a further aspect of the present invention provides a cycle production step for batch, automated production of the silicone rubber cupping device, which increases production efficiency and automation.
  • the silicone rubber cupping device prepared by the apparatus and method of the present invention has the characteristics of high elasticity, high transparency, and complicated shape.
  • the silicone rubber cupping device of the further aspect of the invention is transparent, which can help the user to clearly observe the patient's skin condition on the outside, and facilitate timely adjustment of the treatment measures.
  • the silicone rubber cupping device of the further aspect of the present invention is elastic, and can achieve a negative pressure and absorb the skin without ignition.
  • Figure 1 a is a schematic illustration of one embodiment of the apparatus of the present invention.
  • Figure 1 b is a schematic illustration of one embodiment of the apparatus of the present invention.
  • Figure 2 is a side view of Figure 1b.
  • Figure 3 is a schematic illustration of one embodiment of the apparatus of the present invention.
  • FIG. 4 is a schematic illustration of a blow release device of one embodiment of the apparatus of the present invention.
  • the reference numerals are as follows:
  • a device for manufacturing a silicone rubber cupping device as shown in FIG. 1 a, FIG. 1 b and FIG. 2 , comprising a nozzle 12 (also referred to as a nozzle), an inner core 4, and a detachable row position 7 (also referred to as It is a slider or a front or outer mold), and a blow release device 6.
  • the blow molding device 6 is used for blow molding.
  • the row position 7 includes a concave shape, the row position being composed of at least two separable row position blocks, and the inner mold core includes a convex shape.
  • a mold cavity 1 for forming a silicone rubber cupping tool is formed between the convex shape of the inner core 4 and the concave shape of the row position 7.
  • the blow molding device 6 communicates with the mold cavity 1 through a blow hole opening 23 provided at the interface of the inner core 4 and the mold cavity 1.
  • the nozzle 12 is connected to the channel of the liquid silicone rubber raw material, and the other end is connected to the mold cavity 1, that is, the liquid silicone rubber material is injected into the mold cavity 1 through the nozzle 12 to make the liquid silicone rubber material
  • a silicone rubber cupping device can be formed in the mold cavity 1.
  • One end of the nozzle 12 for inputting the liquid silicone rubber material may also be in communication with the cold runner 17, and the liquid silicone rubber material is input through the cold runner 17, that is, the liquid silicone rubber material is introduced into the nozzle 12 through the cold runner 17. The other end of the nozzle 12 is injected into the mold cavity 1.
  • the nozzle 12 can also be connected to the mold cavity 1 via a length of hot runner 27.
  • the position of the hot runner 27 may be disposed on a certain row block, but preferably, the nozzle 12 is provided with a section of the hot runner 27 on the flow path communicating with the mold cavity 1, the hot runner 27 being the row block a flow path formed at an interface between row-level blocks in a combined state, such that when the row-position block needs to be separated (ie, separated), such as demolding, the at least two row-position blocks are separated from each other, and
  • the outer die face 26 of the silicone rubber cupping device in the mold cavity 1 and the hot runner 27 are exposed to the air to facilitate subsequent demolding and to prevent the formation of solidified rubber in the nozzle 12 from interfering with subsequent automated production.
  • the outer die face 26 refers to the interface between the silicone rubber cupping device in the mold cavity 1 and the row position 7, as shown in Fig. 1a and Fig. 1b.
  • the shape of the mold cavity may be a gourd shape as shown in FIG. 1 a and FIG. 1 b , and the blow hole opening 23 communicates with the mold cavity 1 at the center of the top of the gourd shape, and may of course be other shape. After clinical trials, the gourd-shaped silicone rubber cupping device has excellent therapeutic effects.
  • the row position 7 in the present invention may be separable in the axial direction perpendicular to the silicone rubber cupping device, and may of course be separated from the axial direction of the silicone rubber cupping device. It is also possible to arrange a plurality of separable rows along the axial direction of the mold cavity 1 away from the mold cavity 1 in the axial direction of the mold cavity 1, so that the outer mold of the silicone rubber cupping device in the mold cavity 1 can also be made.
  • the face 26 is exposed to the air; if there is a hot runner 27 at this time, the hot runner 27 can be disposed at the interface between the two row blocks.
  • the inner core 4 may be of a unitary structure, as shown in Fig.
  • the apparatus for manufacturing a silicone rubber cupping device may further include a heat generating device that heats the liquid silicone rubber material to be vulcanized, such as the heat generating tube 13.
  • a heat generating device that heats the liquid silicone rubber material to be vulcanized, such as the heat generating tube 13. It should be noted that although the heat generating device is an essential device for the liquid silicone rubber injection molding process, it may be installed inside the device for manufacturing the silicone rubber cupping device as part of the device, but the heat generating device does not have to be
  • the structure integrated with the apparatus for manufacturing a silicone rubber cupping device may be provided with heat by other external heating means.
  • the device for manufacturing a silicone rubber cupping device itself may be free of heat generating means.
  • the heat generating device may be a heat generating tube 13, or other form of heat generating device such as a heat generating sheet, a heat generating sheet, or the like.
  • the heat pipe 13 is taken as an example of the heat generating device, but the following embodiment should not be considered as a heating device. Set any restrictions.
  • the heat pipe 13 may be mounted in the formwork (such as in the front formwork 8 and/or the rear formwork 3) or in the inner core 4 and/or the row position 7.
  • the tail portion of the air blow release device 6 (i.e., the portion of the blow mold release device 6 adjacent to the outside of the device for manufacturing the silicone rubber cupping device) may be connected to a high pressure gas source.
  • the air blow release device 6 may include a blow release device fixing plate 16 at its tail for fixing and controlling it.
  • the air blowout device 6 includes a blowhole 21, and one end of the blowhole 21 is a blowhole opening 23 that communicates with the mold cavity 1 and also includes a blowhole. 21, a blow needle that controls the opening and closing of the blowhole opening 23.
  • the air blowing channel 21 is a frustum hole structure near the air blowing hole opening 23, and a cross-sectional diameter of the frustum hole structure near the air blowing hole opening 23 is smaller than a distance away from the air blowing hole opening 23.
  • the cross-sectional diameter of the blow pin includes a hollow stem portion 62 and a top portion 61 adjacent the blow tunnel opening 23.
  • the stem portion 62 has a vent 24 in communication with the blowhole 21 in the hollow portion.
  • the top portion 61 is a frustum structure having the same taper angle as the frustum hole of the air blowing hole 21 and capable of being closely fitted, that is, the top portion 61 of the air blowing needle is raised to the air blowing hole opening 23
  • the outer tapered surface of the frustum structure of the air blowing needle top 61 and the inner tapered surface of the frustum hole structure of the air blowing hole 21 near the air blowing opening 23 can be closely adhered to ensure that During the injection molding process, when the blow pin top 61 is placed against the blow hole opening 23 (ie, the frustum hole structure of the blow hole 21 positions the frustum structure of the blow pin top 61), the mold cavity 1 can Being completely sealed (sealed), the liquid silicone rubber cannot flow into the air blowing passage 21 through the air blowing opening 23; and during the demolding process, the air blowing needle is away from the mold cavity along the air blowing hole 21.
  • the blow hole opening 23 is opened to allow the blow hole 21 to communicate with the mold cavity 1, at which time high pressure gas can enter the mold cavity 1 through the blow hole 21.
  • the frustum hole structure and the frustum in the frustum structure may be a circular table which is positioned and matched with each other, or an elliptical table or a prism (for example, a triangular prism, a quadrangular prism, a hexagonal prism, etc.).
  • the blowing holes 21 are provided in the inner core 4.
  • the inner wall of the hollow structure of the inner core is the air blowing tunnel wall 211 (as shown in the figure)
  • the top surface of the top portion 61 of the air blowing needle is in a shape that is flat or smoothly transitioned with the inner mold surface 25 of the mold cavity 1 near the air blowing opening 23, for example, if the inner mold surface is here 25 should be a plane or a micro-curved surface according to the continuity of the inner inner mold surface 25, as shown in Fig. 1a, where the shape of the top surface of the top portion 61 of the air blowing needle is the above-mentioned plane or micro-curved surface. This avoids uneven protrusions or depressions at the position of the blowhole opening 23, thereby avoiding affecting the quality of the product and ensuring the uniformity of the silicone rubber cupping device after molding.
  • the inner mold face 25 refers to the interface between the inner core 4 and the silicone rubber cupping tool in the mold cavity 1, as shown in Fig. 1a and Fig. 1b.
  • the blow-off release device 6 may further include an intake port 29 for conveying a gas into the blow hole 21, as shown in Figs. 1a and 1b.
  • the inlet end 29 is connected to the high pressure gas source through the inlet port 28, and the other end of the inlet port 29 is opened in the hollow portion of the blowing needle.
  • high pressure gas enters the blow tunnel 21 through the intake passage 29 and enters the mold cavity 1 through the blow passage opening 23.
  • a section of the reduced diameter pipe, a section adjacent to the frustoconical hole structure is a small diameter section, and a gasket 30 having an opening in the middle to prevent leakage of high pressure gas is disposed in the large diameter section, as shown in FIG. 1 a and FIG. 1 . b and Figure 4.
  • the outer edge of the gasket 30 is sealingly fitted to the inner wall of the air blowing hole 21, and the inner edge of the middle opening is sealingly fitted to the outer wall of the rod portion 62 of the air blowing needle, thereby preventing the high pressure gas from leaking outward.
  • the tail portion of the air blowing needle portion 62 may be provided as a portion having a boss, and the tail portion of the air blowing hole 21 may be provided to have an inner convex portion. a portion of the table, and the boss of the tail portion of the air blowing needle portion 62 is matched with the inner boss of the tail portion of the air blowing hole 21, and a gasket 30 is installed between the two portions, as shown in FIG.
  • the portion of the air channel 21 outside the frustum hole structure is a two-stage variable diameter pipe, and a section close to the frustum hole structure is a small diameter section, and a large diameter section is provided with a high pressure gas leakage prevention in the middle.
  • An apertured gasket 30 for closing the blow during the forming process The gap between the gas needle and the blowing tunnel 21 during the bonding.
  • the air blow release device 6 may be another structure that can close the blow hole 21 at the time of molding and communicate the blow hole 21 with the mold cavity 1 at the time of demolding.
  • the tail portion of the air blowing needle rod portion 62 is provided with a portion having a boss and a tail portion of the air blowing hole 21.
  • the inner boss presses the gasket 30 between the two, so that when the blowing needle portion 62 is pulled apart to cause the blowing needle top 61 to leave the blowing opening 23, the blowing needle top 61 and the blowing port
  • the distance L1 of the opening 23 is smaller than the distance L2 between the boss of the tail portion of the air blowing needle portion 62 and the inner boss of the tail portion of the air blowing hole 21, and the difference between the latter L2 and the former should be slightly smaller than that of the gasket 30.
  • the present invention has been described mainly by taking the air blowing and releasing device 6 including the air blowing opening 23, the air blowing port 21, and the air blowing needle as an example, but this should not be regarded as any limitation on the air blowing releasing device 6.
  • the high-pressure gas pressure blown by the air blow-off device is preferably 6 to 7.5 atmospheres, and the formed silicone rubber cupping tool can be smoothly released.
  • the apparatus for manufacturing a silicone rubber cupping device may have two or more mold cavities 1 .
  • the apparatus for making a silicone rubber cupping device may further include a template for fixing and/or wrapping the row position and the inner core, and the template may include a front template 8 and a rear template 3.
  • the template may also be separable; at least, the portion of the template wrap and/or fixed row 7 is separable.
  • the template can be divided into a front template 8 and a rear template 3 which are separable from each other.
  • the detachable front template 8 wraps and supports the row position 7, so in this embodiment the front template 8 is itself separable, and the rear template 3 only needs to be separable from the front template.
  • the template portion of the parcel row 7 may also be other cases. For example, as shown in FIG.
  • the separation direction of the detachable front template 8 itself in Fig. 1a may be a separation movement which is separated in parallel or approximately parallel to the separation direction of the row position 7 (the separation direction of the row position 7 in Fig. 1a is left and right separation) (The separation direction of the detachable front template 8 is also left and right separated), or it may be moved in other directions away from the row position (for example, the detachable front template 8 may be separated in the upper left and upper right directions, respectively).
  • the separation direction of the detachable front template 8 itself in Fig. 1a may be a separation movement which is separated in parallel or approximately parallel to the separation direction of the row position 7 (the separation direction of the row position 7 in Fig. 1a is left and right separation) (The separation direction of the detachable front template 8 is also left and right separated), or it may be moved in other directions away from the row position (for example, the detachable front template 8 may be separated in the upper left and upper right directions, respectively).
  • the respective half of the front template and the rear template enclose the row position, so in Fig. 3, the front template 8 and the rear template 3 are separated in parallel or approximately parallel to the separation direction of the row position (i.e., Separation in the up and down direction in 3) makes the separation of the row position unrestricted.
  • the apparatus for manufacturing a silicone rubber cupping device may further include at least one heat insulating panel 2 for isolating the mold region.
  • the mold area is an area composed of at least the row position 7, the inner core 4 and the mold cavity 1 formed therein.
  • the mold area may further include a front template 8 And post template 3.
  • the mold area needs heating and heat preservation during the injection molding process, and the liquid silicone rubber can maintain its fluidity at a lower temperature. Therefore, it is necessary to pass the cold flow path 17 through which the mold area and the liquid silicone rubber material flows through the heat insulating material or heat insulation.
  • Plate 2 is thermally insulated.
  • the inner core 4 may be a separable and/or detachable structure composed of an inner mold insert 5 and an inner core holder 41, as shown in Figs. 1 b, 2 and 3.
  • the inner mold insert 5 has a plug structure
  • the inner core retainer 41 has a groove structure
  • the insert structure and the groove structure are matched.
  • Separable means that the inner mold insert 5 and the inner core retainer 41 can be separated.
  • the detachable means that the inner mold insert 5 and/or the inner core retainer 41 can be detached from other components connected thereto, such as the rear die plate 3. Down and install.
  • the device for manufacturing a silicone rubber cupping device may further include a sealing needle 22, wherein the sealing needle 22 is connected to the high-pressure gas source, and the other end is connected to the cold runner 17.
  • the high-pressure gas source may be the same gas source as the high-pressure gas source of the air-blasting device 6; the high-pressure gas source may be an external air source, or may be installed in the manufacturing silicone rubber cupping device. The built-in internal air supply.
  • Preheating and cooling protection heating the mold area while cooling the passage through which the liquid silicone rubber material will flow (ie, the passage into the liquid silicone rubber material), such as the nozzle 12, or the area around the passage.
  • the passage through which the liquid silicone rubber material may flow includes the cold runner 17, and the cold runner 17 is also cooled so that the liquid silicone rubber material does not undergo temperature rise vulcanization during transport.
  • the liquid silicone rubber material herein may include a liquid additive to be added to the liquid silicone rubber. Therefore, the liquid silicone rubber material containing the liquid additive may also be simply referred to as a liquid silicone rubber material.
  • the mold section includes a row position 7, an inner core 4, and a mold cavity 1 formed by the row position 7 and the inner core 4, as shown in Fig. 1a.
  • the heating of the mold area may be by means of a heat generating device installed in the mold area, such as the heat pipe 13 or the heat generating plate or the heat generating sheet, or the heat may be supplied by an external heating device, and the heat supplied should be as much as possible in the mold area.
  • the portions are kept at the same or close temperature so that the portions of the silicone rubber cupping device product in the mold cavity 1 have uniform properties.
  • Vulcanization Stop feeding and keep it for a certain period of time to vulcanize and solidify the liquid silicone rubber material.
  • step 4) preferably includes the following specific steps:
  • the separable rows 7 are separated perpendicularly or approximately perpendicular to the axial direction of the mold cavity 1 to expose the outer die face 26 of the silicone rubber cupping device in the mold cavity 1 to the air.
  • the blow hole opening 23 in the blow molding device 6 is opened to allow the blow release device 6, such as the blow hole 21 in Fig. 4, to communicate with the mold cavity 1.
  • the air blow release device 6 is mainly composed of a blow hole opening 23, a blow hole 21, and a blow needle, and the inner core 4 is together with a vulcanized solidified silicone rubber cupping device in the mold cavity 1. Relative movement of the blow needle in the opposite direction (in FIG. 4, the blow needle moves downward, the inner core 4 moves upward together with the silicone rubber cupping device), and the inner mold of the blow needle and the mold cavity 1 A space is formed between the faces 25.
  • the high-pressure gas source blows high-pressure gas to the inner mold surface 25 of the mold cavity 1 through the blowing hole 21 and the blowing opening 23 of the blowing and releasing device 6, thereby releasing the solidified silicone rubber cupping device Inner mold face 25.
  • the pressure of the high-pressure gas is preferably 6 to 7.5 atm, and the formed silicone rubber cupping device can be smoothly and quickly blown out.
  • step 5) can also be included: Cycle production: Repeat steps 2) through 4).
  • step 4.1) becomes: separable template separation (including the former template 8 itself separated in Figure 1 a, 1 b as described above, or the front in Figure 3
  • the template 8 is separated from the rear template 3, of course, including other types of template separation), so that the separable row position 7 is separated perpendicularly or approximately perpendicular to the axial direction of the mold cavity, so that the silicon in the mold cavity 1
  • the outer die face 26 of the rubber cupping device is exposed to the air.
  • the above-mentioned sealing needle 22 may be further included, and the sealing needle 22 is connected to a high-pressure gas source, and the other end is connected with a channel through which the liquid silicone rubber material is to flow, such as the cold runner 17 .
  • the nozzle 12 is connected; at this time, after the step 2), the sealing process of the step 2A) may be further included: stopping the flow of the liquid silicone rubber material into the passage, such as the cold runner 17 and/or the nozzle 12, to make the high pressure gas
  • the liquid silicone rubber stock residue in the passage is flushed out of the passage by the seal needle 22 flushing into the passage.
  • silicone rubber cupping device it is possible to simultaneously produce one or more silicone rubber cupping devices, such as two, three, four, five, six, and eight silicone rubber cupping devices. Of course, it can also be used to produce more silicone rubber cupping equipment at the same time.
  • a second embodiment of a method of manufacturing a silicone rubber cupping device by the above-described apparatus for manufacturing a silicone rubber cupping device In conjunction with the drawings (mainly referring to Figs. 1a, 1b and 2), a method of manufacturing a silicone rubber cupping device The second embodiment, that is, the steps of a simple case of producing a silicone rubber cupping device at a time, is explained as follows:
  • the inner core 4 may also be a detachable structure composed of the inner mold insert 5 and the inner core holder 41 to facilitate the processing of the inner core 4, and only the inner mold insert may be replaced when the mold needs to be replaced. 5, the cost is reduced, the maintenance and care time is reduced; at this time, the mold area further includes the inner mold insert 5 and the inner mold core holder 41, and the mold cavity 1 is composed of the inner mold core holder 41, The area between the inner die face 25 of the die insert 5 and the outer die face 26 of the row position 7 is formed as shown in Fig. 1b.
  • the heating of the mold zone may be performed by installing the heat pipe 13 in the front die plate 8 and the rear die plate 3, or the heat pipe 13 may be installed in the inner core 4 and/or the row position 7 for heating, as shown in Fig. 2
  • the heat pipe 13 is mounted on the inner core holder 41, and the heat pipe 13 is installed in the row position 7 as shown in FIG.
  • the cold runner 17 While heating, the cold runner 17 needs to be cooled. Since the liquid silicone rubber is accelerated and vulcanized and solidified at a temperature above 90 ° C, in order to ensure the fluidity of the liquid silicone rubber in the subsequent feeding process, the cold runner 17 needs to be cooled to a temperature lower than 50 ° C.
  • the critical cooling zone for the cold runner 17 is near the cold runner 17, but in practice a heat shield 2 is typically installed between the panel 10 and/or the blow release unit retaining plate 16 and the mold section.
  • the peripheral area of the panel 10 and/or the blow-off device fixing plate 16 is also kept low, as shown in Fig. 1a, Fig. 1b, and Fig. 3.
  • the heat shield 2 can be a high temperature resistant foam or other form of insulation for industrial applications such as asbestos sheets.
  • the area near the circumference of the cold runner 17 is cooled by water cooling.
  • the cooling water is introduced into the cooling water passage 19 through the cooling water hole 18 connected to the external cooling water source, and the cold flow path 17 and/or the panel 10 is cooled, and of course, the blowing release device can also be used.
  • the fixing plate 16 is cooled, as shown in FIG. 1 a and FIG. 1 b , so as to facilitate the worker to be burnt without being subjected to manual operation, such as the panel 10 and the blow release device fixing plate 16 and the mold area.
  • the heat shield 2 is installed between the panel 10 and the peripheral portion of the blow release device fixing plate 16 to be kept at a lower temperature, as shown in Fig. 1a, Fig. 1b, and Fig. 3.
  • the heat shield 2 may be made of a heat resistant material such as a heat resistant bakelite or asbestos board.
  • the liquid silicone rubber material is injected into the mold cavity 1 through the cold runner 17, the nozzle 12 and the hot runner 27.
  • FIG. 1 a Take FIG. 1 a as an example for explanation.
  • a tip 12 i.e., a nozzle
  • a mouthpiece 11 for thermally insulating the mouthpiece 12.
  • the liquid silicone rubber material passes through the nozzle 12 through the preset hot runner in the row position 7. 27 is injected into the mold cavity 1. After the injection is completed, the liquid silicone rubber material is stopped.
  • Vulcanization After stopping the feeding, it needs to be kept for a certain period of time, and the liquid silicone rubber is vulcanized and solidified.
  • the holding time is determined by the amount of liquid silicone rubber injected into the mold cavity 1. When the amount of liquid silicone rubber injected is large, the holding time is slightly longer. For example, for a larger silicone rubber cupping device (such as an inner diameter of 66 mm at the opening and an outer diameter of 78 mm), since only one process is produced in one process, it needs to be kept for 20 seconds to 40 seconds; and for smaller ones (such as an inner diameter of 50 mm at the opening).
  • silicone rubber cupping device because it can produce two at a time, the amount of liquid silicone rubber injected is more, so the holding time is longer, it can be 1 minute to 1.5 minutes; for smaller (such as the inner diameter of the opening 30mm) Silicone rubber cupping equipment up to 40mm, outer diameter 40mm to 50mm) can produce 4 to 8 or more silicone rubber cupping tools at a time, and the holding time can be controlled according to the amount of liquid silicone rubber injected.
  • the mold cavity 1 is also axisymmetric.
  • the detachable front template 8 and row position 7 are urged by the inclined guide column 15 (see Fig. 2) to be perpendicular or perpendicular to the axial direction of the mold cavity 1 to both sides (Fig. 1 a, Fig. 1 b
  • the left and right directions are separated to expose the outer mold face 26 of the silicone rubber cupping device solidified in the mold cavity 1 and the silicone rubber solidified in the hot runner 27 to the air.
  • the separation manner of the detachable front template 8 may be a separation from the separation direction of the row position 7 (as in the case of FIG.
  • the front template 8 may be the front template 8 as a whole and the row position 7. Separate the top and bottom (for example, Figure 1 a, Figure 1 b can be the front template 8 and the mouth 12), moving up, so that the front template 8 and the row position 7 are separated as a whole, that is, in this case, the wrapping position
  • the template part of the front part of the template 8 may be integrated or not separated, or the front template 8 and the rear template 3 may be separated from each other (the front template 8 and the upper front mold cavity 72 are body-moving).
  • the rear template 3 and the lower front mold cavity 71 are body-moving, and the two parts are separated from each other).
  • the front template 8 may also be a unitary structure rather than a separable structure, in which case the front template 8 is separated from the row position 7 and does not interfere with the separation of the row position 7 itself.
  • the blow release device 6 includes the blow hole 21, the blow hole opening 23, and the blow needle, as shown in Fig. 4, the inner core 4 is opposed to the solidified silicone rubber cupping device in the mold cavity 1
  • the blowing holes 21 passing through the inner core 4 are relatively moved in the axial direction of the blowing holes 21, and of course the blowing holes may be curved.
  • the inner core 4 is moved upward together with the solidified silicone rubber cupping tool in the mold cavity 1; in the case of Fig.
  • the inner core 4 is made of the inner mold insert 5 and the inner mold core 4
  • the detachable structure composed of the core holder 41, the inner mold insert 5 and the inner core holder 41 move upward together with the solidified silicone rubber cupping device in the mold cavity 1; and the blow release device fixing plate 1 6 and the blowing needle fixed thereto remains stationary, and therefore, in Fig. 1a, the inner core 4 is together with the silicone rubber cupping device solidified in the mold cavity 1 with respect to the blowing needle (the blowing needle) It is fixed to the blow molding release device fixing plate 16 and passes through the inner core 4) to face the relative movement in the axial direction of the air blowing passage 21, thereby forming a gap between the air blowing needle and the top of the silicone rubber cupping device 1.
  • a space which may be only a few millimeters long, is sufficient for the blowhole opening 23 to communicate with the mold cavity 1 for subsequent blow-off demolding.
  • Blowing and demolding High pressure gas is blown to the inner top surface of the inner mold face 25 of the vulcanized silicone rubber cupping device by the blow molding device 6 (preferably at a gas pressure of 6 to 7.5 atmospheres), upward high pressure gas The inner surface of the silicone rubber cupping device flows so that the hot, solidified silicone rubber cupping device is detached from the inner mold face 25 and is blown into the container (such as a basket). Thereby completing the production and demoulding of one or a batch of silicone rubber cupping devices.
  • Cycle production Repeat steps 2) through 4) above to achieve batch, automated production.
  • the step 1) of the third embodiment is the same as the preheating and cooling protection process of the step 1) of the first embodiment.
  • the step 2) since the amount of the silicone rubber cupping device produced is increased, the amount of the liquid silicone rubber used is large, so after the feeding, the liquid silicon in the cold flow path 17 needs to be passed through the sealing process of the sealing pin 22. Rubber does not flow out, as follows:
  • a sealing needle 22 is provided, and the sealing needle 22 is connected to the high-pressure gas source through the air outlet 14, such as a cylinder (the cylinder is used to provide a high-pressure gas source, not shown in the figure), and The needle at one end is connected to the cold runner 17 or the nozzle 12, and extends into the cold runner 17 or the nozzle 12.
  • the valve 20 is closed to stop the liquid silicone rubber from flowing into the cold runner 17, and then the cylinder is opened to make the high pressure gas.
  • the cold runner 17 and/or the nozzle 12 are flushed through the air outlet 14 and the sealing needle 22, and the liquid silicone rubber remaining in the cold runner 17 or the nozzle 12 is flushed out of the cold runner 17 or the nozzle 12 on the one hand.
  • the liquid silicone rubber is prevented from being vulcanized and solidified in the cold runner 17 or the nozzle 12, thereby eliminating the cleaning of the cold runner 17 and the nozzle 12, and on the other hand forming a gas column in the cold runner 17 or the nozzle 12.
  • the air pressure generated by the gas column can prevent the liquid silicone rubber at the tail of the cold runner 17 from flowing into the cold runner 17 and the nozzle 12 to cause contamination.
  • the high-pressure gas source connected to the sealing needle 22 may be the same gas source as the high-pressure gas source of the blowing needle, and may of course be two different high-pressure gas sources.
  • the holding time needs to be appropriately extended according to the amount of the liquid silicone rubber, and the case of producing two silicone rubber cupping devices at one time as shown in Fig. 3 should be maintained for 1 minute to 2 minutes. .
  • the row position 7 is divided into left and right pieces.
  • the row position 7 is divided into upper and lower portions, a lower front mold cavity 71 and an upper front mold cavity 72, and the inner core 4 is formed by an inner mold.
  • the detachable structure composed of the piece 5 and the inner core holder 41, of course, the inner core 4 may also be an integral structure as shown in FIG. 1a, during the demolding process of step 4),
  • a part of the row position 7 here preferably, the lower front mold cavity 71
  • the inner mold insert 5 which moves together And moving downward with the inner core holder 41, the mold cavity 1, the blowing and releasing device fixing plate 16 and the blowing needle fixed thereto, at this time, the upper half of the outer molding surface 26 of the row 7 Exposure to the air.
  • the separable row position 7 (here preferably the lower front mold cavity 71) in contact with the silicone rubber cupping device is then separated from the silicone rubber cupping device (specifically, it can be separated from the rear template 3 by the push rod 9).
  • the silicone rubber cupping device specifically, it can be separated from the rear template 3 by the push rod 9.
  • the inner mold insert 5 and the inner core holder 41 together with the solidified silicone rubber cupping tool in the mold cavity 1 are passed through the inner core holder 41 and the inner mold.
  • the blowing tunnel 21 of the member 5 is moved in the opposite direction of the axial direction of the blowing tunnel 21 (in FIG. 3, it is moved backwards in the left-right direction by the push rod 9, and of course other driving methods are possible. Force under the movement), thus in the blowing needle and A space is formed between the inner mold faces 25.
  • the blowing needle is away from the inner mold surface 25, and the blowing needle and the blowing and releasing device fixing plate 16 may be fixed while the inner core fixing frame 41 and the inner mold insert 5 are moved, or the inner core may be fixed.
  • the frame 41 and the inner mold insert 5 are fixed and the blow needle and the blow mold release device 16 are moved, and the two can simultaneously be moved away from each other.
  • step 4.3 The demolding process of step 4.3) and the cyclic production process of step 5) are the same as in the second embodiment.
  • the silicone rubber cupping device prepared by the above device and method has the characteristics of high elasticity, high transparency, and complicated shape.
  • the flexible silicone rubber cupping device can achieve negative pressure and absorb the skin without ignition, and its transparency can help the doctor to clearly observe the patient's skin condition and facilitate timely adjustment of medical treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Rehabilitation Therapy (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Vascular Medicine (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

一种制造硅橡胶拔罐器具的方法和装置,所述装置包括射嘴(12),内模芯(4),可分离的行位(7)和吹气脱模装置(6);所述行位(7)由至少两个可分离的行位块组成,所述行位(7)和所述内模芯(4)之间形成用于硅橡胶拔罐器具成形的模具型腔(1);所述射嘴(12)一端与输入液体硅橡胶原料的通道相连,另一端与模具型腔相连(1);所述吹气脱模装置(6)通过设置在内模芯(4)与模具型腔(1)交界处的吹气孔道开口(23)与所述模具型腔(1)连通。所述方法包括如下步骤:预热及冷却保护,加料,硫化,脱模。该方法和装置以液体硅橡胶为原料,采用注射硅橡胶硫化成型技术,可以制造高弹力、高透明、形状复杂的硅橡胶拔罐器具,且工序简单、全程自动化,生产效率高,脱模简单快捷,脱模过程无需拆装清洗装置。

Description

一种制造硅橡胶拔罐器具的方法和装置
技术领域
本发明涉及一种制造拔罐器具的方法和装置, 特别涉及一种制造硅橡胶拔罐器具的方法 和装置。 背景技术
拔罐器具, 是中医传统的医疗保健器具, 历史悠久, 效果显著。 但是传统的拔罐器具通 常是由硬质材料制造, 如陶瓷、 竹筒、 玻璃, 也有采用有机玻璃材质制造的抽气拔罐。 由硬 质材料制成的拔罐, 通常需要通过点火或抽气, 使腔内形成一定的负压, 才能拔吸在人体一 定的部位上。 点火拔罐, 容易烫伤; 抽气拔罐, 操作也不够方便。 且硬质材料制成的拔罐, 随着拔上后皮肤隆起, 罐较容易脱落, 而像关节、 脊柱等肌肉不丰、 凹凸不平的部位很难拔 上。 且均不便于携带。
近年也出现了橡胶或硅橡胶材料制成的拔罐器具, 与硬质材料制成的拔罐器具相比, 橡 胶或硅橡胶制成的拔罐, 明显具有以下特点:
1 ) 不用点火, 不会烫伤, 操作简便, 易学易用;
2) 拔吸力大, 拔得牢, 且拔吸力容易调整;
3) 由于罐口柔软可变形, 像关节脊柱等凹凸不平、其它拔罐器具不易拔上的部位亦可拔 上;
4) 操作无体位限制, 坐卧站立, 甚至行走, 均可拔罐;
5) 不易破碎, 便于携带。
由于橡胶或硅橡胶材料制造的拔罐器具的以上诸种优点, 受到医师和患者的欢迎。 但目前橡胶拔罐采用的橡胶材料不透明; 硅橡胶拔罐器具, 由于制造工艺的限制, 也只 能达到半透明的程度, 影响了医师对患者治疗部位皮肤的观察, 这也是橡胶弹力拔罐的致命 弱点。
橡胶或硅橡胶拔罐器具现有的制造技术是采用模压成形技术。 模压成形技术的大体过程 如下: 先将固态硅橡胶通过混炼机混炼后, 将混炼好的胶片经裁料机裁成适于填充模具型腔 的大小及厚度, 称量出略多于产品重量的胶料, 然后放入模具型腔内, 将模具安装在压力成 型机上, 启动压力成形机, 在一定温度下保持一定的时间, 模压成形, 最后经过脱模完成拔 罐器具。 模压成形具有如下缺点: 一是工序复杂, 要经过炼胶、 混料、 切料、 称重、 放料、 装模、 模压硫化成形、 脱模、 飞边处理等多道工序, 加工时间长, 生产效率低; 二是成形方 法粗旷, 不精细, 很难避免产品成型过程中人工操作带来的产品品质偏差; 三是脱模困难, 在强力脱模过程中拔罐器具易受损伤, 废品率高, 同时脱模过程中要拆卸模具, 费时费力, 增大了劳动强度, 延长了制造时间。 发明内容 为了解决上述问题, 本发明提供了一种制造硅橡胶拔罐器具的方法和装置, 以液体硅橡 胶为原料, 采用注射硅橡胶硫化成型技术, 可以制造高弹力、 高透明度、 形状复杂的硅橡胶 拔罐器具, 且工序简单、 全程自动化, 生产效率高, 脱模简单快捷, 脱模过程无需拆装清洗 装置。
一种制造硅橡胶拔罐器具的装置, 包括射嘴, 内模芯, 可分离的行位和吹气脱膜装置; 所述行位由至少两个可分离的行位块组成, 所述行位和所述内模芯之间形成用于硅橡胶拔罐 器具成形的模具型腔; 所述射嘴一端与输入液体硅橡胶原料的通道相连, 另一端与模具型腔 连通; 所述吹气脱模装置通过设置在内模芯与模具型腔交界处的吹气孔道开口与所述模具型 腔连通。
所述行位包括凹形结构, 所述内模芯包括凸形结构, 所述行位的凹形结构和所述内模芯 的凸形结构之间形成用于硅橡胶拔罐器具成形的模具型腔。
所述射嘴与模具型腔连通的流道上设置一段热流道, 所述热流道为所述行位块在组合状 态下在行位块之间的交界面形成的流道。
所述吹气脱模装置可以包括吹气孔道, 所述吹气孔道的一端为吹气孔道开口, 该开口与 模具型腔连通, 还包括位于吹气孔道内、 控制所述吹气孔道开口开闭的吹气针; 所述吹气孔 道在所述吹气孔道开口附近为锥台孔结构, 所述锥台孔结构在靠近所述吹气孔道开口处的截 面直径小于远离所述吹气孔道开口处的截面直径, 所述吹气针包括中空杆部和靠近所述吹气 孔道开口的顶部, 所述杆部在中空部分具有与吹气孔道连通的气孔, 所述顶部是与所述吹气 孔道的锥台孔结构具有相同锥角并能够紧密贴合的锥台体结构。
所述吹气孔道设置在内模芯内, 所述吹气针的顶部的顶面可以是与所述模具型腔在所述 吹气孔道开口附近的内模面相平或平滑过渡的形状。
所述吹气脱模装置还可以包括输送气体进入吹气孔道的进气道, 所述进气道一端通过进 气口与高压气源连接, 另一端开口于所述吹气针的中空部分内。
吹气孔道在锥台孔结构之外的部分为两段变径的管道, 靠近所述锥台孔结构的一段为小 直径段, 在大直径段内设置有防止高压气体泄漏的、 在中间有开孔的密封垫。
所述的制造硅橡胶拔罐器具的装置, 还可以包括模板, 所述模板用于固定和 /或包裹行位 和内模芯, 所述模板包括彼此可分离的前模板和后模板; 或所述模板是可分离的。
所述的制造硅橡胶拔罐器具的装置, 还可以包括隔绝模具区的至少一个隔热板, 所述模 具区是至少由行位、 内模芯及其形成的模具型腔构成的区域。
所述内模芯可以是由内模镶件和内模芯固定架构成的可分离和 /或可拆卸结构, 所述内模 镶件具有插件结构, 所述内模芯固定架具有插槽结构, 所述插件结构和所述插槽结构相适配。
所述的制造硅橡胶拔罐器具的装置, 还可以包括对液体硅橡胶原料加热使其硫化成型的 发热装置。 所述发热装置可以是发热管或发热板。
所述模具型腔的形状可以为葫芦形, 所述吹气孔道开口在所述葫芦形的顶部中央与模具 型腔连通; 和 /或所述模具型腔的厚度可以为 7至 1 6mm。 所述吹气脱模装置吹出的高压气体压强可以为 6至 7.5个大气压; 所述模具型腔为两个 或两个以上。
一种利用上述的制造硅橡胶拔罐器具的装置制造硅橡胶拔罐器具的方法,包括如下步骤:
1 ) 预热及冷却保护: 对模具区进行加热, 同时对液体硅橡胶原料将要流经的通道和 /或 所述通道周围区域进行冷却; 所述模具区是至少由行位、 内模芯及其形成的模具型腔构成的 区域;
2) 加料: 将液体硅橡胶原料注入模具型腔;
3) 硫化: 停止加料, 并保温一定时间;
4)脱模: 可分离的行位退开, 同时开启吹气孔道开口, 吹气脱膜装置对模具型腔内已成 形的硅橡胶拔罐器具吹气使其脱模。
步骤 4) 可以包括下述步骤 4.1 ) 至 4.3):
4.1 )可分离的行位沿垂直于或近似垂直于模具型腔轴向方向向两边分开, 使模具型腔中 硅橡胶拔罐器具的外模面暴露在空气中;
4.2)开启吹气脱模装置中的吹气孔道开口, 使吹气脱模装置的吹气孔道开口与模具型腔 连通;
4.3)吹气脱模: 高压气体通过吹气孔道开口进入模具型腔的内模面与已成形的硅橡胶拔 罐器具之间, 将凝固的硅橡胶拔罐器具吹离内模面;
还可以包括步骤 5): 循环生产: 重复上述步骤 2) 至 4)。
上述的方法中, 所述装置还包括模板, 所述模板用于固定和 /或包裹行位和内模芯, 所述 模板可以是可分离结构, 则步骤 4.1 )替换为: 可分离的模板分开, 使可分离的行位沿垂直于 或近似垂直于模具型腔轴向方向向两边分开, 使模具型腔中硅橡胶拔罐器具的外模面暴露在 空气中, 吹气脱模装置向模具型腔的内模面吹出的高压气体压强可以为 6至 7.5个大气压。
所述方法可以用于同时生产一个或一个以上硅橡胶拔罐器具。
一种硅橡胶拔罐器具, 是上述的制造硅橡胶拔罐器具的装置制成, 和 /或上述的制造硅橡 胶拔罐器具的方法制成。
所述硅橡胶拔罐器具可以是一端开口的、 透明的、 具有弹性的硅橡胶拔罐器具。 本发明的技术效果
本发明提供了一种制造硅橡胶拔罐器具的装置, 通过行位和内模芯之间形成用于硅橡胶 拔罐器具成形的模具型腔, 使输入液体硅橡胶原料的射嘴及所述吹气脱模装置分别与该模具 型腔相连通, 形成专用于制备硅橡胶拔罐器具的注射硫化成型装置, 从而能够以液体硅橡胶 为原料, 通过注射硫化成型技术可以制造高弹力、 高透明度、 形状复杂的硅橡胶拔罐器具, 且结构简单, 可分离的行位和内模芯分离可实现注射成型的全程自动化、 生产效率高, 吹气 脱模装置使脱模过程简单快捷, 脱模过程无需拆装清洗装置。 液体硅橡胶本身比固态硅橡胶 就有更好的透明度, 采用本发明的工艺制造, 由于模具的精度提高, 表面光洁度好, 完全解 决了以往弹力拔罐不透明和只能做到半透明的缺点, 使得用本发明生产的硅橡胶拔罐器具相 对于同类产品具有更明显的优势。 本发明的制造硅橡胶拔罐器具的装置的注射模具精度高、 对位好, 产品不会出现错位现象, 基本没有飞边, 基本不用后续的人工处理。
本发明进一步的方案中, 热流道设置在可分离的行位的交界面, 可以避免液体硅橡胶原 料的凝固对热流道的阻塞, 使得在脱模过程中就可自动清除已凝固的硅橡胶, 省去了对热流 道的单独清洗步骤。
本发明进一步的方案优选地提供了一种包括吹气孔道和吹气针的脱模装置, 具有相同锥 角且能够紧密贴合的吹气孔道的锥台孔结构和吹气针的顶部的锥台体结构, 可以使吹气针在 密闭状态下将吹气孔道开口完全密闭, 可防止注射时液体硅橡胶原料流入吹气孔道中。
本发明进一步的方案的吹气针的顶部具有与吹气孔道开口附近的内模面类似的或平滑过 渡的形状, 可以避免在吹气孔道开口位置出现不均匀的凸起或凹陷, 从而避免影响产品质量, 保证了成型后的硅橡胶拔罐器具的均匀性。
本发明进一步的方案的进气道可以将高压气体的进入和对吹气针的控制分开, 分别由进 气道和吹气孔道分别控制, 从而简化设计, 降低对吹气孔道的要求。
本发明进一步的方案在吹气孔道的合适位置设置密封垫, 可以防止高压气体向外泄漏。 本发明进一步的方案的模板是可分离的, 在注射成型时模板是一体的, 保证了注射时的 密封; 在脱模时模板是可分离的, 保证可分离的行位在分离时不会被模板妨碍。
本发明进一步的方案的隔热板防止了液体硅橡胶原料在流动过程中凝固。
本发明进一步的方案的内模芯是可分离和 /或可拆卸的, 方便了内模芯的加工, 并且在需 要更换模具时可以只更换内模镶件, 降低了成本, 减少了维修护理时间。
本发明进一步的方案的模具型腔是葫芦形, 使得生产出来的硅橡胶拔罐器具能够达到优 良的治疗效果。 本发明进一步的方案提供了模具型腔的厚度范围, 具有该厚度范围的模具型 腔制备出来的硅橡胶拔罐器具具有较好的治疗效果。
本发明进一步的方案提供了冷流道, 使液体硅橡胶原料的入口设置更加灵活, 且冷流道 中的原料不会凝固, 减少了产品制造过程中原料的浪费。
本发明进一步的方案的隔热装置和 /或冷却水道防止了液体硅橡胶原料在冷流道中流动 时发生凝固。
本发明进一步的方案的封胶针可以在液体硅橡胶原料注射完毕之后, 确保液体硅橡胶原 料将要流经的通道中没有残留的硅橡胶, 从而避免了在后续程序中可能的清洗步骤。
本发明进一步的方案提供了由吹气脱模装置吹出的优选的气体压力,可以更迅速的脱模。 本发明进一步的方案提供了一种制作硅橡胶拔罐器具的方法与传统的模压成形工艺相 比, 将原料由模压成形的固态橡胶换成了注射成形的液体硅橡胶, 由于液体硅橡胶流动性好, 填料均匀, 不会出现死角, 大大减少了模压成形因填料不匀造成的残次品。 使用液体硅橡胶 原料并采用本发明中的方法制造, 使得产品细腻光洁、 美观, 并且性能也大大提升。 同时也 解决了气泡、 麻点、 划痕、 污渍、 杂质等传统模压工艺经常会出现的质量问题。 该方法将胶 料与添加剂混合后作为原料输入, 可在短短的数秒内完成一次生产, 一次硫化成形, 省去了 模压工艺前端的混料、 切料、 称量、 放料、 装模等工序。 而且装料准确, 大大节省原材料, 且工序简单。
本发明进一步的方案提供的、将可分离的行位和内模芯分离实现注射成型的全程自动化, 生产效率高, 吹气脱模装置使脱模简单快捷, 脱模过程中无需拆装和清洗装置。 与模压成形 工艺相比, 采用这种液体硅橡胶注射工艺, 硫化时间短, 对于相同壁厚的产品, 所需硫化时 间仅为模压成型硫化时间的几分之一, 因此使用模具的腔数也通常为模压模具腔数的几分之 一, 也大大提升了生产效率。 生产过程基本实现了自动化, 全部工序是只需一个人看机器, 生产一套产品所需的时间及人员节省均在 10倍以上。 也大大减少了电能的浪费。
本发明进一步的方案提供了优选的脱模步骤, 通过该步骤可以方便快捷的脱模, 使得所 述制造硅橡胶拔罐器具的装置在脱模过程中不需拆装清洗。 采用吹气出模方式, 没有了脱膜 过程的人工撬离的艰难过程, 出模在瞬间完成, 大大提高了生产效率。 避免了强力的机械撬 扒给产品带来的损伤, 因此废品率几乎为零。
本发明进一步的方案提供了循环生产的步骤, 可以对所述硅橡胶拔罐器具进行批量、 自 动的生产, 提高了生产效率和自动化程度。
本发明的装置和方法制备的硅橡胶拔罐器具具有高弹力、 高透明度、 形状复杂的特点。 本发明进一步的方案的硅橡胶拔罐器具是透明的, 可以帮助使用者在外部清楚观察病人 的皮肤情况, 便于及时调整治疗措施。本发明进一步的方案的硅橡胶拔罐器具是具有弹性的, 可以实现不需点火既能产生负压, 吸住皮肤。 附图说明
图 1 a是本发明装置的一个具体实施方式的示意图。
图 1 b是本发明装置的一个具体实施方式的示意图。
图 2是图 1 b的侧视图。
图 3是本发明装置的一个具体实施方式的示意图。
图 4是本发明装置的一个实施例的吹气脱模装置的示意图。 附图标记如下:
1 -模具型腔, 2-隔热板, 3-后模板, 4-内模芯, 5-内模镶件, 6-吹气脱模装置, 7-行位, 8-前模板, 9-推杆, 10-面板, 11 -射嘴套, 12-射嘴, 13-发热管, 14-出气孔, 15-斜导柱, 1 6- 吹气针固定板, 17-冷流道, 18-冷却水孔, 19-冷却水道, 20-阀门, 21 -吹气孔道, 211 -吹气 孔道壁, 22-封胶针, 23-吹气孔道开口, 24-气孔, 25-内模面, 26-外模面, 27-热流道, 28- 进气口, 29-进气道, 30-密封垫, 41 -内模芯固定架, 61 -吹气针的顶部, 62-吹气针的杆部, 71 -下前模型腔, 72-上前模型腔。
具体实施方式 下面配合附图对本发明的具体实施方式进行详细说明。
一种制造硅橡胶拔罐器具的装置,如图 1 a、图 1 b和图 2所示,包括射嘴 12 (也称唧嘴), 内模芯 4, 可分离的行位 7 (也可以称为滑块或前模或外模), 以及吹气脱模装置 6。 所述吹 气脱模装置 6用于吹气脱模。 所述行位 7包括凹形, 所述行位由至少两个可分离的行位块组 成, 所述内模芯包括凸形。 在内模芯 4的凸形与行位 7的凹形之间形成用于硅橡胶拔罐器具 成形的模具型腔 1。 所述吹气脱模装置 6通过设置在内模芯 4与模具型腔 1交界处的吹气孔 道开口 23连通所述模具型腔 1。 所述射嘴 12—端与输入液体硅橡胶原料的通道连接, 另一 端与模具型腔 1连通, 即液体硅橡胶原料通过射嘴 12向模具型腔 1 中注入液体硅橡胶原料, 使其在硫化温度下凝固成型, 则可在模具型腔 1 内制成硅橡胶拔罐器具。 需要说明的是, 在 本发明中, 有时需要先将液体硅橡胶与液体添加剂进行混合, 再一并注入模具型腔 1 中, 因 此本发明中所述的 "液体硅橡胶原料"也包括在需要时将其与液体添加剂混合得到的混合物。 下同。
所述射嘴 12的用于输入液体硅橡胶原料的一端还可以与冷流道 17连通,通过冷流道 17 输入液体硅橡胶原料, 即液体硅橡胶原料通过冷流道 17输入射嘴 12, 再由射嘴 12另一端向 模具型腔 1 中注射。
为了避免射嘴 12在注射成型时被堵塞, 所述射嘴 12也可以通过一段热流道 27与所述 模具型腔 1连接。 热流道 27的位置可以设置在某个行位块上, 但优选地所述射嘴 12与模具 型腔 1连通的流道上设置一段热流道 27, 所述热流道 27为所述行位块在组合状态下在行位 块之间的交界面形成的流道, 这样, 在所述行位块需要分离 (即分开) 比如脱模时, 所述的 至少两个行位块彼此分离, 可以使模具型腔 1 中硅橡胶拔罐器具的外模面 26和热流道 27暴 露在空气中, 便于后续的脱模, 并且防止在射嘴 12中形成凝固的橡胶妨碍后续自动化生产。 所述外模面 26是指模具型腔 1 中的硅橡胶拔罐器具与行位 7的交界面, 如图 1 a、 图 1 b所 示。所述模具型腔的形状可以为如图 1 a、 图 1 b所示的葫芦形, 所述吹气孔道开口 23在所述 葫芦形的顶部中央与模具型腔 1连通, 当然也可以是其它形状。 经临床试验, 葫芦形的硅橡 胶拔罐器具具有优良的治疗效果。
本发明中的所述行位 7可以沿垂直于硅橡胶拔罐器具的轴向方向可分开, 当然也可以是 与硅橡胶拔罐器具的轴向成一定角度的方向分开。 也可以是沿模具型腔 1 的轴向设置的多个 可分离行位, 沿模具型腔 1轴向方向远离模具型腔 1, 这样同样可以使模具型腔 1 中硅橡胶 拔罐器具的外模面 26暴露在空气中;若此时有热流道 27, 则热流道 27可以设置在两个行位 块之间的交界面上。 内模芯 4可以是一体结构, 如图 1 a所示; 也可以是由内模镶件 5和内 模芯固定架 41构成的可拆卸结构, 如图 1 b所示, 便于加工和根据要生产的硅橡胶拔罐器具 形状或尺寸更换模具。 所述的制造硅橡胶拔罐器具的装置还可以包括对液体硅橡胶原料加热 使其硫化成型的发热装置, 比如发热管 13。 需要说明的是, 虽然对于液体硅橡胶注射成型工 艺, 发热装置是必备的装置, 可以安装在所述的制造硅橡胶拔罐器具的装置内部, 成为该装 置的一部分, 但该发热装置不必须是与所述的制造硅橡胶拔罐器具的装置一体的结构, 而可 以是通过外部其它加热设备对其提供热量。 在后一种情况下, 所述的制造硅橡胶拔罐器具的 装置本身可以没有发热装置。 所述发热装置可以是发热管 13, 或其它形式的发热装置, 比如 发热片、发热板等。 以下以发热管 13作为发热装置的例子, 但不应认为下述实施例对发热装 置进行任何限制。所述发热管 13可以安装在模板内 (如前模板 8和 /或后模板 3内), 也可以 安装在内模芯 4和 /或行位 7内。所述吹气脱模装置 6的尾部(即吹气脱模装置 6靠近所述制 造硅橡胶拔罐器具的装置的外部的部分) 可以与高压气源连接。 所述吹气脱模装置 6可以包 括在其尾部的吹气脱模装置固定板 1 6用以固定和对其进行控制。
所述吹气脱模装置 6包括吹气孔道 21, 如图 4所示, 所述吹气孔道 21 的一端为吹气孔 道开口 23, 该开口与模具型腔 1 连通, 还包括位于吹气孔道 21 内、 控制吹气孔道开口 23 开闭的吹气针。 所述吹气孔道 21在所述吹气孔道开口 23附近为锥台孔结构, 所述锥台孔结 构在靠近所述吹气孔道开口 23处的截面直径小于远离所述吹气孔道开口 23处的截面直径, 所述吹气针包括中空杆部 62和靠近所述吹气孔道开口 23的顶部 61。 所述杆部 62在中空部 分具有与吹气孔道 21连通的气孔 24。 所述顶部 61是与所述吹气孔道 21 的锥台孔的锥角相 同且能够紧密贴合的锥台体结构, 即所述吹气针的顶部 61顶到所述吹气孔道开口 23处时, 所述吹气针顶部 61 的锥台体结构的外锥面与所述吹气孔道 21 在所述吹气孔道开口 23附近 的锥台孔结构的内锥面可以紧密贴合,确保在注射成型过程中, 吹气针顶部 61顶住吹气孔道 开口 23处时(即吹气孔道 21 的锥台孔结构将吹气针顶部 61 的锥台体结构定位时), 模具型 腔 1 能被完全密封 (密闭), 使液体硅橡胶无法通过吹气孔道开口 23流入吹气孔道 21 内; 而在脱模过程中, 所述吹气针沿所述吹气孔道 21远离所述模具型腔 1, 使所述吹气孔道开口 23打开, 从而使吹气孔道 21与模具型腔 1连通, 此时, 高压气体得以通过吹气孔道 21进入 模具型腔 1。 所述锥台孔结构和锥台体结构中的锥台可以是互相定位和配合的圆台, 也可以 是椭圆台或棱台 (比如三棱台、 四棱台、 六棱台等)。
所述吹气孔道 21设置在内模芯 4内。 内模芯的中空结构的内壁为吹气孔道壁 211 (如图
4所示)。所述吹气针的顶部 61 的顶面为与所述模具型腔 1在所述吹气孔道开口 23附近的内 模面 25相平或平滑过渡的形状, 比如, 若此处的内模面 25按周围内模面 25的连续性来说 应为平面或微曲面, 如图 1 a所示, 则此处吹气针的顶部 61 的顶面的形状即为上述的平面或 微曲面。这样可以避免在吹气孔道开口 23位置出现不均匀的凸起或凹陷,从而避免影响产品 质量, 保证了成型后的硅橡胶拔罐器具的均匀性。所述内模面 25是指内模芯 4与模具型腔 1 中的硅橡胶拔罐器具之间的交界面, 如图 1 a、 图 1 b所示。
所述吹气脱模装置 6还可以包括输送气体进入吹气孔道 21 的进气道 29, 如图 1 a、 图 1 b所示。 所述进气道 29—端通过进气口 28与高压气源连接, 进气道 29另一端开口于所述 吹气针的中空部分内。 在吹气脱模过程中, 高压气体通过所述进气道 29进入吹气孔道 21, 再通过吹气孔道开口 23进入到模具型腔 1 内。 为了防止高压气体通过进气道 29进入吹气孔 道 21 时从如图 1 a、 图 1 b所示的吹气孔道 21 的下方泄漏, 吹气孔道 21在锥台孔结构之外 的部分为两段变径的管道, 靠近所述锥台孔结构的一段为小直径段, 在大直径段内设置有防 止高压气体泄漏的、 在中间有开孔的密封垫 30, 如图 1 a、 图 1 b和图 4所示。 所述密封垫 30外缘与吹气孔道 21 内壁密封贴合,其中间开孔处的内缘与吹气针的杆部 62的外壁密封贴 合, 从而防止高压气体向外泄漏。
为了保证注射成型时液体硅橡胶出来不会漏入吹气孔道 21, 可以将所述吹气针杆部 62 的尾部设置成具有凸台的部分,并将吹气孔道 21尾部设置成具有内部凸台的部分,并且所述 吹气针杆部 62尾部的凸台与所述吹气孔道 21尾部的内部凸台相匹配, 在这二部分之间安装 密封垫 30, 如图 4所示, 吹气孔道 21在锥台孔结构之外的部分为两段变径的管道, 靠近所 述锥台孔结构的一段为小直径段, 在大直径段内设置有防止高压气体泄漏的、 在中间有开孔 的密封垫 30, 用以在成型过程中封闭所述吹 气针与所述吹气孔道 21 在贴合时其间的空隙。 当然, 吹气脱模装置 6也可以是能够在成型 时封闭吹气孔道 21而在脱模时连通吹气孔道 21与模具型腔 1 的其它结构。 需要说明的是, 在所述吹气针顶部 61 的顶面与吹气孔道开口 23密封时, 所述吹气针杆部 62的尾部设置成 具有凸台的部分与所述吹气孔道 21尾部的内部凸台压紧其二者之间的密封垫 30, 所以, 在 吹气针杆部 62拉开使吹气针顶部 61离开吹气孔道开口 23时,吹气针顶部 61与吹气孔道开 口 23的距离 L1小于所述吹气针杆部 62尾部的凸台与所述吹气孔道 21尾部的内部凸台之间 的距离 L2, 后者 L2与前者之差应略小于密封垫 30的厚度, 以便在 L1 =0时, 即吹气针顶部 61顶面与吹气孔道开口 23密封时, 轴向受到压縮的密封垫 30可以密封所述吹气针杆部 62 尾部的凸台与所述吹气孔道 21尾部的内部凸台之间的缝隙, 起到密封的作用。
本发明虽然主要以包括吹气孔道开口 23、 吹气孔道 21和吹气针的吹气脱模装置 6为例 进行说明, 但这不应视为对吹气脱模装置 6的任何限制。 所述吹气脱模装置吹出的高压气体 压强优选为 6至 7.5个大气压, 可以顺利的将已成形的硅橡胶拔罐器具脱模。
所述制造硅橡胶拔罐器具的装置的模具型腔 1可以为两个或两个以上。
制造硅橡胶拔罐器具的装置还可以包括用于固定和 /或包裹行位和内模芯的模板, 所述模 板可以包括前模板 8和后模板 3。 所述模板还可以是可分离的; 至少, 模板包裹和 /或固定行 位 7的那部分是可分离的。 通常, 模板可以分为彼此可分离的前模板 8和后模板 3, 比如在 图 1 a和图 1 b中, 可分离的前模板 8包裹和支撑行位 7, 因此在该实施例中前模板 8本身是 可分离的, 而后模板 3只需与前模板可分离即可。 但包裹行位 7的模板部分也可以是其它情 况, 比如如图 3所示的由前模板 8的一半和后模板 3的一半共同包裹行位 7, 因此在图 3中, 在行位 7周围的前模板 8和后模板 3是可分离的, 前模板 8与后模板 3各自均可分离为两部 分。 在图 1 a中可分离的前模板 8 自身的分离方向可以是沿平行或近似平行于行位 7的分离 方向 (在图 1 a中行位 7的分离方向是左右分离)发生分离的背向移动(即可分离的前模板 8 的分离方向也是左右分离), 也可以是向远离行位的其它方向运动(比如可分离的前模板 8可 以是分别沿左上、 右上方向分离)。 在图 3中, 前模板和后模板的各自的一半包裹了行位, 因 此在图 3中, 前模板 8和后模板 3分别沿平行或近似平行于行位的分离方向发生了分离 (即 图 3中的上下方向分离), 使得行位的分离不受限制。
所述的制造硅橡胶拔罐器具的装置, 还可以包括隔绝模具区的至少一个隔热板 2。 所述 模具区是至少由行位 7、 内模芯 4及其形成的模具型腔 1 构成的区域, 在具有前模板 8、 后 模板 3的情况下, 所述模具区还可以包括前模板 8和后模板 3。 模具区在注射成型过程中需 要加热和保温, 而液体硅橡胶在较低温下才能保持其流动性, 因此需要将模具区与液体硅橡 胶原料流经的冷流道 17通过隔热材料或隔热板 2热隔绝。
所述内模芯 4可以是由内模镶件 5和内模芯固定架 41构成的可分离和 /或可拆卸结构, 如图 1 b、 图 2、 图 3所示。 其中, 所述内模镶件 5具有插件结构, 所述内模芯固定架 41具 有凹槽结构, 所述插件结构和所述凹槽结构相适配。 可分离是指内模镶件 5和内模芯固定架 41可以分离, 可拆卸是指内模镶件 5和 /或内模芯固定架 41可以从与其连接的其它部件比如 后模板 3上拆下和安装。
所述的制造硅橡胶拔罐器具的装置, 还可以包括封胶针 22, 所述封胶针 22—端连接高 压气源, 另一端与冷流道 17连接。 所述高压气源可以与所述吹气脱模装置 6的高压气源为 同一气源; 所述高压气源可以是外部气源, 也可以是设置在所述的制造硅橡胶拔罐器具的装 置的内部的自带气源。
以下对使用上述的制造硅橡胶拔罐器具的装置制造硅橡胶拔罐器具的方法的实施例进行 介绍。
通过上述的制造硅橡胶拔罐器具的装置制造硅橡胶拔罐器具的方法的第一个实施例, 包 括如下步骤:
1 )预热及冷却保护: 对模具区进行加热, 同时对液体硅橡胶原料将要流经的通道(即输 入液体硅橡胶原料的通道), 比如射嘴 12, 或该通道周围区域进行冷却, 如果液体硅橡胶原 料可能流经的通道包括冷流道 17, 也要对所述冷流道 17进行冷却, 以使液体硅橡胶原料在 被输送过程中不发生升温硫化成型。 这里的液体硅橡胶原料可能包括需要加入所述液体硅橡 胶中的液体添加剂, 因此, 也可以将含有液体添加剂的液体硅橡胶原料也简称为液体硅橡胶 原料。 所述模具区包括行位 7、 内模芯 4、 以及由行位 7与内模芯 4形成的模具型腔 1, 如图 1 a所示。 对模具区的加热方式可以是通过安装在模具区的发热装置, 比如发热管 13或发热 板或发热片提供热量, 也可以是通过外部加热设备提供热量, 所提供的热量应尽量使模具区 各部分保持相同或接近的温度, 这样可以使模具型腔 1 中的硅橡胶拔罐器具产品的各部分具 有均匀的性质。
2) 加料: 将液体硅橡胶原料注入模具型腔 1, 比如可以将液体硅橡胶原料通过射嘴 12、 和 /或冷流道 17、 和 /或热流道 27注入模具型腔 1。
3) 硫化: 停止加料, 并保温一定时间, 以使液体硅橡胶原料硫化凝固成型。
4) 脱模: 可分离的行位 7退开, 同时开启吹气孔道开口 23, 吹气脱膜装置 6对模具型 腔 1 内的硅橡胶拔罐器具吹气使其脱模。 若吹气脱模装置 6主要是由如图 4所示的吹气孔道 开口 23、 吹气孔道 21、 吹气针组成的, 则通过吹气针后退使得吹气孔道开口 23与模具型腔 1连通, 再由高压气源通过吹气孔道 21 向模具型腔 1 中吹入高压气体, 从而使得成型后的硅 橡胶拔罐器具脱模。 在图 4中, 高压气体是通过吹气孔道 21侧面的空隙流入模具型腔 1 中。
其中, 步骤 4) 优选的可以包括下述的具体步骤:
4.1 )可分离的行位 7沿垂直于或近似垂直于模具型腔 1轴向方向向两边分开, 使模具型 腔 1 中硅橡胶拔罐器具的外模面 26暴露在空气中。 当然也可以是沿模具型腔 1 轴向设置的 多个可分离行位, 沿模具型腔 1轴向方向远离模具型腔 1, 同样可以使模具型腔 1 中硅橡胶 拔罐器具的外模面 26暴露在空气中。
4.2) 开启吹气脱模装置 6中的吹气孔道开口 23, 使吹气脱模装置 6, 比如图 4中的吹 气孔道 21, 与模具型腔 1连通。 在图 4中, 吹气脱模装置 6主要是由吹气孔道开口 23、 吹 气孔道 21、吹气针组成, 则内模芯 4与模具型腔 1 中硫化凝固成型的硅橡胶拔罐器具一起相 对于吹气针发生反方向相对移动 (在图 4中, 吹气针向下运动, 内模芯 4与硅橡胶拔罐器具 一起向上运动), 并在吹气针与模具型腔 1 的内模面 25之间形成一段空间。
4.3) 吹气脱模: 高压气源通过吹气脱模装置 6的吹气孔道 21 以及吹气孔道开口 23向 模具型腔 1 的内模面 25吹出高压气体, 使凝固的硅橡胶拔罐器具脱离内模面 25。 所述高压 气体的压强优选为 6至 7.5大气压, 可以顺利快速的将已成形的硅橡胶拔罐器具吹出。
若用于自动化的批量生产, 还可以包括步骤 5): 循环生产: 重复步骤 2) 至 4)。 若所述模板如上所述是可分离结构, 则步骤 4.1 )变为: 可分离的模板分开(包括如上所 述的图 1 a、 1 b中的前模板 8自身分开, 或图 3中的前模板 8与后模板 3分开, 当然也包括 其它类型的模板分离情况),使可分离的行位 7沿垂直于或近似垂直于模具型腔轴向方向向两 边分开, 使模具型腔 1 中硅橡胶拔罐器具的外模面 26暴露在空气中。
上述制造硅橡胶拔罐器具的方法中, 还可以包括上述封胶针 22, 所述封胶针 22—端连 接高压气源, 另一端与液体硅橡胶原料将要流经的通道, 比如冷流道 17或射嘴 12连接; 此 时, 在步骤 2) 之后还可以包括步骤 2A) 的封胶过程: 停止液体硅橡胶原料流入所述通道, 比如冷流道 17和 /或射嘴 12, 使高压气体通过封胶针 22冲入所述通道, 将所述通道中的液 体硅橡胶原料残余物冲出所述通道。
根据上述制造硅橡胶拔罐器具的方法, 可以用于同时生产一个或一个以上的硅橡胶拔罐 器具, 比如二个、 三个、 四个、 五个、 六个、 八个硅橡胶拔罐器具。 当然也可以用于同时生 产更多的硅橡胶拔罐器具。
通过上述的制造硅橡胶拔罐器具的装置制造硅橡胶拔罐器具的方法的第二个实施例: 结合附图 (主要参照图 1 a、 图 1 b和图 2) 对制造硅橡胶拔罐器具的方法的第二个实施 例, 即一次生产一个硅橡胶拔罐器具的简单情形的各步骤进行说明如下:
1 ) 预热及冷却保护: 该步骤同第一个实施例。 所述内模芯 4还可以是由内模镶件 5和 内模芯固定架 41 组成的可拆卸结构, 以方便内模芯 4的加工, 并且在需要更换模具时可以 只更换内模镶件 5, 降低了成本, 减少了维修和护理时间; 此时模具区还包括所述内模镶件 5 和内模芯固定架 41, 而模具型腔 1则是由内模芯固定架 41、 内模镶件 5的内模面 25及行位 7的外模面 26之间的区域构成, 如图 1 b所示。 对模具区的加热可以通过在前模板 8、 后模 板 3安装发热管 13进行加热, 也可以在内模芯 4和 /或行位 7中安装发热管 13进行加热, 如图 2所示为在内模芯固定架 41上安装发热管 13,如图 3所示为在行位 7中安装发热管 13。
在加热的同时, 需要对冷流道 17进行冷却。 由于液体硅橡胶在温度达到 90°C以上时加 速硫化凝固成型,为了在后续的加料过程中保证液体硅橡胶的流动性, 需要对冷流道 17进行 冷却, 使其温度低于 50°C。对冷流道 17的重点冷却区域是冷流道 17附近, 但在实际中通常 在面板 10和 /或吹气脱模装置固定板 1 6与所述模具区之间还安装隔热板 2以使面板 10和 / 或吹气脱模装置固定板 1 6周边区域也保持较低温度, 如图 1 a、 图 1 b、 图 3所示。 隔热板 2 可以是耐高温泡沫塑料或工业中应用的其它形式绝热板, 比如石棉板等。 实施中是在所述冷 流道 17圆周附近的区域以水冷方式冷却。冷却的具体例子可参见图 3, 通过与外部冷却水源 连接的冷却水孔 18将冷却水引入冷却水道 19, 对冷流道 17和 /或面板 10进行冷却, 当然也 可以对吹气脱模装置固定板 1 6进行冷却, 如图 1 a、 图 1 b所示, 以方便在人工操作时工作人 员不会被烫伤, 比如在面板 10和吹气脱模装置固定板 1 6与所述模具区之间安装隔热板 2, 以使面板 10和吹气脱模装置固定板 16周边区域也保持较低温度, 如图 1 a、 图 1 b、 图 3所 示。 所述隔热板 2可以是由耐热电木板或石棉板等耐热材料制成。
2) 加料: 将液体硅橡胶原料通过冷流道 17、 射嘴 12和热流道 27注入模具型腔 1。 以 图 1 a为例进行说明。 图 1 a中只示出了冷流道 17前端的部件一唧嘴 12 (即射嘴), 及对 唧嘴 12进行隔热保护的唧嘴套 11。液体硅橡胶原料通过唧嘴 12经过行位 7中预设的热流道 27注入模具型腔 1。 注入完成后, 液体硅橡胶原料停止注入。
3)硫化: 停止加料后需保温一定的时间, 供液体硅橡胶硫化凝固成型。 保温时间根据注 入模具型腔 1 内的液体硅橡胶量的多少来确定, 注入的液体硅橡胶量较多时, 保温时间要稍 长一些。 例如, 对于较大 (比如开口处内径 66mm, 外径 78mm ) 的硅橡胶拔罐器具, 由于 一次过程只生产一个, 需要保温 20秒至 40秒; 而对于较小 (比如开口处内径 50mm、 外径 60mm ) 的硅橡胶拔罐器具, 由于一次可生产两个, 注入的液体硅橡胶量较多, 因此保温时 间较长, 可以是保温 1分钟至 1 .5分钟; 对于更小 (比如开口处内径 30mm至 40mm、 外径 40mm至 50mm ) 的硅橡胶拔罐器具, 每次可生产 4个至 8个甚至更多个硅橡胶拔罐器具, 可根据注入的液体硅橡胶的量控制保温时间。
4) 脱模:
4.1 ) 由于硅橡胶拔罐器具通常是轴对称结构, 因此模具型腔 1也是轴对称的。 可分离的 前模板 8和行位 7在斜导柱 15 (见图 2) 的推动下沿垂直于或近似垂直于模具型腔 1 的轴向 方向向两边 (图 1 a、 图 1 b中为左右方向) 分开, 使模具型腔 1 中凝固的硅橡胶拔罐器具的 外模面 26以及已凝固在热流道 27中的硅橡胶暴露在空气中。 其中, 可分离的前模板 8的分 开方式可以是与行位 7的分开方向一致的分开 (如图 1 a中的情形, 则是指左右分开), 也可 以是前模板 8整体与行位 7做上下分开 (比如图 1 a、 图 1 b中可以是前模板 8和唧嘴 12— 起向上移动, 使前模板 8和行位 7整体分开, 也就是说, 在该情况下, 包裹行位 7的模板部 分前模板 8可以是一体的即不分离的), 也可以是如图 3所示的前模板 8与后模板 3上下分 开 (此时前模板 8与上前模型腔 72—体运动; 后模板 3与下前模型腔 71—体运动, 这二部 分彼此分开)。 当然, 前模板 8也可以是一体结构而非可分离结构, 这时, 只要前模板 8与行 位 7分开并且不妨碍行位 7自身的分开即可。
4.2)若吹气脱模装置 6包括吹气孔道 21、 吹气孔道开口 23和吹气针, 如图 4所示, 内 模芯 4与模具型腔 1 内凝固的硅橡胶拔罐器具一起相对于穿过内模芯 4的吹气孔道 21沿吹 气孔道 21轴向作相对移动, 当然吹气孔道也可以是弯曲的。 在图 1 a的情况下, 内模芯 4与 模具型腔 1 内凝固的硅橡胶拔罐器具是一起向上运动; 在图 1 b的情况下, 内模芯 4是由内 模镶件 5和内模芯固定架 41组成的可拆卸结构, 则内模镶件 5和内模芯固定架 41与模具型 腔 1 内的凝固的硅橡胶拔罐器具一起向上运动; 而吹气脱模装置固定板 1 6及固定在其上的 吹气针保持不动, 因此, 在图 1 a中, 内模芯 4与模具型腔 1 内凝固的硅橡胶拔罐器具一起 相对于吹气针(所述吹气针固定在吹气脱模装置固定板 16上且穿过内模芯 4)发生沿吹气孔 道 21 轴向方向的背向相对移动, 从而在吹气针与硅橡胶拔罐器具 1 内顶部之间形成一段空 间, 这段空间可以只有几毫米长, 但已足够使吹气孔道开口 23与模具型腔 1 连通, 可以进 行后续的吹气脱模。
4.3) 吹气脱模: 通过吹气脱模装置 6向已硫化成型的硅橡胶拔罐器具的内模面 25的内 顶部吹出高压气体(优选的气压为 6至 7.5个大气压), 向上的高压气体沿硅橡胶拔罐器具内 表面流动, 使得此时热的、凝固的硅橡胶拔罐器具脱离内模面 25, 被吹入到容器(比如篮子) 中。 从而完成一个或一批硅橡胶拔罐器具的生产和脱模。
5) 循环生产: 重复上述步骤 2) 至 4), 达到批量、 自动化的生产。 制造硅橡胶拔罐器具的方法的第三个实施例。
若要提高生产率, 需要一次生产多个硅橡胶拔罐器具, 比如一次生产 2个、 3个、 4个、 5个、 6个、 8个等。 现以一次生产 2个硅橡胶拔罐器具作为第三个实施例说明如下, 参照 图 3:
第三个实施例的步骤 1 ) 与第一个实施例的步骤 1 ) 的预热和冷却保护过程相同。 在步骤 2) 中, 由于生产的硅橡胶拔罐器具增多, 所使用的液体硅橡胶的量较大, 因此 在加料之后, 需要通过封胶针 22的封胶过程使冷流道 17中的液体硅橡胶不会流出, 具体 如下:
2A)封胶过程:设置一个封胶针 22,所述封胶针 22—端通过出气孔 14连接高压气源, 比如气缸 (气缸用于提供高压气源, 未在图中示出), 另一端的针头与冷流道 17或射嘴 12 连接, 伸入冷流道 17或射嘴 12中, 在加料完成后, 关闭阀门 20停止液体硅橡胶流入冷流 道 17, 然后打开气缸使高压气体通过出气孔 14和封胶针 22冲入冷流道 17和 /或射嘴 12, 一方面将冷流道 17或射嘴 12中残留的液体硅橡胶冲出冷流道 17或射嘴 12, 防止了液体 硅橡胶在冷流道 17或射嘴 12中硫化凝固, 从而可免除对冷流道 17和射嘴 12的清洗, 另 一方面在冷流道 17或射嘴 12中形成一段气柱,这段气柱在射嘴 12封闭后,其产生的气压 还可防止冷流道 17尾部的液体硅橡胶流入冷流道 17和射嘴 12对其造成污染。与所述封胶 针 22连接的所述高压气源可以与所述吹气针的高压气源为同一气源, 当然也可以是两个不 同的高压气源。
在步骤 3) 的硫化过程中, 如上所述, 保温时间需要根据液体硅橡胶的量适当延长, 对 于图 3所示的一次生产二个硅橡胶拔罐器具的情况, 应保持在 1分钟至 2分钟。
在图 1 b的实施例中行位 7分为左右两件, 在图 3的实施例中行位 7分成上下两部分下 前模型腔 71和上前模型腔 72,内模芯 4是由内模镶件 5和内模芯固定架 41组成的可拆卸 结构, 当然内模芯 4也可以是如图 1 a所示的一体结构, 在步骤 4) 的脱模过程中,
步骤 4.1 ): 可分离的模板(此处是前模板 8和后模板 3) 以及可分离的行位 7 (此处为 下前模型腔 71, 上前模型腔 72)沿垂直于或近似垂直于模具型腔 1 的轴向方向向两边分开 (图 3中为上下方向), 此时, 行位 7的一部分 (此处优选的可以是下前模型腔 71 )、 一同 运动的内模镶件 5和内模芯固定架 41、模具型腔 1、吹气脱模装置固定板 1 6及固定在其上 的吹气针一起向下运动, 此时行位 7的外模面 26的上半部暴露于空气中。然后与硅橡胶拔 罐器具接触的可分离的行位 7 (此处优选的的下前模型腔 71 ) 与硅橡胶拔罐器具再上下分 开 (具体形式可以是通过推杆 9相对于后模板 3上下分离, 如图 3所示, 当然也可以是其 它方式), 使硅橡胶拔罐器具的行位的外模面 26 (还包括已凝固在热流道 27中的硅橡胶) 全部暴露在空气中。
步骤 4.2)若吹气脱模装置 6包括吹气孔道 21、 吹气孔道开口 23和吹气针, 如图 4所 示, 在内模芯 4是由内模芯固定架 41和内模镶件 5组成的可拆卸结构的情况下, 内模镶件 5和内模芯固定架 41与模具型腔 1 内的凝固的硅橡胶拔罐器具一起相对于穿过内模芯固定 架 41和内模镶件 5的吹气孔道 21发生沿吹气孔道 21轴向的背向相对移动 (在图 3中, 是在推杆 9的作用下向左右方向背向相对移动, 当然也可以是其它方式的驱动力下运动), 从而在吹气针与 内模面 25之间形成一段空间。 吹气针远离所述内模面 25, 既可以是吹气针和吹气脱模装置 固定板 16固定而内模芯固定架 41和内模镶件 5在运动, 也可以是内模芯固定架 41和内模 镶件 5固定而吹气针和吹气脱模装置固定板 16运动, 还可以是二者同时作背离运动。
步骤 4.3) 的脱模过程和步骤 5) 的循环生产过程与第二个实施例是一样的。
由上述装置和方法制备的硅橡胶拔罐器具具有高弹力、 高透明度、 形状复杂等特点。 具 有弹性的硅橡胶拔罐器具可以实现不需点火既能产生负压, 吸住皮肤; 而其透明性可以帮助 医师清楚观察患者皮肤情况, 便于及时调整诊疗措施。
应当指出, 以上所述具体实施方式可以使本领域的技术人员更全面的理解本发明, 但不 以任何方式限制本发明。 因此, 尽管本说明书参照附图和实施例对本发明已进行了详细的说 明, 但是, 本领域技术人员应当理解, 仍然可以对本发明进行修改或者等同替换, 或者将本 发明中的实施方式与现有技术进行结合, 而一切不脱离本发明的精神和范围的技术方案及其 改进, 其均应涵盖在本发明专利的保护范围当中。

Claims

权利要求书
1、 一种制造硅橡胶拔罐器具的装置, 其特征在于, 包括射嘴, 内模芯, 可分离的行位和 吹气脱膜装置; 所述行位由至少两个可分离的行位块组成, 所述行位和所述内模芯之间形成 用于硅橡胶拔罐器具成形的模具型腔; 所述射嘴一端与输入液体硅橡胶原料的通道相连, 另 一端与模具型腔连通; 所述吹气脱模装置通过设置在内模芯与模具型腔交界处的吹气孔道开 口与所述模具型腔连通。
2、根据权利要求 1所述的制造硅橡胶拔罐器具的装置, 其特征在于, 所述行位包括凹形 结构, 所述内模芯包括凸形结构, 所述行位的凹形结构和所述内模芯的凸形结构之间形成用 于硅橡胶拔罐器具成形的模具型腔。
3、 根据权利要求 1 至 2之一所述的制造硅橡胶拔罐器具的装置, 其特征在于, 所述模 具型腔的形状为葫芦形, 所述吹气孔道开口在所述葫芦形的顶部中央与模具型腔连通;
和 /或所述模具型腔的厚度为 7至 1 6mm。
4、 根据权利要求 1 至 3之一所述的制造硅橡胶拔罐器具的装置, 其特征在于, 所述射 嘴与模具型腔连通的流道上设置一段热流道, 所述热流道为所述行位块在组合状态下在行位 块之间的交界面形成的流道。
5、 根据权利要求 1 至 4之一所述的制造硅橡胶拔罐器具的装置, 其特征在于, 所述吹 气脱模装置包括吹气孔道, 所述吹气孔道的一端为吹气孔道开口, 该开口与模具型腔连通, 还包括位于吹气孔道内、 控制所述吹气孔道开口开闭的吹气针; 所述吹气孔道在所述吹气孔 道开口附近为锥台孔结构, 所述锥台孔结构靠近所述吹气孔道开口处的截面直径小于远离所 述吹气孔道开口处的截面直径, 所述吹气针包括中空杆部和靠近所述吹气孔道开口的顶部, 所述杆部在中空部分具有与吹气孔道连通的气孔, 所述顶部是与所述吹气孔道的锥台孔结构 具有相同锥角并能够紧密贴合的锥台体结构。
6、根据权利要求 5所述的制造硅橡胶拔罐器具的装置, 其特征在于, 所述吹气孔道设置 在内模芯内, 所述吹气针的顶部的顶面为与所述模具型腔在所述吹气孔道开口附近的内模面 相平或平滑过渡的形状。
7、 根据权利要求 5或 6所述的制造硅橡胶拔罐器具的装置, 其特征在于, 所述吹气脱 模装置还包括输送气体进入吹气孔道的进气道,所述进气道一端通过进气口与高压气源连接, 另一端开口于所述吹气针的中空部分内。
8、根据权利要求 7所述的制造硅橡胶拔罐器具的装置, 其特征在于, 吹气孔道在锥台孔 结构之外的部分为两段变径的管道, 靠近所述锥台孔结构的一段为小直径段, 在大直径段内 设置有防止高压气体泄漏的、 在中间有开孔的密封垫。
9、 根据权利要求 1 至 8之一所述的制造硅橡胶拔罐器具的装置, 其特征在于, 还包括 模板, 所述模板用于固定和 /或包裹行位和内模芯, 所述模板包括彼此可分离的前模板和后模 板, 或所述模板是可分离的;
还包括隔绝模具区的至少一个隔热板, 所述模具区是至少由行位、 内模芯及其形成的模 具型腔构成的区域。
10、 根据权利要求 1至 9之一所述的制造硅橡胶拔罐器具的装置, 其特征在于, 所述内 模芯是由内模镶件和内模芯固定架构成的可分离和 /或可拆卸结构, 所述内模镶件具有插件结 构, 所述内模芯固定架具有插槽结构, 所述插件结构和所述插槽结构相适配; 还包括对液体 硅橡胶原料加热使其硫化成型的发热装置, 和 /或所述发热装置是发热管或发热板; 所述吹气 脱模装置吹出的高压气体压强为 6至 7.5个大气压; 所述模具型腔为两个或两个以上。
11、 一种根据权利要求 1 至 10之一所述的制造硅橡胶拔罐器具的装置制造硅橡胶拔罐 器具的方法, 包括如下步骤:
1 ) 预热及冷却保护: 对模具区进行加热, 同时对液体硅橡胶原料将要流经的通道和 /或 所述通道周围区域进行冷却; 所述模具区是至少由行位、 内模芯及其形成的模具型腔构成的 区域;
2) 加料: 将液体硅橡胶原料注入模具型腔;
3) 硫化: 停止加料, 并保温一定时间;
4)脱模: 可分离的行位退开, 同时开启吹气孔道开口, 吹气脱膜装置对模具型腔内已成 形的硅橡胶拔罐器具吹气使其脱模。
12、 根据权利要求 11所述的方法, 其特征在于, 步骤 4) 包括:
4.1 )可分离的行位沿垂直于或近似垂直于模具型腔轴向方向向两边分开, 使模具型腔中 硅橡胶拔罐器具的外模面暴露在空气中;
4.2)开启吹气脱模装置中的吹气孔道开口, 使吹气脱模装置的吹气孔道开口与模具型腔 连通;
4.3)吹气脱模: 高压气体通过吹气孔道开口进入模具型腔的内模面与已成形的硅橡胶拔 罐器具之间, 将凝固的硅橡胶拔罐器具吹离内模面;
和 /或还包括步骤 5): 循环生产: 重复步骤 2) 至 4)。
13、 根据权利要求 12所述的方法, 其特征在于, 所述装置还包括模板, 所述模板用于 固定和 /或包裹行位和内模芯, 所述模板是可分离结构, 则步骤 4.1 ) 替换为: 可分离的模板 分开, 使可分离的行位沿垂直于或近似垂直于模具型腔轴向方向向两边分开, 使模具型腔中 硅橡胶拔罐器具的外模面暴露在空气中, 吹气脱模装置向模具型腔的内模面吹出的高压气体 压强为 6至 7.5个大气压。
14、 一种硅橡胶拔罐器具, 其特征在于, 所述硅橡胶拔罐器具是由权利要求 1 至 10之 一所述的制造硅橡胶拔罐器具的装置制成,和 /或根据权利要求 11至 13之一所述的制造硅橡 胶拔罐器具的方法制成。
15、 根据权利要求 14所述的硅橡胶拔罐器具, 其特征在于, 所述硅橡胶拔罐器具是一 端开口的、 透明的、 具有弹性的硅橡胶拔罐器具; 和 /或所述硅橡胶拔罐器具是葫芦形; 和 / 或所述硅橡胶拔罐器具的厚度为 8至 12mm。
PCT/CN2012/088000 2011-12-30 2012-12-31 一种制造硅橡胶拔罐器具的方法和装置 WO2013097800A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12861698.4A EP2799204B1 (en) 2011-12-30 2012-12-31 Method and device for making silicon cupping appliance
US14/318,708 US9573305B2 (en) 2011-12-30 2014-06-30 Method and device for making silicone rubber cupping appliance
HK15104274.2A HK1203895A1 (zh) 2011-12-30 2015-05-05 種製造硅橡膠拔罐器具的方法和裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110456974.7 2011-12-30
CN201110456974 2011-12-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/318,708 Continuation US9573305B2 (en) 2011-12-30 2014-06-30 Method and device for making silicone rubber cupping appliance

Publications (1)

Publication Number Publication Date
WO2013097800A1 true WO2013097800A1 (zh) 2013-07-04

Family

ID=48674336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/088000 WO2013097800A1 (zh) 2011-12-30 2012-12-31 一种制造硅橡胶拔罐器具的方法和装置

Country Status (6)

Country Link
US (1) US9573305B2 (zh)
EP (1) EP2799204B1 (zh)
CN (2) CN103182763B (zh)
HK (1) HK1203895A1 (zh)
PL (1) PL2799204T3 (zh)
WO (1) WO2013097800A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106926400A (zh) * 2017-03-21 2017-07-07 东莞星海丰电子有限公司 一种便携音响硅胶套脱模方法及成型模芯
CN117885292B (zh) * 2024-03-15 2024-05-31 宁波市特种设备检验研究院 一种一体成型胶囊生产装置及其工艺

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631016B1 (ko) * 2015-02-10 2016-06-15 (주)대성마리프 플랫 호스, 플랫 호스의 제조 방법 및 제조 장치
CN104922744B (zh) * 2015-07-13 2017-03-01 浙江中医药大学 制作药罐的装置
CN105125389B (zh) * 2015-07-13 2017-03-01 浙江中医药大学 一种全自动清洁火罐的装置
CN104922743B (zh) * 2015-07-13 2017-03-01 浙江中医药大学 一种全自动制作药罐的装置
CN106182569B (zh) * 2016-07-19 2018-05-04 东毓(宁波)油压工业有限公司 一种全自动骨架橡胶射出机控制系统
FR3056398B1 (fr) * 2016-09-26 2021-10-15 Youthspring Ventouse de massage
KR101778470B1 (ko) * 2016-11-16 2017-09-13 허용훈 등속 조인트용 부트의 결합부재 성형을 위한 사출장치와 등속 조인트용 부트의 결합부재 사출방법
CN106738492A (zh) * 2017-01-06 2017-05-31 张家港天乐橡塑科技股份有限公司 一种限位器罩盖成型模具
CN108127858A (zh) * 2017-12-20 2018-06-08 优力精密塑胶(苏州)有限公司 一种倒装式带有3d打印随形水路的注塑模具
CN108715002A (zh) * 2018-04-28 2018-10-30 芜湖盈奇塑业有限公司 一种卸料便捷的模具组件
CN108943664A (zh) * 2018-07-16 2018-12-07 苏州锦新纳米科技有限公司 一种应用于眼药水瓶的吹塑模具
CN109382978A (zh) * 2018-11-12 2019-02-26 宁波路加医疗器械有限公司 一种负压球的成型模具
CN110095357B (zh) * 2019-04-12 2022-02-08 南京航空航天大学 用于自封式脱落接头拉伸动载荷试验的加载装置和方法
CN110774510A (zh) * 2019-11-05 2020-02-11 徐州徐工精密工业科技有限公司 四工位快速成型冲压模具
CN110900907B (zh) * 2019-11-29 2021-05-28 南京金三力高分子科技有限公司 一种线束橡胶保护套的成型模具及加工方法
CN112372913B (zh) * 2020-10-20 2022-07-05 天津和治药业集团有限公司 一种龙鹿胶囊生产用模具
CN112590126A (zh) * 2020-12-11 2021-04-02 衢州欣力工贸有限公司 一种防气泡的一性快餐盒用模具
CN113208887A (zh) * 2021-03-17 2021-08-06 袁冰 一种电热弹性拔罐器
CN113021718A (zh) * 2021-03-25 2021-06-25 浙江工业大学 一种用于制作球状气囊的模具
CN113021717B (zh) * 2021-03-25 2022-10-14 浙江工业大学 一种用于制作球状气囊的模具
CN112959620B (zh) * 2021-03-29 2022-05-06 浙江昊杨新能源科技有限公司 一种模具脱模机构、及注塑模具和系统
CN113172817B (zh) * 2021-04-16 2022-04-29 浙江工业大学 一种气囊模具
CN113199692B (zh) * 2021-05-07 2022-03-08 深圳市国兰塑胶五金制品有限公司 一种可高效去除注塑料内水分的注塑设备
CN113478714A (zh) * 2021-06-26 2021-10-08 东莞市美诺工艺品有限公司 一种硅胶桶的生产工艺
CN115042385B (zh) * 2022-06-10 2022-12-09 浙江金马泰科技有限公司 一种玩具轮胎套气顶结构注塑模具
CN115042395B (zh) * 2022-07-19 2023-05-30 华域视觉科技(上海)有限公司 气体辅助脱模装置及其脱模方法和注塑模具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH662530A5 (en) * 1983-09-30 1987-10-15 Bucher Guyer Ag Masch Process for evacuating the mould cavity of an injection moulding machine and for demoulding the workpieces by means of compressed air and device for carrying out the process
CN1098284A (zh) * 1994-05-26 1995-02-08 万青 透明弹性理疗罐及其制造方法
CN1192377A (zh) * 1997-03-04 1998-09-09 袁冰 弹力拔罐器具
CN1376830A (zh) * 2001-08-31 2002-10-30 武汉第二机床厂 植物纤维餐饮具成型工艺及模具
CN101327638A (zh) * 2007-06-20 2008-12-24 李庆辉 塑胶模具之机械与压缩空气联动顶出机构
CN201268078Y (zh) * 2008-08-02 2009-07-08 俞建江 薄壁深腔类模具的压缩空气脱模系统
CN201798948U (zh) * 2010-08-30 2011-04-20 梁志友 一种多功能低负压橡胶拔罐

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2358857A (en) * 1940-08-03 1944-09-26 Joseph A Gits Die for molding flashlight bodies
US2396406A (en) * 1944-07-17 1946-03-12 Volney S Anderson Molding apparatus
US3183551A (en) * 1961-04-14 1965-05-18 Johnson Walter Delmar Air-operated stripper for molds
US3304354A (en) * 1963-04-08 1967-02-14 Fisher Price Toy Inc Method and apparatus for molding
US3373460A (en) * 1965-09-13 1968-03-19 Michael Ladney Jr. Molding apparatus
US4198371A (en) * 1975-10-22 1980-04-15 Professional Packaging Limited Method and apparatus for molding holders for disc-like objects
JPS5664852A (en) * 1979-10-31 1981-06-02 Ohtsu Tire & Rubber Co Ltd Method and apparatus for making tubeless pneumatic tire
US4375948A (en) * 1979-12-07 1983-03-08 Holdt J W Von Plastic bucket defining annular inwardly projecting ridge and method
ZA835586B (en) * 1982-07-31 1984-04-25 Trw Ehrenreich Gmbh An injection mould
DE3708905A1 (de) * 1987-03-19 1988-09-29 Bayer Ag Verfahren zur herstellung gespritzter formkoerper
US4832307A (en) * 1988-09-15 1989-05-23 Toshiba Kikai Kabushiki Kaisha Injection mold
EP0370142A1 (en) * 1988-11-22 1990-05-30 Sankyo Engineering Co. Ltd. Slide core mold for injection molding
JP3037988B2 (ja) * 1990-09-29 2000-05-08 キーパー株式会社 合成樹脂製蛇腹製品の射出ブロー成形方法
US6210624B1 (en) * 1994-06-20 2001-04-03 Critical Device Corporation Method of forming a reseal element for a needleless injection site
JP2869854B2 (ja) * 1994-10-19 1999-03-10 株式会社トスカ 合成樹脂の成形方法とその装置
US5490966A (en) * 1994-11-02 1996-02-13 The Procter & Gamble Company Method for stripping open ended bellows part from injection mold
US5683644A (en) * 1995-11-13 1997-11-04 The Procter & Gamble Company Method for stripping open ended bellows part from injection mold
ES2164861T3 (es) * 1996-07-02 2002-03-01 Insit Ind S P A Metodo y aparato para la produccion de un articulo de material elastomerico.
US6403003B1 (en) * 1999-08-10 2002-06-11 Jetta Company Limited Injection molded doll head
US6929462B1 (en) * 2000-11-08 2005-08-16 Hammonton Mold Co. Inc. Mold part guide mechanism
KR100536771B1 (ko) * 2002-08-16 2005-12-14 유도실업주식회사 사출기용 핫 런너 시스템에 사용되는 노즐 게이트에 가열장치와 냉각장치를 장착한 개폐식 노즐 게이트와 그 개폐방법
AU2003246990A1 (en) * 2002-09-09 2004-03-29 J.T.Labs, Ltd. Thermoplastic molding process
US7488259B2 (en) * 2003-02-19 2009-02-10 Fukoku Co., Ltd. Resin boots for constant velocity universal joint
CN201677472U (zh) * 2010-04-13 2010-12-22 台州市黄岩大盛模塑有限公司 塑料洗脸盆模具气辅顶出机构
CN201721019U (zh) * 2010-07-28 2011-01-26 日进教学器材(昆山)有限公司 模具间隙气辅顶针机构
CN202029353U (zh) * 2011-04-07 2011-11-09 江阴市农业药械厂 波纹管注塑脱模装置
CN202491346U (zh) * 2012-03-19 2012-10-17 连云港东鼎实业有限公司 一种气动脱模装置
JP6011274B2 (ja) * 2012-11-26 2016-10-19 株式会社ジェイテクト 等速ジョイント用ブーツの成形方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH662530A5 (en) * 1983-09-30 1987-10-15 Bucher Guyer Ag Masch Process for evacuating the mould cavity of an injection moulding machine and for demoulding the workpieces by means of compressed air and device for carrying out the process
CN1098284A (zh) * 1994-05-26 1995-02-08 万青 透明弹性理疗罐及其制造方法
CN1192377A (zh) * 1997-03-04 1998-09-09 袁冰 弹力拔罐器具
CN1376830A (zh) * 2001-08-31 2002-10-30 武汉第二机床厂 植物纤维餐饮具成型工艺及模具
CN101327638A (zh) * 2007-06-20 2008-12-24 李庆辉 塑胶模具之机械与压缩空气联动顶出机构
CN201268078Y (zh) * 2008-08-02 2009-07-08 俞建江 薄壁深腔类模具的压缩空气脱模系统
CN201798948U (zh) * 2010-08-30 2011-04-20 梁志友 一种多功能低负压橡胶拔罐

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2799204A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106926400A (zh) * 2017-03-21 2017-07-07 东莞星海丰电子有限公司 一种便携音响硅胶套脱模方法及成型模芯
CN106926400B (zh) * 2017-03-21 2023-01-06 东莞星海丰电子有限公司 一种便携音响硅胶套脱模方法及成型模芯
CN117885292B (zh) * 2024-03-15 2024-05-31 宁波市特种设备检验研究院 一种一体成型胶囊生产装置及其工艺

Also Published As

Publication number Publication date
CN103182763B (zh) 2016-03-23
EP2799204A1 (en) 2014-11-05
HK1203895A1 (zh) 2015-11-06
EP2799204A4 (en) 2015-07-01
EP2799204B1 (en) 2016-10-12
CN105538585A (zh) 2016-05-04
US9573305B2 (en) 2017-02-21
CN103182763A (zh) 2013-07-03
US20140316307A1 (en) 2014-10-23
CN105538585B (zh) 2017-12-08
PL2799204T3 (pl) 2017-09-29

Similar Documents

Publication Publication Date Title
WO2013097800A1 (zh) 一种制造硅橡胶拔罐器具的方法和装置
TWI690408B (zh) 以射出延伸吹氣成形機形成容器方法
CN109822812B (zh) 一种多工位控温注塑机
CN103921408A (zh) 一种生产超薄壁高光注塑件的方法及模具
US8105529B1 (en) Heated injection molding system and method
WO2020114024A1 (zh) 硫化橡胶靴及其压铸成型模具、制造设备和制造方法
CN108081533A (zh) 压缩空气注入式保压注塑工艺
CN206264334U (zh) 带弹性材料芯模的注射吹塑模具
EP3315287B1 (en) Container manufacturing apparatus
WO2020258681A1 (zh) 一种销塞式侧吹脱模机构
JP2010083124A (ja) 微細発泡成形品の射出成形システム及びその方法
JP2010234609A (ja) 温度制御可能な成形型
CN210679505U (zh) 一种打印机内部支撑架精密注塑模具
CN208946552U (zh) 一种变温式led舞台灯透镜模具
WO2020114170A1 (zh) 注胶导流板、硫化橡胶靴及其压铸成型模具、制造设备和制造方法
KR100782295B1 (ko) 수냉식 블로우몰딩 쿨링 장치 및 방법
CN208038292U (zh) 一种均匀冷却的玻璃瓶模具
KR101200361B1 (ko) 발포 성형 금형장치
CN206124148U (zh) 柔性注塑中心
TWI769740B (zh) 製造瓶體的吹塑成型機以及把手瓶的吹塑成型方法
CN205416185U (zh) 一种显著提高产品生产效率的发泡成型装置
CN105818335B (zh) 可完全脱模的绝缘骨架模具
CN205416172U (zh) 一种新型发泡成型装置
TWI839699B (zh) 模仁結構
CN209920445U (zh) 一种方便更换喷嘴结构的注塑模具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012861698

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012861698

Country of ref document: EP