WO2013094634A1 - 転炉製鋼方法 - Google Patents

転炉製鋼方法 Download PDF

Info

Publication number
WO2013094634A1
WO2013094634A1 PCT/JP2012/082905 JP2012082905W WO2013094634A1 WO 2013094634 A1 WO2013094634 A1 WO 2013094634A1 JP 2012082905 W JP2012082905 W JP 2012082905W WO 2013094634 A1 WO2013094634 A1 WO 2013094634A1
Authority
WO
WIPO (PCT)
Prior art keywords
lance
molten iron
dephosphorizing
converter
gas
Prior art date
Application number
PCT/JP2012/082905
Other languages
English (en)
French (fr)
Inventor
内田 祐一
佑馬 五十嵐
秀光 根岸
直敬 佐々木
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020147015660A priority Critical patent/KR101529843B1/ko
Priority to JP2013550304A priority patent/JP5574060B2/ja
Priority to IN1258KON2014 priority patent/IN2014KN01258A/en
Priority to CN201280056824.XA priority patent/CN104126019B/zh
Priority to EP12859763.0A priority patent/EP2796569B1/en
Priority to US14/365,759 priority patent/US9493854B2/en
Publication of WO2013094634A1 publication Critical patent/WO2013094634A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • C21C1/025Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a converter steelmaking method for melting molten steel from hot metal, and in particular, CaF, which is a hatching accelerator for a dephosphorization refining agent containing CaO, for dephosphorization refining performed simultaneously with decarburization refining in the converter.
  • CaF which is a hatching accelerator for a dephosphorization refining agent containing CaO, for dephosphorization refining performed simultaneously with decarburization refining in the converter.
  • the present invention relates to a converter steelmaking method that can be carried out efficiently without using a two- system solvent.
  • the steelmaking operation is completed by simultaneously performing dephosphorization and decarburization of hot metal in a single converter.
  • the demand for the quality of steel materials has increased, and the expansion of continuous casting and secondary refining of molten steel such as vacuum degassing furnaces and ladle refining furnaces have become widespread.
  • the steel output temperature in the converter rises, and as a result, the dephosphorization capacity in the converter is reduced.
  • a hot metal pretreatment method in which the hot metal charged in the converter is dephosphorized in advance, and the phosphorus in the hot metal is previously removed and charged in the converter. This is because phosphorus is more efficiently dephosphorized in the hot metal step at a low temperature level, and therefore, a method of dephosphorizing in advance in the hot metal pretreatment step is advantageous.
  • a refining method for hot metal pretreatment there are a torpedo car method, a ladle method, a converter method different from a converter that performs decarburization refining, and the like.
  • quick lime, iron oxide, or the like is added from the top or by an injection method, and stirring by blowing a stirring gas or oxygen gas is used in combination.
  • dephosphorization refining which is oxidative refining, silicon has higher affinity with oxygen than phosphorus, so silicon in the hot metal is also oxidized and removed in advance.
  • desiliconization / dephosphorization refining is performed at the hot metal stage, and decarburization refining is mainly performed in the converter, thereby improving the efficiency and productivity of the converter.
  • decarburization refining is mainly performed in the converter, thereby improving the efficiency and productivity of the converter.
  • pretreatment of hot metal for dephosphorization reduces the thermal margin in the steelmaking process, eliminates the degree of freedom of raw materials used, and limits the amount of iron scrap recycled into the converter. There is also a problem of receiving.
  • Patent Document 1 discloses that, in an oxygen blow-up converter, calcium oxide-containing powder is sprayed onto a molten metal surface together with a refining oxygen gas, and stirring is performed by blowing gas from a nozzle provided below the molten metal surface.
  • a ladle slag containing aluminum oxide or a composition containing aluminum oxide By adding a ladle slag containing aluminum oxide or a composition containing aluminum oxide into the furnace, stable melting and hatching is achieved by blowing quick lime into the converter, and slag is generated through stable refining.
  • a method for reducing the amount has been proposed.
  • Patent Document 1 has a problem in that, if the adjustment of blowing is inappropriate, quick lime blown into the converter scatters and does not stay in the furnace, but rather deteriorates efficiency.
  • slag for dephosphorization refining reduces the amount of dephosphorization agent used as slag that functions as a dephosphorization refining agent.
  • the main component of the dephosphorizing agent in the dephosphorization of hot metal is lime (CaO). Therefore, in order to reduce the amount of slag discharged, a technology for maintaining the necessary dephosphorization amount while reducing the amount of lime used, that is, a technology for efficiently dephosphorizing with a small amount of lime used is required.
  • An object of the present invention is to propose a converter steelmaking method capable of efficiently performing dephosphorization refining when molten steel is produced by simultaneously performing decarburization and dephosphorization of hot metal in a converter. That is.
  • the method of the present invention for solving the above problem is to add a powdered dephosphorizing refining agent containing CaO while supplying gaseous oxygen from an upper blowing lance to decarburize and refine molten iron in the converter.
  • the dephosphorizing refining agent is accompanied by at least one gas jet from an upper blowing lance and the molten iron bath surface.
  • the dynamic pressure when the gas jet from the top blowing lance collides with the molten iron bath surface is set to an appropriate value. It is a converter steelmaking method characterized by controlling.
  • the dephosphorizing refining agent and the gaseous oxygen are combined in the same lance, and the dephosphorizing refining agent is accompanied by a gas jet containing the gaseous oxygen. And supplying to the molten iron bath surface.
  • the gaseous oxygen and the dephosphorizing agent with a carrier gas are individually supplied in the same lance, and the gaseous oxygen,
  • the carrier gas for conveying the dephosphorizing agent is sprayed as a gas jet from the separate nozzles of the lance toward the molten iron bath surface.
  • the appropriate value of the dynamic pressure when the gas jet containing the gaseous oxygen and the gas jet accompanying the dephosphorizing agent collide with the molten iron bath surface is 0.50 kgf / cm 2 or less.
  • the dephosphorizing refining agent is any one of quick lime, slaked lime, calcium carbonate, converter slag, ladle slag having a particle size of 1 mm or less, or It is characterized by being 2 or more types.
  • the molten iron is decarburized by supplying gaseous oxygen into the converter and degassing and refining the molten iron while adding the powdered CaO-containing dephosphorizing refining agent and hatching to form slag.
  • the powdered dephosphorizing refining agent is supplied to the molten iron bath surface along with the gas jet, so the melting of the dephosphorizing refining agent is accelerated, The dephosphorization ability of the slag is improved.
  • the dephosphorizing method can be performed while maintaining the dephosphorization rate equal to or higher than the conventional method.
  • the dynamic pressure when the gas jet collides with the molten iron bath surface is less than an appropriate value considering (quantitatively evaluating) the dynamic pressure increase due to the kinetic energy of the accompanying dephosphorization refining agent. Therefore, excessive scattering of molten iron and excessive scattering of the dephosphorizing refining agent to the outside of the furnace can be prevented.
  • the amount of slag generated in the converter steelmaking process can be reduced, and the load on the environment can be greatly reduced.
  • the dephosphorization in producing molten steel by simultaneously performing decarburization and dephosphorization of molten iron in a converter, the dephosphorization can be efficiently performed, and an industrially significant effect is achieved.
  • FIGS. 1 and 2 are cross-sectional views schematically showing examples of top blowing lances used in the converter steelmaking method of the present invention. Since this upper blow lance is generally long, in FIGS. 1 and 2, it is divided into a lance body 1, a lance top 2 and a lance tip 3. 4 is a copper lance tip, 5 is an outer tube, 6 is an inner tube, 7 is an inner tube, 8 is a main hole nozzle, 9 is a gas oxygen supply pipe, 10 is a gas oxygen supply system, and 11 is a first cooling water supply.
  • An exhaust system, 12 is a second cooling water supply / exhaust system, 13 is a powder supply pipe, 14 is a powder supply system, and 15 is a powder nozzle.
  • the converter steelmaking method In order to smelt molten steel from hot metal that has not been subjected to preliminary dephosphorization treatment using a converter, the hot metal is charged into the converter, and a dephosphorizing refining agent containing CaO and gaseous oxygen such as oxygen gas. And a solid oxygen source such as iron oxide to be used as needed, carbon in the hot metal is oxidized and removed by oxygen in the oxygen source, and phosphorus in the hot metal is oxidized by the oxygen source and generated The phosphorous oxide is taken into a dephosphorizing slag composed of a dephosphorizing refining agent containing CaO or the like, thereby removing phosphorus in the hot metal.
  • the carbon in the hot metal is oxidized and discharged as CO gas.
  • the dephosphorizing refining agent containing CaO also serves to prevent the occurrence of iron splash and the like by covering the hot metal bath surface.
  • refining performed by blowing or bottom blowing a gaseous oxygen source such as oxygen gas onto the molten iron is referred to as “oxygen blowing”, and the gaseous oxygen source and the solid oxygen source are collectively referred to as oxygen sources.
  • the hot metal preliminary treatment may be performed as necessary based on the sulfur content of the chemical composition standard of the steel type to be melted. It is not necessary to carry out dephosphorization treatment and preliminary desiliconization treatment. However, preliminary desiliconization treatment may be performed to promote dephosphorization in the converter. At the time of oxygen blowing in the converter, the silicon in the hot metal is oxidized to become SiO 2 and transferred to a dephosphorizing slag composed of a dephosphorizing refining agent containing CaO, etc.
  • a preliminary dephosphorization process is performed in the hot metal stage, and the method of the present invention is applied at the time of converter decarburization blowing to reduce the phosphorus content. Stable production of less molten steel is possible. That is, when melting molten steel with a low phosphorus content, preliminary dephosphorization treatment may be performed.
  • the mass% CaO and the mass% SiO 2 in the basicity calculation formula refer to the CaO concentration and the SiO 2 concentration in the dephosphorization slag, respectively.
  • a powdery dephosphorizing agent is supplied to the hot metal bath surface along with a gas jet.
  • a high oxygen potential field is locally formed by the gaseous oxygen to produce iron oxide, and the gaseous oxygen and carbon in the molten iron or molten iron
  • the temperature is high due to the reaction.
  • the powdered dephosphorizing agent is supplied toward the fire point accompanying the jet of gaseous oxygen.
  • the lance shown in FIG. 1 the lance shown in FIG.
  • the dephosphorizing refining agent is supplied from the powder nozzle to the molten iron bath surface along with the jet of the conveying gas, but it is conveyed with the gaseous oxygen and the dephosphorizing refining agent. Since both the gas jets expand to a certain extent in the radial direction from the central axis of the jet, the dephosphorizing refining agent is also partially involved in the gaseous oxygen jet and supplied to the fire point. Thereby, the dephosphorization refining agent quickly melts, and the slag optimum for the dephosphorization reaction is rapidly formed, and the dephosphorization is promoted even when the amount of the slag is small or at a high temperature.
  • the kinetic energy of the powder is added to increase the dynamic pressure of collision of the gas jet with the bath surface.
  • the dynamic pressure is a pressure generated by the wind pressure or flow velocity of the gas jet other than the static pressure.
  • the jet conditions should be appropriately controlled, but there is no means for quantitative control so far, There was a problem that the molten iron was scattered and the metal was deposited at the furnace mouth, and the yield of the dephosphorizing agent deteriorated, leading to poor dephosphorization.
  • the pressure (dynamic pressure) P at the center of the jet flow given when the gas jet jetted from each lance nozzle collides with the molten iron bath surface can be calculated by the following equations (1) to (4).
  • the dynamic pressure applied to the molten iron bath surface by the gas jet may be calculated as follows. That is, in the equation (1), by calculating the gas jet density ⁇ g as in the following equation, the increase in dynamic pressure due to the kinetic energy of the dephosphorizing agent can be quantitatively evaluated.
  • the bath surface dynamic pressure can be calculated by the equations (1) to (4) even when the gas jet is accompanied by a powder dephosphorizing agent.
  • the actual nozzle inlet pressure of the gas ejected from the lance nozzle is from the gas nozzle inlet pressure Po calculated by the equation (3).
  • the calculated value by the equation (3) is used.
  • the dynamic pressure exerted on the molten iron bath by the gas jet can be calculated using equations (1) to (4), respectively.
  • equations (1) to (4) the dynamic pressure exerted on the molten iron bath by the gas jet.
  • a part of the dephosphorizing refining agent is involved in the gas jet of refining gas oxygen, but in this case, since the kinetic energy is only exchanged with each other, the gas jet is molten iron. The influence of the powder on the dynamic pressure on the bath surface is small and can be ignored.
  • the dynamic pressure P when the gaseous oxygen jet accompanying the powder dephosphorizing agent collides with the molten iron bath surface is preferably 0.50 kgf / cm 2 or less.
  • the dynamic pressure P exceeds 0.50 kgf / cm 2 , the molten iron and the dephosphorizing refining agent are scattered due to the excessive dynamic pressure, the yield of the dephosphorizing refining agent is reduced, and the efficiency is deteriorated. In addition, the amount of slag is reduced, causing dephosphorization failure.
  • a more preferable range of the dynamic pressure P is 0.40 kgf / cm 2 or less, and a more preferable range is 0.30 kgf / cm 2 or less.
  • the dynamic pressure P is preferably 0.10 kgf / cm 2 or more.
  • oxygen gas including industrial pure oxygen
  • air oxygen-enriched air
  • oxygen gas is preferably used because the decarburization reaction rate and dephosphorization reaction rate are faster than when other gases are used.
  • oxygen concentration is preferably higher than that of air in order to ensure the decarburization reaction rate and the dephosphorization reaction rate.
  • a dephosphorizing refining agent containing CaO together with gaseous oxygen is supplied to the molten iron bath surface including the supply location of gaseous oxygen.
  • the particle size of the dephosphorization refining agent containing CaO supplied together with gaseous oxygen is preferably 1 mm or less from the viewpoint of promoting hatching.
  • a part of the dephosphorizing refining agent containing CaO may be added separately from gaseous oxygen from a hopper or the like.
  • the dephosphorizing / refining agent containing CaO used in the present invention is not particularly limited as long as it contains CaO and can be dephosphorylated, and usually contains CaO alone. Or, it contains 50% by mass or more of CaO, and other components as required.
  • the other components generally include hatching accelerators.
  • the present invention is a technique that makes it possible to reduce or omit hatching accelerators, it does not prohibit the addition of hatching accelerators to further improve hatching efficiency.
  • the hatching accelerator include titanium oxide having a function of promoting the hatching by lowering the melting point of CaO and a substance containing aluminum oxide (Al 2 O 3 ), and these can be used. . Among these, addition of titanium oxide is preferable from the viewpoint of slag viscosity.
  • CaF 2 -based solvent such as fluorite can be used as a hatching accelerator.
  • the CaF 2 solvent it is preferable not to use the CaF 2 solvent as a hatching accelerator from the viewpoint of protecting the environment by suppressing the amount of fluorine eluted from the slag.
  • a substance in which fluorine is inevitably mixed as an impurity component may be used.
  • a substance containing titanium oxide or a substance containing aluminum oxide is used as the hatching accelerator, it is preferable that it does not contain fluorine from this viewpoint.
  • a dephosphorizing refining agent containing CaO is preferable because quick lime and limestone are inexpensive and have excellent dephosphorization ability.
  • Light burned dolomite can also be used as a dephosphorizing refining agent containing CaO.
  • dust collection dust is dust containing iron that is recovered from exhaust gas in a blast furnace, converter, and sintering process.
  • gaseous oxygen supplied as an oxygen source can be supplied from an upper blowing lance.
  • the dephosphorizing refining agent containing CaO to the molten iron bath surface along with the gaseous oxygen
  • the dephosphorizing refining agent is conveyed to the lance inlet with a conveying gas, and as shown in FIG.
  • the above-mentioned addition conditions can be achieved by merging them in the same upper blowing lance and supplying them from the main hole nozzle 8.
  • At least two supply systems are installed in the upper blowing lance, a gaseous oxygen source is supplied from one of the supply systems, and a dephosphorizing refining agent containing CaO is supplied together with the carrier gas from the other supply system.
  • a gaseous oxygen source is supplied from one of the supply systems
  • a dephosphorizing refining agent containing CaO is supplied together with the carrier gas from the other supply system.
  • the carrier gas oxygen gas, air, carbon dioxide gas, non-oxidizing gas, rare gas, reducing gas, or the like can be used alone or in combination.
  • the carrier gas flow rate of the dephosphorizing refining agent is one order lower than the gas oxygen flow rate for oxygen blowing, but in this case as well, the dynamic pressure is calculated and adjusted using the equations (1) to (4). It is possible.
  • the upper blow lance is at least a double pipe structure, one is a gaseous oxygen supply pipe 9 which is a flow path for gaseous oxygen, the other is a dephosphorizing refining agent and
  • a powder supply pipe 13 which is a flow path for the transfer gas
  • gaseous oxygen is supplied from a main hole nozzle 8 arranged on a concentric circle with the lance central axis as the center, while a dephosphorizing refining agent and a transfer gas.
  • a powder nozzle 15 disposed on the center axis of the lance.
  • a plurality of main hole nozzles 8 and powder nozzles 15 are arranged on a concentric circle with the lance center axis as the center, and gaseous oxygen, dephosphorizing refining agent and conveying gas are supplied from alternate (alternate) nozzle holes. You may make it do.
  • at least three supply systems are installed in the top blowing lance, gaseous oxygen is supplied from one of the supply systems, and dephosphorizing refining agent containing CaO is supplied together with the carrier gas from another supply system. They can be combined in the upper blowing lance, ejected from the lance nozzle, a solid oxygen source can be supplied together with the carrier gas from another supply system, and ejected from another lance nozzle.
  • the dynamic pressure can be calculated and adjusted using the equations (1) to (4) after adding the supply rate of the solid oxygen source to the supply rate of the dephosphorizing refining agent.
  • the mode of these lances can be selected according to the purpose of the refining operation and the degree of freedom of the lance design.
  • the temperature of molten iron rises due to the heat of oxidation reaction when gaseous oxygen is used, but when a solid oxygen source is used, the sensible heat, latent heat and decomposition heat of the solid oxygen source itself are higher than the heat of oxidation reaction. Since it is large, the molten iron temperature is lowered.
  • the use ratio of gaseous oxygen and solid oxygen source is set according to the hot metal temperature before converter refining and the target temperature of the obtained molten steel. Further, in order to efficiently perform the dephosphorization reaction, it is preferable to stir the molten iron, and as this stirring, gas stirring using a tuyere generally embedded in the furnace bottom may be performed.
  • the FeO concentration in the slag is preferably in the range of 10% by mass to 50% by mass. Therefore, it is preferable to adjust the supply amount of the oxygen source (gaseous oxygen and solid oxygen source) so that the FeO concentration in the slag can maintain this range.
  • a more preferable range of the FeO concentration is 10% by mass or more and 30% by mass or less.
  • the reduction effect of the dephosphorization refining agent according to the present invention can be widely applied to converter refining in principle, and is naturally exhibited, for example, in decarburization blowing of hot metal that has undergone preliminary dephosphorization treatment.
  • Example 1 280 tons of hot metal discharged from the blast furnace was charged into a converter previously charged with 50 tons of iron scrap, and decarburization blowing was performed 5 times in total in this converter (Invention Examples 1 to 5).
  • the carbon concentration, silicon concentration, and phosphorus concentration of hot metal before decarburization blowing were unified to 4.3 mass%, 0.25 mass%, and 0.12 mass%, respectively, and the hot metal temperature was about 1300 ° C.
  • the carbon concentration and phosphorus concentration of the molten steel after decarburization blowing were targeted at 0.03% by mass and 0.025% by mass, respectively, and the molten steel temperature after decarburization blowing was targeted at 1670 ° C.
  • decarburization blowing was performed using an upper blowing lance having two supply pipes 9 and 13 in addition to the cooling water supply and drainage systems 11 and 12. That is, gaseous oxygen is fed from the gaseous oxygen supply pipe 9, and quick lime powder (average particle size of 1 mm or less) is fed from the powder supply pipe 13 as a powdery dephosphorizing refining agent using oxygen gas as a carrier gas, Both of these were merged at the top of the lance and supplied from the main hole nozzle 8.
  • the throat diameter of the main hole nozzle 8 was 55 mm, the outlet diameter was 65 mm, and four nozzles were arranged on a concentric circle centered on the lance center axis.
  • the top blown oxygen flow rate including the carrier gas was kept constant at 44000 Nm 3 / hr, and the oxygen basic unit was about 45 Nm 3 / t excluding oxygen necessary for desiliconization. Further, Ar gas was blown from the tuyeres at the bottom of the converter furnace as a stirring gas at a flow rate of 0.03 to 0.30 Nm 3 / min per ton of hot metal.
  • the supply speed of quicklime powder was 500 kg / min.
  • the dephosphorizing refining agent containing CaO other than the above powder for forming the slag for refining granular quicklime (average particle size of about 20 mm) and dolomite (average particle size of about 20 mm, CaO content of 40% by mass) These were placed on top of the furnace from the furnace hopper. Also, decarburization blowing was performed without adding fluorine-containing substances such as fluorite.
  • Example 1 decarburization blowing was also performed (Comparative Example 1) in which powdered quick lime was not charged from the lance but only granular quick lime was charged from the furnace hopper.
  • the other decarburization blowing conditions of the comparative example were performed according to Invention Example 1.
  • lance height Based on the distance between the tip of the lance and the molten metal surface (hereinafter referred to as lance height), Invention Example 1 has the same lance height, and Invention Examples 2 to 4 are 200 mm, 400 mm, and 600 mm from the reference height, respectively. High lance height.
  • Invention Example 5 the lance height was the same as in Invention Example 2, and lime was not charged from the furnace hopper, but only powdered quick lime was charged from the lance.
  • the lance height was 200 mm lower than the reference height.
  • Table 1 shows the operating conditions, CaO yield, and phosphorus concentration in the molten steel after decarburization blowing in Invention Examples and Comparative Examples.
  • the basic unit of CaO in Table 1 is shown as the amount (kg / ton) per 1 ton of hot metal.
  • the CaO basic unit was calculated as the sum of the amount of quicklime added and the amount of CaO added in dolomite.
  • the CaO yield was defined by the following formula.
  • CaO yield (%) 100 ⁇ [(SiO 2 basic unit) / (CaO basic unit)] ⁇ [(slag% SiO 2 ) / (slag% CaO)]
  • slag% SiO 2 and slag% CaO refer to the SiO 2 concentration (mass%) and CaO concentration (mass%) in the slag after refining, respectively.
  • the phosphorus concentration in the molten steel after decarburization blown in all the inventive examples in which the bath surface collision dynamic pressure of the top blowing jet of gaseous oxygen supplied from the lance was 0.50 kgf / cm 2 or less was 0.025% by mass or less, and the CaO yield was a high value of 90% or more.
  • Invention Example 5 a molten steel having a target phosphorus concentration could be obtained with a small amount of lime.
  • Comparative Example 1 since the entire amount of CaO was charged on the furnace, slag formation was poor, and the phosphorus concentration in the molten steel after decarburization blowing was higher than 0.025% by mass.
  • Example 2 The hot metal discharged from the blast furnace is transported to a converter with a capacity of 300 tons, preliminarily dephosphorized in this converter, and then this hot metal is charged into another converter with a capacity of 300 tons.
  • a total of four decarburization blows were carried out (Invention Examples 11 to 14).
  • the carbon concentration and phosphorus concentration of the hot metal after the preliminary dephosphorization treatment (before decarburization blowing) were unified to 3.0% by mass and 0.03% by mass, respectively, and the hot metal temperature was about 1360 ° C.
  • the phosphorus concentration of the molten steel after decarburization blowing was targeted to be 0.015% by mass, and the carbon concentration and molten steel temperature of the molten steel after decarburization blowing were set to the same targets as in Example 1 above.
  • decarburization blow smelting has two separate supply systems 10 and 14 in addition to the cooling water supply and drainage systems 11 and 12, and can supply gaseous oxygen from the gaseous oxygen supply system 10.
  • Gaseous oxygen is supplied from four main hole nozzles 8 arranged concentrically around the center axis of the lance, while powdered lime powder and carrier gas are used as a dephosphorizing refining agent. It was made to supply from the single powder nozzle 15 distribute
  • the top blowing oxygen flow rate, the stirring gas flow rate from the converter bottom tuyere, and the supply speed of quicklime powder were the same as in Example 1.
  • the oxygen basic unit was about 35 Nm 3 / ton.
  • All of the dephosphorization refining agent containing CaO for forming the dephosphorization refining slag was powdered quicklime supplied from the top blowing lance.
  • Decarburization blowing was performed without adding fluorine-containing substances such as fluorite.
  • decarburization blowing was also performed (Comparative Example 11) in which powdered quick lime was not charged from the lance but only granular quick lime was charged from the furnace hopper.
  • the other decarburization blowing conditions of the comparative example were performed according to Invention Example 11.
  • Invention Example 11 Based on the nozzle throat diameter of four nozzles arranged concentrically around the lance center axis at this time, Invention Example 11 has the same throat diameter, and Invention Examples 12 to 14 have a throat diameter larger than the reference diameter. It was. In Comparative Example 12, the throat diameter was smaller than the reference diameter. In Invention Example 14, the amount of lime supplied from the lance was reduced.
  • the lance height (2800 mm) and the nozzle outlet diameter (65 mm) were constant in all the inventive examples and comparative examples.
  • the single nozzle arranged on the center axis of the lance was constant at a throat diameter of 55 mm and an outlet diameter of 55 mm in all invention examples and comparative examples, and the Ar gas supply rate was constant at 1800 Nm 3 / hr.
  • the dynamic pressure at the position where the gas jet from the top blowing lance nozzle collides with the molten iron bath surface is determined by the kinetic energy of quick lime powder, which is a dephosphorizing agent accompanying the jet.
  • the throat diameter of each nozzle was changed according to the operating conditions so that the upper limit of the appropriate range in this equipment was 0.5 kgf / cm 2 or less.
  • the dynamic pressure was controlled to the value shown in.
  • Table 2 shows the operating conditions, CaO yield, and phosphorus concentration in the molten steel after decarburization blowing in the inventive examples and comparative examples.
  • the phosphorus concentration in the molten steel after decarburization blown in all the inventive examples in which the bath surface collision dynamic pressure of the top blowing jet of gaseous oxygen supplied from the lance was 0.50 kgf / cm 2 or less was 0.015% by mass or less, and the CaO yield was a high value of 90% or more.
  • Invention Example 14 it was possible to obtain molten steel having a target phosphorus concentration with a small amount of lime.
  • Comparative Example 11 since the entire amount of CaO was charged on the furnace, slag formation was poor, and the phosphorus concentration in the molten steel after decarburization blowing was higher than 0.015 mass%.
  • Example 3 The hot metal discharged from the blast furnace is transported to a converter with a capacity of 300 tons, preliminarily dephosphorized in this converter, and then this hot metal is charged into another converter with a capacity of 300 tons.
  • a total of four decarburization blows were performed (Invention Examples 21 to 24).
  • the carbon concentration and phosphorus concentration of the hot metal after the preliminary dephosphorization treatment (before decarburization blowing) were unified to 3.0% by mass and 0.03% by mass, respectively, and the hot metal temperature was about 1360 ° C.
  • the phosphorus concentration of the molten steel after decarburization blowing was set to 0.015% by mass, and the carbon concentration and molten steel temperature of the molten steel after decarburization blowing were set to the same targets as in Example 1.
  • Decarburization blowing was performed using a lance having a structure similar to that of Example 1, but the throat diameter of the main hole nozzle 8 was 66 mm, the outlet diameter was 75 mm, and five pieces were provided on a concentric circle centered on the lance central axis. Arranged. All of the dephosphorization refining agent containing CaO for forming the dephosphorization refining slag was powdered quicklime supplied from the top blowing lance. Decarburization blowing was performed without adding fluorine-containing substances such as fluorite. The top blow oxygen flow rate is constant at 60000 Nm 3 / hr during the period other than the last stage of decarburization, including the time when powdered lime is supplied from the top blow lance. Blowing was performed at a reduced flow rate. The stirring gas flow rate from the converter furnace bottom tuyere and the supply speed of quicklime powder were the same as in Example 1.
  • Example 21 decarburization blowing was also performed (Comparative Example 21) in which powdered quick lime was not charged from the top blowing lance but only granular quick lime was charged from the furnace hopper.
  • the other decarburization blowing conditions of the comparative example were performed according to Example 21 of the present invention.
  • the distance between the tip of the top blowing lance and the molten metal surface (hereinafter referred to as the lance height) at this time is used as a reference, and the present invention example 21 is the same lance height, and the present invention examples 22 to 24 are 200 mm and 400 mm from the reference height, respectively.
  • the lance height was 600 mm higher.
  • Comparative Example 22 the lance height was 200 mm lower than the reference height.
  • the dynamic pressure at the position where the gas jet from the top blowing lance nozzle collides with the molten iron bath surface is determined by the kinetic energy of quick lime powder, which is a dephosphorizing agent accompanying the jet. After quantitatively evaluating the pressure rise, adjust the lance height according to the conditions of the equipment and operation so that the upper limit of the appropriate range in this equipment is 0.5 kgf / cm 2 or less.
  • the dynamic pressure was controlled to the value shown in FIG.
  • Table 3 shows the operating conditions, phosphorus concentration after decarburization blowing, and CaO yield in the inventive examples and comparative examples.
  • Example 4 After desiliconization of the hot metal discharged from the blast furnace in the blast furnace casting floor, preliminary dephosphorization treatment was carried out in a transfer container (torpedo car), and then this hot metal was transferred to a 300-ton capacity converter. The decarburization treatment was performed once (Examples 31 to 33 of the present invention). The carbon concentration and phosphorus concentration of the hot metal after the preliminary dephosphorization treatment (before decarburization blowing) were unified to 3.5% by mass and 0.05% by mass, respectively, and the hot metal temperature was about 1300 ° C. The phosphorus concentration of the molten steel after decarburization blowing was targeted at 0.020% by mass, and the carbon concentration and molten steel temperature of the molten steel after decarburization blowing were set at the same targets as in Example 2.
  • the structure of the top blowing lance is a quadruple pipe structure in which the cooling water supply / drainage system, the oxygen gas supply system and the powdered quicklime powder supply system are separated, and oxygen gas as a gaseous oxygen source is supplied to the lance.
  • the throat diameter of the nozzle for supplying the gaseous oxygen source arranged concentrically was 68 mm, and the outlet diameter was 80 mm.
  • Example 31 decarburization blowing was also performed (Comparative Example 31) in which powdered quick lime was not charged from the top blowing lance but only granular quick lime was charged from the furnace hopper.
  • the other decarburization blowing conditions of the comparative example were performed according to Example 31 of the present invention.
  • the distance between the tip of the top blowing lance and the molten metal surface (hereinafter referred to as the lance height) at this time is used as a reference, and the present invention example 31 is the same lance height, and the present invention examples 32 to 33 are 200 mm and 400 mm from the reference height, respectively. High lance height. In Comparative Example 32, the lance height was 200 mm lower than the reference height.
  • the single nozzle arranged on the lance central axis was constant at a throat diameter of 55 mm and an outlet diameter of 55 mm in all the inventive examples and comparative examples, and the oxygen gas supply rate was constant at 1800 Nm 3 / hr. That is, in Invention Examples 31 to 33, the dynamic pressure at the position where the gas jet from the top blowing lance nozzle collides with the molten iron bath surface is determined by the kinetic energy of quick lime powder, which is a dephosphorizing agent accompanying the jet. After quantitatively evaluating the pressure rise, adjust the lance height according to the conditions of the equipment and operation so that the upper limit of the appropriate range in this equipment is 0.5 kgf / cm 2 or less. The dynamic pressure was controlled to the value shown in FIG.
  • Table 4 shows the operating conditions, phosphorus concentration after decarburization blowing, and CaO efficiency in the inventive examples and comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

【課題】転炉において溶銑の脱炭精錬と脱燐精錬とを同時に行って溶鋼を製造するにあたり、効率的に脱燐精錬することのできる、従来提案されているよりも有利な転炉製鋼方法を提供する。 【解決手段】転炉内に気体酸素を供給して溶鉄の脱炭精錬を行いつつ、CaOを含有する粉体の脱燐精錬剤を添加し、該脱燐精錬剤を滓化させてスラグとなし、前記溶鉄を脱炭すると同時に脱燐して、前記溶銑から溶鋼を製造する転炉製鋼方法において、前記脱燐精錬剤を上吹きランスからの少なくとも1つ以上の気体噴流に随伴して溶鉄浴面に供給し、かつ前記上吹きランスからの気体噴流が前記溶鉄浴面に衝突する際の動圧を、随伴される前記脱燐精錬剤の運動エネルギーによる動圧上昇を定量的に評価した上で適正値以下に制御する。

Description

転炉製鋼方法
 本発明は、溶銑から溶鋼を溶製する転炉製鋼方法に関し、特に、転炉内において脱炭精錬と同時に行われる脱燐精錬を、CaOを含む脱燐精錬剤の滓化促進剤であるCaF2系媒溶剤を使用することなく、効率よく行うことのできる転炉製鋼方法に関する。
 一般的な転炉製鋼方法では、単一の転炉において溶銑の脱燐精錬と脱炭精錬とを同時に行って、製鋼作業を終了している。しかし、近年の製鋼方法では、鋼材の品質に対する要求が高くなり、連続鋳造の拡大や、真空脱ガス炉、取鍋精錬炉などの溶鋼の二次精錬が普及してきた。それに伴い、転炉における出鋼温度が上昇し、その結果として、転炉における脱燐能力の低減を招いている。
 そこで、転炉に装入する溶銑を予め脱燐処理して、溶銑中の燐を予め、除去してから転炉に装入する溶銑予備処理法が発展してきた。燐は、温度レベルの低い溶銑段階における脱燐の方が効率的であることから、予め溶銑予備処理工程にて脱燐する方法が有利だからである。例えば、溶銑予備処理の精錬方法としては、トーピードカー方式、取鍋方式、或いは脱炭精錬を行う転炉とは別の転炉方式などがある。これらはいずれも、生石灰、酸化鉄などを上方より添加するかインジェクション方式にて添加し、攪拌用ガスの吹込みによる攪拌、或いは酸素ガスの吹込みを併用する方法である。なお、酸化精錬である脱燐精錬では、珪素の方が燐よりも酸素との親和力が強いために、溶銑中の珪素も予め酸化除去される。
 このように、従来は、溶銑段階で脱珪・脱燐精錬を行い、転炉においては主に脱炭精錬を行うことで、転炉の効率化及び生産性の向上が図られてきた。しかしながら、このような従来技術においては、比較的低い燐レベルの達成は可能であるものの、処理時間が長いこと、処理時の抜熱が大きいこと、転炉に供給するまでの時間がかかること、2基の転炉を利用しても処理後の溶銑払出しや別転炉への再装入による温度低下が避けられないことなど、溶銑の保有熱を有効に活用できていなかった。また、脱燐のために、溶銑の予備処理を行なうことは、製鋼工程における熱的余裕を低下させ、使用原料の自由度をなくし、転炉に装入する鉄スクラップのリサイクルの使用量が制限を受けるという問題もある。
 そこで、単一の転炉にて溶銑の脱燐精錬と脱炭精錬とを同時に行なう精錬方法が提案されている。例えば、特許文献1には、酸素上吹き転炉において、酸化カルシウム含有粉体を精錬用酸素ガスとともに溶湯面上に吹き付けるとともに、溶湯面下に設けたノズルからガスを吹込んで撹拌を行なう際に、酸化アルミニウムを含む取鍋スラグまたは酸化アルミニウムを含む組成物を炉内に添加することで、転炉への生石灰の吹込みによる安定した溶融滓化を実現し、安定した精錬を行なってスラグ発生量の低減を図る方法が提案されている。
特開2006-274349号公報
 しかしながら、特許文献1に開示の技術は、吹錬の調節が不適切だと、転炉内に吹込んだ生石灰が飛散して炉内にとどまらず、かえって効率を悪化させるという問題があった。
 また、近年の製鋼技術は、地球温暖化に代表される環境影響に対応するべく、製鋼時に発生するスラグ排出量の低減が必須となっている。溶銑の脱燐処理時におけるスラグ排出量の削減のためには、脱燐精錬剤として機能するスラグ(以下、「脱燐精錬用スラグ」という)となる脱燐精錬剤の投入量を低減することが必要である。溶銑の脱燐精錬における脱燐精錬剤の主体は石灰(CaO)である。従って、スラグ排出量を削減するには、石灰の使用量を低減しつつ必要脱燐量を維持する技術、即ち、少ない石灰の使用量で効率よく脱燐精錬する技術が必要となる。
 本発明の目的は、転炉において溶銑の脱炭精錬と脱燐精錬とを同時に行って溶鋼を溶製するに際に、脱燐精錬を効率的に行なうことができる転炉製鋼方法を提案することである。
 上記課題を解決するための本発明方法は、転炉内に、上吹きランスから気体酸素を供給して溶鉄の脱炭精錬を行いつつ、CaOを含有する粉状脱燐精錬剤を添加することによって、前記溶鉄を脱炭すると同時に脱燐して溶鋼を溶製する転炉製鋼方法において、前記脱燐精錬剤を、上吹きランスからの少なくとも1つ以上の気体噴流に随伴させて溶鉄浴面に供給し、かつ前記上吹きランスからの気体噴流が前記溶鉄浴面に衝突する際の動圧を、随伴される前記脱燐精錬剤がもつ運動エネルギーによる上昇分を考慮して、適正値に制御することを特徴とする転炉製鋼方法である。
 本発明に係る転炉製鋼方法は、上記の方法において、前記脱燐精錬剤及び前記気体酸素を、同一のランス内で合流させて、該脱燐精錬剤を該気体酸素を含む気体噴流に随伴させて前記溶鉄浴面に供給することを特徴とする。
 本の発明に係る転炉製鋼方法は、上記の方法において、前記気体酸素と、搬送ガスを伴う前記脱燐精錬剤のそれぞれ個別の供給系統を同一のランス内に配置し、前記気体酸素と、前記脱燐精錬剤を搬送する搬送ガスとを、該ランスの別々のノズルから、気体噴流として前記溶鉄浴面に向けて吹き付けることを特徴とする。
 本発明に係る転炉製鋼方法は、上記の各方法において、前記気体酸素を含む気体噴流及び前記脱燐精錬剤を随伴する気体噴流を前記溶鉄浴面に衝突させる際の動圧の適正値は、0.50kgf/cm以下であることを特徴とする。
 本発明に係る転炉製鋼方法は、上記の各方法において、前記脱燐精錬剤は、粒度が1mm以下の生石灰、消石灰、炭酸カルシウム、転炉スラグ、取鍋スラグのうちの何れか1種または2種以上であることを特徴とする。
 本発明によれば、転炉内に気体酸素を供給して溶鉄の脱炭精錬を行いつつ粉体のCaO含有脱燐精錬剤を添加し滓化させてスラグとすることによって、溶鉄を脱炭すると同時に脱燐して溶鋼を溶製する転炉製鋼方法において、粉体の脱燐精錬剤を気体噴流に随伴させて溶鉄浴面に供給するので、脱燐精錬剤の溶融が迅速化され、当該スラグの脱燐能力が向上する。従って、本発明方法では、従来に比べて少ない脱燐精錬剤量であっても、従来と同等以上の脱燐速度を維持して脱燐精錬することができる。また、本発明によれば、気体噴流が溶鉄浴面に衝突する際の動圧を、随伴される脱燐精錬剤がもつ運動エネルギーによる動圧上昇を考慮(定量的に評価)した適正値以下に制御するので、溶鉄の過度な飛散及び脱燐精錬剤の炉外への過度な飛散を防ぐことができる。その結果、本発明では、転炉製鋼工程におけるスラグ発生量を削減することができ、環境への負荷を大幅に削減することが達成される。
 また、本発明によれば、転炉において溶鉄の脱炭精錬と脱燐精錬とを同時に行って溶鋼を製造するにあたり、効率的に脱燐精錬することができ、産業上格段の効果を奏する。
本発明の転炉製鋼方法で用いる上吹きランスの例を模式的に示す断面図である。 本発明の転炉製鋼方法で用いる上吹きランスの他の例を模式的に示す断面図である。
 図1、2は、本発明の転炉製鋼方法で用いる上吹きランスの例を模式的に示す断面図である。この上吹きランスは、一般的に長尺であるから、図1、2では、ランス本体1、ランス頂部2、ランス先端部3に分割して示す。図示の4は銅製ランスチップ、5は外管、6は中管、7は内管、8は主孔ノズル、9は気体酸素供給管、10は気体酸素供給系統、11は第1冷却水給排系統、12は第2冷却水給排系統、13は粉体供給管、14は粉体供給系、15は粉体ノズルである。
 以下、本発明に係る転炉製鋼方法を具体的に説明する。
 予備脱燐処理が施されていない溶銑から溶鋼を転炉を用いて溶製するには、転炉内に溶銑を装入し、そしてCaOを含む脱燐精錬剤と、酸素ガスなどの気体酸素源、及び必要に応じて用いられる酸化鉄などの固体酸素源とを供給し、溶銑中の炭素を酸素源中の酸素によって酸化除去するとともに、溶銑中の燐を酸素源によって酸化し、生成した燐酸化物を、CaOを含む脱燐精錬剤などからなる脱燐精錬用スラグに取り込むことにより、溶銑中の燐を除去するという方法で行われる。
 溶銑中の炭素は、酸化されてCOガスとなって系外に排出される。ここで、CaOを含む脱燐精錬剤は、溶銑浴面を覆って、鉄スプラッシュなどの発生を防止する役割も果たしている。なお、酸素ガスなどの気体酸素源を溶銑に上吹きまたは底吹きして行う精錬を「酸素吹錬」と称し、また、気体酸素源及び固体酸素源は、まとめて酸素源と称する。
 本発明では、脱燐精錬を転炉で実施するので、溶銑の予備処理は、溶製する鋼種の化学成分規格の硫黄含有量に基づき、必要に応じて実施すればよく、基本的には予備脱燐処理及び予備脱珪処理は実施する必要がない。ただし、転炉における脱燐精錬を促進させるために、予備脱珪処理は実施しても構わない。転炉での酸素吹錬時、溶銑中の珪素は酸化されてSiO2となり、CaOを含む脱燐精錬剤などからなる脱燐精錬用スラグに移行するが、脱燐反応は、脱燐精錬用スラグの塩基度(質量%CaO/質量%SiO2)が高いほど促進されることから、生成するSiO2が多い場合には、CaOを含む脱燐精錬剤の供給量を多くする必要がある。このような場合には、予備脱珪処理を実施すると、効率的な脱燐精錬が可能となる。
 なお、燐含有量が少ない鉄鋼製品用の溶鋼を溶製する場合、溶銑段階で予備脱燐処理を実施し、そして転炉脱炭吹錬時に本発明方法を適用することで、燐含有量の少ない溶鋼の安定した溶製が可能となる。つまり、燐含有量が少ない溶鋼を溶製する際には、予備脱燐処理を実施しても構わない。なお、塩基度の計算式における質量%CaO、質量%SiO2は、それぞれ脱燐精錬用スラグ中のCaO濃度、SiO2濃度を指す。
 本発明においては、図1または図2に示すようなランスを用いて、粉状の脱燐精錬剤を気体噴流に随伴させて溶銑浴面に供給する。溶銑浴面において、気体酸素が溶銑浴面と衝突する場所、つまり火点は、気体酸素によって局所的に高酸素ポテンシャル場が形成されて酸化鉄が生成され、気体酸素と溶鉄中の炭素あるいは溶鉄との反応によって高温になっている。図1のランスの場合には、粉状の脱燐精錬剤は気体酸素の噴流に随伴して前記火点に向けて供給される。また、図2のランスの場合には、脱燐精錬剤は粉体用ノズルから搬送ガスの噴流に随伴して溶鉄浴面に向けて供給されるが、気体酸素及び脱燐精錬剤を伴う搬送ガスの噴流は共に噴流の中心軸から径方向にある程度の拡がるので、脱燐精錬剤も部分的に気体酸素の噴流に巻き込まれて火点に供給される。これにより、脱燐精錬剤が速やかに溶融し、脱燐反応に最適なスラグが迅速に形成され、少ないスラグ量であっても、また高温下であっても脱燐が促進される。
 ところで、粉体脱燐精錬剤を気体噴流に随伴させて溶銑浴面に供給すると、粉体の運動エネルギーが加わって気体噴流の浴面への衝突動圧が大きくなる。一般的に動圧とは、気体噴流が静圧以外に有する風圧または流速によって生じる圧力のことであるが、本発明では、気体噴流とその噴流に随伴される粉体の脱燐精錬剤の運動エネルギーによって生じる圧力を意味する。衝突動圧が高くなると、噴流により生じる溶鉄の飛散(スピッティング)や、これに伴う粉体脱燐精錬剤の飛散も大きくなる。したがって、粉体の脱燐精錬剤を気体噴流に随伴して溶鉄浴面に供給する際には、噴流条件が適切に制御されるべきであるが、これまで定量的に制御する手段がなく、溶鉄の飛散により炉口に地金が堆積したり、脱燐精錬剤の歩留りが悪化し脱燐不良を招くという問題が生じていた。
 本発明者らはこの点について鋭意検討した結果、随伴される脱燐精錬剤の重量を考慮して、気体酸素が溶鉄浴面に衝突する際の動圧を算出することで、脱燐精錬剤の運動エネルギーによる動圧上昇を定量的に評価でき、動圧を適切に制御できることを見出した。
 個々のランスノズルから噴出される気体噴流が、溶鉄浴面に衝突する際に与える噴流の中心での圧力(動圧)Pは、下記(1)~(4)式により計算することができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ただし、P:ランスノズルから噴出される気体噴流が溶鉄浴面に与える噴流の中心での動圧[kgf/cm2
  ρg:気体噴流密度[kg/Nm
  Uo :ランスノズルから噴出される気体噴流の噴出流速[m/sec]
  de :ランスノズル出口径[mm]
  Po :ランスノズルから噴出される気体のノズル入口圧力[kgf/cm2
  Lh :ランス高さ[m]
  Fj:ランスノズルから噴出される気体の供給速度[Nm/hr]
  dt:ランスノズルのスロート径[mm]
 ここで、個々のランスノズルから噴出される気体の供給速度Fjは、図1、2に示した例のようにランス内でガス流路が分岐する場合には、流量測定装置によって直接測定することはできないが、測定される合計のガス流量が個々のランスノズルのスロート部の断面積に比例して分配されると仮定して計算すれば、精度よく求められる。また、ここで、粉体の脱燐精錬剤を随伴する気体噴流の場合には、次のようにして気体噴流が溶鉄浴面に与える動圧を算出すれば良い。即ち、(1)式において、気体噴流密度ρgを下式のように計算することにより、脱燐精錬剤の運動エネルギーによる動圧上昇を定量的に評価できる。
Figure JPOXMLDOC01-appb-M000004
 ただし、ρj:ランスノズルから噴出される気体の密度[kg/Nm
     Vp:粉体の脱燐精錬剤の供給速度[kg/min]
 この(4)式を用いれば、気体噴流が粉体の脱燐精錬剤を随伴している場合でも(1)~(4)式によって浴面動圧を算出することが可能になる。なお、ここで、粉体と搬送ガスとがノズルから噴出する場合には、実際のランスノズルから噴出される気体のノズル入口圧力は、(3)式によって計算される気体のノズル入口圧力Poよりも高い値となるが、粉体を随伴する気体噴流の動圧を評価するには(3)式による計算値を用いる。
 図1に示すように、CaOを含む粉体の脱燐精錬剤を、精錬用酸素と同一のランス内で合流させて溶鉄浴面に供給する場合には、ランスノズルから噴出される気体の供給速度(Fj)は、精錬用酸素と、搬送用ガスの合計の供給速度を用い、ランスノズルから噴出される気体の密度(ρj)は、精錬用酸素と、搬送用ガスの加重平均ガス密度を用いる。
 また、図2に示すように、精錬用酸素とCaOを含む粉体の脱燐精錬剤を上吹きランスの別々のノズルから噴出させて溶鉄浴面に供給する場合には、精錬用酸素用のノズルからの気体噴流と脱燐精錬剤用のノズルからの気体噴流の両方に対して、それぞれ(1)~(4)式を用いて気体噴流が溶鉄浴面に与える動圧を算出すればよい。前記したように、この場合にも、精錬用気体酸素の気体噴流に脱燐精錬剤の一部が巻き込まれるが、この場合には、相互に運動エネルギーが交換されるだけなので、気体噴流が溶鉄浴面に与える動圧に及ぼす粉体の影響は小さく、無視できる。
 上記の(1)~(3)式に見られるように、動圧に影響を及ぼす因子は多数あるが、設備上の制約や操業上の制約があるため、これらの因子の全てを自由に変更できる訳ではなく、各因子の制約の範囲内で噴流の浴面動圧を適切に制御することが求められる。(1)~(4)式を用いて脱燐精錬剤を随伴する気体噴流についても浴面動圧を算出することにより、操業の実態に応じた適切な操作によって動圧を調節することが可能になる。
 粉体の脱燐精錬剤を随伴する気体酸素噴流が溶鉄浴面に衝突する際の動圧Pは、0.50kgf/cm以下とすることが好ましい。動圧Pが0.50kgf/cmを超えると、過剰の動圧に伴う溶鉄及び脱燐精錬剤の飛散が生じ、脱燐精錬剤の歩留りが低下して効率が悪化する。また、スラグ量が少なくなって脱燐不良を起こす。上記動圧Pの、より好ましい範囲は0.40kgf/cm以下、さらに好ましい範囲は0.30kgf/cm以下である。ただし、動圧Pが低すぎると、脱燐精錬を行うことが困難であるから、動圧Pは0.10kgf/cm以上が好ましい。
 本発明で使用する気体酸素としては、酸素ガス(工業用純酸素を含む)、空気、酸素富化空気、酸素ガスと不活性ガスとの混合ガスなどを使用することができる。通常の転炉精錬の場合には、他のガスを使用した場合に比べて脱炭反応速度及び脱燐反応速度が速いことから、酸素ガスを使用することが好ましい。混合ガスの場合は、脱炭反応速度及び脱燐反応速度を確保するために、酸素濃度を空気よりも高くすることが好ましい。
 本発明においては、気体酸素とともにCaOを含む脱燐精錬剤を、気体酸素の供給場所を含む溶鉄浴面に供給する。これにより、CaOを含む脱燐精錬剤自体も高温雰囲気下で加熱されることから、スラグ化をより一層迅速にすることができる。つまり、脱燐反応をより一層促進させることができる。気体酸素とともに供給されるCaOを含む脱燐精錬剤の粒子サイズは、滓化を促進させる観点から粒径1mm以下が好ましい。当然ながら、CaOを含む脱燐精錬剤の一部をホッパーなどから気体酸素とは別に投入してもよい。
 本発明で使用する、CaOを含む脱燐精錬剤は、CaOを含有し、脱燐精錬ができるものであればよく、特にCaOの含有量に制約はないが、通常は、CaO単独からなるものや、またはCaOを50質量%以上含有し、必要に応じてその他の成分を含有するものである。
 この場合、その他の成分としては、一般的に滓化促進剤が挙げられる。本発明は、滓化促進剤の低減或いは省略を可能とする技術ではあるが、滓化促進剤を添加して更に滓化効率を改善することを禁じるものではない。滓化促進剤としては、特に、CaOの融点を下げて滓化を促進させる作用のある酸化チタンや、酸化アルミニウム(Al2)を含有する物質が挙げられ、これらを使用することができる。中でも、スラグ粘度の観点からは酸化チタンの添加が好ましい。
 また、ホタル石などのCaF2系媒溶剤も滓化促進剤として使用可能である。ただし、スラグを廃棄処分などにする際に、スラグからのフッ素の溶出量を抑えて環境を保護する観点から、CaF2系媒溶剤は滓化促進剤として使用しないことが好ましい。フッ素が不純物成分として不可避的に混入した物質については使用しても構わない。当然、酸化チタンを含有する物質や酸化アルミニウムを含有する物質を滓化促進剤として用いる場合も、この観点からフッ素を含まないものであることが好ましい。
 CaOを含む脱燐精錬剤は、生石灰や石灰石が安価で脱燐能に優れることから好ましい。また、軽焼ドロマイトもCaOを含む脱燐精錬剤として使用することができる。
 また、前記固体酸素源としては、鉄鉱石の焼結鉱、ミルスケール、ダスト(集塵ダスト)、砂鉄、鉄鉱石などを使用することができる。ここで、集塵ダストとは、高炉、転炉、焼結工程において排気ガスから回収される、鉄分を含むダストである。
 本発明の転炉製鋼方法においては、酸素源として供給する気体酸素は、上吹きランスから供給することができる。CaOを含む脱燐精錬剤を気体酸素に随伴して溶鉄浴面に供給するためには、例えば、脱燐精錬剤を搬送ガスでランス入口まで搬送し、図1に示すように、気体酸素と同一の上吹きランス内で合流させて主孔ノズル8から供給することにより、上記の添加条件を達成することができる。
 また、上吹きランスに少なくとも2つの供給系統を設置し、そのうちの1つの供給系統から気体酸素源を供給し、他の1つの供給系統からCaOを含む脱燐精錬剤を搬送用ガスとともに供給することもできる。この場合、図2に示すように、気体酸素及びCaOを含む粉体の脱燐精錬剤のそれぞれの供給系統(気体酸素供給系統10,粉体供給系統14)を同一の上吹きランス内に配置し、気体酸素と搬送ガスを伴う粉体の脱燐精錬剤とをランスの別々のノズルから溶鉄浴面に供給する。搬送用ガスには、酸素ガス、空気、炭酸ガス、非酸化性ガス、希ガス、還元性ガスなどを単独もしくは混合して使用することができる。一般に、脱燐精錬剤の搬送ガス流量は酸素吹錬用の気体酸素流量に比して1オーダー低いが、この場合も(1)~(4)式を用いて動圧を算出し、調節することが可能である。
 2つの供給系統を有する図2に示すような構成としては、例えば、上吹きランスを少なくとも二重管構造として一方を気体酸素の流路である気体酸素供給管9、他方を脱燐精錬剤及び搬送用ガスの流路である粉体供給管13とし、気体酸素を、ランス中心軸を中心とした同心円上に配された主孔ノズル8から供給し、一方、脱燐精錬剤及び搬送用ガスを、ランス中心軸上に配された粉体ノズル15から供給する方法などを採用することができる。
 また、ランス中心軸を中心とした同心円上に複数の主孔ノズル8と粉体ノズル15を配し、交互(互い違い)のノズル孔から気体酸素、及び、脱燐精錬剤と搬送用ガスを供給するようにしてもよい。さらに、上吹きランスに少なくとも3つの供給系統を設置し、そのうちの1つの供給系統から気体酸素を供給し、別の供給系統からCaOを含む脱燐精錬剤を搬送用ガスとともに供給して同一の上吹きランス内で合流させ、ランスノズルから噴出し、他の供給系統から固体酸素源を搬送用ガスとともに供給し別のランスノズルから噴出させることもできる。この場合も固体酸素源の供給速度も脱燐精錬剤の供給速度に加えた上で、(1)~(4)式を用いて動圧を算出し、調節することが可能である。これらのランスの態様は、精錬操作の目的やランス設計の自由度に応じて選択し得る。
 溶鉄温度は、気体酸素を使用した場合に、それの酸化反応熱によって上昇するが、固体酸素源を使用した場合には、固体酸素源自体の顕熱、潜熱及び分解熱が酸化反応熱よりも大きいために溶鉄温度は低下する。気体酸素と固体酸素源との使用比率は、転炉精錬前の溶銑温度と得られる溶鋼の目標温度とに応じて設定することとする。また、脱燐反応を効率的に行うためには溶鉄を撹拌することが好ましく、この撹拌としては、一般に炉底に埋め込まれた羽口などを利用したガス撹拌を行えばよい。
 脱燐精錬用スラグとしては、スラグ中のFeO濃度が10質量%以上50質量%以下の範囲が好適である。そこで、スラグ中のFeO濃度は、この範囲を維持できるように、酸素源(気体酸素および固体酸素源)の供給量を調整することが好ましい。より好ましいFeO濃度の範囲は、10質量%以上30質量%以下である。
 このようにして溶銑に対して転炉精錬を行うことにより、従来に比べて少ない脱燐精錬剤の使用量であっても、従来と同等の脱燐速度を維持して脱燐精錬することが実現される。その結果、転炉製鋼工程におけるスラグ発生量を削減することができ、環境への負荷を大幅に削減することが達成される。なお、本発明による脱燐精錬剤の削減効果は、原理的に転炉精錬に広く適用可能であり、例えば、予備脱燐処理を行った溶銑の脱炭吹錬においても当然に発揮される。
 <実施例1>
 高炉から出銑した溶銑280トンを、予め鉄スクラップ50トンを装入した転炉に装入し、この転炉で合計5回の脱炭吹錬を実施(発明例1~5)した。脱炭吹錬前の溶銑の炭素濃度、珪素濃度及び燐濃度は、それぞれ4.3質量%、0.25質量%、及び0.12質量%に統一し、溶銑温度は約1300℃とした。脱炭吹錬後の溶鋼の炭素濃度及び燐濃度はそれぞれ0.03質量%及び0.025質量%を目標とし、脱炭吹錬後の溶鋼温度は1670℃を目標とした。
 脱炭吹錬は、図1に示すように、冷却水の給排水系統11,12以外に2つの供給管9,13を有する上吹きランスを用いて行った。即ち、気体酸素供給管9から気体酸素が送給され、粉体供給管13から酸素ガスを搬送用ガスとして粉状の脱燐精錬剤として生石灰粉(平均粒径1mm以下)が送給され、これらの両者がランス頂部で合流して主孔ノズル8から供給されるようにした。主孔ノズル8のスロート径は55mm、出口径は65mmとし、ランス中心軸を中心とした同心円上に4個配した。搬送用ガス分も含む上吹き酸素流量は44000Nm/hrで一定とし、酸素原単位は、脱珪に必要な酸素を除いて約45Nm/tとした。また、転炉炉底の羽口からは、撹拌ガスとしてArガスを溶銑1トンあたり0.03~0.30Nm/minの流量で吹込んだ。
 生石灰粉の供給速度は500kg/minとした。
 精錬用スラグを形成するための上記の粉体のもの以外のCaOを含む脱燐精錬剤としては、粒状の生石灰(平均粒度約20mm)及びドロマイト(平均粒度約20mm、CaO含有量40質量%)を用い、これらを炉上ホッパーから炉内に上置き投入した。また、ホタル石などのフッ素を含有する物質は添加しないで脱炭吹錬した。
 また、比較例として、粉状の生石灰をランスから投入せず、粒状の生石灰のみを炉上ホッパーから上置き投入した脱炭吹錬も実施(比較例1)した。比較例のその他の脱炭吹錬条件は発明例1に準じて行った。このときのランス先端と湯面との距離(以後ランス高さと称する)を基準とし、発明例1は、これと同じランス高さ、発明例2~4は、基準高さよりそれぞれ200mm、400mm、600mm高いランス高さとした。発明例5では、発明例2と同じランス高さとし、炉上ホッパーから石灰を投入せず、ランスから粉状の生石灰のみを投入した。比較例2では基準高さより200mm低いランス高さとした。
 発明例1~5においては、上吹きランスノズルからの気体噴流が溶鉄浴面に衝突する位置での動圧を、噴流に随伴される脱燐精錬剤である生石灰粉の運動エネルギーによる動圧上昇を定量的に評価した上で、本設備における適正範囲の上限値である0.5kgf/cm以下とするように、設備および操業の条件に合わせてランス高さを調節して、表1に示した値のように動圧を制御した。
 表1に、発明例及び比較例における操業条件並びにCaO歩留り、脱炭吹錬後の溶鋼中の燐濃度を示す。表1におけるCaO原単位は、溶銑1tあたりの量(kg/ton)で示した。CaO原単位は、生石灰の添加量とドロマイト中のCaO分添加量との和で算出した。CaO歩留りは下式で定義した。
CaO歩留り(%)=100×[(SiO原単位)/(CaO原単位)]
            ÷[(スラグ%SiO)/(スラグ%CaO)]
 なお、CaO歩留りの計算式におけるスラグ%SiO2およびスラグ%CaOは、それぞれ精錬終了後のスラグ中のSiO2濃度(質量%),CaO濃度(質量%)を指す。
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、ランスから供給する気体酸素の上吹き噴流の浴面衝突動圧を0.50kgf/cm以下にした全ての発明例において、脱炭吹錬後の溶鋼中の燐濃度は0.025質量%以下になり、かつCaO歩留りも90%以上の高い値となった。また発明例5では、少ない石灰量で目標の燐濃度の溶鋼を得ることができた。これに対して、比較例1では、CaOの全量を炉上投入したためスラグ形成不良となり、脱炭吹錬後の溶鋼中の燐濃度が0.025質量%より高くなった。また、ランスからの気体酸素の上吹き噴流の浴面衝突動圧が0.50kgf/cm超えであった比較例2においては、粉状生石灰の飛散に起因するCaO歩留りの低下が認められた。
 <実施例2>
 高炉から出銑した溶銑を300トン容量の転炉に搬送し、この転炉で予備脱燐処理を実施した後、この溶銑を別の300トン容量の転炉に装入し、この転炉で合計4回の脱炭吹錬を実施(発明例11~14)した。予備脱燐処理後(脱炭吹錬前)の溶銑の炭素濃度及び燐濃度は、それぞれ3.0質量%及び0.03質量%に統一し、溶銑温度は約1360℃とした。脱炭吹錬後の溶鋼の燐濃度は0.015質量%を目標とし、脱炭吹錬後の溶鋼の炭素濃度及び溶鋼温度は、上記の実施例1と同一の目標とした。
 脱炭吹錬は、図2に示すように、冷却水の給排水系統11,12以外に、分離した2つの供給系統10,14を有し、気体酸素供給系統10から気体酸素を供給でき、粉体供給系統14からArガスを搬送用ガスとして粉状の生石灰粉(平均粒径1mm以下)とを供給できるランスを用いて行った。即ち、上吹きランスの構造を、冷却水の給排水系統11,12、気体酸素供給系統10及び粉状の生石灰粉の供給系統(粉体供給系統14)とが分離された四重管構造とし、気体酸素を、ランス中心軸を中心とした同心円上に配された4個の主孔ノズル8から供給し、一方で、脱燐精錬剤として粉状の生石灰粉及び搬送用ガスを、ランス中心軸上に配された単一の粉体ノズル15から供給するようにした。上吹き酸素流量、転炉炉底羽口からの攪拌ガス流量、生石灰粉の供給速度は実施例1と同様にした。
 酸素原単位は約35Nm/tonとした。脱燐精錬用スラグを形成するためのCaOを含む脱燐精錬剤の全てを、上吹きランスから供給する粉状生石灰とした。ホタル石などのフッ素を含有する物質は添加しないで脱炭吹錬した。また、比較例として、粉状の生石灰をランスから投入せず、粒状の生石灰のみを炉上ホッパーから上置き投入した脱炭吹錬も実施(比較例11)した。比較例のその他の脱炭吹錬条件は発明例11に準じて行った。このときのランス中心軸を中心とした同心円上に配された4個のノズルのノズルスロート径を基準とし、発明例11はこれと同じスロート径、発明例12~14では基準径より大きいスロート径とした。比較例12では基準径より小さいスロート径とした。また、発明例14では、ランスから供給する石灰量を少なくした。ランス高さ(2800mm)およびノズルの出口径(65mm)は、全ての発明例および比較例で一定とした。さらに、ランス中心軸上に配された単一のノズルは、全ての発明例および比較例でスロート径55mm、出口径55mmで一定とし、Arガスの供給速度は1800Nm/hrで一定とした。すなわち、発明例11~14においては、上吹きランスノズルからの気体噴流が溶鉄浴面に衝突する位置での動圧を、噴流に随伴される脱燐精錬剤である生石灰粉の運動エネルギーによる動圧上昇を定量的に評価した上で、本設備における適正範囲の上限値である0.5kgf/cm以下とするように、操業条件に合わせて各ノズルのスロート径を変更して、表2に示した値のように動圧を制御した。
 表2に、発明例及び比較例における操業条件並びにCaO歩留り、脱炭吹錬後の溶鋼中の燐濃度を示す。
Figure JPOXMLDOC01-appb-T000006
 表2に示すように、ランスから供給する気体酸素の上吹き噴流の浴面衝突動圧を0.50kgf/cm以下にした全ての発明例において、脱炭吹錬後の溶鋼中の燐濃度は0.015質量%以下になり、かつCaO歩留りも90%以上の高い値となった。また発明例14では、少ない石灰量で目標の燐濃度の溶鋼を得ることができた。これに対して、比較例11では、CaOの全量を炉上投入したためスラグ形成不良となり、脱炭吹錬後の溶鋼中燐濃度が0.015質量%より高くなった。また、ランスからの気体酸素の上吹き噴流の浴面衝突動圧が0.50kgf/cm超えであった比較例12においては、粉状生石灰の飛散に起因するCaO歩留りの低下が認められた。
<実施例3>
 高炉から出銑した溶銑を300トン容量の転炉に搬送し、この転炉で予備脱燐処理を実施した後、この溶銑を別の300トン容量の転炉に装入し、この転炉で合計4回の脱炭吹錬を実施(本発明例21~24)した。予備脱燐処理後(脱炭吹錬前)の溶銑の炭素濃度及び燐濃度は、それぞれ3.0質量%及び0.03質量%に統一し、溶銑温度は約1360℃とした。脱炭吹錬後の溶鋼の燐濃度は0.015質量%を目標とし、脱炭吹錬後の溶鋼の炭素濃度及び溶鋼温度は実施例1と同一の目標とした。
 脱炭吹錬は、実施例1と類似の構造のランスを用いて行ったが、主孔ノズル8のスロート径は66mm、出口径は75mmとし、ランス中心軸を中心とした同心円上に5個配した。脱燐精錬用スラグを形成するためのCaOを含む脱燐精錬剤の全てを、上吹きランスから供給する粉状生石灰とした。ホタル石などのフッ素を含有する物質は添加しないで脱炭吹錬した。上吹き酸素流量は、上吹きランスから粉状生石灰を供給している間を含む脱炭吹錬の末期以外の期間は60000Nm/hrで一定とし、脱炭吹錬の末期にはそれより酸素流量を下げて吹錬を行った。転炉炉底羽口からの撹拌ガス流量、生石灰粉の供給速度は実施例1と同様とした。
 また、比較例として、粉状の生石灰を上吹きランスから投入せず、粒状の生石灰のみを炉上ホッパーから上置き投入した脱炭吹錬も実施(比較例21)した。比較例のその他の脱炭吹錬条件は本発明例21に準じて行った。このときの上吹きランス先端と湯面との距離(以後ランス高さと称する)を基準とし、本発明例21はこれと同じランス高さ、本発明例22~24では基準高さよりそれぞれ200mm、400mm、600mm高いランス高さとした。比較例22では基準高さより200mm低いランス高さとした。すなわち、発明例21~24においては、上吹きランスノズルからの気体噴流が溶鉄浴面に衝突する位置での動圧を、噴流に随伴される脱燐精錬剤である生石灰粉の運動エネルギーによる動圧上昇を定量的に評価した上で、本設備における適正範囲の上限値である0.5kgf/cm以下とするように、設備および操業の条件に合わせてランス高さを調節して、表3に示した値のように動圧を制御した。
 表3に、本発明例及び比較例における操業条件並びに脱炭吹錬後の燐濃度、CaO歩留りを示す。
Figure JPOXMLDOC01-appb-T000007
 表3に示すように、粉状生石灰を供給している間の上吹き噴流の浴面衝突動圧を0.50kgf/cm以下にした全ての本発明例において、脱炭吹錬後の溶鋼中燐濃度は0.015質量%以下になり、かつCaO歩留りも90%以上の高い値となった。これに対して、比較例21では、CaOの全量を炉上投入したためスラグ形成不良となり、脱炭吹錬後の溶鋼中燐濃度が0.015質量%より高くなった。また、上吹き噴流の浴面衝突動圧が0.50kgf/cm超えであった比較例22においては、粉状生石灰の飛散に起因するCaO歩留りの低下が認められた。
<実施例4>
 高炉から出銑した溶銑を高炉鋳床で脱珪した後、搬送容器(トーピードカー)で予備脱燐処理を実施した後、この溶銑を300トン容量の転炉に搬送し、この転炉で合計3回の脱炭処理を実施(本発明例31~33)した。予備脱燐処理後(脱炭吹錬前)の溶銑の炭素濃度及び燐濃度は、それぞれ3.5質量%及び0.05質量%に統一し、溶銑温度は約1300℃とした。脱炭吹錬後の溶鋼の燐濃度は0.020質量%を目標とし、脱炭吹錬後の溶鋼の炭素濃度及び溶鋼温度は実施例2と同一の目標とした。
 転炉の底吹きガスとして、転炉炉底に設けた二重管構造の羽口の内管から撹拌用ガスとして酸素ガスを溶銑1トン当たり約0.4Nm/minの流量で吹き込み、また、外管からは羽口冷却用のプロパンガスを吹き込みながら、脱炭処理を実施した。表4に、本発明例における脱燐処理前後の溶銑成分ならびに操業条件を示す。
 脱炭吹錬は、実施例2と同様のランスを用いて行った。即ち、上吹きランスの構造を、冷却水の給排水系統、酸素ガスの供給系統及び粉状の生石灰粉の供給系統とが分離された四重管構造とし、気体酸素源である酸素ガスを、ランス中心軸を中心とした同心円上に配された4個のノズルから供給し、一方、粉状の生石灰粉の搬送用ガスを酸素ガスとし、これらをランス中心軸上に配された単一のノズルから供給するようにした。同心円上に配された気体酸素源を供給するノズルのスロート径は68mm、出口径は80mmとした。
 発明例31~33及び比較例32では脱燐精錬用スラグを形成するためのCaOを含む脱燐精錬剤の全てを、上吹きランスから供給する粉状生石灰とした。ホタル石などのフッ素を含有する物質は添加しないで脱炭吹錬した。ランス中心軸を中心とした同心円上に配された4個のノズルからの上吹き酸素流量は、上吹きランスから粉状生石灰を供給している間を含む脱炭吹錬の末期以外の期間は60000Nm/hrで一定とし、脱炭吹錬の末期にはそれより酸素流量を下げて吹錬を行った。生石灰粉の供給速度は実施例1と同様とした。
 また、比較例として、粉状の生石灰を上吹きランスから投入せず、粒状の生石灰のみを炉上ホッパーから上置き投入した脱炭吹錬も実施(比較例31)した。比較例のその他の脱炭吹錬条件は本発明例31に準じて行った。このときの上吹きランス先端と湯面との距離(以後ランス高さと称する)を基準とし、本発明例31はこれと同じランス高さ、本発明例32~33では基準高さよりそれぞれ200mm、400mm高いランス高さとした。比較例32では基準高さより200mm低いランス高さとした。ランス中心軸上に配された単一のノズルは、全ての本発明例および比較例でスロート径55mm、出口径55mmで一定とし、酸素ガスの供給速度は1800Nm/hrで一定とした。すなわち、発明例31~33においては、上吹きランスノズルからの気体噴流が溶鉄浴面に衝突する位置での動圧を、噴流に随伴される脱燐精錬剤である生石灰粉の運動エネルギーによる動圧上昇を定量的に評価した上で、本設備における適正範囲の上限値である0.5kgf/cm以下とするように、設備および操業の条件に合わせてランス高さを調節して、表4に示した値のように動圧を制御した。
 表4に、本発明例及び比較例における操業条件並びに脱炭吹錬後の燐濃度、CaO効率を示す。
Figure JPOXMLDOC01-appb-T000008
 表4に示すように、上吹きランスから噴出する気体噴流の浴面衝突動圧を0.50kgf/cm以下にした全ての本発明例において、脱炭吹錬後の溶鋼中燐濃度は0.020質量%以下になり、かつCaO歩留りも90%以上の高い値となった。これに対して、比較例31では、CaOの全量を炉上投入したためスラグ形成不良となり、脱炭吹錬後の溶鋼中燐濃度が0.020質量%より高くなった。また、上吹き噴流の浴面衝突動圧が0.50kgf/cm超えであった比較例32においては、粉状生石灰の飛散に起因するCaO歩留りの低下が認められた。
 1 ランス本体
 2 ランス頂部
 3 ランス先端部
 4 銅製ランスチップ
 5 外管
 6 中管
 7 内管
 8 主孔ノズル
 9 気体酸素供給管
 10 気体酸素供給系統
 11 第1冷却水給排系統
 12 第2冷却水給排系統
 13 粉体供給管
 14 粉体供給系統
 15 粉体ノズル

Claims (5)

  1.  転炉内に、上吹きランスから気体酸素を供給して溶鉄の脱炭精錬を行いつつ、CaOを含有する粉状脱燐精錬剤を添加することによって、前記溶鉄を脱炭すると同時に脱燐して溶鋼を溶製する転炉製鋼方法において、前記脱燐精錬剤を、上吹きランスからの少なくとも1つ以上の気体噴流に随伴させて溶鉄浴面に供給し、かつ前記上吹きランスからの気体噴流が前記溶鉄浴面に衝突する際の動圧を、随伴される前記脱燐精錬剤がもつ運動エネルギーによる上昇分を考慮して、適正値に制御することを特徴とする転炉製鋼方法。
  2.  前記脱燐精錬剤及び前記気体酸素を、同一のランス内で合流させて、該脱燐精錬剤を該気体酸素を含む気体噴流に随伴させて前記溶鉄浴面に供給することを特徴とする、請求項1に記載の転炉製鋼方法。
  3.  前記気体酸素と、搬送ガスを伴う前記脱燐精錬剤のそれぞれ個別の供給系統を同一のランス内に配置し、前記気体酸素と前記脱燐精錬剤を搬送する搬送ガスとを、該ランスの別々のノズルから、気体噴流として前記溶鉄浴面に向けて吹き付けることを特徴とする、請求項1に記載の転炉製鋼方法。
  4.  前記気体酸素を含む気体噴流及び前記脱燐精錬剤を随伴する気体噴流を前記溶鉄浴面に衝突させる際の動圧の適正値は、0.50kgf/cm以下であることを特徴とする、請求項1ないし3の何れか1つに記載の転炉製鋼方法。
  5.  前記脱燐精錬剤は、粒度が1mm以下の生石灰、消石灰、炭酸カルシウム、転炉スラグ、取鍋スラグのうちの何れか1種または2種以上であることを特徴とする、請求項1ないし4の何れか1つに記載の転炉製鋼方法。
PCT/JP2012/082905 2011-12-20 2012-12-19 転炉製鋼方法 WO2013094634A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147015660A KR101529843B1 (ko) 2011-12-20 2012-12-19 전로 제강 방법
JP2013550304A JP5574060B2 (ja) 2011-12-20 2012-12-19 転炉製鋼方法
IN1258KON2014 IN2014KN01258A (ja) 2011-12-20 2012-12-19
CN201280056824.XA CN104126019B (zh) 2011-12-20 2012-12-19 转炉炼钢方法
EP12859763.0A EP2796569B1 (en) 2011-12-20 2012-12-19 Converter steelmaking method
US14/365,759 US9493854B2 (en) 2011-12-20 2012-12-19 Converter steelmaking method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-278224 2011-12-20
JP2011278224 2011-12-20

Publications (1)

Publication Number Publication Date
WO2013094634A1 true WO2013094634A1 (ja) 2013-06-27

Family

ID=48668518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082905 WO2013094634A1 (ja) 2011-12-20 2012-12-19 転炉製鋼方法

Country Status (8)

Country Link
US (1) US9493854B2 (ja)
EP (1) EP2796569B1 (ja)
JP (1) JP5574060B2 (ja)
KR (1) KR101529843B1 (ja)
CN (1) CN104126019B (ja)
IN (1) IN2014KN01258A (ja)
TW (1) TWI473883B (ja)
WO (1) WO2013094634A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140462A (ja) * 2014-01-29 2015-08-03 株式会社神戸製鋼所 転炉型容器における上吹き条件を変更する脱りん処理方法
JP2017057469A (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 転炉の上吹きランス及び転炉の操業方法
JP2017057468A (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 転炉の上吹きランス及び転炉の操業方法
WO2019039285A1 (ja) * 2017-08-21 2019-02-28 新日鐵住金株式会社 転炉吹錬用上吹きランスおよび溶銑の精錬方法
JP2019073780A (ja) * 2017-10-18 2019-05-16 新日鐵住金株式会社 溶鋼の精錬方法
JP2022006385A (ja) * 2020-06-24 2022-01-13 Jfeスチール株式会社 転炉脱りん処理用上吹きランスおよび転炉吹錬方法
CN116377172A (zh) * 2023-03-19 2023-07-04 新疆八一钢铁股份有限公司 一种转炉高效脱磷的操作方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018017087B1 (pt) * 2016-02-24 2022-05-17 Jfe Steel Corporation Método para refinar o aço fundido em equipamentos de desgaseificação a vácuo
US11542566B2 (en) * 2016-12-27 2023-01-03 Jfe Steel Corporation Method for dephosphorization of hot metal, and refining agent
WO2018135351A1 (ja) * 2017-01-18 2018-07-26 Jfeスチール株式会社 溶銑の脱燐方法
CN107213723A (zh) * 2017-06-15 2017-09-29 石嘴山市荣华缘冶金有限责任公司 用于炼钢的压缩空气除油除水装置
CN108374070A (zh) * 2018-05-04 2018-08-07 北京京科名创工程技术有限公司 喷吹注剂搅拌装置
CN110218842A (zh) * 2019-07-02 2019-09-10 马鞍山钢铁股份有限公司 一种铁水脱磷装置及方法
CN116334342B (zh) * 2023-04-06 2024-06-14 广东中南钢铁股份有限公司 一种减少转炉高架水槽积渣的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192815A (ja) * 1997-09-22 1999-04-06 Nkk Corp ダスト発生を抑制する転炉吹錬法
JP2002105526A (ja) * 2000-09-28 2002-04-10 Nippon Steel Corp 未滓化石灰が少ない溶銑脱燐方法
JP2006274349A (ja) 2005-03-29 2006-10-12 Sumitomo Metal Ind Ltd 鋼の精錬方法
JP2006336033A (ja) * 2005-05-31 2006-12-14 Jfe Steel Kk 転炉吹錬方法及び転炉吹錬用上吹きランス
JP2006342370A (ja) * 2005-06-07 2006-12-21 Sumitomo Metal Ind Ltd 転炉精錬方法
JP2010095786A (ja) * 2008-10-20 2010-04-30 Sumitomo Metal Ind Ltd 溶銑の脱燐方法
JP2011106028A (ja) * 2009-10-22 2011-06-02 Jfe Steel Corp 精錬用上吹きランス及びそれを用いた溶銑の精錬方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185707A (ja) * 1982-04-23 1983-10-29 Sumitomo Metal Ind Ltd 鋼の精錬法
JP3402133B2 (ja) * 1997-07-17 2003-04-28 住友金属工業株式会社 精錬用上吹きランスおよび精錬方法
JPH1192814A (ja) * 1997-09-22 1999-04-06 Nkk Corp ダスト発生を抑制する転炉吹錬方法
JP4273688B2 (ja) * 2000-11-16 2009-06-03 Jfeスチール株式会社 転炉吹錬方法
JP4686873B2 (ja) * 2001-02-28 2011-05-25 Jfeスチール株式会社 溶銑の脱燐方法
JP3854482B2 (ja) * 2001-09-27 2006-12-06 新日本製鐵株式会社 溶銑の予備処理方法及び精錬方法
JP2013133520A (ja) * 2011-12-27 2013-07-08 Jfe Steel Corp 溶銑の脱燐精錬方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192815A (ja) * 1997-09-22 1999-04-06 Nkk Corp ダスト発生を抑制する転炉吹錬法
JP2002105526A (ja) * 2000-09-28 2002-04-10 Nippon Steel Corp 未滓化石灰が少ない溶銑脱燐方法
JP2006274349A (ja) 2005-03-29 2006-10-12 Sumitomo Metal Ind Ltd 鋼の精錬方法
JP2006336033A (ja) * 2005-05-31 2006-12-14 Jfe Steel Kk 転炉吹錬方法及び転炉吹錬用上吹きランス
JP2006342370A (ja) * 2005-06-07 2006-12-21 Sumitomo Metal Ind Ltd 転炉精錬方法
JP2010095786A (ja) * 2008-10-20 2010-04-30 Sumitomo Metal Ind Ltd 溶銑の脱燐方法
JP2011106028A (ja) * 2009-10-22 2011-06-02 Jfe Steel Corp 精錬用上吹きランス及びそれを用いた溶銑の精錬方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2796569A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140462A (ja) * 2014-01-29 2015-08-03 株式会社神戸製鋼所 転炉型容器における上吹き条件を変更する脱りん処理方法
JP2017057469A (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 転炉の上吹きランス及び転炉の操業方法
JP2017057468A (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 転炉の上吹きランス及び転炉の操業方法
WO2019039285A1 (ja) * 2017-08-21 2019-02-28 新日鐵住金株式会社 転炉吹錬用上吹きランスおよび溶銑の精錬方法
JPWO2019039285A1 (ja) * 2017-08-21 2019-11-21 日本製鉄株式会社 転炉吹錬用上吹きランスおよび溶銑の精錬方法
CN110621792A (zh) * 2017-08-21 2019-12-27 日本制铁株式会社 转炉吹炼用顶吹喷枪以及铁液的精炼方法
JP2019073780A (ja) * 2017-10-18 2019-05-16 新日鐵住金株式会社 溶鋼の精錬方法
JP2022006385A (ja) * 2020-06-24 2022-01-13 Jfeスチール株式会社 転炉脱りん処理用上吹きランスおよび転炉吹錬方法
JP7380444B2 (ja) 2020-06-24 2023-11-15 Jfeスチール株式会社 転炉脱りん処理用上吹きランスおよび転炉吹錬方法
CN116377172A (zh) * 2023-03-19 2023-07-04 新疆八一钢铁股份有限公司 一种转炉高效脱磷的操作方法
CN116377172B (zh) * 2023-03-19 2024-07-19 新疆八一钢铁股份有限公司 一种转炉高效脱磷的操作方法

Also Published As

Publication number Publication date
TWI473883B (zh) 2015-02-21
EP2796569A4 (en) 2015-03-18
JP5574060B2 (ja) 2014-08-20
KR101529843B1 (ko) 2015-06-17
TW201331376A (zh) 2013-08-01
CN104126019A (zh) 2014-10-29
EP2796569A1 (en) 2014-10-29
CN104126019B (zh) 2017-06-23
US20140311295A1 (en) 2014-10-23
US9493854B2 (en) 2016-11-15
IN2014KN01258A (ja) 2015-10-16
EP2796569B1 (en) 2017-08-02
JPWO2013094634A1 (ja) 2015-04-27
KR20140090672A (ko) 2014-07-17

Similar Documents

Publication Publication Date Title
JP5574060B2 (ja) 転炉製鋼方法
JP5644355B2 (ja) 溶銑の精錬方法
JP5087905B2 (ja) 溶銑の脱燐処理方法
JP4977874B2 (ja) 溶銑の脱燐処理方法
JP2006348331A (ja) 溶融金属精錬用上吹きランス及び溶融金属の吹錬方法
JP5181520B2 (ja) 溶銑の脱燐処理方法
JP5867520B2 (ja) 溶銑の予備処理方法
JP5471151B2 (ja) 転炉製鋼方法
JP4487812B2 (ja) 低燐溶銑の製造方法
WO2007055404A1 (ja) 溶銑の脱燐処理方法
JP5870584B2 (ja) 溶銑の脱燐処理方法
EP3752650B1 (en) Method for refining molten metal using a converter
JP6291998B2 (ja) 溶銑の脱りん方法
JP4779464B2 (ja) 低燐溶銑の製造方法
JP4630031B2 (ja) 酸化鉄含有鉄原料の還元・溶解方法
JP5691232B2 (ja) 転炉精錬方法
TWI662133B (zh) 鐵水之脫磷方法及精煉劑
JP4513340B2 (ja) 溶銑の脱燐処理方法
JP2022026942A (ja) 転炉吹錬方法
JP2010255054A (ja) 溶銑の脱燐処理方法
JP2010189668A (ja) 転炉の操業方法
JPH03277708A (ja) 鉄浴式の溶融還元法
TR201400880A2 (tr) Sıcak metalin fosforunun giderilmesine yönelik yöntem.
JP2016151051A (ja) 溶銑の脱りん処理における固体酸素源の供給方法
JP2017101293A (ja) 溶銑の脱りん処理における固体酸素源の供給方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859763

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013550304

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147015660

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14365759

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012859763

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012859763

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE